
Mohit Singh
David P. Williamson (Eds.)

LN
CS

 1
27

07

Integer Programming
and Combinatorial Optimization
22nd International Conference, IPCO 2021
Atlanta, GA, USA, May 19–21, 2021
Proceedings

Lecture Notes in Computer Science 12707

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Mohit Singh • David P. Williamson (Eds.)

Integer Programming
and Combinatorial Optimization
22nd International Conference, IPCO 2021
Atlanta, GA, USA, May 19–21, 2021
Proceedings

123

Editors
Mohit Singh
Georgia Institute of Technology
Atlanta, GA, USA

David P. Williamson
Cornell University
Ithaca, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-73878-5 ISBN 978-3-030-73879-2 (eBook)
https://doi.org/10.1007/978-3-030-73879-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2884-0058
https://doi.org/10.1007/978-3-030-73879-2

Preface

This volume collects the 33 extended abstracts presented at IPCO 2021, the 22nd
Conference on Integer Programming and Combinatorial Optimization, held May 19–21,
2021, in an online format. IPCO is under the auspices of the Mathematical Optimization
Society, and it is an important forum for presenting the latest results on the theory and
practice of the various aspects of discrete optimization. The first IPCO conference took
place at the University of Waterloo in May 1990, and the Georgia Institute of Tech-
nology organized the 22nd such event.

The conference had a Program Committee consisting of 17 members. In response to
the Call for Papers, we received more than 90 submissions. Each submission was
reviewed by at least three Program Committee members. Because of the limited
number of time slots for presentations, many excellent submissions could not be
accepted. The page limit for contributions to this proceedings was set to 15. We expect
the full versions of the extended abstracts appearing in this Lecture Notes in Computer
Science volume to be submitted for publication in refereed journals, and a special issue
of Mathematical Programming Series B containing such versions is in process.

For the second time, IPCO had a Best Paper Award. The IPCO 2021 Best Paper
Award was given to Jannis Blauth, Vera Traub, and Jens Vygen for their paper
Improving the Approximation Ratio for Capacitated Vehicle Routing.

This year, IPCO was preceded by a Summer School held May 17–18, 2021, with
lectures by Moon Duchin (Tufts), Simge Küçükyavuz (Northwestern), and László
Végh (LSE). We thank them warmly for their contributions. We would also like to
thank

– The authors who submitted their research to IPCO;
– The members of the Program Committee, who spent much time and energy

reviewing the submissions;
– The expert additional reviewers whose opinions were crucial in the paper selection;
– The members of the Local Organizing Committee, who made this conference

possible;
– The Mathematical Optimization Society and in particular the members of its IPCO

Steering Committee, Oktay Günlük, Jochen Könemann, and Giacomo Zambelli, for
their help and advice;

– EasyChair for making paper management simple and effective; and
– Springer for their efficient cooperation in producing this volume, and for financial

support for the Best Paper Award.

We would further like to thank the following sponsors for their financial support:
Gurobi, FICO, MOSEK, SAS, and the Georgia Institute of Technology.

March 2021 Mohit Singh
David P. Williamson

Conference Organization

Program Committee

José Correa University of Chile
Sanjeeb Dash IBM Research
Jesús A. De Loera University of California, Davis
Friedrich Eisenbrand École Polytechnique Fédérale de Lausanne
Oktay Günlük Cornell University
Satoru Iwata University of Tokyo
Volker Kaibel Otto von Guericke University of Magdeburg
Andrea Lodi Polytechnique Montreal
Jim Luedtke University of Wisconsin-Madison
Viswanath Nagarajan University of Michigan
Alantha Newman Université Grenoble Alpes
Britta Peis RWTH Aachen University
Mohit Singh Georgia Institute of Technology
László Végh London School of Economics and Political Science
Juan Pablo Vielma Google
David P. Williamson (Chair) Cornell University
Rico Zenklusen ETH Zürich

Local Organizing Committee

Santanu S. Dey Georgia Institute of Technology
Swati Gupta Georgia Institute of Technology
Mohit Singh Georgia Institute of Technology
Alejandro Toriello Georgia Institute of Technology

Conference Sponsors

viii Conference Organization

Contents

Improving the Approximation Ratio for Capacitated Vehicle Routing 1
Jannis Blauth, Vera Traub, and Jens Vygen

Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual 15
Niv Buchbinder, Christian Coester, and Joseph (Seffi) Naor

Approximating the Discrete Time-Cost Tradeoff Problem
with Bounded Depth . 30

Siad Daboul, Stephan Held, and Jens Vygen

Sum-of-Squares Hierarchies for Binary Polynomial Optimization 43
Lucas Slot and Monique Laurent

Complexity, Exactness, and Rationality in Polynomial Optimization 58
Daniel Bienstock, Alberto Del Pia, and Robert Hildebrand

On the Geometry of Symmetry Breaking Inequalities 73
José Verschae, Matías Villagra, and Léonard von Niederhäusern

Affinely Representable Lattices, Stable Matchings, and Choice Functions. . . . 89
Yuri Faenza and Xuan Zhang

A Finite Time Combinatorial Algorithm for Instantaneous Dynamic
Equilibrium Flows. 104

Lukas Graf and Tobias Harks

A Combinatorial Algorithm for Computing the Degree of the Determinant
of a Generic Partitioned Polynomial Matrix with 2 � 2 Submatrices 119

Yuni Iwamasa

On the Implementation and Strengthening of Intersection Cuts for QCQPs . . . 134
Antonia Chmiela, Gonzalo Muñoz, and Felipe Serrano

Lifting Convex Inequalities for Bipartite Bilinear Programs 148
Xiaoyi Gu, Santanu S. Dey, and Jean-Philippe P. Richard

A Computational Status Update for Exact Rational Mixed
Integer Programming . 163

Leon Eifler and Ambros Gleixner

New Exact Techniques Applied to a Class of Network Flow Formulations . . . 178
Vinícius L. de Lima, Manuel Iori, and Flávio K. Miyazawa

Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets 193
Alberto Del Pia, Jeff Linderoth, and Haoran Zhu

Semi-streaming Algorithms for Submodular Matroid Intersection 208
Paritosh Garg, Linus Jordan, and Ola Svensson

Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection
and Parity Problems . 223

Kazuki Matoya and Taihei Oki

On the Recognition of fa; b; cg-Modular Matrices . 238
Christoph Glanzer, Ingo Stallknecht, and Robert Weismantel

On the Power of Static Assignment Policies for Robust Facility
Location Problems . 252

Omar El Housni, Vineet Goyal, and David Shmoys

Robust k-Center with Two Types of Radii . 268
Deeparnab Chakrabarty and Maryam Negahbani

Speed-Robust Scheduling: Sand, Bricks, and Rocks. 283
Franziska Eberle, Ruben Hoeksma, Nicole Megow, Lukas Nölke,
Kevin Schewior, and Bertrand Simon

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs 297
Klaus Jansen, Kim-Manuel Klein, and Alexandra Lassota

Fast Quantum Subroutines for the Simplex Method 311
Giacomo Nannicini

Maximum Weight Disjoint Paths in Outerplanar Graphs via Single-Tree
Cut Approximators . 326

Guyslain Naves, Bruce Shepherd, and Henry Xia

A Tight Approximation Algorithm for the Cluster Vertex
Deletion Problem . 340

Manuel Aprile, Matthew Drescher, Samuel Fiorini, and Tony Huynh

Fixed Parameter Approximation Scheme for Min-Max k-Cut 354
Karthekeyan Chandrasekaran and Weihang Wang

Computational Aspects of Relaxation Complexity . 368
Gennadiy Averkov, Christopher Hojny, and Matthias Schymura

Complexity of Branch-and-Bound and Cutting Planes
in Mixed-Integer Optimization - II . 383

Amitabh Basu, Michele Conforti, Marco Di Summa, and Hongyi Jiang

x Contents

Face Dimensions of General-Purpose Cutting Planes for Mixed-Integer
Linear Programs . 399

Matthias Walter

Proximity Bounds for Random Integer Programs. 413
Marcel Celaya and Martin Henk

On the Integrality Gap of Binary Integer Programs with Gaussian Data 427
Sander Borst, Daniel Dadush, Sophie Huiberts, and Samarth Tiwari

Linear Regression with Mismatched Data: A Provably Optimal Local
Search Algorithm . 443

Rahul Mazumder and Haoyue Wang

A New Integer Programming Formulation of the Graphical Traveling
Salesman Problem. 458

Robert D. Carr and Neil Simonetti

Implications, Conflicts, and Reductions for Steiner Trees 473
Daniel Rehfeldt and Thorsten Koch

Author Index . 489

Contents xi

Improving the Approximation Ratio
for Capacitated Vehicle Routing

Jannis Blauth1, Vera Traub2(B), and Jens Vygen1

1 Research Institute for Discrete Mathematics, Hausdorff Center for Mathematics,
University of Bonn, Bonn, Germany
{blauth,vygen}@or.uni-bonn.de

2 Department of Mathematics, ETH Zurich, Zurich, Switzerland
vera.traub@ifor.math.ethz.ch

Abstract. We devise a new approximation algorithm for capacitated
vehicle routing. Our algorithm yields a better approximation ratio for
general capacitated vehicle routing as well as for the unit-demand case
and the splittable variant. Our results hold in arbitrary metric spaces.
This is the first improvement on the classical tour partitioning algorithm
by Haimovich and Rinnooy Kan [16] and Altinkemer and Gavish [2].

1 Introduction

In the Capacitated Vehicle Routing problem, we are given a metric space
with a depot and customers, each with a positive demand. The goal is to design
tours of minimum total length such that each tour contains the depot, each
customer is served by some tour, and the total demand of the customers in one
tour does not exceed 1 (after scaling, this is the vehicle capacity). Capacitated

Vehicle Routing generalizes the famous traveling salesman problem and has
obvious applications in logistics. There is a huge body of literature studying
heuristics, mixed-integer programming models, and application scenarios.

The so far best known approximation algorithm is more than 30 years old and
quite simple: it first computes a traveling salesman tour (ignoring the capacity
constraint) and then partitions the tour optimally into segments of total demand
at most 1, each of which is then served by a separate tour from the depot. The
approximation ratio of this algorithm is α+2, where α is the approximation ratio
of an algorithm computing the traveling salesman tour. Essentially the same
algorithm has been the best known for the unit-demand special case (where all
customers have the same demand), and also for the variant where a customer’s
demand can be split and served by more than one tour. For these special cases,
the approximation ratio is α + 1.

