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Abstract. We propose a method to generate cutting-planes from mul-
tiple covers of knapsack constraints. The covers may come from different
knapsack inequalities if the weights in the inequalities form a totally-
ordered set. Thus, we introduce and study the structure of a totally-
ordered multiple knapsack set. The valid multi-cover inequalities we
derive for its convex hull have a number of interesting properties. First,
they generalize the well-known (1, k)-configuration inequalities. Second,
they are not aggregation cuts. Third, they cannot be generated as a
rank-1 Chvátal-Gomory cut from the inequality system consisting of the
knapsack constraints and all their minimal covers. Finally, we provide
conditions under which the inequalities are facet-defining for the convex
hull of the totally-ordered knapsack set.

Keywords: Multiple knapsack set · Cutting-planes · Cover
inequalities

1 Introduction

We study cutting-planes related to covers of 0–1 knapsack sets. For a 0–1 knap-
sack set

Kknap := {x ∈ {0, 1}n | aT x ≤ b},

with (a, b) ∈ Z
n+1
+ , a cover is any subset of elements C ⊆ [n] such that∑

j∈C aj > b. The cover inequality (CI)
∑

j∈C

xj ≤ |C| − 1

is a valid inequality for the knapsack polytope conv(Kknap) that separates the
invalid characteristic vector of C. There is a long and rich literature on (lifted)
cover inequalities for the knapsack polytope [1,7,8,10,15], and the readers are
directed to the recent survey of [9] for a more complete background.

For the binary-valued set

X = {x ∈ {0, 1}n | Ax ≤ b},
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where [A, b] ∈ Z
m×(n+1)
+ , a standard and computationally-useful way for gen-

erating valid inequalities to improve the linear programming relaxation of X is
to generate lifted cover inequalities for the knapsack sets defined by the indi-
vidual constraints of X [4]. In this way, the extensive literature regarding valid
inequalities for conv(Kknap) can be leveraged to solve integer programs whose
feasible region is X. In contrast to Kknap, very little is known about polyhedra
that arise as the convex hull of the intersection of multiple knapsack sets. In this
paper, we introduce a family of cutting-planes, called (antichain) multi-cover
inequalities ((A)MCIs), that are derived by simultaneously considering multiple
covers which satisfy some particular condition. The covers may come from any
inequality in the formulation, so long as the weights appearing in the knapsack
inequalities are totally-ordered.

More formally, we give a new approach to generate valid inequalities
for a special multiple knapsack set, called the totally-ordered multiple knap-
sack set (TOMKS). Given a constraint matrix A ∈ Z

m×n
+ whose columns

{A1, A2, . . . , An} form a chain ordered by component-wise order, i.e., A1 ≥
A2 . . . ≥ An, and a right-hand-side vector b ∈ Z

m
+ , the TOMKS is the set

K = {x ∈ {0, 1}n | Ax ≤ b}. (1)

TOMKS can arise in the context of chance-constrained programming. Specif-
ically, consider a knapsack constraint where the weights of the items (a) depend
on a random variable (ξ), and we wish to satisfy the chance constraint

P{a(ξ)T x ≤ β} ≥ 1 − ε, (2)

selecting a subset of items (x ∈ {0, 1}n) so that the likelihood that these items
fit into the knapsack is sufficiently high. In the scenario approximation approach
proposed in [3,12], an independent Monte Carlo sample of N realizations of the
weights (a(ξ1), . . . a(ξN )) is drawn and the deterministic constraints

a(ξi)T x ≤ β ∀i = 1 . . . , N (3)

are enforced. In [11] it is shown that if the sample size N is sufficiently large:

N ≥ 1
2ε2

(

log
(

1
δ

)

+ n log(2)
)

,

then any feasible solution to (3) satisfies the constraint (2) with probability at
least 1−δ. If the random weights of the items a1(ξ), a2(ξ), . . . an(ξ) are indepen-
dently distributed with means μ1 ≥ μ2 . . . ≥ μn, then the feasible region in (3)
may either be a TOMKS, or the constraints can be (slightly) relaxed to obey
the ordering property.

But the TOMKS may arise in more general situations as well. For a general
binary set X, if two knapsack inequalities aT

1 x ≤ b1 and aT
2 x ≤ b2 have non-zero

coefficients in very few of the same variables, their intersection may be totally-
ordered, and the (A)MCI would be applicable in this case. In the special case
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where the multiple covers come from the same knapsack set, the (A)MCI can also
produce interesting inequalities. For example, the well-known (1, k)-configuration
inequalities for conv(Kknap) [13] are a special case of (A)MCI where all covers
come from the same inequality (see Proposition 4). We also give an example
where a facet of conv(Kknap) found by a new lifting procedure described in [10]
is a MCI.

A MCI is generated by a simple algorithm (given in Algorithm 1) that takes
as input a special family of covers C = {C1, C2, . . . Ck} that obeys a certain
maximality criterion (defined in Definition 3). For many types of cover families
C , the MCI may be given in closed-form. In the case that the family of covers C
is an antichain in a certain partial order, the resulting MCI has the interesting
property that it simultaneously cuts off at least two of the characteristic vectors
of the covers in C . We also give conditions under which the MCI yields a facet
for conv(K) in Sect. 5.

The MCI may be generated by simultaneously considering multiple knapsack
inequalities defining K. Another mechanism to generate inequalities taking into
account information from multiple constraints of the formulation is to aggregate
inequalities together, forming the set

A(A, b) :=
⋂

λ∈R
m
+

conv({x ∈ {0, 1}n | λT Ax ≤ λT b}).

Inequalities valid for A(A, b) are known as aggregation cuts, and have been shown
to be quite powerful from both an empirical [6] and theoretical [2] viewpoint.
The well-known Chvátal-Gomory (CG) cuts, lifted knapsack cover inequalities,
and weight inequalities [14] are all aggregation cuts. In Example 3, we show that
MCI are not aggregation cuts. Further, in Example 4, we show that MCI cannot
be obtained as a (rank-1) Chvátal-Gomory cut from the linear system consisting
of all minimal cover inequalities from K.

