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Foreword

Atomic, molecular, and optical physics (AMO physics) encompasses the foundational knowl-
edge of atomic physics and essential concepts and data for molecular and optical physics.
AMO physics provides the tools for understanding the full gamut of atomic, ionic, and molec-
ular collisions that is essential for astronomy and astrophysics. Knowledge from AMO physics
overflows into neighboring fields: nuclear physics, material science, biophysics, geo-physics,
and atmospheric science. AMO science is crucial to the understanding of climate change.

AMO physics has undergone dramatic advances since the last edition of the AMO Hand-
book. The discovery of ultracold atoms has led to new tools for many-body physics. Cavity
quantum electrodynamics has opened avenues into field theory and quantum information pro-
cessing. Advances in experimental techniques have revolutionized metrology and enabled
a new generation of atomic frequency standards that have reached precision of parts in 10'°.
A metrological revolution has taken place: all the basic units of science have been redefined in
terms of quantum measurements.

Fundamental tests continue to flourish. Atoms now serve as tools for manipulating photons,
quantum information theory and quantum communication have advanced, and the search for
physics beyond the Standard Model has been carried forward. The discovery of gravitational
waves by LIGO was enabled by advances in quantum optics from the AMO community, and
the observation of radiation by matter as it falls through the event horizon of a black hole was
made possible by synchronizing signals from observatories around the world using atomic
clocks at their limit of accuracy

The Table of Contents of this new edition of the Springer Handbook of Atomic, Molecular,
and Optical Physics reflects the broad scope of AMO physics today. Its 91 chapters, written by
experts and carefully reviewed, are an essential resource for physicists in academic, industrial,
and federal research laboratories.

With the changing style in scientific publishing and library practice, browsing has become
increasingly difficult. All the more reason to have access to the Springer Handbook of Atomic,
Molecular and Optical Physics, for which browsing is almost irresistible.

January, 2021 Daniel Kleppner



Foreword to the First Edition by Herbert Walther

The Handbook of Atomic, Molecular and Optical (AMO) Physics gives an in-depth survey of
the present status of this field of physics. It is an extended version of the first issue to which
new and emerging fields have been added. The selection of topics thus traces the recent his-
toric development of AMO physics. The book gives students, scientists, engineers, and other
interested people a comprehensive introduction and overview. It combines introductory expla-
nations with descriptions of phenomena, discussions of results achieved, and gives a useful
selection of references to allow more detailed studies, making the handbook very suitable as
a desktop reference.

AMO physics is an important and basic field of physics. It provided the essential impulse
leading to the development of modern physics at the beginning of the last century. We have
to remember that at that time not every physicist believed in the existence of atoms and
molecules. It was due to Albert Einstein, whose work we commemorate this year with the
world year of physics, that this view changed. It was Einstein’s microscopic view of molecu-
lar motion that led to a way of calculating Avogadro’s number and the size of molecules by
studying their motion. This work was the basis of his PhD thesis submitted to the University
of Zurich in July 1905 and after publication became Einstein’s most quoted paper. Further-
more, combining kinetic theory and classical thermodynamics led him to the conclusion that
the displacement of a microparticle in Brownian motion varies as the square root of time. The
experimental demonstration of this law by Jean Perrin three years later finally afforded striking
proof that atoms and molecules are a reality. The energy quantum postulated by Einstein in or-
der to explain the photoelectric effect was the basis for the subsequently initiated development
of quantum physics, leading to a revolution in physics and many new applications in science
and technology.

The results of AMO physics initiated the development of quantum mechanics and quantum
electrodynamics and as a consequence led to a better understanding of the structure of atoms
and molecules and their respective interaction with radiation and to the attainment of unprece-
dented accuracy. AMO physics also influenced the development in other fields of physics,
chemistry, astronomy, and biology. It is an astonishing fact that AMO physics constantly went
through periods where new phenomena were found, giving rise to an enormous revival of this
area. Examples are the maser and laser and their many applications, leading to a better under-
standing of the basics and the detection of new phenomena, and new possibilities such as laser
cooling of atoms, squeezing, and other nonlinear behaviour. Recently, coherent interference
effects allowed slow or fast light to be produced. Finally, the achievement of Bose—Einstein
condensation in dilute media has opened up a wide range of new phenomena for study. Special
quantum phenomena are leading to new applications for transmission of information and for
computing. Control of photon emission through specially designed cavities allows controlled
and deterministic generation of photons opening the way for a secure information transfer.

Further new possibilities are emerging, such as the techniques for producing attosecond
laser pulses and laser pulses with known and controlled phase relation between the envelope
and carrier wave, allowing synthesis of even shorter pulses in a controlled manner. Further-
more, laser pulses may soon be available that are sufficiently intense to allow polarization of
the vacuum field. Another interesting development is the generation of artificial atoms, e.g.,
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quantum dots, opening a field where nanotechnology meets atomic physics. It is thus evident
that AMO physics is still going strong and will also provide new and interesting opportunities
and results in the future.

Herbert Walther



Preface

The field of atomic, molecular, and optical physics is the oldest part of modern physics, and yet
it provides the foundation upon which all the rest is built. The previous edition of the Springer
Handbook of Atomic, Molecular, and Optical Physics was published in 2005, which was the
International Year of Physics celebrating the Annus mirabilis of Einstein exactly 100 years
earlier. 2005 also marked another in a long sequence of Nobel Prizes awarded for work in the
area of AMO physics, this time to Roy Glauber, John Hall, and Ted Hinsch for their work on
quantum optics and high-precision measurement. The sequence continued with the 2012 prize
being awarded to Serge Haroche and David Wineland for their work on measuring and manip-
ulating individual quantum systems, and the 2018 prize to Arthur Askin for the development of
optical tweezers, and Gérard Mourou and Donna Srickland for high-intensity ultrashort laser
pulses. Most recently, the Nobel Prize in Physics for 2022 was awarded jointly to Alain Aspect,
John F. Clauser and Anton Zeilinger for experiments with entangled photons, establishing the
violation of Bell inequalities, and pioneering quantum information science. The 2015 Prize
for neutrino oscillations and the 2017 Prize for gravitational waves also made essential use
of the techniques of AMO physics for their success. 2015 was also the International Year of
Light, where the ever-expanding power and versatility of lasers played a prominent role; this
continues to provide a unifying theme for much of AMO physics.

The intent of this Handbook is to provide a ready reference for the principal ideas, tech-
niques, and results that are common to all these areas of research where exciting advances
continue apace. The success of the previous 2005 edition and advances in the field provide
the motivation for the current revised edition, with the expectation that it will continue as a
standard reference source for the field. Many of the topics have not changed significantly since
the previous edition was published, such as angular momentum algebra (Chap. 2), perturba-
tion theory (Chap. 5), second quantization (Chap. 6), and the properties of hydrogenic wave
functions (Chap. 9), and so these chapters are still the same (except for minor corrections).
However, most of the other chapters have been extensively revised, and in some cases com-
pletely rewritten. In the search for new physics beyond the Standard Model, it has become
increasingly evident that high-precision atomic physics measurements at low energy can be
used to supplement, or in some cases extend, what can be learned from high-energy particle
accelerators. Entirely new chapters are included on searches for dark matter and an electron
electric dipole moment (EDM), and tests of Lorentz invariance and general relativity. The ma-
jor previous sections on lasers, laser interactions with matter, and quantum optical tests of
the foundations of physics remain of central importance in the revised edition, along with the
various forms of spectroscopy. The sections on scattering phenomena, both theoretical and
experimental, have been augmented to include a new chapter on ultracold Rydberg atom colli-
sions, and another on quantum defect theory. The section on applications remains as important
and timely as ever, with extensively updated chapters on aeronomy and global change. Chap-
ter 1 on units and constants has been completely transformed by the redefinition of Planck’s
constant, Avogadro’s number, Boltzmann’s constant, and the elementary charge as defined
physical constants with zero uncertainty.

The preparation of the original Handbook and the current revision would not have been
possible without the help and advice of many people throughout the AMO physics commu-
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nity. To name just a few, I am particularly indebted to Thomas Kirchner, Klaus Bartschat, and
Jonathan Tennyson for their help and advice on revisions to the section on scattering theory,
and to Pierre Meystre and Bruce Shore for their advice and guidance in extending and restruc-
turing the section on quantum optics. Marianna Safronova provided valuable input on searches
for new physics beyond the Standard Model.

We regret that the following authors, all giants in the field, from the previous edition are no
longer with us. In order of their appearance in the previous edition, they are James D. Louck,
Robert N. Hill, William C. Martin, Anthony F. Starace, M. Raymond Flannery, Philip Burke,
Bernd Crasemann, Stig Stenholm, Alexander Dalgarno, Alan Garscadden, Hans Bichsel, Mi-
tio Inokuti, John M. Brown, Lorenzo J. Curtis, Kenneth Evenson, Gordon Feldman, Thomas
Fulton, Axel Schenzle, Paul Feldman, and Michael R. Strayer.

Work on the current revision project began in February, 2016, and so it has been nearly
seven years in the making. Much of the day-to-day work involved corresponding with over
100 authors and keeping track of the status of each of the 91 chapters as they passed through
an external review process followed by revisions. In many cases, it also involved actively
helping authors solve problems with their ISTEX source code and establishing good lines of
communication with each author concerning the content of other related chapters. All of this
would not have been possible without the very capable help of the three Editorial Assistants
who worked on various stages of the project: Jacklyn Bizarre, Shawn Steven, and Fatemeh
Hamdizadeh. Their tireless efforts and energy contributed greatly to the successful completion
of the project. I would also like to acknowledge the very capable assistance of the Springer
Handbook Coordinators: Veronika Hamm, Heather King, and Judith Hinterberg. I owe a great
debt of gratitude to all of these people in making this revised edition of the Springer Handbook
of Atomic, Molecular and Optical Physics a reality. I am especially grateful for the love and
support of my wife, Mary Louise, and my children Susan and Peter. I hope that the present
edition will continue to serve as a valuable resource for many years to come.

November, 2022 Gordon W.F. Drake



Preface to the First Edition

The year 2005 has been officially declared by the United Nations to be the International Year of
Physics to commemorate the three famous papers of Einstein published in 1905. It is a fitting
tribute to the impact of his work that the Springer Handbook of Atomic, Molecular, and Optical
Physics should be published in coincidence with this event. Virtually all of AMO Physics rests
on the foundations established by Einstein in 1905 (including a fourth paper on relativity
and his thesis) and his subsequent work. In addition to the theory of relativity, for which
he is best known, Einstein ushered in the era of quantum mechanics with his explanation
of the photoelectric effect, and he demonstrated the influence of molecular collisions with
his explanation of Brownian motion. He also laid the theoretical foundations for all of laser
physics with his discovery (in 1917) of the necessity of the process of stimulated emission, and
his discussions of the Einstein—Podolsky—Rosen Gedanken experiment (in 1935) led, through
Bell’s inequalities, to current work on entangled states and quantum information. The past
century has been a Golden Age for physics in every sense of the term.

Despite this history of unparalleled progress, the field of AMO Physics continues to ad-
vance more rapidly than ever. At the time of publication of an earlier Handbook published by
AIP Press in 1996 I wrote “The ever increasing power and versatility of lasers continues to
open up new areas for study.” Since then, two Nobel Prizes have been awarded for the cooling
and trapping of atoms with lasers (Steven Chu, Claude Cohen-Tannoudji, William D. Phillips
in 1997), and for the subsequent achievement of Bose—Einstein condensation in a dilute gas
of trapped atoms (Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman in 2001). Although
the topic of cooling and trapping was covered in the AIP Handbook, Bose—Einstein conden-
sation was barely mentioned. Since then, the literature has exploded to nearly 2500 papers
on Bose—FEinstein condensation alone. Similarly, the topics of quantum information and quan-
tum computing barely existed in 1995, and have since become rapidly growing segments of
the physics literature. Entirely new topics such as “fast light” and “slow light” have emerged.
Techniques for both high precision theory and measurement are opening the possibility to de-
tect a cosmological variation of the fundamental constants with time. All of these topics hold
the promise of important engineering and technological applications that come with advances
in fundamental science. The more established areas of AMO Physics continue to provide the
basic data and broad understanding of a great wealth of underlying processes needed for stud-
ies of the environment, and for astrophysics and plasma physics.

These changes and advances provide more than sufficient justification to prepare a thor-
oughly revised and updated Afomic, Molecular and Optical Physics Handbook for the Springer
Handbook Program. The aim is to present the basic ideas, methods, techniques and results of
the field at a level that is accessible to graduate students and other researchers new to the field.
References are meant to be a guide to the literature, rather than a comprehensive bibliography.
Entirely new chapters have been added on Bose—FEinstein condensation, quantum information,
variations of the fundamental constants, and cavity ring-down spectroscopy. Other chapters
have been substantially expanded to include new topics such as fast light and slow light. The
intent is to provide a book that will continue to be a valuable resource and source of inspiration
for both students and established researchers.
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I would like to acknowledge the important role played by the members of the Advisory
Board in their continuing support of this project, and I would especially like to acknowledge
the talents of Mark Cassar as Assistant Editor. In addition to keeping track of the submissions
and corresponding with authors, he read and edited the new material for every chapter to ensure
uniformity in style and scientific content, and he composed new material to be added to some
of the chapters, as noted in the text.

February 2005 Gordon W.F. Drake
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Part A gathers together the mathematical methods applica-
ble to a wide class of problems in atomic, molecular, and
optical physics. The application of angular momentum the-
ory to quantum mechanics is presented. The basic tenet that
isolated physical systems are invariant to rotations of the sys-
tem is thereby implemented into physical theory. The pow-
erful methods of group theory and second quantization show
how simplifications arise if the atomic shell is treated as
a basic structural unit. The well-established symmetry groups
of quantum mechanical Hamiltonians are extended to the
larger compact and noncompact dynamical groups. Perturba-
tion theory is introduced as a bridge between an exactly solv-
able problem and a corresponding real one, allowing approx-

imate solutions of various systems of differential equations.
The consistent manner in which the density matrix formal-
ism deals with pure and mixed states is developed, showing
how the preparation of an initial state, as well as the details
regarding the observation of the final state, can be treated in
a systematic way. The basic computational techniques neces-
sary for accurate and efficient numerical calculations essential
to all fields of physics are outlined, and a summary of relevant
software packages is given. The ever-present one-electron so-
lutions of the nonrelativistic Schrodinger equation and the
relativistic Dirac equation for the Coulomb potential are then
summarized. A summary of the computer software available
for atomic and molecular physics calculations is included.
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Abstract

We describe atomic and natural units relevant for the
atomic, molecular, and optical physics described in this
book. For nonrelativistic models of atoms and molecules
absorbing and emitting photons atomic units are appropri-
ate. In this system, energies and lengths are expressed in
terms of the Hartree energy and Bohr radius, respectively.
Relativistic models are required for precision quantum
electrodynamics-based determinations of energy levels of
hydrogen and other light atoms and molecules. Natural
units are then the most appropriate, and energies and
length are expressed in the rest energy of the electron and
the reduced Compton wavelength, respectively. Finally,
we present values for an abbreviated list of fundamental
constants taken from the CODATA (Committee on Data
for Science and Technology) adjustment of fundamental
constants based on data published or made available be-
fore the end of 2018.

Keywords

atomic units - fine structure constant - fundamental con-
stants - International System of Units (SI) - natural units

E. Tiesinga (X))

National Institute of Standards and Technology
Gaithersburg, MD, USA

e-mail: eite.tiesinga@nist.gov

© Springer Nature Switzerland AG 2023

1.1 Introduction

In science we communicate measurements of quantities or
observables in terms of a product of a numerical value and
a unit, where the unit is a particular example of the quantity.
For example, the spin of an electron is (1/2) 2, where 1/2
is the numerical value, and the reduced Planck constant #
is the unit or example angular momentum. Equivalently, the
spin of the electron is 0.527 285 ... x 1073* J s in the Interna-
tional System of Units (SI) [1]. More digits for the numerical
value can be easily found now that the Planck constant is ex-
actly defined in the SI. In fact, seven exact constants define
the seven SI base units second, meter, kilogram, Coulomb,
kelvin, and lumen [1]. The names and values of these con-
stants are given in Table 1.1. It was only on World Metrology
Day, 20 May 2019, that the Planck constant, elementary
charge, Boltzmann constant, and the Avogadro constant were
given their exact value in the SI. See [2] for a review of the
ideas that led to this redefinition.

The example in the previous paragraph shows that some
units are more convenient than others. We tend to prefer units
where the numerical value of the measured quantity is of
order 1. Preferred units for a system follow from its Hamil-
tonian H in a process that makes H as well as all operators
and constants appearing in H dimensionless. Operators can
correspond to particle spins, positions, and momenta but also
fields in quantum field theories.

In this chapter, we derive atomic and natural units as they
appear in atomic, molecular, and optical physics. For a dif-
ferent view of units in the field of electromagnetism, we
recommend the appendix on units and dimensions of [3]. We
also present a list of relevant fundamental constants.

1.2 Atomic Units

We derive atomic units starting from the nonrelativistic
Hamiltonian for an electron with charge —e and mass m,

3
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Table 1.1 Exact quantities and their symbols, numerical values, and units in the SI

Quantity Sym.
Hyperfine transition frequency of **Cs Avgs
Speed of light in vacuum c
Planck constant® h

h
Elementary charge e
Boltzmann constant k
Avogadro constant Na
Luminous efficacy Keq

Value Unit
9192631770 Hz
299792 458 ms™!
6.626070 15 x 1073+ JTHz!

1.054571817... x 1073 Is
1.602176 634 x 1071 C

1.380 649 x 10723 JK!
6.022 14076 x 10% mol~!
683 ImW!

4 The energy of a photon with frequency v expressed in unit Hz is £ = hv in J. The unitary time evolution of the state of this photon is given by
exp(—iEt/h)|@), where |¢) is the photon state at time r = 0, and time is expressed in unit s. The ratio E¢ /% is a phase.

bound to an infinitely heavy point-like source with charge
+Ze, possibly absorbing and emitting transverse photons.
Following [4] we use the Coulomb gauge and assume that
the charges are contained in a large cubic box with periodic
boundary conditions and length L on each side. Here, e is
the (positive) elementary charge, and Z is a positive integer.
Hence, we have

(F+ed (P 1 Ze + 1
_ == ho;lala; + = |,
2m. dpey 1 + /Z @j |99+ 3

H =

(1.1)
where 7 and p are the position and momentum operators
of the electron, respectively, and the commutation relations
[ri, pj] = ihd;; for vector components i and j hold. The
source is located at ¥ = 6, €o is the vacuum electric permit-
tivity, and §;; is the Kronecker delta. For simplicity, we have
omitted the Zeeman interaction of the electron spin coupling
to a magnetic field.

The last term of Eq. (1.1) describes the photon-field
Hamiltonian, where operators a; and a; annihilate and create
photons, respectively. For index j, photons are specified by
polarization €; and wavevector Ej. The components of the
wavevector are integer multiples of 2/ L. By construction
€; and k ; are perpendicular to each other, and the frequency
of photon j is w; = c|k;|, where c is the speed of light in vac-
uum. Operators a; and a; satisfy the commutation relations
[ai,a;] = §;;. Finally, the transverse vector field operator

A, (¥) ! is given by

/TL(7) ZZ

f»e*f’zf'f]. (1.2)

Similar expressions for the transverse electric E 1(F) and
magnetic B (F) field operators can be written down. The con-

! A transverse vector field F| (7) in position space 7 is a field such that
its Fourier representation ‘F, (k) is perpendicular to k for all wavevec-

tors k. Magnetic fields are transverse vector fields in any gauge and
subscript _L is often dropped.

stants €y, ¢, and the vacuum magnetic permeability p( are
not independent. They satisfy

1
¢t = .
Ho€o

(1.3)

We are now ready to make the Hamiltonian dimension-
less. We assume that there exists a convenient length scale a
and write for the position operator of the electron ¥ = X ay,
where operator X is dimensionless. An equally valid inter-
pretation of X a is that X is a vector of numerical values, and
ay is the unit for position. The commutation relation for 7
and p imply p = —ihV,, where V, is the gradient or nabla
vector differential operator in 7, and thus p = —iV, ha,".
The wavevector and frequency of the photon field are made
dimensionless with lzj =g;a," and w; = |g;|cay'. The
components of ¢; are integer multiples of 2v/¢, where L =
£ ay. Thus, the units of electron momentum, photon wavevec-
tor, and frequency are f1a;"', a,', and ca; ', respectively.

To summarize, Eq. (1.1) becomes

m? 1 eag - 2 A
H = =iV, 4+ —4 — —
mea(% 2< PVx t h 1 aO)) dregagy x
_ 1
|
J
(1.4)

A comparison of the energies of the first two terms suggests
that we choose a such that

hz 2
= =F, (15)
medg 41#60610
and, thus,
4yreh?
ap = LI (1.6)
mee

The reference quantities E} and a( or the atomic units of
energy and length are better known as the Hartree energy and
the Bohr radius, respectively. The Rydberg frequency ¢ R, is
defined by cR,, = Ey,/2h.
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In atomic units the vector potential is made dimensionless
with the choice

- - __h
Ai(xag) = A (X)—, (1.7
eda
so that the Hamiltonian reads
1 - .\2
H = {5(—1'% + ﬂl(x)) _z
! i Mg 1.8
+;&|qi| ajaj + 51 (En. (1.8)
where the dimensionless fine-structure constant « is
__“ (1.9)
" 4yeohc ’

and 1/« is the numerical value of the speed of light in vac-
uum in atomic units. Specifically, the unit of velocity is
h/meay.

1.3 Natural Units

Natural units follow from Dirac’s relativistic description of
the negatively-charged electron bound to an infinitely-heavy
point charge in the presence of transverse photons. Thus, in
the Coulomb gauge, we have

1 Ze?

Hyg =ﬂmec2+c&-(ﬁ+elzﬁ(?))—l4 -
4deg 1

1
+ Z hw, [a}ra_,» + §i|a
J

(1.10)
where @ and B are four dimensionless mutually anticom-
muting four-component Dirac matrices with a? = 2 = I,
and I, is the four-component identity matrix. The defini-
tion for the transverse vector potential A 1 (¥) remains that of
Eq. (1.2). For our purpose of defining natural units, we can
ignore interpretations of the positive and negative energy so-
lutions of the Dirac equation as well as effects such as virtual
electron-positron pairs, which will be present in the complete
quantum electrodynamic (QED) theory.

This relativistic Hamiltonian can be made dimensionless
by assuming the length unit ¢ and ¥ = X *c with simi-
lar expressions for box size L, momentum p, and photon
wavevector and frequency 12 j and w;. Then we find

- Xc o+ .
Hy = Bmec? + hckal o- (—iVx + eh—CAL(x kc))

2

e 1
— h k !
" Meoke x “ e Z'q’ [" 4t }

(1.11)

and, by comparing the energies of the first two terms, choose
Xc such that

mec? = hexg' (1.12)
or h
do = ) (1.13)
mecC

The reference quantities m.c? and ¢ or the natural units of
energy and length are the energy equivalent of the electron
rest mass and the reduced Compton wavelength, respectively.
We also note that Xc = cay and Ej, = a?mec?.

In natural units the transverse vector potential is not made
dimensionless from its appearance in the Hamiltonian but
rather from rewriting its definition in Eq. (1.2) in terms of
the reduced Compton wavelength. In fact, we choose

A (X xc) =

Vaya A (%) i, (1.14)
€kc

where

ALRF) = Z 2| 1|53 [a,ej Y talée ’W] (1.15)

by inspection. The transverse vector field A 1 (X) only de-
pends on geometric quantities related to the periodic bound-
ary conditions in the cubic box of length L = £ *¢ and not
on « or the charge of the electron. Finally, the Hamiltonian
in Eq. (1.11) reads

Hy = {ﬂ ta- (—iVx + Wﬁ\l(;))

—14— + Zlqj [a a; + }}m 2,

where the fine-structure constant now appears in the strength
of the minimal coupling & - A | (¥) of the electron with the
photons and in the Coulomb term of the Hamiltonian. The
numerical value of the speed of light in vacuum is one in
natural units. In fact, the unit of velocity is /m.tc = c.

(1.16)

1.4 Fundamental Constants

In Table 1.2 we present an abbreviated list of values
for fundamental constants based on the 2018 adjustment
of fundamental constants as published by the CODATA
taskgroup [5]. The table also gives values for atomic and nat-
ural units for a range of quantities, such as charge, speed,
and time. The two most accurately known constants are the
g-factor of a free electron and the Rydberg frequency ¢ R,
(or, equivalently, the Hartree energy) with relative uncertain-
ties of 1.7 x 107"3 and 1.9 x 107'2, respectively. The least
well-known quantity in the table is the proton root-mean-
square (rms) charge radius r, with a relative uncertainty of
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Table 1.2 Selected constants as well as atomic and natural units based on the 2018 CODATA adjustment of the fundamental constants [5]. The
first two columns describe the quantity and its mathematical symbol. The third and fourth columns give its numerical value and unit. For quantity
X the number in parenthesis in the numerical value is the combined statistical and systematic one-standard-deviation uncertainty u(X) in the last
two digits of the numerical value. Finally, the last column gives the relative standard uncertainty u,(X) = u(X)/|X|. The unit u is the atomic
mass unit, one-twelfth of the mass of a '2C atom

Quantity Symbol Numerical value Unit Relative std.
uncert. u,
Non-SI units accepted for use within the SI
Electron volt: (e/C) J eV 1.602176 634 x 10717 J exact
(Unified) atomic mass unit: m(*2C)/12 u 1.660 539066 60(50) x 10~%7 kg 3.0x 10710
General
Vacuum magnetic permeability 4yah/e’c o 1.256 637062 12(19) x 10~° N A2 1.5x 10710
1o/ (49 x 1077) 1.000000 000 55(15) N A2 1.5 % 10710
Vacuum electric permittivity 1/poc? €0 8.8541878128(13) x 10712 Fm™! 1.5x 10710
Fine-structure constant e?/4veghc o 7.2973525693(11) x 1073 1.5x 10710
Inverse fine-structure constant a! 137.035 999 084(21) 1.5x 10710
Rydberg frequency a’m.c?/2h = Ey,/2h cRo 3.289841 960 2508(64) x 10'° Hz 1.9 x 10712
Energy equivalent he Roo 2.179872361 1035(42) x 10718 J 1.9x 10712
13.605 693 122 994(26) eV 1.9 x 10712
Rydberg constant Ry 10973 731.568 160(21) [m~1]2 1.9x 10712
Bohr magneton e/2m, UB 9.2740100783(28) x 10~ JT! 3.0 x 10710
s/ h 1.399 624 493 61(42) x 10'° Hz T-! 3.0 x 1010
Nuclear magneton e#/2m, N 5.0507837461(15) x 10-%7 JT! 3.1 x 10710
jin/ b 7.6225932291(23) MHz T~ 3.1x 10710
Electron, e
Electron mass Me 9.1093837015(28) x 1073! kg 3.0x 10710
5.485799090 65(16) x 10~* . 2.9% 101!
Energy equivalent mec? 8.187 105 7769(25) x 10714 J 3.0x 10710
0.510 998 950 00(15) MeV 3.0 x 1010
Electron—muon mass ratio me/m,, 4.83633169(11) x 1073 22x1078
Reduced Compton wavelength #1/m.c = aay xc 3.8615926796(12) x 1013 m 3.0x 10710
Compton wavelength Ac 2.42631023867(73) x 10712 [m]? 3.0 x 10710
Classical electron radius o’ag Te 2.8179403262(13) x 1071 m 4.5x 10710
Electron magnetic moment e —9.2847647043(28) x 10724 JT! 3.0x 10710
to Bohr magneton ratio e/ LB —1.001 159652 181 28(18) 1.7x 10713
to nuclear magneton ratio e/ AN —1838.281 971 88(11) 6.0 x 10711
Electron magnetic moment anomaly ||/ — 1 @ 1.15965218128(18) x 1073 1.5x 10710
Electron g-factor —2(1 + a.) ge —2.002 319304 362 56(35) 1.7x 10713
Electron—proton magnetic moment ratio Me/ tp —658.210 687 89(20) 3.0x 10710
Proton, p
Proton mass my 1.672621 923 69(51) x 10?7 kg 3.1 x 10710
1.007 276 466 621(53) . 5.3 x 10-1!
Energy equivalent mpc? 1.503277 615 98(46) x 10~1° J 3.1 x 10710
938.272 088 16(29) MeV 3.1x 10710
Proton—electron mass ratio mpy/me 1836.152 673 43(11) 6.0 x 10711
Proton rms charge radius i 8.414(19) x 10716 m 22x 1073
Proton magnetic moment Wi 1.410 606 797 36(60) x 10-2° JT! 42 x 10710
to Bohr magneton ratio Mo/ 1B 1.521032202 30(46) x 1073 3.0x 10710
to nuclear magneton ratio Mp/ N 2.792 847 344 63(82) 2.9x 10710
Proton g-factor 2/4,/ N g 5.585694 6893(16) 2.9x 10710

2 The full description of m™~! is cycles or periods per meter and that of m is meter per cycle (m/cycle). The scientific community is aware of the
implied use of these units. It traces back to the conventions for phase and angle and the use of unit Hz versus cycles/s. No solution has been agreed
upon.
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Table 1.2 (Continued)

Quantity Symbol Numerical value Unit Relative std.
uncert. u;
Atomic units (a.u.)
a.u. of charge e 1.602 176 634 x 10~1° C exact
a.u. of mass me 9.109383 7015(28) x 107! kg 3.0 x 10710
a.u. of action h 1.054571817... x 1073 Is exact
a.u. of length: Bohr radius (bohr) 7/am.c ap 5.29177210903(80) x 10~ m 1.5x 10710
a.u. of energy: Hartree energy (Hartree) Ey 4.3597447222071(85) x 10718 J 1.9 x 10712
a’mec? = e?/4pepay = 2he Ry
a.u. of time h/En 2.418 884 3265857(47) x 10~7 S 1.9 x 10712
a.u. of force En/ay 8.2387234983(12) x 1078 N 1.5x 10710
a.u. of velocity: ac agEy/h 2.187 691 263 64(33) x 10° ms! 1.5x 10710
a.u. of momentum h/ag 1.992 851 914 10(30) x 102 kg ms~! 1.5x 10710
a.u. of current eEy/h 6.623618237510(13) x 103 A 1.9 % 10712
a.u. of charge density elay 1.081202 384 57(49) x 102 Cm™ 4.5x 10710
a.u. of electric potential Ey/e 27.211 386245 988(53) Y 1.9x 10712
a.u. of electric field Ey/eay 5.142206 747 63(78) x 10! Vm™! 1.5x 10710
a.u. of electric dipole moment ea 8.478 353 6255(13) x 10730 Cm 1.5x 10710
a.u. of electric quadrupole moment eal 4.486 551 5246(14) x 10740 Cm? 3.0 x 10710
a.u. of electric polarizability e*al/ Ey 1.648 777274 36(50) x 10~ CCm? ! 3.0x 10710
a.u. of magnetic flux density hjea} 2.350517 567 58(71) x 10° T 3.0 x 10710
a.u. of magnetic dipole moment: 2ug he/m. 1.854 802015 66(56) x 10723 IT! 3.0x 10710
a.u. of magnetizability e*ai/me 7.891 036 6008(48) x 10~2° TT2 6.0 x 10710
a.u. of permittivity e?/ayEy 1.112 650055 45(17) x 10~1° Fm™! 1.5x 10710
Natural units (n.u.)
n.u. of velocity c 299792 458 ms~! exact
n.u. of action h 1.054571817... x 1073 Js exact
6.582119569... x 10~'¢ eVs exact
hc 197.326 9804 . .. MeV fm exact
n.u. of mass me 9.109383 7015(28) x 1073! kg 3.0x 10710
n.u. of energy mec? 8.187 105 7769(25) x 10~'4 J 3.0x 10710
0.510 998 950 00(15) MeV 3.0 x 1010
n.u. of momentum MmeC 2.730924 53075(82) x 10722 kg ms~! 3.0 x 10710
0.510998 950 00(15) MeV/e 3.0x 10710
n.u. of length: #/m.c Y¥e 3.8615926796(12) x 10713 m 3.0 x 10710
n.u. of time h/mec? 1.288 088 668 19(39) x 1072! s 3.0x 10710

2.2 x 1072, In fact, rp extracted from precision spectroscopy
on the hydrogen atom and on muonic-hydrogen, where the
electron is replaced by a muon, are marginally discrepant.

The fine-structure constant ¢, vacuum electric permittiv-
ity €p, and vacuum magnetic permeability p( are dependent.
They are related through Eqs. (1.3) and (1.9) and, since
in the SI the values for %4, e, and ¢ are exact, one of «,
€0, or [ fixes the other two. In current state-of-the-art ex-
periments that constrain these constants, the dimensionless
fine-structure constant is measured or the most conveniently
extracted. In fact, the CODATA adjustment uses « as an ad-
justed constant, and values for €y and u( are derived from
Egs. (1.3) and (1.9). Finally, the mass of the electron follows
from m, = Ey,/a’c?. Its relative uncertainty is twice that of
« as the relative uncertainty of the Hartree energy is much
better known.
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Abstract

Angular momentum theory is presented from the view-
point of the group SU(1) of unimodular unitary matrices
of order 2. This is the basic quantum mechanical rotation
group for implementing the consequences of rotational
symmetry into isolated complex physical systems and
gives the structure of the angular momentum multiplets
of such systems. This entails the study of representation
functions of SU(2), the Lie algebra of SU(2) and copies
thereof, and the associated Wigner—Clebsch—Gordan co-
efficients, Racah coefficients, and 3n—j coefficients, with
an almost boundless set of interrelations, and presenta-
tions of the associated conceptual framework. The re-
lationship of SU(2) to the rotation group in physical
3-space R? is given in detail. Formulas are often given
in a compendium format with brief introductions on their
physical and mathematical content. A special effort is
made to interrelate the material to the special functions
of mathematics and to the combinatorial foundations of
the subject.

Keywords

angular momentum algebra - invariant operator - cou-
pling scheme - symmetry relation - tensor operator -
Wigner—Eckart theorem - Lie algebra - Racah coefficients
- Clebsch-Gordan coefficients - rotation group

Angular momentum theory in its quantum mechanical appli-
cations, which is the subject of this section, is the study of the
group of 2 x 2 unitary unimodular matrices and its irreducible
representations. It is the mathematics of implementing into
physical theory the basic tenet that isolated physical systems
are invariant to rotations of the system in physical 3-space,
denoted R?3, or, equivalently, to the orientation of a Carte-
sian reference system used to describe the system. That it
is the group of 2 x 2 unimodular matrices that is basic in
quantum theory in place of the more obvious group of 3 x 3
real, orthogonal matrices representing transformations of the
coordinates of the constituent particles of the system, or of
the reference frame, is a consequence of the Hilbert space
structure of the state space of quantum systems and the im-
possibility of assigning overall phase factors to such states
because measurements depend only on the absolute value of
transition amplitudes.

The exact relationship between the group SU(2) of 2 x 2
unimodular unitary matrices and the group SO(3, R) of 3x3
real, proper, orthogonal matrices is an important one for
keeping the quantum theory of angular momentum, with its
numerous conventions and widespread applications across
all fields of quantum physics, free of ambiguities. These no-
tations and relations are fixed at the outset.

Presentation of a point in R*:

x = col (x1, x2, X3) column matrix ,

X1 —iX2
—X3

2 x 2 traceless Hermitian matrix ;

x' = (x1,x2,x3) row matrix ,

X3
X1 + iX2

Cartan’s representation .

A one-to-one correspondence between the set R of points in
3-space and the set H? of 2 x 2 traceless Hermitian matrices
is obtained from x; = % Tr (0; X), where the o; denote the
matrices (Pauli matrices)

0 1
o1 =
1 0

Mappings of R? onto itself:

x > x' = Rx,

X > X' =UXU",

where T denotes Hermitian conjugation of a matrix or an op-
erator.
Two-to-one homomorphism of SU(2) onto SO(3, R):

Ry = Ry(U) = 3T (qUo,UT) . 22)
10 0 0
£\ _|o _(§
x’ 0 R(U) X
0
= AT(U x U*)A(g) : (2.3)
X

where £ is an indeterminate, A is the unitary matrix given by

1 0 O 1
110 1 =1 O
A=— ,
J21001 1o
1 0 0 -1

U x U* denotes the matrix direct product, and * denotes
complex conjugation. There is a simple unifying theme in
almost all the applications. The basic mathematical notions
that are implemented over and over again in various contexts
are: group action on the underlying coordinates and momenta
of the physical system and the corresponding group action
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n

in the associated Hilbert space of states; the determination
of those subspaces that are mapped irreducibly onto them-
selves by the group action; the Lie algebra and its actions
as derived from the group actions, and conversely; the con-
struction of composite objects from elementary constituents,
using the notion of tensor product space and Kronecker
products of representations, which are the basic precepts in
quantum theory for building complex systems from simpler
ones; the reduction of the Kronecker product of irreducible
representations into irreducibles with the associated Wigner—
Clebsch—Gordan and Racah coefficients determining not
only this reduction but also having a dual role in the construc-
tion of the irreducible state spaces themselves; and, finally,
the repetition of this process for many-particle systems with
the attendant theory of 3n—j coefficients. The universality
of this methodology may be attributed to being able, in fa-
vorable situations, to separate the particular consequences
of physical law (e.g., the Coulomb force) from the implica-
tions of symmetry imposed on the system by our underlying
conceptions of space and time. Empirical models based on
symmetry that attempt to identify the more important ingre-
dients underlying observed physical phenomena are also of
great importance.

The group actions in complex systems are often modeled
after the following examples for the actions of the groups
SO(3,R) and SU(2) on functions defined over the two-
sphere S% C R3:

Hilbert space:

V = {f|f is a polynomial satisfying V> f(x) = 0} .
Inner or scalar product:
(£ = [ rwsreas.
unit sphere
where f(x) = f(X) for x presented in the Cartan matrix

form X.
Group actions:

(Or)(x) = f(R'x) , each f e V ,
eachx € R?,

(Tu f)(X) = f(UTXU) . each f eV ,
each X € H* .

Operator properties:

e Op is a unitary operator on V; that is, (Og f, Or f') =

S -
e Ty is a unitary operator on V; that is, (Ty f, Ty f/) =

(£, /.

e R — Og is a unitary representation of SO(3, R); that is,
OR1 OR2 = ORIRZ'
e U — Ty is a unitary representation of SU(2); that is,

TU] TU2 = TU] U,
e Opw) = Ty = T_y is an operator identity on the space
V.

One parameter subgroups:

Uj(t) = exp(—ito;/2), teR, j=12.3;
Rj (1) = R(U;(1)) = exp(—itM;)
teR, j=12.3;
where
0 0 O 0O 0 1
My =il0 0 —-1]|, M,=il 0 0 O],
01 0 -1 0 0
0 -1 0
M;=ill 0 O 2.4)
0O 0 O

Infinitesimal generators:

L; =i(dOg;()/dt) (=0 ,
L; =i(dTy;/dt)=o ,

d 0
(L f)x) = —i(xka—xl - xza)f(m ,

J.k,lcyclicin1,2,3. (2.5)
Historically, the algebra of angular momentum came about
through the quantum rule of replacing the linear momentum
p of a classical point particle, which is located at position r,
by p — —iAV, thus replacing the classical angular momen-
tum r x p about the origin of a chosen Cartesian inertial
system by the angular momentum operator:

L =—ir xV (inunits of &) . (2.6)
The quantal angular momentum properties of this simple
one-particle system are then to be inferred from the prop-
erties of these operators and their actions in the associated
Hilbert space. This remains the method of introducing an-
gular momentum theory in most textbooks because of its
simplicity and historical roots. It also leads to focusing the
developments of the theory on the algebra of operators in
contrast to emphasizing the associated group transformations
of the Hilbert space, although the two viewpoints are inti-
mately linked, as illustrated above. Both perspectives will be
presented here.
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2.1 Orbital Angular Momentum

The model provided by orbital angular momentum operators
is the paradigm for standardizing many of the conventions
and relations used in more abstract and general treatments.
These basic results for the orbital angular momentum opera-
tor L = —ir x V acting in the vector space V are given in
this section both in Cartesian coordinates x = col (x1, X2, X3)
and spherical polar coordinates:

x = (rsinf cos¢,rsinfsing,rcosb) ,

0<r<oo, 0<¢p<2n, 0<6<m.
2.1.1 Cartesian Representation
Commutation relations:
Cartesian form:
[Ly,L,] =iLs;, [Lp, L3]=ilL,,
[L3, Li] =iL,.
Cartan form:
[L31L+] = L+ ’ [L37L—] =-L_ ’
[LJr’ L*] = 2L3 .

Squared orbital angular momentum:

L*=Li+L5+L5=L_L,+LsLs+1)
=L,L_ +L;(L;—1)
=V 4+ (x-V)Y+(x-V).

L?, L; form a complete set of commuting Hermitian opera-
tors in V' with eigenfunctions

1

Yim(x) = [%(Z +m)!(l —m)!:|2

Z (_xl _ ix2)k+m (xl _ ix2)kxéfm72k
22%k+m(k + m)kW(I —m —2k)!

where/ =0,1,2,...,; m=1[,1-1,...,—1.
Homogeneous polynomial solutions of Laplace’s equa-
tion:

Vim(Ax) = 2 Yp(x)
(x V)Y (x) = [Yim(x) ,
VYim(x) = 0.

Complex conjugate:

Yim(x) = (=D)"Yi—m(x) .

Action of angular momentum operators:

LaVim(x) = [ Fm)( +m+ D] Yppai (x)
L3iVYyu(x) = mYu(x) ,
LY (x) =1l + )Yy -

Highest weight eigenfunction:

LiVu(x)=0, L3VY(x)=1Y;x),

1 (M)z(_xl —ixz)l .

Viu(x) = 371 i

Generation from highest weight:

(I +m)

% I—m
) L

Yim(x) = (
Relation to Gegenbauer and Jacobi polynomials:

Yim(x) = r' Y, (x1, x2)
% [21 + D)1 +m)!(I —m)!/2)?
X Hj | (x3/71) ,

QA)! a4l
2iar i () =
0<i<l=012,...,

(L + M)
2A

Hjp(z) = PN (2,

where the Y, (x1, x;) are homogeneous polynomial solutions
of degree |m| of Laplace’s equation in 2-space, R?:

(—x1 —ix)" /N2, m>0,
Yu(x1,x2) = N
(x; —ix)™ /27w, m<0.

(Sect. 2.1.2 for the definition of Gegenbauer and Jacobi poly-
nomials.)
Orthogonal group action:

(OrRYim)(x) = Yim(R™'x) =Y Dl (R) Yy (x) ,

where the functions fon,m(R) = Dfn,m(U (R)) are defined
in Sect. 2.3 for various parametrizations of R.
Unitary group action:

(T Yim)(X) = Vin(UTXU)
= DbV (X)

where the functions D!

wm(U) are defined in Sects. 2.2
and 2.3.



2 Angular Momentum Theory

Orthogonality on the unit sphere:
| Vi8S = 18,
unit sphere

Product of solid harmonics:

S YD CEE L e Yirms ()

I
l/
—m — ,LL

) l
= ZZ(I ||yk||z><m
X (=DM EY g (X)

1
, o ( QLD+ DNy
(U'lVellly = r (—47[(21, ey Cooo »

Q1+ 1)k + D@+ 1)\ ?
4 )

yku(x)ylm (x) =

Vil = ’“H(
where Clih2!

, k U
11
x= )<0 0 0)
mipmoym
(_1)11—lz+m Lyl

AN
my m, —-m) 2 +1 M

denote Wigner—Clebsch—Gordan coefficients and 3—; coef-
ficients, respectively (Sect. 2.7).
Vector addition theorem for solid harmonics:

and

o 4721 + 1) S
ylzn(z+z) _§((21—2k+ 1)'(2k+ 1)') m—,p,m
X ylfk,mfu(z)ykﬂ(z/) s Z,Z, € C3 R

Jj—k.k,1
Cm — L m

/e

Rotational invariant in two vectors:

/ -2k
) = 5 Y (k) (2 12 )
k

x (x-p) 0 (y-y)F
= (x -x)l/z(y )PP - p)

Z(— )" Yim Vi -m(¥)

2l+1

where Cl(l/ 2 (z) is a Gegenbauer polynomial (Sect. 2.1.2),

and

A

£=x/lx|. y=y/lyl. cosb=x-7.

Legendre polynomials:

21 1 Z( DY) (5 Yo (F) .

Pi(cosb) =
k
b))

4 2
(557 ot =
><)c3 2K (x - x)F

=r P[(X:;/V) .

Rayleigh plane wave expansion:

00 1
=4y > i jiGer)Vi, (k) Yin (£) |

=0 m=—I

1
2
jitkr) = (;,:—r) Jrsiyakr)

Relations in potential theory:

V() -

I/R=YIx.y)/r'",

=0

nwny = C gy (1)
: r

(=D'@D! Yy (x)

21[! r21+1 ’

r=@x-x)1, s=(y-y)?,

A

!
1/R ZZPI(COSQ)%, s<rcosf=x-y.

I
Rotational invariants in three vectors:

(4m)3/?
(21 + 1)L + 1)@ + 1)]?

( 12 13 )
mipmyms3s m2 m3

Ly (x5 %%, x7)

x D

X Yim, (x )ylzmz (xz)ylym (x3) ’

[ l
2 3 ) is a 3—j coefficient (Sect. 2.7).

Ly
where
mi ms

Lyt (1. %2, 0)
= 81,,80(—D)" I (x'. x?) / (21, + 1)

ny

(ST
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Product law: Rotational invariant for vectors of zero length:
Ty (x) Loy (x) 1 47 \? 1
3 A l k j (- x) 2(21+1) 2Z!Zle(z)ylm(x)-
= Y TTD*@je+ [ 5 e m
~| 0 0 O
(j) La=1 o . . .
Spinorial invariant under z* — Uz'(i = 1,2, 3):
L L I
x (x® -x“)”ﬂ*"ﬂfﬂ’”] ki ke ks plg(x) i
- 1 2 3 1 2 3
i ; i P (2)Piy (27) Pioms (2
Ju J2 J3 m%:m( m, m, ms ) Jlml( ) szz( ) 13m3( )
where | = (11,1, I5), etc., x = (x', x?, x?). =[(j1+ jo+ jz+ DNV
Coplanar vectors: (leg)jl +j2=J3 (21321)j3+j1 —Jj2 (leg)szrjrjl
Iy (x'. x% ax' + Bx?) [ + 2= W3 + i — )1+ J3 — j)l2
LI 2= 2lz] — i),
h (213 — 2k)!1(2k)! ) D . .
kl This relation is invariant under the transformation

x o R R (—D)HBTR Q2L + 1)

X(13—k I l)(k I, 1){13—k I k} z—> Uz = (U2, {Uz),)

0 0 0J\0O O O A I N = (U121 + Uzy, Uz Z) + UpZ)) ,

1. W\O+L=1=k)/2 2 2\(b+k=1)/2
x (xhexl) (x* - x%) where U € SU(2). Transformation properties of vectors of
x I;(x", x?) . zero length:
The bracket symbols in these relations are 6— and 9—j co- a — Ra, o =col(a,a, a3)

efficients (Sects. 2.9, 2.10).

Cartan’s vectors of zero length: where z — Uz and R is given in terms of U in the beginning

. of this chapter. Simultaneous eigenvectors of L2 and J2:
o= (— 212 + z%, —1(212 + Z%), 22122) , P &

a-a=alt+ai+ar=0, LY a-x) =10+ D(-x), 1=0,1,...,
z=1(z1,25) € C?. J2e-x) =11+ D(a-x), 1=01,....

Solutions of Laplace’s equation using vectors of zero length:

Va-x) =0, [=0.1,.... 2.1.2 Spherical Polar Coordinate Representation

Solid harmonics for vectors of zero length: The results given in Sect. 2.1.1 may be presented in any
system of coordinates well-defined in terms of Cartesian
m _ental+1 : coordinates. The principal relations for spherical polar co-
(D" (o) = T(T) Pim(z21.22) . ordinates are given in this section, where a vector in R is
I+m _l—m now given in the form
)
P (z1,22) = .
V(I +m)l(l —m)! x =rXx = r(sinf cos ¢, sin 6 sin ¢, cos 0) ,
Orbital angular momentum operators for vectors of zero 0<f<m 0<¢<2m.
length:
Orbital angular momentum operators:
J = —i(a x V),
J+=Zlaiz2, J_=zzaiZI, L1=icos¢cot9% —i—isin(p%,

L. 9 L isingootdl —icoss’
= —\Z1— —Zr— . = 1SI1n — —1 —_—
3T\, T Pag 2 T IS COttn g —1e0sPhg
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0
Ly=—i—,
3 18¢
Ly=¢e" | +— 0 +1c0t9—
* 30 )

19 9 1
L=—— " (sno ) —_ 2
sin 6 96 (Sm ae) sin? 6 092

Laplacian:

1 3\° 3
2 _ 1 o 9 .o
V= r2|:(r8r) +r8r L ]

Spherical harmonics (solid harmonics on the unit sphere S 2):

Ylm(e ¢) = ( l)m(zl—+(l + )l(l —m)') 1m¢

Z (—l)k (sm 9)2k+m (COS Q)Z—Zk—m
22k+m (ke + m)lk (! — 2k —m)!

Orthogonality on the unit sphere:

2
/d¢ /d@ sin@ Y7, (6, 9) Y1 (0,¢) = §r16mm -
0 0

Relation to Legendre, Jacobi, and Gegenbauer polynomials:

2 + 1)1 —m)!\ 2
Yim(60. ) = (—1)'"(%)

x P/"(cos 0) e?

(I + m)! (sin@) P(m m)(cos 0) .

P/"(cos ) = I 3

Jacobi polynomials:

@B) (o n+a\fn+p
=) (1 0)
(5) ()
X s
2 2
n=20,1, ,

where «, B are arbitrary parameters and

z(z=1)---(z=k + 1)/k!
z\ fork =1,2,...
(k)_ 1 fork =0

0 fork =—-1,-2,...

Relations between Jacobi polynomials forn + o, n + 8, n +
o + ( nonnegative integers:

o m+a)ln+B8)![x+1 .
PP = S ( . ) PO () .
! x—1 .
e
o= (54) (55 1) LY.

Nonstandard form (o arbitrary):

(or.0) _ =D (o + 5 + 1)n75(1 — XZ)an—Zs
Pn (-X) - Z 2235!(71—25‘)! 5

z+k-1),

s

@ =z(z+1)--- k=1,2,...;

(z2)o=1.

Gegenbauer polynomials (¢ > —1/2):

20), a—ta-1
GO0 = a1 (+a1) 8] p )
_ (_l)s (a)n—s(zx)n_zs
N Z s!(n —2s)! ’

2.2 Abstract Angular Momentum

Abstract angular momentum theory addresses the problem of
constructing all finite Hermitian matrices, up to equivalence,
that satisfy the same commutation relations

[Ji.Ll=iJ5, [N, L]l=ili, [ Ni]=ilr 2.7
as some set of Hermitian operators Ji, J,, J3 appropriately
defined in some Hilbert space; that is, of constructing all
finite Hermitian matrices M; such that under the correspon-
dence J; — M;(i = 1,2, 3) the commutation relations are
still obeyed. If M, M,, M3 is such a set of Hermitian matri-
ces, then AM,A~', AM, A", AM;A™", is another such set,
where A is an arbitrary unitary matrix. This defines what is
meant by equivalence. The commutation relations Eq. (2.7)
may also be formulated as:

[J3, /4] = £J4 [Jy. I ] =2J5,
Ji=Ji i), Ji=Ju_. (38
The squared angular momentum
JP=J+ I+ I =T+ (s + 1)
=JyJ_+ J3(J3—1) (2.9)
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commutes with each J;, and Jj is, by convention, taken with
J? as a pair of commuting Hermitian operators to be diago-
nalized.

Examples of matrices satisfying relations Eq. (2.7) are
provided by J; — 0;/2 (the 2 x 2 Hermitian Pauli matrices
defined in Eq. (2.1)) and J; — M; (the 3 x 3 matrices defined
in Eq. (2.4)), these latter matrices being equivalent to those
obtained from the matrices of the orbital angular momentum
operators for [ = 1.

One could determine all Hermitian matrices solving
Egs. (2.7) and (2.8) by using only matrix theory, but it is
customary in quantum mechanics to formulate the problem
using Hilbert space concepts appropriate to that theory. Thus,
one takes the viewpoint that the J; are linear Hermitian oper-
ators with an action defined in a separable Hilbert space H
such that J; : H — H.

One then seeks to decompose the Hilbert space into a di-
rect sum of subspaces that are irreducible with respect to this
action; that is, subspaces that cannot be further decomposed
as a direct sum of subspaces that all the J; leave invariant
(map vectors in the space into vectors in the space). In this
section, the solution of this fundamental problem for angu-
lar momentum theory is given. These results set the notation
and phase conventions for all of angular momentum theory,
in all of its varied realizations, and the relations are, there-
fore, sometimes referred to as standard. The method most
often used to solve the posed problem is called the method
of highest weights.

The solution of this problem is among the most important
in quantum theory because of its generality and applicability
to a wide range of problems. The space H can be written as
a direct sum

H = Z Ean}[_',
j=0.%1....

eachH; LH;, j#j, (2.10)
in which #{; denotes a vector space of dimension 2j + 1
that is invariant and irreducible under the action of the set
of operators J;,i = 1,2, 3, and where the direct sum is over
all half-integers j = 0, . 3» 1, ... There may be multiple oc-
currences, 1; in number, of the same space H; for given j,
or no such space, n; = 0, in the direct sum. Abstractly, in
so far as angular momentum properties are concerned, each
repeated space H; is identical. Such spaces may, however,
be distinguished by their properties with respect to other
physical observables, but not by the angular action of mo-
mentum operators themselves. The result, Eq. (2.10), applies
to any physical system, no matter how complex, in which ro-
tational symmetry, hence SU(2) symmetry, is present, even
in situations of higher symmetry where S U(2) is a subgroup.
Indeed, the resolution of the terms in Eq. (2.10) for vari-

ous physical systems constitutes spectroscopy in the broadest
sense.

The characterization of the space H; with respect to an-
gular momentum properties is given by the following results,
where basis vectors are denoted in the Dirac bra-ket notation.

Orthonormal basis:

@2.11)
(2.12)

{jm)m=—j.—j +1.....7}.
<]m/|]m> = 8m/,m .

Simultaneous eigenvectors:

J2 jm)=j(j + V| jm), J3|jm)=m|jm). (2.13)

Action of angular momentum operators:

Jiljm) =1[(j —m)(j +m+ D]'?| jm + 1),

J_ljm)=[( +m)(G —m+ D] jm—1). (2.14)

Defining properties of highest weight vector:

Jelji)=0. Jsljj)=JlJjj)-

Generation of general vector from highest weight:
(J +m)!

2
. .
m = (i ) 410

Necessary property of lowest weight vector:

JNJ=i)y=0, Blj=j)==jlJ.—=J).

