
Semi-streaming Algorithms
for Submodular Matroid Intersection

Paritosh Garg(B), Linus Jordan, and Ola Svensson

EPFL, Lausanne, Switzerland
{paritosh.garg,ola.svensson}@epfl.ch, linus.jordan@bluewin.ch

Abstract. While the basic greedy algorithm gives a semi-streaming
algorithm with an approximation guarantee of 2 for the unweighted
matching problem, it was only recently that Paz and Schwartzman
obtained an analogous result for weighted instances. Their approach is
based on the versatile local ratio technique and also applies to gener-
alizations such as weighted hypergraph matchings. However, the frame-
work for the analysis fails for the related problem of weighted matroid
intersection and as a result, the approximation guarantee for weighted
instances did not match the factor 2 achieved by the greedy algorithm
for unweighted instances. Our main result closes this gap by developing
a semi-streaming algorithm with an approximation guarantee of 2+ε for
weighted matroid intersection, improving upon the previous best guar-
antee of 4 + ε. Our techniques also allow us to generalize recent results
by Levin and Wajc on submodular maximization subject to matching
constraints to that of matroid-intersection constraints.

While our algorithm is an adaptation of the local ratio technique used
in previous works, the analysis deviates significantly and relies on struc-
tural properties of matroid intersection, called kernels. Finally, we also
conjecture that our algorithm gives a (k+ε) approximation for the inter-
section of k matroids but prove that new tools are needed in the analysis
as the used structural properties fail for k ≥ 3.

1 Introduction

For large problems, it is often not realistic that the entire input can be stored in
random access memory so more memory efficient algorithms are preferable. A
popular model for such algorithms is the (semi-)streaming model (see e.g. [13]):
the elements of the input are fed to the algorithm in a stream and the algorithm
is required to have a small memory footprint.

This research was supported by the Swiss National Science Foundation project 200021-
184656 “Randomness in Problem Instances and Randomized Algorithms.”

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 208–222, 2021.
https://doi.org/10.1007/978-3-030-73879-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_15

Semi-streaming Algorithms for Submodular Matroid Intersection 209

Consider the classic maximum matching problem in an undirected graph
G = (V,E). An algorithm in the semi-streaming model1 is fed the edges
one-by-one in a stream e1, e2, . . . , e|E| and at any point of time the algorithm
is only allowed O(|V |polylog(|V |)) bits of storage. The goal is to output a large
matching M ⊆ E at the end of the stream. Note that the allowed memory usage
is sufficient for the algorithm to store a solution M but in general it is much
smaller than the size of the input since the number of edges may be as many as
|V |2/2. Indeed, the intuitive difficulty in designing a semi-streaming algorithm is
that the algorithm needs to discard many of the seen edges (due to the memory
restriction) without knowing the future edges and still return a good solution at
the end of the stream.

For the unweighted matching problem, the best known semi-streaming algo-
rithm is the basic greedy approach:

Initially, let M = ∅. Then for each edge e in the stream, add it to M if
M ∪ {e} is a feasible solution, i.e., a matching; otherwise the edge e is
discarded.

The algorithm uses space O(|V | log |V |) and a simple proof shows that it
returns a 2-approximate solution in the unweighted case, i.e., a matching of size
at least half the size of an maximum matching. However, this basic approach
fails to achieve any approximation guarantee for weighted graphs.

Indeed, for weighted matchings, it is non-trivial to even get a small constant-
factor approximation. One way to do so is to replace edges if we have a much
heavier edge. This is formalized in [6] who get a 6-approximation. Later, [12]
improved this algorithm to find a 5.828-approximation; and, with a more involved
technique, [4] provided a (4 + ε)-approximation.

It was only in recent breakthrough work [14] that the gap in the approxima-
tion guarantee between unweighted and weighted matchings was closed. Specif-
ically, [14] gave a semi-streaming algorithm for weighted matchings with an
approximation guarantee of 2 + ε for every ε > 0. Shortly after, [9] came up
with a simplified analysis of their algorithm, reducing the memory requirement
from Oε(|V | log2 |V |) to Oε(|V | log |V |). These results for weighted matchings are
tight (up to the ε) in the sense that any improvement would also improve the
state-of-the-art in the unweighted case, which is a long-standing open problem.

The algorithm of [14] is an elegant use of the local ratio technique ([1])
([2]) in the semi-streaming setting. While this technique is very versatile and
it readily generalizes to weighted hypergraph matchings, it is much harder to
use it for the related problem of weighted matroid intersection. This is perhaps
surprising as many of the prior results for the matching problem also applies to
the matroid intersection problem in the semi-streaming model (see Sect. 2 for
definitions). Indeed, the greedy algorithm still returns a 2-approximate solution
1 This model can also be considered in the multi-pass setting when the algorithm is

allowed to take several passes over the stream. However, in this work we focus on
the most basic and widely studied setting in which the algorithm takes a single pass
over the stream.

210 P. Garg et al.

in the unweighted case and the algorithm in [4] returns a (4 + ε)-approximate
solution for weighted instances. So, prior to our work, the status of the matroid
intersection problem was that of the matching problem before [14].