The paper is structured as follows: In Sect. 2, we define a certain type of
dominance relationship between covers that is necessary for MCI. The MCI is
defined in Sect. 3, where we also give many examples to demonstrate that MCIs
are not dominated by other well-known families of cutting-planes. In Sect. 4,
we propose a strengthening of MCI in the case that the cover-family forms an
antichain in a certain partially ordered set. Section 5 provides sufficient condition
for the MCI to be a facet-defining inequality for conv(K).

Notation. For a positive integer n, we denote by [n] := {1, . . . , n}. For x ∈ R
n,

supp(x) := {i ∈ [n] | xi �= 0} denotes the support of x. The characteristic vector
of a set S ⊆ [n] is denoted by χS . Therefore, given a TOMKS K, we say that a
set S ⊆ [n] is a cover for K if χS /∈ K. For a vector x ∈ R

n and a set S ⊆ [n],
we define x(S) :=

∑
i∈S xi. This in particular means x(∅) = 0. We denote the

power set of a set S by 2S , which is the set of all subsets of S.
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2 A Dominance Relation

In this section we define and provide some properties of a type of dominance
relationship between covers.

Definition 1 (Domination). For S1, S2 ⊆ [n], we say that S1 dominates
S2 and write S1 � S2, if there exists an injective function f : S2 → S1 with
f(i) ≤ i ∀i ∈ S2.

The dominance relation in Definition 1 is reflexive, antisymmetric, and tran-
sitive, so (2[n], �) forms a partially ordered set (poset). For two sets S1, S2 ⊆ [n],
we say S1 and S2 are comparable if S1 � S2 or S2 � S1.

The dominance relation has a natural use in the context of covers. In fact, if
C2 is a cover for a TOMKS K and C1 dominates C2, then C1 is also a cover for
K. Next, we present two technical lemmas. The proofs are technical and can be
found in the full version of the paper [5].

Lemma 1. Let S1, S2 ⊆ [n] with S1 �= S2. Then for any S′ ⊆ S1 ∩ S2, S1 � S2

if and only if S1 \ S′ � S2 \ S′.

Lemma 2. Let S ⊆ [n] and let S1, S2 ⊆ S. Then, S1 � S2 if and only if S \ S2 �
S \ S1.

3 Multi-cover Inequalities

Throughout this section, we consider a TOMKS K := {x ∈ {0, 1}n | Ax ≤ b},
and we introduce the multi-cover inequalities (MCIs), which form a novel family
of valid inequalities for K. Each MCI can be obtained from a special family
of covers {C1, . . . , Ck} for K that we call a multi-cover. In order to define a
multi-cover, we first introduce the discrepancy family.

Definition 2 (Discrepancy family). For a family of sets C = {C1, . . . , Ck},
we say that {C1 \∩k

h=1Ch, . . . , Ck \∩k
h=1Ch} is the discrepancy family of C , and

we denote it by D(C ).

Now we can define the concept of a multi-cover.

Definition 3 (Multi-cover). Let C be a family of covers for K. We then say
that C is a multi-cover for K if for any set T ⊆ ∪D∈D(C )D with T /∈ D(C ),
there exists some D′ ∈ D(C ) such that T is comparable with D′.

For a given family of covers {C1, . . . , Ck} for K, throughout this paper, for
ease of notation we define C0 := ∩k

h=1Ch, C := ∪k
h=1Ch, C̄h := C\Ch for h ∈ [k],

and similarly T̄ := C \ T for any T ⊆ C.
We are now ready to introduce our multi-cover inequalities for K. These

inequalities are defined by the following algorithm.
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Algorithm 1. Multi-cover inequality (MCI)
Input: A multi-cover {C1, . . . , Ck} for K.
Output: A multi-cover inequality.

1: Let C \ C0 = {i1, . . . , im}, with i1 < . . . < im.
2: Set αi := 1 if i ∈ {i1, . . . , im}, and αi := 0 otherwise.
3: for t = m − 1, . . . , 1 do
4: αit := maxh∈[k]:it∈Ch

max�∈C̄h:�>it
α� + 1.

5: for j ∈ C0 do
6: αj := minh∈[k] max

{
max�<j,l∈C̄h

α�,
∑

t>j,t∈C̄h
αt + 1

}
.

7: β := maxk
h=1 α(Ch) − 1.

8: return the inequality αT x ≤ β.

We remark that in Algorithm 1, in the case where we take the minimum or
maximum over an empty set (see Step 4 and 6), the corresponding minimum or
maximum is defaulted to take the value zero.

For the above algorithm, we have the following easy observations.

Observation 1. Given a multi-cover {Ch}k
h=1, Algorithm 1 performs a number

of operations that is polynomial in |C| and k. Furthermore, supp(α) = C.

The main result of this section is that, given a multi-cover for K, the corre-
sponding MCI is valid for conv(K). Before presenting the theorem, we will need
the following auxiliary result.

Proposition 1. Let {Ch}k
h=1 be a multi-cover and let αT x ≤ β be the associated

MCI. If there exists T ⊆ C \ C0, T /∈ {C̄h}k
h=1, with T � C̄h′ for some h′ ∈ [k],

then α(T ) > α(C̄h′).

Proof. Let T and C̄h′ be the sets as assumed in the statement of this proposition,
with T � C̄h′ . Denote T0 := T ∩ C̄h′ , T1 := T \ T0, and T2 := C̄h′ \ T0. Then
T = T0 ∪T1, C̄h′ = T0 ∪T2. Since T �= C̄h′ and T � C̄h′ , then we know T1 �= ∅. By
Lemma 1, we know that T1�T2. If T2 = ∅, then α(T ) = α(T0)+α(T1) > α(T0) =
α(C̄h′). Hence we assume T2 �= ∅. Denote T2 := {j1, . . . , jt}. Since T1 � T2 and
T1∩T2 = ∅, we know there exists {k1, . . . , kt} ⊆ T1 such that k1 < j1, . . . , kt < jt.