These algorithms have been proposed and analyzed in the 1980s by Altinke-
mer and Gavish [2] and Haimovich and Rinnooy Kan [16]. Despite many efforts
and progress in special cases (cf. Sect. 1.3), they have not been improved, except

Supported by Swiss National Science Foundation grant 200021_184622.
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 1–14, 2021.
https://doi.org/10.1007/978-3-030-73879-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_1

2 J. Blauth et al.

that the traveling salesman tour can now be computed by the Karlin–Klein–
Oveis Gharan algorithm [18] instead of the Christofides–Serdjukov algorithm
[12,21], which improves α to slightly less than 3

2 if one allows randomization.
In this paper we improve upon the classical algorithms of [2] and [16]. Our

result is a better black-box reduction to the traveling salesman problem. There-
fore, our new algorithm has a better approximation ratio than the classical algo-
rithms of [2] and [16], and this will remain true if the approximation ratio for the
traveling salesman problem will be improved further. Here is our main result:

Theorem 1. For every α > 1 there is an ε > 0 such that the following holds. If
there is an α-approximation algorithm for the traveling salesman problem, then
there are an (α + 2 · (1 − ε))-approximation algorithm for Capacitated Vehi-

cle Routing and an (α + 1 − ε)-approximation algorithm for Unit-Demand

Capacitated Vehicle Routing and Splittable Capacitated Vehicle

Routing. For α = 3
2 we have ε > 1

3000 .

1.1 Formal Problem Description

Given a depot s and a set V of customers, we want to design tours serving all
customers. For now, a tour is a cycle that contains s and a subset of customers
(later we will also consider tours that begin in s but do not end in s). To measure
the cost of a tour, we have a semi-metric c : ({s} ∪ V) × ({s} ∪ V) → R≥0,
i.e., c is symmetric and satisfies the triangle inequality. We interpret a tour
Q as an undirected graph with vertex set V (Q) and edge set E(Q). We write
c(Q) =

∑
{v,w}∈E(Q) c(v, w) for the cost of Q. Moreover, each customer has a

demand, and the total demand of the customers served by a tour must not exceed
the vehicle capacity, which we can assume to be 1 (by scaling). Then the problem
can be described as follows.

Definition 1 (Capacitated Vehicle Routing). An instance consists of

– a finite set V (of customers)
– a depot s, not belonging to V ,
– a semi-metric c on {s} ∪ V , defining distances (or cost),
– a demand d(v) ∈ [0, 1] for each customer v ∈ V .

A feasible solution is a set Q of tours such that

– every tour Q ∈ Q is a cycle that contains s,
– every customer belongs to exactly one tour, and
–

∑
v∈V (Q)\{s} d(v) ≤ 1 for all Q ∈ Q.

The task is to minimize the total cost c(Q) :=
∑

Q∈Q c(Q).

We denote by OPT(I) or simply OPT the minimum cost of a feasible solution
to a given instance I. We note the following well-known lower bound:

Proposition 1. OPT ≥
∑

v∈V 2d(v)c(s, v).

Improving the Approximation Ratio for Capacitated Vehicle Routing 3

Proof. Let Q be a feasible solution. For each v ∈ V we obtain two s-v-paths
by splitting the tour Q ∈ Q that contains v. By the triangle inequality, each of
these paths has length at least c(s, v), and hence 2c(s, v) ≤ c(Q). Summation
yields

∑
v∈V 2d(v)c(s, v) ≤

∑
Q∈Q

∑
v∈V (Q)\{s} d(v)c(Q) ≤ c(Q). ��

If d(v) = 1
k for all v ∈ V , where k is some positive integer, we speak of Unit-

Demand Capacitated Vehicle Routing (then every tour can serve up to
k customers). This is closely related to Splittable Capacitated Vehicle

Routing: here the demand of a customer is arbitrary but can be split into
several parts, each of which is served by a different tour.

All variants include the traveling salesman problem as special case and are
thus APX-hard. Capacitated Vehicle Routing also includes bin packing;
hence there is no approximation algorithm with ratio less than 3

2 unless P = NP.

1.2 Outline

To obtain our results, we analyze instances for which the approximation guaran-
tees of [2] and [16] are almost tight and exploit their structure to design better
solutions. We will call such instances difficult.

We view every tour in a solution to a Capacitated Vehicle Routing

instance as the union of two paths from the depot to the peak of the tour: the
point farthest away from the depot. Our first observation is that the performance
of the classical algorithms can be close to the worst case guarantee only if, for
most tours, these two paths have small detour, i.e., they are approximately
shortest paths from the depot to the peak.

Definition 2 (detour). For v, w ∈ V ∪ {s} we define

detour(v, w) := c(v, w) + c(s, v) − c(s, w).

For a directed path P that starts at the depot s and ends in t we have
detour(P) = c(P) − c(s, t). The detour was called excess by [9] and regret met-
ric by [14]. The detour is not symmetric, but it is non-negative and fulfills the
triangle inequality.

We will compute an even number of paths that all start at the depot such
that all customers are visited by some path. Then we combine pairs of these
paths to tours by adding an edge between their endpoints.

If there exists a set of paths with small total detour (like the one induced by
an optimum solution to a difficult instance), then we can find a set of paths that
is not much longer in polynomial time. In fact, this problem is closely related to
regret-bounded vehicle routing, a problem that has been studied by Friggstad
and Swamy [14,15]. Here, one asks for a minimum number of paths serving all
customers such that the detour of any path is bounded.

However, combining pairs of paths to tours can be too expensive. We need
to ensure that a cheap matching of the endpoints of the paths exists. Ide-
ally, two paths end at the peak of each tour in an optimum solution, then the
matching would not cost anything. But of course we do not know these peaks.

4 J. Blauth et al.

Therefore we try to “guess” them, by exploiting another property of difficult
instances: in almost all tours of an optimum solution, the total demand of cus-
tomers near the peak is almost 1 (the vehicle capacity). Consequently, we can
assume that “most” customers are clustered, and we can force two paths to end
in each cluster.

However, another difficulty arises because the clusters are not necessarily
clearly separated from one another. Still we can identify groups of nearby clus-
ters, and estimate the number of tours whose peak is in that group. Instead
of prescribing the endpoints of the paths, we only specify the total number of
paths that must end in each group. This number will always be even, in order
to ensure that we can find a matching within each group. Although customers
in the same group can be far away from each other if there is a chain of pairwise
overlapping clusters, we will prove that a relatively cheap matching exists.

The key subproblem therefore asks to find an appropriate number of paths
that begin at the depot and end in these target groups, such that all customers
(including those that do not belong to any group) are served by some tour. We
call this problem Vehicle Routing with Target Groups. The instance of
Vehicle Routing with Target Groups that we compute has the property
that it has a solution that is cheap and has small total detour. This will enable
us to find a cheap set of paths in polynomial time: either by a simple and fast
combinatorial algorithm, or alternatively by leveraging an LP-based approach
suggested for regret-bounded vehicle routing by Friggstad and Swamy [15].

Once we have these paths, we compute a cheapest matching of their endpoints
and combine them to tours. These tours will generally still not meet the capacity
constraint, but we can simply concatenate all these tours (and shortcut) to obtain
a traveling salesman tour. Since this tour will be not much more expensive than
an optimum solution to our Capacitated Vehicle Routing instance, applying
the classical tour partitioning algorithm finishes the job.

A full version of this paper with all proofs can be found in [8].

1.3 Related Work

Despite of a huge amount of research on vehicle routing, the best known approx-
imation ratio for Capacitated Vehicle Routing (as well as for the unit-
demand and splittable variants) has not been improved in more than 30 years.
However, there has been progress on several special cases. First of all, the tour
partitioning algorithm (cf. Sect. 1.4) already yields a slightly better approxima-
tion guarantee if the least common denominator k of all demands is bounded
(this is often called the bounded capacity case). Compared to α + 2 and α + 1,
the approximation ratios reduce by 2α

k (for general demands) and α
k (for unit

demands). Bompadre, Dror and Orlin [11] gain another Ω(1
k3).

There are also several results for geometric instances for the unit-demand
case (in which d(v) = 1

k for all v ∈ V). In the Euclidean plane a PTAS is known
for constant k (Haimovich and Rinnooy Kan [16]), for k = O(log(n)/ log log(n)),
where n = |V | (Asano, Katoh, Tamaki, and Tokuyama [3]), and for k ≤ 2log

f(ε)(n)

Improving the Approximation Ratio for Capacitated Vehicle Routing 5

(Adamszek, Czumaj, and Lingas [1]). The latter uses a result by Das and
Mathieu [13], who provided a quasi-polynomial time approximation scheme
for the Euclidean plane and unbounded k. For higher dimensional Euclidean
metrics, Khachay and Dubinin [19] found a PTAS for fixed dimension l and
k = O(log

1
l (n)).

Better approximation ratios have also been found for graph metrics arising
from graphs with a special structure. For the unit-demand case with constant
k, Becker, Klein and Schild [7] devised a PTAS in planar graphs, and Becker,
Klein and Saulpic [6] found a PTAS in graphs with bounded highway dimension.
Becker [5] designed a 4

3 -approximation algorithm for Splittable Capacitated

Vehicle Routing in tree metrics, improving on results by Hamaguchi and
Katoh [17] and Asano, Kawashima and Katoh [4].

For general Capacitated Vehicle Routing, no improvement on the clas-
sical approximation algorithm [2] has been found except for tree metrics. For tree
metrics, Labbé, Laporte and Mercure [20] gave a 2-approximation algorithm. If
the tree is a path (i.e., on the line), Wu and Lu [22] described a 5

3 -approximation
algorithm for Capacitated Vehicle Routing. Note that the unit-demand case
is polynomially solvable on the line.

One part of our proof is leveraging an LP relaxation that was proposed
by Friggstad and Swamy [15] for regret-bounded vehicle routing. In (additive)
regret-bounded vehicle routing, the goal is to find a minimum number of paths
starting at the depot and covering all customers such that none of the tours has
a detour (or regret) more than a given bound. Friggstad and Swamy [14] pro-
vided the first constant-factor approximation algorithm for this problem. They
improved the approximation ratio from 31 to 15 in [15].

Regret-bounded vehicle routing is a special case of the school bus problem. In
the school bus problem, there is the additional constraint that no tour can serve
more customers than a given bound (the vehicle capacity). Bock, Grant, Köne-
mann and Sanità [10] observed that any μ-approximation algorithm for regret-
bounded vehicle routing implies a (μ+1)-approximation algorithm for the school
bus problem. They gave a 3-approximation algorithm for regret-bounded vehicle
routing on trees and thus obtain a 4-approximation algorithm for the school bus
problem on trees. The later results by Friggstad and Swamy mentioned above
imply a 16-approximation algorithm for the general school bus problem.1

1.4 Review of the Classical Algorithms

In this section we review the classical algorithms by Altinkemer and Gavish [2]
and Haimovich and Rinnooy Kan [16], and we do this for two reasons. First, we
will exploit properties of instances in which their analysis is tight. Second, the
final step of our new algorithm will be identical to these classical algorithms.

The classical algorithms [2,16] consist of two steps. The first step simply
runs an approximation algorithm for the traveling salesman problem, and we

1 As a by-product, we obtain a 10-approximation algorithm for regret-bounded vehicle
routing and thus an 11-approximation algorithm for the school bus problem.

6 J. Blauth et al.

denote by α the approximation ratio of this algorithm. The classical Christofides–
Serdjukov algorithm [12,21] obtains α = 3

2 , the new randomized algorithm by
Karlin, Klein, and Oveis Gharan [18] improves on this by a tiny constant.