We now describe on a high-level the reason that the techniques from [14] are
not easily applicable to matroid intersection and our approach for dealing with
this difficulty. The approach in [14] works in two parts, first certain elements of
the stream are selected and added to a set S, and then at the end of the stream
a matching M is computed by the greedy algorithm that inspects the edges of
S in the reverse order in which they were added. This way of constructing the
solution M greedily by going backwards in time is a standard framework for
analyzing algorithms based on the local ratio technique. Now in order to adapt
their algorithm to matroid intersection, recall that the bipartite matching prob-
lem can be formulated as the intersection of two partition matroids. We can
thus reinterpret their algorithm and analysis in this setting. Furthermore, after
this reinterpretation, it is not too hard to define an algorithm that works for
the intersection of any two matroids. However, bipartite matching is a special
case of matroid intersection which captures a rich set of seemingly more com-
plex problems. This added expressiveness causes the analysis and the standard
framework for analyzing local ratio algorithms to fail. Specifically, we prove that
a solution formed by running the greedy algorithm on S in the reverse order (as
done for the matching problem) fails to give any constant-factor approximation
guarantee for the matroid intersection problem. To overcome this and to obtain
our main result, we make a connection to a concept called matroid kernels (see
[7] for more details about kernels), which allows us to, in a more complex way,
identify a subset of S with an approximation guarantee of 2 + ε.

Finally, for the intersection of more than two matroids, the same approach
in the analysis does not work, because the notion of matroid kernel does not
generalize to more than two matroids. However, we conjecture that the subset S
generated for the intersection of k matroids still contains a (k+ε)-approximation.
Currently, the best approximation results are a (k2 + ε)-approximation from [4]
and a (2(k +

√
k(k − 1)) − 1)-approximation from [3]. For k = 3, the former is

better, giving a (9 + ε)-approximation. For k > 3, the latter is better, giving an
O(k)-approximation.

Generalization to Submodular Functions. Very recently, Levin and Wajc [11]
obtained improved approximation ratios for matching and b-matching problems
in the semi-streaming model with respect to submodular functions. Specifically,
they get a (3+2

√
2)-approximation for monotone submodular b-matching, (4+

3
√

2)-approximation for non-monotone submodular matching, and a (3 + ε)-
approximation for maximum weight (linear) b-matching. In our paper, we are
able to extend our algorithm for weighted matroid intersection to work with
submodular functions by combining our and their ideas. In fact, we are able
to generalize all their results to the case of matroid intersection with better or
equal2 approximation ratios: we get (3 + 2

√
2 + δ)-approximation for monotone

2 One can get rid of the δ factor if we assume that the function value is polynomially
bounded by |E|, an assumption made by [11].

Semi-streaming Algorithms for Submodular Matroid Intersection 211

submodular matroid intersection, (4+3
√

2+δ)-approximation for non-monotone
submodular matroid intersection and (2+ε)-approximation for maximum weight
(linear) matroid intersection. Due to space limitations, we refer the reader to the
full version [8] of our paper for this generalization.

Outline. In Sect. 2, we introduce basic matroid concepts and we formally
define the weighted matroid intersection problem in the semi-streaming model.
Section 3 is devoted to our main result. Here, we adapt the algorithm of [14]
without worrying about the memory requirements, show why the standard anal-
ysis fails, and then give our new analysis to get a 2-approximation. We then
make the obtained algorithm memory efficient in Sect. 4. Finally, in Sect. 5, we
discuss the case of more than two matroids.

2 Preliminaries

Matroids. We define and give a brief overview of the basic concepts related to
matroids that we use in this paper. For a more comprehensive treatment, we
refer the reader to [15]. A matroid is a tuple M = (E, I) consisting of a finite
ground set E and a family I ⊆ 2E of subsets of E satisfying:

– if X ⊆ Y, Y ∈ I, then X ∈ I; and
– if X ∈ I, Y ∈ I and |Y | > |X|, then ∃ e ∈ Y \ X such that X ∪ {e} ∈ I.

The elements in I (that are subsets of E) are referred to as the independent sets
of the matroid and the set E is referred to as the ground set. With a matroid
M = (E, I), we associate the rank function rankM : 2E → N and the span
function spanM : 2E → 2E defined as follows for every E′ ⊆ E,

rankM (E′) = max{|X| | X ⊆ E′ and X ∈ I},

spanM (E′) = {e ∈ E | rankM (E′ ∪ {e}) = rankM (E′)}.

We simply write rank(·) and span(·) when the matroid M is clear from the
context. In words, the rank function equals the size of the largest independent
set when restricted to E′ and the span function equals the elements in E′ and
all elements that cannot be added to a maximum cardinality independent set
of E′ while maintaining independence. The rank of the matroid equals rank(E),
i.e., the size of the largest independent set.

The Weighted Matroid Intersection Problem in the Semi-Streaming Model. In
the weighted matroid intersection problem, we are given two matroids M1 =
(E, I1),M2 = (E, I2) on a common ground set E and a non-negative weight
function w : E → R≥0 on the elements of the ground set. The goal is to find a
subset X ⊆ E that is independent in both matroids, i.e., X ∈ I1 and X ∈ I2,
and whose weight w(X) =

∑
e∈X w(e) is maximized.