W.l.o.g., consider k1 and j1. By definition, there is k1 < j1, k1 /∈ C̄h′ , j1 ∈ C̄h′ ,
which is just saying: k1 < j1, k1 ∈ Ch′ , j1 ∈ C̄h′ . Therefore, j1 ∈ {
 | 
 > k1, 
 ∈
C̄h′ , k1 ∈ Ch′}. By Step 4 of Algorithm 1, we know that αk1 > αj1 . For the
remaining j2 and j2, . . . , kt and jt we can do the exact same argument and
obtain αk2 > αj2 , . . . , αkt

> αjt
.

Therefore, α(T ) = α(T1) + α(T0) ≥ αk1 + . . . + αkt
+ α(T0) > αj1 + . . . +

αjt
+ α(T0) = α(C̄h′), which concludes the proof. �
Now we are ready to present the first main result of this paper.

Theorem 1. Given a multi-cover {Ch}k
h=1 for a TOMKS K, the MCI produced

by Algorithm 1 is valid for conv(K).



198 A. Del Pia et al.

Proof. Since supp(α) = C, in order to show that αT x ≤ β is valid to conv(K),
it suffices to show that, for any T ⊆ C with α(T ) ≥ β + 1, T must be a
cover to K. Note that from Step 7 there is β + 1 = maxk

h=1 α(Ch), and for
any T1, T2 ⊆ C, α(T1) ≥ α(T2) is equivalent to α(T̄1) ≤ α(T̄2), furthermore
from Lemma 2, therefore it suffices for us to show that: for any T ⊆ C with
α(T̄ ) ≤ mink

h=1 α(C̄h), there must exist some h∗ ∈ [k] such that C̄h∗ � T̄ . We will
assume that T /∈ {Ch}k

h=1 since otherwise C̄h∗ �T̄ trivially holds. In the following,
the proof is subdivided into two cases, depending on whether T̄ ∩C0 = ∅ or not.

First, we consider the case T̄ ∩ C0 = ∅. In this case, there is C0 ⊆ T . by
Definition 3 of multi-cover, we know there must exist h∗ ∈ [k] such that either
Ch∗ \ C0 � T \ C0, or T \ C0 � Ch∗ \ C0. By the above assumption C0 ⊆ T and
Lemma 1, we know that either Ch∗ � T or T � Ch∗ . If T � Ch∗ , then Lemma 2
implies C̄h∗ �T̄ , which completes the proof. So we assume Ch∗ �T , or equivalently,
T̄ � C̄h∗ . Since T̄ ⊆ C \ C0 and T̄ /∈ {C̄h}k

h=1, By Proposition 1 we obtain that
α(T̄ ) > α(C̄h∗), and this contradicts to the assumption of α(T̄ ) ≤ mink

h=1 α(C̄h).
Next, we consider the case T̄ ∩ C0 �= ∅. In this case, we want to construct

a D̄ ⊆ C with D̄ ∩ C0 = ∅, α(D̄) ≤ α(T̄ ), and D̄ � T̄ . Then since α(T̄ ) ≤
mink

h=1 α(C̄h), we have α(D̄) ≤ mink
h=1 α(C̄h) where D̄ ∩ C0 = ∅. According to

our discussion in the previous case, we know there exists some h∗ ∈ [k] such that
C̄h∗ � D̄, which implies C̄h∗ � T̄ since � forms a partial order, and the proof is
completed.

Arbitrarily pick t∗ ∈ T̄ ∩ C0. Then by Step 6, we know there exists
h∗ ∈ [k] such that αt∗ = max

{
min�<t∗,�∈C̄h∗ α�,

∑
t>t∗,t∈C̄h∗ αt + 1

}
. If {
 ∈

C̄h∗ | 
 < t∗} ⊆ T̄ , then we have α(T̄ ) ≥ ∑
�<t∗,�∈C̄h∗ α� + αt∗ , which is

at least
∑

�<t∗,�∈C̄h∗ α� +
∑

t>t∗,t∈C̄h∗ αt + 1. Since t∗ /∈ C̄h∗ , we know that
∑

�<t∗,�∈C̄h∗ α� +
∑

t>t∗,t∈C̄h∗ αt + 1 = α(C̄h∗) + 1. Hence α(T̄ ) > α(C̄h∗),
and this contradicts to the initial assumption of α(T̄ ) ≤ mink

h=1 α(C̄h). There-
fore we can find some 
∗ ∈ C̄h∗ , 
∗ < t∗ such that 
∗ /∈ T̄ . Now define
D̄ := T̄ ∪{
∗}\{t∗}. Since 
∗ < t∗, clearly D̄ � T̄ . Also α(T̄ )−α(D̄) = αt∗ −α�∗ ,
since αt∗ ≥ max�<t∗,�∈C̄h∗ α�, we know that α(T̄ ) − α(D̄) ≥ 0. If D̄ ∩ C0 = ∅,
then we are done. Otherwise, we can replace T̄ by D̄, consider any index in
D̄ ∩ C0 and do the above discussion one more time. Every time we are able to
obtain a set D̄ with |D̄ ∩ C0| decreasing by 1. In the end we will obtain a set D̄
with the desired property: D̄ ∩C0 = ∅, α(D̄) ≤ α(T̄ ), and D̄ � T̄ . This completes
the proof for the case T̄ ∩ C0 �= ∅.

Therefore, from the discussion for the above two cases, we have concluded
the proof of MCI αT x ≤ β being a valid inequality for conv(K). �

For some multi-covers with a special discrepancy family, we are able to write
the associated MCI in closed form. We provide two examples.