Operator in H corresponding to a rotation by angle v about
direction 7 in R3:
TU(l/f.ﬁ) = exp(—upﬁ . J) 5
i-A=nl+ni+ni=1,
a-J =nJy+nyJy+n3Js,
Uy, n) = exp(—ivh-0/2)
= gy cos(3y) —i(A - o) sin(3y)
_ (cos(%W) —inysin(3y)  (—iny —ny)sin(3y) )

(—iny +na)sin(3¥)  cos(3¥) + in3sin(3v)
0<y <2m, (2.15)
where 0 denotes the 2 X 2 unit matrix.
Action of Tyya) on H;:
Tyl jm) =) D}, ()| jm') . (2.16)

m’

in which U = U(y, i) and Dm . (U) denotes a homoge-
neous polynomial of degree 2j defined on the elements
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u;; = Uy;; (Y, i) inrow i and column j of the matrix U (v, 1)
given by Eq. (2.15). The explicit form of this polynomial is

D!, (U)

= [ +m)!(j —m)(j +m)(j —m)]?
« Z 1) " (U12) %2 (U21)* (Up) ™2 .
(o]

(2.17)
11 !0512!0621 !0522!

The notation [« ] symbolizes a 2 x 2 array of nonnegative in-
tegers with certain constraints:

. /7
o1 o2 Jt+tm
ax o j—m
j+m j—m

In this array, the o;; are nonnegative integers subject to the
row and column constraints (sums) indicated by the (nonneg-
ative) integers j + m, j + m'. Explicitly,

/

. , .
o toap=j+m, Oyt =j]—m,

ap+ox=j+m, ap+oap=j—m.

The summation is over all such arrays. Any one of the o;;
may serve as a single summation index if one wishes to elim-
inate the redundancy inherent in the square-array notation.
The form Eq. (2.17) is very useful for obtaining symmetry
relations for these polynomials (Sect. 2.3.6).

Unitary property on J :

(TyW|TyW) = (P|W), each¥ e H .

Irreducible unitary matrix representation of SU(2):

(DI U))jms1j-m1 = Dy (U)
m=j.j—1,....—j: m=j.j—1,....—j, (2.18)
denotes the element in row j —m’+ 1 and column j —m + 1.
Then, dimension of D/ (U) = 2j + 1 and
D/(U)D/(U") =D/ (UU"),
UeSUQR), U eSUQ),
(D' U)' =D/ (WU)" =D/(UT).

Kronecker (direct) product representation:
D/\(U) x D”2(U)

isa (2j; + 1)(2j, + 1) dimensional reducible representation
of SU(2). One can also effect the reduction of this represen-
tation into irreducible ones by abstract methods. The results
are given in Sect. 2.7.

2.3 Representation Functions
2.3.1 Parametrizations of the Groups SU(2)
and SO(3,R)

The irreducible representations of the quantal rotation group,
SU(2), are among the most important quantities in all of an-
gular momentum theory. These are the unitary matrices of
dimension 2j + 1, denoted by D/ (U), where this notation
is used to signify that the elements of this matrix, denoted
D!, (U), are functions of the elements u;; of the 2 x 2
unitary unimodular matrix U € SU(2). It has become stan-
dard to enumerate the rows and columns of these matrices
in the order j,j —1,...,—j as read from top to bottom
down the rows and from left to right across the columns (see
also Eq. (2.18)). These matrices may be presented in a va-
riety of parametrizations, all of which are useful. In order
to make comparisons between the group SO (3, R) and the
group SU(2), it is most useful to parametrize these groups
so that they are related according to the two-to-one homo-
morphism given by Eq. (2.2).

The general parametrization of the group SU(2) is given
in terms of the Euler—Rodrigues parameters corresponding to
points belonging to the surface of the unit sphere S3 in R*,

g tal+ai+ai=1. (2.19)
Each U € SU(2) can be written in the form:
Ulan. ) = ( “oien e _.“2)
-1 + oy oy + 103
= oy — i -0 . (2.20)

The R € SO(3, R) corresponding to this U in the two-to-one
homomorphism given by Eq. (2.2) is:

R(OC(),(X)

af+oi—ai—al 200 — 2003 20003 4 2002

= | 2aim+2m0e;  ol+oi—0i—af 2w -2
of +o3—of—af
2.21)
The procedure of parametrization is implemented uniformly
by first parametrizing the points on the unit sphere S3 so
as to cover the points in §3 exactly once, thus obtaining
a parametrization of each U € SU(2). Equation (2.21) is then
used to obtain the corresponding parametrization of each
R e SO(3, R), where one notes that R(—c, —at) = R(g, o).
Because of this two-to-one correspondence +=U — R, the do-
main of the parameters that cover the unit sphere S3 exactly
once will cover the group SO(3, R) exactly twice. This is
taken into account uniformly by redefining the domain for
SO(3, R) so as to cover only the upper hemisphere (g > 0)

of S3.

2(11(13 —20[00[2 2(12(13 +20t()011
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In the active viewpoint (reference frame fixed with points
being transformed into new points), an arbitrary vector x =
col(x1, X2, x3) € R3 is transformed to the new vector x' =
col(x}, x5, x3) by the rule x’ = Rx, or, equivalently, in terms
of the Cartan matrix X’ = UXU'. In the passive view-
point, the basic inertial reference system, which is taken to
be a right-handed triad of unit vectors (€1, €5, €3), is trans-
formed by R to a new right-handed triad ( £, f2, f'3) by
the rule

fj ZZRijéia i=12,3,
i

A

so that é; - f ; = R;;. In this viewpoint, the coordinates of
one and the same point P undergo a redescription under the
change of frame. If the coordinates of P are (xi, x5, x3) rel-
ative to the frame (¢, €5, é3) and (x|, x5, x}) relative to the

frame (f1, f2. f3), then
X161+ x28s+ X383 =x f1+ x5 f 2+ X3 f3,

so that x’ = RTx.
Rotation about direction # € S2 by positive angle v
(right-hand rule):

(o, @) = (cos %W 7 sin %1//) , 0<vy <2m,
Uy, n) = exp(—i%xﬂﬁ . or)
_ (cos %W —inzsin %W
(—iny +ny)sin 3¢ cos 39 + inzsin 39
exp(—iya-M), 0<y <m
=1y —isiny (- M)— (- M)*(1 —cosy)
Rii R R
Ry Ry R,
R31i Ry Rs;
=ni+ (1—nj)cosy ,
=nny(l —cosy) + nysinyr
R3 = nyn3(1 —cosy) —nysiny
Ry = nyny(1 —cosy) —nzsinyr
Ry =n3+ (1—n3)cosy ,
R3; = nyns(1 —cosyr) + nysinyr
Rz = nyn3(1 —cos ) + npsinyr
Ry3 = nynsz(1 —cosy) —ny sinyr

Ry =nj+ (1—n3)cosy .

(—iny —n,) sin %w )

R(y.n)

The unit vector i € S can be further parametrized in terms
of the usual spherical polar coordinates:

A = (sinf cos ¢, sin 0 sin ¢, cos 0) ,

0<0<m, 0<¢p<2m.

Euler angle parametrization:

U(aﬂy) — e—iot03/2 e—i,B(rz/Z e—iy03/2

[ e cos(3B) e 2 —e /2 sin(1B) /2
cie/2 sin(%ﬂ) emiv/2 ei/2 cos(%ﬂ) eir/2

0<B=m

or2m < f <3m,

)

0<uo<2m,
0<y<2m,
Ula, B +2m,y) = =U(aBy) ;

R(OC,B]/) — e—iaMg, e—i,BMz e—in3

cosa —sina 0 cosf 0 sinp
= | sine cosa O 0 1 0
0 0 1/ \—sinf 0 cosf
cosy —siny 0
x| siny cosy O
0 0 1
cosacosfBcosy —cosacosfsiny cosasinf
—sina siny —sina cosy
= | sinwcosBcosy —sinawcosfsiny sinasinf
+ cosa siny + cosa cos y
—sin B cosy sin B sin y cos B
0<a<2nm, 0<B<m, 0<y<2m.

This matrix corresponds to the sequence of frame rotations
given by

rotate by y about é3 = (0,0, 1) ,
rotate by 8 about €, = (0, 1,0) ,
rotate by « about é3 = (0,0, 1) .

Equivalently, it corresponds to the sequence of frame rota-
tions given by

rotate by « about 2; = (0,0, 1) ,
rotate by B about i, = (—sina, cosa, 0) ,

rotate by y about 713 = (cos « sin 8, sin & sin 8, cos ) .

This latter sequence of rotations is depicted in Fig. 2.1 in
obtaining the frame (f 1, f». f3) from (¢, é,, é3).
The four complex numbers

(a,b,c,d)

= (o +io3, i — o, io + @, 0 — i03)

are called the Cayley—Klein parameters, whereas the four
real numbers (o, o) defining a point on the surface of the
unit sphere in four-space, S 3 are known as the Euler—
Rodrigues parameters. The three ratios «; /oo form the ho-
mogeneous or symmetric Euler parameters.
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Euler angle parametrization:

78

>
Yy

= f mm(aﬂy) —e —im adlim(ﬂ)e—imy ,
Nz d;(B) = (jm'|e | jm)
. . PR Ny s . 1
b =[(j +m)OIG —mNG +m)l(j —m)!]?
) Z (_l)m’fers (COS %’8)2j+m7m’725
6 X
“ p, 7 —(j +m—$)lsiom’ —m + 5)!
W g / ol —m
By | i (sin1p)" "
& X —— . (2.23)
(j —m —s)!
n
v Explicit matrices:
Ji
1 .
! cos=f —sin=p
Fig.2.1 Euler angles. The three Euler angles («¢fy) are defined by a se- d2(B) = 2 ,
quence of three rotations. Reprinted with the permission of Cambridge sin — ,3 cos — ,3
University Press, after [1]
l4+cosp —sinff 1—cosf
. . . . 2 V2 2
2.3.2 Explicit Forms of Representation Functions sin B —sin B
d'(p) = cos B
The general form of the representation functions is given 1 —cosf sin B 1 +cosfB
in its most basic and symmetric form in Eq. (2.17). This P V2 P

form applies to every parametrization, it being necessary
only to introduce the explicit parametrizations of U € SU(2) Formal polynomial form (z;; are indeterminates):
or R € SO(3, R) given in Sect. 2.3.1 to obtain the explicit

results given in this section. A choice is also made for the D) (Z)=[(j + m)(j —mN(G +m)(j — m)!]%
single independent summation parameter in the «-array. The
notation for functions is abused by writing X Z l_[ (zij)* [ (aij)! (2.24)
, , ij=1
D) = D (U@)) . (@]

w = set of parameters of U € SU(2) . bi(z)D'(2) =D/ (Z2'Z).

Boson operator form: '
Puta] = z;;(i, j = 1,2) in Eq. (2.24). Let @/ denote the
),]% Hermitian conjugate boson so that

Euler-Rodrigues representation [ (ao, &) € S3]:

D), (ag, ) = [(j +m)(j —m)( +m)(j —m

Xz(ao—.m)”mﬂ(—ial—az)m*’"“ laf.al]=0. [af.al]=0. [af.a/] =85
(J+m—=s)(m —m+s)!

Then the boson polynomials are orthogonal in the boson in-

—ior; + @) (g + i) TS
(e 2) (@ ) (2.22) ner product:

sI(j—m' —s)!

J’ J —
Quaternionic multiplication rule for points on the sphere S?: (O] Dy (A)Dm m(A) [ 0) = (27)'8; 8pm Syum -
(o) @, ) = (o) . N
0o / 2.3.3 Relations to Special Functions
oy = opog— o’ o,

o = ajo + ' +a'xa;
D/ (e, ') D (g, &) = D (ef. ") .

)G —m) \T 1\
The (Y, ) parameters: mm(ﬁ) (((]']—i-n’?’;!g'—z?)!) (Slﬂ 5,3)

Jacobi polynomials (Sect. 2.1.2):

1 1 1 m'+m
oy = cos Ew . o = fsin EW . X (cos 5,8) Pj(m mmtm) (cos B) |
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d),,.(B) = (1" "d’ , _ (B)
= (=)""d! (B)=d), (~B) .

Legendre polynomials:

! _ m( (L —m)!
Dl = 1" (G

(U +m)
_(U—mﬂ

) ’ P/"(cos B)

) ’ P (cos B) .

Spherical harmonics:
20 +1)?
Yim(Bo) = (T) e dy(B)

2 +1)\?
= (%) Dyo(@By) .
Y (Ba) = (=1)"Y; _(Bax) .

Gegenbauer polynomials:

dlo(B) = (=1)"[(1 +m)i(I —m)1]?

X (2,:[!)! [#] mCl('fr:lm(cosﬂ) , m>0.
Solutions of Laplace’s equation in R* (Sect. 2.5):
V2D!, (x0,x) =0, (x0,x)€R*,
3 2
Vi=Y oo
u=0 K
Replace the Euler—Rodrigues parameters (op,) in

Eq. (2.22) by an arbitrary point (xo, x) € R*.

2.3.4 Orthogonality Properties

Inner (scalar) product:

(¥, @) = /dQ U (x)d(x) ,
df2 = invariant surface measure for S° |,
/ d2 =2x7%.
s3
Spherical polar coordinate for §3:
(a0, &) =

(cos y,cos ¢ sin 6 sin y, sin ¢ sin 8 sin y, cos @ sin y) ,

0<0<m, 0<¢<2m, O0=<y=<m,

dQ = dw sin® ydy ,
dw = d¢sinf
df = invariant surface measure for S2 :

2 T T
/d¢/d9 sin@/d)( sin® y D}, (oo, @) DY, (o, )
0 0 0

272
= ﬁ‘S/.f/Sm/wSmu :

Coordinates (v, ii) for S3:

(g, ) = cosz,ﬁsinK ,
2 2
O<y<2n, n-a=1,
A d
42 = ds@)sin? L9
2 2

dS(n) = dw for i = (sin O cos ¢, sin 6 sin ¢, cos 0) ,
2
LAy YN
/ dS(n) / 7(sm 5) D, (W @)Dy, (Y, /)
0

272

= m5f‘ﬂ5m/u/5mu :

Euler angles for S* (SU(2)):

1 1
(g, ) = (cos g cos 5()/ + o), sin g sin E(y —a),

1 1
sin g cos E(y —«),cos g sin E(y + a)) ,

1

42 = S dadysin pdp . (2.25)

| 2 2 b4
gfda/dy/dﬁ sinﬁDﬁm(a,By)Dﬁ:M(aﬁy)
0 0 0

2 2 3
+ % [ dor / dy / dsin D, (@py) D, (@By)
0 0 2
272

e 2.26
2j +1 (2:26)

8././’8'”’#’ 8mu .

Euler angles for hemisphere of $3 (SO(3. R); j’ and j both
integral):

2 2 b4

[ aa [ ey [ apsinppy, @prn), )
0 0 0
8?2

8Bt Sy - (2.27)

T 2j 41
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Formal polynomials Eq. (2.24):

(Di'{‘l 'm> D[i’u) = (2J)'8//’8m’u’8mu )

with inner product

d
(P, P) = P*(ﬁ)[ﬂ(z”z:o :

where P*(5%) is the complex conjugate polynomial P* of

P in which each z;; is replaced by T
: T
Boson polynomials:

(O

m'm

D)=

with inner product (P|P’) = (0| P*(A) P'(A)0).

2.3.5 Recurrence Relations

Many useful relations between the representation func-
tions may be derived as special cases of general relations
between these functions and the WCG coefficients given
in Sect. 2.7.1. The simplest of these are obtained from the
Kronecker reduction

D/ x Dt = pit\/2 g pi-1/2
Such relations are usually presented in terms of the Euler

angle realization of U, leading to the following relations be-
tween the functions dn’1 (B

(j _m+1)zcos( ﬁ)d’ﬂ/ﬁzm 12(B)
w0 met D sin 38)a R a8)
=(j —m'+ D2d},.(B) .
—(—m+1)? Sin(%ﬁ)d;ﬂll//zz.ml/ﬂﬁ)
FG+m+1)? COS( ﬁ)dltll//zzmﬂﬂ(ﬁ)
= (j+m + 1), (B,
(j +m)? COS( ﬂ)dé/ PN ()
—(j —m)? Sin(%ﬂ)dzﬁ’ll//zlmﬂﬂ(ﬂ)

= (j +m)2d},(B).

G +mlsi ( ﬁ)d,:,:{/ém ()

+ 0 - )2005( ﬁ)dni +11//22m+1/2(18)
=( —m) dmm(ﬂ) .

Two useful relations implied by the above are:

[(j —m)(j +m+ D]?sinpd), mH(ﬂ)
(G +m) —m+ D) sinfdl,, (B
=2(mcosfB —m )dm n(B)
[ +m)(j —m+ D]*d), m_l(m
+[( +m)G —m' + D], (8)

=(m-m) cot(aﬁ) v (B) -
By considering
D/ xD'=D/i*'ge D/ @ D/,
one can also readily derive the matrix elements of the di-
rection cosmes spe01fy1ng the orientation of the body-fixed

frame ( f 1 f 2 f ) of a symmetric rotor relative to the iner-
tial frame (€1, €5, €3):

1
j 2]+ 1\2 5 1j
J _ J1j Ji’ J
AI/nVlI/m.m’ - 2(2]/ + 1) CmMm-HLCm vm' +vwm+u m'+v °
j/

where the wave functions are those defined for integral j by
Eq. (2.37), for half-integral j by Eq. (2.36), and

Mw=6u-fr=(DL)". mov=-1.0+1;
e ——(el +ié,)/v2, éo
e =(6,—ié))/V2.

fri ——(A1+ifA2)/“/§7 fo
fo =(f1—if2)/\/§~

I
x>

3,

1

ER

2.3.6 Symmetry Relations
Symmetry relations for the representation functions

mm(Z) defined by Eq. (2.24) are associated with the
action of a finite group G on the set M(2,2) of complex
2 x 2 matrices: g : M(2,2) - M(2,2), g € G. Equivalently,
if Z € M(2,2) is parametrized by a set £2 of parameters
w € §2 (parameter space), then g may be taken to act directly
in the parameter space g : £2 — 2. The action, denoted
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O, of a group G = {e,g,g,...} (e = identity) on a set
X = {x,x/,...} must satisfy the rules

g: X—>X edx=uxallxeX,

g0(g0x)=(g'g)0x, allg’, geG,alxeX.
(2.28)

Using - to denote the action of G on M(2, 2) and (I to denote
the action of G on 2, one has the relation:

(g-2)(0)=Z(g ' Dw).

Only finite subgroups G of the unitary group U(2) (group of

2 x 2 unitary matrices) are considered here: G C U(2).
Generally, when G acts on M(2,2), it effects a unitary

linear transformation of the set of functions {D;,,.} (j fixed)

defined over Z € M(2,2). For certain groups G, or for some

elements of G, a single function D7, € {DJ,, } occurs in
the transformation, so that

(2 Dhn)(2) = D}y (s7012)

= gm’mD}i/u(Z) s (2.29)

(W) e {Mm',Am), Am, Vm")|]M = £1,1 = 1},

where g, is a complex number of unit modulus. Relation
Eq. (2.29) is called a symmetry relation of D,;,m with respect
to g. Usually, not all elements in G correspond to symmetry
relations. In a symmetry relation, the action of the group is
effectively transferred to the discrete quantum labels them-

selves:

g:m'—)/ﬂzm/(g),

m—p=m(g). (2.30)

In terms of a parametrization £2 of M(2,2), relation
Eq. (2.29) is written

(£D4)©) = Dl (™' D)

= gum D}, () . 2.31)
In practice, action symbols such as - and [J are often dropped
in favor of juxtaposition, when the context is clear. More-
over, the set of complex matrices M(2,2) may be replaced
by U(2) or SU(2) whenever the action conditions Eq. (2.28)
are satisfied. Relations (Egs. (2.29)—(2.31)) are illustrated be-
low by examples.

There are several finite subgroups of interest with various
group—subgroup relations between them:

1. Pauli group:

P ={o0,,—0,,i0,,—io,|nu =0,1,2,3},
|P|=16.

Each element of this group is an element of U(2). The
action of the group P may, therefore, be defined on
the group U(2) by left and right actions, as discussed
in Sect. 2.4.1.

2. Symmetric group Sy:
Sy = {p|p is a permutation of the four Euler—Rodrigues
parameters (0, 1,2, 03)}, | Sy |= 24. Points in S 3 are
mapped to distinct points in S?; hence, one can take
Z € SU(2) and define the group action directly from
U(a, @) in Eq. (2.20). It is simpler, however, to define
the action of the group directly on the representation func-
tions Eq. (2.22). Not all elements of this group define
a symmetry in the sense defined by Eq. (2.29) (see be-
low).

3. Abelian group T':

T = {(to. 11,12, 13)| each 1, = £1},
IT| = 16.

Group multiplication is component-wise multiplication,
and the identity is (1,1,1,1). The action of an element of
T is defined directly on the Euler—Rodrigues parameters
by component-wise multiplication, thus mapping points
in §3 to points in S3; hence, one can take Z € SU(2).
This group is isomorphic to the direct product group
Sy x 83 x 83 x S,, S5 = symmetric group on two distinct
objects.
4. Group G:
G=(R,C,T,X), |G|=32,
where R, C,7T,XK denote the operations of row inter-
change, column interchange, transposition, and conjuga-
tion (see below) of an arbitrary matrix.

The notation ( ) designates that the enclosed elements
generate G.

It is impossible to give here all the interrelationships among

the groups defined in (1)—(4). Instead, some relations are

listed as obtained directly from either D/, (Z) defined by

Eq. (2.24) or Drj,;,m (otg, @) defined by Eq. (2.22). The actions

of the groups T and G defined in (3) and (4) are fully given.
Abelian group T of order 16.

Generators:
T ={to.t1,tr.t3), ty=(-1,1,1,1),
t1=(15_17151)5 [22(1715_171)5

=(1,1,1,-1).
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Group action:

t-a = (tyo, 1oy, 1oty 1303)
eacht = (ty,t),t2,13) € T,
eacha = (ag, 1,00, 03) € S° |

(tF)(@) = F(t-a),

10D}y, = (=1)""D!, ..
1D}y, = (=1)""D},,.
62D, = Dy
D), =D/ .

Group G of order 32.

Generators:

G =(R,C,T,X).

Generator actions:

(RF) a b T d ’ .row
c d a b interchange
1
(CF) a b _F b a 7 ~coumn
c d d ¢ interchange
b
(TF) ¢ 2 , transposition
c d b d
(XF) a b =F d —c , conjugation
c d —b a
Subgroup H:
H=(R,C,T)
={l,R,C,T,RC=CR, TR =CT,TC
= RT,RCT},

with relations in H given by

R2=C=7T%=1,
TRC=TCR =RCT =CRT ,
RTC=CTR=1T.

Adjoining the idempotent element K to H gives the group
G of order 32:

G={H HXK HXR, HKRX} .

Symmetry relations:

J o _
RDm/m - Dfm’m ’
o _
CDm’m - Dm’fm ’
J o _
TDm/m - Dmm’ ’

XD}, = (=1)""D’

—m'—m

(2.32)

These function relations are valid for Di,m defined over the
arbitrary matrix Z defined by Eq. (2.24). They are also true
for Z =U € SU(2), but now the operations R and C change
the sign of the determinant of the matrix Z, so that the trans-
formed matrix no longer belongs to SU(2). It does, however,
belong to U(2), the group of all 2 x 2 unitary matrices. The
special irreducible representation functions of U(2) defined

by Eq. (2.24),

D!, (U), UeUQ),

possess each of the 32 symmetries corresponding to the
operations in the group G. (There exist other irreducible
representations of U(2), involving det U.) The operation K
is closely related to complex conjugation, since for each
U € U(Q2),U = (u;;), one can write

U* = ettt M2 T
—Up ULl
(%D}, ) ) = @etvy” D}, (V")
= (detU)¥ D/* (U)

=(1)""p’ ,  (U). (2.33)

Relations Eqgs. (2.32) and (2.33) are valid in an arbitrary
parametrization of U € U(2). In terms of the parametriza-
tion

Uy, a0, @) = €U, @), 0< y <2m,

where U(ap, ) € SU((2) is the Euler—Rodrigues
parametrization, the actions of R, C, T, and K correspond
to the following transformations in parameter space:

R: = x+m (o, 0,00, 03)
— (—ay, 00, —03,Q2) ,
C: x— x+m(aoor,00,03)
— (=0, ap, 3, —2) ,
T: x— x (., a,a03) = (€, @1, —a2, @3) ,
C: x— ) (oo, 01, 00,03)

— (og, =0y, 0, —03) .

The new angle y’ = y + m is to be identified with the corre-
sponding point on the unit circle so that these mappings are
always in the parameter space, which is the sphere S? to-
gether with the unit circle for y. Observe that the following
identities hold for functions over S U(2); hence, over U(2):

CZTIIT[3, TZT[Z.

Abelian subgroup of Sy.

Generators:

K ={(0,3),(1,2)), where (0, 3) and (1, 2) denote trans-
positions in Sy, | K| = 4.
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Group action in parameter space:

(0,3)(@0, oy, 0, a3) = (a3aalaa25a0) )

(1,2) (o, a1, a2, a3) = (0, a2, a1, @3) .

Symmetry relations:

0,3)D), = (=y"*"D’ .,
(1,2)D), = (=iy" ™D/ .

Diagonal subgroup X' of the direct product group P x P
(P = Pauli group).
Group elements:

Y ={(o,0)lc e P}, |X¥]|=16.
Group action:
(o,o):U—>oUoT, eacho € P,

[(0,0)F](U) = F(c'Uo) .
Example: 0 = ioy:

(0,0) : (ap, o1, @2, 03) — (@0, —@1, 02, —0t3)
[(07 O)F](a05a15a25 a3) = F(“Ov_a17a2a _a3) B

(0,0) = t11, on functions over U(2) .

The relations presented above barely touch on the inter-
relations among the finite groups introduced in (1)-(4).
Symmetry relations Egs. (2.32) and (2.33), however, give the
symmetries of the d, (B) given in Sect. 2.3.3 in the Eu-
ler angle parametrization. In general, it is quite tedious to
present the above symmetries in terms of Euler angles, with
x adjoined when necessary, because the Euler angles are not

uniquely determined by the points of 3.

2.4 Group and Lie Algebra Actions

The concept of a group acting on a set is fundamental to
applications of group theory to physical problems. Because
of the unity that this notion brings to angular momen-
tum theory, it is well worth a brief review in a setting in
which a matrix group acts on the set of complex matrices.
Thus, let G € GL(n,C) and H € GL(m,C) denote ar-
bitrary subgroups, respectively, of the general linear groups
of n x n and m x m nonsingular complex matrices, and let
M (n,m) denote the set of n x m complex matrices. A ma-
trix Z € M(n,m) has row and column entries (z%),i =
1,2,....,.n;a=1,2,...,m.

2.4.1 Matrix Group Actions

Left and right translations of Z € M(n,m):

L,Z =gZ,
R,Z = Zh",

eachg e G,
eachh € H ,

eachZ e M(n,m) ,
eachZ e M(n,m) .

(T denotes matrix transposition.)
Left and right translations commute:

Z'=Ly(RyZ) =Ry(L,Z) ,
ZeMmn,m).

eachg € G,h e H

Equivalent form as a transformation on z € C""™:
Z = (gxh)z,

where x denotes the direct product of g and /; the column

matrix z (respectively, z’) is obtained from the columns of Z

(respectively, Z'), z%, a = 1,2,...,m, of the n x m matrix

Z as successive entries in a single column vector z € C"".
Left and right translations in function space:

(L )(Z) = f(g'2).
(RifNZ) = f(Zh)

eachge G,
eachh € H ,

where f(Z) = f(z¥), and the commuting property holds for
all well-defined functions f:

£g(Rhf) = Rh(£gf) .

2.4.2 LieAlgebra Actions

Lie algebra of left and right translations:

(Dx /)Z) =15 7 (7 Z) im0

(DY N)(2) =% F(Ze ™)z
Dy =Tr(Z"X3/0Z) . each X € L(G),
DY =Tr(Y"Z"9/0Z), eachY € L(H),
L(G) = Lie algebraof G ,
L(H) = Lie algebraof H .

Linear derivations:

Dox1px = aDy + BDy
[Dx, Dx'] = Dix.x1 ,

a,feC,

DY obeys these same rules.
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Commuting property of left and right derivations:

[Dx.D"] =0, XeL(G), Y eL(H).

Basis set:

n
Dy =Y xijDij. X=(x;).

i,j=1

m
DY =) yIDh . ¥ = ().

a,f=1
— N a J
Dij = Zzi 37 s
a=1 J
n
DY — Z‘Xi
1

7
o1 0z

Commutation rules:
[Dij. Dia] = 8k Dir — 811 Dyj
[D“ﬂ,Dye] — §Py pae _ gee pvB 7
[Di;. D] =0,

wherei, j,k,[=1,2,...,n,anda, B,y,e=1,2,...,m.The
operator sets {D;; } and {D*P} are realizations of the Weyl

generators of GL(n, C) and GL(m, C), respectively.

2.4.3 Hilbert Spaces
Space of polynomials with inner product:
(P.P') = P*(0/0Z)P(Z)|z=0 -

Bargmann space of entire functions with inner product:

(F.F') = [ FYZ)F/(Z)du(Z) .

du(Z2) =" exp(— Zzl"‘*zl"‘) def‘dy;” ,
ia ia

f=xt+iyli=12,....n;a=12,....m.
Numerical equality of inner products:

(P,P)y=(P,P).

2.4.4 Relation to Angular Momentum Theory

Spinorial realization of Sects. 2.4.2 and 2.4.3:

G=SUQ2), H=(1),

z = col(zy,z2) ,

ZeM2.1),

X = setof 2 x 2 traceless, Hermitian matrices,

(Ryf)(z) = f(U"2),
D, p = (z70;0/02)/2 ,
Ji=D01/2:|:iD02/27 J3=D03/27
J+ 2218/822, J_=228/821 s
J3 = (1/2)(210/9z) — 2,0/8z3)
(P, P") = P*(0/0z1,0/022) P(z1. 22) |z =250 -

Orthonormal basis:

i j — . . 1
Piw(z1.22) = 21 "2 71 4+ m)I(j —m)1]?
j=0,1/2,1,3/2,...; m=j.j—1,....—j.

Standard action:

J2Pj(z) = j(G + D Pjm(z)
J3Pj(z) = mPjy(2) ,

JiPin(@) = [(j Fm)(j £m+ D] P (z) .

Group transformation:
(RuPim)(2) = Y D} (U) Prw(2)
m/

where the representation functions are given by Eq. (2.17).
The 2-Spinorial Realization of Sects. 2.4.2 and 2.4.3:

G=H=SUQ®),

Z = [lez] ,

X =Y = setof2 x 2 traceless ,
Hermitian matrices ,

(RufNZ)=fU'Z), (LyfNZ)=f(ZV),
U,V eSUQ),
Do, jy =Tr(Z"0:0/0Z)/2 .
D/? =Tr(0; Z279/37)/2 .
My = Dy ;5 £iDg, ) ,
Ky = D2 £iD%/*

ZeMQ2,2),

z% = col(z{z%) .

M3 = D03/2 s
K3 = D%/?,

2 2
M, =Y "z09/0z5 . M_ =) z§3/0z}
a=1

a=1

2
Z (289/9z% — 239/9z5) |
a=1

N =

2 2
Ky =Y z]0/oz;. K=Y z70/oz .
i=1 i=1

N =

2
Z (z19/0z) — 220/927) .
i=1
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Mutual commutativity of Lie algebras:
M;,K;]=0, i,j=12.3.
Inner product:
(P, P) = P(Z)P'(3/0Z)|z=0 .
Orthogonal basis Eq. (2.24):

D),.(Z). j=0.1/2.13/2,....
m=j,j—1,...,—j;
m’:j’j_17_'.’_j )

(D Dl ) = QI8 S

Equality of Casimir operators:

M?=K?=M}+M;+M;]=K{+K;+K;3.

Standard actions:
M*D} . (Z) = K*D}, (Z) = j(j + DD}, (Z).
MiD! (Z)=mD/) (Z),

KiD! (Z)=m'D! (Z).

mm

MyD),(Z) = [(j Fm)(j £m+ DIED] ., ,(Z).

KuDl, (Z) =[(j Fm)(j £m' + 1]
X Drj;l.m/:tl(z) .

Special values:

= I5j 41 = unit matrix ,

i~
N
[
—_ O

i 1 0
Dliwn’(z 0 = 8jm/ij(21722) s

i 0 1
D;{nn’( = (S_ijjm’(ZleZ) s

. Zl 0 itm_ j—m
o (0 = Snmzi 7
22

Dl(z) = ()" .
Symmetry relation:
[0/ (2)]" = D/(Z").

Generation from highest weight:

; (j + m)! (j +m')! );
D! (Z)=

mn(2) ((2j)!(j—m)! )G —m)!
x MJT"KI"'DI(Z).

Generating functions:

(" Zy) /@) =D Pim(x) D}, (Z) Pie(y) .

mm’
exp(tx"Zy) =Y 1Y " Piu(x) D}, (Z)Pim(y) .
j mm’
x =col(x;x2) , y =col(yi1y2),

Z=(z), i,a=1,2; allindeterminates .

2.5 Differential Operator Realizations
of Angular Momentum

Differential operators realizing the standard commutation
relations Eqs. (2.7) and (2.8) can be obtained from the 2-
spinorial realizations given in Sect. 2.4.4 by specializing
the matrix Z to the appropriate unitary unimodular matrix
U € SU(2) and using the chain rule of elementary calculus.

Similarly, one obtains the explicit functions D,fm, simply by

substituting for Z the parametrized U in Eq. (2.24). This
procedure is used in this section to obtain all the realiza-
tions listed. The notations M = (M, M>, M3) and K =
(K, K5, K3) and the associated M. and K refer to the dif-
ferential operators given by the 2-spinorial realization now
transformed to the parameters in question.

Euler angles with Z = U(aBy) (Sect. 2.3.1):

M; =id/da, K3 =1id/dy,

%(CMM_,_ _ efiaM_)

= %(e_iVK, —e"Ky) = —

%(ei"’M+ +e M)

= —(cot B)M; + (sin f) ' K3
%(e’i”K_ + e7Ky) = (cot )K5 — (sin )~ M5 ,
M, = e “[3/3B — (cot B)M; + (sin )~ K;] .
M_ = *[—3/9B — (cot B)M3 + (sin ) K3] ,
Ky = e 7[-3/9B + (cot B) K3 — (sin f) ' M3] ,
K_ = ¢7[3/3B + (cot B)K3 — (sin B) "' M3] .

Euler angles with Z = U*(afy) (replace i by —i in the above
relations):

My = —id/da, K; = —id/dy . (2.34)
M, = e*[£0/0B — (cot B)M5 + (sin B) ' K3]
K. = e "[F9/B + (cot B)K3 — (sin B) ' M;] .
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Since D/(U*) = (D/(U))*, which is denoted D/*(U),
these operators have the standard action on the complex con-
jugate functions D;" (U).

Quaternionic variables. (xo, x) € R*:

(xé,x')(xo, x) = (xéxo —x"x,x(x + xox'+ x'x x) ;

7 Z11 Z12 Xo—iX3 —ix1 — X2\ .
Zy1 Iy —iX] + X2 Xo + iX3

i _ 8/8211 8/8212
0Z  \9/0zy 0/0z2
_ 1{9/8x0+i9/dx3 i9/8x) — 3/0x2) |
2 i8/8x1+8/8x2 8/8x0—i8/8X3 ’
M; = %Tr(ZTal«a/aZ) . Ki = %Tr(oiZTa/E)Z) .

(The form of d/dZ is determined by the requirement
(0/0z5)z1x = 6118k; for example, %(3/8)60 +1id/0x3)(xo —
i)C3) = 1)

Define the six orbital angular momentum operators in R*
by

Ljx = —i(x;0/0x, — x0/0x;), j <k=0,1,2,3,

which may be written as the orbital angular momentum L in
R? together with the three operators A given by

L=—ix><V, L1=L23,
Ly=L3, L3=Ly,
A = (A1, Ay, A3) = (Lo1, Loa. Lo3) -

Then, we have the following relations:

Ky = (Li—A4)/2,
Ky = (L;—A43)/2;
M, = —(L; + Ay)/2,
M; =—(L; + A3)/2.

Ky =(L,—45)/2,

M, = (L, + A)/2,

Commutation rules:

[M/’Kk]zo’ j7k=172737
MxM =iM , K xK =iK ,
L xL =iL, AxA =iL,

[L;, Ax] =iejriA;

where ej; = 1 for j, k,I an even permutation of 1,2,3;
ejx; = —1 for an odd permutation of 1,2, 3; e;;; = 0, oth-
erwise.

The M = (M,, M,, M3) and K = (K, K,, K3) operators
have the standard action given in Sect. 2.2 on the functions

D/

mm

/(x0, x) defined by Eq. (2.22) (Replace o by x( and &

by x.) Additional relations:

1
K2=M2=—ZR2V§+K§+KO,

R*=x{+x-x,
92 92
ve Ly 2
4 8x§ + Z 0x2
" 123
1 3 1< 3
K == _T T— = — —
=7 r(z az) DI
n=0
KoD}, . (x0.x) = jD, (x0.X) .
v‘%Dziwn’(xO’x) =0;

(M, —M>, M3) = (Z RilKiaZRiZKhZRzGKi) ,
i i i

(xé —Xx- x)Si_, — 2e;jk XXk + 2x;X;

R

ij = s
/ x§+xox

each (xo,x) € R*.

The relation R;; = R;;(xo, x) is a mapping of all points of
four-space R* (except the origin) onto the group of proper,
orthogonal matrices; for xé + x - x = 1, it is just the Euler—
Rodrigues parametrization, Eq. (2.21).

The operators R = (—M;,M;,—M3) and K =
(K1, K>, K3) have the standard action on (=1)/+m
D’ (xo,x), so that the orbital angular momentum in

—m.,m

R? is given by the addition L = R + K. Thus, one finds:

Sl (=1 DI (. x)

mm’
= Ag; L RT Yy (1) Oy (xo/R)

4 (2j — L)! )2
Qj+L+1)!)

1

Ay = (2i)L(—1)2fL!(

2.6 The Symmetric Rotor and Representation
Functions

The rigid rotor is an important physical object, and its quan-
tum description enters into many physical theories. This
description is an application of angular momentum theory
with subtleties that need to be made explicit. It is customary
to describe the classical rotor in terms of a right-handed triad
of unit vectors ( fi.faf 3) fixed in the rotor and constitut-
ing a principal axes system located at the center of mass. The
instantaneous orientation of this body-fixed frame relative
to a right-handed triad of unit vector (€1, €,, €3) specifying
an inertial frame, also located at the center of mass, is then
given, say, in terms of Euler angles (for this purpose, one
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could use any parametrization of a proper, orthogonal ma-
trix). For Euler angles, the relationship is

fi=Y Rij@py)é; . (2.35)

The Hamiltonian for the rigid rotor is then of the form
H = AP} + BP; + CP3,

J where A, B, and C are physical constants related to the
reciprocals of the principal moments of inertia, and the an-
gular momenta P; (j = 1,2, 3) are the components of the
total angular momentum 7 referred to the body-fixed frame:

Pi=f;-9=> Rypy) .

J=¢e 0 +érJ)h+é37s.

For the symmetric rotor (taking A = B), the Hamiltonian can
be written in the form

H =aP’ +bP; .

It is in the interpretation of this Hamiltonian for quantum me-
chanics that the subtleties already enter, since the nature of
angular momentum components referred to a moving refer-
ence system must be treated correctly. Relation Eq. (2.35)
shows that the body-fixed axes cannot commute with the
components of the total angular momentum 7 referred to the
frame (€1, €5, €3). A position vector x and the orbital angular
momentum L, with components both referred to an inertial
frame, satisfy the commutation relations [L;, xi] = iejxx;,
and for a rigid body thought of as a collection of point parti-
cles rotating together, the same conditions are to be enforced.
Relative to the body-fixed frame, the vector x is expressed as

Zxkék = Zahfh , each a, = constant ,
k h

Xk =Y apRin(@By) .
P

The direction cosines Ry, = Ryn(afy) = éy - fh and the
physical total angular momentum components referred to an
inertial frame must satisfy

[7)+ Rin]

in complete analogy to [L;, x;] = iejxx;.

The description of the angular momentum associated with
a symmetric rigid rotor and the angular momentum states is
summarized as follows [Eq. (2.35)]:

Physical total angular momentum [J with components re-
ferred to (€1, €,, €3):

= ie_/klth s eachh = 1, 2, 3 s

g co cot,B 9 + n 0 _jcosa g
=icosa — +isina— —1i —
: 9B sinB oy

. a 0 .sina 0
T = 1smozcot,38a 1cosa% —1w$ ,
_ 0
I = —lg

Physical angular momentum J with components referred to

(fAlvfzafA3)i

P (8 ad ad L .cosy d
= —icosyco ——1s1n — ,
! v ay v ap sin 8 da
P, = isin cot,B 9 icos 9 smy 9
2 = ISy cotPyy Y98~ 'sinf o
P 0
- 2
3= 3y
Standard commutation of the 7;:
[7:.9]1=1Jk . i.j.k cyclic.
J; can stand on either side:
P; = Z Rij(By)J; = Zl‘sz (aBy) .
i i

The famous Van Vleck factor of —i in the commutation of
the P;:

[P;,P;] = —iPx, i, kcyclic.

Mutual commutativity of the J; and P;:
(7,5]1=0, i,j=123.

Same invariant (squared) total angular momentum:

PPy P =74+ + =7

2 2 2
= —csc? 8—+ 9 —2cosf 9
o 9y? dady

Standard actions:

2D (eBy) = j(j + DD) (@By) .

93D, (@By) = mD}" (@By) .
P3D; (afy) = m' Dy (aBy) ;

LDJ" (@By) = [ Fm)(j £m + D]
x D% (@By) .

(P, —iP) D)% (@By) = [(j —m)(j +m' + 1))}
x D)1 (@By) .

(P +iP) D)5 (@By) = [(j +m)(j —m' + D)2

X Dr{1*m’ 1(05,8]/) .
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Normalized wave functions.
Integral or half-integral j (SU(2) solid body):

N\ AT
<aﬁy' ’ ,>= L. o)
mm 2

with inner product

(FIF) = [ a2 (@py|F) byl F) .
where df2 is defined by Eq. (2.25), and the integration ex-
tends over all «, B, y given by Eq. (2.26).
Integral j (collection of rigid point particles):

j+1

v (@By) = 8 D) (@By) (2.37)
2
with inner product
2 T
') = /da/dﬂ sm,B/dyF (aBy)F'(aBy) .
0 0

The concept of a solid (impenetrable) body is conceptually
distinct from that of a collection of point particles moving
collectively together in translation and rotation.

2.7 Wigner-Clebsch-Gordan
and 3-j Coefficients

Wigner—Clebsch—-Gordan (WCG) coefficients (also called
vector coupling coefficients) enter the theory of angular mo-
mentum in several ways: (1) as the coefficients in the real,
orthogonal matrix that reduces the Kronecker product of two
irreducible representations of the quantal rotation group into
a direct sum of irreducibles; (2) as the coupling coefficients
for constructing basis states of sharp angular momentum in
the tensor product space from basis states of sharp angu-
lar momentum spanning the two constituent spaces; (3) as
purely combinatoric objects in the expansion of a power of
a 3 x 3 determinant; and (4) as coupling coefficients in the al-
gebra of tensor operators. These perspectives are intimately
connected but have a different focus. The first considers the
group itself to be primary and views the Lie algebra as the
secondary or derived concept; the second considers the Lie
algebra and the construction of the vector spaces that carry
irreducible representations as primary and views the repre-
sentations carried by these spaces as derived quantities; the
third is a mathematical construction, at first seeming almost
empty of angular momentum concepts, yet the most reveal-
ing in showing the symmetry and other properties of the
WCG coefficients; and the fourth is the natural extension

of (2) to operators, recognizing that the set of mappings of
a vector space into itself is also a vector space. The subject
of tensor operator algebra is considered in the next section
because of its special importance for physical applications.
This section summarizes formulas relating to the first three
viewpoints, also giving the explicit mathematical expression
of the coefficients in their several forms.

Either viewpoint, (1) or (2), may be taken as an inter-
pretation of the Clebsch—Gordan series, which abstractly
expresses the reduction of a Kronecker product of matrices
(denoted x) into a direct sum (denoted &) of matrices:

Jiti2
> el
J=li—=rl
i1 =@l —jd +1]1& & [ji + jo].
(2.38)

(/1] x [2]

leen two angular momenta j; € {0, 1 5.1,...} and j, €
{O, 3 1,...}, the Clebsch—-Gordan (CG) series also expresses
the rule of addition of two angular momenta:

J=h+i i+ =

The integers ¢/, ;,; defined by

1, for ji, jo, Jj satisfying

€ jrj = the CG-series rule (2.39)

0, otherwise

are useful in many relations between angular momentum
quantities. The notation (j;j,j) is used to symbolize the
CG-series relation between three angular momentum quan-
tum numbers.

The representation function and Lie algebra interpreta-
tions of the CG-series Eq. (2.38) are, respectively:

Y
§ i@e./uz./D )
J

C(-]i(jl) X Ji('jZ))CT — Z EBG_/]_izj ‘]i(j) ,
J
i=1,2,3.

C(D/' x D)CT =

The notation J.”) denotes the (2j +1) x (2j + 1) matrix

1
with elements

T = m' | Ji | jm)
mom=j,j—1,...,—j.
The elements of the real, orthogonal matrix C of dimension

(271 + 1)(2j> + 1) that effects these reductions are the WCG
coefficients:

CII/ZI

myimoym *

(C)jm:m1mz
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The pairs, (jm) and (mm;), index rows and columns, re- Orthogonality of 3—j coefficients (symbols):
spectively, of the matrix C:
Z v B\[(7h 2 s
(jm):j=j1+j2,...,|j1—j2|, myms ny mp; ms mp; mp m’3
Mm=Joe =) = 81y js8mam, / (23 + 1) . (2.45)
mpmy) imy = ji,...,—Jji; . . . . . .
(mamz) : . J_l J_l 2(2].3 1) Ju. J2 J3 Ju. J2 J3
M2 =Ja-n ™2 my mp ms)\m, m) ms

Sum rule on projection quantum numbers:

Citi —,

P for my +my #m . (2.40)
Clebsch—Gordan series rule on angular momentum quantum
numbers:
mimm = 0, for €,j,; = 0. (2.41)
In presenting formulas that express relations relating to
the conceptual framework described above, it is best to use
a notation for a WCG coefficient giving it as an element of
an orthogonal matrix. For the expression of symmetry rela-
tions, the 3—; coefficient, or 3—; symbol notation, is the
most convenient. The following notations are used here:
WCG coefficient notation:
Chnd L imy) & |jama)

|(j1j2)jm) = Z

my,my
|jimy; jama) = |jimy) ® |jama) ,
CHnI = (jimy: joma|(jij2) jm)

((J172)]'m'|(j1j2)jm) = 81 8mm -

The 3— coefficient notation:

Ji 2 J _ (_1)j17j2+m(2j + 1)71/2cj1jzj .
ml m2 “m mipmoym

(2.42)
Orthogonality of WCG coefficients:
Orthogonality of rows:
Jijaj vzt e
Z lelrézm Cm]mzm’ - 8./.1/8’""1/ . (243)
mpmy
Orthogonality of columns (three forms):
i\ j2j (12
Z C’#IL%W Cm’lm’zm - 8’"1’"/18’"2’"/2 ’
jm
Jij2J J1j2j _ ,
Z lem—mlgmcm/l,mfm’l,m - 8'"1'"1 ’
J
J1J27 J1j2Jj _ ,
Z Cm—mz,WIz,m Cmfm/z,m’z,m - 8’"2”’2 : (2'44)
J

Jams3

(2.46)

= 8m1m’1 szm’z .

The integers €;,;,; (j3 = j) are sometimes included in the
orthogonality relations Egs. (2.43) and (2.45) to incorporate
the extended definition Eq. (2.41) of the WCG coefficients.

2.7.1 Kronecker Product Reduction

Product form:

D.fl

m'my

_ J1j2j J1J2J J
- ZCm/l,m/z,m/l+1n’2Cm1~m2,m1+mzDm/l+m/2,m1+m2(U) .
J

w)Dy;,,(U)

Singly coupled form:

2

mi+mo=m

C iz D/I

mymam=""m'm

(U)Dr{f’zmz (U)

_ lejzj
’ ’ ’ ’
ml ,mz,ml +I’I12

D’

’ /
my+my.m

).
Doubly coupled (reduction) form:
J1j2j i1j2j 1 J
Z le’lni’zm/ C"j111]l7zlim Dml/l mi (U) sz/zmz (U)
m' +my=m’

mi+mo=m
— s . nl
- SJ/J Dm’m (U) .

Integral relation:

/dQD;;‘,lml(U)D;{f,zmz(U)D;{j,ml )
272

— J1j2J Cj]jzj
2j +1

mymhm' = mymam >
in any parametrization of U € SU(2) that covers S3 exactly

once.
Gaunt’s integral:

2 T
/ da / Sin BABY;%, (Bet) Vi, (Bt) Vi, (Bt)
0 0

_(@h+ DL+ 1D l/zclllzlchlzl
47[(2[ + 1) 000 mymom’ *
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Integral over three Legendre functions:
/ sin BdBP;(cos B) Py, (cos B) P, (cos B)
0

2
2(ch')
2041
1111
Cooo

:Cy+nm+b—mm—b+nmﬂ+b+m

L +L+1+1)
" (=DHE 1L
(L =)L =)L =D’
1
L= 5(114‘124‘1),
forly + 1, + [ even

hibl _
COOO =0 ’

forl; + 1, + 1/ odd .

2.7.2 Tensor Product Space Construction

Orthonormal basis of Hj,:

);

{ljimi) |my=ji.j—1.....—ji}.
Orthonormal basis of Hj,:
{ljoma) | ma = jo.jo—1.....— o} .
Uncoupled basis of H;, ® Hj,:
{ljim1) ® |joma) |my = ji.ji—1.....—ji;
my = ja jo—1.....—ja} .
Coupled basis of H;, ® Hj,:
{Gii)im) | j = ji+ jaji +ja— Lo lji = jal s
m=j.j—1l....—j}.
|(j1j2)jm) = Z C;#l%mUlml ® |jama) .
mpmy
Unitary transformations of spaces:
Tyljim) = ZD;Q/ImI(U)’jlmi) .
m
my=ji,j1i—1,...,—j1, eahU e SU(2);
TV|j2m2 ZDm mz(V)|J2m,2) ’
1112
my=jo,jo—1,....,—j2, eachVeSU(2);

T(UV)|]1m1) ® | jama) = Ty|jimi) ® Ty|joma)

Z D/, (U)D,:: o, V] JimY) ® | jam))
m mz

eachU € SU(2), eachV € SU(2);

Tw(jrj2)jm) = ZDm W NG jm')

m:j,j—l,...,—]; eachU € SU(2) .

Representation of direct product group SU(2) x SU(2):

TwonTw.vy=Tuvwvvy -
Representation of SU(2) as diagonal subgroup of SU(2) x
SU(2):

TovnyTw vy = Tov.vv)

TU = T(U,U) .

2.7.3 Explicit Forms of WCG Coefficients

Wigner’s form:

C/llzl

= 8(my + ma,m)(2) + 1)}
§ ((j 1= NG =1+ )G + 2 = j)!)%
G+i 4+ D)
5 ( (U +ml( —m)! )5
(1 +m)(ji —m)(j2 + mo)!(jo — m3)!
. (D2 Gy j b =)W —m 49!
S =1+ o= +m—=s)(ji — ja—m+s)!

Racah’s form:

J1j2J
Cm]mzm

= 8(my + ma, m)
X( @j + D01+ 2= J)! )
Ui+ 2+J+DIG + =G + j2—J)!
y ((jl —m)!(j2 —m)!(j —m)!(j +m)!)%
(J1 +m)!(j2 + my)!

X Z (=D my + DN + o —my —1)!
t'(] —m—t)!(j1 — mj —[)!(jz—j + m +[)' ’

Van der Waerden’s form:

C/l/ZI

mpmoym

= §(my + my,m)

" ((21 + DG+ 2=+ =i +Jz—11)!)2
i+ j2+Jj+ 1)
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% [+ molG = m)!Ga + ma) (o — ma)1]
<[ +mi( —m]?

< Y DMK+ j2 = § = KWy —my — k)
k
X (]2+m2—k)'(] —j2 + my +k)'
L -1
x (j — Ji —m2+k)!] .
Regge’s formula and its combinatoric structure:

Z A@) H (aij)

i,j=1

(det A)F = A= (aij), (247

where the summation is over all nonnegative integers ¢;; that
satisfy the row and column sum constraints Eq. (2.17) given
by

an i oz| k

Q= |0y Oy Q23 k (2.48)
a3 o o] k
k k k

The coefficients A(«) are constrained sums over multinomial
coefficients:

k
A@ = Y (=) ,
Z k123, k1327 k231,k213, k3127 k321

where the summation is carried out over all nonnegative in-
tegers K;,,i, such that

an = ks +kizz . ona = kot + koiz
a3 = ki + k3o
o = k3ip +kaz s o = kins + ki,
a3 = ko1 + ks,
a3 = ko1 + k3, oz = k3o + ks,
a3z = kis + kaiz

G(K) = > kp = kisa + kais + ks -

TeA3

The general multinomial coefficient is the integer defined by

k
=kl kol k) k= ki
(kl,kz,...,ks) flatiat ek Z

Relation Eq. (2.47) generalizes in the obvious way to an n x
n determinant, using the symmetric group S, and its S,_;
subgroups S, ) ”’|» where j denotes that this is the permutation
group on the integers 1,2,...,n with j deleted [2].

Regge’s formula for the 3—; coefficient is:

v 3
m; mp; msj
3

:8(1’}’11 +m2+m3,0) l_[(al/)'
i.j=1

(ST

A(a)
K[k + D1z
k=j+j+j3, (2.49)
a3 = j3 +ms,

an = J3

= j1+my, o = jo+my,
a1 = Ji A = j—my,
a1 =j2+j3—Jji,an=j+j1—j2,
= j1+ ja—J3-

—my, —ms3,

Equation (2.49) shows that WCG coefficients and 3—; co-
efficients are sums over integers, except for a multiplicative
normalization factor.

Schwinger’s generating function:

k
Y= Y@ [T .
k : @ i

exp(tdetA) =

The general definition of the , F, hypergeometric function
depending on p numerator parameters, ¢ denominator pa-
rameters, and a single variable z is:

ap .
F,

(a)n = a(a + 1)

(al)n (ap)n ‘-
,125 (bl)n (b )n n! '

(a+n—-1), (a)p=1.

Such a series is terminating if at least one of the numerator
parameters is a negative integer (and all other factors are well
defined). Both WCG coefficients and Racah 6—j coefficients

relate to special series of this type, evaluated at z = 1. For
WCG coefficients, we have fora + = y:

=[Q2c + )(a +a)!(a—a)l(b+ B)b —B)(c + y)!
x (¢ = P (=) Adabe)
B €1 — 81,6, — 081,63 — 6 ;1
Sy — 8 + 1,8, —8 + 1

* (82— 81)!1(85 — 81)!1(81 —€)!(61 — €)!1(81 —€3)!

abc
9 By

Sy=mina+a+b+B,b—BF+c+yat+a+c+y),
(81, 6,,683) = any permutation of (@ + o« +b + B,b — B +
¢+ y,a+a+c+y), after §; is fixed, (€1, €3, €3) = any
permutation of (¢ + o, b + o + y, ¢ + y). A somewhat better
form can be found in [2].
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The quantity

Aabe) — (LD =OM@=b+ Ol +b+ o) :
(@a+b+c+1)!
is called a triangle coefficient.
All 72 Regge symmetries are consequences of known
properties of the 3 F, hypergeometric series.