In seminal work [5], Edmonds gave a polynomial-time algorithm for solving
the weighted matroid intersection problem to optimality in the classic model of

212 P. Garg et al.

computation when the whole input is available to the algorithm throughout the
computation. In contrast, the problem becomes significantly harder and tight
results are still eluding us in the semi-streaming model where the memory foot-
print of the algorithm and its access pattern to the input are restricted. Specif-
ically, in the semi-streaming model the ground set E is revealed in a stream
e1, e2, . . . , e|E| and at time i the algorithm gets access to ei and can perform
computation based on ei and its current memory but without knowledge of
future elements ei+1, . . . , e|E|. The algorithm has independence-oracle access to
the matroids M1 and M2 restricted to the elements stored in the memory, i.e., for
a set of such elements, the algorithm can query whether the set is independent
in each matroid. The goal is to design an algorithm such that (i) the memory
usage is near-linear O((r1 + r2) polylog(r1 + r2)) at any time, where r1 and r2
denote the ranks of the input matroids M1 and M2, respectively, and (ii) at
the end of the stream the algorithm should output a feasible solution X ⊆ E,
i.e., a subset X that satisfies X ∈ I1 and X ∈ I2, of large weight w(X). We
remark that the memory requirement O((r1 + r2) polylog(r1 + r2)) is natural as
r1 + r2 = |V | when formulating a bipartite matching problem as the intersection
of two matroids3.

The difficulty in designing a good semi-streaming algorithm is that the mem-
ory requirement is much smaller than the size of the ground set E and thus the
algorithm must intuitively discard many of the elements without knowledge of
the future and without significantly deteriorating the weight of the final solu-
tion X. The quality of the algorithm is measured in terms of its approximation
guarantee: an algorithm is said to have an approximation guarantee of α if it is
guaranteed to output a solution X, no matter the input and the order of the
stream, such that w(X) ≥ OPT/α where OPT denotes the weight of an optimal
solution to the instance. As aforementioned, our main result in this paper is a
semi-streaming algorithm with an approximation guarantee of 2 + ε, for every
ε > 0, improving upon the previous best guarantee of 4 + ε [4].

3 The Local Ratio Technique for Weighted Matroid
Intersection

In this section, we first present the local ratio algorithm for the weighted match-
ing problem that forms the basis of the semi-streaming algorithm in [14]. We
then adapt it to the weighted matroid intersection problem. While the algo-
rithm is fairly natural to adapt to this setting, we give an example in Sect. 3.2
that shows that the same techniques as used for analyzing the algorithm for

3 The considered problem can also be formulated as the problem of finding an inde-
pendent set in one matroid, say M1, and maximizing a submodular function which
would be the (weighted) rank function of M2. For that problem, [10] recently gave a
streaming algorithm with an approximation guarantee of (2+ε). However, the space
requirement of their algorithm is exponential in the rank of M1 (which would corre-
spond to be exponential in |V | in the matching case) and thus it does not provide a
meaningful guarantee for our setting.

Semi-streaming Algorithms for Submodular Matroid Intersection 213

matchings does not work for matroid intersection. Instead, our analysis, which
is presented in Sect. 3.3, deviates from the standard framework for analyzing
local ratio algorithms and it heavily relies on a structural property of matroid
intersection known as kernels. We remark that the algorithms considered in this
section do not have a small memory footprint.

Fig. 1. The top part shows an example execution of the local ratio technique for
weighted matchings The bottom part shows how to adapt this (bipartite) example
to the language of weighted matroid intersection (Algorithm 1).

3.1 Local-Ratio Technique for Weighted Matching

The local ratio algorithm for the weighted matching problem is as follows. The
algorithm maintains vertex potentials w(u) for every vertex u, a set S of selected
edges, and an auxiliary weight function g : S → R≥0 of the selected edges.
Initially the vertex potentials are set to 0 and the set S is empty. When an edge
e = {u, v} arrives, the algorithm computes how much it gains compared to the
previous edges, by taking its weight minus the weight/potential of its endpoints
(g(e) = w(e)−w(u)−w(v)). If the gain is positive, then we add the edge to S, and
add the gain to the weight of the endpoints, that is, we set w(u) = w(u) + g(e)
and w(v) = w(v) + g(e). At the end, we return a maximum weight matching M
among the edges stored on the stack S.

For a better intuition of the algorithm, consider the example depicted on the
top of Fig. 1. The stream consists of four edges e1, e2, e3, e4 with weights w(e1) = 1
and w(e2) = w(e3) = w(e4) = 2. At each time step i, we depict the arriving edge ei

in thick along with its weight; the vertex potentials before the algorithm considers
this edge is written on the vertices, and the updated vertex potentials (if any) after
considering ei are depicted next to the incident vertices. The edges that are added
to S are solid and those that are not added to S are dashed.

214 P. Garg et al.

Algorithm 1. Local ratio for matroid intersection
Input: A stream of the elements of the common ground set of matroids M1 =

(E, I1), M2 = (E, I2).
Output: A set X ⊆ E that is independent in both matroids.

S ← ∅
for element e in the stream do

calculate w∗
i (e) = max

({0} ∪ {θ : e ∈ spanMi
({f ∈ S | wi(f) ≥ θ})})

for i ∈
{1, 2}.
if w(e) > w∗

1(e) + w∗
2(e) then

g(e) ← w(e) − w∗
1(e) − w∗

2(e)
w1(e) ← w∗

1(e) + g(e)
w2(e) ← w∗

2(e) + g(e)
S ← S ∪ {e}

end if
end for
return a maximum weight set T ⊆ S that is independent in M1 and M2

At the arrival of the first edge of weight w(e1) = 1, both incident vertices
have potential 0 and so the algorithm adds this edge to S and increases the
incident vertex potentials with the gain g(e1) = 1. For the second edge of weight
w(e2) = 2, the sum of incident vertex potentials is 1 and so the gain of e2 is
g(e2) = 2 − 1, which in turn causes the algorithm to add this edge to S and
to increase the incident vertex potentials by 1. The third time step is similar to
the second. At the last time step, edge e4 arrives of weight w(e4) = 2. As the
incident vertex potentials sum up to 2 the gain of e4 is not strictly positive and
so this edge is not added to S and no vertex potentials are updated. Finally,
the algorithm returns the maximum weight matching in S which in this case
consists of edges {e1, e3} and has weight 3. Note that the optimal matching of
this instance had weight 4 and we thus found a 4/3-approximate solution.