Example 1. Consider {C1, C2} with discrepancy family {{i1, it+1}, {i2, . . . , it}}
for some t ≥ 3, with i1 < . . . < it+1. Easy to verify that such {C1, C2} is a
multi-cover, and the obtained MCI is:
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∑

i<i1,i∈C

(2t − 1)xi +
∑

i1≤i<i2,i∈C

(2t − 3)xi +
t∑

�=3

∑

i�−1<i<i�,i∈C

(2t − 2� + 3)xi

+
t∑

�=2

2xi� +
∑

it<i<it+1,i∈C

2xi + xit+1 +
∑

i>it+1,i∈C

2xi ≤ α(C1) − 1,

(4)

where α is the vector associated with the left-hand-side term. �
Example 2. Consider {C1, C2, C3} with discrepancy family {{i1, i3}, {i1, i4, i5},
{i2, i3, i5}}, with i1 < . . . < i5. Here the family of covers {C1, C2, C3} is a
multi-cover, and the obtained MCI is:

∑

i<i1,i∈C

5xi +
∑

i1≤i<i2,i∈C

3xi + 2xi2 +
∑

i2<i<i3,i∈C

3xi + 2xi3

+
∑

i3<i<i4,i∈C

2xi + xi4 +
∑

i4<i<i5,i∈C

2xi + xi5 +
∑

i>i5,i∈C

2xi ≤ α(C1) − 1,
(5)

where α is the vector associated with the left-hand-side term. �
Next, we present some illustrative examples to showcase the novelty of MCIs.

The first example shows that, unlike lifted cover inequalities or CG cuts, MCIs
are not aggregation cuts of the original linear system.

Example 3. Consider the TOMKS:

K := {x ∈ {0, 1}5 | 19x1 + 11x2 + 5x3 + 4x4 + 2x5 ≤ 31,

16x1 + 10x2 + 7x3 + 5x4 + 3x5 ≤ 30}.

Then {C1, C2} := {{1, 2, 5}, {1, 3, 4, 5}} is a multi-cover for K, point χC1 only
violates the first knapsack constraint, and point χC2 only violates the second
knapsack constraint. The associated MCI is

3x1 + 2x2 + x3 + x4 + x5 ≤ 5, (6)

and (6) is violated by both χC1 and χC2 .
Now consider an aggregation of the knapsack inequalities of K given by

λ1(19, 11, 5, 4, 2)T x + λ2(16, 10, 7, 5, 3)T x ≤ 31λ1 + 30λ2, where λ1, λ2 ≥ 0. For
any choice of λ1 ≥ 0, λ2 ≥ 0, it can be verified that C1 and C2 cannot both be
covers to the knapsack set given by this single inequality, so any aggregation cut
for K can cut off at most one of χC1 and χC2 . Therefore, the inequality (6) is not
an aggregation cut. In some cases, it may be possible to obtain an MCI as a CG
cut of the original linear system augmented with its minimal cover inequalities.
In this example, consider the set

KCI := {x ∈ {0, 1}5 | 19x1 + 11x2 + 5x3 + 4x4 + 2x5 ≤ 31,

16x1 + 10x2 + 7x3 + 5x4 + 3x5 ≤ 30,

x1 + x2 + x3 ≤ 2, x1 + x2 + x4 ≤ 2,

x1 + x2 + x5 ≤ 2, x1 + x3 + x4 + x5 ≤ 3}.



200 A. Del Pia et al.

The inequality (6) is indeed a CG cut with respect to KCI , as shown by multi-
pliers 1

12 · (19, 11, 5, 4, 2) + 1
4 · (1, 1, 1, 0, 0) + 1

3 · (1, 1, 0, 1, 0) + 1
2 · (1, 1, 0, 0, 1) +

1
3 · (1, 0, 1, 1, 1) = (3, 2, 1, 1, 1), 1

12 · 31 + 1
4 · 2 + 1

3 · 2 + 1
2 · 2 + 1

3 · 3 = 5.75. Hence
(3, 2, 1, 1, 1)T x ≤ �5.75� = 5 is a CG cut for KCI . �

Example 3 demonstrates that MCI can be obtained from multiple knapsack
sets simultaneously. Specifically, the inequality (6) is facet-defining for conv(K),
but it is neither valid for {x ∈ {0, 1}5 | 19x1 + 11x2 + 5x3 + 4x4 + 2x5 ≤ 31} nor
{x ∈ {0, 1}5 | 16x1 + 10x2 + 7x3 + 5x4 + 3x5 ≤ 30}. Example 3 also shows that
an MCI can be a CG cut for the linear system given by the original knapsack
constraints along with all their minimal cover inequalities. In the next example,
we will see that this is not always the case.

Example 4. Consider the following TOMKS:

K := {x ∈ {0, 1}8 | 28x1 + 24x2 + 20x3 + 19x4 + 15x5 + 10x6 + 7x7 + 6x8 ≤ 96,

27x1 + 24x2 + 21x3 + 19x4 + 13x5 + 12x6 + 7x7 + 4x8 ≤ 96}.

Consider the family of covers C1 = {2, 3, 4, 5, 6, 7, 8}, C2 = {1, 3, 4, 5, 6, 8}, C3 =
{1, 2, 3, 5, 6}, C4 = {1, 2, 3, 5, 7, 8}. We have C = [8], C0 = {3, 5}, and the
discrepancy family is D(C ) = {{2, 4, 6, 7, 8}, {1, 4, 6, 8}, {1, 2, 6}, {1, 2, 7, 8}} =:
{D1,D2,D3,D4}.

First, we verify that C is a multi-cover. For any set S ⊆ C \ C0 and S /∈
D(C ), if 1 ∈ S, |S| = 2, then it is clearly dominated by either D2,D3 or D4. If
1 ∈ S, |S| = 3, then either S � D3 or D3 � S. If 1 ∈ S, |S| = 4, then S must be
comparable with D2 or D3. If 1 ∈ S, |S| = 5, then S � D1. If 1 /∈ S, then clearly
D1 � S since S ⊆ D1. Hence for any S ⊆ C \ C0 and S /∈ D(C ), S must be
comparable with some set in D(C ). Therefore, C is a multi-cover.