A traveling salesman tour (for a given instance (V, s, c, d) of Capacitated

Vehicle Routing) is a cycle with vertex set {s} ∪ V . The minimum length of
a traveling salesman tour is a lower bound on OPT; hence the first step yields a
traveling salesman tour of length α · OPT.

In the second step, this traveling salesman tour is partitioned optimally into
segments of total demand at most 1, each of which is then served by a separate
tour from the depot. This step is summarized by the following theorem:

Theorem 2 ([2,16]). Given an instance (V, s, c, d) of Capacitated Vehicle

Routing and a traveling salesman tour Q, one can compute a feasible solution
of cost at most c(Q) +

∑
v∈V 4d(v)c(s, v) in O(n2) time, where n = |V |. For

Unit-Demand Capacitated Vehicle Routing and Splittable Capaci-

tated Vehicle Routing the bound improves to c(Q) +
∑

v∈V 2d(v)c(s, v).

Together with Proposition 1, Theorem 2 immediately implies the approxima-
tion ratio α+2 for Capacitated Vehicle Routing [2], and the approximation
ratio α + 1 for Unit-Demand Capacitated Vehicle Routing and Split-

table Capacitated Vehicle Routing [16]. In this paper, we present the first
improvement on these more-than-thirty-year-old results.

2 Difficult Instances

In the following we concentrate on instances where Proposition 1 and thus the
analysis of the classical algorithms is almost tight. We will call such instances
difficult. In order to give a formal definition, we fix a constant 0 < ε < 1.

Definition 3. An instance (V, s, c, d) of Capacitated Vehicle Routing is
called difficult if

2 ·
∑

v∈V

d(v) · c(s, v) > (1 − ε) · OPT.

If an instance is not difficult, the classical tour partitioning algorithm yields
a cheap solution (of cost at most (α + 2 · (1 − ε)) · OPT) by Theorem 2. For
difficult instances we will compute a cheap traveling salesman tour and then
apply Theorem 2 to this. We will prove:

Theorem 3. There is a function f : R>0 → R>0 with limε→0 f(ε) = 0 and a
polynomial-time algorithm that returns a traveling salesman tour of cost at most
(1 + f(ε)) ·OPT(I) for any given difficult instance I of Capacitated Vehicle

Routing.

From this traveling salesman tour, we get a solution of cost at most (3 +
f(ε))·OPT for any given difficult instance by Theorem 2. Choose ε > 0 such that

Improving the Approximation Ratio for Capacitated Vehicle Routing 7

3+ f(ε) ≤ α+2 · (1− ε). Running both the classical and our new algorithm and
returning the better solution hence proves Theorem 1 (except for the constant).

In the following, we prove Theorem 3. Informally, in an optimum solution
to a difficult instance almost every tour must have the following two properties.
First, the tour Q is not much longer than 2 · c(s,peak(Q)), where peak(Q) is the
vertex in Q that is farthest away from the depot s. Second, the total demand
served by the tour is almost 1, and almost all of it is close to the peak.

To formalize the second property we introduce the notion of the peak cluster.
Let 0 < τ, ρ ≤ 1

6 be constants (that depend on ε).

v
s

C(Q1)

C(Q2)

C(Q3)

C(Q4)

Fig. 1. An instance of Capacitated Vehicle Routing with a solution. The customer
v (shown in red) has demand 4

7 and all other customers have demand 1
7 . The peaks

of the tours are shown as empty circles. The peak clusters are drawn for ρ = 1
10 and

τ = 1
6 and Euclidean distances. The peak clusters C(Q1), C(Q2) and C(Q3) are large.

(Color figure online)

Definition 4. Let (V, s, c, d) be an instance of Capacitated Vehicle Rout-

ing. Let Q be a cycle with s ∈ V (Q). Then we define peak(Q) to be a vertex
v ∈ V (Q) with c(s, v) maximal, and the peak cluster to be

C(Q) := {u ∈ V (Q) : c(u, peak(Q)) + κ · detour(u, peak(Q)) < ρ · c(s, peak(Q))} .

where κ := 1−2τ−τ ·ρ
2τ .

We call the peak cluster large if d(C(Q)) > 1 − τ and small otherwise. Here
and in the following we abbreviate d(C(Q)) =

∑
v∈C(Q) d(v).

In an optimum solution to a difficult instance, the total length of tours with
small peak cluster is small compared to the total length of all tours. This can
be derived from the following lemma, which gives a lower bound on c(Q) −
2 ·

∑
v∈V (Q) d(v) · c(s, v) for tours Q with a small peak cluster. Because in a

difficult instance the sum of these expressions over all tours is small (it is less
than ε · OPT), the lemma implies that in an optimum solution the total length
of such tours with small peak clusters must be small. Note that we will choose
τ and ρ such that τ · ρ is much larger than ε.

8 J. Blauth et al.

Lemma 1. Let Q be a tour with small peak cluster. Then

c(Q) − 2 ·
∑

v∈V (Q)\{s}
d(v) · c(s, v) ≥ τ · ρ · c(Q).

We remark that the peak cluster C(Q) is the smallest possible set such that
Lemma 1 holds. Choosing κ = 0 would already be sufficient to improve the
approximation ratio of Capacitated Vehicle Routing. In this case the peak
cluster of a tour Q is a ball of radius ρ · c(s,peak(Q)) around peak(Q). However,
choosing κ = 0 would yield a smaller improvement in the approximation ratio.

3 Vehicle Routing with Target Groups

The first step of our algorithm aims at identifying the peak clusters. Since these
clusters can be close to each other and might be difficult to distinguish, we merge
such clusters into larger ones. We describe our clustering algorithm in Sect. 4.

Having identified clusters, we want to find paths starting at the depot and
ending in the clusters, such that every customer is visited by one such path,
regardless of whether the customer is part of a cluster or not. To find such paths
we compute a solution to an instance of Vehicle Routing with Target

Groups, which is a new problem we introduce. The targets will be some cus-
tomers inside the clusters, where targets in the same cluster belong to the same
target group.

Definition 5 (Vehicle Routing with Target Groups). An instance
consists of

– disjoint finite sets V (of customers) and T̄ (of targets),
– a depot s, not belonging to V ∪ T̄ ,
– a semi-metric c on {s} ∪ V ∪ T̄ ,
– a partition T of the target set T̄ into target groups, and
– numbers b : T → Z>0 telling how many tours must end in each target group.

A feasible solution is a set P of tours such that

– every tour P ∈ P is either an s-t-path for some target t ∈ T̄ or a cycle
containing s, and all other vertices of P belong to V ,

– every element of V belongs to at least one of these tours, and
– for every target group T ∈ T , exactly b(T) of these tours end in an element

of T .

The task is to minimize the total cost c(P) :=
∑

P∈P c(P).

For a target group T , we will set the number b(T) to roughly twice the
demand of the cluster containing T . The number b(T) of paths ending in T will
always be even. Therefore, we can turn a solution to our instance of Vehicle

Routing with Target Groups into a cheap traveling salesman tour as fol-
lows. For each target group T we pair up the paths and complete a pair of paths
to a tour by adding an edge between their endpoints. In the end we concatenate
all these tours and shortcut to obtain a traveling salesman tour as needed to
prove Theorem 3.

Improving the Approximation Ratio for Capacitated Vehicle Routing 9

4 Clustering Algorithm

In this section we describe the algorithm we use to construct an instance of
Vehicle Routing Problem with Target Groups. Before giving a formal
description of the algorithm, let us informally explain some important properties.
Ideally, our algorithm would choose the targets as the peaks of the tours of an
optimum solution; then two tours should end in each peak t, i.e. b({t}) = 2.
Our algorithm will not always identify the peaks of the optimum tours correctly.
However, for every tour Q with a large peak cluster, we will select a target vertex
that is not far away from peak(Q).

For every target t ∈ T̄ , we then consider an area Bt around t that is large
enough to guarantee that each large peak cluster of an optimum solution is fully
contained in one of these areas. Our algorithm might also select targets that are
not close to any of the peaks of optimum tours, but we can show that for difficult
instances this happens rarely.

We want to set the numbers b in the Vehicle Routing with Target

Groups instance large enough so that for every tour with a large peak cluster,
two paths are allowed to end in a target close to the peak. Thus, the number
of paths ending in the targets will depend on the total demand d in the area
Bt around t. In order to avoid requiring a too high number of paths, we want

Algorithm 1.

Input: Instance I = (V, s, c, d) of Capacitated Vehicle Routing.
Output: Instance J = (V, T̄ , s, c, T , b) of Vehicle Routing with Target Groups.

1. Choose the set T̄ of targets:
Number the customers in V such that c(s, v1) ≤ c(s, v2) ≤ · · · ≤ c(s, vn).
Initialize T̄ := ∅ and Y := ∅.

for v = vn, vn−1, . . . , v1 do
Define Cv := {u ∈ V : c(u, v) + κ · detour(u, v) < ρ · c(s, v)}.
if v /∈ Y and d(Cv \ Y) > 1 − τ then

Set T̄ := T̄ ∪ {v}. Set Y := Y ∪ Cv.

2. Partition T̄ into target groups:
For t ∈ T̄ define

Bt :=
{

v ∈ V : c(v, t) <
3ρ

1 − ρ
· c(s, v), c(v, t) < 6ρ · c(s, t) − 3ρ

1 − ρ
· c(s, v)

}
.

Let EB be the set of all edges {t, t′} with t, t′ ∈ T̄ and Bt ∩ Bt′ �= ∅.
Let T be the set of vertex sets of connected components of (T̄ , EB).

3. Determine the number of tours that should end in each target group:
For T ∈ T define BT :=

⋃
t∈T

Bt.

Define b(T) := 2 ·
⌊

d(BT)
1−τ

⌋
for all T ∈ T .

4. Output (V, T̄ , s, c, T , b).

10 J. Blauth et al.

to avoid that the demand d(v) of a customer v is counted twice here when v is
contained in two of the areas Bt. Therefore, if the areas Bt for different targets
t overlap, e.g. because the peaks of two tours are close to each other, we merge
the areas Bt and the corresponding targets will form a group.

Algorithm 1 describes our algorithm to construct an instance of Vehicle

Routing with Target Groups. See also Fig. 2. Note that the set T̄ of targets
is represented by a subset of V , and formally contains a copy of each such
customer because by Definition 5 the sets V and T̄ should be disjoint.

The precise definition of Bt is chosen in order to optimize the approximation
ratio of our algorithm. As mentioned above, a crucial property is that every large
peak cluster is contained in one of the sets Bt.

v
t1

t2

t3

s

Bt1

Bt2

Bt3 Ct1

Ct2

Ct3

Fig. 2. The output J = (V, T̄ , s, c, T , b) of Algorithm 1 applied to the instance from
Fig. 1. The targets T̄ = {t1, t2, t3} (shown as empty circles here) are partitioned into
target groups T = {{t1, t2}, {t3}}. A solution of J consists of b({t1, t2}) = 6 tours
ending in {t1, t2} and b({t3}) = 2 tours ending in t3. We will see that it does not harm
that t3 was selected as a target although it does not belong to any peak cluster. Note
that peak(Q2) was not identified as a target even though Q2 has a large peak cluster.
However, the peak cluster of Q2 lies completely in B{t1,t2}, which will guarantee that
b({t1, t2}) is chosen large enough so that Q can be easily transformed into a weak
fractional solution of J that costs not much more than Q.