2.7.4 Symmetries of WCG Coefficients in 3-j
Symbol Form

There are 72 known symmetries (up to sign changes) of the
3—j coefficient. There are at least four ways of verifying
these symmetries: (1) directly from the van der Waerden
form of the coefficients; (2) directly from Regge’s generating
function; (3) from the known symmetries of the 3 F, hyper-
geometric series; and (4) directly from the symmetries of
the representation functions D’ (U). The set of 72 symme-
tries is succinctly expressed in terms of the coefficient A (o)
defined in Sect. 2.8.3 with «;; entries given by Eqs. (2.48)
and (2.49) in which m; + m, + m3 = 0:

J1+m Ja +mp J3 +m;3
Al ji—m Ja—my J3—m3
ot i—h Bti—j hti—Js

This coefficient has determinantal symmetry; that is, it is
invariant under even permutations of its rows or columns
and under transposition, and is multiplied by the factor
(=1)/1*+72+J3 under odd permutations of its rows or columns.
These 72 determinantal operations may be generated from
the three operations Cj,, Cy3, T consisting of interchange
of columns 1 and 2, interchange of columns 1 and 3, and
transposition, since the first two operations generate the
symmetric group S3 of permutations of columns, and the
symmetric group S} of permutations of rows is then given
by T'S;T. The transposition T itself generates a group {e, T'}
isomorphic to the symmetric group S,. Thus, the 72 element
determinantal group is the direct product group S3 x S} x
{e, T'}. The three relations between 3—; coefficients corre-
sponding to the generators Cy,, Cy3, T are

Ju J2 73} (_1)j1+j2+j3 J2 1 U3
nm; mp ms mpy mp ms
JuoJ2 s = ( 1)/1+/z+/3 3o J2
— (—1)/1tj2t, ,
mp mp; ms ms  mp nmj
; : : Jitjtmitmy  ji+jp—mi—my .
Ju oJ2 U3 _ 2 J3
T\ L—tmi—my ji—ja—mitmy - -
mp mp; mj 3 2 J2—J1

All 72 relations among 3— j coefficients can be obtained from
these 3. The 12 classical symmetries of the 3—j symbol

(abc)
a By

1. Even permutations of the columns leave the coefficient
invariant.

2. Odd permutations of the columns change the sign by the
factor (—1)4+b+e,

3. Simultaneous sign reversal of the projection quantum
numbers changes the sign by (—1)*+b+¢,

are expressed by:

The 72 corresponding symmetries of the WCG coefficients
(up to sign changes and dimensional factors) are best ob-
tained from those of the 3—j coefficients by using Eq. (2.42).

2.7.5 Recurrence Relations

Three-term:

[+ D —2j1>1%<j‘ 72 j3)

m; mp ms
= [(j, + my)(jz — m3)]% (jl
n
— [ = m2)(j3 + m3)]? (jl
nmi

(2 +1 —2j3>1%<j‘ % j3)

mi

+ (2 + my + D(js + m3)]2

y voh—3 j3+3
m mz—% m3+%

+ [(jo—m2 + 1)(j3 — ms)]%

. F l . l
7 2 21 ]3+21 —0:
mi m2+§ M3—5
J2 3
m ms3
. . . 1
=[(j3—Jj1 + 2 + D(jz —m3)]?

. . 1 . 1

% Ju. J2—35 J3—3
1 1

mi mz—z m3—§

— U1 = s + j2)(J = 2jo+ D(js +m3 + D)]?

NSRS
m mz—% m3+%

(jo + my)? (Jl
mi
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( J1 J2 js) +((d+f—b)(b+d+f+1)(d—5)(f—ﬁ—5));
Qd)2f+1D2d)(2))
chd-1/2f-1/2

BS+1/2.8+8+1/2 *

Jo—m3 —j, mj3

(ST

_ _( 2j2(j3 +m3) )
(3=t +1)

o J1 -3 -
ja—my —ja+3L my—

This relation may be used to prove the limit relation
% Eq. (2.50) from the similar recurrence relation Eq. (2.84c)
1] for the Racah coefficients.
2

J3=ji+juji+j—1,...,ji—j+1 forj > jr;

i i 2.7.6 Limiting Properties and Asymptotic Forms
(jz —m3 —ja m3>
2jo(j3 —ms + 1) 3 ali;go Cﬁgjsﬁszrﬁ =8pp
N _((jl -+ =2p+ 1)) lim (—1)“*2 =7 [(2¢ 4+ 1)(2j — 20 + 1)]2
x( Ji =3 j3+%> ./—>°0 . .
Jommy —jo+ i my—1)” x{’bf Ja ]CU —cue (2.50)

B=ntp-Ljit+jp=2.....50—j» forji=). . .
’ : ? : ? : ? : ? where the brace symbol is a 6—j coefficient (Sect. 2.9).

Four-term: i _ cosip  sinlp
Cortrae ~ (DD, [ 702 2
—sin3f  cos 5B
. . . 1
[+ DU =200 =20 =23+ D] P
X(-]l J2 ]3):[(]2—m2)(]2+m2+1) Coslﬂz ]+m Sinlﬂz ]_m
m; mp ms ) 2] P ) 2] P
j ' EENE .
X (J3 +m3)(J3 + ms Clor ~ Pr(cosB), forlarge j ;
. . 1
x (f‘ 22 1 /3 1) D27 + DRI + DEWG.E T + m JijJ) ~
e Pi(cos ),
) ) (i o ji—1 first for large J, then large j (Sect. 2.9).
= 2m[(js + m3)(js — m3)]? ( Lo )
mp mj nms

—[Ga + m) (o — ma + 1)(js —m3)(js —ms —1)]? 277 WCG Coefficients as Discretized
. . ] Representation Functions
% J1 J2 J3 — '
m; my—1 m3y+1
J1J2]
mymoym

= 8m1 +my,m (_ l)jl m

Five-term:
. ) L L
b » ((2€ + D1+ j2 —)J)! 2
B.8.p+8 i+ j+Jj+ D!
:((b+d—f)(b+f—d+1)(d—5)(f+,3+5+1)); D’ JivtEmy o j+m;
QA2 +DH2d)2f +2) IR\ —/fi=mi  /Jo—m; ) symbolic
I
oz . 2.51)
(b+d=f)b+f-d+ DA+ (f—p-8+1))2 here | luafing thi It one fi bstit
(2d)(2f—|—1)(2d)(2f—|—2) where 1in eva uatlngt 1S result one first substitutes
o Cha-1/21+1/2 U =~/ j1+m,
B.5—1/2.p+5—1/2 \/7
1 Uiy =/ J2 +my,
(@S =b)b+d 4 f D+ +B+) ; P VLT
Qd)2f +1(2d)2f) Ha =V
o chd=1/2/-172 Uy = +/jo—my

B.S—1/2.8+5—1/2
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into the form Eq. (2.17), followed by the replacement of or- 2. Generation from highest weight:
dinary powers by generalized powers:
1
1 J + M)! 2
k! 2 T) = (—( ) [J-. TJ]
+vVk)* — (£1)° . M (] — M)! J=M)
( ) — (1) ((k_s)!) QNI — M)!
where [A, B](k) = [A, [A, B](kfl)]’ k =1,2,..., with

2.8 Tensor Operator Algebra
2.8.1 Conceptual Framework

A tensor operator can be characterized in terms of its alge-
braic properties with respect to the angular momentum J or
in terms of its transformation properties under unitary trans-
formations generated by J. Both viewpoints are essential.

A tensor operator T with respect to the group SU(2) is
a set of linear operators

T ={T15T25"'7Tn}’

where each operator in the set acts in the space H defined by
Eq. (2.10) and maps this space into itself 7; : H — H, i =
1,2,...,n, and where this set of operators has the following
properties with respect to the angular momentum J, which
acts in the same space # in the standard way:

1. Commutation relations with respect to the angular mo-
mentum J:

[J:, 7] —Zr“’rk,

where the t,g) are scalars (1nvar1ants) with respect to J .
2. Unitary transformation with respect to SU(2) rotations:
n
e VA T Vi Z D;i(U)T; ,
Jj=1
U=UW.n),

where the matrix D(U) is an n X n unitary matrix repre-
sentation of SU(2). Reduction of this representation into its
irreducible constituents gives the notion of an irreducible ten-
sor operator T/ of rank J . An irreducible tensor operator T/

of rank J is a set of 2J + 1 operators
T/ =Ty | M=J.J—-1..-J},

with the following properties with respect to SU(2).

1. Commutation relations with respect to the angular mo-
mentum J':

[V TH] = [(J = M)(J + M + DT,
[V T = [(J + M)(J =M + D)IT;
[J3. Ty = MTy; .

STl = 70U + )Ty (2.52)

i

[A4, B]oy = B, denotes the k-fold commutator of A
with B.
3. Unitary transformation with respect to SU(2) rotations:

eﬂl//n-l TA‘/]I ean-J

=Y Diu)Ti U = Uy, h) .
M/

(2.53)

Angular momentum operators act in Hilbert spaces by act-
ing linearly on the vectors in such spaces. The concept of
a tensor operator generalizes this by replacing the irreducible
space H by the irreducible tensor T/, and angular momen-
tum operator action on H; by commutator action on T/, as
symbolized, respectively, by

J : {states } — { states } ,
{ commutator action of J } : { tensor operators }

— {tensor operators } .

Just as exponentiation of the standard generator action
Egs. (2.13) and (2.14) gives relation Eq. (2.16), so does
the exponentiation of the commutator action Eq. (2.52) give
relation Eq. (2.53), when one uses the Baker—Campell-
Hausdorff identity:

CIAB e_’A [A, B](k) .

>4

k k!
Thus, the linear vector space of states is replaced by the linear
vector space of operators. Abstractly, relations Eqs. (2.13)
and (2.52) are identical: only the rule of action and the object
of that action has changed.

An example of an irreducible tensor of rank 1 is the an-
gular momentum J itself, which has the special property
J : H; — H;. Thus, relations Egs. (2.52) and (2.53) are
realized as:

T} =Ju =~ +ih)/V2,
Ty = Jo=Js,

T =J. =i —ih)/V2;
=[(1- W+ T, .

[(1+wQ—wIT.,

1)
1]
7]

uT!, p=10-1;
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e VS g Vil — Jcosy + i - J)(1 —cos )
—(AaxJ)siny ,
eI S DL (g )T

2.8.2 Universal Enveloping Algebra of J

The universal enveloping algebra A(J) of J is the set of all
complex polynomial operators in the components J; of J, or
equivalently in (J, J3, J_). The irreducible tensor operators
spanning this algebra are the analogues of the solid harmon-
ics Yy, (x) and are characterized by the following properties:
Basis set:

’Tkk =a; Jf , ay arbitrary constant ,

(k + p)!
7! =Gy ) o

p=kk—1,...—k; k=0,1,2,....

Standard action with respect to J':

[T ] = 1k F ok 1+ DT,
[J5. T ] = w7y
3

3 [J,, [Ji,T:]] = k(k + )T} .

i=1

Unitary transformation:

e VAT TRV = N DE (p )T
v

2.8.3 Algebra of Irreducible Tensor Operators

Irreducible tensor operators possess, as linear operators act-
ing in the same space, properties 1, 2, and 3 below, and an
additional multiplication property 4, which constructs new ir-
reducible tensor operators out of two given ones and is called
coupling of irreducible tensor operators. Property 4 extends
also to tensor operators acting in the tensor product space
associated with kinematically independent systems. It is im-
portant that associativity extends to the product Eq. (2.54),
as well as to the product Eq. (2.55). Commutativity in these
products is generally invalid. The coupling properties given
in 4 and 5 are analogous to the coupling of basis state
vectors. The operation of Hermitian conjugation of oper-
ators, which is the analogue of complex conjugation of
states, is also important, and has the properties presented un-
der 5

4.

. Multiplication of an irreducible tensor operator of rank

k by a complex number or an invariant with respect to
angular momentum J gives an irreducible tensor operator
of the same rank.

. Addition of two irreducible tensor operator of the same

rank gives an irreducible tensor of that rank.

. Ordinary multiplication (juxtaposition) of three irre-

ducible tensor operators is associative, but the multipli-
cation of two is noncommutative, in general.

Two irreducible tensor operators S*' and T*> of different
or the same ranks acting in the same space may be mul-
tiplied to obtain new irreducible tensor operators of ranks
given by the angular momentum addition rule (Clebsch—
Gordan series):

k kb _ kikok ki ke
[$hxTo], = ) st . @59
H1,42
w=kk—1,...,—k;

rank:ke{kl—i—kz,kl +k2—1,...,|k1—k2|}.

The following symbol denotes the irreducible tensor op-
erator with the pu-components Eq. (2.54):

[Sk‘ X Tkz]k .

. Two irreducible tensor operators S! and T*> of different

or the same ranks acting in different Hilbert spaces, say
H and K, may first be multiplied by the tensor product
rule so as to act in the tensor product space H ® K, that
is,

SHRTR HOK >HeK,

and then coupled to obtain new irreducible tensor opera-
tors, acting in the same tensor product space H ® K:

k ik _ kikok ok k
[S ‘T z]“ - Zcmluzzu«sui ® Tuzz ’
ol

pw=kk—1,... k. (2.55)

The following symbol denotes the tensor operator with the
u-components Eq. (2.55):

[sh @14

k € {k1 +koky+ky—1,..., ki —ky|} .

. The conjugate tensor operator to T 7, denoted by T/, is

the set of operators with components T ]{; defined by
s J . . .o \K
(i'm| Ty | jm) = (jm| Ty | ')
These components satisfy the following relations:
[0, T3] = =1 £ )@ F M+ DT

[ 72 T | = —mi
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S[vn [ ]] = 00 + 07

1

VI T A = S D (bR
M/

J _ J J% _ (invariant operator to
"= ;TMT - ( SU(2) rotations ) ’

oV [T Giyid _ )
An important invariant operator is

Jkikak _ Z

IVEys

kikak ki ok okt
Conrion Ty Ty Ty -

7. Other definitions of conjugation:

Ty — (0)/™MT/, . Ty — (/™M1

2.8.4 Wigner-Eckart Theorem

The Wigner—Eckart theorem establishes the form of the ma-
trix elements of an arbitrary irreducible tensor operator:

('m' T m) = (| T 1 7)Cstn
. . ; I Y A
— / T J —1 jH+J+m J )

G ey ()
Reduced matrix elements with respect to WCG coefficients:
(G177 17) = 22 Clitld Tt i)

nM

each ' = j’, j'—1,...,—J’ (the reduced matrix element is
independent of ).

Reduced matrix elements with respect to 3—; coeffi-
cients:

GIT7 ) = 02 Vi 1T )
Examples of irreducible tensor operators include:

1. The solid harmonics with respect to the orbital angular
momentum L:

VA () = (Vi) s = ko k3
Yaultm) = 3 {1 [YNNCorfumu ' + 1)

I

where
(x [ Im) = Yim(x) ,

1
/ (@A DCE+ D\
Wlyrin = Z( A2l + 1) ) oo

Vi (6) Vi (x)
=Y (VO Y ()
l/

(Vi () ® V)],
= Z Cl]f:ftzziyklﬂl(x)ykzﬂz(x) )

122025
[V @) ® VeI, = (kY k)Y (o)

2. The polynomial operator T* in the components of J
(Sect. 2.8.2):

(|5 jm) = 8550 | T[T
GIT41) = a0

2j +k + Dlklk! )7
2 +D@2j -2k
3. Polynomials in the components of an arbitrary vector op-
erator V', which has the defining relations:

[/, V] =ieij Vi .
[J2. V] = [(1 F )@ £ )] Vs .
[J3, Vu] = 1V,
Vir=—(Vi +iV2)/vV2. Vo = V5.,
Vo= (Vi —iVh)/ V2.

This construction parallels exactly that given in Sect. 2.8.2
upon replacing J by V. The explicit form of the resulting
polynomials may be quite different since no assumptions are
made concerning commutation relations between the compo-
nents V; of V. The solid harmonics in the gradient operator
V constitute an irreducible tensor operator with respect to the
orbital angular momentum L.

2.8.5 Unit Tensor Operators or Wigner
Operators

A unit tensor operator is an irreducible tensor operator T74,
indexed not only by the angular momentum quantum num-
ber J but also by an additional label A, which specifies that
this irreducible tensor operator has reduced matrix elements
given by .
GNT 2]5) = 8pj4a -

This condition is to be true for all j = 0,1/2,1,..
is a unit tensor operator defined for each

.. There

A=J,J—-1,...,—J.

J+A
2J 0
L]

The special symbol
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denotes a unit tensor operator, replacing the boldface symbol
T/-4, while the symbol

&

denotes the components. In the same way that abstract an-
gular momentum J and state vectors {|jm)} extract the
intrinsic structure of all realizations of angular momentum
theory, as given in Sect. 2.2, so does the notion of a unit ten-
sor operator extract the intrinsic structure of the concept of
irreducible tensor operator by disregarding the physical con-
tent of the theory, which is carried in the structure of the
reduced matrix elements. Physical theory is regained from
the fact that the unit tensor operators are the basis for arbi-
trary tensor operators, which is the structural content of the
Wigner—Eckart theorem. The concept of a unit tensor oper-
ator was introduced by Racah, but it was Biedenharn who
recognized the full significance of this concept not only for
SU(2), but for all the unitary groups.

All of the content of physical tensor operator theory can
be regained from the properties of unit tensor operators or
Wigner operators as summarized below.

Notation (double Gel’fand patterns):

b

Definition (shift action):

J+A
0), M=J,J-1,....—J

J+M

J+A MA=J.J—1,....—J

T4 M 27 =0,1,2,... .

J+ A .
<2J 0>|jm) =CM A i+ Am+ M),
J+M
(2.56)
forall j =0.3,...;m=j,j—1....,—j.
Conjugation:
J+A ' .
<2J o> lim) = Gl iim | J = Am = M) .
J+M
(2.57)
Orthogonality:
J+ A J+ A
Z<2J O><2J o> = Suall
M J+M J+M
(2.58)
J+4A \ J+A
Z<2J o> <2J o> =8um
A J+M J+M

(2.59)

J + A J+ A

+
0> |jm)

(2.60)

Z(jm|<2]’

m

o)l

81 78mmbaa

J' + M J+M
2j +1

T2 +1

The invariant operator I is defined by its action on an arbi-
trary vector ¥; € H;:

J
IyWj=¢€i-a4,;V;-

Tensor operator property:

) J+ A )
e Wit (5 g 0 )eivid
J+M
J+ A
=Y Dy (Y. #){(2J 0). (2.61)
M J+ M

Basis property (Wigner—Eckart theorem):

Tir | jm)

-(zu +A||TJ||j><zJ

0> | jm) .

(2.62)

Characteristic null space.

The characteristic null space of the Wigner operator de-
fined by Eq. (2.56) is the set of irreducible subspaces H; C
I given by

{H;:2j=0,1,....J —A—1}.
Coupling law:

. b+o a-+p
> ocae(2b 0)( 2a 0
of b+p a+a

, c+p+o

abc
=W ol 2¢ 0), (2.63)

c+y

where W‘;g@ is an invariant operator (commutes with J') and
is called a Racah invariant. Its relationship to Racah coeffi-
cients and 6— coefficients is given in Sect. 2.9.

Product law:

b + o a + p
2b 0N 2a 0
b+p a+a
b b ct+p+o
abce aoc
= Z Wp.(r.p+(r Ca.ﬁ.a+ﬁ 2¢ 0). (264
¢ cta+p



2 Angular Momentum Theory

39

Racah invariant:

abc __ abc
Wie: = 2_ Casy

afy
i
b+o a+p c+r
X <2b 0><2a 0><2c 0> .
b+ p a+o c+y
(2.65)

The notation W‘;(b,‘; for a Racah invariant is designed to match
that of the WCG coefficient on the left, the latter being asso-
ciated with the lower group theoretical labels, for example,

2a 0
—|aa) ,
a—+«o

the state vector having a group transformation law under the
action of SU(2), and the former with the shift labels of a unit

tensor operator,
o+ p
2a 0/’

and having no associated group transformation law. The in-
variant operator defined by Eq. (2.65) has real eigenvalues,
hence, is a Hermitian operator,

Wabc

poT

Wabc’r

poT

(2.66)

which is diagonal on an arbitrary state vector in 7
(Sect. 2.9).

The Racah invariant operator does not commute with
a unit tensor operator, and it makes a difference whether it
is written to the left or to the right of such a unit tensor oper-
ator. The convention here writes it to the left.

Relation Eq. (2.65) is taken as the definition of W‘;’;‘;,
the following properties all follow from this expression.

Domain of definition:

Wabe a.b.c€{0.1/2,1,3/2,..}:
p=a,a—1,...,—a
o=bb—1,...,—b
t=c,c—1,...,—c;

W =0, ifp+0 #1; if €pe = 0.

poT

Orthogonality relations:

Z Wzgcrwzgi’ = SCd(SrT’Eabc‘ Ii s (2.67)
Z Wl;gCTWl;)boCr - Spp’(goa’lpa s (268)

where the I invariant operators in these expressions have the
following eigenvalues on an arbitrary vector y; € H;:

ICW;’ = €j—1c, /'W/ ’
Iahwj = €j—0—paj-o€j-objVj -
The orthogonality relations for Racah invariants parallel ex-
actly those of WCG coefficients.

Using the orthogonality relations Eq. (2.67) for Racah
invariants, the following two relations now follow from
Egs. (2.63) and (2.64), respectively:

WCG and Racah operator coupling:

Z Z Wl;lybadpﬂr g%cja-ﬁ-ﬁ

PO af
0><2a

><<2b
c+r

= Scd €apel <2C

b+o a+p

0
a+o
o>.

Racah operator coupling of shift patterns:

> Wg’;i<2b O><2a

po
o> |

Relations (Egs. (2.56)—(2.70)) capture the full content of ir-
reducible tensor operator algebra through the concept of unit
tensor operators that have only 0 or 1 for their reduced ma-
trix elements. Using the Wigner—Eckart theorem Eq. (2.62),
the relations between general tensor operators can be re-
constructed. Unit tensor operators were invented to exhibit
in the most elementary way possible the abstract and in-
trinsic structure of the irreducible tensor operator algebra,
stripping away the details of particular physical applications,
thus giving the theory universal application. It accomplishes
the same goal for tensor operator theory that the abstract
multiplet theory in Sect. 2.2 accomplishes for representation
theory.

Physical theory is regained through the concept of re-
duced matrix element. The coupling rule Eq. (2.54) is now
transformed to a rule empty of WCG coefficient content and
becomes a rule for coupling of reduced matrix elements us-
ing the invariant Racah operators:

()]s x 7T | )]
= (=D Y W G

(a//)l//

(@) 7|8 @@ " [T* @)

b+ pB

(2.69)

)

(2.70)

c+vy

b+o a-+p

b+ B
c+r

a+to

b
= 5ﬂca+ﬂ<2c
c+a+p

2.71)
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This coupling rule is invariant to all SU(2) rotations and
reveals the true role of the Racah coefficients and reduced
matrix elements in physical theory as invariant objects under
SU(2) rotations. It now becomes imperative to understand
Racah coefficients as objects free of their original definition
in terms of WCG coefficients.

2.9 Racah Coefficients

Relation Eq. (2.65) is taken, initially, as the definition of the
Racah coefficient with appropriate adjustments of notations
to conform to Racah’s W notation and to Wigner’s 6—; no-
tation. Corresponding to each of Egs. (2.63)—(2.65), (2.69),
and (2.70), there is a corresponding numerical relationship
between WCG coefficients and Racah coefficients. Despite
the present day popularity of expressing all such relations in
terms of the 3—; and 6—; notation, this temptation is re-
sisted here for this particular set of relations because of their
fundamental origins. The relation between the Racah invari-
ant notation and Racah’s original W notation is

b . b . .

W Ljim)y=Wel(i)ljm),
Wit()=0 ift#p+o. orep =0.
W (j) = [(2c + 1)(2j —20 + 1)]'/?

x W(j —t,a,j,b;j—o,c),
[(2e + D)2 f + D]'/?>W(abed: ef)
= I/I/eb—dg,‘(‘—@.c—a (C) ’

W(abcd;ef) = 0 unless the triples of nonnegative integers
and half-integers (abe), (cde), (acf), and (bdf') satisfy the
triangle conditions.

2.9.1 Basic Relations Between WCG

and Racah Coefficients

bdf ~ed b
Z Cﬂ&y thJr%,S.aer Cg.ﬁe,aJrﬁ
T

=[2e + D)Q2f + )]/ W(abed: ef )CY¢

a,y,aty

Y [@e+ DS + D]/ *W(abed:ef)
f

Cafc

bdf
xC a.p+8.a+p+s

B.8.B+6
= Cofi%.s,wﬂwtsco?.%e.wﬁ ’
Sc[e + D)(2f + D]V*W(abed;ef)

_ bdf edc abe
=D Cs3psCr 0y Ol pyms
85

abc’
X Cylp s pisy o

> le + DS + D]/*W(abcd: ef)
Bde
bdf' ~ed b
x Cs,y CoipsatyCapatp
=81 Cilfry -

> le + DS + D]/*W(abcd: ef)

edc abe
x Coz+ﬂ,8.a+ﬁ+5 Ca.ﬁ.a+ﬁ

_ pbdf afc
= Ch5.p45Caprsatpes -

29.2 Orthogonality and Explicit Form
Orthogonality relations for Racah coefficients:

Z(Ze + DQf + D)W(abcd;ef YW(abed; ef")

= 8y fr€acr€bds (2.72)

Z(Ze + 1DQ2f + 1)W(abcd:ef )W(abcd;e' f)
f

= 8@@’ €abe€cde -

(2.73)

Definition of 6— coefficients:

a b e _ (_1\a+b+c+d .
{d . f}_( 1) Wi(abcd;ef). (2.74)

Orthogonality of 6—j coefficients:

a b el\la b e
2 DR 1
Xe:(e+)(f+)d . f}§d . f,§
= 8ff/€acf€bdf s (2.75)
a b ella b €
;[(2e+1)(2f+1)]d ) f}{d ) f§
= See’eabeecde . (276)

Explicit form of Racah coefficients:

W(abed:ef) = Alabe)A(cde) Alac ) Abdf)
x Xk: k —(a_ 1)1::;6(11: k—(kct iz)!— o)
X (k—a—c—f)!l(k—b—d—f)!
% (a—i—b—i—cl—i-d—k)!
1

x (@+d+e+ f—k)bB+c+e+ f—k)!’
(2.77)
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b el\la d g
c f\[lb ¢ f

where A(abc) denotes the triangle coefficient, defined for ergtf
every triple a, b, ¢ of integers and half-odd integers satisfying Z(_l) T2+ D d
the triangle conditions by:

b a e
= . 2.80b
A(abc) {d c g} ( )
1
_ (@+b—-—c)lla—b+c)(—a+b+c)\? . (2.78) Triangle sum rule:
(@+b+c+ 1!
[Alacf)Abdf)]™
=Q2f+1 Z[A(abe)A(cde)]_lW(abcd; ef),
2.9.3 The Fundamental Identities Between (2.81a)
Racah Coefficients (=) [ Aae ) A(bd )]
Each of the three relations given in this section is between =Qf +1) Z[A(abe)A(cde)] 1 )abe . (281b)
Racah coefficients alone. Each expresses a fundamental def

mathematical property. The Biedenharn—Elliott identity is
a consequence of the associativity rule for the open product

of three irreducible tensor operators; the Racah sum rule is  2,9.4 Schwinger-Bargmann Generating

a consequence of the commutativity of a mapping diagram Function and Its Combinatorics
associated with the coupling of three angular momenta; and

the triangle coupling rule is a consequence of the associativ-
ity of the open product of three symplection polynomials [1].  Ttiangles associated with the 6—; symbol {
As such, these three relations between Racah coefficients,
together with the orthogonality relations, are the building o o o o
blocks on which is constructed a theory of these coefficients (ii2j3) « (jajajs) . Grisje) . (j2Jaje) -
that stands on its own, independent of the WCG coefficient
origins. Indeed, the latter is recovered through the limit rela-
tion Eq. (2.50).

Biedenharn—Elliott identity: (J1J2J3) = (x1.x2,x3) . (J3jaJs) = (V3. X4, X5)

(J1JsJe) = V1, ¥s5.x6) » (J2jaje) = (V2. Va4, Ye) -

Jv o J2 g3,
Ja Js Je

Points in R associated with the triangles:

W(a'ab'b;c’'e)W(a'ed'd;b'c)

— Z(zf + D)W(abed:ef)W(c'bd'd; b f) Tetrahedron associated with the points:
The points define the vertices of a general tetrahedron

with lines joining each pair of points that share a common

xWi@ad' f;ce), (2.792) subscript, and the lines are labeled by the product of the com-
a a c|\ad e b mon coordinates (Fig. 2.2).
b b d d ¢ Monomial term:
5 Cp Define the triangle monomial associated with a triangle
_ Z(—1)¢(2f 1) a ¢ § {c } (Jujbje) and its associated point (z,, zj, z.) in R> by
= d f\ld d f

(Za, Zp, ze)Vadb ) = Zébﬂr/aZév+./a—./bzcga+/rje . (2.82)

3

a a
X
f d ¢ ) _
Cubic graph (tetrahedral T 4) functions.
p=f—-e+ad+a+b +b+c'—c+d —d. Interchange the symbols x and y in the coordinates of the
(2.79b) vertices of the tetrahedron and define the following polyno-
mials on the vertices and edges of the tetrahedron with this
Racah sum rule: modified labeling.

Vertex function: multiply together the coordinates of each

Z(—l)b+d_f 2f + DWl(abcd;ef)W(adcb; gf) vertex and sum over all such vertices to obtain
f

= (-1 W(bacd;eg) , (2.80a) V3 = y1)2)3 + X3VaYs + X1X5Y6 + X2X4X6 ;
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0175 %6)

(724¥6)

=T X))

XqVa

X3Y3

(x) X, x3)

(3 x4 X5)

Fig. 2.2 Labeled cubic graph (tetrahedron) associated with 6—j coef-
ficients

Edge function: multiply together the coordinates of a given
edge and the opposite edge and sum over all such pairs to
obtain

Ey = X1y1X4Y4 + X2Y2X5Y5 + X3Y3X6 V6 -

Generating function:

A+ Vs+E)?=) T(NZ*, (2.83a)
A

ZA — (x1, X2, X3)(j‘j2j3)(y3, X4, xs)(.is./4.i5)

X (yl’ y57x6)(.i1.i5./6)(y2’ Va, y())(.iz.i4./6) .
(2.83b)
(J1J2J3)
(J3j4Js)
(J1JsJe)
(J2J4J6)
T(4) =3 (=D +1)
k

k
2.83
x (kl,kz,k37k4,ks7k6,k7) > (2830)

ki=k—t,, i=12,34,
kj=€j,4—k, j=5,6,7;
t; = triangle sum = vertex sum,

e; = opposite edge sum, in pairs,
bh=Jj3+js+Js,

th= jo+ ja+ jo,

h=ji+j+Jj3,
ts=j1+ js+ Js ,

er = (ja+ Jjs) + (J3+ Je)

er = (j1+ ja) + (3 + Je)

e3 = (j1+ Jjad) + 2+ Js) .
The summation in Eq. (2.83b) is over the infinite set of all
tetrahedra, that is, over the infinite set of arrays A having

nonnegative integral entries. The 6—j coefficients is then
given by

. T(A)
A(j1j2J3) A1 jsje) A2 aje) A(j3jajs)

Ji J2 3
Ja Js Je

Since the factor T(A) is an integer in the expansion
Eq. (2.83a), this result shows that the 6— coefficient is an
integer, up to the multiplicative triangle coefficient factors.

2.9.5 Symmetries of 6-j Coefficients

There are 144 symmetry relations among the Racah 6—j co-
efficients. The 24 classical ones, given already by Racah and
corresponding to the tetrahedral point group 7y of rotations-
inversions (isomorphic to the symmetric group S;) mapping
the regular tetrahedron onto itself, are realized in the 6—

symbol
a b e
d ¢ f

as permutations of its columns and the exchange of any pair
of letters in the top row with the corresponding pair in the
bottom row. Regge discovered the sixfold increase in symme-
try by noting that each term in the summation in Eq. (2.77)
is invariant not only to the classical 24 symmetries but also
under certain linear transformations of the quantum labels.
These symmetries are also implicit in Schwinger’s generat-
ing function.

The full set, including the original 24 substitutions, of lin-
ear transformations of the letters a, b, c,d, e, f thus yields
a group of linear transformations isomorphic to S4 x S3. The
column permutations and row—pair interchanges described
above applied to each of the 6 symbols in the equalities be-
low yield the set of 144 relationships:

a b e
d ¢ f
b+c+e—f b+e+ f—c
a
— 2 2
- J b+c+f—e cH+e+ f—b
2 2
at+d+e—f b a+e+ f—d
— 2 2
T la+d+ f—e d+e+ f—a

c
2 2
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a+b+d—-c a+b+c—d § a b e
e
B ) ) X +[(b+d-f)
Tlatekd-b bictd-a d—3 c+3 f+3
2 2 xb+f—-d+D(c+d—-e)c+d+e+1)
b+d— b — —d
at —; ¢ +C—|2—e / a—i—e—;f x(a+c—f)(a+f—c+1)]%
“la+c¥d—-b b+c¥tf—e d+et f—a u b ¢
a+d+e—f a+b+c—d b+e+ f-—c 2 2 2
_ B ) ) xb+d+f+D(c+d—-e)c+d+e+1)
“Ya+d+f—-e b+c+d—a cH+e+ f—b |
> > 7 x(c+ f—-a)a+c+ f+1)]2
b
x G T S i@t f—b)
. d=3 ¢—3 f—3
2.9.6 Further Properties
xb+d+f+D)d+e—c)c+e—d+1)
Recurrence relations: x(a+ f—c)a+c— f_|_1)]%
Three-term: b
X§ “ C (2.84¢)
[(@a+b+e+1)b+e—a) d—5 ¢+5 [f—3

X(c+d+e+1)(d+e—c)]l/2§a b e§

d ¢ f
=2e[b+d+ f+Db+d- /)"
x{ a b—1 e—3
d—% ¢
+[a+b—e+1)a+e—-b)(c+d—e+1)

x (¢ +e—d)]'?

a b e—1
d ¢ f |’
[@+c+ f+Dc+e—d)

x(d+e—c+1)(b+d—f+1)]1/2{z l: ;§
=[a+c—f)a+e—>b)

xb+ f+d+2)(b+e—a+1]"?

a—i—% b—i—% e
d+3 c—35 f
+[c+f—ac+e—d)b—a—c+d+1)]"/?

x (2.84b)

a b e
d+3 ¢c—31 f-— '

Five-term:

Qe+ D22f+1)

a b e

d ¢ f
=[b+d-f)b+f—-d+1)d+e—c)
><(c+e—d+1)(c+f—a+1)(a+c+f+2)]%

(2.842)

Relation to hypergeometric series:

MRS

= A(abe)A(cde)A(acf)A(bdf)
(—DFr (B + 1!

(B2 = BB — B1)!
F o —pB1, =P, az—pi, 054—,31_1
af3 ;

=Bi—1, =B +1, Bz—p1+1,

(Br—aD (Br—a)!(B1—a3)! (1 —as)! 7

fr=min(la+b+c+d,a+d+e+ f,b+c+e+ f).

X

The parameters 8, and fB3 are identified in either way with
the pair remaining in the 3-tuple

(a+b+c+da+d+e+ f,b+c+e+ f)

after deleting 8. The («, a2, &3, @4) may be identified with
any permutation of the 4-tuple

(a+b+ec+d+ea+c+ fib+d+ f).
The 4 F3 series is Saalschiitzian:

1+ Z (numerator parameters)

= Z (denominator parameters) .
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210 The 9-j Coefficients
2.10.1 Hilbert Space and Tensor Operator
Actions

Let T9(1) and T?(2) denote irreducible tensor operators
of ranks a and b with respect to kinematically indepen-
dent angular momentum operators J (1) and J(2) that act,
respectively, in separable Hilbert spaces H (1) and H (2).
Let H (1) and H (2) be reduced, respectively, into a di-
rect sum of spaces Hj (1) and Hj,(2). The angular mo-
mentum J (1) has the standard action on the orthonormal
basis {l j1m1> | m; = j],j] — 1,. . .,—jl} of .7‘[_/‘1(1), and
J(2) has the standard action on the orthonormal basis
{| joma) | my = jo, jo—1,....—ja} of H,(2). The irre-
ducible tensor operators T¢(1) and T?(2) also have the
standard actions in their respective Hilbert spaces # (1) and
JH (2), as given by the Wigner—Eckart theorem. The total an-
gular momentum J has the standard action on the coupled
orthonormal basis of the tensor product space H;, ® Hj,:

D Chn | jimy) ® ljams) . (2.85)

mypmy

[(j1j2)jm) =

The tensor product operator T¢(1) ® T”(2) acts in the tensor
product space H (1) ® HH (2) according to the rule:

(T(1) ® T"(2))(|j1m1) ® | jam»))

= T“(D)|jim) ® T"(2)| jamy) .

so that

(T*() ® T”(Z))I(jljz)jm>
= Y CUELT Ol jim) @ T'@)]joms) -

mlmzm
mypmy

(2.86a)

The angular momentum quantities called 9—; coefficients
arise when the coupled tensor operators T “?)¢ with compo-
nents y defined by

b
T =Y Ca T R THQ)
af
y=c,c—1,...,—c, (2.86b)

are considered. The quantity 7 “?)¢ is an irreducible tensor
operator of rank ¢ with respect to the total angular momen-
tum J for all a, b that yield ¢ under the rule of addition of
angular momentum.

2.10.2 9-jInvariant Operators

The entire angular momentum content of relation Eq. (2.86b)
is captured by taking the irreducible tensor operators 7 (1)

and T'?(2) to be unit tensor operators acting in the respective

spaces H (1) and H (2):

(ab)c
T(pO)y
a+p b+o
= ch;; 0) ®( 2b 0) .
a+o b+ p

1 2

(2.87)

The placement of the unit tensor operators shows in which
space they act, so that the additional identification by in-
dices 1 and 2 could be eliminated. For each given ¢ €
{0,1/2,1,3/2,2,...} and all a, b such that the triangle re-
lation (abc) is satisfied, and, for each such pair a,b, all
p,owithpela,a—1,...,—a},o0 €{b,b—1,...,—b}, an
irreducible tensor operator of rank ¢ with respect to the to-
tal angular momentum J with components y is defined by
Eq. (2.87). By the Wigner—Eckart theorem, it must be possi-
ble to write
)

2

a+p b+o

chg;< o> ®<2b
aff a+a |

R E S

Where (i) the unit tensor operator on the right-hand side is
a irreducible tensor operator with respect to J; that is, it has
the action on the coupled states given by

b+ B

c+
(2.88)

c+vy

ct+rt
2c 0 )(j1j2)jm)
c+y
=G +nm4y) s (2.89)

and (ii) the symbol [ Zgi ] denotes an invariant operator

with respect to the total angular momentum J. Using the
orthogonality of unit tensor operators, we can also write re-
lation Eq. (2.88) in the form:

abce
00T
®< 2%

This form is taken as the definition of the 9—; invariant op-
erator. Its eigenvalues in the coupled basis define the 9—j

a+p

ché’;< 0 >
apy a+a |

o) (=

2

b+o c+t

0> . (2.90)

b+ 8 c+y
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coefficient:

[abc} |(uja)jm)
T

po

=((j1i +p, j2+0)j + 7| [(j172)])

abc
0T
X |(j1j2)jm)

= (2 + D@c + DQj1 +2p + D(2js + 20 + )]}
J1 J2 J
X a b c

Jitp joto jH+rT

[(j1j2)jm) . (2.91)

The 9—; invariant operators play exactly the same role in
the tensor product space of two irreducible angular momen-
tum spaces as do the Racah invariants in one such irreducible
angular momentum space.

The full content of the coupling law Eq. (2.86b) for phys-
ical irreducible tensor operators is regained in the coupling
law for reduced matrix elements:

((eferjijz)j |IT(1) x Tb(z)]C” (1)1 j2)])
Jv 2 J
=la b c [((e)ii]|TD]@))
JioJs J
< (@) /] T* @) | (@2) j2) ; (2.92a)
JuoJ2
a b ¢
JioJs
= [+ 1)(2/} + 1)@) + D@e + D]
Jv Jj2 J
Xia b ¢ (2.92b)
JioJa J

2.10.3 Basic Relations Between 9-j Coefficients
and 6-j Coefficients

Orthogonality of 9—j coefficients:

D Qe+ DS+ DR+ D@2+ 1)

hi
a b ¢ a b ¢
xqd e fpyd e f'p =088,
i o j)\h i

where this relation is to be applied only to triples (abc),
(def),(cf]),(abc’),(def’), (c' f']) for which the triangle

conditions hold.

9—j coefficients in terms of 3— coefficients:

Ju Ji2 Ji
8jsaj5y (2J33 + D' Jn Jn
J3a Jn Jn
_ Z Ju o Jiz Jju\[Ja  Jn  J»
mpy mppy mi3 mpy My My3

all mi;
except ms3

y Jst Jx Jun\[{Jun  Ja Ja
ms3p  Mszp M3z ) \Mjp Nz Mmsp

% J1i2 J2 U3 Jiz J23 33 . (2.93)
Ny My M3y ) \IMi3 N3 M33

9—j coefficients in terms of 6— coefficients:

Ju Jiz Ji3

Jot Jn Jn = Z(—l)Zk(zk + 1)

J3st Ja2 o 33 k

o Ju Ju Ju Vi 2
J2 Jxn kY (ju k jx»

% J13 J'23 ].33 ' (2.94)
kK ju Ji

Basic defining relation for 9—j coefficient from Eq. (2.88):

Jiz j»

2\ (G gw
. . . 31 32 33
(—1)¢ Jit o J21 31 ( )
. . . ms3p  Mmszp M3z
J13 J23  J33
_ Z Jiu o J21 s
all m iy mpp My msp

o Jiz J Jn\[J1z3 Js3  Jn
mip My mzp [ \Mi3 M3 M33
y Juu Jiz Ji\[Ja  Jn  Jn
mp mpy mi3 mpy My My3 7
¢=> Ju- (2.95)
ki
Additional relations:
D (=) 2k + 1)(21 + 1)
ki
a b ¢ a e k a b ¢
xqe d fiyd b ly=13d e [y,
k I i g h i g h i
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a b ¢ 2.10.5 Explicit Algebraic Form of 9-j Coefficients
b
Yecrnid e “ C}
AR a b ¢
g h i J p (1) (dah)(bei)(jhi)
e = s ;
Ad e g n i S (def)(bac)(jef)
= (=D~ . ; hoi
b ] h J a d ( 1)x+y+h
> @k + D@+ 1H@2m+1) Z Xlylz!
kim
a b c kK I m X 2f —x)!Ca - 2).
S Qi+1+y)a+d+h+1-2)
xqd e f a/ b/ C/ >((d+e—f+x)!(c+j—f+x)!
ko lom)\d" e f et f—d—x)c+f—j—x)
ad k)b e t)e f om Jleti—b+nlih+i—j+y)
a d k(b e '\l fom (b+e—i—Wh+j—i—y)
L , b+c—a+z)
a/ b/ C/ k/ l/ m/ ><(a—i—d—h—z)!(a—i—c—b—z)!
=qd" e flpqad b o< y (@a+d+j—i—y—2)
Kerm'j\d e f d+i—b—f+x+)b+j—a—f+x+2)’
(abc)
2.10.4 Symmetry Relations for 9-j Coefficients

and Reduction to 6—j Coefficients

The 9—j coefficient

Ju Jjiz jn
Jou J2 J»
J3t J2 J»

is invariant under even permutation of its rows, even permu-

tation of its columns, and under the interchange of rows and

columns (matrix transposition). It is multiplied by the fac-

tor (—1)? Eq. (2.95) under odd permutations of its rows or

columns. These 72 symmetries are all consequences of the

72 symmetries of the 3—; coefficient in relation Eq. (2.93).
Reduction to 6— coefficients:

a b e 0 e e e 0 e

¢c d ep=4qf d by=4qc [ a

f f 0 f ¢ a d f b
f f 0 f b d a f ¢

=3d ¢ e; =30 e ep;=3e 0 e
b a e f a ¢ b f d
b a e e d c e d

=3f f 0p=13e b =3a e b
d ¢ e 0 f f o0 f

(_1)h+c+e+f 7
~ [2e+ DS+ D)

c
f

dcf

(a=b+c)a+b—c)l(a+b+c+1)!
( (b+c—a)l )

2.10.6 Racah Operators

A Racah operator is denoted
o=a,a—1,...,
2a 0 P
2a =0,1,2,...
and is a special case of the operator defined by Eq. (2.87):

{2a

_ ((2a + D2+ 1))
S\ @Qja+204+1)

a+p —a,

a-+o

a—+p
0¢|(j1j2)jm)

a—+o

0
T Gjrj2)jm) -

(2.96)

Thus, a Racah operator is an invariant operator with respect
to the total angular momentum J . Alternative definitions are:

a+p
2a 0
a+o
i
a—+p a—o
= (=1)"*° Z<2a O>®<2a 0> ,
a a—+o a—+uo
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a+p . . .
2a 0¢|(1j2)jm)
a+o
. ) 1
=[2/1+20+ D2j2+ D]?
X W(j7j17j2+aaa;j27jl +p)
x|(j1+p, ja+0)jm),

with conjugate

a—+p
2a 0
a+o
= [(2j1 + D(2j2—20 + 1]
X W(j, j1 = p. j2.a; jo—0, j1)
X |(ji = p, ja—0)jm) .

|(j1/2))m)

Racah operators satisfy orthogonality relations similar in
form to Wigner operators. The open product rule is:

b + o a + p
2b 0¢12a 0
b+ B a+ao
, c+p+o
——abc b
= Z poproWaatp | 2C 0% . (297
‘ cta+p

. b L
In this result, WZUC, and M}/’;a +p denote Racah invariants
with respect to the angular momenta J (1) and J (2), respec-

tively, so that

W ooel(r2)im) = W & ()| (1 ja)jm) .
Wikl (rja)jm) = W& (j2)| (i) jm) -

The matrix elements of relation Eq. (2.97) lead to the
Biedenharn—Elliott identity. There are five versions of this
relationship in complete analogy to relations Eqgs. (2.63)-
(2.65) and (2.69)—(2.70) for Wigner operators.

Racah operators are a basis for all invariant operators
acting in the tensor product space spanned by the coupled
basis vectors Eq. (2.85) and are the natural way of formulat-
ing interactions in that space. Their algebra is a fascinating
study, initiated already in a different guise in the work of
Schwinger [3]. Little use has been made of this concept in
physical applications.

Additional relations between Racah coefficients or 6—j
coefficients may be derived from the various versions of the
rule Eq. (2.97) or directly from relation Eq. (2.79b) by using

the orthogonality relations Eq. (2.75). Two of these are:

Z(_l)a+b+e(2e + 1)
L b el\a a c|\a e b
d ¢ g\[b b e\|ld d c
¢ b b|l\ad a
d d g\lg d c\’
pr=g+ad+b+c+c+d +d;
DD Qe+ 2e + DS + 1)

Xc/be/abea/ac’a/ee/
d d fl\ld ¢ g\[b ¢ e\|ld d c

= 8=
g

= (-

a C
d/
ph=g+d —b+c+d +d.

3

The W coefficient form of these relations is obtained
by deleting all phase factors and making the substitution
Eq. (2.74), ignoring the phase factor. There are no phase fac-
tors in the corresponding W coefficient relations.

2.10.7 Schwinger-Wu Generating Function
and Its Combinatorics

J1J2J3

Triangles associated with the 9—j coefficient { j4 /s js

J1J8Jo

(J1J2J3) »  Uadsje) . (rjsjo) »  (Jijajr)
(J2Js5j8) - (J3JeJjo) -

Points in R associated with the triangles:

(J1J2J3) = (x1,X2,x3), (Jajsje) —> (X4, X5, X¢) ,
(j7j8J9) = (x7.X8,X9), (j1jaj7) = (Y1, Y4, ¥7)
(j2j5J8) = (V2. ¥5.¥8)s (J3jejo) = (V3. V6. Vo) -

Cubic graph C¢ in R? associated with the points:

The points define the vertices of a cubic graph C¢ on six
points with lines joining each pair of points that share a com-
mon subscript, and the lines are labeled by the products x; y;,
where i is the common subscript (Fig. 2.3).

Cubic graph C functions:

Interchange the symbols x and y in the coordinates of
the vertices of the cubic graph C¢ and define the following
polynomials on the vertices and edges of the C¢ with this
modified labeling.
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Vs Yas ¥2)
Q

(5003) (%, %5, Xe)
Q Q

X3Y3 X5 s

Q- =
(V3 Y Yo) (V> Y55 ¥g)

Fig.2.3 Labeled cubic graph associated with the 9—j coefficient

Vertex function: multiply together the coordinates of each
pair of adjacent vertices, divide out the coordinates with
a common subscript,and sum over all pairs of vertices to ob-
tain

Vi = y1y2X6Xo + y13X5X3 + y2Y3X4X7
+ Y4Y5X3X9 + Y4YeX2Xg + Y5Y6X1X7
+ V7Y8X3X6 + Y7Y9X2X5 + Y8 V9XiX4 .
Edge function:

X1Y1 X2)2 X3)3
E¢ =det| x4y4 X5y5 X6V
X7Y7  X8Y8 X9)Y9

Generating function [4-6]:

(1= Vit Eg) 2 =) C(H)Z*.
A

ZA — 1_[ (Zaa Zp, Zc)(./a.fh./(‘) (see Eq (282)) .

all vertices
(J1J2J3)
(JaJsJe)
A= (J'7].8J'9) ’
(J1JaJ7)
(J2J5J3)
| (J3J6Jo) |
C(A) = ZZZ(_I)k10+kll+klz(k +1)
k O a
k
X s
k],...,k(),k]o,...,k]s
where summation ) 4 is over all 3 x 3 square arrays of
nonnegative integers k; (j = 1,2,...,9) with fixed row and
column sums given by
k1 kz k3 k — A
ky ks ke k—1t
k7 kg k9 k — 13
k—ty k—t;s k—tg

and for each such array the summation ), is over all non-
negative integers a such that the following quantities are
nonnegative integers:

=—a+ki—k+jo+j3+ji+ j7,
ki =-a+ke—k+js+ js+ js+ jo.
kin=—a+ks—k+ jo+ js+ j1+ jo,
kis=a+ks—ki—j3s+ je—Jj1+ Js
kiw=a+ks—ke+ j1—ja+ js—Jo,
kis=a.

Note that
15

9
> ki=-2k+Y i
i=1

i=10

The ¢; are the following triangle sums:

h=j+ja+j35 b=js+js+js,
3=J7+ js+ Jjo,
ty = j1+ ja+ 7.

Ie = J3+ jo+ Jo-

ts = jo+ js+ Jjs,

The 9—j coefficient is given by

J1J2J3
Jajsje ¢ = AU172J3)A(jajsje) A(j7]8)9)
J1jgJo X A(J1jaj71)A(j2js578) A(j3jejo)C(A) .

The coefficient C(A) is an integer associated with each cu-
bic graph C¢ that counts the number of occurrences of the
monomial term Z* in the expansion of (1 — V, + E¢) 2.

2.11 Tensor Spherical Harmonics

Tensor spherical or tensor solid harmonics are special cases
of the coupling of two irreducible tensor operators in the ten-
sor product space given in Sect. 2.7.2. They are defined by

yum ="l Yimey ® &

v

and belong to the tensor product space H; ® H/, where the
orthonormal bases of the spaces H; and H are:

Wi n=1011-1,....-1},
{&,cv=s55—1,...,—s}.

The orbital angular momentum L has the standard action on
the solid harmonics, and a second set of kinematically in-
dependent angular momentum operators S has the standard
action on the basis set of /.
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The total angular momentum is:
J=L1+1®S,
The set of vectors

(Yyim m =g j—1,...,—ji(1s))
obey the triangle conditions }

has the following properties:
Orthogonality:

<y(l/3)j’m/ y<1s>_fm>
s j' Isj
= Z Cm’_u’.\;’,m’cmsiv.v,m (yl’.m’—v’,yl.m—u)
vy’

X (Ev%éu)/ = 8_[’_j81’18n1’m s

where (, ) denotes the inner product in the space H; ®
H!,(, ) the inner product in H;, and (, )’ the inner product
in H|.
Operator actions:
J2y(ls)jm — ](] + l)y(ls)jm .
J3y(ls)jm — my(ls)jm ,
(Lz ® 1/)y(ls)jm =1 + l)y(lf)./m ,
(1® )Y = s(s + DY,
=01 +1®8°+2) Li®S: .
i

JYIIT = [ F m)(j £ m 4+ DY

Transformation property under unitary rotations:

exp(—iyi - J)Ylim = Z Dz{wm(l/f’ ,‘,)y(h)jm’ )
m/

Special realization:
The eigenvectors £, are often replaced by column matri-
ces:

£, =col(0---010---0) ,

linpositions —v +1, v=s,5s—1,...,—5.
The operators S = (S, S3, S3) are correspondingly replaced
by their standard (25 + 1) x (2s 4+ 1) matrix representations
Si(s) . The tensor product of operators becomes a (25 + 1) x
(25 + 1) matrix containing both operators and numerical ma-

trix elements, e.g.,
Ji = LiLy, + S
i i42s5+1 i

in which L; is a differential operator multiplying the unit
matrix, thatis, L; is repeated 25 + 1 times along the diagonal.

2.11.1 Spinor Spherical Harmonics
as Matrix Functions

Choose &1/» = col(1,0),£_;1/» =col(0,1), and § = 0/2.
The spinor spherical harmonics or Pauli central field spinors
are the following, where j € {1/2,3/2,...}:

Jtm
yU-shim — (V2L Vicdned
’

j—m

5 Yitmed
_ [i=m+1
YU+sd)im — 5+ Yiepn-d
J+m+1 y
2j+2 j+Lim+d

2.11.2 Vector Spherical Harmonics
as Matrix Functions

Choose &.; = c¢0l(1,0,0),& = col(0,1,0),&; =
co0l(0,0,1), and § the 3 x 3 angular momentum matrices
given by

0 V2 0 0 0 0
Sy=10 0 V2|, SS=|v2 0 o],
0 0 0 0 V2 0
1 0 O
S3=]0 0 0
0 0 -1
The vector spherical harmonics are the following, where j €
{0,1,2,...}%
(+m=1)(j+m)
Va0 Yictme

G-11)jm _ [Gi=m)(j+m)

v = Wyj—l,m s
[G=m=D(=m)
T_])ij—l,mﬂ

(+m)(j—m+1)
—V oy Yim-l
Ghjm — _m__y.
yu = R K
(j—m)(j+m+1)
Vo 20+ Yims
UmtD(—m2)y,
2+D@2j+3)  Jittm=l

G+1L,1)jm __ G=—m+D(+m+1)4,

y e Grnejn  Yitim
UAmaD(am+D)y,
2+D2j+3)  Jitlmtl
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Eigenvalue properties:

VZy(ll)jm =0,

JZy(ll)jm =j(j + l)y(ll)jm ,
J3y(ll)jm _ my(ll)jm 7
L2y(ll)jm =1(+ l)y(ll)jm ,
§2yhim — gynjm

2.11.3 Vector Solid Harmonics
as Vector Functions

Vector spherical and solid harmonics can also be defined and
their properties presented in terms of the ordinary solid har-
monics, using the vectors x, V, and L, and the operations of

divergence and curl.
Defining equations:

yrLim — 1 4 1)1 + D] + Dx
+ix x LY, .
yWim — (11 + D)]"V2LY,,,

rzy(lfl.l)lm = — [l + 1)]*% X (—lx +ix

X L)ylm .

