
A Computational Status Update
for Exact Rational Mixed Integer

Programming

Leon Eifler1(B) and Ambros Gleixner1,2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{eifler,gleixner}@zib.de

2 HTW Berlin, Treskowallee 8, 10313 Berlin, Germany

Abstract. The last milestone achievement for the roundoff-error-free
solution of general mixed integer programs over the rational numbers
was a hybrid-precision branch-and-bound algorithm published by Cook,
Koch, Steffy, and Wolter in 2013. We describe a substantial revision and
extension of this framework that integrates symbolic presolving, features
an exact repair step for solutions from primal floating-point heuristics,
employs a faster rational LP solver based on LP iterative refinement,
and is able to produce independently verifiable certificates of optimality.
We study the significantly improved performance and give insights into
the computational behavior of the new algorithmic components. On the
MIPLIB 2017 benchmark set, we observe an average speedup of 6.6x over
the original framework and 2.8 times as many instances solved within a
time limit of two hours.

1 Introduction

It is widely accepted that mixed integer programming (MIP) is a powerful tool
for solving a broad variety of challenging optimization problems and that state-
of-the-art MIP solvers are sophisticated and complex computer programs. How-
ever, virtually all established solvers today rely on fast floating-point arithmetic.
Hence, their theoretical promise of global optimality is compromised by roundoff
errors inherent in this incomplete number system. Though tiny for each single
arithmetic operation, these errors can accumulate and result in incorrect claims
of optimality for suboptimal integer assignments, or even incorrect claims of
infeasibility. Due to the nonconvexity of MIP, even performing an a posteriori
analysis of such errors or postprocessing them becomes difficult.

In several applications, these numerical caveats can become actual limita-
tions. This holds in particular when the solution of mixed integer programs is
used as a tool in mathematics itself. Examples of recent work that employs MIP
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to investigate open mathematical questions include [11,12,18,28,29,32]. Some of
these approaches are forced to rely on floating-point solvers because the availabil-
ity, the flexibility, and most importantly the computational performance of MIP
solvers with numerically rigorous guarantees is currently limited. This makes
the results of these research efforts not as strong as they could be. Examples
for industrial applications where the correctness of results is paramount include
hardware verification [1] or compiler optimization [35].

The milestone paper by Cook, Koch, Steffy, and Wolter [16] presents a hybrid-
precision branch-and-bound implementation that can still be considered the state
of the art for solving general mixed integer programs exactly over the rational
numbers. It combines symbolic and numeric computation and applies different
dual bounding methods [19,31,33] based on linear programming (LP) in order
to dynamically trade off their speed against robustness and quality.

However, beyond advanced strategies for branching and bounding, [16] does
not include any of the supplementary techniques that are responsible for the
strong performance of floating-point MIP solvers today. In this paper, we make
a first step to address this research gap in two main directions.

First, we incorporate a symbolic presolving phase, which safely reduces the
size and tightens the formulation of the instance to be passed to the branch-and-
bound process. This is motivated by the fact that presolving has been identified
by several authors as one of the components—if not the component—with the
largest impact on the performance of floating-point MIP solvers [2,4]. To the best
of our knowledge, this is the first time that the impact of symbolic preprocessing
routines for general MIP is analyzed in the literature.

Second, we complement the existing dual bounding methods by enabling the
use of primal heuristics. The motivation for this choice is less to reduce the
total solving time, but rather to improve the usability of the exact MIP code
in practical settings where finding good solutions earlier may be more relevant
than proving optimality eventually. Similar to the dual bounding methods, we
follow a hybrid-precision scheme. Primal heuristics are exclusively executed on
the floating-point approximation of the rational input data. Whenever they pro-
duce a potentially improving solution, this solution is checked for approximate
feasibility in floating-point arithmetic. If successful, the solution is postprocessed
with an exact repair step that involves an exact LP solve.

Moreover, we integrate the exact LP solver SoPlex, which follows the recently
developed scheme of LP iterative refinement [23], we extend the logging of cer-
tificates in the recently developed VIPR format to all available dual bounding
methods [13], and produce a thoroughly revised implementation of the original
framework [16], which improves multiple technical details. Our computational
study evaluates the performance of the new algorithmic aspects in detail and
indicates a significant overall speedup compared to the original framework.