Lemma 2. Let I be an instance of Capacitated Vehicle Routing, and let
(V, T̄ , s, c, T , b) be the output of Algorithm 1 with input I. Then for every tour
Q with large peak cluster there exists a target t ∈ T̄ such that C(Q) ⊆ Bt.

Proof (sketch). The definition of Cv in step 1 of Algorithm 1 is such that for
every tour Q with a large peak cluster, the following holds. If Y ∩C(Q) = ∅ when

Improving the Approximation Ratio for Capacitated Vehicle Routing 11

we consider v = peak(Q), then peak(Q) is selected as a target. Hence, in any
case we have Ct ∩ C(Q) �= ∅ for some target t with c(s, t) ≥ c(s,peak(Q)) (by
the order in which we consider the customers). One can show that this implies
C(Q) ⊆ Bt. ��

Another important property is that our choice of the target groups guarantees
that the matching that we use to pair up paths from our solution of Vehicle

Routing with Target Groups is cheap.

Lemma 3. Let I be an instance of Capacitated Vehicle Routing and let
(V, T̄ , s, c, T , b) be the instance of Vehicle Routing with Target Groups

computed by Algorithm 1 applied to I. Let U ⊆ T̄ such that |U ∩ T | is even for
every target group T ∈ T . Then there is a perfect matching on U with cost at
most 3ρ

(1−ρ)·(1−τ) · OPT(I).

Proof. (sketch). We consider a fixed target group T . We can bound the cost of
a minimum-cost perfect matching on T ∩ U by the cost c(S) of any tree (T, S).
Because T is the vertex set of a connected component of (T̄ , EB), one can show
that there is such a tree with c(S) ≤ 6ρ ·

∑
t∈T c(s, t). We use Yt to denote

the set Y at the beginning of the iteration of Algorithm 1 in which we add t
to T̄ . Then the sets Ct \ Yt for t ∈ T̄ in Algorithm 1 are disjoint. Moreover
c(s, v) > (1 − ρ)c(s, t) whenever v ∈ Ct. Hence

(1 − τ) · (1 − ρ) ·
∑

t∈T̄

c(s, t) < (1 − ρ) ·
∑

t∈T̄

c(s, t) · d(Ct \ Yt)

<
∑

t∈T̄

∑

v∈Ct\Yt

c(s, v) · d(v) ≤
∑

v∈V

c(s, v) · d(v) ≤ 1
2OPT(I).

��

5 Weak Fractional Solutions

A key part of our proof is to show that we can compute a cheap solution to
our instance J of Vehicle Routing with Target Groups. First, we want
to show that if our Capacitated Vehicle Routing instance I is difficult, the
instance J that we construct by Algorithm 1 has a solution that is not much more
expensive than OPT(I), and has small total detour. It simplifies our proofs and
leads to better approximation ratios to consider what we call weak fractional
solutions of J instead of actual solutions.

Weak fractional solutions are composed of walks in the digraph G(J) with
vertex set V (J) = {s} ∪ V ∪ T̄ and edge set E(J) = E1(J) ∪ E2(J), where

E1(J) = {(v, w) : v ∈ {s} ∪ V, w ∈ V, v �= w},

E2(J) = {(v, w) : v ∈ {s} ∪ V, w ∈ {s} ∪ T̄ , v �= w}.

12 J. Blauth et al.

Definition 6 (Weak Fractional Solution). A weak fractional solution to an
instance J = (V, T̄ , s, c, T , b) of Vehicle Routing with Target Groups is
a vector x ∈ R

E(J)
≥0 such that

x =
∑

P∈P
λP · χE(P),

where P is a set of walks in G(J) and λP ∈ R≥0 for all P ∈ P such that

– every walk P ∈ P begins in s and ends in {s} ∪ T̄ , and all inner vertices
belong to V ,

– for every v ∈ V , we have
∑

P∈P:v∈V (P) λP ≥ 1, and
– for every target group T ∈ T , the total weight of the walks ending in T is

∑

P∈P:P ends in T

λP = (1 − τ) · b(T).

Here χE(P) is the incidence vector of E(P). For any vector x ∈ R
E(J)
≥0

we write c(x) :=
∑

(v,w)∈E(J) c(v, w)x(v,w) and detour(x) :=
∑

(v,w)∈E(J)

detour(v, w)x(v,w).

We reduce the amount to arrive in each target group slightly because we
cannot assume that the total demand of a tour near its peak is 1, but only 1−τ .

We show that the instance J that we construct in Algorithm 1 has a weak
fractional solution that has small detour and is not much more expensive than
OPT(I), assuming I is difficult. To this end, we start with an optimum solution
to our Capacitated Vehicle Routing instance I. Then for every customer
v that is contained in a tour Q of this solution, we partition Q into two paths
starting at the depot s and ending at v. We extend these paths by an edge
connecting v either to a close-by target or to the depot s. The latter will happen
rarely, as we can show using Lemma 2. The resulting walks P will then contribute
with weight λP = d(v) to the weak fractional solution.

6 Solving Vehicle Routing with Target Groups

While Vehicle Routing with Target Groups in general is at least as hard
as the traveling salesman problem, we can compute solutions that are not much
more expensive than the best weak fractional solution with small detour. This
is formally stated in the following theorem. For small detour, we can choose a
small value of η. Then the factor on the cost of the given weak fractional solution
is close to 1 because we will choose the constant τ ∈ (0, 1) to be close to 0.

Theorem 4. There is a polynomial-time algorithm for Vehicle Routing

with Target Groups that computes for every instance J and any given
η ∈ (0, 1] a feasible solution P of J such that

c(P) < (1
1−τ + η) · c(x) + O(1η) · detour(x|E1(J)),

for every weak fractional solution x of J.

Improving the Approximation Ratio for Capacitated Vehicle Routing 13

We propose two approaches for solving Vehicle Routing with Target

Groups, both implying Theorem 4. In both approaches we compute a forest
and a network flow to obtain tours that visit not necessarily every customer, but
every connected component of the forest. In the network flow problem we ensure
that the number of tours ending in each target group meets the requirements.
Doubling the edges of the forest and shortcutting yields the desired solution.

The first approach is a simple and fast combinatorial algorithm. We can
compute a cheapest set of walks from s to the targets with the property that
every vertex v has at least one predecessor that is closer to the depot than v.
This problem can be reduced to a network flow problem. We compute such a
“forward walk solution” for a subset of customers for which we can guarantee
that this solution is not too expensive. To find such a subset of customers we
use a simple greedy algorithm. Finally, we connect the remaining customers that
are not yet visited by a minimum-cost forest.

The second approach leverages a sophisticated LP relaxation for regret-
bounded vehicle routing due to Friggstad and Swamy [15]. In contrast to the
combinatorial approach, here the network flow only uses edges moving away
from the depot, i.e. edges (v, w) with c(s, w) > c(s, v), (and some edges enter-
ing s). Both the forest and the network flow are obtained from an optimum LP
solution. We combine the rounding approach by [15] with a new construction
of a fractional solution, which also enables us to obtain a better approximation
ratio for regret-bounded vehicle routing and the school bus problem.

See [8] for complete proofs.

References

1. Adamaszek, A., Czumaj, A., Lingas, A.: PTAS for k-tour cover problem on the
plane for moderately large values of k. Int. J. Found. Comput. Sci. 21, 893–904
(2010)

2. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with
a fixed error guarantee. Oper. Res. Lett. 6, 149–158 (1987)

3. Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane
by k-tours: towards a polynomial time approximation scheme for general k. In:
Proceedings of the Annual ACM Symposium on Theory of Computing (STOC),
pp. 275–283 (1997)

4. Asano, T., Katoh, N., Kawashima, K.: A new approximation algorithm for the
capacitated vehicle routing problem on a tree. J. Comb. Optim. 5, 213–231 (2001)

5. Becker, A.: A tight 4/3 approximation for capacitated vehicle routing in trees. In:
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM), pp. 3:1–3:15 (2018)

6. Becker, A., Klein, P.N., Saulpic, D.: Polynomial-time approximation schemes for k-
center, k-median, and capacitated vehicle routing in bounded highway dimension.
In: 26th Annual European Symposium on Algorithms (ESA), pp. 8:1–8:15 (2018)

7. Becker, A., Klein, P.N., Schild, A.: A PTAS for bounded-capacity vehicle routing
in planar graphs. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS
2019. LNCS, vol. 11646, pp. 99–111. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24766-9_8

https://doi.org/10.1007/978-3-030-24766-9_8
https://doi.org/10.1007/978-3-030-24766-9_8

14 J. Blauth et al.

8. Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated
vehicle routing. arXiv:2011.05235 (2020)

9. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approx-
imation algorithms for orienteering and discounted-reward TSP. SIAM J. Comput.
37, 653–670 (2007)

10. Bock, A., Grant, E., Könemann, J., Sanità, L.: The school bus problem on trees.
Algorithmica 67, 10–19 (2011)

11. Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions.
Discrete Optim. 3, 299–316 (2006)

12. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman
problem. Technical report, Carnegie-Mellon University (1976)

13. Das, A., Mathieu, C.: A quasi-polynomial time approximation scheme for Euclidean
capacitated vehicle routing. Algorithmica 73, 115–142 (2015)

14. Friggstad, Z., Swamy, C.: Approximation algorithms for regret-bounded vehicle
routing and applications to distance-constrained vehicle routing. In: Proceedings
of the Annual ACM Symposium on Theory of Computing (STOC), pp. 744–753
(2014)

15. Friggstad, Z., Swamy, C.: Compact, provably-good LPs for orienteering and regret-
bounded vehicle routing. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017.
LNCS, vol. 10328, pp. 199–211. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59250-3_17

16. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated rout-
ing problems. Math. Oper. Res. 10, 527–542 (1985)

17. Hamaguchi, S., Katoh, N.: A capacitated vehicle routing problem on a tree. In:
Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 399–407.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49381-6_42

18. Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algo-
rithm for metric TSP. arXiv:2007.01409 (2020)

19. Khachay, M., Dubinin, R.: PTAS for the Euclidean capacitated vehicle routing
problem in Rd. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Parda-
los, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 193–205. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44914-2_16

20. Labbé, M., Laporte, G., Mercure, H.: Capacitated vehicle routing on trees. Oper.
Res. 39, 616–622 (1991)

21. Serdjukov, A.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79
(1978). (in Russian)

22. Wu, Y., Lu, X.: Capacitated vehicle routing problem on line with unsplittable
demands. J. Comb. Optim. 1–11 (2020). https://doi.org/10.1007/s10878-020-
00565-5

http://arxiv.org/abs/2011.05235
https://doi.org/10.1007/978-3-319-59250-3_17
https://doi.org/10.1007/978-3-319-59250-3_17
https://doi.org/10.1007/3-540-49381-6_42
http://arxiv.org/abs/2007.01409
https://doi.org/10.1007/978-3-319-44914-2_16
https://doi.org/10.1007/s10878-020-00565-5
https://doi.org/10.1007/s10878-020-00565-5

Online k-Taxi via Double Coverage
and Time-Reverse Primal-Dual

Niv Buchbinder1, Christian Coester2(B), and Joseph (Seffi) Naor3

1 Tel Aviv University, Tel Aviv, Israel
nivb@tauex.tau.ac.il

2 CWI, Amsterdam, Netherlands
christian.coester@cwi.nl

3 Computer Science Department, Technion, Haifa, Israel
naor@cs.technion.ac.il

Abstract. We consider the online k-taxi problem, a generalization of
the k-server problem, in which k servers are located in a metric space. A
sequence of requests is revealed one by one, where each request is a pair
of two points, representing the start and destination of a travel request
by a passenger. The goal is to serve all requests while minimizing the
distance traveled without carrying a passenger.