Eigenvalue properties:
J2y(ll)jm = j(j + 1)y(ll)jm ,
L2y(11)jm =1( + 1)y(11}jm ,
§2ynim — pynjm
Jyyim — py@jm
v2yhin — ¢ |
AL x Y = [j(j + 1) =1 + 1) = 2]y

Orthogonality:
/ dSe Y ) YOI () = 88 S

where the integration is over the unit sphere in R>.
Complex conjugation:

y(ll)jm* — (_1)l+l—j (_l)my(ll)j.—m )

Vector and gradient formulas:
1

I+1 I \?
_ (+1.D)im 244(=1.1)im
*Yim = (2z+1) y (2l+1) "y ’
[ + DV +iV x LI(F VYim)

=—[(l + 12+ 1)]2 (1 r

(I+1,1)Im
I g

[=IV +iV X LI(FYym)

F
= —[l(2l —+ 1)]% [rdd_ + (2l + I)F:|'y(l—1,l)lm )
r

[+1 1dF
V(F ) = — (I+1,1)Im
(FYim) (2l+1) (r dr)y

1
/ 2T dF
s 2 DF (I-1,1)Im
+(21+1) |:rdr+(l+)j|y ’
[+1 1dF Y(HLDIm
20 +1 rdr

1
) [ dF
_ (I-1,)lm
(1+1)(2l+1) [r = +(21+1)F]y .

VX L(FYm) =—1

Curl equations:

1

iV x (FydHinimy — _(21 :_ 1)2

dF
x [r— + 21+ 3)F}y<“)”" ,
dr
1

iV x (Fy(imy — _(21 l+ 1)2

1
1dF I+1)\?2

1 (+1.0Im _
X(r dr)y (2l+1)

dF
x [rd— + 21+ 1)F}y<’1~1ﬂm ,
r

. 1 Dim I+1 1dF m
VX (Fy(l W ) - _(21 + 1) (r dr )y(“)l ’

Divergence equations:

V. (Fy(l+l,l)lm) _ _( )7 [r% + (2l +3)F}y1m ,

V. (Fy(ll)lm) =0

1
[ 2(1dF
v (Fy(l_l.lﬂm) - (21 + 1) (r dr )ylm ’

Parity property:

20 +1

y(1+8,1)lm(_x) — (_1)l+8y(1+5.1)1m(x) )
Scalar product:
y(l’l)./’m’ . y(ll)./m
Y e 2j + 1D)Qj + DL+ DRI+ 1)\ ?
B 4 (27 + 1)

iy

l//
14741 ST~
x (—=1) Cono €

m,m’ m—+m'’
I
X {] i Jl yl”,erm’ .
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Cross product: — Z [D/N(U) x -+ x D (U”)]m’l---m;,:ml---m,,
m-mj,
I'yj'm' 1)1 . 1+1'—1" . .
Y l)jnxy(l)/nz(_lﬁ)ZrJr Xi]lm1)®"'®|J”mn)’ (2.99)
l//j// . .
D/'(U)) x---x D"(U)| , .
(2]_ " l)(2j/ n 1)(3)(21 " 1)(21/ " 1) % [ (j1 1) j( n)]ml..-m”,ml-..]ﬂn
X yp = quml(Ul)"'an;mn(U") ,
L1 Uy, = U, i) € SUQR), a=1,2,....n.
X Coad Colhma (11 1 YOO

B B Multiple Kronecker (direct) product group SU(2) x - -+ X
1y SUQ).
Group elements:
Conversion to spherical harmonic form:

Uy,...,U,), eachU, e SU2).
y(1+8,l)lm(x) — rl+8y(l+8.l)lm(£_) .
Multiplication rule:

with appropriate modification of F to account for the factor
ri+s, (Uf,....U)(U,....Uy) = (UUy,....UU,) .

Irreducible representations:

212 Coupling and Recoupling Theory A A
and 3n-j Coefficients DY (Uy) x -+ x DI"(U,) . (2.100)

2.121 Composite Angular Momentum Systems Rotation of the composite system as a unit.
Common rotation:

An elementary angular momentum system is one whose state
space can be written as a direct sum of vector spaces H; with
orthonormal basis

U=U=-=U,=UceSUQ).

Diagonal subgroup SU(2) C SU(2) x --- x SU(2):

Hjm)lm=j.j=1,....=j}, (U, U,...,U), eachU € SU(2) .
on which the angular momentum J has the standard action,
and which under unitary transformation by exp(—iya - J)
undergoes the standard unitary transformation. A composite
angular momentum system is one whose state space is a di-
rect sum of the tensor product spaces #;, j,...;, of dimension
[1,—,(2jo + 1) with orthonormal basis in the tensor product
space of the elementary systems given by

Reducible representation of SU(2):
D/V(U) x---x DI"(U) . (2.101)
Total angular momentum of the composite system:

J=J)+JQ) +-+Jn),

[ Jim) @ | joma) @ == @ | Jara) - (2.98) in which the k-th term in the sum is to be interpreted as the
L. ) tensor product operator:
eachmy = jou, jo —1,...,—Jja-
The following properties then hold for the composite sys- 1 ® - ®@Jk ®--®1I, I, = unitoperator in }[ja .

tem.

Independent rotations of the elementary parts: The basic problem for composite systems:

The basic problem is to reduce the n-fold direct product

{exp[—iwlﬁl J()] ® -+ ® expl—iy, i, - J(n)]} representation Eq. (2.101) of SU(2) into a direct sum of irre-

ducible representations, or equivalently, to find all subspaces

H; € Hj,jyjy J €10.1/2,1, ...}, with orthonormal bases

= exp[—iynfiy « J(D)] | jimi) @ -+ sets {| jm)|m = j, j—1,...,—j} on which the total angular
Q exp[—iv, i, - J(n)] | jam,) momentum J has the standard action.

X | jimy) @ -+ ® jumy)
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Form of the solution:

| Gra- k) jm)y = Y Gl (k)
all my,
dSmg=m
X | jim)® | joma) @ -+ @ | jumy) . (2.102)
m=j,j—1,...,—j;index set (k) unspecified.
Diagonal operators:
T (a) = @) + I3 (@) + T (@),
T @) | Grja-++ju) (k) jm)
= JaUa + 1) | Grj2-+- ju) (k) jm)
a=12,...,n. (2.103)
Total angular momentum properties imposed:
I | Grja--- ju) (k) jm)
=JjU + D[ Grjae-jn)k)jm),
3| (rja---jn)(k)jm)
=m| (jij2-jn)(k)jm),
Ju | Grjae-ju) (k) jm)
. . 1
=[(J Fm( £m+1]>
X | (rja-e ju)k)jm £ 1) . (2.104)

Properties of the index set (k).
Reduction of Kronecker product Eq. (2.101):

DI x D2 x ... x DI = Z EBn_,'Dj .
J

[TCia+D=>"n@j+1D. (2105
« J

For fixed ji, j2,..., ju, and j, the index set (k) must enu-
merate exactly n; perpendicular spaces F{;.
Incompleteness of set of operators:
There are 2n commuting Hermitian operators diagonal on
the basis Eq. (2.98):
{J3 (). J3(@) | @ =1,2,....n}. (2.106a)
There are n 4+ 2 commuting Hermitian operators diagonal on
the basis Eq. (2.102):
{J2. )5 (@) @ =1,2,....n}. (2.106b)
There are n — 2 additional commuting Hermitian operators,
or other rules, required to complete set Eq. (2.106b) and de-
termine the indexing set (k).
Basic content of coupling and recoupling theory:
Coupling theory is the study of completing the opera-
tor set Eq. (2.106b), or the specification of other rules, that

uniquely determine the irreducible representation spaces H;
occurring in the Kronecker product reduction Eq. (2.105).
Recouping theory is the study of the interrelations between
different methods of effecting this reduction; it is a study of
relations between the different ways of spanning the multi-
plicity space

Hy @ H; @---® H; (n terms) .

2.12.2 Binary Coupling Theory: Combinatorics

Binary coupling of angular momenta refers to selecting any
pair of angular momentum operators from the set of individ-
ual system angular momenta

{(J(1),J(2),....J(n)}

and carrying out the addition of angular momenta for that
pair by coupling the corresponding states in the tensor prod-
uct space by the standard use of SU(2) WCG coefficients;
this is followed by addition of a new pair, which may be
a pair distinct from the first pair, or the addition of one new
angular momentum to the sum of the first pair, etc. If the
order 1,2, ..., n of the angular momenta is kept fixed in

Ji+Jo4 4 J,, (2.107)

one is led to the problem of parentheses. (To avoid mis-
leading parentheses, the notation J, = J(«) is used in this
section.) This is the problem of introducing pairs of paren-
theses into expression Eq. (2.107) that specify the coupling
procedure to be implemented. The procedure is clear from
the following cases for n = 2, 3, and 4:

n=2: J1+J2;

=3: (JI+J2)+J37
Ji+ T+ J3);
n=4: (Ji1+J)+ T3+ J4),

(J1+J2)+ T3]+ T,
i1+ T+ )]+ Ty,
Ji+[(Ja+T3)+ 4],
Ji+[J2+ T3+ )] .

It is customary to use the ordered sequence

Jij2 jn (2.108)

of angular momentum quantum numbers in place of the an-
gular momentum operators in Eq. (2.107). Thus, the five
placement of parentheses for n = 4 becomes:

(1J2)Gsga) s [Grj2) sl ja s Ui(G2j3)] s
Jil(G2g3)ja) s Jilj2(3ja)] -
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(It is also customary to omit the last parentheses pair, which
encloses the whole sequence.) A sequence Eq. (2.108) into
which pairwise insertions of parentheses has been completed
is called a binary bracketing of the sequence and is denoted
by (j1ja2--- ju)5. This symbol may also be called a coupling
symbol. The total number of coupling symbols, that is, the
total number of elements a,, in the set

{(j1j2-+ jn)®|B is a binary bracketing}

is given by the Catalan numbers:

1{2n—-2
a, = — , n=23....
n\n-1

Effect of permuting the angular momenta:

Since the position of an individual vector space in the
tensor product #; ® --- ® H;, is kept fixed, the meaning
of a permutation of the j, in the sequence Eq. (2.108) cor-
responding to a given binary bracketing is to permute the
positions of the terms in the summation for the total angular
momentum, e.g., (j1/2)j3 = (j3/1)j2 corresponds to

1L+ 1,J,013)+ 111, J3
=L LRI+, 313)+ 11,15

Total number of binary bracketing schemes including per-
mutations:
The number of symbols in the set

B is a binary bracketing and
a1y - -, 1S a permutation
of1,2,....n

(jaljaz o 'ja,,)B
(2.109)

isc, =nla, = ),y =nn+1)---2n —2).

Caution: one should not assign numbers to the symbols
Jas since these symbols serve as noncommuting, nonassocia-
tive distinct objects in a counting process.

Binary subproducts:

A binary subproduct in the coupling symbol
(Jay o+ ju,)B is the subset of symbols between a given
parentheses pair, say, {xy}. The symbols x and y may them-
selves contain binary subproducts. Commutation of a binary
subproduct is the operation {xy} — {yx}. For example,
the coupling symbol {[(j/2)/3]j4} contains three binary
subproducts, {xy}, [xy], (xy).

Equivalence relation:

Two coupling symbols are defined to be equivalent

Gerday =+ Jo) ™ ~ G Joy -+~ Jay)®
if one can be obtained from the other by commutation of
the symbols in the binary subproducts. Such commutations

change the overall phase of the state vector Eq. (2.102) cor-
responding to a particular coupling symbol, and such states
are counted as being the same (equivalent).

Number of inequivalent coupling schemes:

The equivalence relation under commutation of binary
subproducts partitions the set Eq. (2.109) into equivalence
classes, each containing 2"l elements. There are d, =
¢, /2" "' = (2n—3)!! inequivalent coupling schemes in binary
coupling theory. Thus, for n =4, there are 5!! =5x3x1=15
inequivalent binary coupling schemes.

Type of a coupling symbol:

The type of the coupling symbol (ju, jg, *** ju,)? is de-
fined to be the symbol obtained by setting all the j, equal
to a common symbol, say, x. Thus, the type of the coupling
symbol {[(j1/2) j3lja} is {[(x?)x]x}.

The Wedderburn—Etherington number b, gives the num-
ber of coupling symbols of distinct types, counting two
symbols as equivalent if they are related by commutation
of binary subproducts. A closed form of these numbers is
not known, although generating functions exist. The first few
numbers are:

n 1 23 456 7 8 9 10
b, 1 1 1 2 3 6 11 23 46 98

There are 15 nontrivial coupling schemes for 4 angular
momenta, and they are classified into 2 types, allowing com-
mutation of binary subproducts:

Type [(x*)x]x
[(J172) 73174 [(J2J3) J1)Jas [(G371) 2l Ja
[(J172)JalJ3 [(G2da) 1l s [(Gag) J2)js
[(J173) ja)J2: [(J3)a) J1lj2s [(Gag) Jal 2
[(J273)Jaliv, [(J3ga) 2l jvs [(Gag2) Jal
Type (xz) (xz)
(J172)3Ja), GrJ3)(J274), (J273) (1 ja)

2.12.3 Implementation of Binary Couplings

Each binary coupling scheme specifies uniquely a set of in-
termediate angular momentum operators. For example, the
intermediate angular momenta associated with the coupling

symbol [(j1 j2) j3] j4 are

J()+JQ)=J(12), J(12) + J(3) = J(123),
J(123) + J(4) = J ,

where J is the total angular momentum. Each coupling
symbol (ju, ju, *** ju,)? defines exactly n — 2 intermediate
angular momentum operators K (1),A =1,2,...,n—2. The
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squares of these operators completes the set of operators
Eq. (2.106b) for each coupling symbol; that is, the states’
vectors satisfying Eqgs. (2.103)—(2.104) and the following
equations are unique, up to an overall choice of phase fac-
tor:

KZ(A) | (jmjorz"'jom)B(klkZ"'kn—Z)jm>
= k)t(k)t + l)l(jmjozz "'jan)B(klkZ"'kn—Z)jm> s
A=12,....n—=2, n>2. (2.110)

The intermediate angular momentum operators K2(1) de-
pend, of course, on the choice of binary couplings implicit in
the symbol (Ju, ju, ** * ju, ). The vectors have the following
properties.

Orthonormal basis of H; (1) ® --- ® H;, (n):

(o) (&) jmlGe) B () jm) = T | Sk -
A

(Ja) = U Jogs - -+ Jau) -
(k) = (klak27' ..,kn,2) B
k') = (k] kv K ) -

The range of each k, is uniquely determined by the Clebsch—
Gordan series and the binary couplings in the coupling
symbol. Together these ranges enumerate exactly the mul-
tiplicity n; of #{; occurring in the reduction of the multiple
Kronecker product.

Uniqueness of state vectors:

| (jm jorz e jan)B(klkZ o 'kn—Z)jm>

v oe (,

m .o
Y mg=m 1

X |jimy) - @ | jumy) .

B .
"’") U I
n m

.ma

In the C coefficient, the ( r{za ) are paired in the binary
o

bracketing. Each such C coefficient is a summation over
a unique product of n — 1 SU(2) WCG coefficients.
Equivalent basis vectors:

| (jaljaz "'ja,,)B(klk2"'kn72)jm>
= 2| (o Jog - Joy) (kika -+ ky_2) jm) .

if and only if (Ju, jo, *- 'ja,,)B ~ (jo/l jaé s 'ja,’,)B~ Inequiv-
alent basis vector are orthonormal in all quantum numbers
labeling the state vector.

Recoupling coefficients:

A recoupling coefficient is a transformation coefficient

(Go)™ | @jm | Go)® ) jm)

relating any two orthonormal bases of the space H;, @ - -+ ®
H;, , say, the one defined by Eqgs. (2.103), (2.104), and (2.110)
for a prescribed coupling scheme corresponding to a bracket-
ing B, and a second one, again defined by these relations but
for a different coupling scheme corresponding to a bracketing
B’. For example, for n = 3, there are three inequivalent cou-

pling symbols and ( g ) = 3 recoupling coefficients; forn =
15 ) _
5 )=
105 recoupling coefficients. Each coefficient is, of course, ex-

pressible as a sum over products of 2(n — 1) WCG coefficients,
obtained simply by taking the inner product:

4, there are 15 inequivalent coupling symbols and (

(G @rjm | Go)® Ky jm)
y
— Jprcdg N

> mg=m
. . B .
XC ]0!1”’]0!,, ] (k).
mal “'m()t,, m

@2.111)

The fundamental theorem of binary coupling theory states
for inequivalent coupling schemes:

Each recoupling coefficient is expressible as a sum over
products of Racah coefficients, the only other quantities oc-
curring in the summation being phase and dimension factors.

In every instance, the summation over projection quan-
tum numbers in the right-hand side of Eq. (2.111) is re-
expressible as a sum over Racah coefficients.

2.12.4 Construction of All Transformation
Coefficients in Binary Coupling Theory

Augmented notation:

The coupling symbol (i, ju, *** ju,)? contains all infor-
mation as to how n angular momenta are to be coupled but
is not specific in how the intermediate angular momentum
quantum numbers (kk; - - - k,_»), are to be matched with the
binary couplings implicit in the coupling symbol. For explicit
calculations, it is necessary to remedy this deficiency in no-
tation. This may be done by attaching the n — 2 intermediate
angular momentum quantum numbers and the total angular
momentum j as subscripts to the n — 1 parentheses pairs

{[(j12)(J3J4)]js5}, this results in the replacement
UG 12 (3]st kikaks)
= U2k (3 7))k Jsh) -

The basic coupling symbol structure is regained simply by
ignoring all inferior letters.
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Basic rules for commutation and association:

Let x, y, z denote arbitrary disjoint contiguous subcou-
pling symbols {[(x)(y)](z)} contained in the coupling sym-
bol (juy ju,*** ju,)®- Let a,b,c denote the intermediate
angular momenta associated with addition of the angular
momenta represented in x, y, z, respectively, d the angular
momentum representing the sum of a and b, and k the sum
of d and c¢. Symbolically, this subcoupling may be presented
as

Y@ =Jd@, Y I =J0b),
Y I =J(),
J=--A[J@+JD))+J()}-;
J@) +Jb)=Jd); Jd)+ J()=Jk),

with augmented coupling symbol

(jaljotz "'ja,,)B = A[(X)aD)pla(@)eti e+ .

There are only two basic operations in constructing the re-
coupling coefficient between any two coupling schemes.
Commutation of symbols:

(X)a(¥)p = (P)p(X)a »

with the transformation of state vector given by

| () ()pla )
= (=D (s ()ala )
= |- [(X)apla---) -

Association of symbols:

[()a(p](2)e = (X)al(P)s(2)c] .

with the transformation of state vector given by

[« D)a(W)pla(Z)e i)
- Y [@d + D@e + D]/ W(abke: de)

X | B '{(x)a[(y)b(z)c]e}k e )
= [ {l(x)a(Wpla(@)ehic--+) -

The basic result for the calculation of all recoupling coeffi-
cients:

Each pair of coupling schemes for n angular momenta can
be brought into coincidence by a series of commutations and
associations performed on either of the set of coupling sym-
bols defining the coupling scheme.

In principle, this result gives a method for the construc-
tion of all recoupling transformation coefficients and sets

the stage for the formulation of still deeper questions aris-
ing in recoupling theory, as summarized in Sect. 2.12.5. The
following examples illustrate the content of the preceding ab-
stract constructions.

Examples:

WCG coefficient form:

({l@b)eclyd g | [(@c)n(bd)ile)

_ abe ecf fdg
= Z Ca.ﬁ.a+ﬁ Ca+ﬁ.y.a+ﬁ+y Ca+ﬂ+y.8,m
a+p+y+s=m
ach bdk hkg
X CoyaryCpsp+5Catypism -

6—j coefficient as recoupling coefficient:

(ac)(bd) > [(@c)bld > [bac)ld = [(ba)cld
% l(ab)eld .
where ¢ denotes that the communication of symbols effects

a phase factor transformation, and R denotes that the asso-
ciative of symbol effects a Racah coefficient transformation:

({[(@b)cclpd}y | [(ac)n(bd)il,)
= (=)@ f + D@k + D)W (hbgd: fk)
x [(2e + 1)(2h + D)]'?W(bafc;eh) .

9—j coefficient as recoupling coefficient:

(@c)(bd) S [(ac)bld > plac)d S [(ba)eld
2 [ab)eld S (@ab)(cd)

([@b)e(cd)yle | [(ac)n(bd)ile)

= [2e + DS + 1)(2h + 1)(2k + D]

ach|\bdk|\efg
Ibe\ ghl) (dlc
abe

= [Qe + DS + DRh + )2k + D]2{ cdf
hkg

X Z(—l)” L +1)
l

2,125 Unsolved Problems in Recoupling Theory

1. Define a route between two coupling symbols for n an-
gular momenta to be any sequence of transpositions and
associations that carries one symbol into the other. Each
such route then gives rise to a unique expression for the
corresponding recoupling coefficient in terms of 6—j co-
efficients. In general, there are several routes between
the same pair of coupling symbols, leading, therefore, to
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identities between 6—j coefficients. How many nontriv-
ial routes are there between two given coupling symbols,
leading to nontrivial relations between 6—j coefficients
(trivial means related by a phase factor)?

. Only 6—; coefficients arise in all possible couplings of

three angular momenta; only 6—; and 9—j coefficients
arise in all possible couplings of four angular momenta; in
addition to 6—j and 9— coefficients, two new classes of
coefficients, called 12— coefficients of the first and sec-
ond kind, arise in the coupling of five angular momenta;
in addition to 6—j, 9—j, and the two classes of 12— co-
efficients, five new classes of 15— coefficients arise in
the coupling of six angular momenta, ---. What are the
classes of 3n—j coefficients? The nonconstructive an-
swer is that a summation over 6—; coefficients arising
in the coupling of n angular momenta is of a new class
if it cannot be expressed in terms of previously defined
coefficients occurring in the recoupling of n — 1 or fewer
angular momenta.

. Toward answering the question of classes of 3n—j coeffi-

cients, one is led into the classification problem of planar
cubic graphs. It is known that every 3n—j coefficient cor-
responds to a planar cubic graph, but the converse is not
true. For small #n, the relation between the coupling of n
angular momenta, the number of new classes of 3(n — 1)—
j coefficients, and the number of nonisomorphic planar
cubic graphs on 2(n — 1) points is:

n Classes of 3(n — 1)—j Cubic graphs on 2(n — 1)
coefficients points
3 1 1
4 1 2
5 2 5
6 5 19
7 18 87
8 84 ?
9 576 ?

The geometrical object for n = 3 is a planar graph iso-
morphic to the tetrahedron in 3-space. The classification
of all nonisomorphic cubic graphs on 2(n — 1) points is an
unsolved problem in mathematics, as is the classification
of classes for 3(n — 1)—j coefficients.

. There are (at least) two methods of realizing the ba-

sic triangles of angular momentum theory in terms of
graphs. The fundamental structural element [(ab)c] is rep-
resented either in terms of its points or in terms of its lines
(Fig. 2.4). The right representation leads to the interpre-
tation of recoupling coefficients as functions defined on
pairs of labeled binary trees [1]; the left corresponds to the
diagrams of the Jucys school [7, 8]. Either method leads to
the relationship of recoupling coefficients to cubic graphs.

. The approach of classifying 3n—; coefficients through

the use of unit tensor operator couplings, Racah operators,

Fig. 2.4 The fundamental triangle [(ab)c] can be realized by lines or
points

9— j -invariant operators, and general invariant operators
is undeveloped.

2,13 Supplement on Combinatorial
Foundations

The quantum theory of angular momentum can be worked
out using the abstract postulates of the properties of angular
momenta operators and the abstract Hilbert space in which
they act. The underlying mathematical apparatus is the Lie
algebra of the group SU(2) and multiple copies thereof. An
alternative approach is to use special Hilbert spaces that re-
alize all the properties of the abstract postulates and perform
calculations within that framework. The framework must be
sufficiently rich in structure so as to apply to a manifold of
physical situations. This approach has often been used in our
treatment; it is an approach that is particularly useful for
revealing the combinatorial foundations of quantum angu-
lar momentum theory. We illustrate this concretely in this
supplementary section. The basic objects are the polynomi-
als defined by Eq. (2.24), which we now call SU(2) solid
harmonics, where we change the notation slightly by inter-
changing the role of m and m'.

2.13.1 SU(2) Solid Harmonics

The SU(2) solid harmonics are defined to be the homoge-
neous polynomials of degree 2 in four commuting indeter-
minates given by

(2.112)

. 74
Dy(Z) = ValBl 37 =

(a:A:B)

in which the indeterminates Z and the nonnegative expo-
nents A are encoded in the matrix arrays
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2 2 erator J, with J = (J}, J», J3), is given by
x4 = ]‘[ zi Al = ]‘[ (ai)!, )
ij=1 ij=1 J? = —(detZ)(deta—) + Jo(Jo+ 1),
al = arlay!, B! = BB, . YA
1
. . J(] =-z-0 s
The symbol (« : A : ) in Eq. (2.112) denotes that the matrix 2
array A of nonnegative integer entries has row and column 9 = ( 9 d d J ) 2.113)
sums of its a;; entries given in terms of the quantum numbers 0211 0291 0z1p 0222 )
: ’
J,m,m’by which is a sum of two commuting operators

ant+ap=a;=j+m, ay+apnp=0,=j—m,

an+ay=p=j+m antan=pp=j—-m.

These SU(2) solid harmonics are among the most impor-
tant functions in angular momentum theory. Not only do
they unify the irreducible representations of SU(2) in any
parametrization by the appropriate definition of the inde-
terminates in terms of generalized coordinates, they also
include the popular boson calculus realization of state vec-
tors for quantum mechanical systems, as well as the state
vectors for the symmetric rigid rotator.

The realization of the inner product is essential. Physical
theory demands an inner product that is given in terms of
integrations of wave functions over the variables of the the-
ory, as required by the probabilistic interpretation of wave
functions. It is the requirement that realizations of angular
momentum operators be Hermitian with respect to the inner
product for the spaces being used that assures the orthogonal-
ity of functions, so that one is able to take results from one
realization of the inner product to another with compatibil-
ity of relations. Often, in combinatorial arguments, the inner
product plays no direct role.

The nomenclature for SU(2) solid harmonics for the
polynomials defined by Eq. (2.112) is by analogy with the
term SO(3, R) solid harmonics for the polynomials de-
scribed in Sect. 2.1.

The polynomials VY, (x),x = (x;,x2,x3) € R? are ho-
mogeneous of degree /. The angular momentum operator L>
is given by

L=V’ +(x- V) +(x-V),

which is a sum of two commuting operators —r>V? and
(x - V)% + x -V, each of which is invariant under orthogonal
transformations. The SO(3, R) solid harmonics are homo-
geneous polynomials of degree / that solve V2V, (x) = 0,
so that L2V, (x) = I(I + 1)Yj,,(x). The component angu-
lar momentum operators L; then have the standard action on
these polynomials, and under real, proper, orthogonal trans-
formations give the irreducible representations of the group
SO(3, R). A

The polynomials Drjnm/(Z),z = (211,221,212, Z2) € ct
are homogeneous of degree 2. The angular momentum op-

—(det Z)(det ;) and Jo(Jo + 1), each of which is invariant

under SU(2) transformations. The SU(2) solid harmonics
are homogeneous polynomials of degree 2 such that

9

det ﬁ D ;1 m'

J’D;),,(Z) = j(j + 1D, (2).

(2)=0,

The components of the angular momentum operators J =
(Jl,Jz,Jg,) = (Ml,Mz,Mg,) and K = (K],Kz,Kg,) then
have the standard action on these polynomials as given
in Sect. 2.4.4, and under either left or right SU(2) transfor-
mations, these polynomials give the irreducible representa-
tions of the group SU(2).

2.13.2 Combinatorial Definition
of Wigner-Clebsch-Gordan Coefficients

The SU(2) solid harmonics have a basic role in the interpre-
tation of WCG coefficients in combinatorial terms. We recall
from Sect. 2.7.2 that the basic abstract Hilbert space coupling
rule for compounding two kinematically independent angu-
lar momenta with components J; = (J1(1), Jo(1), J3(1))
and J, = (J1(2), J2(2), J3(2)) to a total angular momentum
J = (J],Jz,.]g,) = J] +J2iS

|(J1 J2)J m)
= Y P jimyelhm) . @114
mi+my=m mi my; m

This relation in abstract Hilbert space is realized explicitly
by spinorial polynomials as follows:

o2
VGimin(Z) =Y, C

mi+my=m my my; m
X Yiom (211, 220) Wiy my (212, 222) , (2.115)
2j +1
Wmm(Z) = | ————————————
Viniim Gt oG + 2t J 4 D
x (detZ)" 27Dl (Z).  (2.116)
Xjer j—m
Yim(x,y) = ) (2.117)

VG +mlG—m)!
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Explicit knowledge of the WCG coefficients is not needed to
prove these relationships. The angular momentum operators

d
J_(1) =z —
(1) =zn FE

1 d 0
1 = — _ _ N
J3(1) 2(211 e Z21 8221) ;

0 0
J+(2) =Zip—, J,(2) =ZIp—
022 0z12

J3(2) = %(212i - i)

2
8212 8222

0
Jo (1) = Iy .
221

are Hermitian in the polynomial inner product defined
in Sect. 2.4.3 and have the standard action on the polyno-
mials ¥}, , (211, 221) and ¥, m, (212, 222), respectively, which
are normalized in the inner product ( , ). The components of
total angular momentum operator J/ = M = J| + J, have
the standard action on the polynomials ¥(;, j,)j m(Z) since
they have the standard action on the factor D,{1 - (Z), as
given in Sect. 2.4.4, and [J, det X] = [J . det ;| =0. Thus,
we have

I Y jim(Z) = j(G + DV jnjm(Z)
¥ jmim(Z) = (G Fm)(j £m + 1)
X Y(jyjp)jme1(Z) .

We also note that the two commuting parts of J 2 are diagonal
on these functions:

Jo(Jo + DV, ) jm(Z)
= (j1 + j2)(1 + Jo + DYy im(Z)

d
(detZ) (det a—X) Vijijnjm(Z)

=1+ =)0+ 2+ ji + DYy im(Z) .

It is necessary only to verify these properties for the highest
weight function DY ;(Z) = z1] /y/(2j)!, for which they are
seen to hold.

The angular momentum operators K = (K1, K, K3) de-
fined in Sect. 2.4.4 with components that commute with
those of J = (M, M,, M3) and having K2 = J? also have
a well-defined action on the functions ¥/, j,)j m(Z). The ac-
tion of K., K_, and K3 on the quantum numbers (ji, j»)
is to effect the shifts to (j; + 3. /2 — 3). (Ji — 3. /2 + 3),
and (j;, J»), respectively. These actions of Hermitian angular
momentum operators satisfying the standard commutation
relations K x K = iK are quite unusual in that they depend
only on the angular momentum quantum numbers ji, j», j
themselves, which satisfy the triangle rule and give further
interesting properties of the modified SU(2) solid harmon-

ics ¥(j, j,)j m(Z). We note these properties in full:

K2V, im(Z) = j (G + DV jim(Z)

K3 joyjm(Z) = (1 = J2) Vi jnyjm(Z)
Kiiji ) jm(Z)

= VU =i+ 20 +ji =24 DV,
K-y jojm(Z)

=VU+ =D =i+ 24DV,

These relations play no direct role in our continuing consid-
erations of Eq. (2.116) and the determination of the WCG
coefficients, and we do not interpret them further.

The explicit WCG coefficients are obtained by expanding
the 2 x 2 determinant in Eq. (2.116), multiplying this expan-
sion into the D-polynomial, and changing the order of the
summation. These operations are most succinctly expressed
in terms of the umbral calculus of Roman and Rota [6], using
their method of evaluation. The evaluation at y of a divided
power x¥/k! of a single indeterminate x to a nonnegative
integral power k is defined by

1, —
eva k

xk_(y>k_y(y—l)---(y—k+1)_<y)
TRk k! - ’

where (y)y is the falling factorial. This definition is extended

to products by
B n (yi)
i1 \Ki

n k n k

X" X"

eval(."IJ’Z ~~~~~ Yn) | | k" = | |eval,\’i k"
i=1 ' i=1 L

It is also extended by linearity to sums of such divided pow-
ers, multiplied by arbitrary numbers.

The application of these rules to our problem involving
four indeterminates gives

(det X)" x4

| |
n: (a:A:’) Al

(det X)"\ X B
= 2 evils (T )
(B:B:p") ’ ’
B=(1+na+n), B = +nay+n),

(det X)"
valp———
n!

bll b12 b21 b22
= —1)k2 ke, Vkey! )

(2.119)

(2.118)

In this result, we do not identify the labels with angular mo-
mentum quantum numbers. Relation Eq. (2.119) is a purely
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combinatorial, algebraic identity for arbitrary indeterminates
and arbitrary row and column sum constraints on the array A
as specified by & = (v, @) and ' = (|, &}). There are no
square roots involved.

We now apply relations (Egs. (2.118)—(2.119)) to the case
athand:n = j1+ p—j,a=(( +m,j —m),a’ =(j +
h—Jnj—h+j).B=0U+j+tm j+j—m)p =
(2/1,2j2)- This gives the following result for the WCG coef-
ficients:

J1j2J

mymom

_ \/(jl+j2—j)!(j1—j2+j>!(—jl+jz+j)!
i+ ip+j+D!

y Q2j+ DG +ml(j —m)!
(J1 +m)'(j1 —m)!(j2 + m2)!(j2 — my)!

(det X)/1+i2=J

(14—

(det X)/1+i2=J

1+ 2= ))!

- ¥

(—1)k2k1!k2!(j1 + m‘) (jz + ’"2>
ktHha= 1+ jo—j ki k2

Ji—my\ [ j2—my

In summary, we have the following. Up to multiplicative
square-root factors, the WCG coefficient is the evaluation at

the point
B — (]1 +m1]2+m2)

Ji—my jo—my

X evaly (2.120)

evaly

(2.121)

of the divided power

(det X)/1+i2=J
(1 + 2= )

of a determinant, which is an integer.

The abstract umbral calculus of Rota thus finds its way,
at a basic level, into angular momentum theory. Relation
Eq. (2.120) is but a rewriting in terms of evaluations of the
well-known Van der Waerden form of the WCG coefficients.

2.13.3 Magic Square Realization of the Addition
of Two Angular Momenta

The origin of Eq. (2.114), giving the states of total angular
momentum by compounding two angular momenta, is usu-
ally attributed to properties of the direct sum of two copies of
the Lie algebra of the unitary unimodular group SU(2) and

to the use of differential operators to realize the Lie alge-
bras and state vectors, as was done above. It is an interesting
combinatorial result that this structure for adding angular
momentum is fully encoded within the properties of magic
squares of order 3, and no operators whatsoever are needed,
only the condition of being a magic square. We have already
noted in Sect. 2.7.4 that Regge observed that the restrictions
on the domains of the quantum numbers j, my, j,,ma, j,m
are encoded in terms of a magic square A with line sum
J=n+i+]:

Ji+m J2+m; J—m
J1—m Ja—my

—ht+Jj -t htjp—]

A= j+m | @122

The angular momentum quantum numbers are given in terms
of the elements of A = (a;;)1<; <3 by the invertible relations

. 1 . 1
Ji=z(an+axn), jo=z(an+an),
2 2
. 1
J = 5(6113 + an) .
= Man—aa). my= (@i —an)
mp; = B ai —daz), mp= ) app —dan),
1
m = 5(6123 —ap) .

It follows from these definitions and the fact that A is a magic
square of line sum J that the sum rule m; + m, = m and the
triangle condition are fulfilled.

We use the symbol (i, j,, j) to denote any triple ji, j, j
of angular momentum quantum numbers that satisfy the tri-
angle conditions, where we note that, if a given triple satisfies
the triangle conditions, then all permutations of the triple
also satisfy the triangle conditions. The number of magic
squares for fixed line sum J is obtained as follows. De-
fine A; = {all triangles (i, j», j) | j1 + j» +j = J} and
M, ja, ) = Ami,ma)| — ji =my < jis —ja =ma <
J2: —j < my + my < j}. Then we have the following iden-
tity, which gives the number of angular momentum magic
squares with line sum J:

J+5\ (J+2
> |M(j1,jz,j)|=( :)-( :).(2.123)

(J1.j2.0 )€
It is nontrivial to effect the summation on the left-hand
side of this relation to obtain the right-hand side, but this
expression is known from the theory of magic squares of
Stanley [9, 10].

Not only can the addition of two angular momenta in
quantum theory, with its triangle rule for three angular
momentum quantum numbers and its sum rule on the corre-
sponding projection quantum numbers, be codified in magic
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squares of order 3 and arbitrary line sum, but also the content
of the abstract state vector of Eq. (2.114) itself can be thus
expressed:

1 1 1 1
' 5(6111 +as) ., 5(012 + an); 5(013 + an), 5(023 —6113)>

app  ap
az;  ax

C(4)

1 1
5((111 + as), 5((111 —021)>

®

1 1
5(012 +an), 5(“12 - 6122)> ,

where the summation is over all subsets

aip dan
dz;  dxn

of the magic square of order 3, such that row 3 and col-
umn 3 are held fixed. The coefficients C(A) themselves are
the WCG coefficients, which may be regarded as a function
whose domain of definition is the set of all magic squares
of order 3. The triangle rule (i, j», j) and the sum rule on
(my,m,, m) are implied by the structure of magic squares of
order 3. These rich combinatorial footings of angular mo-
mentum theory are completed by the observation that the
Clebsch—Gordan coefficients themselves are obtained by the
Schwinger-Regge generating function given in Sect. 2.7.3
(see [2] for the relation to 3 F, hypergeometric functions).

2.13.4 MacMahon’s and Schwinger’s Master
Theorems

Generating functions codify the content of many mathe-
matical entities in a unifying, comprehensive way. These
functions are very popular in combinatorics, and Schwinger
used them extensively in his treatment of angular momentum
theory. In this section, we present a natural generalization of
the SU(2) solid harmonics to a class of polynomials that are
homogeneous in 72 indeterminates. While these polynomials
are of interest in their own right, it is their fundamental role
in the addition of n kinematically independent angular mo-
menta that motivates their introduction here. They bring an
unexpected unity and coherence to angular momentum cou-
pling and recoupling theory [11].

We list in compendium format some of the principal re-
sults.

Special U(n) solid harmonics:

ZA
Df4(Z) = V!Bl > T

AeM(a.B)

(2.124)

A = (a;j)1<i,j<n: matrix of order n in nonnegative integers;

n
A= T]ay'. 2" =
ij=1

n

=
ij=1
where we employ the notations:

o = (a1, 0s,...,q,): sequence (composition) of nonneg-
ative integers having the sum k, denoted « F k;

x¢ = x5 x ol = aglon! !

B = (B1,B2,...,B,): second composition B F k ;

M («, B), the set of all matrices A such that the entries in
row i sums to ¢; and those in column j to ;.

The significance of the row-sum vector « is that ¢; is the
degree of the polynomial in the variables (z;1, z;2, ..., Zin)
in row i of Z, with a similar interpretation for § in terms of
columns.

Matrix of the DS’ 8 (Z) polynomials:

The number of compositions of the integer k into n non-
negative parts is given by ("*}~"). The compositions in this
set may be linearly ordered by the lexicographical rule o > f3,
if the first nonzero part of @ — f is positive. The polyno-
mial Di. 8 (Z) is then the entry in row « and column f in the

matrix Dk(Z) of dimension dim Dk(Z) = ("’L]]{‘_l), where,
following the convention for SU(2), the rows are labeled
from top to bottom by the greatest to the least sequence, and
the columns are labeled in the same manner as read from
left to right. There is a combinatorial proof by Chen and
Louck [12] that these polynomials satisfy the following mul-

tiplication rule for arbitrary matrices X and Y:

D¥(XY) = D*(X)D*(Y). (2.125)

Orthogonality in the inner product (, ) defined in Sect. 2.4.3:
(DE g DL ) = BuawSprkt.

Value on Z = diag(zy, 22, ..., 2,):

D} [diag(z1. 22, . ... 2,)] = Sapz® . (2.126)

Dk(ln) = I(nJr]/(cfl) .

Transposition property:
pk(z" = [D*2)]".
Special irreducible unitary representations of U(n):

DY(U)YD*(V)=DXUV), allUV eUn).

Schwinger’s Master Theorem: for any two matrices X and Y
of order n, the following identities hold:

[e¢]

> > DE(X)D ()

k=0 a.Bk
1

T det(I —XY) 2.127)

e(aX:X:a_‘.) e(x:Y:y) ]
x=y=0
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n
(x:Z:y)=xZy" = Z ZijXiyj -

i,j=1

MacMahon’s Master Theorem: let X be the diagonal matrix
X = diag(xy, x2,...,x,) and Y a matrix of order n. Then
the coefficient of x* in the expansion of det(llTY) equals the
coefficient of x* in the product y*, y; = Z_;’zl Yij Xj, thatis,

1 B i . .,
e i D) DI TS AN CRED

k=0 atk

Basic Master Theorem: let Z be a matrix of order n. Then

1 oo

iz = 2 L D@

k=0 otk

(2.129)

Schwinger’s relation Eq. (2.127) follows from the ba-
sic relation Eq. (2.129) by setting Z = XY and using
the multiplication property Eq. (2.125); MacMahon’s rela-
tion then follows from Schwinger’s result by setting X =
diag(xy, x3,...,x,) and using property Eq. (2.126). Of
course, MacMahon’s Master Theorem preceded Schwinger’s
result by many years [13]. The unification into the single
form by using properties of the DS’ 8 (Z) polynomials was
pointed out in [14]. More surprisingly, relation Eq. (2.129)
was already discovered for the general linear group in 1897
by Molien [15]; its properties are developed extensively in
Michel and Zhilinski [16] in the context of group theory.

For many purposes, it is better in combinatorics to avoid
all square roots by using the polynomials

ZA
Lop(Z) = Z AT

AeM(a,B)

in place of the Dgﬁ (Z) defined in Eq. (2.124).

2.13.5 The Pfaffian and Double Pfaffian

Schwinger observed that the calculation of 3n—j coefficients
involves taking the square root /(I — AB), where A and
B are skew symmetric (antisymmetric) matrices of order 7,
but the procedure is rather obscure. The appropriate concepts
for taking the square root is that of a Pfaffian and a dou-
ble Pfaffian, denoted, respectively, by Pf(A4) and Pf(4, B).
The definitions require the concept of a matching of the
set of integers {1,2,...,n}. A matching of {1,2,...,n}
is an unordered set of disjoint subsets {7, j} containing
two elements. For example, the matchings of 1,2,3 are
{1,2},{1,3}, and {2, 3}. We then have the following con-
structs.

The Pfaffian and double Pfaffian of skew symmetric ma-
trices A = (a;;) and B = (b;;) of order n:

Pf(4) = ) e(iriz-in)
Uiy Ai3sia) e Ain—15in }
X Ay iy Qisiy " iy iy (2.130)
Pi(A.B)=1+) >
k=1 iy o}, dissia). {iok—1, ik }
s Jads s Jads o os {ak—1s Jok}
e(iria - in)e(J1j2"* Jak)
X Qi iy iz ig " iy ik
x bjl,jzbj3~j4 Tt bjzk—1~f2k’ (2.131)
where {iy, i}, {i3,i4},...,{in_1,in} 1is a matching of
{1,2,...,n}, and e(iiy - - - i,) is the sign of the permutation
(number of inversions). Similarly, in the double Pfaffian, the
2-subsets are matchings of a subset of {1,2,...,n} of even
length.

Relations of skew symmetric matrices A, B to Pfaffians:

VdetA = Pf(4): +/det(I — AB) = Pf(A, B) . (2.132)

2.13.6 Generating Functions for Coupled Wave
Functions and Recoupling Coefficients

This section is a reformulation, nontrivial extension, and in-
terpretation of results found in Schwinger [3]. We first refine
the notation used in Sect. 2.12.3.

Set of triangles in the coupling scheme:

Each coupling scheme, as determined by the bracket-
ing B, has associated with it a unique ordered set of n — 1
triangles

Tp(j.k.j)=aibi ki)li =1.2,....n =1},

J =01 Jaeeojn) s
k= (ki,ky,....k,_s),
e

The third part k; of (a;, b;, k;) can always be chosen, with-
out loss of generality, as an intermediate angular momentum
(k,_1 = J), and the triangles in the set can be ordered by
(a;, bi, k;) < {ajs1,biq1,kiy1). The remaining pair of an-
gular momentum labels in the triangle (a;, b;, k;) then fall,
in general, into four classes: (a;, b;, k;) in which a; can be
either a j, ora kg, and b; can be either a j,» or ky. The distri-
bution of the j’s and k’s among the @; and b; is uniquely
determined by the bracketing B that defines the coupling
scheme.
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Clebsch—Gordan coefficients for a given coupling
scheme:

B
ik .
(1 f) — I1 Caibiki (2.133)
m-q m (ai b ki)eT 5 (j K. j)

a;fiqi

in which the projection quantum numbers «; and f; are
m's and ¢q’s that match the a; and b;. In the given coupling
scheme determined by the bracketing B, only (j;,m;),i =
1,2...,n;(ki,q;),i =1,2,...,n—2,and (j, m) appear in
the Clebsch—Gordan coefficients. In fact, if one explicitly im-
plements the sum rule on the projection quantum numbers,
it is always possible to express the g; as sums over the m;
and m.

Coupled angular momentum function for » angular mo-
menta:

. A\B n
Jj ok
‘I’(li‘k)jm(x7y)=Z( ) HWjilni(xi’yi)'
i=1

—\m q m
(2.134)
J _ JioJ2 o n
m mpy mp; --- Mmy ’
k ki k k—
=" " 7). (2.135)
q q1 492 qn—2

X1 X2
yro»n

Only the first n columns of Z enter into Eq. (2.136), but the
last column occurs below.

The skew symmetric matrix of a coupling scheme:

The set of triangles Tp(j,k,j) = {{a;,b;, k;)|i =
1,2,...,n — 1}, which is uniquely defined by the bracket-
ing B, can be mapped to a unique skew symmetric matrix of
order n + 1. This mapping is one of the most important re-
sults for obtaining generating functions for the coupled wave
functions Eq. (2.134) and the recoupling coefficients given
below. The skew symmetric matrix depends on the brack-
eting B and the detailed manner in which the j's and k's
are distributed among the triangles in T z(j, k, j). The rule
for constructing the skew symmetric matrix is quite intricate.
First, we define a 3 x (n — 1) matrix 7 of indeterminates by

Z=(212.. . 2011) = ( x”“) . (2.136)

Yn+1

ity =+ tin-t
T=\|taty -ty (2.137)
B3 130 -+ 31

Second, we associate with each (a;,b;,k;) € Tp(j.k,j),
a triple of indeterminates (u;, v;, w;) as given by

(a1, by, k) = (u1, v, wy),  withwy = Huy + v,

(az, by, ka) = (ua, vz, W), Withwy = tyus + 102,

(anflv bnfl’ knfl> = (unflv Un—1, wnfl) s
with Wyp—1 = tz’n_lun_z + tl,n_lv,,_l . (2138)
The indeterminates u; and v; are identified as a column z; =
(x;, y;) of the 2 x (n + 1) matrix Z defined by Eq. (2.136), or
as one of the w's occurring higher in the display Eq. (2.138).
The distribution rule is in one-to-one correspondence with
the distribution of j’s and k’s in the corresponding triangle.
Thus, we have

u =z, ifa;=j; v =z, ifbizjs;
u, =z,, ifa;=7j,; vi=w,, ifb, =ks;
u =w,, ifa; =k ; vi=z,, ifb=jg;
u =w,, ifa, =k ; v =w,, ifb, =k,.

The explicit identification of all j’s and k’s is uniquely de-
termined by the bracketing B. Once this identification has
been made, the elements a;;,i < j of the skew symmetric
matrix A of order n + 1 are uniquely determined in terms of
the elements of T by equating coefficients of det(z;,z;) =
X;y; — Xx;y; on the two sides of the form

2

I<i<j<n+l

ai_,» det(z,-, Zj)

n—1

= Zl3i det(u;, v;) + det(wy—1, Zp+1) »
i=1

(2.139)

where (t1;, t;, t3;) is the i-th column of the 3 x (n — 1) ma-
trix T of indeterminates. This relation can be inferred from
results given by Schwinger. Since the elements of A are de-
termined as monomials in the elements of 7', we sometimes
denote A by A(T). It is useful to illustrate the rule for deter-
mining A forn = 2,3, 4.

n = 2: triangle: (jy, j2, k1):

Wy =1z + 1122

aypdet(zy, z2) + a3 det(zy, 23) + az; det(zy, 23)
= t3; det(uy, v1) + det(wy, z3)
= t31 det(z1, 22) + 1y det(zy, 23)
+ 11 det(z2, z3) ;
ax =1 .

ap =1y, ap=Iy,

n = 3: ordered triangles: {Ji, j2, k1), (k1, j3, k2):

wyp = iUy + vy, U =21,V =2z
Wy = InUs +11pV2,

E aijj det(z,-,z_,»)
I<i<j<4

= 131 det(ul, Ul) + 13 det(uz, U2) + det(LUz, Z4) ;

Uy = W1,V = Z3 .
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ap =131, dapy=titn, dia = bitn Relation to U(n + 1) solid harmonics:
axy = Mils, a4 = Iiln 00 o b
xA(T)y" k
a3 = 11 e =3 %" =Dy p(AT) = . (2.143)
k=0aprk VY VB!

n = 4: ordered triangles: (J3, j1, k1), (J4» J2. k2),
(ki,ky, k3):

wy = Hhuy + vy, Uy =23, V=121,
Wy = Uy +1pV2, Uy =124, Vy =122,
W3 = fzUs +113v3, U3 =W, V3= Wy;

w3 = f111321 + titi3Z2 + 01323 + Int1324
Z aijj det(z,-, Zj) = 3] det(u1 s U]) + 13
1<i<j<5

X det(uz, Uz) + 133 det(u3, U3) + det(U)3, 25) ]

ap = hitiplsz, apz = —I3g, ayy = hilptss ,

a3 = —l1pla1l33, A4 = —I32,

asy = Dilnltss ,

as = Il
asxs = 112013
ass = Il
ays = Inl3

Triangle monomials.

Let {(a, b, c) be a triangle of quantum numbers (a, b, ¢),
let (x, y, z) be three indeterminates, and let B denote a bi-
nary coupling scheme with the set of triangles T 3( j , k, j).

Elementary triangle monomial:

(p(a.h.c) (x,y,z) — {abc}flxb+c7aya+csza+b7c .
{abc}

(@b te—a)at+c—b)la+b—o)l)?
_( (a+b+c+1)! ) ’

(2.140)

Triangle monomial associated with a given coupling scheme

[

(ai bi ki)eT g (j k.j)

o7, (1) = Pia; by i) (i i B31)
(2.141)
Using the definitions introduced above, we can now give the
generating functions for the coupled wave functions and the
recoupling coefficients for each coupling scheme as deter-
mined by the bracketing B.
Generating function for coupled wave functions:

exA(T)yT _ 6215i<j§n+la"~/ det(z;.zj)

Z ®jB~ks./ (T) Z(_l).j_n1l//lj177n(xn+l7 Yut1)
Jjk m

X Wl jm (X, 9) (2.142)

X=(x1,%2,....%41), Y=Y Ynt+1) -

Relation of U(n + 1) solid harmonics to triangle monomials:

B
Dy 4[A(D)] = (=1)/ ™" ;(; 'q‘ ;) 71 (T)

(2.144)
Bi=ji—m; i=12,....n;
Bnir =] +m:

Z%=Zﬂi=jl+j2+'“+jn+1~
i i

a = ji +m;,

O5n+1=j_n/l’

The relation between the skew symmetric matrix A(7T") of
order n + 1 and the elements of the 3 x (n — 1) matrix T is
that described in relations Eq. (2.138).

Generating function for all recoupling coefficients:

1
[PECA(T), A/(T")]?

= Y @F (DS (T k. jllj K. j).
jkK ]

(2.145)

where (j,k, j || j’, k', j) denotes the recoupling coefficient
that effects the transformation between the coupling schemes
corresponding to the bracketing B and the bracketing B’, and
where the sequence j’ is a permutation of j in accordance
with the bracketing B’. We also note that

1 1

~ Jdet(l — AA)

Pf(A4, A")

= | 1+) " > Disg(DD(A) | (2.146)

k>1 a.prk

for arbitrary skew symmetric matrices of order 7.

Relation Eq. (2.145) generates all recoupling coefficients,
the trivial ones (those differing by signs) and all the compli-
cated ones, that is, those corresponding to 3n—j coefficients.
It will also be observed that the expansion of the reciprocal of
the double Pfaffian effects an infinite sum in which no rad-
icals occur, which in turn implies that the every recoupling
coefficient has the form

<j’k7j||j,’k,7j>= {ai’bi’ki}

[

(ai bi ki)eT p(j.k.j)

S | R

(aj.bi k)T (G K. j)

(ARt R

xI(j k. jIlj" K. j),
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where I(j,k,j || j',k’,j) is an integer. Each recoupling
coefficient is an integer multiplied by square-root factors that
depend on the triangles associated with the coupling scheme.

Such features can be very useful in the development of al-
gorithms for the calculation of 3n—j coefficients, including
WCG coefficients [17]. Relation Eq. (2.145) should be useful
for the classification of 3n—j coefficients.

2.14 Author’s Comments

The relationship between the group SU(2) of 2 x 2 unitary
unimodular (determinant 1) matrices under the usual rule of
matrix multiplication for multiplying pairs and the group of
3 x 3 rotation group SO(3, R) of proper (determinant 1) or-
thogonal matrices under matrix multiplication of pairs most
often uses the known fact that SU(2) is the minimal cover-
ing group of SO(3, R). This is the method used in the first
version of the Springer Handbook and the Revised Springer
Handbook presented here. However, there is another way
of viewing the relationship between the two groups as a
sort of nonlinear isomorphism. This is the 3 x 3 Cartan
Hermitian matrix representation, which gives a one-to-one
correspondence with the fundamental 3 x 3 representation of
the rotation group. This was already initiated in Sect. 2.1 of
this chapter. It will not be carried further here. However, it
is appropriate to point out that entering into the development
will be the domain of definition, which may be taken to be the
unit sphere for the rotation group, and to which is adjoined
the Euler angle y for the unitary unimodular group SU(2)
(Chap. 2 and, in particular, Sect. 5, of [1]). It is this Cartan
representation by Hermitian matrices that is to be compared
to the 3 x 3 representation of the rotation group SO (3, R) by
the active rotation of a physical system onto itself. All of this
must be woven together in a coherent fashion.

Then, there is always the question of whether or not
the electron is a composite object: electron plus spin? (All
reasonable questions should be allowed in any reasonable
theory.) Can the electron contain within itself a hidden mass-
less object of spin-1/2 that it can cast-off only in a special
environment? Surely this is nonsense. Nonetheless, the in-
visible partner can be there in the above viewpoint.