The overarching goal and contribution of this research is to extend the com-
putational practice of MIP to the level of rigor that has been achieved in recent
years, for example, by the field of satisfiability solving [34], while at the same time
retaining most of the computational power embedded in floating-point solvers.
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In MIP, a similar level of performance and rigor is certainly much more diffi-
cult to reach in practice, due to the numerical operations that are inherently
involved in solving general mixed integer programs. However, we believe that
there is no reason why this vision should be fundamentally out of reach for the
rich machinery of MIP techniques developed over the last decades. The goal of
this paper is to demonstrate the viability of this agenda within a first, small
selection of methods. The resulting code is freely available for research purposes
as an extension of SCIP 7.0 [17].

2 Numerically Exact Mixed Integer Programming

In the following, we describe related work in numerically exact optimization,
including the main ideas and features of the framework that we build upon.
Before turning to the most general case, we would like to mention that roundoff-
error-free methods are available for several specific classes of pure integer prob-
lems. One example for such a combinatorial optimization problem is the trav-
eling salesman problem, for which the branch-and-cut solver Concorde applies
safe interval-arithmetic to postprocess LP relaxation solutions and ensures the
validity of domain-specific cutting planes by their combinatorial structure [5].

A broader class of such problems, on binary decision variables, is addressed in
satisfiability solving (SAT) and pseudo-Boolean optimization (PBO) [10]. Solvers
for these problem classes usually do not suffer from numerical errors and often
support solver-independent verification of results [34]. While optimization vari-
ants exist, the development of these methods is to a large extent driven by
feasibility problems. The broader class of solvers for satisfiability modulo theo-
ries (SMT), e.g., [30], may also include real-valued variables, in particular for
satisfiability modulo the theory of linear arithmetic. However, as pointed out
also in [20], the target applications of SMT solvers differ significantly from the
motivating use cases in LP and MIP.

Exact optimization over convex polytopes intersected with lattices is also
supported by some software libraries for polyhedral analysis [7,8]. These tools
are not particularly targeted towards solving LPs or MIPs of larger scale and
usually follow the naive approach of simply executing all operations symbolically,
in exact rational arithmetic. This yields numerically exact results and can even
be highly efficient as long as the size of problems or the encoding length of
intermediate numbers is limited. However, as pointed out by [19] and [16], this
purely symbolic approach quickly becomes prohibitively slow in general.

By contrast, the most effective methods in the literature rely on a hybrid
approach and combine exact and numeric computation. For solving pure LPs
exactly, the most recent methods that follow this paradigm are incremental pre-
cision boosting [6] and LP iterative refinement [23]. In an exact MIP solver,
however, it is not always necessary to solve LP relaxations completely, but it
often suffices to provide dual bounds that underestimate the optimal relaxation
value safely. This can be achieved by postprocessing approximate LP solutions.
Bound-shift [31] is such a method that only relies on directed rounding and
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interval arithmetic and is therefore very fast. However, as the name suggests it
requires upper and lower bounds on all variables in order to be applicable. A
more widely applicable bounding method is project-and-shift [33], which uses an
interior point or ray of the dual LP. These need to be computed by solving an
auxiliary LP exactly in advance, though only once per MIP solve. Subsequently,
approximate dual LP solutions can be corrected by projecting them to the feasi-
ble region defined by the dual constraints and shifting the result to satisfy sign
constraints on the dual multipliers.

The hybrid branch-and-bound method of [16] combines such safe dual bound-
ing methods with a state-of-the-art branching heuristic, reliability branching [3].
It maintains both the exact problem formulation

min{cTx | Ax ≥ b, x ∈ Qn, xi ∈ Z ∀i ∈ I}
with rational input data A ∈ Qm×n, c ∈ Qn, b ∈ Qm, as well as a floating-point
approximation with data Ā, b̄, c̄, which are defined as the componentwise clos-
est numbers representable in floating-point arithmetic. The set I ⊆ {1, . . . , n}
contains the indices of integer variables.

During the solve, for all LP relaxations, the floating-point approximation
is first solved in floating-point arithmetic as an approximation and then post-
processed to generate a valid dual bound. The methods available for this safe
bounding step are the previously described bound-shift [31], project-and-shift
[33], and an exact LP solve with the exact LP solver QSopt ex based on incre-
mental precision boosting [6]. (Further dual bounding methods were tested, but
reported as less important in [16].) On the primal side, all solutions are checked
for feasibility in exact arithmetic before being accepted.