We show that the classic Double Coverage algorithm has competitive
ratio 2k − 1 on HSTs, matching a recent lower bound for deterministic
algorithms. For bounded depth HSTs, the competitive ratio turns out to
be much better and we obtain tight bounds. When the depth is d � k,
these bounds are approximately kd/d!. By standard embedding results,
we obtain a randomized algorithm for arbitrary n-point metrics with
(polynomial) competitive ratio O(kcΔ1/c logΔ n), where Δ is the aspect
ratio and c ≥ 1 is an arbitrary positive integer constant. The only pre-
vious known bound was O(2k log n). For general (weighted) tree metrics,
we prove the competitive ratio of Double Coverage to be Θ(kd) for any
fixed depth d, but unlike on HSTs it is not bounded by 2k − 1.

We obtain our results by a dual fitting analysis where the dual solution
is constructed step-by-step backwards in time. Unlike the forward-time
approach typical of online primal-dual analyses, this allows us to combine
information from the past and the future when assigning dual variables.
We believe this method can be useful also for other problems. Using this
technique, we also provide a dual fitting proof of the k-competitiveness
of Double Coverage for the k-server problem on trees.

Keywords: Online algorithms · k-taxi · k-server · Dual fitting

1 Introduction

The k-taxi problem, proposed three decades ago as a natural generalization of
the k-server problem by Fiat et al. [13], has gained renewed interest recently.

This research was supported in part by US-Israel BSF grant 2018352, by ISF grant
2233/19 (2027511) and by NWO VICI grant 639.023.812.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 15–29, 2021.
https://doi.org/10.1007/978-3-030-73879-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_2

16 N. Buchbinder et al.

In this problem there are k servers, or taxis, which are located in a metric space
containing n points. A sequence of requests is revealed one by one to an online
algorithm, where each request is a pair of two points, representing the start and
destination of a travel request by a passenger. An online algorithm must serve
each request (by selecting a server that travels first to its start and then its des-
tination) without knowledge of future requests. The goal is to minimize the total
distance traveled by the servers without carrying a passenger. The motivation for
not taking into account the distance the servers travel with a passenger is that
any algorithm needs to travel from the start to the destination, independently of
the algorithm’s decisions. Thus, the k-taxi problem seeks to only minimize the
overhead travel that depends on the algorithm’s decisions. While this does not
affect the optimal (offline) assignment, it affects the competitive factor.

Besides scheduling taxi rides, the k-taxi problem also models tasks such as
scheduling elevators (the metric space is the line), and other applications where
objects need to be transported between locations.

The extensively studied and influential k-server problem is the special case
of the k-taxi problem where for each request, the start equals the destination.
A classical algorithm for the k-server problem on tree metrics is DoubleCov-
erage. This algorithm is described as follows. A server s is called unobstructed
if there is no other server on the unique path from s to the current request. To
serve the request, DoubleCoverage moves all unobstructed servers towards
the request at equal speed, until one of them reaches the request. If a server
becomes obstructed during this process, it stops while the others keep moving.

DoubleCoverage was originally proposed for the line metric, to which
it owes its name, as there are at most two servers moving at once. For a line
metric it achieves the optimal competitive ratio of k [7], and this result was later
generalized to tree metrics [8].

Given the simplicity and elegance of DoubleCoverage, it is only natural to
analyze its performance for the k-taxi problem. Here, we use it only for bringing
a server to the start vertex of a request.

1.1 Related Work and Known Results

For the k-server problem, the best known deterministic competitive factor on
general metrics is 2k−1 [17]; with randomization, on hierarchically well-separated
trees (HSTs)1 the best known bound is O(log2 k) [4,5]. By a standard embedding
argument, this implies a bound of O(log2 k log n) for n-point metrics, and it was
also shown in [4] that a dynamic embedding yields a bound of O(log3 k logΔ)
for metrics with aspect ratio Δ. In [18], a more involved dynamic embedding
was proposed to achieve a polylog(k)-competitive algorithm for general metrics.2

Contrast these upper bounds with the known deterministic lower bound of k [21]
and the randomized lower bound of Ω(log k) [12]. More information about the
k-server problem can be found in [16].

1 See Sect. 2 for an exact definition of HSTs.
2 There is a gap in the version posted to the arXiv on February 21, 2018 [19,20].

Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual 17

Surprisingly, until recently very little was known about the k-taxi problem,
in contrast to the extensive work on the k-server problem. Coester and Kout-
soupias [9] provided a (2k −1)-competitive memoryless randomized algorithm for
the k-taxi problem on HSTs against an adaptive online adversary. This result
implies: (i) the existence of a 4k-competitive deterministic algorithm for HSTs
via a known reduction [3], although this argument is non-constructive; (ii) an
O(2k log n)-competitive randomized algorithm for general metric spaces (against
an oblivious adversary). Both bounds currently constitute the state of the art.
Coester and Koutsoupias also provided a lower bound of 2k − 1 on the com-
petitive factor of any deterministic algorithm for the k-taxi problem on HSTs,
thus proving that the problem is substantially harder than the k-server problem.
However, large gaps still remain in our understanding of the k-taxi problem, and
many problems remain open in both deterministic and randomized settings. For
general metrics, an algorithm with competitive factor depending only on k is
known only if k = 2, and for the line metric only if k ≤ 3 [9]. Both of these
algorithms can be viewed as variants of DoubleCoverage.

The version of the problem where the start-to-destination distances also con-
tribute to the objective function was called the “easy” k-taxi problem in [9,15],
whereas the version we are considering here is the “hard” k-taxi problem. The
easy version has the same competitive factor as the k-server problem [9]. The k-
taxi problem was recently reintroduced as the Uber problem in [10], who studied
the easy version in a stochastic setting.

1.2 Our Contribution

We provide the following bounds on the competitive ratio of DoubleCoverage
for the k-taxi problem.

Theorem 1. The competitive ratio of DoubleCoverage for the k-taxi prob-
lem is at most

(a)
(
ckd =

∑min{k,d}
h=1

(k
h

))
on HSTs of depth d.

(b) O(kd)-competitive on general (weighted) tree metrics of depth d.

We complement these upper bounds by the following lower bounds:

Theorem 2. The competitive ratio of DoubleCoverage for the k-taxi prob-
lem is at least

(a)
(
ckd =

∑min{k,d}
h=1

(k
h

))
on HSTs of depth d.

(b) Ω(kd) on (even unweighted) tree metrics of constant depth d.

When the depth d of the HST is at least k, the upper bound ckd = 2k −1 exactly
matches the lower bound of [9] that holds even for randomized algorithms against
an adaptive online adversary. Note that for fixed d, ckd is roughly kd/d! up to a
multiplicative error that tends to 1 as k → ∞. The Ω(kd) lower bound on general
trees is hiding a constant factor that depends on d. Since the root in general
trees can be chosen arbitrarily, d is essentially half the hop-diameter.

18 N. Buchbinder et al.

By well-known embedding techniques of general metrics into HSTs [2,11],
slightly adapted to HSTs of bounded depth (see Theorem 5 in Sect. 2), we obtain
the following result for general metrics.

Corollary 1. There is a randomized O(kcΔ1/c logΔ n)-competitive algorithm for
the k-taxi problem for every n-point metric, where Δ is the aspect ratio of the
metric, and c ≥ 1 is an arbitrary positive integer. In particular, setting c =⌈√

logΔ
log k

⌉
, the competitiveness is 2O

(
√

log k logΔ
)
logΔ n.

Compared to the O(2k log n) upper bound of [9], our bound has only a poly-
nomial dependence on k at the expense of some dependence on the aspect ratio.
Since ckd ≤ 2k − 1 for all d, we still recover the same O(2k log n) competitive fac-
tor. The bounds in Corollary 1 actually hide another division by (c−1)! if c ≤ k.
Therefore, whenever Δ is at most 2O(k2

), our bound results in an improvement.

Techniques. For the k-server problem, there exists a simple potential function
analysis of DoubleCoverage. The potential value depends on the relative
distances of the server locations, which, in the k-taxi problem, can change arbi-
trarily by relocation requests even though the algorithm does not incur any
cost. Therefore, such a potential cannot work for the k-taxi problem. In [9], the
2k − 1 upper bound for the randomized HST algorithm is proved via a potential
function that is 2k − 1 times the minimum matching between the online and
offline servers. As is stated there, the same potential can be used to obtain the
same bound for DoubleCoverage when k = 2, but it fails already when k = 3.
Nonetheless, they conjectured that DoubleCoverage achieves the competitive
ratio of 2k − 1 on HSTs.

We are able to prove that this is the case (and give the more refined bound of
ckd) with a primal-dual approach (which still uses an auxiliary potential function
as well). The primal solution is the output of the DoubleCoverage algorithm.
A dual solution is constructed to provide a lower bound on the optimal cost. The
typical way a dual solution is constructed in the online primal-dual framework
is forward in time, step-by-step, along with the decisions of the online algorithm
(see e.g. [1,6,14]). By showing that the objective values of the constructed primal
and dual solutions are within a factor c of each other, one gets that the primal
solution is c-competitive and the dual solution is 1/c-competitive. For the LP
formulation of the k-taxi problem we consider, we show that a pure forward-time
approach (producing a dual solution as well) is doomed to fail:

Theorem 3. There exists no competitive online algorithm for the dual problem
of the k-taxi LP as defined in Sect. 3, even for k = 1.

Our main conceptual contribution is a novel way to overcome this problem by
constructing the dual solution backwards in time. Our assignment of dual vari-
ables for time t combines knowledge about both the future and the past: It
incorporates knowledge about the future simply due to the time-reversal; knowl-
edge about the past is also used because the dual assignments are guided by the

Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual 19

movement of DoubleCoverage, which is a forward-time (online) algorithm.
Our method can be seen as a restricted form of online dual fitting, which is
more “local”, and hence easier to analyze step by step, similarly to primal-dual
algorithms. We believe that this time-reversed method of constructing a dual
solution may be useful for analyzing additional online problems, especially when
information about the future helps to construct better dual solutions. Using this
technique, we also provide a primal-dual proof of the k-competitiveness of Dou-
bleCoverage for the k-server problem on trees. To the best of our knowledge,
a primal-dual proof of this classical result was not known before.