Quite aside from the above possibilities of structure, there
is another feature of angular momentum theory as presented
in this article—the use of the covering group SU(2) of
SO(3, R). Racah calculated the coefficients in the form given
by Eq. (2.77) by summing over four Clebsch—Gordan coef-
ficients as given by the third formula in the collection at the
beginning of Sect. 2.9.1. The details of this calculation can
be found in Vol. 8 of [1]. What is important about this form is
its expression in terms of triangle coefficients. The question
is: since the Racah form of angular momentum theory is ap-
plicable to both angular momenta with integer and half-odd

integers, and this feature carries forward to the full family
of 3n—j coefficients constructed from the Clebsch—Gordan
and Racah coefficients, how does it happen that only facto-
rials appear in Eq. (2.77), and the occurrence of the gamma
function is never an issue? It must be the case that the set
of triangle coefficients that occur in the Racah coefficient
somehow block out the occurrence of the gamma function.
This places the role of triangle coefficients at the basis of the
quantum mechanics of physics. In the development of angu-
lar momentum theory, it is triangle coefficients that have a
built-in structure that assures that only factorials occur in
the expression of its family of 3n—j coefficients.

The author has carried the properties of triangle coeffi-
cients forward by showing how to include all triangles into
a single comprehensive symbol for every 3n—j coefficient.
This leads directly to the classification of 3n—j coefficients
in terms of binary trees and gives many new insights into
the tenets of angular momentum theory. The reference to the
two books is given here for the benefit of the reader wishing
to pursue this subject: James D. Louck, Unitary Symmetry
and Combinatorics, World Scientific, Singapore, 2008; Ap-
plications of Unitary Symmetry and Combinatorics, World
Scientific, Singapore, 2011.

In pointing out these references, the author is also ob-
ligated to mention an error that occurs throughout. The
statement that the smallest angular momentum that occurs
in implementing the Clebsch—Goran series into the addition
of n angular momenta is the least of all positive angular mo-
menta in the multiset pmj;, pmj,, ..., pmj, of 2" angular
momenta is wrong. This was pointed out to the author by Dr.
Wade Smith about 4 years ago by giving the counterexample
j1=1, jo=1, jz=1, j,=4. The correct answer is j(min) =
greatest angular momentum in the set jy, j,, ..., j, of origi-
nal angular momenta being coupled.

2.15 Tables

Excerpts and Fig. 2.1 are reprinted from Biedenharn and
Louck [1] with permission of Cambridge University Press.
Tables 2.2— 2.4 have been adapted from Edmonds [18] by
permission of Princeton University Press. Thanks are given
for this cooperation.
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Table 2.1 The solid and spherical harmonics Y, and the tensor harmonics Tf‘; (labeled by k =1 and u = m) for/ =0,1,2,3, and 4

I m Ay VAT Yin (0, 9) 7
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Table 2.3 The 3—; coefficients for J; = 1, 3,2
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Table 2.4 (Continued)
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The author expresses his gratitude to Debi Erpenbeck, whose artful
mastery of TEX and scrupulous attention to detail allowed the numerous
complex relations to be displayed in two-column format.

Author’s note. It is quite impossible to attribute credits fairly in
this subject because of its diverse origins across all areas of physics,
chemistry, and mathematics. Any attempt to do so would likely be as
misleading as it is informative. Most of the material is rooted in the
very foundations of quantum theory itself, and the physical problems it
addresses, making it still more difficult to assess unambiguous credit of
ideas. Pragmatically, there is also the problem of confidence in the de-
tailed correctness of complicated relationships, which prejudices one to
cite those relationships personally checked. This accounts for the heavy
use of formulas from [1], which is, by far, the most often used source.
But most of that material itself is derived from other primary sources,
and an inadequate attempt was made there to indicate the broad base of
origins. While one might expect to find in a reference book a compre-
hensive list of credits for most of the formulas, it has been necessary to
weigh the relative merits of presenting a mature subject from a view-
point of conceptual unity versus credits for individual contributions.
The first position was adopted. Nonetheless, there is an obligation to
indicate the origins of a subject, noting those works that have been most
influential in its developments. The list of textbooks and seminal arti-
cles given in the references is intended to serve this purpose, however
inadequately.

Excerpts and Fig. 2.1 are reprinted from Biedenharn and Louck [1]
with permission of Cambridge University Press. Tables 2.2-2.4 have
been adapted from Edmonds [18] by permission of Princeton University
Press. Thanks are given for this cooperation.
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Abstract

The basic elements of the theory of Lie groups and their
irreducible representations (IRs) are described. The IRs
are used to label the states of an atomic shell and also
the components of operators of physical interest. Appli-
cations of the generalized Wigner-Eckart theorem lead
to relations between matrix elements appearing in differ-
ent electronic configurations. This is particularly useful
in the f shell, where transformations among the seven
orbital states of an f electron can be described by the uni-
tary group U(7) and its sequential subgroups SO(7), G,
and SO(3) with respective IRs [A], W, U, and L. Exten-
sions to groups that involve electron spin S (like Sp(14))
are described, as are groups that do not conserve elec-
tron number. The most useful of the latter is the quasispin
group whose generators Q connect states of identical W,
U, L and seniority v in the f shell. The symmetries of
products of objects (states or operators) that themselves
possess symmetries are described by the technique of
plethysms.

Keywords

group theory - atomic shells - Lie groups - irreducible rep-
resentations - Wigner—Eckart theorem - quasispin

3.1 Generators
3.1.1 Group Elements
An element S, of a Lie group G corresponding to an in-
finitesimal transformation can be written in the form
S, =14+68a°X, , 3.1

where the §a’ are the infinitesimal parameters and the X,
are the generators [1]. Summation over the repeated Greek
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index is implied. Transformations corresponding to finite pa-
rameters can be found by exponentiation

S, — exp (a' Xi) exp (a>X3) ---exp (a"X,) . (3.2)
The generators necessarily form a Lie algebra, that is, they
close under commutation

[ X, Xo] = ¢} Xo . (3.3)

In terms of the structure constants c;o, the metric tensor is
defined as

oo = Chy €l . (3.4)

3.1.2 Conditions on the Structure Constants

For an Abelian group, all the generators commute with one
another

¢, =0, (3.5)
The operators X, (o0 = 1,2, ..., p < r) form the generators
of a subgroup if [2]
c;0=0, (p,o <p,t>p). (3.6)
The subgroup is invariant if the stronger condition
o =0, (p=p.T>p) (3.7)

is satisfied. A group is simple if it contains no invariant sub-
group (besides the unit element). A group is semisimple if it
contains no Abelian invariant subgroup (besides the unit el-
ement). A necessary and sufficient condition that a group be
semisimple is that

det | gy |#0. (3.8)

All simple groups are semisimple. For semisimple groups,
the inverse tensor g"” can be formed, thus permitting suffixes
to beraised. The quadratic operator
C=g"X,X, (3.9)
commutes with all generators of the group and is called
Casimir’s operator [1]. If the generators of a group G can
be broken up into two sets such that each member of one set
commutes with all the members of the other, that is, if

T _
cp(,—O,

(p<p,o>p), (3.10)

then the two sets form the generators of two invariant sub-
groups, H and K. The group G is the direct product of H
and X and is written as H x XK.

3.1.3 Cartan-Weyl Form

By taking suitable linear combinations H; and E, of the gen-
erators X, the basic commutation relations Eq. (3.3) can be
thrown into the so-called Cartan—Weyl form [1]

[H;, H;] =0, (3.11)
[Hi, Eq] = a; Ey (3.12)
[Ey. E_y] =o' H; | (3.13)
[Eo, Eg) = NugEavip - (3.14)

The Roman symbols i, j, ... run over an /-dimensional space
(the weight space of rank [) in which the numbers «; can be
visualized as the components of the vectors (called roots).
The E, are shift operators, the displacements being specified
by the components of «. The operator E, g in Eq. (3.17) is
to be interpreted as 0 if & + B is not a root. The coefficient
Ny depends on the choice of normalization.

3.1.4 Atomic Operators as Generators

The pairs a;a,, of creation and annihilation operators for ei-
ther bosons or fermions, as defined in Sect. 6.1.1 close under
commutation and form a Lie algebra. The coupled forms
w (k) , defined in Sect. 6.2.2, are often used to play the role
of the generators for electrons in an atomic shell.

3.2 Classification of Lie Algebras

3.2.1 Introduction

The semisimple Lie algebras have been classified by Car-
tan [3]. They consist of four main classes 4;, B;, C;, D;, and
five exceptions G, Fy, E¢, E7, Eg. Each algebra is character-
ized by an array of roots in the /-dimensional weight space;
they are conveniently specified by a set of mutually orthogo-
nal unit vectors e;. The total number of generators (those of
type E, plus the / generators of type H;) gives the order of
the algebra.

3.2.2 The Semisimple Lie Algebras

Aj. The roots are conveniently represented by the vectors
e, —e; (i,j =1,2,...,] +1). They are all perpendicular
to Xe; and do not extend beyond the /-dimensional weight
space. The order of the algebra is /(I + 2). The group for
which this algebra can serve as a basis is the special unitary
group SU(/ + 1).



3 Group Theory for Atomic Shells

73

Table 3.1 Generators of the Lie groups for the atomic / shell. The subscripts i and j run over all 4/ + 2 states of a single electron

Group

SO(8/ + 5)*

SO(8/ + 4)*

U4l +2)°

SU(4l +2)°

Sp(4l + 2)¢

U@l + 1)¢

SU@! + 1)¢

SO + 1)¢

G,¢

SOL(3)°

SOs(3)°

Ug(2l + 1) x Ug (2l + 1)f
SO, (21 + 1) x SO, (2] + 1) x SO, (2] 4 1) x SO¢(2] + 1)#

U, (2) x U, (2") x U, (2") x Ug(2")"

a4,5];P[1,6];¢ [6,7]; 9 [6];° [8];  [9]; € [10, 11] and Egs. (6.69)—(6.

B;. Therootsare +e; and £e;fte; (i,j=1,2,....[;i #
j). The order of the algebra is /(2/ + 1). A corresponding
group is the special orthogonal (or rotation) group in 2/ + 1
dimensions, SO(2/ + 1).

C;. The roots are =+ 2, and L e; e; (i,j =
1,2,...,1;i # j). The order of the algebra is [ (2/ + 1).
A corresponding group is the symplectic group in 2/ dimen-
sions, Sp(2/). A rotation of the roots yields C; = B,.

D;. Therootsare *e;te; (i,j=1,2,...,1;i# j). The
order of the algebrais /(2/ —1). A corresponding group is the
special orthogonal (or rotation) group SO(2/). A rotation of
the roots yields D3 = Aj. Also, D, = Ay x Aj.

E¢, E7, Eg. The roots are given by Racah [1]. The respec-
tive orders are 78, 133, and 248.

F4. The roots consist of the roots of By together with the
16 vectors %( +e| e, Fe;Eey). The order of the algebra
is 52.

G,. The roots consist of the roots of A, together with the
six vectors + (2e; —e; —ey) (i # j #k =1,2,3). The
order of the algebra is 14.

Examples of Lie groups used in atomic shell theory, to-
gether with their generators, are given in Table 3.1.

Generators

o1 1 il
al.aj,al.aj,a,-aj,ai,aj

aja},
W (c=0,1; k=0,1,..., 20)

W «h) (as above, with k = k = 0 excluded)
W ® R (as above, with k + k odd)

wo (k=o0,1,..., 20)

wo k =1,2,..., 21)

wO (k =1,3,5,...,21 1)

WO WO (for = 3)

WO (or L)

w10 (or §)

Ok 1k Ok 1k
o + Wog Wag” = WoPk =0.1,.....21)

070)® (k odd, & = A, p,v, &)

¥
aaj,a;a;

ngg (all components, 0 = A, u, v, §)

72); " [12]

3.3 Irreducible Representations

3.3.1 Labels

If n atomic states of a collection transform among them-
selves under an arbitrary action of the generators of a group
G, then the states form a representation of G. The rep-
resentation is irreducible if n’ linear combinations of the
states cannot be found that also exhibit that property, where
n’ < n. The commuting generators H; of G can be simul-
taneously diagonalized within the n states: their eigenvalues
(my,my,...,m;) for an eigenstate ¥ specify the weight of
the eigenstate. The weight above is said to be higher than
(m},m}, ..., m)) if the first non-vanishing term in the se-
quence m; — m}, my —my, ... is positive. An irreducible
representation (IR) of a semisimple group is uniquely spec-
ified (to within an equivalence) by its highest weight [1],
which can therefore be used as a defining label.

3.3.2 Dimensions

The dimensions of the IRs of various groups are expressed
in terms of the highest weights and set out in Table 3.2. Gen-
eral algebraic expressions have been given by Wybourne [13,
pp- 137]. Numerical tabulations have been made by Butler in
the appendix to another book by Wybourne [14], and also by
McKay and Patera [15]. The latter defines the IRs by specify-
ing the coordinates of the weights with respect to the simple
roots of Dynkin [16].
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Table 3.2 Dimensions D of the irreducible representations (IR’s) of various Lie groups

Group IR D

SO(2) M 1

SO(3) Dy 2J +1

SO(4) =S04(3) xSO(3) D; xDx (2J+1)(2K +1)

(w1 —wy + D(w; — w3 + 2)(wy — w3 + 1) X (w1 + wy + 3)(wy + w3 + 2)(wy + w3 + 1)/12
(w1 + w2 + 4wy + w3 + 3) (w2 + w3 + 2) (w1 —wp + (w1 — w3 + 2)(wp — w3 + 1)

(uy +up + 3)(uy +2)Quy + uy + 5)(uy + 2uy + 4)(uy —uy + 1) (us + 1)/120

(01 — 02 + 1)(01 — 03 + 2)(01 + 02 + 5)(01 + 03 + 4)(02 + 03 + 3)(02 —03 + 1)

AMAA—A3=244)/2, wy = (A1 — A2+ A3 = A4)/2, w3 = (A} — A2 — A3 + A4)/2

SO(5) (wiw») (w1 + wa +2) (w1 —wa + 1)w; + 3)(2wz + 1)/6
SO(6) (w1 waw;)
SO(7) (wiwrw3)
X 2wy + 5)2w, + 3)Qws + 1)/720
G, (uyus)
SU(3) or U(3) [)&112)&3] (A] — Az + 1)(A] — )&3 + 2)()&2 — A3 + 1)/2
SU(4) or U(4) [A1A24344]  As for (wjw,ows) of SO(6)*
Sp(4) (0102) As for (w;w,) of SO(5)°
Sp(6) (010203 )
x (01 + 3)(02 + 2)(03 + 1)/720
4 Subject to the conditions w; = (
® Subject to the conditions w; = (07 + 02)/2, Wy = (07 — 02)/2

Table 3.3 Eigenvalues of Casimir’s operator C for groups used in the atomic / shell

Group IR Operator

SU@!I + 1) [A]? Yo (V®)?

SO(2! + 1) wb andd(y(mf

G, (1142) i[(V‘”)Z + (V<5>)2]

@ Appropriate for terms of /" with total spin S [7, p. 125]
® Defined by the / weights (ww; -+ w;)

3.3.3 Casimir’s Operator

The eigenvalues of Casimir’s operator C, defined in
Eq. (3.9), can be expressed in terms of the highest weights
of an IR [1]. A complete algebraic listing for all the semisim-
ple Lie groups has been given by Wybourne [13, p. 140].
Sometimes Casimir’s operator is given in terms of the spheri-
cal tensors W X or of their special cases V*) (= 23 W (06
for which the single-electron reduced matrix element satis-
fies

nl|v®|nl) = 2k + 1) . (3.15)

The eigenvalues of several operators of that form are given
in Table 3.3.

3.4 Branching Rules

3.4.1 Introduction

If a group H shares some of its generators with a group G,
the first can be considered a subgroup of the second. That
is, G D . Many of the groups in Table 3.1 can be put in
extended group—subgroup sequences. The IRs of a subgroup
that together span an IR of the group constitute a branching
rule.

Eigenvalue

3N +2NI—1N2-28(S + 1)~ N2/(2l + 1)
LS wi(wy + 1420 —2i)

(3 + 3 + wruz + Sup + 4uy)/12

3.42 U(n) D SU(n)

The group U(n) differs from SU(#n) in that the former con-
tains among its generators a scalar such as (W) that,
by itself, forms an invariant subgroup. Thus U(n) is not
semisimple. The scalar in question commutes with all the
generators of the group and so is of type H;. Its presence
enlarges the dimension, /, of the weight space by 1, an ex-
tension that can be accommodated by the unit vectors e; of
A given in Sect. 3.2.2. The reduction U(n) D SU(n) leads
to the branching rule

[)&1)&2---1”]—>[M—a,kz—a,...,kn—a], (316)
where, in the IR of SU(n) on the right,
a:(kl+kz+---+)kn)/n. (317)

To avoid fractional weights, the IRs of SU(n) are frequently
replaced by those of U(n) for which the A; are integers. The
weights A1, A,, ... can be interpreted as the number of cells
in successive rows of a Young Tableau. When the n states
of a single particle are taken as a basis for the IR [10...0]
of U(n), thus corresponding to a tableau comprising a sin-
gle cell, the tableaux comprising N cells can be interpreted
in two ways, namely, (1) as an IR of U(n) for a system of
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N particles, and (2) as an IR of Sy, the finite group of per-
mutations on N objects. A given tableau corresponds to as
many permutations as there are ways of entering the num-
bers 1, 2, ..., N in the cells such that the numbers increase
going from left to right along the rows, and from top to bot-
tom down the columns. A tableau possessing cells numbered
in this way is called standard; it defines a permutation corre-
sponding to a symmetrization with respect to the numbers in
the rows, followed by an antisymmetrization with respect to
the numbers in the columns [17].

3.4.3 Canonical Reductions
A group—subgroup sequence of the type

Un)>DUm—-1)D>UMm—-2)D---DU) (3.18)
is called canonical [18]. The branching rules for those IRs
[A1A5 - Al ] of U(n—1) contained in [A1A; - -+ A,,] of U(n)
have been givenby Weyl [19] in terms of the betweenness
conditions

MZA == > >4, =A,. (3.19)
The possibility of using the scheme of Eq. (3.18) in the
theory of complex atomic spectra has been explored by Har-
ter [20, 21], Harter and Patterson [22], and by Drake and
Schlesinger [23, 24] (see also Sect. 4.3.1).

3.4.4 OtherReductions

The algebraic formulae for U(n) D SO(n) and U(n) D Sp(n)
have been given by Littlewood [25] and in a rather more ac-
cessible form by Wybourne [14]. Special cases have been
tabulated by Butler (in Tables C-1 through C-15 in [14]).
Another set of tables, in which Dynkin’s labeling scheme is
used, has been given by McKay and Patera [15]. Descrip-
tions of how to apply the mechanics of the mathematics to the
Young tableaux that describe the IRs of U(n) can be found in
the articles of Jahn [26] [with particular reference to SO(5)]
and Flowers [27] [for Sp(2j + 1)]. For the atomic / shell,
the reductions SO(2/ + 1) D SO(3) and (for f electrons)
SO(7) D G; and G, D SO(3) are important. The sources cited
in the previous Section are useful here. It is important to rec-
ognize that the embedding of one group in another can often
be performed in inequivalent ways, depending on which gen-
erators are discarded in the reduction process. Thus the use
of SO(5) D SO(3) in the atomic d shell involves a different
SO(3) group from that derived from the canonical sequence
SO(5) D SO(4) D SO(3).

3.5 Kronecker Products
3.5.1 Outer Products of Tableaux

Consider the tableau [A;A;---A,], where the total number
of cells is N. A preliminary definition is required. If among
the first r terms of any permutation of the N factors of the
product, x;*1x,*2 -+ x,*, the number of times x, occurs is
> the number of times x, occurs > the number of times
X3 occurs, etc. for all values of r, this permutation is called
a lattice permutation. The prescription of Littlewood [25] for
finding the tableaux appearing in the Kronecker product of
[A1Ag -+ A, ] with [y s - - - ] is as follows. The acceptable
tableaux are those that can be built by adding to the tableau
[A1Az---A,], uy cells containing the same symbol «, then
W cells containing the same symbol B, etc., subject to two
conditions:

1. After the addition of each set of cells labeled by a com-
mon symbol we must have a permissible tableau with no
two identical symbols in the same column;

2. If the total set of added symbols is read from right to left in
the consecutive rows of the final tableau, we obtain a lat-
tice permutation of o#1 fH2yH3 ...

Examples of this procedure have been given [25, p. 96; 7,
p- 136; 14, p. 24]. An extensive tabulation involving tableaux
with N < 8 has been calculated by Butler and given by
Wybourne [14, Table B-1].

3.5.2 Other Outer Products

The rules for constructing the Kronecker products for U(n)
follow by interpreting the Young tableaux of the previous
section as IRs of U(n). The known branching rules for re-
ductions to subgroups enable the Kronecker products for the
subgroups to be found. Many examples for SO(n), Sp(n),
and G; can be found in the book by Wybourne [14, Tables
D-1-D-15, and E-4].

3.5.3 Plethysms

Sometimes a particle can be thought of as being composite
(as when the six orbital states s + d of a single electron are
taken to span the IR [200] of SU(3)). When the n’ compo-
nent states of a particle form a basis for an IR [A'] of U(n)
other than [10. .. 0], the process of finding which IRs of U(#n)
occur for N -particle states whose permutation symmetries
are determined by a given Young tableau [A] with N cells
is called a plethysm [25, p.289] and written as [A'] ® [A].
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The special techniques for doing this have been described
by Wybourne [14]. An elementary method, which is often
adequate in many cases, runs as follows:

1. Expand [A']" by repeated use of Table B-1 from [14]. The
resulting tableaux [A”] are independent of n.

2. Choose a small value of n, and strike out all tableaux from
the set [A”] that possess more than n rows (since they are
unacceptable as IRs of U(n)).

3. Interpret the remaining tableaux [A”] as IRs of U(n)
and find their dimensions from Tables A-2 through A-
17 of [14]. Check that the sum of the dimensions is
(dim [A']V.

4. Interpret the various tableaux [A] possessing the same
number N of cells as IRs of U(dim[A']), and find their
dimensions from [14].

5. Match the dimensions of parts (3) and (4), remembering
that each tableau [A] occurs as often as the number of its
standard forms. This determines the possible ways of as-
signing the IRs [A”] of U(n) to each [A].

6. Proceed to higher n to remove ambiguities and to include
the tableaux struck out in step 2.

This procedure can be extended to calculate the plethysms
for other groups. Examples of the type W ® [A] and U ® [A],
where W and U are IRs of SO(7) and G, have been given
for [A] = [2] and [11] corresponding to the separation of W?
and U? into their symmetric and antisymmetric parts [28].
The technique of plethysm is also useful for mixed atomic
configurations (Sect. 3.6.1).

3.6 Atomic States

3.6.1 Shell Structure

The 2#/+2 states of the [ shell span the elementary spinor
IR (%% ‘e %) of SO(8/ 4 5), which decomposes into the two
IRs (%% + %) of SO(8! + 4), corresponding to an even
and an odd number N of electrons [4]. The states of IV span
the IR [1V0¥+2=N] of U(4/ + 2), corresponding to the an-
tisymmetric Young tableau comprising a single column of
N cells. The separation of spin and orbit through the sub-
group U(2) x U(2/ + 1) yields the tableau products [A] x [5&],
where [5&] is the tableau obtained by reflecting [A] in a diag-
onal line [1]. The IRs of the subgroup U(2) x SO(2/ + 1)
are denoted by S and W [6]. An alternative way of reach-
ing this subgroup from U(4/ + 2) involves the intermediary
Sp(4] + 2), whose IRs (1°0%*!=) possess as a basis the
states with seniority v [7]. A subgroup of SO(2/ + 1) is the
SO(3) group whose IRs specify L, the total orbital angular
momentum.

Table 3.4 The states of the d shell
dav My 25+111] v w L
d° -3 1[0] 0 (00) S
d! 2 21] 1 (10) D
d2 -3 2] 0 (00) S
2 20) DG
3[11] 2 (11) PF
@ =il 2121] 1 (10 D
3 1) PDFGH
4111] 3 (11) PF
d -1 1122] 0 (00) S
2 20) DG
4 (22) SDFGI
3211] 2 (11) PF
4 3)) PDFGH
5[1111] 4 (10) D
d 0 2[221] 1 (10 D
3 1) PDFGH
5 (22) SDFGI
42111] 3 (11) PF
5 (20) DG
o[11111] 5 (00) S

Alternatives to this classic sequence are provided by the
last three groups listed in Table 3.1, together with their re-
spective subgroups. For Uy (2] 4+ 1) x Ug (2] 4 1), the shell is
factored by considering spin-up and spin-down electrons as
distinct (and statistically independent) particles [29]. A fur-
ther factorization by means of the quasiparticles, 6, leads to
four independent spaces. The 2! states in each space span
the elementary spinor (%Z) of SOy (2] + 1), which can be re-
garded as a fictitious particle (or quark), gy [30].

The standard classification of the states of the d-shell is
given in Table 3.4. The component My of the quasispin Q
(defined in Egs. (6.33)—(6.35)) is listed, as well as the senior-
ity,v =214+ 1-20, the IRs W of SO(5), and the value of L
(as a spectroscopic symbol). Only states in the first half of the
shell appear; the classification for the second half is the same
as the first except that the signs of M are reversed. A gen-
eral rule for arbitrary / is exemplified by noting that every W
(the IR of SO(2! + 1)) occurs with two spins (S} and S3)
and two quasispins (Q; and Q) such that S| = Q, and
S> = Q. No duplicated spectroscopic terms appear in Ta-
ble 3.4. The generators of SO(5) do not commute with the
inter-electronic Coulomb interaction; thus the separations ef-
fected by SO(5) merely define (to within a phase) a basis.
The analog of Table 3.4 has been given by Wybourne [31] for
the f shell. As Racah [6] showed, the group G, can be used
to help distinguish repeated terms, but a few duplications
remain. They are distinguished by Nielson and Koster [32]
in their tables of spectroscopic coefficients by the letters A
and B. The scope for applications of group theory becomes
enlarged when the states of a single electron embrace more
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than one / value. Extensions of the standard model have been
made by Feneuille [33-36] with particular reference to the
configurations (d + s)", for which quasiparticles have also
been considered [37]. The group SU(3) has been used for
(d + s)¥pM [38]. The mixed configurations (s + f)* have
found a use in the quark model of the atomic f shell [30].
A brief description of this model has been given by Fano and
Rao [39].

3.6.2 Automorphisms of SO(8)

The quark structure s + f derives from the SO(3) struc-
111

ture of the elementary spinor (553) of SO(7). Its eight
components span the IR (1000) of SO(8), a group that ad-
mits automorphisms [40]. This property is exhibited by the
existence of the three distinct subgroups SO(7) (Racah’s
group), SO(7)’, and SO(7)”, all of which possess the same
G, and SO(3) as subgoups. A reversal of the relative phase
of the s and f quarks takes SO(7) into SO(7)” and vice
versa [41]. The generators of SO(7)" are the sums of the
corresponding generators of SO(7) and SO(7)”. The phase
reversal between the s and f quarks, when interpreted in
terms of electronic states, explains the unexpected simplifi-
cations found by Racah [6] in his equation (87) [42], which
goes beyond what the Wigner—Eckart theorem for G, would
predict. Similarly, explanations can be found for some (but
not all) proportionalities between blocks of matrix elements
of components of the spin—other-orbit interaction for f elec-
trons [43]. Hansen and Ven have given some examples of
still unexplained proportionalities [44]. The group SO(7)
has proved useful in analyses of the effective three-electron
operators used to represent weak configuration interaction in
the f shell [41].

3.6.3 Hydrogen and Hydrogen-Like Atoms

The nonrelativistic hydrogen atom possesses an SO(4) sym-
metry associated with the invariance of the Runge-Lenz
vector, which indicates the direction of the major axis of the
classical elliptic orbit [5]. The quantum-mechanical form of
this vector can be written in dimensionless units as

. (I xp)—(pxl)+2Zrh*/ray

, (3.20)
2 po

where ay = #%/me? is the Bohr radius, Ze is the nuclear
charge, po is related to the principal quantum number n
by po = Z/nag, and where the momentum p and angu-
lar momentum [ of the electron in its orbit are measured
in units of %. The analysis is best carried out in momentum
space [45]. The four coordinates to which SO(4) refers can

be taken from Eqs. (9.43)—(9.46) or directly as kp., kp,, kp-,
and kpo(1 — p*/ p?)/2, where k = 2po/(p* + p3). The gen-
erators of SO(4) are provided by the 6 components of the
two mutually commuting vectors (I 4+ a)/2 and (I —a)/2,
each of which behaves as an angular momentum vector. The
equivalence SO(4) = SO(3) x SO(3) corresponds to the iso-
morphism D, = A; x A; of Sect. 3.2.2.

Hydrogenic eigenfunctions belonging to various energies
can be selected to form bases for a number of groups. The
inclusion of all the levels up to a given n yields the IR (n —
1,0) of SO(5). Levels of a given / and all n form an infinite
basis for an IR of the noncompact group SO(2, 1) [46]. All
the bound hydrogenic states span an IR of SO(4, 2), as do the
states in the continuum [47]. Subgroups of SO(4, 2) and their
generators have been listed by Wybourne [13] in his Table
21.2.

To the extent that the central potential of a complex atom
resembles the r~! dependence for a bare nucleus, the group
SO(4) can be used to label the states [48].

3.7 The Generalized Wigner-Eckart Theorem
3.7.1 Operators

All atomic operators involving only the electrons can be
built from their creation and annihilation operators. The ap-
propriate group labels for an atomic operator acting on N
electrons, each with n relevant component states, reduces
to working out the various parts of the Kronecker products
[10...0]Y x[0...0 — 1]V of U(n). Subgroups of U(n) can
further define these parts, which may be limited by Hermitic-
ity constraints. The group labels for the Coulomb interaction
for f electrons were first given by Racah [6]. Interactions in-
volving electron spin were classified later [49—51]. Operators
that represent the effects of configuration interaction on the
d and f shells have also been studied [28, 52-56].

3.7.2 The Theorem

Let the ket, operator 7', and bra of a matrix element be
labeled by an IR (R, R., Rp) of a group G, each with a com-
ponent (i,,i.,ip). Suppose the supplementary labels y; are
also required to complete the definitions. The generalized
Wigner—Eckart theorem is

(YaRaia|T (yeRcic)yp Rpip)

=Y Ap(BRaia| Roip. Rei) . (3.21)
2

where f distinguishes the IRs R, should they appear more
than once in the reduction of the Kronecker product R, x R..
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The reduced matrix element Ag is independent of the iy [6,
8]. The second factor on the right-hand side of Eq. (3.21) is
a Clebsch—Gordan (CG) coefficient for the group G.

If the specification Ri can be replaced by Rtri, where
r denotes an IR of a subgroup # of G, and t is an additional
symbol that may be necessary to make the classification un-
ambiguous, the CG coefficient for G factorizes according to
the Racah lemma [6]

(ﬂRaTaraialeTbrbibv Rctcrcic)

= Z(araiavbib’ Fele)(BRaTaro| Ry Tpry + ReTele o -
o

(3.22)
The first factor on the right is a CG coefficient for the group
H'; the second factor is an isoscalar factor [57].

3.7.3 Calculation of the Isoscalar Factors

The group H above is often SO(3), whose Clebsch-Gordan
coefficients (and their related 3—; symbols) are well-known
(Chap. 2). The principal difficulty in establishing compara-
ble formulae for the isoscalar factors lies in giving algebraic
meaning to B. Several methods are available for obtaining
numerical results as follows.

Extraction from Tabulated Quantities

If Ry or R, correspond to the IRs labeling a single electron,
the factorization of the known [32] coefficients of fractional
parentage (cfp) according to formulae of the type [6]

(dVSLv{|d" 'S L")

= (dVSv{|d""'SV)(W'L’ + (10)d|WL) (3.23)
yields some isoscalar factors. In this example, W and W’
are the IRs of SO(5) defined by the triples NSv and N'S"v’
(with N’ = N — 1) as in Table 3.4. This approach can be ap-
plied to the f shell to give isoscalar factors for SO(7) and G,.
The many-electron cfp of Donlan [58] and the multielectron
cfp of Velkov [59] further extend the range to IRs R, and R,
describing many-electron systems. Isoscalar factors found in
this way have the advantage that their relative phases as well
as the significance of the indices  and t coincide with cur-
rent usage.

Evaluation Using Casimir’s Operator

Two commuting copies (b and ¢) are made of the generators
of the group G to form the generators of the direct product
Gy x G, [60]. Corresponding generators of G, and G, are
added to give the generators of G,. Each quadratic operator
(T ,)* appearing in the expression for Casimir’s operator C,
for G, (as listed in Table 3.3) is written as (T, + T .)>. On
expanding the expressions of this type, the terms (T ;)? and

(T .)? yield Casimir’s operators C, and C. for G, and G..
Their eigenvalues can be written down in terms of the high-
est weights of the IRs appearing in the isoscalar factor of
Eq. (3.22). If the cross products of the type (T - T ) can be
evaluated within the uncoupled states | R, 1,7y, R.T.7.), then
our knowledge of the eigenvalues of C, for the coupled states
| BR, T, ;) provides the equations for determining (to within
the freedom implied by f) the isoscalar factors relating the
uncoupled to the coupled states. The evaluation of the cross
products is straightforward when H = SO(3), since the rel-
evant 6—j symbols are readily available [61]. Examples of
this method can be found in the literature [52].

3.7.4 Generalizations of Angular Momentum
Theory

CG coefficients, n—j symbols, reduced matrix elements, and
the entire apparatus of angular momentum theory all have
their generalizations to groups other than SO(3). An inter-
change of two columns of a 3—; symbol has its analog in the
interchange of two parts of an isoscalar factor. For IRs W
and L of SO(2/ + 1) and SO(3), there are two possibilities:

1. The interchange of the two parts separated by the plus
sign, namely,

(WaTaLa|WthLb + I/VCTCLC)

= (=)' (WargLalWereLe + WytpLy) . (3.24)

where t = L, — L, — L. + x, with x dependent on the
IRs W only; or,
2. The reciprocity relation of Racah [6]

(WaTaLa | WbTbLh + WCTCLC)

= (=1)"[2Ly + 1) dim W,/ 2L, + 1) dim W}
X Wytp Lp|Wyta Ly + Wet L) , (3.25)

wheret' = L, — L, — L. + x’, with x’ dependent on the
IRs W, but taken to be [ by Racah for W, = (10...0).

Reduced matrix elements in SO(3) can be further reduced
by the extraction of isoscalar factors. When W, occurs once
in the decomposition of W x W, we have

(YaWaTaLa | T |1y, Wyts L)

. 1
= [2L, + 1)/ dim W12 (v Wo 1T [y, W)

x (WytyLy + WL|W,t,Ly) . (3.26)

Analogs of the n—j symbols are discussed by Butler [62].
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3.8 Checks

The existence of numerical checks is useful when us-
ing group theory in atomic physics. The CG coefficients,
isoscalar factors, and the various generalizations of the n—j
symbols are often calculated in ways that conceal the sim-
plicity and structure of the answer. Practitioners are familiar
with several empirical rules:

1. Numbers with different irrationalities, such as /2 and

\/5, are never added to one another.

2. The denominators of fractions seldom involve high
primes.

3. High primes are uncommon, but when they appear, it
is usually in diagonal matrix elements rather than off-
diagonal ones.

4. A sum of a number of terms frequently factors in what
appears to be an unexpected way, and similar sums often
exhibit similar factors.

Guided by these rules, one will find that such errors as do
arise occur with phases rather than with magnitudes.

References

14.

15.

16.

17.

18.

. Racah, G.: Group Theory and Spectroscopy. Springer Tracts in

Modern Physics, vol. 37. Springer, New York (1965)

. Eisenhart, L.P.: Continuous Groups of Transformations. Dover,

New York (1961)

. Cartan, E.: Sur la Structure des Groupes de Transformations Finis

et Continus. Nony, Paris (1894). Thesis

. Judd, B.R.: In: Loebl, E.M. (ed.) Group Theory and Its Applica-

tions. Academic Press, New York (1968)

. Condon, E.U., Odabasi, H.: Atomic Structure. Cambridge Univ.

Press, Cambridge (1980)

. Racah, G.: Phys. Rev. 76, 1352 (1949)
. Judd, B.R.: Operator Techniques in Atomic Spectroscopy. Prince-

ton Univ. Press, Princeton (1963)

. Wigner, E.P.: Group Theory. Academic Press, New York (1959)
. Judd, B.R.: Phys. Rev. 162, 28 (1967)

10.
11.
12.
13.

Armstrong, L., Judd, B.R.: Proc. R. Soc. A 315, 27 (1970)
Armstrong, L., Judd, B.R.: Proc. R. Soc. A 315, 39 (1970)

Judd, B.R., Lister, G.M.S.: J. Phys. A 25, 2615 (1992)
Wybourne, B.G.: Classical Groups for Physicists. Wiley, New
York (1974)

Wybourne, B.G.: Symmetry Principles and Atomic Spectroscopy.
Wiley, New York (1970)

McKay, W.G., Patera, J.: Tables of Dimensions, Indices, and
Branching Rules for Representations of Simple Lie Algebras.
Dekker, New York (1981)

Dynkin, E.B.: Am. Math. Soc. Transl. Ser. 2 6, 245 (1965)
Rutherford, D.E.: Substitutional Analysis. Edinburgh Univ. Press,
Edinburgh (1948)

Moshinsky, M.: Group Theory and the Many-Body Problem. Gor-
don Breach, New York (1968)

19.

20.
21.

22.

23.
24.
25.

26.
27.
28.
29.
30.
31.

32.

33.
34.
35.
36.
37.
38.
39.

40.

41.
42.
43.
44.
45.

46.
47.

48.
49.
50.
S1.

52.
53.
54.
55.
56.
57.
58.

59.

60.

61.

62.

Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover,
New York (1950)

Harter, W.G.: Phys. Rev. A 8, 2819 (1973)

Harter, W.G.: Principles of Symmetry, Dynamics and Spec-
troscopy. Wiley, New York (1993)

Harter, W.G., Patterson, C.W.: A Unitary Calculus for Electronic
Orbitals. Lect. Notes Phys., vol. 49. Springer, Berlin, Heidelberg
(1976)

Drake, G.W.E,, Schlesinger, M.: Phys. Rev. A 15, 1990 (1977)
Kent, R.D., Schlesinger, M.: Phys. Rev. A 50, 186 (1994)
Littlewood, D.E.: The Theory of Group Characters. Clarendon,
Oxford (1950)

Jahn, H.A.: Proc. R. Soc. A 201, 516 (1950)

Flowers, B.H.: Proc. R. Soc. A 212, 248 (1952)

Judd, B.R., Wadzinski, H.T.: J. Math. Phys. 8, 2125 (1967)
Shudeman, C.L.B.: J. Frankl. Inst. 224, 501 (1937)

Judd, B.R., Lister, G.M.S.: Phys. Rev. Lett. 67, 1720 (1991)
Wybourne, B.G.: Spectroscopic Properties of Rare Earths. Wiley,
New York, p 15 (1965)

Nielson, C.W., Koster, G.F.: Spectroscopic Coefficients for the p”,
d", and " Configurations. MIT Press, Cambridge (1963)
Feneuille, S.: J. Phys. Fr. 28, 61 (1967)

Feneuille, S.: J. Phys. Fr. 28, 315 (1967)

Feneuille, S.: J. Phys. Fr. 28, 701 (1967)

Feneuille, S.: J. Phys. Fr. 28, 497 (1967)

Feneuille, S.: J. Phys. Fr. 30, 923 (1969)

Feneuille, S., Crubellier, A., Haskell, T.: J. Phys. Fr. 31, 25 (1970)
Fano, U., Rao, A.R.P.: Symmetry Principles in Quantum Physics.
Academic Press, New York (1996). Sect. 8.3.3

Georgi, H.: Lie Algebras in Particle Physics. Benjamin/Cum-
mings, Reading (1982). Chap. XXV

Judd, B.R.: Phys. Rep. 285, 1 (1997)

Lo, E., Hansen, J.E., Judd, B.R.: J. Phys. B 33, 819 (2000)

Judd, B.R., Lo, E.: Phys. Rev. Lett. 85, 948 (2000)

Hansen, J.E., Ven, E.G.: Mol. Phys. 101, 997 (2003)

Englefield, M.J.: Group Theory and the Coulomb Problem. Wiley,
New York (1972)

Armstrong, L.: J. Phys. Fr. 31, 17 (1970)

Waulfman, C.E.: In: Loebl, E.M. (ed.) Group Theory and Its Appli-
cations, vol. 2, Academic Press, New York (1971)

Herrick, D.R.: Adv. Chem. Phys. 52, 1 (1982)

McLellan, A.G.: Proc. Phys. Soc. Lond. 76, 419 (1960)

Judd, B.R.: Physica 33, 174 (1967)

Judd, B.R., Crosswhite, H.M., Crosswhite, H.: Phys. Rev. 169, 130
(1968)

Judd, B.R.: Phys. Rev. 141, 4 (1966)

Judd, B.R., Suskin, M.A.: J. Opt. Soc. Am. B 1, 261 (1984)

Judd, B.R., Leavitt, R.C.: J. Phys. B 19, 485 (1986)

Leavitt, R.C.: J. Phys. A 20, 3171 (1987)

Leavitt, R.C.: J. Phys. B 21, 2363 (1988)

Edmonds, A.R.: Proc. R. Soc. A 268, 567 (1962)

Donlan, V.L.: Air Force Material Laboratory Report No. AFML-
TR-70-249. Wright-Patterson Air Force Base, Ohio (1970)
Velkov, D.D.: Multi-Electron Coefficients of Fractional Parentage
for the p, d, and f Shells. The Johns Hopkins Univ., Baltimore
(2000). Ph.D. Thesis, http://www.pha.jhu.edu/groups/cfp/

Nutter, P., Nielsen, C.: Fractional Parentage Coefficients of Terms
of f",1I. Direct Evaluation of Racah’s Factored Forms by a Group
Theoretical Approach. Raytheon, Waltham, p 133 (1963). Techni-
cal Memorandum T-133

Rotenberg, M., Bivins, R., Metropolis, N., Wooten, J.K.: The 3-;
and 6-j Symbols. MIT Press, Cambridge (1959)

Butler, P.H.: Philos. Trans. R. Soc. A 277, 545 (1975)


http://www.pha.jhu.edu/groups/cfp/

80

B.R.Judd

Brian Judd Brian Judd has had a life-
long interest in applying group theory to
the spectroscopic properties of the rare
earths. He held appointments at Oxford,
Chicago, Paris and Berkeley before join-
ing the Physics Department of the Johns
Hopkins University in 1966. He received
the Spedding Award for Rare-Earth Re-
search in 1988 and is an Honorary Fellow
of Brasenose College, Oxford.



Check for
updates

Dynamical Groups

Josef Paldus

Contents in a single irreducible representation (irrep). Likewise,

one may require that the Hamiltonian be expressible in
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regards any group (or corresponding algebra) as a dy-
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of electronic structure) exploit compact LG’s.
We follow the convention of designating Lie groups by

Abstract capital letters and Lie algebras by lower case letters, e.g.,
The well-known symmetry (invariance, degeneracy) the Lie algebra of the rotation group SO(3) is designated
groups or algebras of quantum mechanical Hamiltoni- as so(3).

ans provide quantum numbers (conservation laws, inte-

grals of motion) for state labeling and the associated Keywords

selection rules. In addition, it is often advantageous to
employ much larger groups, referred to as the dynami-
cal groups (noninvariance groups, dynamical algebras,
spectrum generating algebras), which may or may not
be the invariance groups of the studied system [1-7]. In
all known cases, they are Lie groups (LGs), or rather
corresponding Lie algebras (LAs), and one usually re-
quires that all states of interest of a system be contained
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4.1 Noncompact Dynamical Groups
As an illustration we present basic facts concerning LAs that
are useful for centrosymmetric Kepler-type problems, their
realizations and typical applications. Recall that a realiza-
tion of a LA is a homomorphism associating a concrete set
of physically relevant operators with each abstract basis of
the given LA. The physical operators we will use are general
(intrinsic) position vectors R = (X, X»,..., Xy) in R" and
their corresponding momenta P = (Py, P, ..., Py), satis-
fying the basic commutation relations ( = 1)

(X Xi] = [P, P] = 0,

[X;, P ] =18l . (41)

4.1.1 Realizations of so(2,1)
This important LA is a simple noncompact analogue
of the well-known rotation group LA so(3), (Sect. 2.1
and Sect. 3.2). Designating its three generators by 7; (j =
1,2, 3), its structure constants (Sect. 2.1.1 and Sect. 3.1.1)
are defined by

(11, To] = iyTs ,

[T>, T5] = iT;

(T3, T1] = iT; , 4.2)

with y = —1, while y = 1 gives so(3). Defining the so-called
ladder (raising and lowering) operators

T, =T +iT,, (4.3)
we also have that
(T4, T-]=2yT5, [15,T:] = £T5. (4.4)
The Casimir operator then has the form
T°=y(T}+T5)+ Ty =yToT-+T{ = Ts . (45)

With a Hermitian scalar product satisfying T; =T;(j =
1,2,3), so that Tl = T%, the unitary irreps (unirreps) car-
ried by the simultaneous eigenstates of 72 and T3 have the
form (Sect. 2.1.1 and Sect. 2.2)

T?|kq) = k(k + 1)|kq) ,
Tzlkq) = qlkq) ,
Tilkg) = Vy(k Fq)k £q + Dlk.qg£1).

(4.6)

For so(3), (y = 1), only finite dimensional irreps D®), k =
0,1,2,... with |¢| <k are possible (Sect. 2.2 and Sect. 2.3).
In contrast, there are no nontrivial finite dimensional unir-
reps of so(2,1); (for classification, see e.g., [2, 14, 15]). The

relevant class DT (k) of so(2,1) unirreps for bound state
problems has a T3 eigenspectrum bounded from below and is
givenby g = —k + u; n=0,1,2,...,and k < 0 or, equiv-
alently, D*(—k — 1) withg =k + 1+ u; £ =0,1,2,...;
k > —1, since k; = —k — 1 defines an equivalent unirrep and
ki(ky + 1) = k(k + 1). There exists a similar class of irreps
with the 73 spectrum bounded from above and two classes
(principal and supplementary) with unbounded 73 spectra
(which may be exploited in scattering problems).

For problems involving only central potentials, a useful
realization is given in terms of the radial distance R = |R|
and the radial momentum

i d d 1
Pp=-—— —R=—i[ — + —
R="RoR 1(8R+R)
1
= (R-P—il). (4.7)
so that [R, Pr] = il. Recall that
2 , L7
P =PR+ﬁ’ L=RAP. 4.8)

The general form of the desired so(2,1) realization is [2, 14—
17]
T 1
1 — _Rfv(v72R2Pl%+§:FR2v) ,
T3 2

T,

%[mﬂRPR —i(l—vHI], (4.9)

where £ is either a c-number (scalar operator) or an operator
that commutes with both R and Pg, and v is an arbitrary real
number.

To interrelate this realization with so(2,1) unirreps D+ (k)
or Dt (—k — 1), we have to establish the connection between
the quantum numbers k, ¢ and the parameters £ and v. Con-
sidering the Casimir operator 7% in Eq. (4.5), we find that in
our realization Eq. (4.9)

T? =¢+ (1-v?) /4%, (4.10)
so that |
— -2
k_2( 1+ J4E 1+ v ) @.11)
and
g=qo+m, u=0,12,..., (4.12)
where

1
q0=k+1=§<1i 45—}—1}*2), k>—1. (413)

4.1.2 Hydrogenic Realization of so(4,2)

To obtain suitable hydrogenic realizations of so(4,2) it is best
to proceed from so(4) (the dynamical symmetry group for
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the bound states of the nonrelativistic Kepler problem) and
merge it with so(2,1) [2, 14, 15].

The so(4) LA can be realized either as a direct sum
so(4) = so(3) @ so(3) or by supplementing so(3) with an
appropriately scaled quantum mechanical analogue of the
Laplace-Runge—Lenz (LRL) vector (Sect. 3.6.2). In the first
case, we use two commuting angular momentum vectors M
and N (Sect. 2.5),

[Mj. Mi] =igjieMe, [Nj, Ni] = igjueNe

[M;,N,] =0, (j.k.£=12,3), (4.14)

while in the second case, we use the components of the total
angular momentum vector J and LRL-like vector ¥V with
commutation relations

[J7. Ji] = igjeJe -
[V;. Vi] =ioejrele
[ Vi] = iejueVe .

(k. t=1,2,3), (4.15)

with 0 = 1. For ¢ = —1, we obtain so(3,1) (the LA of
the homogeneous Lorentz group), which is relevant to the
scattering problem of a particle in the Coulomb (or Kepler)
potential (see the text following Egs. (4.25) and (4.31)). For
o = 0, we get e(3) (the LA of the three-dimensional Eu-
clidean group) [18-20]. Note that Egs. (4.14) and (4.15) are
interrelated by
1 1

M=§(J+V), N=§(J—V), (4.16)
sothat J = M & N and V = 2M — J. The two Casimir
operators C; and C, are

Ci=0J*+V?
=0l J_+ ViV +VE+ali(J3-2),
G=W-I)=U"V)

1
== E(V+J_ + V_J+) + V3J3 B (417)

where, again,

Xy =X +iXo, X=JorV. (4.18)

For so(3,1) and e(3), only infinite dimensional nontrivial ir-
reps are possible, while for so(4), only finite dimensional
ones arise. To get unirreps, we require J and V to be Hermi-
tian. Using {J2, J3, Cy, C,} as a complete set of commuting
operators for so(4), we label the basis vectors by the four
quantum numbers as |yjm) = |(jo, n)jm), so that

JPlyjm) = j(j + Dlyjm),
Jilyjm) = mlyjm)

Cilyjm) = (jg —n* = 1)lyjm) .
)

Golyjm) = jonlyjm) . (4.19)

83
with 2| jy| being a nonnegative integer and
j = |j0|a |.]0|+ 155n_1 X
n=ljol+k k=12, (4.20)

(see, e.g., [17] for the action of J, V3 and V).

To obtain the hydrogenic (or Kepler) realization of so(4),
we consider the quantum mechanical analogue of the classi-
cal LRL vector

1
—(p/\L—L/\p)—Zr_lr

V=
2
L
=5rp —plr-p)+rH,
L=rnAp, (4.21)
which commutes with the hydrogenic Hamiltonian
L,
H = 4 Zr . (4.22)
Note that B
[L,H] = [V,H] =0,
(L-V)=(V-L)=0,
V2=2H(L*+1)+ 2%, (4.23)

while the components of L and 14 satisfy the commutation
relations

[Lj. L] = i€jreLy

I:Ljv I/k] = ieijVlZ 5

[Vi. Vi] = (—2H)i€jre Ly - (4.24)

Thus, restricting ourselves to a specific bound state energy
level E,, we can replace H by E, and define

V; = (R2E)7'?V; (= 1.2.3), (4.25)
obtaining the so(4) commutation relations Eq. (4.15) (with
J replaced by L). This is Pauli’s hydrogenic realization of
so(4) [21-23]. [In a similar way we can consider continuum
states £ > 0 and define V = (2E)~'/2V, obtaining an so(3,1)
realization.] The last identity of Eq. (4.23) now becomes
V?=—(L*+1)-2*)2E, . (4.26)
which immediately implies Bohr’s formula, since V2 + L? =
4M? = —1 — Z%/2E,, so that
E, =-2*/2Qji+ 1)’ = =2°/2n° , (4.27)
where n = 2j; + 1 and j; is the angular momentum quan-
tum number for M, Eq. (4.16). In terms of the irrep labels
Eq. (4.20), we have that j, = 0, n = n, so that |y¢m) =
[(0,n)m) = |ndm), L =0,1,...,n—1.
Using the stepwise merging of so(4) and so(2,1) [adding
first T,, which leads to so(4,1), and subsequently 77 and 73],
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we arrive at the hydrogenic realization of so(4,2) having 15
generators L, A, B, I' | T\, T, T5, namely ([2, 14, 15, 17])

L=RAP,
A 1
=_-RP*-~P(R-P)FR,
B 3 ( ) F
I' =RP,
T 1 2 1 2 2 p—1
= —(RP R) = —(RP, L°R R) ,

T,=R-P—il = RPy . (4.28)

Relabeling these generators by the elements of an antisym-
metric 6 x 6 matrix according to the scheme

0 Ly —-L, A, B, I
0 L, 4 B D

Ljy < 0 A By I (4.29)
0 T, T
0 T
0

we can write the commutation relations in the following stan-
dard form

[Ljk. Lom] =

i(gj¢eLim + GimLje — gkeLjm — &imLie) . (4.30)

with the diagonal metric tensor g;; defined by the matrix
G =diag[1, 1,1, 1,—1, —1]. The matrix form Eq. (4.29) also
implies the subalgebra structure

so(4,2) D so(4,1) D so(4) Dso(3), (4.31)
with so(4,1) generated by L, A, B and 75, and so(4) by
L,A.[L, B also generate so(3,1).]

The three independent Casimir operators (quadratic, cu-
bic, and quartic) are [24] (summation over all indices is
implied)

1

0> = EijL'jk
:L2+A2—BZ—F2+T32—T12—T22,
1 .
03 = Egijkian” Lkepmn
—T\B-L)+To('-L) + T5(A - L)
+A-(BAT),

Q4= Ly L*Ly, L™ . (4.32)
For our hydrogenic realization Q, =—3, O3 = 04 =0. Thus,
our hydrogenic realization implies a single unirrep of so(4,2)
adapted to the chain Eq. (4.31).

4.2 Hamiltonian Transformation and Simple
Applications

The basic idea is to transform the relevant Schrodinger equa-
tion into an eigenvalue problem for one of the operators from
the complete set of commuting operators in our realizations,
e.g., Tz for so(2,1). Instead of using a rather involved “tilt-
ing” transformation ([1, p.20], and [2, 14, 15]), we can rely
on a simple scaling transformation [16, 25]

r=AR, p=A"'P, r=AR, p,=1"'Pg, (433)
where
1/2
N
r=|(>_x] . (4.34)
j=1
and
1
p?=p’+ r‘2|:Z(N —1)(N —3) + LZ} , (4.35)

with p, defined analogously to Pg in Eq. (4.7); r and p are
the physical operators in terms of which the Hamiltonian of
the studied system is expressed. Recall that L? has eigenval-
ues [26]

(C+N-2), £=0,1,2,... for N>2, (436)

and we can set { =0 for N = 1 (the angular momentum term
vanishes in the one-dimensional case). The units in which
m=e =h =1, ¢ ~ 137 are used throughout.