Finally, this exact MIP framework was recently extended by the possibility
to generate a certificate of correctness [13]. This certificate is a tree-less encoding
of the branch-and-bound search, with a set of dual multipliers to prove the dual
bound at each node or its infeasibility. Its correctness can be verified indepen-
dently of the solving process using the checker software VIPR [14].

3 Extending and Improving an Exact MIP Framework

The exact MIP solver presented here extends [16] in four ways: the addition
of a symbolic presolving phase, the execution of primal floating-point heuristics
coupled with an exact repair step, the use of a recently developed exact LP solver
based on LP iterative refinement, and a generally improved integration of the
exact solving routines into the core branch-and-bound algorithm.

Symbolic Presolving. The first major extension is the addition of symbolic
presolving. To this end, we integrate the newly available presolving library
PaPILO [25] for integer and linear programming. PaPILO has several benefits
for our purposes.

First, its code base is by design fully templatized with respect to the arith-
metic type. This enables us to integrate it with rational numbers as data type
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for storing the MIP data and all its computations. Second, it provides a large
range of presolving techniques already implemented. The ones used in our exact
framework are coefficient strengthening, constraint propagation, implicit integer
detection, singleton column detection, substitution of variables, simplification
of inequalities, parallel row detection, sparsification, probing, dual fixing, dual
inference, singleton stuffing, and dominated column detection. For a detailed
explanation of these methods, we refer to [2]. Third, PaPILO comes with a
sophisticated parallelization scheme that helps to compensate for the increased
overhead introduced by the use of rational arithmetic. For details see [21].

When SCIP enters the presolving stage, we pass a rational copy of the prob-
lem to PaPILO, which executes its presolving routines iteratively until no suffi-
ciently large reductions are found. Subsequently, we extract the postsolving infor-
mation provided by PaPILO to transfer the model reductions to SCIP. These
include fixings, aggregations, and bound changes of variables and strengthening
or deletion of constraints, all of which are performed in rational arithmetic.

Primal Heuristics. The second extension is the safe activation of SCIP’s
floating-point heuristics and the addition of an exact repair heuristic for their
approximate solutions. Heuristics are not known to reduce the overall solving
time drastically, but they can be particularly useful on hard instances that cannot
be solved at all, and in order to avoid terminating without a feasible solution.

In general, activating SCIP’s floating-point heuristics does not interfere with
the exactness of the solving process, although care has to be taken that no
changes to the model are performed, e.g., the creation of a no-good constraint.
However, the chance that these heuristics find a solution that is feasible in the
exact sense can be low, especially if equality constraints are present in the model.
Thus, we postprocess solutions found by floating-point heuristics in the following
way. First, we fix all integer variables to the values found by the floating-point
heuristic, rounding slightly fractional values to their nearest integer. Then an
exact LP is solved for the remaining continuous subproblem. If that LP is feasi-
ble, this produces an exactly feasible solution to the mixed integer program.

Certainly, frequently solving this subproblem exactly can create a signifi-
cant overhead compared to executing a floating-point heuristic alone, especially
when a large percentage of the variables is continuous and thus cannot be fixed.
Therefore, we impose working limits on the frequency of running the exact repair
heuristic, which are explained in more detail in Sect. 4.

LP Iterative Refinement. Exact linear programming is a crucial part of the
exact MIP solving process. Instead of QSopt ex, we use SoPlex as the exact
linear programming solver. The reason for this change is that SoPlex uses LP
iterative refinement [24] as the strategy to solve LPs exactly, which compares
favorably against incremental precision boosting [23].
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Further Enhancements. We improved several algorithmic details in the
implementation of the hybrid branch-and-bound method. We would like to high-
light two examples for these changes. First, we enable the use of an objective limit
in the floating-point LP solver, which was not possible in the original framework.
Passing the primal bound as an objective limit to the floating-point LP solver
allows the LP solver to stop early just after its dual bound exceeds the global
primal bound. However, if the overlap is too small, postprocessing this LP solu-
tion with safe bounding methods can easily lead to a dual bound that no longer
exceeds the objective limit. For this reason, before installing the primal bound
as an objective limit in the LP solver, we increase it by a small amount com-
puted from the statistically observed bounding error so far. Only when safe dual
bounding fails, the objective limit is solved again without objective limit.