When Algorithm 1 is applied to C , we obtain the inequality

αT x ≤ β := 4x1 + 3x2 + 3x3 + 2x4 + 3x5 + 2x6 + x7 + x8 ≤ 14, (7)

and it can be shown that (7) is a facet-defining inequality for conv(K).
Consider the linear system given by all the minimal cover inequalities for

K, as well as the original two linear constraints. We refer to this linear system
as KCI , which consists of 30 inequalities. Solving max{αT x | x ∈ KCI} gives
optimal value 15.307, so any corresponding CG cut with respect to KCI is αT x ≤
15, and it is weaker than inequality (7). �

Even when the cover-family consists of covers all coming from the same
knapsack inequality, the MCI can produce interesting inequalities. In the next
example, we show a MCI that cannot be obtained as a standard lifted cover
inequality, regardless of the lifting order.

Example 5 (Example 3 in [10]). Let K := {x ∈ {0, 1}5 | 10x1 + 7x2 + 7x3 +
4x4 + 4x5 ≤ 16}, and consider the multi-cover C := {{1, 3}, {1, 4, 5}, {2, 3, 5}}.
From inequality (5) of Example 2, we know that the corresponding MCI is

3x1 + 2x2 + 2x3 + x4 + x5 ≤ 4. (8)
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The inequality (8) is the same inequality produced by the new lifting procedure
described in [10], and the authors of [10] state that (8) is both a facet of conv(K)
and cannot be obtained from any cover inequality by standard sequential lifting
methods, regardless of the lifting order. �

4 Antichain Multi-cover Inequalities

In this section we propose a way to strengthen MCI when the associated multi-
cover forms an antichain in a certain poset. Recall that in order theory, an
antichain is a subset of a poset such that any two distinct elements in the subset
are incomparable, and a maximal antichain is an antichain that is not a proper
subset of any other antichain.

Definition 4 (Antichain multi-cover). Let C be a family of covers for K.
Then we say C is an antichain multi-cover for K, if D(C ) is a maximal antichain
of the poset (2∪D∈D(C )D, �).

We are now ready to define our antichain multi-cover inequalities (AMCIs)
by Algorithm 2. AMCIs have the interesting property (proved in Theorem 3)
that they cut off at least two characteristic vectors of covers in the antichain
multi-cover C .

Algorithm 2. Antichain multi-cover inequality (AMCI)
Input: An antichain multi-cover C := {C1, . . . , Ck} for K, and its MCI αT x ≤ β.
Output: An antichain multi-cover inequality.

1: Let C \ C0 = {i1, . . . , im}, with i1 < . . . < im.
2: if ∃h∗ ∈ [k] such that α(Ch∗) is the unique maximum of {α(Ch) | h ∈ [k]} then
3: Let it∗ be the minimum of {i1, . . . , im} such that

{h ∈ [k] : |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1} �= ∅.

4: δ := min{α(Ch∗) − α(Ch) : |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1}.
5: for t = 1, . . . , t∗ do
6: αit := αit + δ.

7: for j ∈ C0 do
8: αj := minh∈[k] max

{
max�<j,l∈C̄h

α�,
∑

t>j,t∈C̄h
αt + 1

}
.

9: β := maxk
h=1 α(Ch) − 1.

return the inequality αT x ≤ β.

Note that an AMCI is not necessarily different from its corresponding MCI,
it depends on if condition 2 is satisfied or not.

First, we show that Algorithm 2 can perform all required steps. The only
nontrivial step is Step 3. Thus, we only need to prove the following proposition.
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Proposition 2. In Step 3, for any h ∈ [k], there exists an index it∗ in
{i1, . . . , im} such that |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1.

Proof. First, we claim that there exists t◦ ∈ [m], such that

|Ch ∩ {i1, . . . , it◦}| − |Ch∗ ∩ {i1, . . . , it◦}| ≥ 1. (9)

We prove this claim by contradiction. Thus we assume that for every t ∈ [m] we
have |Ch ∩ {i1, . . . , it}| − |Ch∗ ∩ {i1, . . . , it}| ≤ 0. Let Ch \ C0 = {j1, . . . , j�} ⊆
{i1, . . . , im} with j1 < · · · < j�. To prove our claim it suffices to construct an
injective function f : Ch \C0 → Ch∗ \C0 such that f(j1) ≤ j1, . . . , f(j�) ≤ j�. In
fact, Definition 1 then implies Ch∗ \ C0 � Ch \ C0, which gives us a contradiction
since by Definition 4 of antichain multi-cover, the discrepancy family {Ch \
C0}h∈[k] forms an antichain. Let s1 ∈ [m] be an index such that is1 = j1. From
our assumption, we know that |Ch∗ ∩ {i1, . . . , is1}| ≥ |Ch ∩ {i1, . . . , is1}| = 1.
So we can find ir1 ∈ Ch∗ with ir1 ≤ is1 = j1, and let f(j1) := ir1 . Now let s2
such that is2 = j2. From our assumption, we know that |Ch∗ ∩ {i1, . . . , is2}| ≥
|Ch ∩ {i1, . . . , is2}| = 2, thus |(Ch∗ \ {ir1}) ∩ {i1, . . . , is2}| ≥ 1. So we can find
ir2 ∈ Ch∗ with ir2 �= ir1 and ir2 ≤ is2 = j2. We then set f(j2) := ir2 . Recursively,
we can then construct an injective function f : Ch \ C0 → Ch∗ \ C0 such that
f(j1) ≤ j1, . . . , f(j�) ≤ j�. This concludes the proof of (9).

For every t ∈ [m − 1], we clearly have 0 ≤ |Ch ∩ {i1, . . . , it+1}| − |Ch ∩
{i1, . . . , it}| ≤ 1, and the same observation holds if we replace h with h∗. Thus

−1 ≤ (|Ch ∩ {i1, . . . , it+1}| − |Ch∗ ∩ {i1, . . . , it+1}|)
− (|Ch ∩ {i1, . . . , it}| − |Ch∗ ∩ {i1, . . . , it}|) ≤ 1.