In general, the algorithm has an approximation guarantee of 2. This is proved
using a common framework to analyze algorithms based on the local ratio tech-
nique: We ignore the weights and greedily construct a matching M by inspecting
the edges in S in reverse order, i.e., we first consider the edges that were added
last. An easy proof (see e.g. [9]) then shows that the matching M constructed
in this way has weight at least half the optimum weight.

In the next section, we adapt the above described algorithm to the context
of matroid intersections. We also give an example that the above framework
for the analysis fails to give any constant-factor approximation guarantee. Our
alternative (tight) analysis of this algorithm is then given in Sect. 3.3.

3.2 Adaptation to Weighted Matroid Intersection

When adapting the local ratio algorithm for weighted matching to matroid inter-
section to obtain Algorithm 1, the first problem we encounter is the fact that
matroids do not have a notion of vertices, so we cannot keep a weight/potential
for each vertex. To describe how we overcome this issue, it is helpful to consider

Semi-streaming Algorithms for Submodular Matroid Intersection 215

the case of bipartite matching and in particular the example depicted in Fig. 1. It
is well known that the weighted matching problem on a bipartite graph with edge
set E and bipartition V1, V2 can be modelled as a weighted matroid intersection
problem on matroids M1 = (E, I1) and M2 = (E, I2) where for i ∈ {1, 2}

Ii = {E′ ⊆ E | each vertex v ∈ Vi is incident to at most one vertex in E′} .

Instead of keeping a weight for each vertex, we will maintain two weight
functions w1 and w2, one for each matroid. These weight functions will be set so
that the following holds in the special case of bipartite matching: on the arrival
of a new edge e, let Ti ⊆ S be an independent set in Ii of selected edges that
maximizes the weight function wi. Then we have that

min
f∈Ti:Ti\{f}∪{e}∈Ii

wi(f) if Ti ∪ {e} 	∈ Ii and 0 otherwise (1)

equals the vertex potential of the incident vertex Vi when running the local ratio
algorithm for weighted matching. It is well-known (e.g. by the optimality of the
greedy algorithm for matroids) that the cheapest element f to remove from Ti

to make Ti \ {f} ∪ {e} an independent set equals the largest weight θ so that
the elements of weight at least θ spans e. We thus have that (1) equals

max
({0} ∪ {θ : e ∈ spanMi

({f ∈ S | wi(f) ≥ θ})})

and it follows that the quantities w∗
1(e) and w∗

2(e) in Algorithm 1 equal the
incident vertex potentials in V1 and V2 of the local ratio algorithm in the special
case of bipartite matching. To see this, let us return to our example in Fig. 1 and
let V1 be the two vertices on the left and V2 be the two vertices on the right.
In the bottom part of the figure, the weight functions w1 and w2 are depicted
(at the corresponding side of the edge) after the arrival of each edge. At time
step 1, e1 does not need to replace any elements in any of the matroids and
so w∗

1(e1) = w∗
2(e1) = 0. We therefore have that its gain is g(e1) = 1 and the

algorithm sets w1(e1) = w2(e1) = 1. At time 2, edge e2 of weight 2 arrives. It is
not spanned in the first matroid whereas it is spanned by edge e1 of weight 1 in
the second matroid. It follows that w∗

1(e2) = 0 and w∗
2(e2) = w2(e1) = 1 and so

e2 has positive gain g(e2) = 1 and it sets w1(e2) = 1 and w2(e2) = w2(e1)+1 = 2.
The third time step is similar to the second. At the last time step, e4 of weight
2 arrives. However, since it is spanned by e1 with w1(e1) = 1 in the first matroid
and by e3 with w2(e3) = 1 in the second matroid, its gain is 0 and it is thus
not added to the set S. Note that throughout this example, and in general for
bipartite graphs, Algorithm 1 is identical to algorithm for weighted matching.
One may therefore expect that the analysis of the latter also generalizes to
Algorithm 1. We explain next that this is not the case for general matroids.

Counter Example to Same Approach in Analysis. We give a simple
example showing that the greedy selection (as done in the analysis for local
ratio algorithm for weighted matching) does not work for matroid intersection.
Still, it turns out that the set S generated by Algorithm 1 always contains a
2-approximation but the selection process is more involved.

216 P. Garg et al.

Lemma 1. There exist two matroids M1 = (E, I1) and M2 = (E, I2) on a
common ground set E and a weight function w : E → R≥0 such that a greedy
algorithm that considers the elements in the set S in the reverse order of when
they were added by Algorithm 1 does not provide any constant-factor approxi-
mation.

Proof. The example consists of the ground set E = {a, b, c, d} with weights
w(a) = 1, w(b) = 1+ε, w(c) = 2ε, w(d) = 3ε for a small ε > 0 (the approximation
guarantee will be at least Ω(1/ε)). The matroids M1 = (E, I1) and M2 = (E, I2)
are defined by

– a subset of E is in I1 if and only if it does not contain {a, b}; and
– a subset of E is in I2 if and only if it contains at most two elements.