Second, we reduce the time needed for checking exact feasibility of primal
solutions by prepending a safe floating-point check. Although checking a sin-
gle solution for feasibility is fast, this happens often throughout the solve and
doing so repeatedly in exact arithmetic can become computationally expensive.
To implement such a safe floating-point check, we employ running error anal-
ysis [27]. Let x∗ ∈ Qn be a potential solution and let x̄∗ be the floating-point
approximation of x∗. Let a ∈ Qn be a row of A with floating-point approxima-
tion ā, and right hand side bj ∈ Q. Instead of computing

∑n
i=1 aix

∗
i symbolically,

we instead compute
∑n

i=1 āix̄
∗
i in floating-point arithmetic, and alongside com-

pute a bound on the maximal rounding error that may occur. We adjust the
running error analysis described in [27, Alg. 3.2] to also account for roundoff
errors |x̄∗ −x∗| and |ā− a|. After doing this computation, we can check if either
s − µ ≥ bj or s + µ ≤ bj . In the former, the solution x∗ is guaranteed to fulfill∑n

i=1 aix
∗
i ≥ bj ; in the latter, we can safely determine that the inequality is vio-

lated; only if neither case occurs, we recompute the activity in exact arithmetic.
We note that this could alternatively be achieved by directed rounding, which

would give tighter error bounds at a slightly increased computational effort.
However, empirically we have observed that most equality or inequality con-
straints are either satisfied at equality, where an exact arithmetic check cannot
be avoided, or they are violated or satisfied by a slack larger than the error
bound µ, hence the running error analysis is sufficient to determine feasibility.

4 Computational Study

We conduct a computational analysis to answer three main questions. First, how
does the revised branch-and-bound framework compare to the previous implemen-
tation, and to which components can the changes be attributed? To answer this
question, we compare the original framework [16] against our improved imple-
mentation, including the exact LP solver SoPlex, but with primal heuristics
and exact presolving still disabled. In particular, we analyze the importance and
performance of the different dual bounding methods.

Second, what is the impact of the new algorithmic components symbolic pre-
solving and primal heuristics? To answer this question, we compare their impact
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on the solving time and the number of solved instances, as well as present more
in-depth statistics, such as e.g., the primal integral [9] for heuristics or the num-
ber of fixings for presolving. In addition, we compare the effectiveness of per-
forming presolving in rational and in floating-point arithmetic.

Finally, what is the overhead for producing and verifying certificates? Here,
we consider running times for both the solver and the certificate checker, as well
as the overhead in the safe dual bounding methods introduced through enabling
certificates. This provides an update for the analysis in [13], which was limited
to the two bounding methods project-and-shift and exact LP.

The experiments were performed on a cluster of Intel Xeon CPUs E5-2660
with 2.6 GHz and 128 GB main memory. As in [16], we use CPLEX as floating-
point LP solver. Due to compatibility issues, we needed to use CPLEX 12.3.0 for
the original and CPLEX 12.8.0 for the new framework. Although these versions
are different, they are only used to solve floating-point LPs and have limited
impact on the reported results: The vast majority of solving time is spent in the
safe dual bounding methods. For exact LP solving, we use the same QSopt ex
version as in [16] and SoPlex 5.0.2. For all symbolic computations, we use the
GNU Multiple Precision Library (GMP) 6.1.4 [26]. For symbolic presolving, we
use PaPILO 1.0.1 [21,25]; all other SCIP presolvers are disabled.

As main test sets, we use the two test sets specifically curated in [16]: one
set with 57 instances that were found to be easy for an inexact floating-point
branch-and-bound solver (fpeasy), and one set of 50 instances that were found
to be numerically challenging, e.g., due to poor conditioning or large coefficient
ranges (numdiff). For a detailed description of the selection criteria, we refer
to [16]. To complement these test sets with a set of more ambitious and recent
instances, we conduct a final comparison on the MIPLIB 2017 [22] benchmark
set. All experiments to evaluate the new code are run with three different random
seeds, where we treat each instance-seed combination as a single observation. As
this feature is not available in the original framework, all comparisons with the
original framework were performed with one seed. The time limit was set to
7200 s for all experiments. If not stated otherwise all aggregated numbers are
shifted geometric means with a shift of 0.001 s or 100 branch-and-bound nodes,
respectively.