From |Ch ∩{i1}|−|Ch∗ ∩{i1}| ≤ 1 and (9), we then obtain that there must exist
some t∗ ∈ [t◦], such that |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1. �

Next, we show that AMCIs are valid for K. The validity proof is analogous
to that of Theorem 1, which also requires the following auxiliary result.

Proposition 3. Let {Ch}k
h=1 be an antichain multi-cover and let αT x ≤ β be

the associated AMCI. If there exists T ⊆ C \ C0, T /∈ {C̄h}k
h=1, with T � C̄h′ for

some h′ ∈ [k], then α(T ) > α(C̄h′).

Proof. We will assume that the condition at Step 2 in Algorithm 2 is satisfied,
since if not, then the AMCI coincides with its MCI, and the statement of this
proposition coincides with Proposition 1. Let T and C̄h′ be the sets as assumed in
the statement of this proposition, with T �C̄h′ . Denote T0 := T ∩C̄h′ , T1 := T \T0,
and T2 := C̄h′ \ T0. Then T = T0 ∪ T1, C̄h′ = T0 ∪ T2. Since T �= C̄h′ and
T � C̄h′ , then we know T1 �= ∅. By Lemma 1, we know that T1 � T2. If T2 = ∅,
then α(T ) = α(T0) + α(T1) > α(T0) = α(C̄h′). Hence we assume T2 �= ∅.
Denote T2 := {j1, . . . , jt}. Since T1 � T2 and T1 ∩ T2 = ∅, we know there exists
{k1, . . . , kt} ⊆ T1 such that k1 < j1, . . . , kt < jt.

Let γT x ≤ θ be the MCI of antichain multi-cover {Ch}k
h=1. From the proof

of Proposition 1, we know that γk1 > γj1 , . . . , γkt
> γjt

. By Step 5 and 6, we
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know for any i ∈ C \ C0, αi = γi + δ · 1{i ≤ it∗}. Since k1 < j1, . . . , kt < jt,
therefore we have 1{k1 ≤ it∗} ≥ 1{j1 ≤ it∗}, . . . ,1{kt ≤ it∗} ≥ 1{jt ≤ it∗}.
Hence αk1 = γk1 + δ · 1{k1 ≤ it∗} > γj1 + δ · 1{j1 ≤ it∗} = αj1 , and similarly
there is also αk2 > αj2 , . . . , αkt

> αjt
.

Therefore, α(T ) = α(T1) + α(T0) ≥ αk1 + . . . + αkt
+ α(T0) > αj1 + . . . +

αjt
+ α(T0) = α(T2) + α(T0) = α(C̄h′). �
Given the above proposition, the proof of the following theorem is exactly

the same as that of Theorem 1. For the completeness of this paper, we present
its proof in the following.

Theorem 2. Given an antichain multi-cover C for a TOMKS K, the AMCI
produced by Algorithm 2 is valid for conv(K).

Proof. Since supp(α) = C, in order to show that AMCI αT x ≤ β is valid to
conv(K), it suffices to show that, for any T ⊆ C with α(T ) ≥ β + 1, T must
be a cover to K. Note that from Step 7 there is β + 1 = maxk

h=1 α(Ch), and
for any T1, T2 ⊆ C, α(T1) ≥ α(T2) is equivalent to α(T̄1) ≤ α(T̄2), furthermore
from Lemma 2, therefore it suffices for us to show that: for any T ⊆ C with
α(T̄ ) ≤ mink

h=1 α(C̄h), there must exist some h∗ ∈ [k] such that C̄h∗ � T̄ . We will
assume that T /∈ {Ch}k

h=1 since otherwise C̄h∗ �T̄ trivially holds. In the following,
the proof is subdivided into two cases, depending on whether T̄ ∩C0 = ∅ or not.

First, we consider the case T̄ ∩ C0 = ∅. In this case, there is C0 ⊆ T . by
Definition 3 of multi-cover, we know there must exist h∗ ∈ [k] such that either
Ch∗ \ C0 � T \ C0, or T \ C0 � Ch∗ \ C0. By the above assumption C0 ⊆ T and
Lemma 1, we know that either Ch∗ � T or T � Ch∗ . If T � Ch∗ , then Lemma 2
implies C̄h∗ �T̄ , which completes the proof. So we assume Ch∗ �T , or equivalently,
T̄ � C̄h∗ . Since T̄ ⊆ C \ C0 and T̄ /∈ {C̄h}k

h=1, By Proposition 3 we obtain that
α(T̄ ) > α(C̄h∗), and this contradicts to the assumption of α(T̄ ) ≤ mink

h=1 α(C̄h).
Next, we consider the case T̄ ∩ C0 �= ∅. In this case, we want to construct

a D̄ ⊆ C with D̄ ∩ C0 = ∅, α(D̄) ≤ α(T̄ ), and D̄ � T̄ . Then since α(T̄ ) ≤
mink

h=1 α(C̄h), we have α(D̄) ≤ mink
h=1 α(C̄h) where D̄ ∩ C0 = ∅. According to

our discussion in the previous case, we know there exists some h∗ ∈ [k] such that
C̄h∗ � D̄, which implies C̄h∗ � T̄ since � forms a partial order, and the proof is
completed.