Theorem 4 ([8]). DoubleCoverage is k-competitive for the k-server problem
on trees.

Due to space constraints, most proofs are omitted from this extended abstract
and we focus on showing the upper bound for k-taxi on HSTs (Theorem 1(a)).

2 Preliminaries

The k-Taxi Problem. The k-taxi problem is formally defined as follows. We
are given a metric space with point set V , where |V | = n. Initially, k taxis, or
servers, are located at points of V . At each time t we get a request (st, dt), where
st, dt ∈ V . To serve the request, one of the servers must move to st and the cost
paid by the algorithm is the distance traveled by the server. Then, one of the
servers from st is relocated to the point dt . There is no cost for relocating the
server from st to dt . The goal is to minimize the cost.

Without loss of generality, we can split each request (st, dt) into two requests:
a simple request and a relocation request. Thus, at each time t, request (st, dt) is
either one of the following:

– Simple request (st = dt): a server needs to move to st , if there is no server
there already. The cost is the distance traveled by the server.

– Relocation request (st = dt−1): a server is relocated from st to dt . There is no
relocation cost.

We can then partition the time horizon into two sets Ts, Tr (odd and even times).
For times in Ts = {1, 3, 5, . . . , 2T − 1} we have simple requests, and for times in
Tr = {2, 4, 6, . . . , 2T} we have relocation requests. The k-server problem is the
special case of the k-taxi problem without relocation requests.

Trees and HSTs. Consider now a tree T = (V, E) and let r denote its root.
There is a positive weight function defined over the edge set E, and without loss
of generality all edge weights are integral. The distance between vertices u and v

is the sum of the weights of the edges on the (unique) path between them in T,
which induces a metric. The combinatorial depth of a vertex v ∈ V is defined to be
the number of edges on the path from r to v. The combinatorial depth of T is the
maximum combinatorial depth among all vertices. At times it will be convenient

20 N. Buchbinder et al.

to assume that all edges in E have unit length by breaking edges into unit length
parts called short edges. We then refer to the original edges of T as long edges.
However, the combinatorial depth of T is still defined in terms of the long edges.
We define the weighted depth of a vertex u as the number of short edges on the
path from r to u. For u ∈ V , let Vu ⊆ V be the vertices of the subtree rooted at u.
In trees where all leaves are at the same weighted/combinatorial depth (namely,
HSTs, see below), we define the weighted/combinatorial height of a vertex u as
the number of short/long edges on the path from u to any leaf in Vu. We let
v ≺ u denote that v is a child of u, and let p(u) denote the parent of u.

Hierarchically well-separated trees (HSTs), introduced by Bartal [2], are spe-
cial trees that can be used to approximate arbitrary finite metrics. For α ≥ 1,
an α-HST is a tree where every leaf is at the same combinatorial depth d and
the edge weights along any root-to-leaf path decrease by a factor α in each step.
The associated metric space of the HST is only the set of its leaves. Hence, for
the k-taxi problem on HSTs, the requested points st and dt are always leaves.
Any n-point metric space can be embedded into a random α-HST such that (i)
the distance between any two points can only be larger in the HST and (ii)
the expected blow-up of each distance is O(α logα n) [11]. The latter quantity is
also called the distortion of the embedding. The depth of the random HST con-
structed in the embedding is at most �logα Δ�, where Δ is the aspect ratio, i.e.,
the ratio between the longest and shortest non-zero distance. Choosing α = Δ1/d,
we obtain an HST of depth d and with distortion O

(
dΔ1/d logΔ n

)
.

Theorem 5 (Corollary to [11]). Any metric with n points and aspect ratio Δ
can be embedded into a random HST of combinatorial depth d with distortion
O

(
dΔ1/d logΔ n

)
.

The Double Coverage Algorithm. We define DoubleCoverage in a way
that will suit our definition of short edges of length 1 later. Consider the arrival
of a simple request at location st . A server located at vertex v is unobstructed
if there are no other servers on the path between v and st . If other servers on
this path exist only at v, we consider only one of them unobstructed (chosen
arbitrarily). Serving the request is done in several small steps, as follows:

DoubleCoverage (upon a simple request at st):
While no server is at st : all currently unobstructed servers move distance 1
towards st .

Upon a relocation request (st, dt), we simply relocate a server from st to dt .
For a given small step (i.e., iteration of the while-loop), we denote by U and

B the sets of servers moving towards the root (upwards in the tree) and away
from the root (towards the bottom of the tree), respectively.

Observation 1. In any small step:

– B is either a singleton (B = { j} for a server j) or empty (B = ∅).
– The subtrees rooted at servers of U are disjoint and do not contain st . If
B = { j}, then these subtrees and st are inside the subtree rooted at j.

Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual 21

3 LP Formulations

We formulate a linear program (LP) for the k-taxi problem along with its dual
that we use for the purpose of analysis. We assume for ease of exposition that
all edges are short edges. As already mentioned, when considering the k-taxi
problem on HSTs, requests appear only at the leaves. It is easy to see that in
this case the upward movement cost (i.e., movement towards the root) is the
same as the downward movement cost, up to an additive error of k times the
distance from the root to any leaf. The same is true of the k-server problem on
general trees (but not for the k-taxi problem on general trees). Hence, for the
k-taxi problem on HSTs and for the k-server problem, we can use an LP that
only takes into account the upward movement cost. (A slightly different LP is
needed for the k-taxi problem on general trees.)

The LP below is a relaxation of the problem as it allows for fractional values
of the variables. For u ∈ V , let variable xut denote the number of servers in Vu
after the request at time t has been served. Variable yut ≥ 0 denotes the number
of servers that left subtree Vu (moving upwards) at time t. For u = r , xr t is defined
to be the constant k. (It is not a variable.) The primal LP is the following:

min
∑
t∈Ts

∑
u�r

yut

xut ≥ 1
{u=st and t∈Ts } +

∑
v≺u

xvt ∀u ∈ V, t ∈ Ts ∪ Tr

yut ≥ xu,t−1 − xut ∀u � r, t ∈ Ts
xut = xu,t−1 + ξut ∀u � r, t ∈ Tr
yut ≥ 0 ∀u � r, t ∈ Ts,

where

ξut :=
⎧⎪⎪⎨
⎪⎪⎩

−1 if st ∈ Vu, dt � Vu
1 if st � Vu, dt ∈ Vu
0 otherwise.

For technical reasons, we will add the additional constraint

0 = xu,2T − x̄u,2T ∀u � r

to the primal LP, where x̄u,2T are constants specifying the configuration of Dou-
bleCoverage at the last time step. Clearly, this affects the optimal value by
only an additive constant. We will also view xu0 = x̄u0 as constants describing the
initial configuration of the servers. The corresponding dual LP is the following.

max
∑
t∈Ts

λst t +
∑
t∈Tr

∑
u�r

ξutbu,t−1 −
∑

t∈Ts∪Tr

kλr t +
∑
u�r

(
x̄u0bu0 − x̄u,2T bu,2T

)

λut − λp(u)t = but − bu,t−1 ∀u � r, t ∈ Ts ∪ Tr
bu,t−1 ∈ [0, 1] ∀u � r, t ∈ Ts
λut ≥ 0 ∀u ∈ V, t ∈ Ts ∪ Tr

22 N. Buchbinder et al.

We can use the same primal and dual formulation for the k-server problem,
except that the set Tr is then empty.3

3.1 Dual Transformation

The dual LP is not very intuitive. By a transformation of variables, we get
a simpler equivalent dual LP, which we can interpret as building a mountain
structure on the tree over time. This new dual LP has only one variable Aut for
each vertex u and time t. We interpret Aut as the altitude of u at time t. We
denote by ΔtAu = Aut − Au,t−1 the change of altitude of vertex u at time t. For
a server i of DoubleCoverage, we denote by vit its location at time t, and
define similarly ΔtAi := Avit t − Avi, t−1t−1 as the change of altitude of server i at
time t. The new dual LP is the following:

max
∑
t∈Ts

[
ΔtAst −

k∑
i=1

ΔtAi

]
−

∑
t∈Tr

k∑
i=1

ΔtAvit

Aut − Ap(u)t ∈ [0, 1] ∀u � r, t + 1 ∈ Ts (1)

ΔtAu ≥ 0 ∀u ∈ V, t ∈ Ts ∪ Tr (2)

The constraints of the LP stipulate that altitudes are non-decreasing over
time and (at time steps before a simple request) along root-to-leaf paths, with
the difference in altitude of two adjacent nodes being at most 1. The objective
function measures changes in the altitudes of request and server locations.

We define

Dt :=

{
ΔtAst −

∑k
i=1 ΔtAi t ∈ Ts

−

∑k
i=1 ΔtAvit t ∈ Tr,

(3)

so that the dual objective function is equal to D :=
∑

t∈Ts∪Tr Dt .
The following lemma allows us to use this new LP for our analyses.

Lemma 1. The two dual LPs are equivalent. That is, any feasible solution to
one of them can be translated (online) to a feasible solution to the other with the
same objective function value.

A proof of this lemma is given in the full version of our paper. It is based on a
transformation of variables satisfying

Aut − Ap(u)t = but
ΔtAu = λut .

3 We note that our LP for the k-server problem is different from LPs used in the
context of polylogarithmically-competitive randomized algorithms for the k-server
problem. In our context of deterministic algorithms for k-taxi (and k-server), we
show that we can work with this simpler formulation.

Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual 23

Moreover, the comparably simple dual objective function is obtained by expand-
ing the terms x̄u0bu0 − x̄u,2T bu,2T in the objective of the original dual to a tele-
scoping sum.

4 The k-Taxi Problem on HSTs

In this section we analyze DoubleCoverage on HSTs, proving Theorem 1(a).
Besides constructing a dual solution, our analysis will also employ a potential

function Ψ (that depends on the state of the system). The choice of Ψ will be
the only difference between the analyses of the k-server and k-taxi problems.
The dual solution and potential will be such that for all t ∈ Ts ∪ Tr ,

cost↑t + Ψt − Ψt−1 ≤ c · Dt, (4)

where cost↑t is the cost of movement towards the root by DoubleCoverage’s
servers while serving the tth request, c is the desired competitive ratio, and Dt is
the increase of the dual objective function at time t, as given by (3). As discussed
in Sect. 2 we may use in this case the dual of the program that only measures
movement cost towards the root. Thus, summing (4) for all times will then imply
that DoubleCoverage is c-competitive.