421 N-Dimensional Isotropic Harmonic
Oscillator

Considering the Hamiltonian

1 1
H=-p*+ -o%?,

5 7 (4.37)

with p? in the form Eq. (4.35), transforming the correspond-
ing Schrodinger equation using the scaling transformation
Eq. (4.33) and multiplying by %12, we get for the radial com-
ponent

1/1 1 1
—(—P1§ +R72%¢ +—w2)k4R2——A2E)wR(AR) =0, (4.38)
2\ 4 4 2
with
1 1
£ = E(N —1)(N =3) + 16(5 +N-2). (439

Choosing A such that (w/ 2)2)k4 =1, we can rewrite
Eq. (4.38) using the so(2,1) realization Eq. (4.9) with v = 2
as

(T3 — isz)wR(AR) =0. (4.40)
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Thus, using the second equation of Eq. (4.6) we can interre-
late YR (AR) with |kg) and set $A2E = ¢, so that

E =4q/)* =20 , (4.41)
with g given by Eqgs. (4.12) and (4.13), i.e.,
gq=qo+pn, pu=0,12,..., (4.42)
and
q0=k+1=%[li(£+%N—l):|. (4.43)

Now, for N = 1, we set £ = 0 so that gy = i and ¢y = %,
yielding for E = 2qw the values (3 +2x)w and (3 +2p +
1)w, p =0,1,2,.... Combining both sets we thus get for
N =1 the well-known result

1
EEEn:(n+§)a), n=20,1,2,.... (4.44)

Similarly, for the general case N > 2, we choose the upper
sign in Eq. (4.43) [so that kK > —1] and get

1
EEE,,=(n+§N)a), n=0,12,..., (4.45)

where we identified (£ 4+ 2u) with the principal quantum
number 7.

422 N-Dimensional Hydrogenic Atom

Applying the scaling transformation Eq. (4.33) to the hydro-

genic Hamiltonian Eq. (4.22) in N -dimensions, we get for
the radial component (after multiplying from the left by A>R)

B(RP@ + R7'¢ —2A°ER) — AZ}wR(AR) =0, (4.46)

where now
g=%(N—1)(N—3)+€(€+N—2). (4.47)
In this case, we must set 2A2E = —1 and use realization
Eq. (4.9) with v = 1 to obtain
(T5 —AZ2)YRr(AR) = 0. (4.48)
This immediately implies that
AMZ=gq, (4.49)
and
q0=k+1=%[1:|:(2€+N—2)]. (4.50)

Choosing the upper sign [since £ > 0 and k > —1], so that
qgo=1+ %(N —1), and identifying ¢ with the principal quan-
tum number 7, we finally have that

1 z2

EEEHZ——:—W.

e 4.51)

The N -dimensional relativistic hydrogenic atom can be
treated in the same way, using either the Klein—Gordon or
Dirac—Coulomb equations [2, 14-17].

4.2.3 Perturbed Hydrogenic Systems

The so(4,2) based Lie algebraic formalism can be conve-
niently exploited to carry out large-order perturbation theory
([27-29] and Chap. 5) for hydrogenic systems described by
the Schrodinger equation

[Ho +eV(r)|y(r) = (Eo + AE)Y(r) , (4.52)

with Hj given by Eq. (4.22) and E, by E of Eq. (4.51). Ap-
plying transformation Eq. (4.33), using Egs. (4.49), (4.51),
and multiplying on the left-hand side by A>R, we get

BRPZ —q+ %R + eA’RV(AR) — AZRAE}D(R) =0,

(4.53)
where we set Y (AR) = W(R). For the important case of
a three-dimensional hydrogenic atom [N = 3,§ = £(£ +
1), ¢ =n], using the so(4,2) realization Eq. (4.28) [or so(2,1)
realization Eq. (4.9) with v = 1] we get

(K +eW —SAE)¥(R) =0, (4.54)
with
K = T3 —n,
W = A*RV(AR) ,
S =A’R. (4.55)

We also have that A = n/Z and for the ground state case
n =q = 1. Although Eq. (4.54) has the form of a generalized
eigenvalue problem requiring perturbation theory formalism
with a nonorthogonal basis (where S represents an overlap),
T; is Hermitian with respect to a (1/R) scalar product, and
the required matrix elements can, therefore, be evaluated eas-
ily [2, 14, 15, 17, 27-29].

For central field perturbations, V(r) = V(r), the problem
reduces to one dimension, and since R = T3 — Ty, the so(2,1)
hydrogenic realization (v = 1) can be employed. For prob-
lems of a hydrogenic atom in a magnetic field (Zeeman ef-
fect) [27-30] or a one-electron diatomic ion [31], the so(4,2)
formalism is required (note, however, that the LoSurdo—
Stark effect can also be treated as a one-dimensional problem
using parabolic coordinates [32]).
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The main advantage of the LA approach stems from the
fact that the spectrum of 73 is discrete, so that no integra-
tion over continuum states is required. Moreover, the relevant
perturbations are closely packed around the diagonal in this
representation, so that infinite sums are replaced by small fi-
nite sums.

For example, for the LoSurdo-Stark problem, when
V(r) = ¥z, where F designates electric field strength
in the z-direction, we get Eq. (4.54) with ¢ = F and
W = n/Z)3RZ, S = (n/Z)*R. Since both R and Z are
readily expressed in terms of so(4,2) generators,

Z=B3;—As, R=T;—-T, (4.56)
we can easily compute all the required matrix elements [2,
14, 15, 17].
Similarly, considering the Zeeman effect with

1 1
V(r) = SBLs+ g1;2(r2 -z%), (4.57)
where B designates magnetic field strength in the

z-direction, we have for the ground state whenn = 1, £ =
m=0thate =3B, K=Ts—1, W =Z*R(R* — Z?)
and S = Z72R. Again, the matrix elements of W and S are
obtained from those of Z and R, Eq. (4.56), by matrix mul-
tiplication (for tables and programs, see [17]).

One can treat one-electron diatomic ions [2, 14, 15, 31]
and screened Coulomb potentials, including charmonium
and harmonium [10-12, 17, 33, 34], in a similar way.

Note, finally, that we can also formulate the perturbed
problem Eq. (4.54) in a standard form not involving the
“overlap” by defining the scaling factor as A = (=2E)~'/2,
where E is now the exact energy E = Ey + AE; Eq. (4.54)
then becomes

(T5+ eW —A2)¥(R) =0, (4.58)
with the eigenvalue AZ. In this case, any conventional per-

turbation formalism applies, but the desired energy has to be
found from A Z [35].

4.3 Compact Dynamical Groups

Unitary groups U(n) and their LAs often play the role of
(compact) dynamical groups since

1. Quantum mechanical observables are Hermitian, and the
LA of U(n) is comprised of Hermitian operators [under
the exp(iA) mapping].

2. Any compact Lie group is isomorphic to a subgroup of
some U(n).

3. “Nothing of algebraic import is lost by the unitary restric-
tion” [36].

All U(n) irreps have finite dimension and are, thus,
relevant to problems involving a finite number of bound
states [3-6, 10-12, 36-45].

4.3.1 Unitary Group and Its Representations

The unitary group U(n) has n? generators E;; spanning its
LA and satisfying the commutation relations

[Eij’ Ekl] = 8 Eig — 8i¢ Exj (4.59)
and the Hermitian property
Ejy = Eji. (4.60)

They are classified as raising (i < j), lowering (i > j), and
weight (i = j) generators according to whether they raise,
lower, and preserve the weight, respectively. The weight
vector is a vector of the carrier space of an irrep that is
a simultaneous eigenvector of all weight generators E;; of
U(n) (comprising its Cartan subalgebra), and the vector
m = (my,my, ..., m,) with integer components, consisting
of corresponding eigenvalues, is called a weight. The highest
weight m,, (in lexical ordering),

(4.61)

m, = (mlnﬂmZm---vmnn) P

with
Mig = Moy 2 22 2 Myy ,

(4.62)

uniquely labels U(n) irreps, I"(m,,), and may be represented
by a Young pattern. Subducing I"(m,) of U(r) to U(r — 1),
embedded as U(r — 1) & 1 in U(r), gives [41]
Fmy) L UG =1) =P T mp) (4.63)
where the sum extends over all U(r — 1) weights m,_; =
(my -1, My 1, ...m_y,—1) satisfying the so-called “be-
tweenness conditions” [38]
Miyp 2 Mip1 = Miyy, i=1...,r=1). (464
Two irreps I"(m,) and I"(m),) of U(n) yield the same ir-
rep when restricted to SU(n) if m; =m) + h, i =1,...,n.
The SU(n) irreps are thus labeled with highest weights with
my, = 0. The dimension of I"(m,) of U(n) is given by the
Weyl dimension formula [36]

dim I"(my) = [[(min —mjn + j — i)/1!2!---(n —1).
i<j

(4.65)
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The U(n) Casimir operators have the form and satisfy the commutation relations
CkU(n) _ i v Enso--Eq i Eni - (4.66) [Fij. Fe) = 8jk Fie + 8i0Fji — 8ix Fjo — 8¢ Fir . (4.73)
izl The canonical chain has the form
The first-order Casimir operator is given by the sum of
weight generators and equals the sum of the highest weight O(m)>0(m—1)>--20(2). (4.74)
components.
Since U(1) is Abelian, the Gel’fand-Tsetlin [42] canonical The components of the highest weight m,,,
chain (Sect. 3.4.3)
m, = (M, Moy, ..., Mky) , (4.75)
Umnr)>Um—-1)D---DU() (4.67)
satisfy the conditions
can be used to label uniquely the basis vectors of the carrier
space of I"(m,) by triangular Gel’fand tableaux [m] defined 1y, > m,, > --->my, >0 for n=2k+1, (4.76)
by
- - _ - and
my Mip Mpy  cveeee Mpyn
my_ myp—p===- My—1,n—1 Myy = Mypy = -0+ 2 |mkn| for n =2k, 4.77)
[m] = T o (468 where m;, are simultaneously integers or half-odd inte-
gers. The former are referred to as tensor representations
e 2 M2 (since they arise as tensor products of fundamental irreps),
| "M L miy ] while those with half-odd integer components are called

with entries satisfying betweenness conditions Eq. (4.64).
Matrix representatives of weight generators are diagonal

i i1
([m'1| Eii|[m]) = Sy pm iji - ij,zel , (4.69)

J=1 Jj=1

while those for other generators are rather involved [42—45].
Note that only elementary (E; ;1) raising generators are re-
quired since

(| Eij[Im]) = ([m]| E;il[m]) . (4.70)

and
Ei; =[Eiiv1.Eis1)] - 4.71)
In special cases required in applications ([39, 40]

and Sect. 4.3.4) efficient algorithms exist for the computa-
tion of explicit representations.

4.3.2 Orthogonal Group O(n) and Its
Representations

Since O(n) is a proper subgroup of U(n), its representation
theory has a similar structure. The suitable generators are

Fij = Ej—Eji, Fji
Fii =0,

=-F;,

Fl =—F; (4.72)

spinor representations. Note that for n = 2k, we have two
lowest (mirror-conjugated) spinor representations, namely
m = (% % e %) and m©) = (% e % —%). Only ten-
sor representations can be labeled by Young tableaux.

Subducing O(n) to O(n — 1), the betweenness conditions
(branching rules) have the form

mi, = m; p—1 > Miin (l = 1, . ,k — 1) (478)

together with

My ok41 = Mg okl (4.79)

when n = 2k + 1. The m; ,,_; components are integral (half-
odd integral) if the m;, are integral (half-odd integral). The
U(n) D O(n) [or SU(n) D SO(n)] subduction rules are more
involved [46].

4.3.3 Clifford Algebras and Spinor
Representations

While all reps of U(n) or SL(n) arise as tensor powers of
the standard rep, only half of the reps of SO(m) or O(m)
arise this way, since SO(m) is not simply connected when
m > 2. A double covering of SO(im) leads to spin groups Spin
(m). The best way to proceed is, however, to construct the
so-called Clifford algebras C,,, whose multiplicative group
(consisting of invertible elements) contains a subgroup that
provides a double cover of SO(m). The key fact is that Cy is
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isomorphic with gl(2¥) and Cy 1, with gl(2¥) @ gl(2¥). The
reps of C,, thus provide the required spinor reps.

A Clifford algebra C,, is an associative algebra generated
by Clifford numbers «; satisfying the anticommutation rela-
tions

{og, o} = 26y

G.j=1,....m). (4.80)

Since o? = 1,dimC,, = 2™, and a general element of C,,
is a product of Clifford numbers o' ,? - - - ot/ with v; = 0
or 1.

To see the relation with so(m + 1) note that

> I, 1[ ] 1
= ——ioy , —|aj ok | = ooy,
0k 1% 7 1% %k 2% %k

(J # k)

satisfy the commutation relations Eq. (4.73).
As an example, C;, can be realized by Pauli matrices by

. 4.

05_0_0 ! Oy =0 = 0
1 =01 = 107 2 — 02— —i

Clearly, the four matrices 1,, 1, &y, and aj;, are linearly
independent (note that 63 =i6'10;), so that C; is isomorphic
to gl(2,C).

Similarly, considering Dirac—Pauli matrices

—il, 0 .
= =1 R
Zlo -

Fje =
4.81)

yi = (_:lk i‘:f), (k=1,2.3), (4.83)
we have that

iy} =28;, (.j=1....4), (4.84)
sothaty; (i =1,...,4)or (i =0,...,3) represent Clifford

numbers for Cyand 14,y ¥, v, (0 <), v, ¥; v, (i <j <k)
andys =y ¥,V 3V 4 =1y ¥ 1YY 3 form an additive basis
for gl(4, C) (the y, themselves are said to form a multiplica-
tive basis). For general construction of C,, Clifford numbers
in terms of direct products of Pauli matrices see [47, 48].

4.3.4 Bosonic and Fermionic Realizations of U(n)

Designating by b; (b;) the boson creation (annihilation) op-
erators (Sect 61 1) satlsfymg the commutation relations
[bi, b;] = [bl, j] =0, [b;, j] = §;j, we obtain a possible
U(n) realization by defining its n? generators as follows

Gij = bib; . (4.85)

The first-order Casimir operator, Eq. (4.66) with k = 1, then
represents the total number operator

ZG,, ib}b,- :
i=1

and the physically relevant states, being totally symmetric,
carry single row irreps I'(N0) = I'(NO---0).

Similarly, for fermion creation (annihilation) opera-
tors X,T(X ;) that are associated with some orthonor-
mal spin-orbital set {|I)}, I = 1,2,...,2n, and satisfy

c™ (4.86)

the anticommutation relations {X;, X,} = {X,T,X;} =0,
{X;, X;} = §;;, the operators
er) =X/ X, (4.87)

again represent the U(2n) generators satisfying Egs. (4.59)
and (4.60). The first-order Casimir then represents the total
number operator N = > X,TX 1, while the possible phys-
ical states are characterized by totally antisymmetric single
column irreps I"(1Y0) = I"'(11---1 0---0).

4.3.5 The Vibron Model

Similar to the unified description of nuclear collective rovi-
brational states using the interacting boson model [49-51],
one can build an analogous model for molecular rotation-
vibration spectra [8]. For diatomics, an appropriate dynam-
ical group is U(4) [8, 52-54] and, generally, for rotation-
vibration spectra in r-dimensions, one requires U(r + 1).
For triatomics, the U(4) generating algebra is generalized
to U(4) ® U(4), and for the (k 4+ 1) atomic molecule to
UD4) ®--- @ UK (4) [8, 52-54].

For the bosonic realization of U(4), we need four cre-
ation (bT i = 1,...,4) and four annihilation (b;) operators
(Sect. 4.3.4). The Hamiltonian may be generally expressed
as a multilinear form in terms of boson number preserving
products (b b;), so that using Eq. (4.85) we can write

H= h<°>+2h<”G,,+ Y hiGij G+
ij z/ki

. (4.88)

The energy levels (as a function of 0, 1, 2, ... -body matrix
elements A°, hg}), hf/zl)c ;> etc.) are then determined by diag-
onalizing H in an appropriate space, which is conveniently
provided by the carrier space of the totally symmetric irrep
T'(N000) = I'(NO) of U(4).

The requirement that the resulting states be character-
ized by angular momentum J and parity P quantum num-
bers necessitates that the boson operators involved have
definite transformation properties under rotations and re-

flections [8]. The boson operators are thus subdivided into
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the scalar operators (o,0), J = 0, and vector operators
(nl,n,,;,u = 0,=£1), J =1 with parity P = (—)’. All com-
mutators vanish except for

[o.0 =1, [mum)] =68 - (4.89)
Since H preserves the total number of vibrons N =n, +n,,
the second-order Hamiltonian Eq. (4.88) within the irrep
I'(NO0) can be expressed in terms of four independent pa-
rameters (apart from an overall constant) as

~7(0
H ="+ Mz x n]g)

+ 352)[[”’r X nT](O) x|

R
=N

<71

0
(
+ ef)[[rﬂ x 1] x| ](2)] 5

0
+ ef)[[nT x nT](O) x [6 x &](0)

R
=N

X

+ [o" x o' x [# x fr]“”];o) bl (490)
where 6 = 0, 77, = (—)'*m_,, and square brackets indicate
the SU(2) couplings.

In special cases, the eigenvalue problem for H can be
solved analytically, assuming that H can be expressed in
terms of Casimir operators of a complete chain of subgroups
of U(4) (referred to as dynamical symmetries). Requiring
that the chain contains the physical rotation group O(3), one
has two possibilities

I U@ D>04) >0(3) D02,

1) U@4) >UB)>0(3)>0Q). 4.91)

These imply labels (quantum numbers): N [total vibron
number defining a totally symmetric irrep of U(4)], w =
N, N—2, N—4,...,1o0r0 [defining a totally symmetric
irrepof O(4)] andn, = N, N —1,...,0 [defining the U(3)
irrep], in addition to the O(3) D O(2) labels J, M; | M| < J.
In terms of these labels one finds for the respective Hamilto-
nians

H(I) =F4+ 4 C20(4) + BC20(3) ,

H® = F 4+ ¢¢% + a0 + 29, (4.92)

where F', A, B, ¢, a, B are free parameters, and CiU(k), Cio(k)

are relevant Casimir operators, the following expressions [8,
52-54] for their eigenvalues

EO(N,w,J,M)=F + Aw(w +2) + BJ(J + 1),
EW(N,ny, J,M)=F +eny +any(n, +3)

+BIJ +1). (4.93)

The limit (I) is appropriate for rigid diatomics and limit (IT)
for nonrigid ones [8, 52-54].

In addition to handling diatomic and triatomic systems,
the vibron model was also applied to the overtone spectrum
of acetylene [55], intramolecular relaxation in benzene and
its dimers [56, 57], octahedral molecules of the XF4 type
X =S, W, and U) [58], and to linear polyatomics [59].
Most recently, the experimental (dispersed fluorescence and
stimulated emission pumping) vibrational spectra of H,O
and SO, in their ground states, representing typical local-
mode and normal-mode molecules, respectively, have been
analyzed, including highly excited levels, by relying on the
U(2) algebraic effective Hamiltonian approach [60-62]. The
U(2) algebraic scheme [63] also enabled the treatment of
Franck—Condon transition intensities [64, 65] in rovibronic
spectra. The attempts at a similar heuristic phenomenologi-
cal description of electronic spectra have so far met with only
limited success [66].

4.3.6 Many-Electron Correlation Problem

In atomic and molecular electronic structure calculations one
employs a spin-independent model Hamiltonian

2
H=Y) hyy X,Xpo
i,j o=1

2
b3 Y v 3 XX Xe Xy @494)
i,j.k.l o,1=1

where XIT = X,-T(7 (X;) designate the creation (annihila-
tion) operators associated with the orthonormal spin orbitals
|I)=lio)=i)®lo)i=1,....n;0 =1.2[0 =1,21]a-
beling the spin-up and spin-down eigenstates of SZ], and
hij = {ilh| ). vijxe = (i(1)j(2)[5]k(1)€(2)) are the one and
two-electron integrals in the orbital basis {|i)}. As stated
in Sect. 4.3.4, e;5 = ¢€j4,j: = Xl‘Tngr may then be regarded
as U(2n) generators, and the appropriate U(2n) irrep for N -
electron states is I" (17 0).

Similar to the nuclear many-body problem [67], one
defines mutually commuting partial traces of spin-orbital
generators ey s, Eq. (4.87),

2 2
_ _ +
Ej = E Cigjo = E X0 X
o=1 o=1

n n
_ E : _ § : T
f(71: - €ioit = ngXiT )
i=1 i=1

which again satisfy the unitary group commutation relations
Eq. (4.59) and property Eq. (4.60), and may thus be consid-
ered as the generators of the orbital group U(n) and the spin
group U(2). The Hamiltonian Eq. (4.94) is thus expressible

(4.95)
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in terms of orbital U(n) generators

1
H = Zhij E; + 3 Z Vijkt(Eix Eje — 8k Eig) . (4.96)
i,j i,jkl
We can thus achieve an automatic spin adaptation by exploit-
ing the chain

U2n) > U(n) ® UQ2) (4.97)

and diagonalize H within the carrier space of two-column
U(n) irreps I'(2¢1°0¢) = I'(a, b, c) with [39, 68]

1

a==-N-S, b=2S,
2

1
c=n—a—b=n—§N—S, (4.98)
considering the states of multiplicity (25 + 1) involving n or-
bitals and N electrons. The dimension of each spin-adapted
subproblem equals [39, 68]

b+1 1 1
dim 1201209 = 22 (" T (T @9
n+1 a c

where (}) designate binomial coefficients.

Exploiting simplified irrep labeling by triples of integers
(a,b,c), Eq. (4.98), at each level of the canonical chain
Eq. (4.67), one achieves more efficient state labeling by re-
placing Gel’fand tableaux Eq. (4.68) by n x 3 ABC [68] or
Paldus or Gel’fand—Paldus tableaux [40, 69-77]

[P] = [Cl,’b,’C,‘] s (4100)
where a; + b; + ¢; = i. Another convenient labeling uses the
ternary step numbers d;,0 < d; < 3 [68-70, 78, 79]

di =14+2(a; —ai_1) — (¢ —ci_1) . (4.101)

A compact representation of a spin-adapted basis of con-
figuration state functions (CSFs) spanning a given U(n) irrep
I'(241°0¢) is given by a distinct row table (DRT) ([69, 70], cf.
also [10-12, 39, 71]). The entire basis is then conveniently de-
scribed by a Shavitt graph [11, 69, 70], providing a compact
and transparent representation of the entire basis of CSFs, and
the corresponding formalism is referred to as the graphical
UGA (GUGA). This facilitates the design of computer codes
not only for the full configuration interaction (FCI) calcula-
tions ([80]) but mainly for a limited or truncated CI.

The Shavitt graph is a two-rooted graph whose vertices
represent distinct rows of the ABC tableaux for each sub-
group U(i) (i = 1,...,n) with the top root representing the
highest weight (a, b, ¢) = (a,, b,, ¢,) for U(n) and the bot-
tom root the trivial row (0,0, 0) = (ag, by, cy). The entire
graph is placed on a grid so that the slope of its edges im-

plies the relevant step numbers. Each basis vector or CSF is
thus represented by a path interconnecting both roots.

Considering the generator matrix elements, we note that
the bra and ket state paths coincide outside the range given by
the generator indices, thus forming a loop within this range
that can be split into the segment values for each elementary
step. The explicit form of segment values has been derived in
several different ways [10-12, 68-71, 75-77, 79, 81-85] (but
not within GUGA per se [82]). However, this factorization
into a product of segment values is not unique and can be
done in several ways ([79, 84, 85]).

The most efficient way for a derivation of explicit ex-
pressions for segment values exploits the graphical methods
of spin algebras employing Jucys-type angular-momentum
diagrams ([86]) while relying on the fact that the U(n)
electronic CSFs correspond to the Yamanouchi—Kotani cou-
pling scheme [67]. This approach is particularly efficient for
matrix elements involving generator products [79, 87, 88].
Yet another useful approach [84, 85, 89] introduced spin-
adapted creation and annihilation operators that in a certain
way mimic those of the standard second-quantization for-
malism ([82]), which also proved to be very useful for
spin-dependent formalism (Sect. 4.3.8).

A recent development that exploits GUGA representation
of the electronic CSF U(n) basis is the so-called graphi-
cally contracted function (GCF) method [90, 91], which is
based on the graph density concept. This approach enables
a comparison of CSFs in terms of nodes and arcs (edges) of
the Shavitt graph, thus opening a possibility of handling ex-
tremely large CIs exceeding traditional ones by many orders
of magnitude. For the most recent development that also in-
troduced a multifacet GCF (MFGCF), see [92].

Finally, we note that the unitary group formalism that is
based either on U(n) or on the universal enveloping algebra of
U(n) proved to be of great usefulness in various post-Hartree—
Fock approaches to molecular electronic structure [93], es-
pecially in large-scale CI calculations (cf., the COLUMBUS
Program System [94-97]; see also [24-31] in [12]), in MC-
SCF approaches [98-101], propagator methods [102], and
coupled cluster (CC) methods of both single-reference [103—
118] and multi-reference [119-122] type, as well as in various
other investigations, such as quantum dots [123], in handling
of composite systems [89, 124—126], valence-bond (VB) ap-
proaches [127-132], reduced density matrices (RDMs) [105,
133], nuclear magnetic resonance (NMR) [134], or charge
migration in fragmentation of peptide ions [135, 136]; see
also [10-12] for other references. We should also mention
numerous other developments and extensions, such as Clif-
ford algebra UGA (CAUGA) (Sect. 4.3.7), bonded tableau
UGA [137], parafermi algebras [138], and related develop-
ments ([139]).

Very recently there have been a new, very promising,
exploitation of UGA (see recent critical reviews [140—
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142]) and GUGA in the FCI-QMC (Quantum Monte Carlo)
method [143-145], enabling a very efficient handling of rel-
atively large, complex systems [146—151], as well as an
exploitation [152] of ecCCSD (externally corrected Cou-
pled Cluster methods with Singles and Doubles) ([153] and
Sect. 5.3.8).

4.3.7 Clifford Algebra Unitary Group Approach

The Clifford algebra unitary group approach (CAUGA) ex-
ploits a realization of the spinor algebra of the rotation group
SO(2n + 1) in the covering algebra of U(2") to obtain ex-
plicit representation matrices for the U(n) [or SO(2n + 1) or
SO(2n)] generators in the basis adapted to the chain [125,
154-157]

U(2") D Spin(m) D SO(m) D U(n) ,

m=2n+1 or m=2n) (4.102)
supplemented, if desired, by the canonical chain Eq. (4.67)
for U(n).

To realize the connection with the fermionic Grassmann
algebra generated by the creation (X IT) and annihilation (X;)
operators, I = 1,...,2n, note that it is isomorphic with the

Clifford algebra C,, when we define [12, 25]

ar =X, +X] . o =i(X; - X)),
I=1,...,2n). (4.103)
For practical applications, the most important is the fi-
nal imbedding U(2") D U(n) (for the role of intermediate
groups, see [154—156]). All states of an n-orbital model, re-
gardless the electron number N and the total spin S, are
contained in a single two-box totally symmetric irrep (20)
of U(2") [125, 157]. To simplify the notation, one employs
the one-to-one correspondence between the Clifford algebra
monomials, labeled by the occupation numbers m; = 0 or
m; =1 (G{ =1,...,n), and “multiparticle” single-column
U(n) states labeled by

p=pimi} =2"—(mimy---my,),, (4.104)
where the occupation number array (m - - - m,,) is interpreted
as a binary integer, which we then regard as one-box states
|p) of U(2"). The orbital U(n) generators A;; may then be
expressed as simple linear combinations of U(2") generators
E,, = |p)(q| with coefficients equal to 1 [125, 157].
Generally, any p-column U(n) irrep is contained at least
once in the totally symmetric p-box irrep of U(2"). For
many-electron problems, one thus requires a two-box ir-
rep (20). Any state arising in the U(n) irrep I'(a,b,c)

can then be represented as a linear combination of two-
box states, labeled by the Weyl tableaux [i|j] = . In
particular, the highest weight state of I'(a,b,c) is repre-
sented by [2¢]2°7¢]. Once this representation is available,
it is straightforward to compute explicit representations of
U(n) generators, since E,, act trivially on [i]j] [125]. Defin-
ing unnormalized states (i|j) as

@lj)=14+8; [ilj]. (4.105)
we have
Ep(ilj) = 84i(plj) + 84 (il p) - (4.106)

The main features of CAUGA may, thus, be summarized
as follows: CAUGA

1. Effectively reduces an N -electron problem to a number of
two-boson problems

2. Enables an exploitation of an arbitrary coupling scheme
(being particularly suited for the valence bond method)

3. Can be applied to particle-number nonconserving opera-
tors

4. Easily extends to fermions with an arbitrary spin

5. Drastically simplifies evaluation of explicit representa-
tions of U(n) generators and of their products

6. Can be exploited in other than shell-model ap-
proaches [127-129, 131, 158-160].

4.3.8 Spin-Dependent Operators

The spin-adapted U(n)-based UGA is entirely satisfactory in
most investigations of molecular electronic structure. How-
ever, when exploring the fine structure in high-resolution
spectra, the intersystem crossings, phosphorescent life-
times, molecular predissociation, spin—orbit interactions in
transition metals, and like phenomena, the explicitly spin-
dependent terms must be included in the Hamiltonian. Since
in most cases the total spin S represents a good approximate
quantum number, it is advantageous to employ U(n) spin-
adapted N -electron states as a point of departure and consider
the matrix elements of general spin-orbital U(2n) generators
in terms of the U(2n) D U(n) ® SU(2) basis. Such an ap-
proach is generally referred to as a spin-dependent UGA and
was first considered in the context of the symmetric group and
Racah algebra by Drake and Schlesinger [83] and later on in
terms of the Gel ’fand—Paldus tableaux [82, 161-165].

Now, the segmentation of the matrix elements of spin-
dependent one-body operators may be shown to be very
similar to that for the two-body operators, which makes it
possible to exploit the existing UGA or GUGA codes. How-
ever, this necessitates that we employ a larger group, say
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U(n + 1), or even U(n + 2) [82, 165], since U(n + 1) gen-
erators can change the spin at the U(n) level, as is the case
for spin-dependent one-body operators. In fact, the advan-
tage of a large U(n + 1) group follows immediately when
we employ the graphical methods of spin algebras ([79]),
as was done by Drake and Schlesinger [83]. This fact was
also exploited by Yabushita et al. [166] and implemented
in GUGA codes. However, since this approach [166] relies
on Racah—Wigner calculus, it requires six additional steps in
order to conform with the standard UGA-based formalism,
including the introduction of an additional phase factor and
a transformation to a “real spherical” spin function in order
to ascertain a real-valued form of the relevant matrix ele-
ments. These steps may be avoided using an approach that is
based on the spin-free analogues of creation and annihilation
operators [84, 85]. Indeed, this approach leads to a simple
formalism [82] that enables the evaluation of the required
one-electron spin-dependent terms in much the same way as
the standard spin-independent two-electron (i.e., Coulomb)
matrix elements. Only a few additional expressions had to be
derived and all the required segment values are given in [82].

In general, the U(2n) generators e, j; = ey; may be re-
solved into the spin-shift components e(£);; that increase
(+) or decrease (—) the total spin S by one unit and the zero-
spin component ¢(0);, that preserves S. The relevant matrix
elements can then be expressed in terms of the matrix ele-
ments of a single U(n) adjoint tensor operator A, which is
given by the following second-degree polynomial in U(n)
generators,

A=E(E+N/2—n-2). E=|E;|. (4107

and by the well-known matrix elements of U(2) or SU(2)
generators in terms of the pure spin states [161, 162]
([167, 168]). The operator Eq. (4.107), referred to as the
Gould—Paldus operator [169], also plays a key role in the de-
termination of reduced density matrices [105, 133] and has
recently been exploited in the multireference spin-adapted
variant of the density functional theory [169]. Very recently
Robb et al. used spin dependent UGA to evaluate spin densi-
ties for CI in a basis of S 2-adapted CSFs [170].
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Abstract

Perturbation theory (PT) represents one of the bridges that
takes us from a simpler, exactly solvable (unperturbed)
problem to a corresponding real (perturbed) problem by
expressing its solutions as a series expansion in a suit-
ably chosen “small” parameter ¢ in such a way that the
problem reduces to the unperturbed problem when ¢ = 0.
It originated in classical mechanics and eventually devel-
oped into an important branch of applied mathematics
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enabling physicists and engineers to obtain approximate
solutions of various systems of differential equations [1—
5]. For the problems of atomic and molecular structure
and dynamics, the perturbed problem is usually given
by the time-independent or time-dependent Schrodinger
equation [6—-10].

Keywords

perturbation theory (PT) - level shift operators - Brillouin-
Wigner PT - Rayleigh-Schrodinger PT - many-body PT
(MBPT) - diagrammatic MBPT - bracketing theorem -
Wick’s theorem - Mgller-Plesset PT - Epstein-Nesbet PT
- linked and connected cluster theorems - coupled clus-
ter (CC) theory - multireference CC (MRCC) methods -
state universal and valence universal MRCC - internally
and externally corrected CC - time-dependent PT - Gell-
Mann and Low formula - Tomonaga-Schwinger equation
- Born series - potential scattering

5.1 Matrix Perturbation Theory (PT)

A prototype of a time-independent PT considers an eigen-
value problem for the Hamiltonian H of the form

o0
H=Hy,+V, V:Zs’V,-, (5.1

i=1

acting in a (finite-dimensional) Hilbert space V,,, assuming
that the spectral resolution of the unperturbed operator Hj is
known; i.e.,

Hy=Y oP;. PPj=5;P. Y Pi=1., (52
i i

where w; are distinct eigenvalues of Hy, the P; form a com-
plete orthonormal set of Hermitian idempotents, and [ is the
identity operator on V,. The PT problem for H can then be
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formulated within the Lie algebra A (Sect. 3.2) generated by
Hyand V [11, 12].

5.1.1 Basic Concepts

Define the diagonal part (X ) of a general operator X € A by

(X)=)_ PXP (5.3)
i

and recall that the adjoint action of X € A,ad X: A — A is

defined by

adX(Y)=[X,Y], (YY €A, (5.4)

where the square bracket denotes the commutator. The key
problem of PT is the “inversion” of this operation, i.e., the
solution of the equation [11-13]

ad Hy(X) = [Hp, X] =Y . (5.5)

Assuming that (Y') = 0, then
X =R(Y)+(4), (5.6)

where A € A is arbitrary, and
R(Y) =) Aj'PYP;, (5.7)

i#]

with A;; = w; — w;, represents the solution of Eq. (5.5) with
the vanishing diagonal part (R(Y)) = 0.

5.1.2 Level-Shift Operators

To solve the PT problem for H, Eq. (5.1) we search for a uni-
tary level-shift transformation U [11, 12],UTU =UUT =1,
UHU" = U(Hy+ V)U" = Hy+ E , (5.8)

where the level-shift operator E satisfies the condition
E=(E). (5.9)

To guarantee the unitarity of U we express it in the form

U=¢%, G'=-G, (G)=0. (5.10)
Using the Hausdorff formula
oo
e'Be ! =) (k)" (adA)*B (5.11)
k=0
and defining the operator
F =[H,,G], (5.12)

we find from Eq. (5.8) that
1
E+F=V+§[G,V+E]

+ Y (k) Biad G) (V- E) .

(5.13)
k=2
where we used the identity [14]
oo oo
— X3 XKl =1, (5.14)
| !
(k_o k! = (k+1)!
and By, designates the Bernoulli numbers [15]
1 1
Bo=1, Bi=——=, By=-,
0 1 5 2= 5
By =0 (k=1),
1 1
B,=—, Bs=—, etc. 5.15
=3 6=y o (5.15)

5.1.3 General Formalism

Introducing the PT expansion for relevant operators,

o0
X:Zsfx,-, X=E,F.G; F =[HG. (5.16)
i=1

Eq. (5.13) leads to the following system of equations
Eiz+F =W,
Ex+BE=V,+ %[Gl,Vl + E\],
Es+ F=V;+ %[Gl, Vi + E)
+ %[GL V1 + E]

1
+ E[Gl, [G], i — E]]] , etc., 5.17)

which can be solved recursively for E; and G; by taking their
diagonal part and applying operator R, Eq. (5.7), since

(Ei) =Ei, (Gi)=(F)=0,
RF;, =G;, RE; =0. (5.18)
We thus get
Ey =),

By = (V) + 3[RV, 7))
Ez = (V3) + ([RV1. V2])

1
+g([RV1,[RV1,2V1+E1]]), etc., (5.19)
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and
G, = RV,
G2=RV2+%R[RV1,V1 +E1] s etc. (520)
Since
(R(X)) = R(X) =0, (R(X)Y)=—(XR(Y)),
RX(Y)) = R(X)(Y). R(X)Y)=(X)R(Y),
(5.21)

these relationships can be transformed to a more conven-
tional form

E, = (Vh) — (ViRVy)
E3 = (V3) — (ViRV3) — (VbRWY)
+ LRODRODRY: + (V1))
~ JRODRV: + (VIR0
RV + DIRGDR(DY) . ete. (522

However, in this way certain nonphysical terms arise that
exactly cancel when the commutator form is employed
(Sect. 5.3.7).

5.1.4 Nondegenerate Case

In the nondegenerate case, when P; = |i){i|, with |i) repre-
senting the eigenvector of Hy associated with the eigenvalue
w;, the level-shift operator is diagonal, and its explicit PT ex-
pansion (as well as that for the corresponding eigenvectors)
is readily obtained from Egs. (5.19) and (5.20). Writing x;;
for the matrix element (i | X |/ ), we get

(en)ii = (v1)ii
(e2)ii = (v2)ii — Z (Ul)z(vl)jz 7
i
(ex)ii = (v3)ir — Z’ (v1)ij (v2)jiA'|'“(U2)ij (v1))i

'l

+ Z/ (Ul)t/ (V1) jk(V1)ki
A_[l Ay
- (Wi Y % ete., (5.23)
j ji
the prime on the summation symbols indicating that the
terms with the vanishing denominator are to be deleted.
Note that in contrast to PT expansions, which directly ex-
pand the level-shift transformation U, U = 1+ U, 4+ s2U, +
-, the above Lie algebraic formulation has the advantage
that U stays unitary in every order of PT. This is particularly
useful in spectroscopic applications, such as line broadening.

5.2 Time-Independent Perturbation Theory

For stationary problems, particularly those arising in atomic
and molecular electronic structure studies relying on ab initio
model Hamiltonians, the PT of Sect. 5.1 can be given a more
explicit form that avoids a priori the nonphysical, size inex-
tensive terms [7-10, 16-18].

5.2.1 General Formulation

We wish to find the eigenvalues and eigenvectors of the full
(perturbed) problem

K¥;) = (Ko + W)|¥:) = ki |¥:) (5.24)
assuming we know those of the unperturbed problem
Ko|®;) = «i|D;),  (Di|®;) =4 (5.25)

For simplicity, we restrict ourselves to the nondegenerate

case (k; # k;j i # j) and consider only the first-order

perturbation (Eq. (5.1), eV = W, V; =0 for i > 2). Of

course, K and K|, are Hermitian operators acting in a Hilbert

space, which, in ab initio applications, is finite-dimensional.
Using the intermediate normalization for |¥;),

(Fi|®i) =1 (5.26)
the asymmetric energy formula gives
ki = ki + (P:|W|¥) . (5.27)

The idempotent Hermitian projectors

P =) (Bi]. Qi = P =1—P; =) |&;)(®] (5.28)
J(F#i)

commute with K, so that

(A= Ko)Qi|¥:) = Qi(A — ki + W)[¥;) (5.29)
A being an arbitrary scalar (note that we write A/ simply as
A). Since the resolvent (A — K)~' of K| is nonsingular on

the orthogonal complement of the i -th eigenspace, we get

Qi) = W) = |9;) = RiQ)(A — ki + W)|¥;) . (5.30)
where
Ri=R()=MA—-K) 0
_ |2;) (@]
= Qi —Ky =) S (531)

K
JD) /
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assuming (A # ;). Iterating this relationship, we get proto-
types of the desired PT expansion for |¥; ),

W) = R —ki + W)]"|9;)

n=0

and, from Eq. (5.27), for k;,

(5.32)

ki = Ki+ Y (DIWIR (A —ki + W)"|®;) . (5.33)
n=0

5.2.2 Brillouin-Wigner and
Rayleigh-Schrodinger PT (RSPT)

So far, the parameter A was arbitrary as longas A # «; (j #

i). The following two choices lead to the two basic types of

many-body perturbation theory (MBPT):

Brillouin—-Wigner (BW) PT Setting A = k; gives

ki = ki + i(@AW(RfBW)W)nI(Di) :

(5.34)
n=0
- BW n
) = Y (REVw) 1) (5.35)
n=0
where N
REW = 3 121 (5.36)
k‘—-@

jEy !

Rayleigh-Schrodinger (RS) PT Setting A = «; gives

=k Y@ R~k )] 199

n=0
(5.37)
) = il:Ri(RS)(Ki —ki+m)][19,). (5.38)
n=0
where now
R =R™ =73 LI (5.39)

je T
The main distinction between these two PTs lies in the fact
that the BW form has the exact eigenvalues appearing in
the denominators and, thus, leads to polynomial expressions
for k;. Although these are not difficult to solve numerically,
since the eigenvalues are separated, the resulting energies
are never size extensive and, thus, unusable for extended
systems. They are also unsuitable for finite systems when
the particle number changes, as in various dissociation pro-
cesses. From now on, we thus investigate only the RSPT,
which yields a fully size-extensive theory.

5.2.3 Bracketing Theorem and RSPT

Expressions Eqgs. (5.37) and (5.38) are not explicit, since they
involve the exact eigenvalues k; on the right-hand side. To
achieve an order-by-order separation, set

ki=k=) kD ) =[w) =3 [¢V). (540)
Jj=0 j=0

where the superscript (/) indicates the j-th-order in the per-
turbation W. We only consider the eigenvalue expressions,
since the corresponding eigenvectors are readily recovered
from them by removing the bra state and the first interac-
tion W (Eqgs. (5.37) and (5.38)). We also simplify the mean
value notation writing for a general operator X,

(X) = (2| X|Pi) - (5.41)

Substituting the first expansion Eq. (5.40) into Eq. (5.37) and
collecting the terms of the same order in W, we get

kO =1,
kW = (wy,
k® = (WRW) ,

k@ = (W(RW)?) — (W) WR*W)
k@ = (W(RW)?)
— (W)((WR(RW)?) + (WR)*RW))

+ (W2WRW) — (WRW)(WR*W),  etc.
(5.42)
The general expression has the form
KO = (WRWY'™) + R (5.43)

the first term on the right-hand side being referred to as
the principal n-th-order term, while R designates the
so-called renormalization terms that are obtained by the
bracketing theorem [16, 19] as follows:

1. Insert the bracketings (---) around the W, WRW, ...,
WR--- RW operator strings of the principal term in all
possible ways.

2. Bracketings involving the rightmost and/or the leftmost
interaction vanish.

3. The sign of each bracketed term is given by (—1)"®, where
np is the number of bracketings.

4. Bracketings within bracketings are allowed,
(WR(WR(W)RW)RW) = (W)(WRW)".

5. The total number of bracketings (including the principal
term) is (2n —2)!/[n'(n — ).

e.g.,
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5.3 Fermionic Many-Body Perturbation and a corresponding unperturbed problem
Theory (MBPT)
Ho|®;) = &;|®;) .
5.3.1 Time-Independent Wick’s Theorem Hy=Z+U, (&]®;)=5;. (5.48)

The development of an explicit MBPT formalism is greatly
facilitated by the exploitation of the time-independent ver-
sion of Wick’s theorem. This version of the theorem ex-
presses an arbitrary product of creation (aL) and annihilation
(a,) operators (Chap. 6) as a normal product (relative to
|®o)) and as normal products with all possible contractions
of these operators [16-18],

X1xa e xp = Nxixa---xe] + EN x5 xi]
(x; = aLi or X; =ay,), (5.44)
where
Tal = iy =0,
s =h(8u . aual = pU)su . (545
and
h(pn) =1, p(u) = 0if |u) is occupied in |Dy)
(hole states),
h(n) =0, p(n) = 1if |u) is unoccupied in |Dy)
(particle states) . (5.46)

The N -product with contractions is defined as a product of
individual contractions times the N -product of uncontracted
operators (defining N [@] = 1 for an empty set) with the sign
given by the parity of the permutation reordering the opera-
tors into their final order.

Note that the Fermi vacuum mean value of an
N -product vanishes unless all operators are contracted.
Thus, (x1x, - -+ x;) is given by the sum over all possible fully
contracted terms (vacuum terms). Similar rules follow for the
expressions of the type (x;x;---x;)|®). Moreover, if some
operators on the left-hand side of Eq. (5.44) are already in
the N -product form, all the terms involving contractions be-
tween these operators vanish.

5.3.2 Normal Product Form of PT

Consider the eigenvalue problem for a general ab initio or
semiempirical electronic Hamiltonian H with one and two-
body components Z and V', namely,

H|¥;) = E;|¥;) ,
H=Z+V = ZZ(Z)—I—ZU(Z])

i<j

(5.47)

with U representing some approximation to V. In the case
that U is also a one-electron operator, U = X;u(i), the un-
perturbed problem Eq. (5.48) is separable and reduces to
a one-electron problem,

z +wlp) = wulp) (5.49)
which is assumed to be solved. Choosing the orthonormal
spin orbitals {|u)} as a basis of the second quantization rep-

resentation Sect. 6.1, the N -electron solutions of Eq. (5.48)
can be represented as

&) =a, af,---af |0), (5.50)
N

&= w . (5.51)
Jj=1

the state label i representing the occupied spin orbital set

{1, L2, - .., Ly}, while the one and two-body operators take
the form
X => (ulxlvaja,. X=ZU:x=zu, (552
JTRY
1
V= 3 Z (;w|v|or)a7aTa ay . (5.53)
JL,,0,T

Considering, for simplicity, a nondegenerate ground state
|D) = |Dy) = aIa; - -aj\,lo), referred to as a Fermi vacuum,
we define the normal product form of these operators relative
to |D)

Xy =X—(X) =) (ulx|v)N[aja,],
J7RY
X=Z,UG;, x=z,uyg) (5.54a)
VN = V - (V) - GN
1
= 3 Z (uv|v|or)N[aLaIa,aa]
n,v,0,T
1
=1 > {uvlvlot)aN[a}ala.a,] . (5.54b)
n,v,0,T
where
N
(rlglv) = Z po|v|vo)s (5.55)
(lWIvlor)A = (nv|vlot) — (uv|vlro) , (5.56)
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(X) = (@|X|®), and NJ---] designates the normal prod-
uct relative to |@) [16-18]. (Recall that N[xix;---x;] =
:I:bll -~~bll.b,,¢l.+l -++by,, where x; = b, or b;, are the anni-
hilation and creation operators of the particle-hole formalism
relative to |®), ie., b, = aL for w < N and b, = a, for
i > N, the sign being determined by the parity of the per-
mutation p : j > [4;.)

Defining
K=H-(H), Ky=Hy—(Hy)=Hy—e¢o, (557)
we can return to Eqs. (5.24) and (5.25), where now
ki =E; —(H), ki =é& — ¢,
N
g0 = Zwu , (5.58)
n=1
and
W=K-Ky=V-U—-(V-U). (5.59)

With this choice, (W) = 0, so that for the reference state |®),
Eq. (5.42) simplify to (we drop the subscript 0 for simplicity)

kKO =90, kM=o,
k@ = (WRW) .
k® = (WRWRW) ,

k@ = (WRW)) — (WRW)WR*W), etc. (5.60)

Note that W is also in the N -product form,

W=W+W,, Wi=Gy—-Uy, W,=Vy. (561

5.3.3 Moller-Plesset and Epstein—-Nesbet PT
Choosing U = G we have

Hy=Z+G=F, (5.62)
so that Eq. (5.49) represent Hartree—Fock (HF) equations,
and w, and |u) the canonical HF orbital energies and
spin orbitals, respectively. Since (H) = Zﬁ’zl ((pelzlp) +
%( nlgl /L)) is the HF energy, k = k¢ gives directly the ground
state correlation energy. (Note, however, that the N -product
form of PT eliminates the first-order contribution k") = (W)
in any basis, even when F is not diagonal.) With this choice,
Wy =0, W = Vy, and the denominators in Eq. (5.39) are
given by the differences of HF orbital energies

A
Ko—kj = Y (@ —oy) = Al ) . (5.63)
i=1

assuming that |®;) is a A-times excited configuration relative
to |@) obtained through excitations u; — v;, i = 1,...,A.
Using the Slater rules (or the second quantization algebra),
we can express the second-order contribution in terms of the
two-electron integrals and HF orbital energies as

k<2)=% 3

ab,rs

(ablv|rs)({rs|vlab) — (rs|v|ba))
W, + wp — Wy —

. (5.64)

where the summations over a, b (r, s) extend over all occu-
pied (unoccupied) spin orbitals in |@). Obtaining the corre-
sponding higher-order corrections becomes more and more
laborious and, beginning with the fourth-order, important
cancellations arise between the principal and renormalization
terms, even when the N-product form is employed. These
will be addressed in Sect. 5.3.7.

The above outlined PT with Hj, given by the HF operator
is often referred to as the Mgller—Plesset PT [20] and, when
truncated to the n-th order, is designated by the acronym
MPn,n = 2, 3,.... In this version, the two-electron integrals
enter the denominators only through the HF orbital energies.
In an alternative, less often employed variant, referred to as
the Epstein—Nesbet PT [21, 22], the whole diagonal part of
H is used as the unperturbed Hamiltonian, i.e.,

Hy =) (&|H|®;)Pi .

i

(5.65)

With this choice, the denominators are given as differences of
the diagonal elements of the configuration interaction matrix.

5.3.4 Diagrammatic MBPT

To facilitate the evaluation of higher-order terms and, es-
pecially, to derive the general properties and characteristics
of the MBPT, it is useful to employ a diagrammatic repre-
sentation [7-10, 16—18]. Representing all the operators in
Egs. (5.42) and (5.43) or (5.60) in the second quantized form,
we have to deal with the reference state (i.e., the Fermi vac-
uum) mean values of the strings of annihilation and creation
operators (or with these strings acting on the reference in
the case of a wave function). This is efficiently done us-
ing Wick’s theorem and its diagrammatic representation via
a special form of Feynman diagrams. In this representa-
tion, we associate with various operators suitable vertices
with incident oriented lines representing the creation (outgo-
ing lines) and annihilation (ingoing lines) operators that are
involved in their second quantization form. A few typical di-
agrams representing operators (—U), W; and V are shown in
Fig. 5.1a, Fig. 5.1b and Fig. 5.1c, Fig. 5.1d, respectively. Us-
ing the N -product form of PT with HF orbitals (Sect. 5.3.3),
we only need the two-electron operator V or Vy, which
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Fig. 5.1 Diagrammatic representation of one and two-electron opera-
tors

can be represented using either nonantisymmetrized ver-
tices (Fig. 5.1c¢), leading to the Goldstone diagrams [23], or
antisymmetrized vertices (Fig. 5.1d), associated with anti-
symmetrized two-electron integrals Eq. (5.56) and yielding
the Hugenholtz diagrams [24].

5.3.5 Vacuum and Wave Function Diagrams

Applying Wick’s theorem to the strings of operators in-
volved, we represent the individual contractions, Eq. (5.45),
by joining corresponding oriented lines. To obtain a nonvan-
ishing contribution, only contractions preserving the orienta-
tion need be considered (Eq. (5.45)). The resulting internal
lines have either the left-right orientation (hole lines) or the
right-left one (particle lines). Only fully contracted terms,
represented by the so-called vacuum diagrams (having only
internal lines), can contribute to the energy, while those rep-
resenting wave function contributions have uncontracted or
free lines extending to the left. When the operators involved
are in the N -product form, no contractions of oriented lines
issuing from the same vertex are allowed. The projection-
like operators R, Eq. (5.39), or their powers, lead to the
denominators, Eq. (5.63), given by the difference of hole
and particle orbital energies associated with, respectively,
hole and particle lines passing through the interval sepa-
rating the corresponding two neighboring vertices. Clearly,
there must always be at least one pair of such lines lest
the denominator vanish. Thus, for example, the second-order
contribution (WRW ) is represented either by the two Gold-
stone diagrams [23] (Fig. 5.2a,b) or by the single Hugenholtz
diagram [24] (Fig. 5.2c). The rules for the energy (vacuum)
diagram evaluation are as follows:

1. Associate appropriate matrix elements with all vertices
and form their product. The outgoing (ingoing) lines

Fig. 5.2 The second-order Goldstone (a), (b) and Hugenholtz (c) dia-
grams

OO OO

Fig.5.3 Hugenholtz diagrams for the third-order energy contribution

on each vertex define the bra (ket) states of a given
matrix element, and for the Goldstone diagrams, the ori-
ented lines attached to the same node are associated with
the same electron number, (e.g., for the leftmost ver-
tex in diagram (a) of Fig. 5.2, we have (ab|v|rs) =
{a(Mb(2)[v]r(1)s(2))).

2. Associate a denominator, Eq. (5.63), or its appropriate
power, with every neighboring pair of vertices (and, for
the wave function diagrams, also with the free lines ex-
tending to the left of the leftmost vertex; with each pair
of such free lines associate also the corresponding pair of
particle creation and hole annihilation operators).

. Sum over all hole and particle labels.

4. Multiply each diagram contribution by the weight factor
given by the reciprocal value of the order of the group
of automorphisms of the diagram (stripped of summation
labels) and by the sign (—1)"*¢, where i designates the
number of internal hole lines, and ¢ gives the number of
closed loops of oriented lines (for Hugenholtz diagrams,
use any of its Goldstone representatives to determine the
correct phase).

W

Applying these rules to diagrams (a) and (b) of Fig. 5.2 we
clearly recover Eq. (5.64) or, using the Hugenholtz diagram
of Fig. 5.2, the equivalent expression

1
k® = 1 Z (ab|v|rs)(rs|v|ab)4 A~ (a, b;r,s) . (5.66)

ab,rs

The possible third-order Hugenholtz diagrams are shown
in Fig. 5.3 with the central vertex involving particle—particle,
hole-hole, and particle-hole interaction [16—-18].

5.3.6 Hartree-Fock Diagrams

In the general case (non-HF orbitals and/or not normal prod-
uct form of PT), the one-electron terms, as well as the
contractions between operators associated with the same
vertex, can occur (the latter are always the hole lines). Rep-
resenting the W, and (—U) operators as shown in Fig. 5.1,
the one-body perturbation W) represents in fact the three di-
agrams as shown in Fig. 5.4. The second-order contribution
of this type is then represented by the diagrams in Fig. 5.5,
which in fact represents nine diagrams that result when each
W) vertex is replaced by three vertices as shown in Fig. 5.4.
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Fig.5.4 Schematic representation of W}

Fig. 5.5 The second-order, one-
particle contribution

Using HF orbitals, all these terms mutually cancel out,
as can be seen above. For this reason, the diagrams involv-
ing contractions of lines issuing from the same vertex are
referred to as Hartree—Fock diagrams. Note, however, that
even when not employing the canonical HF orbitals, it is con-
venient to introduce W) vertices of the normal product form
PT and replace all nine HF-type diagrams by a single dia-
gram of Fig. 5.5. Clearly, this feature provides even greater
efficiency in higher orders of PT.

5.3.7 Linked and Connected Cluster Theorems

Using the N-product form of PT, the first nonvanishing
renormalization term occurs in the fourth-order (Eq. (5.60)).
For a system consisting of N noninteracting species, the en-
ergy given by this nonphysical term is proportional to N?2
and, thus, violates the size extensivity of the theory. It was
first shown by Brueckner [25] that in the fourth order, these
terms are in fact exactly canceled by the corresponding con-
tributions originating in the principal term. A general proof
of this cancellation in an arbitrary order was then given by
Goldstone [23] and Hubbard [26] using a time-dependent PT
based on Gell-Mann and Low adiabatic theorem and evolu-
tion operator (Sect. 5.4) and by Hugenholtz [24] employing
a time-independent PT, relying on Green’s function or the
resolvent operator.