Arbitrarily pick t∗ ∈ T̄ ∩ C0. Then by Step 6, we know there exists
h∗ ∈ [k] such that αt∗ = max

{
min�<t∗,�∈C̄h∗ α�,

∑
t>t∗,t∈C̄h∗ αt + 1

}
. If {
 ∈

C̄h∗ | 
 < t∗} ⊆ T̄ , then we have α(T̄ ) ≥ ∑
�<t∗,�∈C̄h∗ α� + αt∗ , which is

at least
∑

�<t∗,�∈C̄h∗ α� +
∑

t>t∗,t∈C̄h∗ αt + 1. Since t∗ /∈ C̄h∗ , we know that
∑

�<t∗,�∈C̄h∗ α� +
∑

t>t∗,t∈C̄h∗ αt + 1 = α(C̄h∗) + 1. Hence α(T̄ ) > α(C̄h∗),
and this contradicts to the initial assumption of α(T̄ ) ≤ mink

h=1 α(C̄h). There-
fore we can find some 
∗ ∈ C̄h∗ , 
∗ < t∗ such that 
∗ /∈ T̄ . Now define
D̄ := T̄ ∪{
∗}\{t∗}. Since 
∗ < t∗, clearly D̄ � T̄ . Also α(T̄ )−α(D̄) = αt∗ −α�∗ ,
since αt∗ ≥ max�<t∗,�∈C̄h∗ α�, we know that α(T̄ ) − α(D̄) ≥ 0. If D̄ ∩ C0 = ∅,
then we are done. Otherwise, we can replace T̄ by D̄, consider any index in
D̄ ∩ C0 and do the above discussion one more time. Every time we are able to
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obtain a set D̄ with |D̄ ∩ C0| decreasing by 1. In the end we will obtain a set D̄
with the desired property: D̄ ∩C0 = ∅, α(D̄) ≤ α(T̄ ), and D̄ � T̄ . This completes
the proof of the case T̄ ∩ C0 �= ∅. �

The next theorem shows that each AMCI cuts off at least two characteristic
vectors of covers from the associated antichain multi-cover.

Theorem 3. Given an antichain multi-cover C , the AMCI produced by Algo-
rithm 2 is violated by at least two characteristic vectors of covers in C .

Proof. Let C := {Ch}h∈[k]. When the “if” condition 2 does not hold, meaning
there already exist at least two covers Ch1 and Ch2 from C , such that α(Ch1) =
α(Ch2) = maxk

h=1 α(Ch). Then according to Step 9, we know that αT x ≤ β cuts
off χCh1 and χCh2 .

Now assuming the condition 2 is satisfied. For any i ∈ C \ C0, denote the
intermediate coefficient of αi at Step 2 before the updating operation 5 and 6
to be γi. Then according to the algorithm, there is γ(Ch∗) = maxk

h=1 γ(Ch), δ =
min{γ(Ch∗) − γ(Ch) : |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1} where
it∗ is defined by Step 3, and αi = γi + δ for any i = i1, . . . , it∗ . Let Ch∗∗

be the cover which satisfies |Ch∗∗ ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1
and γ(Ch∗) − γ(Ch∗∗) = δ. Next we are going to show that: α(Ch∗) =
α(Ch∗∗) = maxk

h=1 α(Ch). Since α(Ch∗)−α(Ch∗∗) = γ(Ch∗)−γ(Ch∗∗)+δ ·|Ch∗ ∩
{i1, . . . , it∗}| − δ · |Ch∗∗ ∩ {i1, . . . , it∗}|, then we obtain that α(Ch∗) = α(Ch∗∗).

Claim. α(Ch∗) = maxk
h=1 α(Ch).

Proof of claim. Arbitrarily pick h ∈ [k], h �= h∗, h �= h∗∗, we want to show that
α(Ch∗) ≥ α(Ch).

If |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1, then by definition of δ, we
have γ(Ch∗) − γ(Ch) ≥ δ. Therefore α(Ch∗) − α(Ch) = γ(Ch∗) + δ · |Ch∗ ∩
{i1, . . . , it∗}| − (γ(Ch) + δ · |Ch ∩ {i1, . . . , it∗}|) = γ(Ch∗) − γ(Ch) − δ · (|Ch ∩
{i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}|) = γ(Ch∗) − γ(Ch) − δ ≥ 0.

If |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| ≤ 0, then α(Ch∗) − α(Ch) =
γ(Ch∗)−γ(Ch)− δ · (|Ch ∩{i1, . . . , it∗}|− |Ch∗ ∩{i1, . . . , it∗}|) ≥ 0. Here the last
inequality is because γ(Ch∗) = maxk

h=1 γ(Ch).
If |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| > 1, then because |Ch ∩ {i1}| −

|Ch∗ ∩ {i1}| ≤ 1 and (|Ch ∩ {i1, . . . , it+1}| − |Ch∗ ∩ {i1, . . . , it+1}|) − (|Ch ∩
{i1, . . . , it}| − |Ch∗ ∩ {i1, . . . , it}|) ≤ 1, we know there must exist some i�∗ < it∗ ,
such that |Ch ∩{i1, . . . , i�∗}|− |Ch∗ ∩{i1, . . . , i�∗}| = 1, which contradicts to the
minimum choice of it∗ at Step 3. �
Hence we have shown that α(Ch∗) = α(Ch∗∗) = maxk

h=1 α(Ch). According to
the definition of β at Step 9, we know that αT x ≤ β cuts off χCh∗ and χCh∗∗ . �

Note that the multi-covers in Example 1 and Example 2 are both antichain
multi-covers, and the corresponding MCIs are violated by the characteristic vec-
tors of all covers. Therefore the AMCIs of those examples coincide with their
MCIs. Next, we give an example where an AMCI is different from the corre-
sponding MCI.
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Example 6. Consider {C1, C2} with discrepancy family {{i1}, {i2, . . . , it}} for
some t ≥ 3, with i1 < . . . < it. {C1, C2} is obviously an antichain multi-cover,
and the obtained MCI is:

γT x :=
∑

i<i1,i∈C

3xi +
∑

i1≤i<i2,i∈C

2xi +
t∑

�=3

∑

i�−1<i<i�,i∈C

2xi

+
t∑

�=2

xi� +
∑

i>it,i∈C

xi ≤ γ(C2) − 1.

(10)

This MCI is different from the corresponding AMCI obtained by Algorithm 2:

αT x :=
∑

i<i1,i∈C

txi +
∑

i1≤i<i2,i∈C

(t − 1)xi +
t∑

�=3

∑

i�−1<i<i�,i∈C

(t − � + 2)xi

+
t∑

�=2

xi� +
∑

i>it,i∈C

xi ≤ α(C1) − 1.

(11)

�
The next result states that the well-known (1, k)-configuration inequality can

be obtained from the AMCI (11) in Example 6.