Recall that for a simple request (t ∈ Ts), DoubleCoverage breaks the
movement of the servers into small steps in which the servers in U ∪ B move
distance 1 towards the request. We will break the construction of a dual solution
into these same small steps. We will denote by ΔΨ the change of Ψ during the
step and by ΔD the contribution of the step to Dt . The cost paid by the servers
(for moving towards the root) in the step is |U |. Using this notation, we satisfy
(4) for simple requests if we show for each step that:

|U | + ΔΨ ≤ c · ΔD. (5)

In Sect. 4.1 we describe how we construct the dual solution by going back-
wards in time. We also mention a simple potential function to prove the k-
competitiveness of k-server on trees. In Sect. 4.2 we describe a more involved
potential function proving the competitiveness for k-taxi on HSTs.

4.1 Constructing the Dual Solution

As already mentioned, we break the construction of a dual solution into the same
small steps that already partition the movement of DoubleCoverage. That
is, we will define altitudes also for the times between two successive small steps.
We will call a dual solution where altitudes are also defined for times between
small steps an extended dual solution.

We will construct this dual solution by induction backwards in time. For a
given point in time, let Au be the altitude of a vertex u at this time as determined
by the induction hypothesis, and let vi be the location of server i at this time.
We will denote by A′

u and v′i the new values of these quantities at the next point

24 N. Buchbinder et al.

in reverse-time. We denote by ΔAu := Au − A′

u and ΔAi := Avi − A′

v′i
the change

of the altitude of vertex u and server i, respectively, in forward-time direction.
For the update due to a small step when serving a simple request st , define

ΔD := ΔAst −

∑
i

ΔAi .

Thus, the sum of the quantities ΔD for all small steps corresponding to a simple
request at time t is precisely Dt . In reverse-time, we can think of ΔD as the
amount by which the request’s altitude decreases plus the amount by which the
sum of server altitudes increases.

We will update altitudes so as to satisfy the following two rules:

(i) ΔAu ≥ 0 for all u ∈ V (constraint (2) is satisfied): In reverse-time, we only
decrease the altitude of any vertex (or leave it unchanged).

(ii) Au − Ap(u) ∈ {0, 1} for all u � r at all times (constraint (1) is satisfied): The
altitude of u and p(u) is the same, or the altitude of u is higher by one than
the altitude of p(u). Overall, altitudes are non-increasing towards the root.

Lemma 2. There exists a feasible extended dual solution satisfying:

– For a relocation request at time t: Dt = 0.
– For a small step where B = ∅: ΔD ≥ 1.
– For a small step where B = { j}: ΔD ≥ 0.

Proof. For the base of the reverse time induction, let A be some arbitrary con-
stant and define the altitude of every vertex u ∈ V at the time after the final
request to be A. This trivially satisfies rule (ii).

Relocation Requests (t ∈ Tr): We guarantee Dt = 0 by simply keeping all
altitudes unchanged.

Simple Requests (t ∈ Ts): Consider a small step of the simple request to st .
In reverse-time, any server i ∈ U moves from vi = p(v′i) to v′i during the small
step. Then, ΔAi = Ap(v′i)

− A′

v′i
. By rule (ii) of the induction hypothesis, we have

Ap(v′i)
− Av′i

∈ {−1, 0}. Similarly, if B = { j}, then j moves from vj to v′j = p(vj) in
reverse-time, and ΔAj = Avj − A′

p(vj)
.

Case 1: B = ∅: If for at least one server i ∈ U we have Av′i
− Ap(v′i)

= 1, then
we set A′

u := Au for all vertices. In this case, ΔtAi = −1 for the aforementioned
server i, and for all other servers in i ∈ U, ΔtAi ≤ 0. Overall, ΔD ≥ 1.

Otherwise, for all i ∈ U, Av′i
− Ap(v′i)

= 0 meaning that every edge along
which a server moves during this small step connects two vertices of the same
altitude (an example of the update of the dual for this case is shown in Fig. 1).
Let V ′ = V \

⋃
i∈U Vv′i be the connected component containing st when cutting

all edges traversed by a server in this step. Notice that V ′ does not contain v′i
even for servers i that are not moving during the step, since those are located in
subtrees below the servers of U. For each u ∈ V ′, we set A′

u := Au−1 (or ΔAu = 1),
and otherwise we keep the altitudes unchanged. In particular, rule (i) is satisfied.

Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual 25

Fig. 1. Example of a dual update for a small step of a simple request when B = ∅. The
current request is st , and the vertices colored red are the component V ′. The arrows
show the movement of servers (in reverse time direction). Numbers in boxes represent
altitudes, where b ← a means that the altitude is updated from a to b (in reverse time).
(Color figure online)

Since for all cut edges Av′i
−Ap(v′i)

= 0, then for these edges A′

v′i
−A′

p(v′i)
= 1, and rule

(ii) also remains satisfied. As stated, servers only moved along edges connecting
vertices of the same altitude (before the update), and all server positions v′i
are outside the component V ′, so ΔAi = 0 for each server. But the component
contains the request st , so ΔAst = Ast − A′

st
= 1. Overall, we get ΔD = 1.

Case 2: B = { j}: If some server i ∈ U moves in reverse-time to a vertex of higher
altitude (Ap(v′i)

− Av′i
= −1) or server j moves to a vertex of the same altitude

(Ap(vj) − Avj = 0), then we set A′

u := Au for each u ∈ V . In this case, ΔAi ∈ {−1, 0}
for all i ∈ U, and ΔAj ∈ {0, 1}, and the aforementioned condition translates to the

Fig. 2. Example of a dual update for a small step of a simple request when B = { j}. The
current request is st , and the vertices colored red are the component V ′. The arrows
show the movement of servers (in reverse time direction). Numbers in boxes represent
altitudes, where b ← a means that the altitude is updated from a to b (in reverse time).
(Color figure online)

26 N. Buchbinder et al.

condition that ΔAi = −1 for some i ∈ U or ΔAj = 0. Either case then guarantees
that ΔD ≥ 0.

Otherwise, j moves (in reverse-time) to a vertex of lower altitude (Ap(vj) −

Avj = −1) and all servers in U move along edges of unchanging altitude (Ap(v′i)
−

Av′i
= 0) (an example of the update of the dual for this case is shown in Fig. 2).

Let V ′ = Vvj \
⋃

i∈U Vv′i be the connected component containing st when cutting all
edges traversed by servers in this step. We decrease the altitudes of all vertices
in this component by 1 (A′

u := Au − 1 for u ∈ V ′) and leave other altitudes
unchanged, satisfying rule (i). As Ap(vj) − Avj = −1 and Ap(v′i)

− Av′i
= 0 for i ∈ U,

also rule (ii) is satisfied. Again, the locations v′i of any server i (moving or not)
are outside the component, so the update of altitudes does not affect ΔAi. Thus,
ΔAj = Avj − Ap(vj) = 1 and, for each server i � j, ΔAi = 0. But the altitude of st
is decreasing by 1 in reverse-time, so ΔtAst = 1. Overall, we get that ΔD = 0. ��

Potential Function Requirements. Based on Lemma 2, we conclude that
the following requirements of a potential function Ψ are sufficient to conclude
inequality (4) (resp. (5)) and therefore c-competitiveness of DoubleCoverage.

Observation 2. DoubleCoverage is c-competitive if there is a potential Ψ
satisfying:

– For a relocation request at time t: Ψt = Ψt−1.
– In a single step of a simple request, where no server is going downwards:

|U | + ΔΨ ≤ c.
– In a single step of a simple request, where there is a server moving downwards:

|U | + ΔΨ ≤ 0.

In the k-server problem there are no relocation requests, and one can satisfy
the two requirements involving simple requests in Observation 2 with the poten-
tial function Ψ = −

∑
i< j dlca(i, j), where the sum is taken over all pairs of servers

{i, j} and dlca(i, j) denotes the weighted depth (distance from the root r) of the
least common ancestor of i and j.

4.2 Finalizing the Analysis for k-Taxi on HSTs

We show that the competitive ratio of the k-taxi problem on HSTs of combina-
torial depth d is ckd =

∑k∧d
h=1

(k
h

)
, which is the number of non-empty sets of at

most d servers. One can prove by induction on k that for k ≥ 0 and d ≥ 1,

ckd = k +
k−1∑
i=0

ci,d−1. (6)

For a given point in time, fix a naming of the servers by the numbers
0, . . . , k − 1 such that their heights h0 ≤ · · · ≤ hk−1 are non-decreasing. If we
consider a (small) step, we choose this numbering such that h0 ≤ · · · ≤ hk−1
holds both before and after the step. Since it is not possible that a server is

Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual 27

strictly higher than another server before the step and then strictly lower after-
wards, such a numbering exists. Let U, B ⊆ {0, . . . , k − 1} be the sets of servers
that move upwards (i.e., towards the root) and downwards (away from the root),
respectively. Note that by our earlier observation, B is either a singleton { j} (one
server moves downwards) or the empty set (no server moves downwards).

Let α� denote the weighted height of the node layer at combinatorial height
� in the HST (i.e., the distance of these vertices from the leaf layer). Thus,
0 = α0 < α1 < · · · < αd. We use the following potential function at time t:

Ψt =

k−1∑
i=0

d−1∑
�=0

ci� · max {α�, hit ∧ α�+1} ,

where h0t ≤ · · · ≤ hk−1,t are the weighted heights of the servers. We next show
that Ψ satisfies the requirements of Observation 2 with c = ckd.

A Relocation Request, t ∈ Tr : Since all requests are at the leaves and thus
the height of the moving server is 0, we have Ψt = Ψt−1.

A Small Step of a Simple Request, t ∈ Ts : Let �i be such that the edge
traversed by server i during the step is located between node layers of combi-
natorial heights �i and �i+1. Thus, the weighted height of i lies in [α�i , α�i+1].
Then

ΔΨ =
∑
i∈U

ci�i −
∑
j∈B

cj�j . (7)

Case 1: B = ∅:

|U | + ΔΨ ≤ k +
k−1∑
i=0

ci�i ≤ k +
k−1∑
i=0

ci,d−1 = ckd .

The first inequality follows from (7) and since |U | ≤ k. The second inequality
follows from the definition of ckd. The final equation is due to (6).

Case 2: B = { j}: In this case U ⊆ {0, . . . , j − 1} and �i ≤ �j − 1 for each i ∈ U.
Therefore,

|U | + ΔΨ ≤ j − cj�j +
∑
i∈U

ci�i ≤ j − cj�j +
j−1∑
i=0

ci,�j−1 = 0.

The first inequality follows from (7) and since U ⊆ {0, . . . , j − 1}. The second
inequality follows from the definition of ckd. The equation is due to (6).

5 The k-Taxi Problem on Weighted Trees

We briefly summarize the main ways in which the proof of part (b) of Theorem 1
differs from that of part (a). There are two reasons why our analysis for HSTs
fails on general weighted trees:

28 N. Buchbinder et al.

1. The costs of movement towards and away from the root no longer need to be
within a constant of each other. E.g., if relocation repeatedly brings servers
closer to the root, then most cost would be incurred while moving away from
the root.

2. The potential is no longer constant under relocation requests, because servers
can be relocated to and from internal vertices, affecting their height.