To comprehend this cancellation, consider the fourth-
order energy contribution arising from the so-called unlinked
diagrams (no such contribution can arise in the second or
third order) shown in Fig. 5.6. An unlinked diagram is
defined as a diagram containing a disconnected vacuum di-
agram (for the energy diagrams, the terms unlinked and
disconnected are synonymous). The numerators associated
with both diagrams being identical, we only consider the de-
nominators. Designating the denominator associated with the

Fig.5.6 The fourth-order unlinked diagrams

top and the bottom part by A and B, respectively, we find for

the overall contribution

1111
B A+B B 4 A+B B
1 L
_(§+Z)(A+B)B_AB2' (5.67)

Thus, the contribution from these terms exactly cancels that
from the renormalization term (WRW )(WR*W).
Generalizing Eq. (5.67) we obtain the factorization lemma
of Frantz and Mills [27], which implies the cancellation of
renormalization terms by the unlinked terms originating from
the principal term. This result holds for the energy as well as
for the wave function contributions in every order of PT, as
ascertained by the linked cluster theorem, which states that

AE =k =) (®|W|¥") = (W(RW)").. (5.68)
n=0 n=0
W) =" [w™) =Y {(RW)"|®)}, (5.69)
n=0 n=0

where the subscript L indicates that only linked diagrams
(or terms) are to be considered. This enables us to obtain
general, explicit expressions for the n-th-order PT contri-
butions by first constructing all possible linked diagrams
involving n vertices and by converting them into the explicit
algebraic expressions using the rules of Sect. 5.3.5. Note
that linked energy diagrams are always connected, but the
linked wave function diagrams are either connected or dis-
connected, each disconnected component possessing at least
one pair of particle-hole free lines extending to the left.

To reveal a deeper structure of the result Eq. (5.69) de-
fine the cluster operator T that generates all connected wave
function diagrams,

T|®) =Y {(RW)"|®)}. (5.70)
n=1

the subscript C indicating that only contributions from
connected diagrams are to be included. Since the general
component with r disconnected parts can be shown to be
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represented by the term (r!)~! 7" |®), the general structure of
the exact wave function |¥) is given by the connected cluster
theorem [24, 26], which states that
w) =" ), (5.71)
assuming an intermediate normalization (@|¥) = 1. In other
words, the wave operator W that transforms the unperturbed

independent particle model wave function |@) into the exact
one according to

@) = W|D) (5.72)
is given by the exponential of the cluster operator T,
W=-¢", (5.73)

which, in turn, is given by the connected wave function
diagrams. This is in fact the basis of the coupled clus-
ter methods [28-33] (Sect. 5.3.8). For recent reviews, see,
e.g., [10, 17, 18, 34-41]; for a historical perspective, see [42,
43].

The contributions to T may be further classified by their
excitation rank i,

T, (5.74)

-3

i=1

where 7T; designates connected diagrams with i pairs of free
particle-hole lines, producing i -times excited components of
|¥) when acting on |®).

5.3.8 Coupled Cluster Theory

To motivate coupled cluster (CC) approaches we recall that
summing all HF diagrams (Sect. 5.3.6) is equivalent to solv-
ing the HF equations. Likewise, depending on the average
electron density of the system, it may be essential to sum
certain types of PT diagrams to infinite order at the post-HF
level, namely the ring diagrams (random phase approxima-
tion) in the case of high-density electron gas and ladder
diagrams for low-density systems. An ideal approach that
can sum different kinds of diagrams and their combinations,
and is thus capable of recovering a large part of the elec-
tronic correlation energy, is based on the connected cluster
theorem (Sect. 5.3.7), referred to in this context as the expo-
nential cluster ansatz Eq. (5.71) for the wave operator. Using
this ansatz, one derives a system of energy-independent non-
linear coupled cluster (CC) equations [10, 17, 18, 30-33]
determining the cluster amplitudes of 7. These CC equa-
tions can be regarded as recurrence relations generating the
MBPT series [17, 18], so that by solving these equations
one, in fact, implicitly generates all the relevant MBPT di-
agrams and sums them to infinite order. Since the solution

of the full CC equations is equivalent to the exact solu-
tion of the Schrodinger equation, we must—in all practical
applications—introduce a suitable truncation scheme, which
implies that only diagrams of certain types are summed. (For
different possible truncation schemes, see [44, Sect. 2].)

Generally, using the cluster expansion Eq. (5.71) in the
N -product form of the Schrodinger equation,

Hx|¥) = (H — (H))|¥) = AE|¥) ,

AE =E—E,, (5.75)

premultiplying with the inverse of the wave operator, and us-
ing the Hausdorff formula Eq. (5.11) yields

o) = 3 BT A

n=0

= AE|®). (5.76)

In fact, this expansion terminates, so that using Eq. (5.74)
and projecting onto |@) we obtain the energy expression

1 2
AE = (H\T») + 5(HNT1 ). (5.77)

while the projection onto the manifold of excited states
{|®;)} relative to |®@) = |P,) gives the system of CC equa-
tions

(®;|Hn + [HN, T] + %[[HN, T1.T]+---|®) =0. (5.78)

Approximating, e.g., 7 by the most important pair cluster
component 7" & T, gives the so-called CCD (coupled clusters
with doubles) approximation

(@2 Hy + [Hx. T5] + 3 [lHx. T, Tl|®) =0 (579)

the superscript (2) indicating pair excitations relative to |®).
Equivalently, Eqs. (5.77) and (5.78) can be written in the
form

AE = (Hye'). .
(¢i|(HNeT)ci¢> =0,

(5.80)
(5.81)

the subscript C again indicating that only connected dia-
grams are to be considered. The general explicit form of CC
equations is

a; “I‘Zbijtj + Zcijkljfk +--=0,
J

j=k

(5.82)

where a; = (@;|Hn|Do), bij = (Pi|Hx|Dj)c, cijr =
(P | Hx|®; ® P )c, etc. Writing the diagonal linear term b;;
in the form

bii = A +b;

ii

(5.83)
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this system can be solved iteratively by rewriting it in the
form

ti(nH) =47 (a, + bz/ztl(n) + Z/bij t;n)

+ e " (") )

J=k

(5.84)

Starting with the zeroth approximation ti(o) = 0, the first iter-
ation is

l‘(l)

A a; , (5.85)

which yields the second-order PT energy when used in
Eq. (5.77). Clearly, the successive iterations generate higher
and higher orders of the PT. At any truncation level, a size
extensive result is obtained.

The single reference (SR) CC methods continue to be
remarkably efficient in handling the dynamic correlation
effects and are, thus, widely exploited in computations
of molecular electronic structure. Several general-purpose
codes are available for this purpose (for reviews: [10, 18, 34—
36, 38]). The basic workhorse that provides the required
Ty and T, cluster amplitudes results by setting 7; = 0 for
i > 2in Eq. (5.74) (the CC with singles and doubles (CCSD)
method [45]). A small, but often important, 75 component
is usually accounted for perturbatively via the CCSD(T)
method [46, 47], which is often referred to as the “gold stan-
dard” of quantum chemistry, since it provides very accurate
and reliable results. Unfortunately, this is no longer the case
in the presence of quasidegeneracy when handling strongly-
correlated systems or when breaking chemical bonds as in
generating potential energy curves or surfaces. This can to
some extent be avoided by employing one of the renor-
malized versions of CCSD(T) [48] but, in general, requires
multireference-type approaches (see below).

In order to compute the excitation, ionization, or elec-
tron attachment energies one employs the equation-of-motion
(EOM) and the linear-response formalisms relying on the
generalized cluster ansatz [49] |¥) = Re”|®), where R
yields an appropriate zero (or first)-order wave function of the
open-shell system considered when acting on |@). In general,
this leads to a non-Hermitian eigenvalue problem, which re-
quires a computation of the right and left eigenvectors [10].
These developments also enabled calculation of other proper-
ties than the energy (dipole and quadrupole moments, polariz-
abilities, etc.), [10, 18, 34-36]. Here, we should also mention
a possibility of using the cluster ansatz based on the unitary
group approach (UGA) [50, 51] (Sect. 4.3.6).

At this stage it is important to recall that the standard
SR MBPT and CC approaches pertain to nondegenerate,
lowest-lying closed-shell states of a given symmetry species.
Although the CC methods are often used even for open-shell
states by relying on the unrestricted HF (UHF) reference
(of the different-orbitals-for-different-spins (DODS) type),

a proper description of such states requires a multireference
(MR) generalization based on the effective Hamiltonian
formalism [7, 18, 36, 52-54]. Unfortunately, such a gener-
alization is not unambiguous. The two viable formulations,
the so-called valence universal (VU) [7, 53] and state uni-
versal (SU) [54] MR CC methods have enjoyed continued
following (see [55] for recent developments), yet are com-
putationally demanding and often plagued with the intruder
state and other problems [17, 52]. For these reasons, no
general-purpose codes have yet been developed, and only
a few actual applications have been carried out [18, 36] (see,
however, the recently formulated SU CC approach for gen-
eral model spaces [56-59]).

In view of the ambiguity, complexity, and computational
demands of genuine MR CC approaches it is tempting to
design SR CC-type methods that are capable of accommo-
dating both the nondynamic and dynamic correlation effects.
This may be achieved by exploiting the complementarity of
perturbative (i.e., CC) and variational (CI, CAS SCEF, etc.)-
type approaches, leading to the so-called externally corrected
(ec) ecCCSD or ecCCSD(T) methods (for an overview,
see [44]; see also [60, 61] and the so-called state selective
or state specific (SS) approaches [62]). The basic idea here is
to extract a suitable approximation T3(0) and T4(0) of, respec-
tively, the T3 and T} clusters from some independent source
and account for them in the CCD or CCSD equations, i.e.,

1
(cz>,-|HN(T2 + 5T22 +1% + T4(°>)|q>>C =0, (5.86)

thus achieving a more meaningful decoupling of the CC
chain by simply evaluating the T3(0) and T4(0) -dependent
terms and adding them to the absolute term. Note that
using the exact (i.e., full configuration interaction (FCI))
T3 and T, amplitudes the ecCCSD equations will recover
the exact FCI energy. The most promising version of such
an ecCCSD approach employs the three- and four-body am-
plitudes obtained by a cluster analysis of a small MRCI
wave function and is referred to as the reduced MR CCSD
(RMR CCSD) method [63-65] (see [44] for a list of numer-
ous applications). Very recently, the required approximate
three and four-body clusters were extracted by relying on the
(G)UGA based ((graphical) UGA) (see [66-68] for recent
reviews) FCI quantum Monte Carlo (FCI-QMC) or i-FCI-
QMC codes [69-71] yielding encouraging results [61, 72—
74]. Very recently, Chan et al. [75] exploited for the same
purpose the density matrix renormalization group (DMRG)
approach [76-78] in the ecCCSD formalism [44].

The same goal, which simultaneously leads to more ef-
ficient SR CC formalisms, may also be achieved via an
effective implicit account of higher-order clusters by relying
on the role of the EPV (exclusion principle violating) dia-
grams that are separable over the hole lines, leading to the
so-called internally corrected (ic) methods, such as approx-
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imate coupled pair (ACP-D45) approach, approximate CC
with doubles (ACCD) or with approximate quads (ACPQ)
methods (see [44] for relevant references). Very recently,
similar ideas to the icCCSD approaches [44] were exploited
by Kats et al. [79-81] in the so-called distinguished cluster
(DC) approximations, such as DC with doubles (DCD), DC
with singles and doubles (DCSD) and DCSD corrected for
triples (DCSD(T)) methods, leading to numerous exploita-
tions in actual systems [82—85], including transcorrelated CC
methods [86].

A very recent development [87] exploits the quantum
Monte Carlo (MC) formalism in solving the CC equations,
resulting in a stochastic CCMC method [87, 88], which was
also extended to the equation of motion CC (EOMCC) type
approaches [89] enabling handling the excited states ener-
getics. This way of solving the CC equations should allow
applications to larger systems than do the currently available
standard codes.

Finally, note that the CC approach has also been used to
handle bosonic-type problems of the vibrational structure in
molecular spectra and, generally, multimode dynamics [90].

5.4 Time-Dependent Perturbation Theory
5.4.1 Evolution Operator PT Expansion

By introducing the evolution operator U(t, t;)

W (@) = Ult, 1) ¥ (1)) (5.87)
the time-dependent Schrodinger equation
0
ihgul/(t)) = H|¥(t)) (5.88)
becomes 3
ihEU(t,to) = HU(t, 1) . (5.89)
Clearly,
Ulto, 10) = 1,
U([1 t(]) = U([1 t,)U(t,v [0) P
Ut 1) = Ulty, 1) = U (1, 10) . (5.90)
If the Hamiltonian is time-independent, then
U, 1) = exp[—%H(l - zo)} . (5.91)
In the interaction picture (subscript 1),
i
oy = et )W) 692
where now
H=Hy+V, (5.93)

the Schrodinger equation becomes

B W)= VOO 699

This is known as the Tomonaga—Schwinger equation [91].
Analogously, the evolution operator in this picture (we drop
the subscript I from now on) satisfies

iha%U(t, to) = VIOU(t, o) , (5.95)

with the initial condition U(¢y, ty) = 1. This differential equa-
tion is equivalent to an integral equation

t

Ult,10) = 1 — % / V(e) U, 1) dty - (5.96)
10
Iterating we get [92, 93]
N
Ult,ty) = g(—£)
t 151 In—1
x[dtI/dtz---/ A6, V(E)V(E2) -+~ V(1)
10 10 10
_ i (=i/h)"
e n!

t t
x[dtl---/dt,,T[V(tl)---V(t,,)], (5.97)
) )

where T[---] designates the time-ordering or chronological
operator.

5.4.2 Gell-Mann and Low Formula

For a time-independent perturbation, one introduces the so-
called adiabatic switching by writing

Hy(t) = Hy+ Ae @V, a>0, (5.98)

so that H,(t - £o00) = Hyand H,(t - 0)=H = Hy+AV.
Then
[P (1) = Uy(t, —00[A)[Po) (5.99)

with U, (¢, —oo|A) obtained with V,, (1) = Ae~*"!V (all in the
interaction picture). The desired energy is then given by the
Gell-Mann and Low formula [94]

AE = lim ihakiln(qﬁoan(O,—oolA)lq)o), (5.100a)
a—0+ A
or
AE = 1 lim ihad = 1n(d| U (00, —00|A)|0)
2 a—0+ oA ’ ’

(5.100b)
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which result from the asymmetric energy formula Eq. (5.27).
One can similarly obtain the perturbation expansion for the
one or two-particle Green’s functions, e.g.,

a,(t)a} (") Uy (00, —00|1)})
(Ua (00, —00[A)) ’

(5.101)

with the operators in the interaction representation and the

expectation values in the noninteracting ground state |®y).

Analogous expressions result for G(rt, r't’), etc., when the

creation and annihilation operators are replaced by the corre-

sponding field operators.

Gu(t.1') = lim (T

a—>0+

5.4.3 Potential Scattering and Quantum
Dynamics

The Schrodinger equation for a free particle of energy £ =
h%k?/2m, moving in the potential V(r),

(V2 + &)y (k,r) = v(r)y(k,r) ,

v(r) = 2m/h*)V(r) , (5.102)

has the formal solution

Yk, r)= ok, r)+ / Go(k,r,r')v(r')y(k,r')dr’,
(5.103)
where @(k,r) is a solution of the homogeneous equation
[v(r) = 0], and Gy (k, r,r’) is a classical Green’s function

(V2 + k) Go(k,r.r') =68(r —r1'). (5.104)
For an in-going plane wave ®@(k,r) = Ok, (r) =
(27)*? exp(ik; - r) with the initial wave vector k; and appro-
priate asymptotic boundary conditions (outgoing spherical
wave with positive phase velocity), when Goy(k,r,r’) =
G (r =) = —(@dn|r — )T eikir 'l Eq. (5.103) is
referred to as the Lippmann—Schwinger equation [95]. It can
be equivalently transformed into the integral equation for
Green’s function

G(H(r,r') = Gé“(r,r') + / Gé“(r,r”)v(r”)

x G (r",r') dr", (5.105)

representing a special case of the Dyson equation.

In the time-dependent case, considering the scattering of
a spinless massive particle by a time-dependent potential
V(r,t), we get similarly

Yy(r,t) = d(r,t)

+/Go(r,r';t,t')V(r',t/)l//(r',t/)dr'dt',
(5.106)

where the zero-order time-dependent Green’s function now
satisfies the equation

0
(ihg - HO)GO(r, Ko t) = 8(r —#)8(t ') . (5.107)
Again, for causal propagation one chooses the time-retarded
or causal Green’s function or propagator G(()H (r,r';t,t).
5.4.4 Born Series

Iteration of Eq. (5.106) gives the Born sequence

Yo(r,1) = &(r.1) ,
Yi(r,t) = &(r,t) + / Gé“(r,rﬁt,ﬂ)

X V(r/,l/)qﬁ(r/,t')dr'dt/ , (5.108a)
Ya(r,t) = @(r,t) + / Gé“(r,rﬁt,ﬂ)
X V(r’,t’)wl (r/,l’)dr/dt/ , (5.108b)
and, generally
VUn(r,t) = D(r,1) + / G (r,r's1,0)
< V(' ) (') dr'de’ . (5.109)

Summing individual contributions gives the Born series for

Y(r.0) =y D(r.0),

Yr.0) =Y xulr.0),

n=0

(5.110)

where

Xo(r.1) = &(r.1)

An(r, 1) = [g,,(r,r’;t,l’)qﬁ(r’,t/)dr/dt/, (5.111)
with

Gu(r.riiet) = [gl (r.r”;1,1")
X gn_l(r”,r’;t”,t/)dr”dt” ,(n>1)
Gi(r.r'se,t') = G(()Jr)(r,r’;t,t’)V(r’,t/) .
(5.112)

In a similar way we obtain the Born series for the scattering
amplitudes or transition matrix elements.
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5.4.5 Variation of Constants Method

An alternative way of formulating the time-dependent PT
is the method of variation of the constants [96, 97]. Start
again with the time-dependent Schrodinger equation (5.88)
with H = Hy + V and assume that H, is time-independent,
while V' is a time-dependent perturbation. Designating the
eigenvalues and eigenstates of Hj by &; and |®;), respec-
tively (Eq. (5.48)), the general solution of the unperturbed
time-dependent Schrodinger equation
d
in o [¥o) =

Hol %) (5.113)

has the form
W) = ch|<1§ exp(——ej ) ,

with ¢; representing arbitrary constants, and the sum indi-
cating both the summation over the discrete part and the
integration over the continuum part of the spectrum of Hy.

In the spirit of the general variation of constants proce-
dure, write the unknown perturbed wave function |¥(¢)),
Eq. (5.88), in the form

() = ch(rn@j)exp(—%eﬂ) ,
J

where the C;(f) are now functions of time. Substituting this
ansatz into the time-dependent Schrodinger equation (5.88)
gives

(5.114)

(5.115)

Ci(t) = (i)"Y Cr() Vi expl(i/h) Apt] . (5.116)
k

where

Ajk = 8_,' — &, ij = (45_/'|V|(pk> . (5.117)

Introducing again the “small” parameter A by writing the
Hamiltonian H in the form

H = Hy+ AV(2) (5.118)
and expanding the “coefficients” C; (t) in powers of A,

PG

k=0

C,=Ci(1) = (5.119)

gives the system of first-order differential equations
"V = (i)Y CM Vi expl (i/m) Apet]
k

n=0,12,..., (5.120)

with the initial condition C” =0, which implies that
C(O) are time independent, so that C(O) = ¢;, obtaining
Eq (5.114) in the zeroth order. The system Eq. (5.120) can
be integrated to any prescribed order. For example, if the sys-
tem is initially in a stationary state |®; ), then set

S
(0) Jji
Cj = /. .
{5(1—1)

so that

for discrete states ,
) (5.121)
for continuous states ,

t

Cii) () = ()™ / Viiexp[(i/h)Ajit']dt’ . (5.122)

—00

assuming C/((z))( 00) = 0. Clearly, |C" e )(t)lz gives the first-
order transition probability for the transition from the initial
state |®;) to a particular state |@;). These in turn will yield
the first-order differential cross sections [98].
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Abstract

In second quantization, the characteristic properties of
eigenfunctions are transferred to operators. This approach
has the advantage of treating the atomic shell as the basic
unit, as opposed to the electron configuration. The cre-
ation and annihilation operators allow one to move from
configuration to configuration, exposing an intrinsic shell
structure. The introduction of coefficients of fractional
parentage (cfp) then allows the calculation of the matrix
elements of an operator in one configuration to be ex-
pressed in terms of those of the same operator in another
configuration; hence the matrix elements of an operator
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in all configurations may be determined from the knowl-
edge of its matrix elements in but one. This can be viewed
as an extension of the usual Wigner-Eckart theorem. The
basic concepts of quasispin and quasiparticle are also in-
troduced within this context.

Keywords

second quantization - intrinsic shell structure - coefficients
of fractional parentage - Wigner—Eckart theorem - qua-
sispin

6.1 Basic Properties

6.1.1 Definitions

The creation operator ag creates the quantum state £. The an-
nihilation (or destruction) operator a, annihilates the quan-
tum state 7. The vacuum (or reference) state |0) satisfies the
equation

ay0) =0. (6.1)
Bosons satisfy the commutation relations
[a].af]=0. (6.2)
lag,ay] =0, (6.3)
[ag.a}] = 8.m) . (6.4)

where [A, B] = AB — BA. Fermions satisfy the anticommu-
tation relations

[ag,a;;]Jr =0, (6.5)
lag.ayl+ =0, (6.6)
[ag’az]-ﬁ- = 8(§5 T’) ’ (67)
where [A, Bl = AB + BA.
m
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6.1.2 Representation of States

For an electron in an atom, characterized by the quantum
number quartet (n £ mg my), the identification &€ = (n £ mymy)
for fermions is made. For normalized Slater determinants
{aB ...v} characterized by the electron states o, f,...,V,
the equivalences

alaL...aHO) ={af...v},
(Ola, ...agaq ={af...v}"

(6.8)
(6.9)

are valid, where the asterisk denotes the complex conjugate.
For a normalized boson state {---} in which the label &
appears N times, the additional factor

[No!Ng!. .. N1 "2 (6.10)
must be included on the left-hand sides of the equivalences
Egs. (6.8) and (6.9).

6.1.3 Representation of Operators

For an operator F, consisting of the sum of operators f; act-
ing on the single electron i,

F =3 al(ElfImay.
&n

6.11)

For an operator G, consisting of the sum of operators g;;
acting on the pair of electrons 7 and j,

1
=3 Y alal(Emlgnliit)aa; . (6.12)
£n.0.A
For an N -particle system |¥),
(6.13)

Y alag|w) = N|¥) .
§

The representations of single-particle and two-particle op-
erators for bosons are identical to those given above for
fermions [1].

6.2 Tensors
6.2.1 Construction

If the description & for a single fermion or boson state in-
cludes an angular momentum quantum number ¢ and the
corresponding magnetic quantum number m1,, then the 27 + 1
components of a creation operator aj,, where o0 = (t,m,) and

—t < m, <t, satisfy the commutation relations of Racah [2]
for an irreducible spherical tensor of rank ¢ with respect to
the total angular momentum 7', given by

T =Y al(tltn)a, .

That is, with the phase conventions of Condon and Short-
ley [3],

(6.14)

[Tz,al] = m,al , (6.15)
[T, +iT,.al] = [t(t + 1) —m,(m, + D]*a] . (6.16)

where T = (t,m, £ 1).
A spherical tensor a constructed from annihilation opera-
tors possesses the components d,,, which satisfy
i, = (—1)’ac , (6.17)
with p =t —m; and ¢ = (¢, —m,).
The 4¢ 4+ 2 components of the creation operator for an
electron in the atomic £ shell form a double tensor of rank %

with respect to the total spin .S, and rank £ with respect to
the total angular momentum L.

6.2.2 Coupled Forms

Tensors formed from annihilation and creation operators can
be coupled by means of the usual rules of angular momentum
theory [4]. The double tensor defined for electrons in the £
shell by

W = —(ala)",

possesses a rank x with respect to S, and rank k with respect
to L. Its reduced matrix element, defined here as in (5.4.1) of
Edmonds [4], for a single electron in both the spin and orbital
spaces, is given by

(6.18)

(s W ||st) = [+ Dk +D]> . (6.19)

The connections to tensors whose matrix elements have been
tabulated [5, 6] are

WO = [k + 1)/2]2U® | (6.20)
w0 = 22k 4+ 1))V ED 6.21)
For terms with common spin S, say ¥ and ',
(wIIw @y
=[S + )@k + /2P (w[[UD)ly)) . (©6.22)

This result is obtained because the ranks assigned to the ten-
sors imply that W) is to be reduced with respect to both
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the spin S and the orbit L, while U®) is to be reduced only
with respect to L.

The following relations hold for electrons with azimuthal
quantum numbers £ [7]:

S =[(2¢ + 1)/2]2 W00 (6.23)
L =20+ 1)20 + 1)/32 WO | (6.24)
Ao\ A+ DL+ : a2)1
Z(”C" ) - (10(%— ety Ve
(6.25)

(si+€;) = —[L( + )20+ 1)/2QWw D0 - (6.26)
)3

where the tensor C* of Racah [2] is related to the spherical
harmonics by

CH = [4r/ 2k + D] Yy . (6.27)

and where the tensors of the type W O jndicate that the
spin and orbital ranks are coupled to a resultant K.

6.2.3 Coefficients of Fractional Parentage

Let ¢ and ¢ denote terms of £V and £Y~! characterized by
(S,L) and (S, L). The coefficients of fractional parentage
(cfp) (Y{|y) of Racah [8] allow one to calculate an antisym-
metrized function ¥ by vector-coupling ¥ to the spin and
orbit of the Nth electron:

) =" |v. 2 SLYY1Y) (6.28)
v

where the sum over ¥ includes S, L, and any other quantum
numbers necessary to define the spectroscopic terms of £V~
The cfp’s are given by

(Wlla'|lF) = (DN [N@S + DL + DI (v i1P) |
(6.29)

(llally) = (~DSINQRS + DL + D2 (¥ }¥) ,
(6.30)

where g = N+ 8§ + L —s—S§ —{— L. A tabulation for the
p, d, and f shells has been given by Nielson and Koster [5].
Two-electron cfp are given by

(Vll(a'a") ™ )19) = [NV = @S + DEL + 1)}
x (Yl C(kk)) 6.31)

where 1/~/ denotes a term of £V~2, and the symbols « and k

stand for the S and the L of a term of £2. A tabulation for the
p, d, and f shells has been given by Donlan [9]. An extension
to all multielectron cfp has been carried out by Velkov [10].

If, through successive applications of the two-particle op-
erators (aa)®?, a state of £V can be reduced to £, but no
further, then v is the seniority number of Racah [8].

If the ranks s and £ of a™ are coupled to S and L of ¥, the

term
(a'fir))"

either vanishes, or is a term of ¢/ characterized by S and L.
Such a term is said to possess the godparent V. Red-
mond [11] has used the notion of godparents to generate an
explicit formula for the single particle cfp [7].

(6.32)

6.3 Quasispin
6.3.1 Fermions

For electrons, the components Q (= Q. £i0Q,) and Q. of
the quasispin Q are defined by [7, 12]

0, = [+ 1)/2]% (a'a")™ 6.33)
0 = —[2t+1)/2)? (aa)*™ , (6.34)
0. =~ + 1)/8)[(a'a)™ + (aa”)™]. (635

The term quasispin comes from the fact that the components
of @ satisfy the commutation relations of an angular momen-
tum vector. The eigenvalues My of Q., for a state of N are
given by

My =—-@2(+1-N)/2. (6.36)

The shift operators Q, and Q_ connect states of the £ shell
possessing the same value of the seniority v of Racah [8].
A string of such connected states defines the extrema of My,
from which it follows that

0=020+1-1v)/2. (6.37)

Rudzikas has placed special emphasis on quasispin in his
reworking of atomic shell theory, and he has also intro-
duced isospin to embrace electrons differing in their principal
quantum numbers n [13]. Concise tables of one-electron
cfp with their quasispin dependence factored out have been
given [14], as have the algebraic dependences on v and S of
two-electron cfp [15].

6.3.2 Bosons

For real vibrational modes created by aI(v =1,2,....d),
the analogs of Eqs. (6.33)-(6.35) are

1
Py =—3 > afa} . (6.38)
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(6.39)

1
P = Z (ala, +ayal), (6.40)

and P is an angular momentum vector [16]. The eigenvalues
Mp for an n-boson state are given by

Mp = (2n +d)/4, (6.41)

and can therefore be quarter-integral. Successive application
of the operator P, to a state |ng), for which P_|ng) = 0,
generates an infinite ladder of states characterized by

P=Qn+d—4)/4. (6.42)

6.3.3 Triple Tensors

The creation and annihilation operators a; and a; for a given
state & can be regarded as the two components of a tensor of
rank % with respect to quasispin (either Q or P). For elec-
trons, this leads to triple tensors a*%) (for which g = s = 1)
satisfying

aﬁqs[)a}f“j) + affsz)aﬁqm
= (=118 (g, =)y, )8 (me —m})
(6.43)

where A = (mgmgmy), p = (mymimy),and x =q + s+ £ +
my + mg + my. In terms of the coupled tensor

X(Kl(k) — (a(qsi)a(qsi))(Kkk) . (644)
the angular momenta Q, S, and L are given by
0 = —[(2¢ + 1)/4]2 X 1O (6.45)
S = —[(20+1)/42 X010 (6.46)
L =—[0(f+ 1)L+ 1)/3]2 XD (6.47)

Furthermore, the components of X (KxK) for which M k=0
. . . 1
are identical to the corresponding components of 22 (afa) X

when K + « + k is odd; and
X KR — _ (20 + 1)28(K, 0)8(k, 0)8(k,0)  (6.48)

when K + k + k is even.

6.3.4 Conjugation

Creation and annihilation operators can be interchanged by
the operation of the conjugation operator C [7, 17]. For elec-
trons in the atomic £ shell,

Caéqsz)c—l — (_l)q_mqafyqse) s (649)

where & = (mymgmy) and n = ((—my)msmy). In terms of
the tensors a' and a,

Ca’'C'=a, CaC™'=-a'. (6.50)

Furthermore,

CX(AKKk)C_l _ (_I)K—MKX}(LKK]C) , (6.51)

where A = (MxM, My) and = [(—Mg) M, My], and

C|OMy) = (-1)2Me|Q — My). (6.52)

Thus, from Eq. (6.36), the action of C takes N into 4+
2 — N;thatis, C interchanges electrons and holes. When the
case k = k = 0 is excluded, application of Egs. (6.51) and
(6.52) yields

(Y WD ey

— (_l)y(€4l+27NW||W(Kk)||€4l+27Nw/) ) (653)

where y =« + k + %(v/ —v) + 1, and where the seniori-
ties v and v’ are implied by v and v'. A similar application
to reduced matrix elements of a' and a gives the following
relation between cfp:

(e y)
— (—1)2(64Z+I_NW|}€4£+2_N1///)

5 ((4@ +2-N)@2S" + H@2L +1)
(N +1)2S + (2L + 1)

) T (654

wherez=S+S"—s+L+ L —{+ %(v—l—v’— 1). The phases
y and z stem from the conventions of angular momentum
theory, which enter via quasispin. Racah [2, 8] did not use
this concept, and his phase choices are slightly different from
the ones above.

For a Cartesian component Q,, of the quasispin Q,

_Qu .

Thus, C is the analog of the time-reversal operator 7', for
which

co,c' = (6.55)

TL,T'=-L,, (6.56)
78, T '=-5,. (6.57)

Both C and T are antiunitary; thus,
CiC'=—j. (6.58)

6.3.5 Dependence on Electron Number

Application of the Wigner—Eckart theorem to matrix ele-
ments whose component parts have well-defined quasispin
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ranks yields the dependence of the matrix elements on the
electron number N [18, 19]. For « + k even and nonzero,
the quasispin rank of W ©%) is 1, and

(gl IwE O y)

_@+1=N) k) (| vy
= R e ey,

(6.59)
For k + k odd, W “® is necessarily a quasispin scalar, and
the matrix elements are diagonal with respect to the seniority
and independent of N. These properties were first stated in
Egs. (69) and (70) of [8].

Application of these ideas to single-electron cfp yields,
for states ¥ and ¥ with seniorities v and v + 1, respectively,

(N1 y)

= [(N = v)(v +2)/2N]2 (€29 [} ') . (6.60)

6.3.6 The Half-Filled Shell

Selection rules for operators of good quasispin rank K, taken
between states of the half-filled shell (for which My = 0),
can be found by inspecting the 3—; symbol

0 K ¢
0 0 0)

which appears when the Wigner-Eckart theorem is applied in
quasispin space. This 3—j symbol vanishes unless Q + K +
Q’ is even. An equivalent result can be obtained for W «h)
by referring to Eq. (6.53) and insisting that y be even.

6.4 Complementarity
6.4.1 Spin-Quasispin Interchange

The operator R formally interchanges spin and quasispin.
The result for the creation and annihilation operators for elec-
trons can be expressed in terms of triple tensors:
Ra"R™" = ("0 (6.61)
where & = (mymsmy) and n = (mgmgmy). For the tensors
X K<) defined in Eq. (6.44), we get
RXFORT = x (Kb (6.62)
where A = (Mg M, My) and u = (M, Mg M},). For states of
the £ shell,

RlyOMySMs) = (—1)'|[ySMsQMy) | (6.63)

where the quasispin of the ket on the right is S and the spin
is Q. The phase factor ¢ depends on S and Q and on phase
choices made for the coefficients of fractional parentage. The
symbol y denotes the additional labels necessary to com-
pletely define the state in question, including L and M .

For every y, Racah [20] observed that there are two pos-
sible pairs (vy, S1) and (v,, S») satisfying

vV +28S =0, +285, =20+ 1. (6.64)
From Eq. (6.37) it follows that
S1=0>, S =0;. (6.65)

6.4.2 Matrix Elements

Application of the complementarity operator R to the com-
ponent parts of a matrix element leads to the equation

(yOMoSMs| XMy’ 0' My S M)
= (=1)"(ySMs QM| X 5P|y S' MG Q' M) . (6.66)

where A and p have the same significance as in Eq. (6.62),
and where y, like ¢ of Eq. (6.63), depends on the spins and
quasispins but not on the associated magnetic quantum num-
bers. Equation (6.66) leads to a useful special case when
My = M, = 0 and the tensors X are converted to those of
type W, defined in Eq. (6.18). The sum K + « + k is taken
to be odd, with the scalars k = k =0 and K = k = 0 ex-
cluded. Application of the Wigner-Eckart theorem to the spin
and orbital spaces yields

(yOMoSIW 11y Q' Mys’
(ySMs Q||WED]|y'S' MO

?
)

(Q K ¢

M, 0 M
— (1~ 2 °/, (6.67)

S kS

(s o ar)

wherez =y + QO — My — S + My. An equivalent form is

(N yoy Sy [|W R [eN yv; S7)
(Y Y0, S, || W KR [[EN 10} S5

JQU+1-v) K 10+1-v)

1) l2t+1-N) 0 f(N-2t-1)
lat+1-m) « tee+1-w))

JQUL+1=N) 0 J(N'=2¢-1)
(6.68)

where Eq. (6.64) is satisfied both for the unprimed and
primed quantities.
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6.5 Quasiparticles

Sets of linear combinations of the creation and annihilation
operators for electrons in the £ shell can be constructed such
that every member of one set anticommutes with a member
of a different set. To preserve the tensorial character of these
quasiparticle operators with respect to L, it is convenient to
define [21, 22]

o=

My =27a] + (—1)‘—4a%’_q] , (6.69)
pi=271 :a;q - (—1)“461%,761] , (6.70)
v =27 :ai%.q + (—1)’5—%1,%,%1] , 6.71)
g =2 :ai%’q . (—1)’5_"(1_%._4] . 6.72)

The four tensors 87 (= AT, u, v, or £7) anticommute with
each other; the first two act in the spin-up space, the second
two in the spin-down space. The tensors 6, whose compo-
nents éq are defined as in Eq. (6.17) with t = £ and m, = ¢,
are related to their adjoints by the equations

At=2a, ﬂT
vi=v, g‘f

(6.73)
(6.74)

-,
—£ .

Under the action of the complementarity operator R (see
Eq. (6.61)) [23],

RAR'=2,
RvR'=v,

(6.75)
(6.76)

Ru,R’1 =u,
RER' = —¢ .

The tensors A, p, and v, for a given component ¢, form
a vector with respect to S + Q. Every component of £ is
scalar with respect to S + Q [24].
The compound quasiparticle operators defined by [21, 22]
) 1 +
O] =272[6].6,] . (6.77)

where ¢ >0and 0 = A, u, v, or £ satisfy the anticommutation
relations

[0].05], =0. (6.78)
[04.04], =0, (6.79)
[0, 0,1, =8.9). (6.80)

forq,q’ > 0. The @; with ¢ > 0 can thus be regarded as the
creation operators for a fermion quasiparticle with £ compo-
nents.

The connection between the creation and annihilation op-
erators for quasiparticles and for quarks (appearing in the last
two rows of Table 3.1) is

0 — 2([’1)/269)/9(nge)(lo"'o) , (6.81)

where the yg are Dirac matrices satisfying

YoVe + Voye = 28(0.9) ,

and the €4 are phases, to some extent dependent on the defini-
tions Egs. (6.69)—(6.72) [25]. The superscript (10. ..0) indi-
cates that qz and ¢4 each of which belongs to the elementary
spinor (%% e %) of SOy (2€ + 1), are to be coupled to the re-
sultant (10. . . 0), which matches the group label for 6. In the
quark model, the 2*+2 states of the atomic £ shell are given by

q;rthqI‘IgO)pp/ ) (6.83)

where p and p’ are parity labels that distinguish the four
reference states |0) corresponding to the evenness and odd-
ness of the number of spin-up and spin-down electrons. The
scalar nature of § (and hence of ¢;) with respect to S + Q
can be used to derive relations between spin-orbit matrix el-
ements that go beyond those expected from an application of
the Wigner—Eckart theorem [26].

(6.82)
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Abstract

The density operator was first introduced by J. von Neu-
mann [1] in 1927 and has since been widely used in quan-
tum statistics. Over the past decades, however, the appli-
cation of density matrices has spread to many other fields
of physics. Density matrices have been used to describe,
for example, coherence and correlation phenomena, align-
ment and orientation and their effect on the polarization
of emitted radiation, quantum beat spectroscopy, optical
pumping, and scattering processes, particularly when spin-
polarized projectiles and/or targets are involved. A thor-
ough introduction to the theory of density matrices and
their applications, with an emphasis on atomic physics,
can be found in the book by Blum [2], from which many
equations have been extracted for use in this chapter.

Keywords

density matrix - density operator - reduce density matrix -
Stokes parameter - tensor operator

The main advantage of the density matrix formalism is its
ability to deal with pure and mixed states in the same con-
sistent manner. The preparation of the initial state as well as
the details regarding the observation of the final state can be
treated in a systematic way. In particular, averages over quan-
tum numbers of unpolarized beams in the initial state and
incoherent sums over nonobserved quantum numbers in the
final state can be accounted for via the reduced density ma-
trix. Furthermore, expansion of the density matrix in terms of
irreducible tensor operators and the corresponding state mul-
tipoles allows for the use of advanced angular momentum
techniques, as outlined in Chaps. 2, 3 and 13. More details
can be found in textbooks such as [3, 4].
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7.1 Basic Formulae of pis

Tr{p} =Y w, =1. (7.9)
711 Pure States n

Consider a system in a quantum state that is represented by
a single wave function |¥). The density operator for this sit-
uation is defined as

p=[¥)(¥|. (7.1)
If |¥) is normalized to unity, i.e., if
(W) =1, (7.2)
then
pPP=p. (7.3)

Equation (7.3) is the basic equation for identifying pure
quantum mechanical states represented by a density opera-
tor.

Next, consider the expansion of |¥) in terms of a com-
plete orthonormal set of basis functions {|®,)}, i.e.,

W) =Y el . (7.4)
n
The density operator then becomes
P = chC;|<pn><®zn| = Pum| L) (D] (7.5)

n.m

where the star denotes the complex conjugate quantity. Note
that the density matrix elements p,,, = (®@,| p |®,,) depend
on the choice of the basis and that the density matrix is Her-
mitian, i.e.,

(7.6)

fON—
pmn - pnm .

Finally, if |¥) = |®;) is one of the basis functions, then

Pmn = 8ni8mi s (77)
where §,; is the Kronecker §. Hence, the density matrix is
diagonal in this representation with only one nonvanishing
element.

7.1.2 Mixed States

The above concepts can be extended to treat statistical en-
sembles of pure quantum states. In the simplest case, such
mixed states can be represented by a diagonal density matrix
of the form

p:an|Wn><Wn| ) (7.8)

n

where the weight w,, is the fraction of systems in the pure
quantum state |¥, ). The standard normalization for the trace

Since the trace is invariant under unitary transformations of
the basis functions, Eq. (7.9) also holds if the |¥,) states
themselves are expanded in terms of basis functions as
in Eq. (7.4). For a pure state and the normalization Eq. (7.9),
one finds in an arbitrary basis

Tr{p} = Tr{pz} =1. (7.10)

71.3 Expectation Values

The density operator contains the maximum available infor-
mation about a physical system. Consequently, it can be used
to calculate expectation values for any operator A that repre-
sents a physical observable. In general,

{(4) = Tr{A p}/Trip} ,

where Tr{p} in the denominator of Eq. (7.11) ensures the
correct result even for a normalization that is different
from Eq. (7.9). The invariance of the trace operation ensures
the same result—independently of the particular choice of
the basis representation.

(7.11)

7.1.4 The Liouville Equation

Suppose Eq. (7.8) is valid for a time ¢ = 0. If the functions
|@, (r,t)) obey the Schrodinger equation, i.e.,

ad
i Wa(r.0) = H@) [ (r.1)) . (7.12)
the density operator at the time ¢ can be written as
p(t) = U@ p(O) U (1) . (7.13)

In Eq. (7.13), U(¢) is the time evolution operator that relates
the wave functions at times # = 0 and ¢ according to

[, (r,0)) = U() |¥(r,0)) . (7.14)
and U7 (t) denotes its adjoint. Note that
U@t) = e, (7.15)

if the Hamiltonian H is time independent.

Differentiation of Eq. (7.13) with respect to time and in-
serting Eq. (7.14) into the Schrodinger equation (7.12) yields
the equation of motion

i p(e) = [H@).p0)] (7.16)

where [A, B] denotes a commutator.
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The Liouville equation (7.16) can be used to determine
the density matrix and to treat transitions from nonequilib-
rium to equilibrium states in quantum mechanical systems.
Especially for approximate solutions in the presence of small
time-dependent perturbation terms in an otherwise time-
independent Hamiltonian, i.e., for

H(t) = Ho+ V(1) , (7.17)
the interaction picture is preferably used. The Liouville equa-
tion then becomes

. d
IEPI(I) = [Vi(0). ;)] (7.18)
where the subscript I denotes the operator in the interaction

picture. In first-order perturbation theory, Eq. (7.18) can be
integrated to yield

pr(t) = pi(0) — i [ Vi(o). pr(0)] dt . (7.19)
0

and higher-order terms can be obtained through subsequent
iterations.

7.1.5 Systemsin Thermal Equilibrium

According to quantum statistics, the density operator for
a system that is in thermal equilibrium with a surrounding
reservoir R at a temperature 7 (canonical ensemble) can be

expressed as

—BH
= B 020

where H is the Hamiltonian, and 8 = 1/kgT with kg being
the Boltzmann constant. The partition sum

Z = Tr{ exp(—,BH)} (7.21)
ensures the normalization condition Eq. (7.9). Expectation

values are calculated according to Eq. (7.11), and extensions
to other types of ensembles are straightforward.

7.1.6 Relaxation Processes

Transitions from nonequilibrium to equilibrium states can
also be described within the density matrix formalism. One
of the basic problems is to account for irreversibility in
the energy (and sometimes particle) exchange between the
system of interest, S, and the reservoir, R. This is usually
achieved by assuming that the interaction of the system with
the reservoir is negligible and, therefore, the density matrix

representation for the reservoir at any time ¢ is the same as
the representation for t = 0.

Another frequently made assumption is the Markov ap-
proximation. In this approximation, one assumes that the
system forgets all knowledge of the past, so that the density
matrix elements at the time ¢ + At depend only on the val-
ues of these elements, and their first derivatives, at the time 7.
When Eq. (7.19) is put back into Eq. (7.18), the result in the
Markov approximation can be rewritten as

d
&PSI(I) = —iTrg[Vi(1). ps1:(0)px (0)]

t

- / deTeg [V Vi (0).pst()pr O] . (7.22)
0

where Trx denotes the trace with regard to all variables of the
reservoir. Note that the integral over dr contains the system
density matrix in the interaction picture, pgj, at the time ¢,
rather than at all times 7 that are integrated over (the Markov
approximation), and that the density matrix for the reservoir
is taken as px (0) at all times. For more details, see Chap. 7
of Blum [2] and references therein.

Equations such as Eq. (7.22) are the basis for the master or
rate equation approach used, for example, in quantum optics
for the theory of lasers and the coupling of atoms to cavity
modes. For more details, see Chaps. 72, 74, 77 and 82.

7.2 Spin and Light Polarizations

Density matrices are frequently used to describe the po-
larization state of spin-polarized particle beams as well as
light. The latter can either be emitted from excited atomic or
molecular ensembles or can be used, for example, for laser
pumping purposes.

7.21 Spin-Polarized Electrons

The spin polarization of an electron beam with respect to
a given quantization axis 7 is defined as [5]

_M-N

Pﬁ_ ’
NT+Ni

(7.23)

where N4(N|) is the number of electrons with spin up
(down) with regard to this axis. An arbitrary polarization
state is described by the density matrix

1 1+P. P—iP
P=3 P +iP, 1-P, )’
where P, , . are the Cartesian components of the spin polar-
ization vector. The individual components can be obtained

(7.24)
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from the density matrix as

P; = Tr{o; p}, (7.25)

where 0; (i = x, y, z) are the standard Pauli spin matrices.

7.2.2 Light Polarization

Another important use of the density matrix formalism is
the description of light polarization in terms of the so-called
Stokes parameters [6]. For a given direction of observation,
the general polarization state of light can be fully determined
by the measurement of one circular and two independent lin-
ear polarizations. Using the notation of Born and Wolf [7],
the density matrix is given by

p:ﬁ 1- P
2 \P +iP,

where P, and P, are linear light polarizations, while Pj3 is
the circular polarization (also Sect. 7.6). In Eq. (7.26), the
density matrix is normalized in such a way that

TI'{p} = Itot b

P —iP
i (7.26)
1+ Py

(7.27)

where Iy is the total light intensity. Other frequently used
names for the various Stokes parameters are

Pi= m=M, (7.28)
P2 = 7’}1 = C , (729)

The Stokes parameters of electric dipole radiation can be re-
lated directly to the charge distribution of the emitting atomic
ensemble. As discussed in detail in Chap. 48, one finds, for
example,

L, =—P; (7.31)

for the angular momentum transfer perpendicular to the scat-
tering plane in collisional (de)excitation, and

L
¥=3

for the alignment angle.

arg{P1 + le} (732)

7.3 Atomic Collisions
7.3.1 Scattering Amplitudes

Transitions from an initial state | JoMy; komy) to a final state
|JiM; kym,) are described by scattering amplitudes

S(Mimy; Momo) = (JiMy; kym | T | JoMo; komy) |
(7.33)

where T is the transition operator. Furthermore, Jy (J;)
is the total electronic angular momentum in the initial
(final) state of the target and M, (M,) its corresponding
z-component, while kg (k) is the initial (final) momentum
of the projectile and m (m) its spin component.

7.3.2 Reduced Density Matrices

While the scattering amplitudes are the central elements in
a theoretical description, some restrictions usually need to be
taken into account in a practical experiment. The most impor-
tant ones are: (i) there is no pure initial state, and (ii) not all
possible quantum numbers are simultaneously determined in
the final state. The solution to this problem can be found by
using the density matrix formalism. First, the complete den-
sity operator after the collision process is given by [2]

Pout = /]inn{-rT > (7.34)

where pj, is the density operator before the collision. The
corresponding matrix elements are given by

k.MM
(/Oout)m/lml1 b=

Z pm6mO pM(’]M0
mgm,Mj M,

x f (M{m': Mgm)

X f*(Mlml;Mom()) s (735)
where the term 0y, m P m, describes the preparation of the
initial state (i). Secondly, reduced density matrices account
for (ii). For example, if only the scattered projectiles are ob-
served, the corresponding elements of the reduced density
matrix are obtained by summing over the atomic quantum
numbers as follows:

(pout)f;l/lml = Z(pout)zl/l.,ﬁ/[llMl . (7.36)
M,

The differential cross section for unpolarized projectile and
target beams is given by

do

—=C Y (Poudmim, - (7.37)
an - 1mq

where C is a constant that depends on the normalization of
the continuum waves in a numerical calculation.

On the other hand, if only the atoms are observed (for ex-
ample, by analyzing the light emitted in optical transitions),
the elements

ki,M/ M
(pout)Ml/Ml = /d3k12(pout)mllmll !

mi

(7.38)
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determine the integrated Stokes parameters [8, 9], i.e., the
polarization of the emitted light. They contain information
about the angular momentum distribution in the excited tar-
get ensemble.

Finally, for electron—photon coincidence experiments
without spin analysis in the final state, the elements
Z(pouo’;t,i? .

pout)M m (7.39)

simultaneously contain information about the projectiles and
the target. This information can be extracted by measuring
the angle-differential Stokes parameters. In particular, for un-
polarized electrons and atoms, the natural coordinate system,
where the quantization axis coincides with the normal to the
scattering plane, allows for a simple physical interpretation
of the various parameters [10] (Chap. 48).

The density matrix formalism outlined above is very use-
ful for obtaining a qualitative description of the geometrical
and sometimes also of the dynamical symmetries of the
collision process [11]. Two explicit examples are discussed
in Sect. 7.6.

7.4 Irreducible Tensor Operators

The general density matrix theory can be formulated in
a very elegant fashion by decomposing the density operator
in terms of irreducible components whose matrix elements
then become the state multipoles. In such a formulation, full
advantage can be taken of the most sophisticated techniques
developed in angular momentum algebra (Chap. 2). Many
explicit examples can be found in [3, 4].

7.4.1 Definition

The density operator for an ensemble of particles in quantum
states labeled as |JM ), where J and M are the total angular
momentum and its magnetic component, respectively, can be
written as

= Y piulI M) (IM| . (7.40)
J'IM'M
where
P = (J'M'|p|IM) (7.41)

are the matrix elements. (For simplicity, interactions out-
side the single manifold of momentum states |JM) are
neglected.) Alternatively, one may write

ST ko) T )i - (7.42)

J'IKQ

where the irreducible tensor operators are defined in terms of
3—j-symbols as

T(J')go =Y ()M V2K +1
M'M
x(’ / K)|J/M/><JM|,
M -M -Q

(7.43)
and the state multipoles or statistical tensors are given by

< (J'T) > Y )M VIK T 1

M'M
J’ J K
X (J'M'|p|JM) .
M -M -0
(7.44)

Hence, the selection rules for the 3—; -symbols imply that

|J-J|<K=<J+J,
M-M=0.

(7.45)
(7.46)

Equation (7.44) can be inverted through the orthogonality
condition of the 3—j -symbols to give

(J'M'|plIM) = Y (=1)" M V2K + 1
KQ
JJ K o
X(M/ o _Q)<T(J Nio)-

(7.47)

7.4.2 Transformation Properties

Suppose a coordinate system (X3, Y2, Z,) is obtained from
another coordinate system (X, Y;, Z;) through a rotation
by a set of three Euler angles (y, 8,«) as defined in Ed-
monds [12]. The irreducible tensor operators Eq. (7.43)
defined in the (X, Y, Z;) system are then related to the op-
erators (T(J’J);Q) in the (X, Y,, Z,) system by

= Z T(J/‘])Kq

D(y. B. o)k, . (748)

where

D(y.B. o)ty = €MV d(B)ipy €M

is a rotation matrix (Chap. 2). Note that the rank K of the
tensor operator is invariant under such rotations. Similarly,

<T(J/J)I<Q> = Z(T(J'J)L)D(% B. )k, (1.50)
q

(7.49)

holds for the state multipoles.
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The irreducible tensor operators fulfill the orthogonality
condition

T (1)) o T(I' ) o} = bxk B (15D
With |

T(J'T)y =~ 8,0 1 7.52

( )00 V2T +1 I (7.52)

being proportional to the unit operator 1, it follows that all
tensor operators have vanishing trace, except for the mono-
pole T(J/J)()().

Reduced tensor operators fulfill the Wigner—Eckart theo-
rem (Sect. 2.8.4)

(7M7) ol IM )

Z(_I)J,_M( J K J

0 M

w ) (T l17),  (7.53)

where the reduced matrix element is simply given by

(VI Tx 17} = (7.54)

1
V2K +1°
7.43 Symmetry Properties of State Multipoles

The Hermiticity condition for the density matrix implies

<T(J/J)LQ> _ (—1)1/*”Q<T(JJ’)T,(7Q> . (155
which, for sharp angular momentum J' = J, yields
<T(J)I<Q> - (_1)Q<T(J);_Q> . (7.56)

Hence, the state multipoles (7'(J );o) are real numbers.

Furthermore, the transformation property Eq. (7.50) of the
state multipoles imposes restrictions on nonvanishing state
multipoles to describe systems with given symmetry proper-
ties. In detail, one finds:

1. For spherically symmetric systems,

(T ko) = (T )io)

for all sets of Euler angles. This implies that only the
monopole term (7'(J){,) can be different from zero.
2. For axially symmetric systems,

(T(J’J)LQ> — <T(J/J)I<Q>mt

for all Euler angles ¢ that describe a rotation around the
z-axis. Since this angle enters via a factor exp(—iQ ¢) into
the general transformation formula Eq. (7.50), it follows

(7.57)

rot

(7.58)

that only state multipoles with Q = 0, i.e., (T(J’J)LO),
can be different from zero in such a situation.
3. For planar symmetric systems with fixed J' = J,

(T(kg) = CDX(T(Dke)

if the system properties are invariant under reflection in
the xz-plane. Hence, state multipoles with even rank K
are real numbers, while those with odd rank are purely
imaginary in this case.

(7.59)

The above results can be applied immediately to the de-
scription of atomic collisions where the incident beam axis
is the quantization axis (the so-called collision system). For
example, impact excitation of unpolarized targets by un-
polarized projectiles without observation of the scattered
projectiles is symmetric both with regard to rotation around
the incident beam axis and with regard to reflection in any
plane containing this axis. Consequently, the state multi-
poles (T'(J)do) (T(D)3) (T(1)k). . .. fully characterize the
atomic ensemble of interest. Using Eq. (7.50), similar rela-
tionships can be derived for state multipoles defined with
regard to other coordinate systems, such as the natural sys-
tem where the quantization axis coincides with the normal
vector to the scattering plane (Chap. 48).