To see that M1 and M2 are matroids, note that M1 is a partition matroid
with partitions {a, b}, {c}, {d}, and M2 is the 2-uniform matroid (alternatively,
one can easily check that M1 and M2 satisfy the definition of a matroid). Now
consider the execution of Algorithm 1 when given the elements of E in the order
a, b, c, d:

– Element a has weight 1, and {a} is independent both in M1 and M2, so we
set w1(a) = w2(a) = g(a) = 1 and a is added to S.

– Element b is spanned by a in M1 and not spanned by any element in M2. So
we get g(b) = w(b) − w∗

1(b) − w∗
2(b) = 1 + ε − 1 − 0 = ε. As ε > 0, we add b

to S, and set w1(b) = w1(a) + ε = 1 + ε and w2(b) = ε.
– Element c is not spanned by any element in M1 but is spanned by {a, b}

in M2. As b has the smallest w2 weight, w∗
2(c) = w2(b) = ε. So we have

g(c) = 2ε − w∗
1(c) − w∗

2(c) = 2ε − 0 − ε = ε > 0, and we set w1(c) = ε and
w2(c) = 2ε and add c to S.

– Element d is similar to c. We have g(d) = 3ε − 0 − 2ε = ε > 0 and so we set
w1(d) = ε and w2(d) = 3ε and add d to S.

As the algorithm selected all the elements, we have S = E. It follows that the
greedy algorithm on S (in the reverse order of when elements were added) will
select d and c, after which the set is a maximal independent set in M2. This gives
a weight of 5ε, even though a and b both have weight at least 1, which shows
that this algorithm does not guarantee any constant factor approximation.
�

3.3 Analysis of Algorithm 1

We prove that Algorithm 1 has an approximation guarantee of 2.

Theorem 1. Let S be the subset generated by Algorithm 1 on a stream E of
elements, matroids M1 = (E, I1),M2 = (E, I2) and weight function w : E →
R≥0. Then there exists a subset T ⊆ S independent in M1 and in M2 whose
weight w(T) is at least w(S∗)/2, where S∗ denotes an optimal solution to the
weighted matroid intersection problem.

Semi-streaming Algorithms for Submodular Matroid Intersection 217

Throughout the analysis we fix the input matroids M1 = (E, I1),M2 =
(E, I2), the weight function w : R → R≥0, and the order of the elements in the
stream. While Algorithm 1 only defines the weight functions w1 and w2 for the
elements added to the set S, we extend them in the analysis by, for i ∈ {1, 2},
letting wi(e) = w∗

i (e) for the elements e not added to S.
We now prove Theorem 1 by showing that g(S) ≥ w(S∗)/2 (Lemma 3) and

that there is a solution T ⊆ S such that w(T) ≥ g(S) (Lemma 4). In the proof
of both these lemmas, we use the following properties of the computed set S.

Lemma 2. Let S be the set generated by Algorithm 1 and S′ ⊆ S any subset.
Consider one of the matroids Mi with i ∈ {1, 2}. There exists a subset T ′ ⊆ S′

that is independent in Mi, i.e., T ′ ∈ Ii, and wi(T ′) ≥ g(S′). Furthermore, the
maximum weight independent set in Mi over the whole ground set E can be
selected to be a subset of S, i.e. Ti ⊆ S, and it satisfies wi(Ti) = g(S).

Proof. Consider matroid M1 (the proof is identical for M2) and fix S′ ⊆ S. The
set T ′

1 ⊆ S′ that is independent in M1 and that maximizes w1(T ′
1) satisfies

w1(T
′
1) =

∫ ∞

0
rank({e ∈ T ′

1 | w1(e) ≥ θ}) dθ =

∫ ∞

0
rank({e ∈ S′ | w1(e) ≥ θ}) dθ .

The second equality follows from the fact that the greedy algorithm that consid-
ers the elements in decreasing order of weight is optimal for matroids and thus
we have rank({e ∈ T ′

1 | w1(e) ≥ θ}) = rank({e ∈ S′ | w1(e) ≥ θ}) for any θ ∈ R.
Now index the elements of S′ = {e1, e2, . . . , e�} in the order they were added

to S by Algorithm 1 and let S′
j = {e1, . . . , ej} for j = 0, 1, . . . , � (where S′

0 = ∅).
By the above equalities and by telescoping,

w1(T
′
1) =

�∑
i=1

∫ ∞

0

(
rank({e ∈ S′

i | w1(e) ≥ θ}) − rank({e ∈ S′
i−1 | w1(e) ≥ θ})) dθ .

We have that rank({e ∈ S′
i | w1(e) ≥ θ}) − rank({e ∈ S′

i−1 | w1(e) ≥ θ}) equals
1 if w(ei) ≥ θ and ei 	∈ span({e ∈ S′

i−1 | w1(e) ≥ θ}) and it equals 0 otherwise.
Therefore, by the definition of w∗

1(·), the gain g(·) and w1(ei) = w∗
1(ei) + g(ei)

in Algorithm 1 we have

w1(T ′
1) =

�∑

i=1

[
w1(ei) − max

({0} ∪ {θ : ei ∈ span
({f ∈ S′

i−1 | wi(f) ≥ θ})})]

≥
�∑

i=1

g(ei) = g(S′) .