The Branch-and-Bound Framework. As a first step, we compare the behav-
ior of the safe branch-and-bound implementation from [16] with QSopt ex as
the exact LP solver, against its revised implementation with SoPlex 5.0.2 as
exact LP solver. The original framework uses the “Auto-Ileaved” bounding strat-
egy as recommended in [16]. It dynamically chooses the dual bounding method,
attempting to employ bound-shift as often as possible. An exact LP is solved
whenever a node would be cut off within tolerances, but not with the exact the
safe dual bound computed. In the new implementation we use a similar strategy,
however we solve the rational LP relaxation every 5 depth levels of the tree, due
to improved performance in the exact LP solver.
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Table 1 reports the results for solving time, number of nodes, and total time
spent in safe dual bounding (“dbtime”), for all instances that could be solved
by at least one solver. The new framework could solve 10 instances more on
fpeasy and 7 more on numdiff. On fpeasy, we observe a reduction of 69.8% in
solving time and of 87.3% in safe dual bounding time. On numdiff, we observe
a reduction of 80.3% in solving time, and of 88.3% in the time spent overall
in the safe dual bounding methods. We also see this significant performance
improvement reflected in the two performance profiles in Fig. 1.

Table 1. Comparison of original and new framework with presolving and primal heuris-
tics disabled

Original framework New framework

Test set Size Solved Time Nodes dbtime Solved Time Nodes dbtime

fpeasy 55 45 128.4 8920.1 86.8 55 38.8 5940.8 11.0

numdiff 21 13 237.0 8882.7 114.6 20 46.6 6219.3 13.4

Table 2. Comparison of safe dual bounding techniques

Original framework New framework

Test set Stats bshift pshift exlp bshift pshift exlp

fpeasy Calls/node 0.92 0.44 0.28 0.53 0.39 0.06

Time/call [s] 0.0026 0.0022 0.050 0.0072 0.0066 0.010

Time/solving time 2.9% 40.3% 32.1% 10.8% 27.8% 4.4%

numdiff Calls/node 0.78 0.36 0.52 0.36 0.39 0.28

Time/call [s] 0.0055 0.0036 0.4197 0.0247 0.0356 0.1556

Time/solving time 1.4% 22.7% 62.2% 5.2% 24.8% 40.1%

We identify a more aggressive use of project-and-shift and faster exact LP
solves as the two key factors for this improvement. In the original framework,
project-and-shift is restricted to instances that had less than 10000 nonzeros.
One reason for this limit is that a large auxiliary LP has to be solved by the
exact LP solver to compute the relative interior point in project-and-shift. With
the improvements in exact LP performance, it proved beneficial to remove this
working limit in the new framework.

The effect of this change can also be seen in the detailed analysis of bounding
times given in Table 2. For calls per node and the fraction of bounding time per
total solving time, which are normalized well, we report the arithmetic means; for
time per call, we report geometric means over all instances where the respective
bounding method was called at least once.
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The fact that time per call for project-and-shift (“pshift”) in the new frame-
work increased by a factor of 3 (fpeasy) and 9.9 (numdiff) is for the reason
discussed above—it is now also called on larger instances. This is beneficial
overall since it replaces many slower exact LP calls. The decrease in exact LP
solving time per call (“exlp”) by a factor of 2.7 (numdiff) and 5 (fpeasy) can
also partly be explained by this change, and partly by an overall performance
improvement in exact LP solving due to the use of LP iterative refinement [24].
The increase in bound-shift time (“bshift”) is due to implementation details,
that will be addressed in future versions of the code, but its fraction of the
total solving time is still relatively low. Finally, we observe a decrease in the
total number of safe bounding calls per node. One reason is that we now disable
bound-shift dynamically if its success rate drops below 20%.

Overall, we see a notable speedup and more solved instances, mainly due to
the better management of dual bounding methods and faster exact LP solving.

Fig. 1. Performance profiles comparing solving time of original and new framework
without presolving and heuristics for fpeasy (left) and numdiff (right)

Symbolic Presolving. Before measuring the overall performance impact of
exact presolving, we address the question how effective and how expensive pre-
solving in rational arithmetic is compared to standard floating-point presolving.
For both variants, we configured PaPILO to use the same tolerances for deter-
mining whether a reduction found is strong enough to be accepted. The only
difference in the rational version is that all computations are done in exact
arithmetic and the tolerance to compare numbers and the feasibility tolerance
are zero. Note that a priori it is unclear whether rational presolving yields more
or less reductions. Dominated column detection may be less successful due to the
stricter comparison of coefficients; the dual inference presolver might be more
successful if it detects earlier that a dual multiplier is strictly bounded away
from zero.