Proposition 4. Consider a knapsack set K = {x ∈ {0, 1}n | aT x ≤ b}, a
nonempty subset N ⊆ [n], and t ∈ [n] \ N . Assume that

∑
i∈N ai ≤ b and

that H ∪ {t} is a minimal cover for all H ⊂ N with |H| = k. Then for any
T (r) ⊆ N with |T (r)| = r, k ≤ r ≤ |N |, the (1, k)-configuration inequality
(r − k + 1)xt +

∑
j∈T (r) xj ≤ r can be obtained from an AMCI (11) associated

with an antichain multi-cover of a knapsack set.

Proof. When r = k, then the above inequality reduces to a cover inequality.
Hence we assume r > k. W.l.o.g. assuming a1 ≥ . . . ≥ an. Consider a new
knapsack set K ′ := {x ∈ {0, 1}n+1 | a′T x ≤ b}, with a′

i = ai ∀i ≤ t, a′
t+1 =

at, a
′
j = aj−1 ∀j > t + 1. Then clearly there is also a′

1 ≥ . . . ≥ a′
n+1.

Since for any H ⊂ N with |H| = k, H ∪{t} is a cover to K, we know for any
j ∈ N,N ∪ {t} \ {j} is also a cover to K, which means

∑
i∈N ai − aj + at > b.

From the assumption that
∑

i∈N ai ≤ b, we have at > aj , or equivalently, t < j
for any j ∈ N . Now for any T (r) ⊆ N with |T (r)| = r, k ≤ r ≤ |N |, denote
T (r) := {j1, . . . , jr} with j1 < . . . < jr, so we have t < j1 from above. Then
consider C1 := {t}∪{jr−k+1, . . . , jr}, C ′

1 := {t}∪{jr−k+1 +1, . . . , jr +1}, C ′
2 :=

{t+1}∪{j1+1, . . . , jr+1}. Since {jr−k+1, . . . , jr} ⊂ N with |{jr−k+1, . . . , jr}| =
k, we know that C1 is a cover to K, so C ′

1 is a cover to K ′ from the construction
of K ′. Furthermore it is obvious that C ′

2 is also a cover to K ′ since a′
t+1 = a′

t.
Note that the discrepancy family of {C ′

1, C
′
2} is {{t}, {t+1, j1+1, . . . , jr−k +1}},

then from the AMCI (11) of Example 6, we obtain the AMCI associated with
{C ′

1, C
′
2} for K ′:

(r − k + 1)xt + xt+1 +
r∑

�=1

xj�+1 ≤ r.
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Since K can be obtained by simply projecting out of the xt+1 variable of K ′,
therefore we obtain that the following inequality is valid for K:

(r − k + 1)xt +
r∑

�=1

xj�
= (r − k + 1)xt +

∑

j∈T (r)

xj ≤ r.

�

5 Facet-Inducing MCI

In this section we provide a sufficient condition for the the MCI to define a facet
of conv(K). The proof can be found in the full version of the paper [5].

Given a multi-cover {C1, . . . , Ck} with its corresponding MCI αT x ≤ β, we
denote by {it,1, . . . , it,nt

} := {i ∈ C \ C0 | αi = t}, with it,1 < . . . < it,nt
.

Theorem 4. Let {C1, . . . , Ck} be a multi-cover for a TOMKS K, and let αT x ≤
β be the associated MCI. Assume that the following conditions hold:

1. C0 = ∅;
2. For each h ∈ [k], cover Ch is a minimal cover;
3. For any t = 2, . . . ,maxn

i=1 αi, there exist some it−1,�t
/∈ Cht

∈ {Ch}k
h=1 with

it,1 ∈ Cht
and i1,n1 ∈ Cht

, such that Cht
∪ {it−1,�t

} \ {it,nt
} is not a cover;

4. There exists some Ch1 ∈ {Ch}k
h=1, such that i1,1 ∈ Ch1 and for any i′ /∈ C,

Ch1 ∪ {i′} \ {i1,1} is not a cover.
5. For any t = 1, . . . ,maxn

i=1 αi, α(Cht
) = β + 1.

Then αT x ≤ β is a facet-defining inequality for conv(K).

Example 7. Consider the TOMKS and the multi-cover in Example 5. We have
C1 = {1, 3}, C2 = {1, 4, 5}, C3 = {2, 3, 5}, and the associated MCI αT x ≤ β is
3x1 + 2x2 + 2x3 + x4 + x5 ≤ 4, here i1,1 = 4, i1,2 = 5, i2,1 = 2, i2,2 = 3, i3,1 = 1.

Clearly condition 1 in Theorem 4 holds. Since α(C1)−α3 = 10 ≤ 16, α(C2)−
α5 = 14 ≤ 16, α(C3) − α5 = 14 ≤ 16, condition 2 holds as well. For t = 2, let
Ch2 = C3, then i1,1 /∈ Ch2 , i1,2 ∈ Ch2 , i2,1 ∈ Ch2 , and Ch2 ∪ {i1,1} \ {i2,2} =
{2, 4, 5} is not a cover. For t = 3, let Ch3 = C2, then i2,1 /∈ Ch3 , i1,2 ∈ Ch3 , i3,1 ∈
Ch3 , and Ch3∪{i2,1}\{i3,1} = {2, 4, 5} is not a cover. Therefore condition 3 holds.
Let Ch1 = C2, then i1,1 ∈ Ch1 , since here C = [5], condition 4 holds. Lastly,
α(Ch1) = α(Ch2) = α(Ch3) = 5, so condition 5 also holds. Hence Theorem 4
yields that this MCI is a facet-defining inequality for conv(K).

6 Conclusion

In this work, we give a new family of valid inequalities for the intersection of
knapsack sets and demonstrate several ways in which the inequalities are not
implied by other known cutting-plane methods. We are aware of very little work
that explicitly studies the polyhedral structure of the intersection of multiple
knapsack sets, and we hope the ideas presented here will give rise to new methods
for generating strong valid inequalities for complex binary sets that arise in
practical settings.
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