The inequality holds because S′
i−1 is a subset of the set S at the time when

Algorithm 1 considers element ei. Moreover, if S′ = S, then S′
i−1 equals the set

S at that point and so we then have

w∗
1(ei) = max

({0} ∪ {θ : ei ∈ span
({f ∈ S′

i−1 | wi(f) ≥ θ})})
.

This implies that the above inequality holds with equality in that case. We can
thus also conclude that a maximum weight independent set T1 ⊆ S satisfies

218 P. Garg et al.

w1(T1) = g(S). Finally, we can observe that T1 is also a maximum weight inde-
pendent set over the whole ground set since we have rank({e ∈ S | w1(e) ≥
θ}) = rank({e ∈ E | w1(e) ≥ θ}) for every θ > 0, which holds because, by the
extension of w1, an element e 	∈ S satisfies e ∈ span({f ∈ S : w1(f) ≥ w1(e)}).

�
We can now relate the gain of the elements in S with the weight of an optimal

solution.

Lemma 3. Let S be the subset generated by Algorithm 1. Then g(S) ≥ w(S∗)/2.

Proof. We first observe that w1(e) + w2(e) ≥ w(e) for every element e ∈ E.
Indeed, for an element e ∈ S, we have by definition w(e) = g(e)+w∗

1(e)+w∗
2(e),

and wi(e) = g(e) + w∗
i (e), so w1(e) + w2(e) = 2g(e) + w∗

1(e) + w∗
2(e) = w(e) +

g(e) > w(e). In the other case, when e 	∈ S then w∗
1(e) + w∗

2(e) ≥ w(e), and
wi(e) = w∗

i (e), so automatically, w1(e) + w2(e) ≥ w(e).
The above implies that w1(S∗) + w2(S∗) ≥ w(S∗). On the other hand, by

Lemma 2, we have wi(Ti) ≥ wi(S∗) (since Ti is a max weight independent set
in Mi with respect to wi) and wi(Ti) = g(S), thus g(S) ≥ wi(S∗) for i = 1, 2.
�

We finish the proof of Theorem 1 by proving that there is a T ⊆ S indepen-
dent in both M1 and M2 such that w(T) ≥ g(S). As described in Sect. 3.2, we
cannot select T using the greedy method. Instead, we select T using the concept
of kernels studied in [7].

Lemma 4. Let S be the subset generated by Algorithm 1. Then there exists a
subset T ⊆ S independent in M1 and in M2 such that w(T) ≥ g(S).

Proof. Consider one of the matroids Mi with i ∈ {1, 2} and define a total order
<i on E such that e <i f if wi(e) > wi(f) or if wi(e) = wi(f) and e appeared
later in the stream than f . The pair (Mi, <i) is known as an ordered matroid.
We further say that a subset E′ of E dominates element e of E if e ∈ E′ or there
is a subset Ce ⊆ E′ such that e ∈ span(Ce) and c < e for all elements c of Ce.
The set of elements dominated by E′ is denoted by DMi

(E′). Note that if E′

is an independent set, then the greedy algorithm that considers the elements of
DMi

(E′) in the order <i selects exactly the elements E′.
Theorem 2 in [7] says that for two ordered matroids (M1, <1), (M2, <2) there

always is a set K ⊆ E, which is referred to as a M1M2-kernel, such that

– K is independent in both M1 and in M2; and
– DM1(K) ∪ DM2(K) = E.

We use the above result on M1 and M2 restricted to the elements in S.
Specifically we select T ⊆ S to be the kernel such that DM1(T) ∪ DM2(T) = S.
Let S1 = DM1(T) and S2 = DM2(T). By Lemma 2, there exists a set T ′ ⊆
S1 independent in M1 such that w1(T ′) ≥ g(S1). As noted above, the greedy
algorithm that considers the element of S1 in the order <i (decreasing weights)
selects exactly the elements in T . It follows by the optimality of the greedy

Semi-streaming Algorithms for Submodular Matroid Intersection 219

algorithm for matroids that T is optimal for S1 in M1 with weight function w1,
which in turn implies w1(T) ≥ g(S1). In the same way, we also have w2(T) ≥
g(S2). By definition, for any e ∈ S, we have w(e) = w1(e) + w2(e) − g(e).
Together, we have w(T) = w1(T) + w2(T) − g(T) ≥ g(S1) + g(S2) − g(T). As
elements from T are in both S1 and S2, and all other elements are in at least
one of both sets, we have g(S1)+ g(S2) ≥ g(S)+ g(T), and thus w(T) ≥ g(S).
�

4 Making the Algorithm Memory Efficient

We now modify Algorithm 1 to only select elements with a significant gain,
parametrized by α > 1, and delete elements if we have too many in memory,
parametrized by a real number y. Let us call this algorithm EMI. If α is close
enough to 1 and y is large enough, then EMI is very close to Algorithm 1, and
allows for a similar analysis. This method is very similar to the one used in [14]
and [9], but our analysis is quite different.

More precisely, we take an element e only if w(e) > α(w∗
1(e)+w∗

2(e)) instead
of w(e) > w∗

1(e) + w∗
2(e), and we delete all elements e′ in the current stack

S for which the ratio between the g weight and the maximum g weight i.e.,
gmax = maxe∈S g(e) exceeds y (i.e., gmax

g(e′) > y). For technical purposes, we also
need to keep independent sets T1 and T2 which maximize the weight functions
w1 and w2 respectively. If an element with small g weight is in T1 or T2, we
do not delete it, as this would modify the wi-weights and selection of coming
elements. We show that this algorithm is a semi-streaming algorithm with an
approximation guarantee of (2+ε) for an appropriate selection of the parameters
(see Lemma 6 for the space requirement and theorem2 for the approximation
guarantee).