Table 3 presents aggregated results for presolving time, the number of pre-
solving rounds, and the number of found fixings, aggregations, and bound
changes. We use a shift of 1 for the geometric means of rounds, aggregations,
fixings, and bound changes to account for instances where presolving found no



172 L. Eifler and A. Gleixner

such reductions. Remarkably, both variants yield virtually the same results on
fpeasy. On numdiff, there are small differences, with a slight decrease in the
number of fixings and aggregations and a slight increase in the number of bound
changes for the exact variant. The time spent for exact presolving increases by
more than an order of magnitude but symbolic presolving is still not a per-
formance bottleneck. It consumed only 0.86% (fpeasy) and 2.1% (numdiff)
of the total solving time, as seen in Table 4. Exploiting parallelism in presolv-
ing provided no measureable benefit for floating-point presolving, but reduced
symbolic presolving time by 44% (fpeasy) to 43.8% (numdiff). However, this
benefit can be more pronounced on individual instances, e.g., on nw04, where
parallelization reduces the time for rational presolving by a factor of 6.4 from
1770 to 277 s.

To evaluate the impact of exact presolving, we compare the perfor-
mance of the basic branch-and-bound algorithm established above against
the performance with presolving enabled. The results for all instances that
could be solved to optimality by at least one setting are presented in
Table 4. Enabling presolving solves 3 more instances on fpeasy and 20 more
instances on numdiff. We observe a reduction in solving time of 39.4% (fpeasy)
and 72.9% (numdiff). The stronger impact on numdiff is correlated with the
larger number of reductions observed in Table 3.

Table 3. Comparison of exact and floating-point presolving

Floating-point presolving Exact presolving

Test set thrds Time rnds Fixed agg bdchg Time rnds Fixed agg bdchg

fpeasy 1 0.01 3.2 8.5 3.5 10.4 0.25 3.2 8.5 3.5 10.4

20 0.01 3.2 8.5 3.5 10.4 0.14 3.2 8.5 3.5 10.4

numdiff 1 0.04 8.3 53.8 55.7 51.4 0.89 7.2 41.4 42.9 55.8

20 0.04 8.3 53.8 55.7 51.4 0.50 7.2 41.4 42.9 55.8

Table 4. Comparison of new framework with and without presolving (3 seeds)

Presolving disabled Presolving enabled

Test set Size Solved Time Nodes Solved Time (presolving) Nodes

fpeasy 168 165 42.1 6145.3 168 25.5 (0.22) 4724.1

numdiff 91 66 216.6 7237.2 86 58.7 (1.23) 2867.2

Primal Heuristics. To improve primal performance, we enabled all SCIP
heuristics that the floating-point version executes by default. To limit the fraction
of solving time for the repair heuristic described in Sect. 3, the repair heuristic is
only allowed to run at any point in the solve, if it was called at most half as often
as the exact LP calls for safe dual bounding. Furthermore, the repair heuristic is
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disabled on instances with more than 80% continuous variables, since the over-
head of the exact LP solves can drastically worsen the performance on those
instances. Whenever the repair step is not executed, the floating-point solutions
are checked directly for exact feasibility.

First, we evaluate the cost and success of the exact repair heuristic over all
instances where it was called at least once. The results are presented in Table
5. The repair heuristic is effective at finding feasible solutions with a success
rate of 46.9% (fpeasy) and 25.6% (numdiff). The fraction of the solving time
spent in the repair heuristic is well below 1%. Nevertheless, the strict working
limits we imposed are necessary since there exist outliers for which the repair
heuristic takes more than 5% of the total solving time, and performance on these
instances would quickly deteriorate if the working limits were relaxed.