7.4.4 Orientation and Alignment

From the above discussion, it is apparent that the description
of systems that do not exhibit spherical symmetry requires
the knowledge of state multipoles with rank K # 0. Fre-
quently, the multipoles with K =1 and K = 2 are determined
via the angular correlation and the polarization of radiation
emitted from an ensemble of collisionally excited targets.
The state multipoles with K = 1 are proportional to the
spherical components of the angular momentum expectation
value and, therefore, give rise to a nonvanishing circular light
polarization (Sect. 7.6). This corresponds to a sense of rota-
tion or an orientation in the ensemble, which is, therefore,
called oriented (Sect. 48.1).

On the other hand, nonvanishing multipoles with rank
K = 2 describe the alignment of the system. Some authors,
however, use the terms alignment or orientation synony-
mously for all nonvanishing state multipoles with rank
K # 0, thereby describing any system with anisotropic oc-
cupation of magnetic sublevels as aligned or oriented. For
details on alignment and orientation, see Chap. 48 and [3, 4].

7.4.5 Coupled Systems

Tensor operators and state multipoles for coupled systems
are constructed as direct products (®) of the operators for
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the individual systems. For example, the density operator for
two subsystems in basis states |L, M} ) and |S, Mg) is con-
structed as [2]

p=Y (T(Lo ® TS )NT(LIko ® T(S)g] -
KQkq
(7.60)

If the two systems are uncorrelated, the state multipoles fac-
tor as

(T(L)kg @ T()],) = (TWio TS, )

More generally, irreducible representations of coupled oper-
ators can be defined in terms of a 9—j -symbol as

T )y =2 KkJJ'(KQ.kq|K'Q')

(7.61)

KQkq
K k K

xqL S J :T(L)ko @ T(S)ky »
L S J

(7.62)

where X = +/2x + 1 and (jym,, joma,|j3ms) is a standard
Clebsch—Gordan coefficient.

7.5 Time Evolution of State Multipoles
7.5.1 Perturbation Coefficients

From the general expansions

p(t) = Z(T(j’j:t)lq>T(j'j)kq

J'ikq

(7.63)

in terms of irreducible components, together with Eq. (7.42)
for time ¢+ = 0 and Eq. (7.13) for the time development of the
density operator, it follows that

(TG':0,) = 2o (T 7:0))6 (707 02t

J'IKQ
(7.64)
where the perturbation coefficients are defined as
G(J'J,jj:1)e!
— Tt {U(t)T(J/J)KQ U(z)TT(j’j),tq} . (7.65)

Hence, these coefficients relate the state multipoles at time ¢
to those at ¢ = 0.

7.5.2 Quantum Beats

An important application of the perturbation coefficients is
the coherent excitation of several quantum states, which sub-

sequently decay by optical transitions. Such an excitation
may be performed, for example, in beam-foil experiments
or electron—atom collisions where the energy width of the
electron beam is too large to resolve the fine structure (or
hyperfine structure) of the target states.

Suppose, for instance, that explicitly relativistic effects,
such as the spin—orbit interaction between the projectile and
the target, can be neglected during a collision process be-
tween an incident electron and a target atom. In that case,
the orbital angular momentum (L) system of the collisionally
excited target states may be oriented, depending on the scat-
tering angle of the projectile. On the other hand, the spin (S)
system remains unaffected (unpolarized), provided that both
the target and the projectile beams are unpolarized. During
the lifetime of the excited target states, however, the spin—
orbit interaction within the target produces an exchange of
orientation between the L and the S systems, which results
in a net loss of orientation in the L system.

This effect can be observed directly through the intensity
and the polarization of the light emitted from the excited
target ensemble. The perturbation coefficients for the fine-
structure interaction are found to be [2, 13]

eXP(—Vt) ’
G(Lityy = ————=> (27 +1)(2J +1)
2511 £
LJs 2cos(a) —wy)t, (7.66)
J L K SR

where w; —w; corresponds to the (angular) frequency differ-
ence between the various multiplet states with total electronic
angular momenta J' and J, respectively. Also, y is the natu-
ral width of the spectral line; for simplicity, the same lifetime
was assumed in Eq. (7.66) for all states of the multiplet.

Note that the perturbation coefficients are independent of
the multipole component Q in this case, and that there is
no mixing between different multipole ranks K. Similar re-
sults can be derived [2, 13] for the hyperfine interaction and
also to account for the combined effect of fine and hyperfine
structure. The cosine terms represent correlation between the
signal from different fine-structure states, and they lead to
oscillations in the intensity as well as the measured Stokes
parameters in a time-resolved experiment.

Finally, generalized perturbation coefficients have been
derived for the case where both the L and the S systems may
be oriented and/or aligned during the collision process [14].
This can happen when spin-polarized projectiles and/or tar-
get beams are prepared.

7.5.3 Time Integration over Quantum Beats

If the excitation and decay times cannot be resolved in
a given experimental setup, the perturbation coefficients need
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to be integrated over time. As a result, the quantum beats
disappear, but a net effect may still be visible through a de-
polarization of the emitted radiation. For the case of atomic
fine structure interaction discussed above, one finds [2, 13]

o0
G(L)x = /G(L;I)Kdt
0
1
= 20+ 1)(2J +1
S5 11 (2 DE )
J'J
2
L J S %
% — (7.67)
J L K\ y*+o,

where w; ; = w; — w;. Note that the amount of depolariza-
tion depends on the relationship between the fine structure
splitting and the natural line width. For |wy ;| > y (f
J' # J), the terms with J' = J dominate and cause the max-
imum depolarization; for the opposite case |w; ;| < y, the
sum rule for the 6—j -symbols can be applied and no depolar-
ization is observed.

Similar depolarizations can be caused through hyper-
fine structure effects, as well as through external fields. An
important example of the latter case is the Hanle effect
(Sect. 18.2.1).

7.6 Examples

In this section, two examples of the reduced density for-
malism are discussed explicitly. These are: (i) the change of
the spin polarization of initially polarized spin-% projectiles
after scattering from unpolarized targets, and (ii) the Stokes
parameters describing the angular distribution and the polar-
ization of light as detected in projectile-photon coincidence
experiments after collisional excitation. The recent book by
Andersen and Bartschat [4] provides a detailed introduction
to these topics, together with a thorough discussion of bench-
mark studies in the field of electronic and atomic collisions,
including extensions to ionization processes, as well as appli-
cations in plasma, surface, and nuclear physics. Even more
extensive compilations of such studies can be found in a re-
view series dealing with unpolarized electrons colliding with
unpolarized targets [10], heavy-particle collisions [15], and
the special role of projectile and target spins in such colli-
sions [16].

7.6.1 Generalized STU-Parameters
For spin-polarized projectile scattering from unpolarized tar-

gets, the generalized STU-parameters [11] contain informa-
tion about the projectile spin polarization after the collision.

These parameters can be expressed in terms of the elements
Eq. (7.36).

To analyze this problem explicitly, one defines the quan-
tities

1 /. ’
mM%;Of(MlmnMomo)

X f*(MlmﬁMomo) ,

(mymg;mymg) =
(7.68)

which contain the maximum information that can be ob-
tained from the scattering process, if only the polarization of
the projectiles is prepared before the collision and measured
thereafter.

Next, the number of independent parameters that can be
determined in such an experiment needs to be examined. For
spin-% particles, there are 2 x 2 x 2 x 2 = 16 possible com-
binations of {mmg;m m,} and, therefore, 16 complex or 32
real parameters (in the most general case of spin-S particles,
there would be (2S5 + 1)* combinations). However, from the
definition Eq. (7.68) and the Hermiticity of the reduced den-
sity matrix contained therein, it follows that

(mympy; mymg) = (mymg; m\ymy)* (7.69)

Furthermore, parity conservation of the interaction or the
equivalent reflection invariance with regard to the scattering
plane yields the additional relationship [11]

f(Mlml; MOmO) — (_I)JlfMl+%7m1+JofMo+%fmo
x I Ty f (— My — my:—Mo— my) |
(7.70)

where 1 and Iy are £1, depending on the parities of the
atomic states involved. Hence,

(mmigzmymg) = (1)
x(=m\ —my;—m; —my) .  (1.71)

Note that Egs. (7.70) and (7.71) hold for the collision frame,
where the quantization axis (2) is taken as the incident beam
axis and the scattering plane is the xz-plane. Similar formu-
las can be derived for the natural frame (Sect. 7.3.2).

Consequently, eight independent parameters are suffi-
cient to characterize the reduced spin density matrix of the
scattered projectiles. These can be chosen as the absolute dif-
ferential cross section

oy = 3 Z (mlmo;mlmo), (7.72)

mip.,mo
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for the scattering of unpolarized projectiles from unpolarized
targets and the seven relative parameters

g 2 f1_ 11l (7.73)
= — —1Im ___;__ ) N
A ou 2 2'22
G 211l (7.74)
P o 22" 22/f° '
1(/ 1 111 111 1
Ty=——=—ciz=)—(—=z:2— =)t (775
oul\ 2 2'22 22°2 2
1 1 111 111 1
To= —|(—=— = =2V (=== 2|, 7.76)
oul\ 2 2722 22°2 2
17/11 11 11 11
T.= —|(== =)= (== —22)]|. (7.77)
ou[\22722] \22" 22
U 2 11 11 (7.78)
;= —Re{{ ==, —==< s .
T o 22" 22
U 2 e 111 (7.79)
= - — € ___;__ ) N
“ ou 2 222

where Re{x} and Im{x} denote the real and imaginary parts
of the complex quantity x, respectively. Note that normaliza-
tion constants have been omitted in Eq. (7.72) to simplify the
notation.

Therefore, the most general form for the polarization vec-
tor after scattering, P’, for an initial polarization vector P =
(Py, Py, P-) is given by

(Sp+TyPy)y + (T Px+ Uy P.)% + (T P.—U., P,)z
1+ SAP, ’

(7.80)
The physical meaning of the above relation is illustrated
in Fig. 7.1.

4

X

P
au(1+SAP)
. P'
Sp+ Ty + P,
1+8S\+P,

el

t"’ TXPX+L]XZPZ
> 1+SAP,

TzP27 []zxpz
1+S\P,

Fig. 7.1 Physical meaning of the generalized STU-parameters: the po-
larization function Sp gives the polarization of an initially unpolarized
projectile beam after the collision, while the asymmetry function Sa
determines a left-right asymmetry in the differential cross section for
the scattering of a spin-polarized beam. Furthermore, the contraction
parameters (7, Ty, T.) describe the change of an initial polarization
component along the three Cartesian axes, while the parameters U, .
and U., determine the rotation of a polarization component in the scat-
tering plane

The following geometries are particularly suitable for the
experimental determination of the individual parameters; o,
and Sp can be measured with unpolarized incident projec-
tiles. A transverse polarization component perpendicular to
the scattering plane (P = P,J) is needed to obtain Sx
and 7). Finally, the measurement of Ty, U.,, T., and U,
requires both transverse (P, %) and longitudinal (P.Z) pro-
jectile polarization components in the scattering plane.

7.6.2 Radiation from Excited States:
Stokes Parameters

The state-multipole description is also widely used for the
parametrization of the Stokes parameters that describe the
polarization of light emitted in optical decays of excited
atomic ensembles. The general case of excitation by spin-
polarized projectiles has been treated by Bartschat and
collaborators [8]. The basic experimental setup for electron—
photon coincidence experiments and the definition of the
Stokes parameters are illustrated in Figs. 7.2 and 7.3.

For impact excitation of an atomic state with total elec-
tronic angular momentum J and an electric dipole transition
to a state with Jz, the photon intensity in a direction n=
(©,,P,) is given by
2(=1)7=r

AT (T(})

112
JoJ Uy

x (Re{{T()],)} sin® 0, cos 20,

1(0,,®,) = c[

- Re{(T(J);» sin20, cos P,
+ \/g<T(J);0> (3eos? @, — 1)
—m{{T())} sin® @, sin 2,

+Im{(T()})} sin20, sina, )| 7.81)

Fig.7.2 Geometry of electron—photon coincidence experiments
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‘ Photon

/" // detector

Fig. 7.3 Definition of the Stokes parameters: photons are observed in
a direction 72 with polar angles (0, , ®,) in the collision system. The
three unit vectors (7, €1, €,) define the helicity system of the photons,
¢, = (0, +90°, ®,) lies in the plane spanned by 72 and Z and is per-
pendicular to 72, while &, = (@,, @, + 90°) is perpendicular to both 7
and €. In addition to the circular polarization P, the linear polariza-
tions P; and P, are defined with respect to axes in the plane spanned
by ¢ and é,. Counting from the direction of €, the axes are located at
(0°,90°) for P and at (45°, 135°) for P,, respectively

where

e’w*

_ 2 J-J
C = [Wlrlnf '~

(7.82)

is a constant containing the frequency w of the transition as
well as the reduced radial dipole matrix element.

Similarly, the product of the intensity / and the circular
light polarization P; can be written in terms of state multi-
poles as

1 1 1

I1-P)(0O,,®,)=—-C
O e

x (hn{(T(J)L)}zsin 0, sind®,

—Re{(T ()], ){25in 0, cos,

+ V2T ()] cos @y) . (1.83)
so that P5 can be calculated as
Pi(0,,®,) = (I-P3)(0,.9,)/1(0,.®,). (71.84)

Note that each state multipole gives rise to a characteristic
angular dependence in the formulas for the Stokes parame-
ters, and that perturbation coefficients may need to be applied

to deal, for example, with depolarization effects due to in-
ternal or external fields. General formulas for P, = 53 and
P, = 1, can be found in [8] and, for both the natural and the
collision systems, in [4].

As was pointed out before, some of the state multipoles
may vanish, depending on the experimental arrangement.
A detailed analysis of the information contained in the state
multipoles and the generalized Stokes parameters (which are
defined for specific values of the projectile spin polariza-
tion) has been given by Andersen and Bartschat [4, 17, 18].
They reanalyzed the experiment performed by Sohn and
Hanne [19] and showed how the density matrix of the excited
atomic ensemble can be determined by a measurement of the
generalized Stokes parameters. In some cases, this will allow
for the extraction of a complete set of scattering amplitudes
for the collision process. Such a perfect scattering experi-
ment was called for by Bederson many years ago [20] and
is within reach even for fairly complex excitation processes.
The most promising cases were discussed by Andersen and
Bartschat [4, 17, 21].

7.7 Summary

The basic formulas dealing with density matrices in quan-
tum mechanics, with particular emphasis on reduced matrix
theory and its applications in atomic physics, have been sum-
marized. More details are given in the introductory textbooks
by Blum [2], Balashov et al. [3], Andersen and Bartschat [4],
and the references listed below.
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Abstract

Essential to atomic, molecular, and optical physics is the
ability to perform numerical computations accurately and
efficiently. Whether the specific approach involves per-
turbation theory, close coupling expansion, solution of
classical equations of motion, or fitting and smoothing
of data, basic computational techniques such as integra-
tion, differentiation, interpolation, matrix and eigenvalue
manipulation, Monte Carlo sampling, and solution of
differential equations must be among the standard tool
kit.

This chapter outlines a portion of this tool kit with the
aim of giving guidance and organization to a wide array
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and Michael R. Strayer

of computational techniques. After having digested the
present overview, the reader is then referred to detailed
treatments given in many of the large number of texts
existing on numerical analysis and computational tech-
niques [1-6], mathematical functions [7-9], and mathe-
matical physics [10-18].

In addition to these excellent general references, in
the age of the internet, many resources are also available
through free publishing projects or research laboratory
resources made public. Many of these resources seek to
provide techniques and computer codes of high accu-
racy, portability, robustness, and efficiency, and often take
advantage of modern structured programming and com-
putational parallelism, going beyond the highly accessi-
ble, broadly applicable, but simple numerical recipes and
codes described in the classic texts. A list of such numeri-
cal analysis software is given on the Wikipedia, providing
very brief descriptions of the packages available [19], and
the journal Computer Physics Communications (CPC)
publishes computational physics research and applica-
tions software with many codes applicable to atomic,
molecular, and optical physics (see the CPC program
library maintained at Queen’s University Belfast [20]).
Especially in the sections that follow on differential equa-
tions and computational linear algebra, mention is made
of the role of software packages readily available to aid in
implementing practical solutions.

Finally, in this brief introduction to computational
techniques, we note the existence of commercial packages
for mathematics, including those for computer algebra,
performing numerical calculations and visualizing re-
sults through proprietary programming languages, and
even performing simulations through such tools as finite-
element analysis, including Mathematica, Maple, MAT-
LAB, Mathcad, and COMSOL, for example.
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8.1 Representation of Functions

The ability to represent functions in terms of polynomials
or other basic functions is the key to interpolating or fitting
data, and to approximating numerically the operations of in-
tegration and differentiation. In addition, using methods such
as Fourier analysis, knowledge of the properties of functions
beyond even their intermediate values, derivatives, and an-
tiderivatives may be determined (e.g., the spectral properties).

8.1.1 Interpolation
Given the value of a function f(x) at a set of points
X1, X2, ..., Xy, the function is often required at some other
values between these abscissas. The process known as inter-
polation seeks to estimate these unknown values by adjusting
the parameters of a known function to approximate the local
or global behavior of f(x). One of the most useful represen-
tations of a function for these purposes utilizes the algebraic
polynomials, P,(x) =ayg+a;x+---+a,x", where the coef-
ficients are real constants, and the exponents are nonnegative
integers. The utility stems from the fact that given any con-
tinuous function defined on a closed interval, there exists an
algebraic polynomial that is as close to that function as de-
sired (Weierstrass theorem).

One simple application of these polynomials is the power
series expansion of the function f(x) about some point, xg,
ie.,

) =) ar(x —xo) .

k=0

(8.1)

A familiar example is the Taylor expansion, in which the co-
efficients are given by

AGIED

R (8.2)

g
where f® indicates the k-th derivative of the function. This
form, although quite useful in the derivation of formal tech-
niques, is not very useful for interpolation, since it assumes
the function and its derivatives are known and since it is guar-
anteed to be a good approximation only very near the point
X¢ about which the expansion has been made.

Lagrange Interpolation
The polynomial of degree n — 1 that passes through all n

points [x1, f(x1)], [x2, f(x2)], ..., [xn, f(x,)] is given by

n n X — xj
P(x) =) f(x) (8.3)
1; izll:[;ék M
= > SO Lk (x) . (8.4)
k=1

where L, (x) are the Lagrange interpolating polynomials.
Perhaps the most familiar example is that of linear interpola-
tion between the points [x1, y; = f(x1)] and [x2, v, = f(x2)],

namely,
— X —Xx
P(x) = yi+ oy

X2 — X1

(8.5)

In practice, it is difficult to estimate the formal error bound
for this method, since it depends on knowledge of the (n +1)-
th derivative. Alternatively, one uses iterated interpolation,
in which successively higher-order approximations are tried
until appropriate agreement is obtained. Neville’s algorithm
defines a recursive procedure to yield an arbitrary order in-
terpolant from polynomials of lower order. This method and
subtle refinements of it form the basis for most recommended
polynomial interpolation schemes [3-5].

One important word of caution to bear in mind is that the
more points used in constructing the interpolant, and there-
fore the higher the polynomial order, the greater will be the
oscillation in the interpolating function. This highly oscillat-
ing polynomial most likely will not correspond more closely
to the desired function than polynomials of lower order. As
a general rule of thumb, fewer than six points should be used.

Cubic Splines

By dividing the interval of interest into a number of subin-
tervals and in each using a polynomial of only modest
order, one may avoid the oscillatory nature of high-order
(many-point) interpolants. This approach utilizes piecewise
polynomial functions, the simplest of which is just a linear
segment. However, such a straight line approximation has
a discontinuous derivative at the data points — a property
that one may wish to avoid, especially if the derivative of the
function is also desired — and which clearly does not provide
a smooth interpolant. The solution, therefore, is to choose the
polynomial of lowest order that has enough free parameters
(the constants ag, ay, ...) to satisfy the constraints that the
function and its derivative are continuous across the subin-
tervals, as well as specifying the derivative at the endpoints
Xo and Xx,,.

Piecewise cubic polynomials satisfy these constraints and
have a continuous second derivative as well. Cubic spline in-
terpolation does not, however, guarantee that the derivatives
of the interpolant agree with those of the function at the data
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points, much less globally. The cubic polynomial in each in-
terval has four undetermined coefficients,

Pi(x)=a; +b;(x —x;) +ci(x—xi)2+d,~(x—xi)3 , (8.6)

fori =0,1,...,n — 1. Applying the constraints, a system
of equations is found that may be solved once the endpoint
derivatives are specified. If the second derivatives at the end-
points are set to zero, then the result is termed a natural
spline, and its shape is like that which a long flexible rod
would take if forced to pass through all the data points.
A clamped spline results if the first derivatives are specified
at the endpoints, and is usually a better approximation since
it incorporates more information about the function (if one
has a reasonable way to determine or approximate these first
derivatives).

The set of equations in the unknowns, along with the
boundary conditions, constitute a tridiagonal system or
matrix, and is therefore amenable to solution by algo-
rithms designed for speed and efficiency for such systems
(Sect. 8.3; [1-5]). Other alternatives of potentially significant
utility are schemes based on the use of rational functions and
orthogonal polynomials.

Rational Function Interpolation

If the function that one seeks to interpolate has one or more
poles for real x, then polynomial approximations are not
good, and a better method is to use quotients of polynomi-
als, so-called rational functions. This occurs since the inverse
powers of the dependent variable will fit the region near the
pole better if the order is large enough. In fact, if the function
is free of poles on the real axis but its analytic continuation in
the complex plane has poles, the polynomial approximation
may also be poor. It is this property that slows or prevents
the convergence of power series. Numerical algorithms very
similar to those used to generate iterated polynomial inter-
polants exist [1, 3-5] and can be useful for functions that are
not amenable to polynomial interpolation. Rational function
interpolation is related to the method of Padé approximation
used to improve convergence of power series. This is a ratio-
nal function analog of Taylor expansion.

Orthogonal Function Interpolation

Interpolation using functions other than the algebraic poly-
nomials can be defined and are often useful. Particularly
worthy of mention are schemes based on orthogonal polyno-
mials since they play a central role in numerical quadrature.
A set of functions ¢ (x), ¢(x), ..., ¢, (x) defined on the in-
terval [a, b] is said to be orthogonal with respect to a weight
function "W (x), if the inner product defined by

b
(#116;) = / 6:(1)6; (X)W (x)dx 8.7)

is zero for i # j and positive for i = j. In this case, for any
polynomial P(x) of degree at most n, there exists unique
constants o such that

P(x) =) axdi(x). (8.8)
k=0

Among the more commonly used orthogonal polynomials
are Legendre, Laguerre, and Chebyshev polynomials.

Chebyshev Interpolation
The significant advantages of employing a representation of
a function in terms of Chebyshev polynomials, 7 (x), i.e.,

) =) aTi(x)

k=0

(8.9)

stems from the fact that (i) the expansion rapidly converges,
(ii) the polynomials have a simple form, and (iii) the polyno-
mial approximates the solution of the minimax problem very
closely. This latter property refers to the requirement that the
expansion minimizes the maximum magnitude of the error
of the approximation. In particular, the Chebyshev series ex-
pansion can be truncated, so that for a given n it yields the
most accurate approximation to the function. Thus, Cheby-
shev polynomial interpolation is essentially as good as one
can hope to do. Since these polynomials are defined on the
interval [—1, 1], if the endpoints of the interval in question
are a and b, the change of variable

1
- % (8.10)
2
will affect the proper transformation. Press et al. [3-5], for
example, give convenient and efficient routines for comput-
ing the Chebyshev expansion of a function. See [7, 10] for
tabulations, recurrence formulas, orthogonality properties,
etc., of these polynomials.

8.1.2 Fitting

Fitting of data stands in distinction from interpolation in that
the data may have some uncertainty. Therefore, simply de-
termining a polynomial that passes through the points may
not yield the best approximation of the underlying function.
In fitting, one is concerned with minimizing the deviations
of some model function from the data points in an optimal or
best-fit manner. For example, given a set of data points, even
a low-order interpolating polynomial might have significant
oscillation. In fact, if one accounts for the statistical uncer-
tainties in the data, the best fit may be obtained simply by
considering the points to lie on a line.
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In addition, most of the traditional methods of assigning
this quality of best fit to a particular set of parameters of the
model function rely on the assumption that the random de-
viations are described by a Gaussian (normal) distribution.
Results of physical measurements, for example the count-
ing of events, is often closer to a Poisson distribution, which
tends (not necessarily uniformly) to a Gaussian in the limit
of a large number of events, or may even contain outliers
that lie far outside a Gaussian distribution. In these cases,
fitting methods might significantly distort the parameters of
the model function in trying to force these different distri-
butions to the Gaussian form. Thus, the least-squares and
chi-square fitting procedures discussed below should be used
with this caveat in mind. Other techniques, often termed ro-
bust fitting [3-5, 21], should be used when the distribution is
not Gaussian or replete with outliers.

Least Squares

In this common approach to fitting, we wish to determine the
m parameters aq; of some function f(x;ay,as,...,a,), in
this example depending on one variable, x. In particular, we
seek to minimize the sum of the squares of the deviations

> ) = f(xiar.ar.....ap)) (8.11)
k=1

by adjusting the parameters, where the y(x;) are the n
data points. In the simplest case, the model function is just
a straight line, f(x;a;,a;) = a;x + a,. Elementary multi-
variate calculus implies that a minimum occurs if

n n n
a Yy X Aay xi=Y xiyi. (8.12)
k=1 k=1 k=1
n n
ary xitam=7) . (8.13)
k=1 k=1

which are called the normal equations. Solution of these
equations is straightforward, and an error estimate of the fit
can be found [3-5]. In particular, variances may be computed
for each parameter, as well as measures of the correlation be-
tween uncertainties and an overall estimate of the goodness
of fit of the data.

Chi-Square Fitting

If the data points each have associated with them a different
standard deviation, oy, the least-squares principle is modified
by minimizing the chi-square, defined as

vk — fxsanas, ... an) ]
r=3 . |

k=1

(8.14)

Assuming that the uncertainties in the data points are nor-
mally distributed, the chi-square value gives a measure of the

goodness of fit. If there are n data points and m adjustable
parameters, then the probability that y? should exceed a par-
ticular value purely by chance is

n—m y?
0-0("5"%).
where Q(a,x) = I'(a,x)/'(a) is the incomplete gamma
function. For small values of Q, the deviations of the fit from
the data are unlikely to be by chance, and values close to one
are indications of better fits. In terms of the chi-square, rea-
sonable fits often have y*> ~ n — m.

Other important applications of the chi-square method
include simulation and estimating standard deviations. For
example, if one has some idea of the actual (i.e., non-
Gaussian) distribution of uncertainties of the data points,
Monte Carlo simulation can be used to generate a set of test
data points subject to this presumed distribution, and then the
fitting procedure may be performed on the simulated data set.
This allows one to test the accuracy or applicability of the
model function chosen. In other situations, if the uncertain-
ties of the data points are unknown, one can assume that they
are all equal to some value, say o, fit using the chi-square
procedure, and solve for the value of o. Thus, some measure
of the uncertainty from this statistical point of view can be
provided.

(8.15)

General Least Squares

The least-squares procedure can be generalized, usually by
allowing any linear combination of basis functions to deter-
mine the model function

fleanaz,..an) =Y arpi(x) . (8.16)
=1

The basis functions need not be polynomials. Similarly, the
formula for chi-square can be generalized and normal equa-
tions determined through minimization. The equations may
be written in compact form by defining a matrix A with ele-

ments
Ay =4 (8.17)
Oi
and a column vector B with elements
B =2 (8.18)
Oi
Then the normal equations are [3-5]
m
Zakjaj = B, (8.19)
j=1
where
@] =A"4, [B]=4"B. (8.20)
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and a; are the adjustable parameters. These equations may be
solved using standard methods of computational linear alge-
bra such as Gauss—Jordan elimination. Difficulties involving
sensitivity to round-off errors can be avoided by using care-
fully developed codes to perform this solution [3-5]. We note
that elements of the inverse of the matrix « are related to the
variances associated with the free parameters and to the co-
variances relating them.

Statistical Analysis of Data

Data generated by an experiment, or from a Monte Carlo
simulation, have uncertainties due to the statistical, or ran-
dom, character of the processes by which they are acquired.
Therefore, one must be able to describe certain features of the
data statistically, such as their mean, variance and skewness,
and the degree to which correlations exist, either between
one portion of the data and another, or between the data and
some other standard or model distribution. A very readable
introduction to this type of analysis was given by Young [22],
while more comprehensive treatments are also available [23].

8.1.3 Fourier Analysis

The Fourier transform takes, for example, a function of time
into a function of frequency, or vice versa, namely

(w) = ‘/%‘”_i p(t)e'dr , (8.21)

1 [ ~ —iwt
o(t) = «/Tw_i o(w)edw . (8.22)

In this case, the time history of the function ¢(z) may be
termed the signal and ¢(w) the frequency spectrum. Also,
if the frequency is related to the energy by £ = hw, one
obtains an energy spectrum from a signal, and thus the name
spectral methods for techniques based on the Fourier analysis
of signals.

The Fourier transform also defines the relationship be-
tween the spatial and momentum representations of wave
functions, i.e.,

.
— lpx

~ 1 v .
= — —1px

(8.23)

Along with the closely related sine, cosine, and Laplace
transforms, the Fourier transform is an extraordinarily pow-
erful tool in the representation of functions, spectral analysis,

convolution of functions, filtering, and analysis of correla-
tion. Good introductions to these techniques with particular
attention to applications in physics can be found in [10, 16,
24]. To implement the Fourier transform numerically, the in-
tegral transform pair can be converted to sums

2N -1
H(w)) = —— il 8.25
o) = s kgjo o(ti)e (8.25)
2N -1
= — P(wj)e @il 8.26
o) = e ,X_; P(w))e (8.26)

where the functions are sampled at 2N points. These equa-
tions define the discrete Fourier transform (DFT). Two
cautions in using the DFT are as follows.

First, if a continuous function of time is sampled at, for
simplicity, uniformly spaced intervals, (i.e., ;1] = t; + A),
then there is a critical frequency w. = ¥/A, known as
the Nyquist frequency, which limits the fidelity of the DFT
of this function in that it is aliased. That is, components
outside the frequency range —w. to w. are falsely trans-
formed into this range due to the finite sampling. This effect
can be remediated by filtering or windowing techniques. If,
however, the function is bandwidth limited to frequencies
smaller than w,., then the DFT does not suffer from this
effect, and the signal is completely determined by its sam-
ples.

Second, implementing the DFT directly from the equa-
tions above would require approximately N2 multiplications
to perform the Fourier transform of a function sampled
at N points. A variety of fast Fourier transform (FFT) al-
gorithms have been developed (e.g., the Danielson—Lanczos
and Cooley—Tukey methods) that require only on the order
of (N/2)log, N multiplications. Thus, for even moderately
large sets of points, the FFT methods are, indeed, much faster
than the direct implementation of the DFT. Issues involved in
sampling, aliasing, and selection of algorithms for the FFT
are discussed in great detail, for example, in [3-5, 15, 25]. In
addition to basic computer codes with which to implement
the FFT and related tasks, given, for example, in Numeri-
cal Recipes [3-5], codes for real and complex valued FFTs
that have been implemented and benchmarked on a variety
of platforms including parallel computer systems are avail-
able, for example, the Fastest Fourier Transform in the West
(FFTW) [26].

8.1.4 Approximating Integrals

Polynomial Quadrature
Definite integrals may be approximated through a procedure
known as numerical quadrature by replacing the integral by
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an appropriate sum, i.e.,

b n
/ fO)dx = ar f(x) . (8.27)
4 k=0

Most formulas for such approximations are based on the in-
terpolating polynomials described in Sect. 8.1.1, especially
the Lagrange polynomials, in which case the coefficients ay
are given by

b

ap = [Lnk(xk)dx~

a

(8.28)

If first or second degree Lagrange polynomials are used with
a uniform spacing between the data points, one obtains the
trapezoidal and Simpson’s rules, i.e.,

b
1w~ Sir@+ s+ ols 0] @29

b
8 )
[roax =3[ @+ ar(3) + o] + ol o).
’ (8.30)

respectively, with § = b — a, and for some ¢ in [a, b].

Other commonly used formulas based on low-order poly-
nomials, generally referred to as Newton—Cotes formulas,
are described and discussed in detail in numerical analysis
texts [1, 2]. Since potentially unwanted rapid oscillations in
interpolants may arise, it is generally the case that increasing
the order of the quadrature scheme too greatly does not gen-
erally improve the accuracy of the approximation. Dividing
the interval [a, b] into a number of subintervals and sum-
ming the result of application of a low-order formula in each
subinterval is usually a much better approach. This proce-
dure, referred to as composite quadrature, may be combined
with choosing the data points at a nonuniform spacing, de-
creasing the spacing where the function varies rapidly, and
increasing the spacing for economy where the function is
smooth to construct an adaptive quadrature.

Gaussian Quadrature

If the function whose definite integral is to be approximated
can be evaluated explicitly, then the data points (abscissas)
can be chosen in a manner in which significantly greater ac-
curacy may be obtained than using Newton—Cotes formulas
of equal order. Gaussian quadrature is a procedure in which
the error in the approximation is minimized owing to this
freedom to choose both data points (abscissas) and coeffi-
cients. By utilizing orthogonal polynomials and choosing the
abscissas at the roots of the polynomials in the interval under

consideration, it can be shown that the coefficients may be
optimally chosen by solving a simple set of linear equations.
Thus, a Gaussian quadrature scheme approximates the
definite integral of a function multiplied by the weight func-
tion appropriate to the orthogonal polynomial being used as

(8.31)
k=1

b n
[ weo s~ Y acren

where the function is to be evaluated at the abscissas given
by the roots of the orthogonal polynomial, x. In this case,
the coefficients a; are often referred to as weights but should
not be confused with the weight function W (x) (Sect. 8.1.1).
Since the Legendre polynomials are orthogonal over the in-
terval [—1, 1] with respect to the weight function W(x) =1,
this equation has a particularly simple form, leading imme-
diately to the Gauss—Legendre quadrature. If f(x) contains
the weight function of another of the orthogonal polynomials
as a factor, the corresponding Gauss—Laguerre or Gauss—
Chebyshev quadrature should be used.

The roots and coefficients have been tabulated [7] for
many common choices of the orthogonal polynomials (e.g.,
Legendre, Laguerre, Chebyshev) and for various orders.
Simple computer subroutines are also available that conve-
niently compute them [3-5]. Since the various orthogonal
polynomials are defined over different intervals, use of the
change of variables such as that given in Eq. (8.10) may be
required. So, for Gauss—Legendre quadrature we make use
of the transformation

b 1
/f(x)dxz(b;a) /f((b_a)y+b+a)dy. (8.32)
a —1

2

Other Methods

Especially for multidimensional integrals that cannot be re-
duced analytically to separable or iterated integrals of lower
dimension, Monte Carlo integration may provide the only
means of finding a good approximation. This method is de-
scribed in Sect. 8.4.3. Also, a convenient quadrature scheme
can be devised based on the cubic spline interpolation de-
scribed in Sect. 8.1.1, since in each subinterval, the definite
integral of a cubic polynomial of known coefficients is evi-
dent.

8.1.5 Approximating Derivatives

Numerical Differentiation

The calculation of derivatives from a numerical representa-
tion of a function is generally less stable than the calculation
of integrals, because differentiation tends to enhance fluctua-
tions and worsen the convergence properties of power series.
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For example, if f(x) is twice continuously differentiable on
[a, b], then differentiation of the linear Lagrange interpola-
tion formula Eq. (8.5) yields

Sf(xo +8) — f(xo0)

f(l)(xo) = R

+0[52(0)]. (8.33)

for some x(y and ¢ in [a, b], where § = b — a. In the limit
8 — 0, Eq. (8.33) coincides with the definition of the deriva-
tive. However, in practical calculations with finite precision
arithmetic, § cannot be taken too small because of numerical
cancellation in the calculation of f(a + §) — f(a).

In practice, increasing the order of the polynomial used
decreases the truncation error, but at the expense of in-
creasing round-off error, the upshot being that three and
five-point approximations are usually the most useful. Var-
ious three and five-point formulas are given in standard
texts [2, 7, 9]. Two common five-point formulas (centered
and forward/backward) are

FO0) = [ F0 = 28) = 8f (o — )

+ 8/ (xo 4+ 8) — f(xo + 28)]

+0[8* 2] (8.34)
FO) = o[ = 257 () + 48/ + )

—36f(xo +28) + 16f(xo + 38)
—3f(xo+48)] + O[8* FO )] . 835)

The second formula is useful for evaluating the derivative
at the left or right endpoint of the interval, depending on
whether § is positive or negative, respectively.

Derivatives of Interpolated Functions

An interpolating function can be directly differentiated to
obtain the derivative at any desired point. For example, if
f(x) ~ ap+ a;x + ax?, then fV(x) = a, + 2a,x. How-
ever, this approach may fail to give the best approximation
to £ (x) if the original interpolation was optimized to give
the best possible representation of f(x).

8.2 Differential and Integral Equations

The subject of differential and integral equations is immense
in both richness and scope. The discussion here focuses on
techniques and algorithms, rather than the formal aspect of
the theory. Further information can be found elsewhere under
the broad categories of finite-element and finite-difference
methods. The Numerov method, which is particularly useful
in integrating the Schrodinger equation, is described in great
detail in [18].

8.2.1 Ordinary Differential Equations

An ordinary differential equation is an equation involving
an unknown function and one or more of its derivatives that
depend on only one independent variable [27]. The order of
a differential equation is the order of the highest derivative
appearing in the equation. A solution of a general differential
equation of order 7,
fty.y,....y") =0, (8.36)
is a real-valued function y(¢) having the following proper-
ties: (1) y(¢) and its first n derivatives exist, so y(¢f) and
its first n — 1 derivatives must be continuous, and (2) y(t)
satisfies the differential equation for all 7. A unique solu-
tion requires the specification of n conditions on y(¢) and
its derivatives. The conditions may be specified as n initial
conditions at a single ¢ to give an initial-value problem, or at
the end points of an interval to give a boundary value prob-
lem.
First consider solutions to the simple equation

y=fty). y@=A4. (8.37)
The methods discussed below can be extended to systems
of first-order differential equations and to higher-order dif-
ferential equations. The methods are referred to as discrete-
variable methods and generate a sequence of approximate
values for y(¢), y1, ¥2, V3, ... atpoints t1, t,, 3, . . .. For sim-
plicity, the discussion here assumes a constant spacing 5
between ¢ points. We shall first describe a class of meth-
ods known as one-step methods [28]. They have no memory
of the solutions at past times; given y;, there is a recipe for
v;+1 that depends only on information at #;. Errors enter into
numerical solutions from two sources. The first is the dis-
cretization error and depends on the method being used. The
second is the computational error that includes such things
as round-off error.

For a solution on the interval [a, b], let the ¢ points be
equally spaced; so for some positive integer n and h =
(b—a)/n,t;=a+ih,i =0,1,...,n.Ifa <b, his positive,
and the integration is forward; if a > b, h is negative, and the
integration is backward. The latter case could occur in solv-
ing for the initial point of a solution curve given the terminal
point. A general one-step method can then be written in the
form

Yie1 = yi +hAGG, yi) . Yo = y(to) , (8.38)
where A is a function that characterizes the method. Dif-
ferent A functions are displayed next, giving rise to the

Taylor-series methods and the Runge—Kutta methods.
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Taylor-Series Algorithm
To obtain an approximate solution of order p on [a, b], gen-
erate the sequence

o
Yitl = Vi +h[f(fi,yi) ot SOV ) ol } ,

l,'+1=[i+h, i=0,1,...,n—1, (839)
where #p = a, and yo = A. The Taylor method of order p =1

is known as Euler’s method:

Yie1r =Yyi +hf (. yi),
tiy1 =14 + h. (8.40)
Taylor-series methods can be quite effective if the total
derivatives of f are not too difficult to evaluate. Software
packages are available that perform exact differentiation
(ADIFOR, Maple, Mathematica, etc.), facilitating the use of
this approach.

Runge-Kutta Methods
Runge—Kutta methods are designed to approximate Taylor-
series methods [29] but have the advantage of not requiring
explicit evaluations of the derivatives of f(z, y). The basic
idea is to use a linear combination of values of f(z,y) to
approximate y(¢). This linear combination is matched up as
closely as possible with a Taylor series for y(f) to obtain
methods of the highest possible order p. Euler’s method is
an example using one function evaluation.

To obtain an approximate solution of order p =2, leth =
(b — a)/n and generate the sequences

Yiv1 =yi + h|:(1 ) fti.yi)

h h
+ J/f|:fi + 7, i + —f(fi,yi)ﬂ .
Y 2y

l,'+1=l,'+h, i=0,1,...,l’l—1, (841)
where y # 0,1y = a, yo = A.

Euler’s method is the special case, y = 0, and has order 1;
the improved Euler method has y = 1/2, and the Euler—

Cauchy method has y = 1.

The Adams-Bashforth and Adams-Moulton
Formulas

These formulas furnish important and widely used examples
of multistep methods [30]. On reaching a mesh point #; with
approximate solution y; = y(;), (usually) approximate so-
lutions y; 1 1—; = y(tj41—;) for j =2,3,..., p are available.
From the differential equation itself, approximations to the
derivatives y (#;+1—;) can be obtained.

An attractive feature of the approach is the form of the
underlying polynomial approximation, P(¢), to y(¢) because
it can be used to approximate y(¢) between mesh points

t

y(t) =y + / P(r)dr .

1

(8.42)

The lowest-order Adams—Bashforth formula arises from in-
terpolating the single value f; = f(¢,y;) by P(t). The in-
terpolating polynomial is constant, so its integration from ¢,
to t; 41 results in hf(¢,y;), and the first-order Adams—
Bashforth formula:

Yier = yi +hf(ti,yi) . (8.43)

This is just the forward Euler formula. For constant step
size h, the second-order Adams—Bashforth formula is

Yiv1 =yi + h[(%)f(ln%‘) - (%)f(til’yil)} .
(8.44)

The lowest-order Adams—Moulton formula involves interpo-
lating the single value f; 1 = f(x;11, yi+1) and leads to the
backward Euler formula

Yier = yi +hfEig1, Yig1) (8.45)

which defines y;;; implicitly. From its definition it is clear
that it has the same accuracy as the forward Euler method;
its advantage is vastly superior stability. The second-order
Adams—Moulton method also does not use previously com-
puted solution values; it is called the trapezoidal rule, be-
cause it generalizes the trapezoidal rule for integrals to
differential equations:

Yier = Yi + %[f(ti+17yi+l) + Syl (8.46)
The Adams—Moulton formula of order p is more accurate
than the Adams—Bashforth formula of the same order. Hence,
it can use a larger step size; the Adams—Moulton formula
is also more stable. A code based on such methods is more
complex than a Runge—Kutta code, because it must cope with
the difficulties of starting the integration and changing the
step size. Modern Adams codes attempt to select the most
efficient formula at each step, as well as to choose an optimal
step size & to achieve a specified accuracy.

8.2.2 Differencing Algorithms for Partial
Differential Equations

Differencing schemes, based on flux conservation meth-
ods [31], are the modern approach to solving partial differ-
ential equations describing the evolution of physical systems.
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One begins by writing the balance equations for a single cell
and subsequently applying quadratures and interpolation for-
mulas. Such approaches have been successful for the full
spectrum of hyperbolic, elliptic, and parabolic equations. For
simplicity, we begin by discussing systems involving only
one space variable.

As a prototype, consider the parabolic equation

82
c—u(x,t) =o—u(x,t),

o R (8.47)

where ¢ and o are constants, and u(x, ¢) is the solution. We
begin by establishing a grid of points on the xz-plane with
step size & in the x direction and step size k in the 7-direction.
Let spatial grid points be denoted by x,, = x¢ + nh and time
grid points by #; = fy + jk, where n and j are integers, and
(x0, ) is the origin of the space—time grid. The points &,_,
and &, are introduced to establish a control interval. We begin
with a conservation statement

&
[dX[r(x,tf+1)—r(x,[/)]
Sn—l

=/mw@4ﬁ—ﬂ&ok

L

(8.48)

This equation states that the change in the field density on
the interval (§,_1,§,) from time ¢ = ¢; to time ¢ = ¢; 1 is
given by the flux into this interval at &,_; minus the flux out
of the interval at &, from time ¢; to time ¢; . This expresses
the conservation of material in the case that no sources or
sinks are present. We relate the field variable u to the physical
variables (the density r and the flux ¢). We consider the case
in which the density is assumed to have the form

r(x,t) =cu(x,t) +b, (8.49)
with ¢ and b constants; thus
&n
c [dx [u(x.tj41) —u(x,1)]
aC-n—l
~ C[u(xn,tj+1)_u(xn,[j)]h N (850)

When developing conservation-law equations, there are two
commonly used strategies for approximating the right-hand-
side of Eq. (8.48): (i) left-end-point quadrature

/mw@wuﬂ—ﬂ&Jﬂ

L

~ g€ ty) — q(Ea 1) ]k (8.51)
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and (ii) right-end-point quadrature
i+l
[artatei10 = g0
]
~ (g€ tis1) —qEnntj1) |k (8.52)

Combining Eq. (8.48) with the respective approximations
yields: from (i) an explicit method

c[u(xn. tj41) —u(x,.1;) |k

~ (g1 t)) — Gt ]k (8.53)
and from (ii) an implicit method
clu(xn. t741) —u(x,. ;) ]k
~ [qEn-r.t751) —qEn.tjp) ]k (8.54)

Using centered-finite-difference formulas to approximate the
fluxes at the control points £, | and §, yields

u(xna tj) - u(xnfla tj)
h 9

qi-1,t) = —0 (8.55)

and

U(Xpg1,8) —u(xy, 1)
nv[' - — 5
CI(S _1) o 7

(8.56)

where o is a constant. We also obtain similar formulas for
the fluxes at time #; ;1.

We have used a lower case u to denote the continuous
field variable, u = u(x, t). Note that all of the quadrature and
difference formulas involving u are stated as approximate
equalities. In each of these approximate equality statements,
the amount by which the right-hand side differs from the
left-hand side is called the truncation error. If u is a well-
behaved function (has enough smooth derivatives), then it
can be shown that these truncation errors approach zero as
the grid spacings, & and k, approach zero.

If U, denotes the exact solution on the grid, from (i) we
have the result

(Ul - Ul = ok(U, + U/

g - 2U,{) . (8.57)

This is an explicit method, since it provides the solution to
the difference equation at time #; |, knowing the values at
time 7;.
If we use the numerical approximations (ii), we obtain the

result

(Uit — Ul )n? = ok (U,{j‘ + Ut - 2U,-{+1) . (8.58)
Note that this equation defines the solution at time ¢; | im-
plicitly, since a system of algebraic equations is required to
be satisfied.
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8.2.3 Variational Methods

A common problem in atomic, molecular, and optical
physics is to find the extrema or the stationary values of
functionals. For example, one might seek the eigenvalues and
eigenvectors of a Hamiltonian system, such as via the min-
imization of the expectation value of the energy of a trial
wave function to determine the ground state of an atom or
molecule, via so-called variational methods. We shall out-
line in detail the Rayleigh—Ritz method [32]. This method is
limited to boundary value problems that can be formulated in
terms of the minimization of a functional J [u]. For definite-
ness we consider the case of a differential operator defined
by

Lu(x) = f(x),

with x = x;,7 = 1,2,3 in R, for example, and with v = 0
on the boundary of R. The function f(x) is the source. It is
assumed that L is always nonsingular, and in addition, for
the Ritz method L is Hermitian. The real-valued functions u
are in the Hilbert space §2 of the operator L. We construct
the functional J [u] defined as

(8.59)

Ju]= /dx [u(x)Lu(x) —2u(x)f(x)]. (8.60)

Q
The variational ansatz considers a subspace of 2, £2,,

spanned by a class of functions ¢, (x), and we construct the
function u” ~ u as

n
w'(x) =Y cii(x) . (8.61)
i=1
We solve for the coefficients ¢; by minimizing J [u"]:
9, Ju" =0, i=1,....,n. (8.62)

These equations are cast into a set of well-behaved algebraic
equations

N/ (8.63)

n
ZAi.jCngi, i=1,...

Jj=1

with 4; ; = [, dx¢;(x)Lep; (x), and g; = [, dx¢; (x) f(x).

Under very general conditions, the functions u” converge
uniformly to u. The main drawback of the Ritz method lies
in the assumption of hermiticity of the operator L. For the
Galerkin method we relax this assumption with no other
changes. Thus, we obtain an identical set of equations as
above, with the exception that the function g is no longer
symmetric. The convergence of the sequence of solutions u"
to u is no longer guaranteed, unless the operator can be sep-
arated into a symmetric part Lo, L = Lo + K, so that L 'K
is bounded.

8.2.4 Finite Elements

As discussed in Sect. 8.2.2, in the finite-difference method
for classical partial differential equations, the solution do-
main is approximated by a grid of uniformly spaced nodes.
At each node, the governing differential equation is approx-
imated by an algebraic expression that references adjacent
grid points. A system of equations is obtained by evaluating
the previous algebraic approximations for each node in the
domain. Finally, the system is solved for each value of the
dependent variable at each node. The finite-element method
evolved from computational approaches to implementation
of the variational method and of potentially greater accuracy
and flexibility.

In the finite-element method [33], the solution domain can
be discretized into a number of uniform or nonuniform fi-
nite elements that are connected via nodes. The change of
the dependent variable with regard to location is approx-
imated within each element by an interpolation function.
The interpolation function is defined relative to the values
of the variable at the nodes associated with each element.
The original boundary value problem is then replaced with
an equivalent integral formulation. The interpolation func-
tions are substituted into the integral equation, integrated,
and combined with the results from all other elements in the
solution domain.

The results of this procedure can be reformulated into
a matrix equation of the form

n
ZAis./C/Zgi’ l=1,
=1

with 4; ; = [, dxei (x) L (x), and g; = [, ds (x) £ (x)
exactly as obtained in Sect. 8.2.3. The only difference arises
in the definitions of the support functions ¢; (x). In general,
if these functions are piecewise polynomials on some finite
domain, they are called finite elements or splines. Finite el-
ements make it possible to deal in a systematic fashion with
regions having curved boundaries of an arbitrary shape. Also,
one can systematically estimate the accuracy of the solution
in terms of the parameters that label the finite-element fam-
ily, and the solutions are no more difficult to generate than
more complex variational methods.

In one space dimension, the simplest finite-element family
begins with the set of step functions defined by

(8.64)

1,

1 xi1<x=<ux;
¢i(x) = '

) (8.65)
0 otherwise .

The use of these simple hat functions as a basis does
not provide any advantage over the usual finite-difference
schemes. However, for certain problems in two or more di-
mensions, finite-element methods have distinct advantages
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over other methods. Generally, the use of finite elements ifi = j + 1,
requires complex, sophisticated computer programs for im-
plementation. The use of higher-order polynomials, com- y — L
. . . (X xl*l)(xl X)
monly called splines, as a basis has been extensively used 0y = d 2
: . . - i (i —xi—1)
in atomic and molecular physics. An extensive literature is Xi_1
available [34, 35]. 1 )
We illustrate the use of the finite-element method by ap- - E(xi —Xi-1) : (8.71)
plying it to the Schrodinger equation. In this case, the linear .
operator L is H — E, where, as usual, E is the energy, and the and 0;; =0 9therw1se. . )
Hamiltonian H is the sum of the kinetic and potential ener- The potential energy is represented by the matrix
gies, thatis, L= H — E =T +V — E and Lu(x) = 0. N
We define the finite elements through support points, or
knots, given by the sequence {xi, x,, X3, ...}, which are not Vij = [ dx ¢ (x)V(x)9; (x) , (8.72)
necessarily spaced uniformly. Since the hat functions have 0
van.lshlng 'derlvatlves, .We employ the .next Fnor.e complex which may be well approximated by
basis, that is, fent functions, which are piecewise linear func-
tions given by oo
X — X;i_ Vij = V(x;) [ dx ¢; (x); (x) (8.73)
T X1 =XZ=X
Xi — Xi-1 —00
¢i(x) = Fir1 =X X; <X < X4 (8.66) = V(Xi)oij s
Xit1 = X -
0 otherwise . if x; — x; is small. The kinetic energy, T = —3d?/dx?, is
similarly given by
and for which the derivative is given by
o0
1 1 d?
——— X1 =X =X Tij =—= dx¢; (X)—2¢j (x) . (8.74)
Xi — Xji—1 2 dx
d -1 —00
dx i = A=At . . . .
Xip1 — X; which we compute by integrating by parts, since the tent
0 otherwise . functions have a singular second derivative

The functions have a maximum value of 1 at the midpoint
of the interval [x;_y, x; 4], with partially overlapping adja-
cent elements. In fact, the overlaps may be represented by
a matrix O with elements

o0

0y = /dx @i (x)p; (x) . (8.68)
—00
Thus, ifi = j,
Xi Xit1
(x —x;1)? / (x —x;)?
O0;; = / dx ——— + dx ——
l (xi —xj-1)? (xig1 — x;)?
Xi—1 X
1
= g(XiH —Xi—1) ; (8.69)
ifi=j—1,
Xi+1
0y = [ dx (¥ = ) (Xih ;x)
(xip1 —Xi)
Xi
= E(Xiﬂ —Xi); (8.70)

L[ (d d
7= [ gow)(5em).

(8.75)
—00
which in turn is evaluated to yield
X,'_H — Xji—1 . .
i=j
2(x; = xi—1)(Xip1 — Xi)
1 i
— 1 = ] —
T, = 206 = xig) (8.76)
' 1
_+ i
2(xj—1 — X;) S
0 otherwise .

Finally, since the Hamiltonian matrix is H,; = T;; + Vj;, the
solution vector u; (x) may be found by solving the eigenvalue
equation

[Hij — EOjj]ui(x) = 0. (8.77)

Going beyond this simple example, discrete variable rep-
resentation (DVR) methods, also known as pseudospectral
methods, and direct solution of the Schrodinger equation
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on numeral grids via finite-difference, finite-element, and
high-order interpolant methods, have been adopted broadly
in atomic, molecular, and optical physics as the power of
computational resources has grown in recent decades. An
introduction to DVR methods applied to solving the time-
dependent Schrodinger equation for quantum dynamics of
molecules, as an example, has been given by Light [36, 37].

8.2.5 Integral Equations
Central to much of practical and formal scattering theory
is the integral equation and techniques of its solution. For
example, in atomic collision theory, the Schrodinger differ-
ential equation

[E — Ho(r)ly (r) = V(r)y(r). (8.78)
where the Hamiltonian Hy = —(h?/2m)V? + V,, may be
solved by exploiting the solution for a delta function source,
ie.,

(E — Hy)G(r,r') = §(r —r') . (8.79)

In terms of this Green’s function G(r,r’), and any solution
x(r) of the homogeneous equation (i.e., with V' (r) = 0), the
general solution is

V() = x(r) + [ & G W () . (8.80)

for which, given a choice of the functions G(r, r’) and y(r),
particular boundary conditions are determined. This integral
equation is the Lippmann—Schwinger equation of potential
scattering. Further topics on scattering theory are covered
in other chapters (especially Chaps. 49 to 62) and in stan-
dard texts such as those by Joachain [38], Rodberg, and
Thaler [39], and Goldberger and Watson [40]. Owing es-
pecially to the wide variety of specialized techniques for
solving integral equations, we briefly survey only a few of
the most-frequently applied methods.

Integral Transforms

Certain clas