Lemma 5. Let S be the subset generated by EMI with α ≥ 1 and y = ∞. Then
w(S∗) ≤ 2αg(S).

Proof. We define wα : E → R by wα(e) = w(e) if e ∈ S and wα(e) = w(e)
α

otherwise. By construction, EMI and Algorithm 1 give the same set S, and
the same weight function g for this modified weight function. By Lemma 3,
wα(S∗) ≤ 2g(S). On the other hand, w(S∗) ≤ αwα(S∗).
�
Lemma 6. Let S be the subset generated generated by EMI with α = 1 + ε

and y = min(r1,r2)
ε2 and S∗ be a maximum weight independent set, where r1

and r2 are the ranks of M1 and M2 respectively. Then w(S∗) ≤ 2(1 + 2ε +
o(ε))g(S). Furthermore, at any point of time, the size of S is at most r1 + r2 +
min(r1, r2) logα(y

ε).

Proof. We first prove that the generated set S satisfies w(S∗) ≤ 2(1 + 2ε +
o(ε))g(S) and we then verify the space requirement of the algorithm, i.e., that
it is a semi-streaming algorithm.

Let us call S′ the set of elements selected by EMI, including the elements
deleted later. By Lemma 5, we have 2αg(S′) ≥ w(S∗), so all we have to prove

220 P. Garg et al.

is that g(S′) − g(S) ≤ εg(S). We set i ∈ {1, 2} to be the index of the matroid
with smaller rank.

In our analysis, it will be convenient to think that the algorithm maintains
the maximum weight independent set Ti of Mi throughout the stream. We have,
at the arrival of an element e that is added to S, that the set Ti is updated as
follows. If Ti ∪{e} ∈ Ii then e is simply added to Ti. Otherwise, before updating
Ti, there is an element e∗ ∈ Ti such that wi(e∗) = w∗

i (e) and Ti \ {e∗} ∪ {e} is
maximum weight independent set in Mi with respect to wi. Thus we can speak
of elements which are replaced be another element in Ti. By construction, if e
replaces f in Ti, then wi(e) > αwi(f).

We can now divide the elements of S′ into stacks in the following way: If e
replaces an element f in Ti, then we add e on top of the stack containing f ,
otherwise we create a new stack containing only e. At the end of the stream,
each element e ∈ Ti is in a different stack, and each stack contains exactly
one element of Ti, so let us call S′

e the stack containing e whenever e ∈ Ti.
We define Se to be the restriction of S′

e to S. In particular, each element from
S′ is in exactly one S′

e stack, and each element from S is in exactly one Se

stack. For each stack S′
e, we set edel(S′

e) to by the highest element of S′
e which

was removed from S. By construction, g(S′
e) − g(Se) ≤ wi(edel(S′

e)). On the
other hand, wi(f) < 1

εg(f) for any element f ∈ S′ (otherwise we would not
have selected it), so g(S′

e) − g(Se) < 1
εg(edel(S′

e)). As edel(S′
e) was removed

from S, we have g(edel(S′
e)) < gmax

y . As there are exactly ri stacks, we get

g(S′) − g(S) < ri
gmaxε2

riε
= εgmax ≤ εg(S).

We now have to prove that the algorithm fits the semi-streaming criteria. In
fact, the size of S never exceeds r1 +r2 +ri logα(y

ε). By the pigeonhole principle,
if S has at least ri logα(y

ε) elements, then there is at least one stack Se which has
at least logα(y

ε) elements. By construction, the wi weight increases by a factor
of at least α each time we add an element on the same stack, so the wi weight
difference between the lowest and highest element on the biggest stack would be
at least y

ε . As wi(f) < 1
εg(f), the g weight difference would be at least y, and

we would remove the lowest element, unless it was in T1 or T2.
�
Theorem 2. Let S be the subset generated by running EMI with α = 1 + ε and
y = min(r1,r2)

ε2 . Then there exists a subset T ⊆ S independent in M1 and in M2

such that w(T) ≥ g(S). Furthermore, T is a 2(1 + 2ε + o(ε))-approximation for
the intersection of two matroids.

Proof. Let S∗ be a maximum weight independent set. By Lemma 6, we have
2(1 + 2ε + o(ε)g(S) ≥ w(S∗). By Lemma 4 we can select an independent set T
with w(T) ≥ g(S) if the algorithm does not delete elements. Let S′ be the set
of elements selected by EMI, including the elements deleted later. As long as we
do not delete elements from T1 or T2, Algorithm 1 restricted to S′ will select the
same elements, with the same weights, so we can consider S′ to be generated
by Algorithm 1. We now observe that all the arguments used in Lemma 4 also
work for a subset of S′, in particular, it is also true for S that we can find an
independent set T ⊆ S such that w(T) ≥ g(S).
�

Semi-streaming Algorithms for Submodular Matroid Intersection 221

Remark 1. EMI is not the most efficient possible in terms of memory, but is
aimed to be simpler instead. Using the notion of stacks introduced in the proof
of Lemma 6, it is possible to modify the algorithm and reduce the memory
requirement by a factor log(min(rank(M1), rank(M2))).