Table 5. Statistics of repair heuristic for instances where repair step was called

Time

Test set Size Total solving Repair Fail Success Success rate

fpeasy 82 39.8 0.0020 0.0017 0.0003 46.9%

numdiff 42 383.6 0.0187 0.0077 0.0062 25.6%

Table 6. Comparison of new framework with and without primal heuristics (3 seeds,
presolving enabled, instances where repair step was called)

Heuristics disabled Heuristics enabled

Test set Size Solv. time Time-to-first Primal int. Solv. time Time-to-first Primal int.

fpeasy 82 32.5 0.75 2351.8 32.6 0.10 2037.2

numdiff 41 101.7 4.77 8670.7 103.1 1.30 9093.6

Table 6 shows the overall performance impact of enabling heuristics over all
instances that could be solved by at least one setting. On both sets, we see almost
no change in total solving time. On fpeasy, the time to find the first solution
decreases by 86.7% and the primal integral decreases by 13.4%. The picture is
slightly different on the numerically difficult test set. Here, the time to find the
first solution decreases by 72.7%, while the primal integral increases by 4.9%.

The worse performance and success rate on numdiff is expected, considering
that this test set was curated to contain instances with numerical challenges. On
those instances floating-point heuristics find solutions that might either not be
feasible in exact arithmetic or are not possible to fix for the repair heuristic. In
both test sets, the repair heuristic was able to find solutions, while not imposing
any significant overhead in solving time.
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Producing and Verifying Certificates. The possibility to log certificates as
presented in [13] is available in the new framework and is extended to also work
when the dual bounding method bound-shift is active. Presolving must currently
be disabled, since PaPILO does not yet support generation of certificates.

Besides ensuring correctness of results, certificate generation is valuable to
ensure correctness of the solver. Although it does not check the implementation
itself, it can help identify and eliminate incorrect results that do not directly
lead to fails. For example, on instance x 4 from numdiff, the original framework
claimed infeasibility at the root node, and while the instance is indeed infeasible,
we found the reasoning for this to be incorrect due to the use of a certificate.

Table 7 reports the performance overhead when enabling certificates. Here
we only consider instances that were solved to optimality by both versions since
timeouts would bias the results in favor of the certificate. We see an increase in
solving time of 101.2% on fpeasy and of 51.4% on numdiff. This confirms the
measurements presented in [13]. The increase is explained in part by the effort to
keep track of the tree structure and print the exact dual multipliers, and in part
by an increase in dual bounding time. The reason for the latter is that bound-shift
by default only provides a safe objective value. The dual multipliers needed for
the certificate must be computed in a postprocessing step, which introduces the
overhead in safe bounding time. This overhead is larger on fpeasy, since bound-
shift is called more often. The time spent in the verification of the certificate is
on average significantly lower than the time spent in the solving process. Overall,
the overhead from printing and checking certificates is significant, but it does
not drastically change the solvability of instances.

Table 7. Overhead for producing and verifying certificates on instances solved by both
variants

Certificate disabled Certificate enabled

Test set Size Solving time dbtime Solving time dbtime Check time Overhead

fpeasy 53 32.6 9.1 65.6 16.5 0.9 103.9%

numdiff 21 41.6 11.9 63.0 18.0 0.5 52.6%

Table 8. Comparison on MIPLIB 2017 benchmark set

Original framework New framework

Test set Size Solved Found Time Gap Solved Found Time Gap

All 240 17 74 6003.6 ∞ 47 167 3928.1 ∞
Both 66 16 66 4180.0 67.9% 29 66 1896.2 33.8%

Onesolved 49 17 31 3317.5 ∞ 47 47 505.1 ∞
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Performance Comparison on MIBLIB 2017. As a final experiment, we
wanted to evaluate the performance on a more ambitious and diverse test set.
To that end, we ran both the original framework and the revised framework
with presolving and heuristics enabled on the recent MIPLIB 2017 benchmark
set. The results in Table 8 show that the new framework solved 30 instances
more and the mean solving time decreased by 84.8% on the subset “onesolved”
of instances that could be solved to optimality by at least one solver. On more
than twice as many instances at least one primal solution was found (167 vs.
74). On the subset of 66 instances that had a finite gap for both versions, the
new algorithm achieved a gap of 33.8% in arithmetic mean compared to 67.9%
in the original framework.

To conclude, we presented a substantially revised and extended solver for
numerically exact mixed integer optimization that significantly improves upon
the existing state of the art. We also observe, however, that the performance gap
to floating-point solvers is still large. This is not surprising, given that crucial
techniques such as numerically safe cutting plane separation, see, e.g., [15], are
not yet included. This must be addressed in future research.
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