Remark 2. The techniques of this section can also be used in the case when the
ranks of the matroids are unknown. Specifically, the algorithm can maintain the
stacks created in the proof of Lemma 6 and allow for an error ε in the first two
stacks created, an error of ε/2 in the next 4 stacks, and in general an error of
ε/2i in the next 2i stacks.

Remark 3. It is easy to construct examples where the set S only contains a
2α-approximation (for example with bipartite graphs), so up to a factor ε our
analysis is tight.

5 More Than Two Matroids

We can easily extend the algorithm EMI in the previous section to the intersec-
tion of k matroids. Now for any element e, if w(e) > α

∑k
i=1 w∗

i (e), we add it to
our stack and update the weight functions w1, . . . , wk similarly as EMI. The only
part which does not work is the selection of the independent set from S. Indeed,
matroid kernels are very specific to two matroids. We refer the reader to the full
version [8] to see why a similar approach fails and that a counter-example can
arise. Thus, any attempt to find a k approximation using our techniques must
bring some fundamentally new idea. Still, we conjecture that the generated set
S contains such an approximation.

Acknowledgements. The authors thank Moran Feldman for pointing us to the recent
paper [11].

References

1. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. In: Ausiello, G., Lucertini, M. (eds.) Analysis and
Design of Algorithms for Combinatorial Problems, North-Holland Mathemat-
ics Studies, vol. 109, pp. 27–45. North-Holland (1985). https://doi.org/10.
1016/S0304-0208(08)73101-3, http://www.sciencedirect.com/science/article/pii/
S0304020808731013

2. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: A unified frame-
work for approximation algorithms. in memoriam: Shimon even 1935–2004. ACM
Comput. Surv. (CSUR) 36, 422–463 (2004). https://doi.org/10.1145/1041680.
1041683

3. Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: Matchings,
matroids, and more. CoRR abs/1309.2038 (2013). http://arxiv.org/abs/1309.2038

4. Crouch, M., Stubbs, D.: Improved streaming algorithms for weighted matching, via
unweighted matching. In: Leibniz International Proceedings in Informatics, LIPIcs,
vol. 28, pp. 96–104 (2014). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.
2014.96

https://doi.org/10.1016/S0304-0208(08)73101-3
https://doi.org/10.1016/S0304-0208(08)73101-3
http://www.sciencedirect.com/science/article/pii/S0304020808731013
http://www.sciencedirect.com/science/article/pii/S0304020808731013
https://doi.org/10.1145/1041680.1041683
https://doi.org/10.1145/1041680.1041683
http://arxiv.org/abs/1309.2038
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96

222 P. Garg et al.

5. Edmonds, J.: Matroid intersection. In: Discrete Optimization I, Annals of Discrete
Mathematics, vol. 4, pp. 39–49. Elsevier (1979)

6. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2–3), 207–216 (2005)

7. Fleiner, T.: A matroid generalization of the stable matching polytope. In: Aardal,
K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 105–114. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3 9

8. Garg, P., Jordan, L., Svensson, O.: Semi-streaming algorithms for submodular
matroid intersection. arXiv preprint arXiv:2102.04348 (2021)

9. Ghaffari, M., Wajc, D.: Simplified and Space-Optimal Semi-Streaming (2+epsilon)-
Approximate Matching. In: Fineman, J.T., Mitzenmacher, M. (eds.) 2nd Sympo-
sium on Simplicity in Algorithms (SOSA 2019). OpenAccess Series in Informatics
(OASIcs), vol. 69, pp. 13:1–13:8. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2018). https://doi.org/10.4230/OASIcs.SOSA.2019.
13, http://drops.dagstuhl.de/opus/volltexte/2018/10039

10. Huang, C., Kakimura, N., Mauras, S., Yoshida, Y.: Approximability of monotone
submodular function maximization under cardinality and matroid constraints in
the streaming model. CoRR abs/2002.05477 (2020)

11. Levin, R., Wajc, D.: Streaming submodular matching meets the primal-dual
method. arXiv preprint arXiv:2008.10062 (2020)

12. McGregor, A.: Finding graph matchings in data streams. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624,
pp. 170–181. Springer, Heidelberg (2005). https://doi.org/10.1007/11538462 15

13. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends
Theor. Comput. Sci. 1(2), 117–236 (2005). https://doi.org/10.1561/0400000002

14. Paz, A., Schwartzman, G.: A (2+ε)-approximation for maximum weight matching
in the semi-streaming model. CoRR abs/1702.04536 (2017), http://arxiv.org/abs/
1702.04536

15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Algorithms and Combinatorics (2003)

https://doi.org/10.1007/3-540-45535-3_9
http://arxiv.org/abs/2102.04348
https://doi.org/10.4230/OASIcs.SOSA.2019.13
https://doi.org/10.4230/OASIcs.SOSA.2019.13
http://drops.dagstuhl.de/opus/volltexte/2018/10039
http://arxiv.org/abs/2008.10062
https://doi.org/10.1007/11538462_15
https://doi.org/10.1561/0400000002
http://arxiv.org/abs/1702.04536
http://arxiv.org/abs/1702.04536

	Semi-streaming Algorithms for Submodular Matroid Intersection
	1 Introduction
	2 Preliminaries
	3 The Local Ratio Technique for Weighted Matroid Intersection
	3.1 Local-Ratio Technique for Weighted Matching
	3.2 Adaptation to Weighted Matroid Intersection
	3.3 Analysis of Algorithm 1

	4 Making the Algorithm Memory Efficient
	5 More Than Two Matroids
	References