To address the first issue, we use an LP formulation that measures movement
cost both towards and away from the root. This is achieved in the primal LP by
introducing additional variables zut ≥ 0 for downwards movement, replacing yut
by yut + zut in objective function, and replacing the constraints yut ≥ xu,t−1 − xut
by yut − zut = xu,t−1 − xut . The only change this causes in the (transformed) dual
is that the constraint Aut − Ap(u)t ∈ [0, 1] becomes Aut − Ap(u)t ∈ [−1, 1].

To address the second issue, we eliminate the potential function from our
proof. Instead, we construct a dual solution that bounds the cost of Double-
Coverage in each step, but it may violate the constraints Aut − Ap(u)t ∈ [−1, 1].
However, it will still satisfy Aut − Ap(u)t ∈ [−c, c] for some c. Thus, dividing all
dual variables by c yields a feasible dual solution, and c is our competitive ratio.
A complete proof is given in the full version of our paper.

References

1. Azar, Y., et al.: Online algorithms for covering and packing problems with convex
objectives. In: IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, pp. 148–157. IEEE Computer Society (2016)

2. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In: 37th Annual Symposium on Foundations of Computer Science, FOCS
1996, pp. 184–193 (1996)

3. Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power
of randomization in on-line algorithms. Algorithmica 11(1), 2–14 (1994)

4. Bubeck, S., Cohen, M.B., Lee, Y.T., Lee, J.R., Madry, A.: k-server via multiscale
entropic regularization. In: Proceedings of the 50th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2018, pp. 3–16. ACM (2018)

5. Buchbinder, N., Gupta, A., Molinaro, M., Naor, J.S.: k-servers with a smile: online
algorithms via projections. In: Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, pp. 98–116. SIAM (2019)

6. Buchbinder, N., Naor, J.: The design of competitive online algorithms via a primal-
dual approach. Found. Trends Theor. Comput. Sci. 3(2–3), 93–263 (2009)

7. Chrobak, M., Karloff, H., Payne, T., Vishwanathan, S.: New results on server
problems. SIAM J. Discrete Math. 4(2), 172–181 (1991)

8. Chrobak, M., Larmore, L.L.: An optimal on-line algorithm for k servers on trees.
SIAM J. Comput. 20(1), 144–148 (1991)

9. Coester, C., Koutsoupias, E.: The online k-taxi problem. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
pp. 1136–1147. ACM (2019)

10. Dehghani, S., Ehsani, S., Hajiaghayi, M., Liaghat, V., Seddighin, S.: Stochastic
k-server: how should Uber work? In: 44th International Colloquium on Automata,
Languages, and Programming (ICALP 2017), pp. 126:1–126:14 (2017)

Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual 29

11. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

12. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Com-
petitive paging algorithms. J. Algorithms 12(4), 685–699 (1991)

13. Fiat, A., Rabani, Y., Ravid, Y.: Competitive k-server algorithms (extended
abstract). In: 31st Annual Symposium on Foundations of Computer Science, FOCS
1990, pp. 454–463 (1990)

14. Gupta, A., Nagarajan, V.: Approximating sparse covering integer programs online.
Math. Oper. Res. 39(4), 998–1011 (2014)

15. Kosoresow, A.P.: Design and analysis of online algorithms for mobile server appli-
cations. Ph.D. thesis, Stanford University (1996)

16. Koutsoupias, E.: The k-server problem. Comput. Sci. Rev. 3(2), 105–118 (2009)
17. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42(5),

971–983 (1995)
18. Lee, J.R.: Fusible HSTs and the randomized k-server conjecture. In: Proceedings

of the 59th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2018, pp. 438–449 (2018)

19. Lee, J.R.: Fusible HSTs and the randomized k-server conjecture.
arXiv:1711.01789v2, February 2018

20. Lee, J.R.: Personal Communication (2019)
21. Manasse, M., McGeoch, L., Sleator, D.: Competitive algorithms for on-line prob-

lems. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC 1988, pp. 322–333. ACM (1988)

http://arxiv.org/abs/1711.01789v2

Approximating the Discrete Time-Cost
Tradeoff Problem with Bounded Depth

Siad Daboul(B), Stephan Held, and Jens Vygen

Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics,
University of Bonn, Bonn, Germany

{daboul,held,vygen}@dm.uni-bonn.de

Abstract. We revisit the deadline version of the discrete time-cost
tradeoff problem for the special case of bounded depth. Such instances
occur for example in VLSI design. The depth of an instance is the num-
ber of jobs in a longest chain and is denoted by d. We prove new upper
and lower bounds on the approximability.

First we observe that the problem can be regarded as a special case of
finding a minimum-weight vertex cover in a d-partite hypergraph. Next,
we study the natural LP relaxation, which can be solved in polynomial
time for fixed d and—for time-cost tradeoff instances—up to an arbi-
trarily small error in general. Improving on prior work of Lovász and
of Aharoni, Holzman and Krivelevich, we describe a deterministic algo-
rithm with approximation ratio slightly less than d

2 for minimum-weight
vertex cover in d-partite hypergraphs for fixed d and given d-partition.
This is tight and yields also a d

2 -approximation algorithm for general
time-cost tradeoff instances.

We also study the inapproximability and show that no better approx-
imation ratio than d+2

4 is possible, assuming the Unique Games Conjec-
ture and P �= NP. This strengthens a result of Svensson [17], who showed
that under the same assumptions no constant-factor approximation
algorithm exists for general time-cost tradeoff instances (of unbounded
depth). Previously, only APX-hardness was known for bounded depth.

1 Introduction

The (deadline version of the discrete) time-cost tradeoff problem was introduced
in the context of project planning and scheduling more than 60 years ago [14].
An instance of the time-cost tradeoff problem consists of a finite set V of jobs, a
partial order (V,≺), a deadline T > 0, and for every job v a finite nonempty set
Sv ⊆ R

2
≥0 of time/cost pairs. An element (t, c) ∈ Sv corresponds to a possible

choice of performing job v with delay t and cost c. The task is to choose a
pair (tv, cv) ∈ Sv for each v ∈ V such that

∑
v∈P tv ≤ T for every chain P

(equivalently: the jobs can be scheduled within a time interval of length T ,
respecting the precedence constraints), and the goal is to minimize

∑
v∈V cv.

The partial order can be described by an acyclic digraph G = (V,E), where
(v, w) ∈ E if and only if v ≺ w. Every chain of jobs corresponds to a path in G,
and vice versa.
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 30–42, 2021.
https://doi.org/10.1007/978-3-030-73879-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_3

Approximating the Discrete Time-Cost Tradeoff Problem 31

De et al. [6] proved that this problem is strongly NP-hard. Indeed, there
is an approximation-preserving reduction from vertex cover [10], which implies
that, unless P = NP, there is no 1.3606-approximation algorithm [8]. Assuming
the Unique Games Conjecture and P �= NP, Svensson [17] could show that no
constant-factor approximation algorithm exists.

Even though the time-cost tradeoff has been extensively studied due to its
numerous practical applications, only few positive results about approxima-
tion algorithms are known. Skutella [16] described an algorithm that works
if all delays are natural numbers in the range {0, . . . , l} and returns an l-
approximation. If one is willing to relax the deadline, one can use Skutella’s
bicriteria approximation algorithm [16]. For a fixed parameter 0 < μ < 1, it
computes a solution in polynomial time such that the optimum cost is exceeded
by a factor of at most 1

1−μ and the deadline T is exceeded by a factor of at
most 1

μ . Unfortunately, for many applications, including VLSI design, relaxing
the deadline is out of the question.

The instances of the time-cost tradeoff problem that arise in the context of
VLSI design usually have a constant upper bound d on the number of vertices
on any path [5]. This is due to a given target frequency of the chip, which can
only be achieved if the logic depth is bounded. For this important special case,
we will describe better approximation algorithms.

The special case d = 2 reduces to weighted bipartite matching and can thus
be solved optimally in polynomial time. However, already the case d = 3 is
strongly NP-hard [6]. The case d = 3 is even APX-hard, because Děıneko and
Woeginger [7] devised an approximation-preserving reduction from vertex cover
in cubic graphs (which is known to be APX-hard [2]).

On the other hand, it is easy to obtain a d-approximation algorithm: either
by applying the Bar-Yehuda–Even algorithm for set covering [3,5] or (for fixed
d) by simple LP rounding; see the end of Sect. 3.

As we will observe in Sect. 3, the time-cost tradeoff problem with depth d
can be viewed as a special case of finding a minimum-weight vertex cover in
a d-partite hypergraph. Lovász [15] studied the unweighted case and proved
that the natural LP has integrality gap d

2 . Aharoni, Holzman and Krivelevich
[1] showed this ratio for more general unweighted hypergraphs by randomly
rounding a given LP solution. Guruswami, Sachdeva and Saket [11] proved that
approximating the vertex cover problem in d-partite hypergraphs with a better
ratio than d

2 − 1 + 1
2d is NP-hard, and better than d

2 is NP-hard if the Unique
Games Conjecture holds.

2 Results and Outline

In this paper, we first reduce the time-cost tradeoff problem with depth d to
finding a minimum-weight vertex cover in a d-partite hypergraph. Then we sim-
plify and derandomize the LP rounding algorithm of Lovász [15] and Aharoni
et al. [1] and show that it works for general nonnegative weights. This yields
a simple deterministic d

2 -approximation algorithm for minimum-weight vertex

32 S. Daboul et al.

cover in d-partite hypergraphs for fixed d, given d-partition, and given LP solu-
tion. To obtain a d

2 -approximation algorithm for the time-cost tradeoff problem,
we develop a slightly stronger bound for rounding the LP solution, because the
vertex cover LP can only be solved approximately (unless d is fixed). This will
imply our first main result:

Theorem 1. There is a polynomial-time d
2 -approximation algorithm for the

time-cost tradeoff problem, where d denotes the depth of the instance.

The algorithm is based on rounding an approximate solution to the vertex
cover LP. The basic idea is quite simple: we partition the jobs into levels and
carefully choose an individual threshold for every level, then we accelerate all
jobs for which the LP solution is above the threshold of its level. We get a
solution that costs slightly less than d

2 times the LP value. Since the integrality
gap is d

2 [1,15] (even for time-cost tradeoff instances; see Sect. 3), this ratio is
tight.

The results by [11] suggest that this approximation guarantee is essentially
best possible for general instances of the vertex cover problem in d-partite hyper-
graphs. Still, better algorithms might exist for special cases such as the time-cost
tradeoff problem. However, we show that much better approximation algorithms
are unlikely to exist even for time-cost tradeoff instances. More precisely:

Theorem 2. Let d ∈ N with d ≥ 2 and ρ < d+2
4 be constants. Assuming

the Unique Games Conjecture and P �= NP, there is no polynomial-time ρ-
approximation algorithm for time-cost tradeoff instances with depth d.

This gives strong evidence that our approximation algorithm is best possible
up to a factor of 2. To obtain our inapproximability result, we leverage Svens-
son’s theorem on the hardness of vertex deletion to destroy long paths in an
acyclic digraph [17] and strengthen it to instances of bounded depth by a novel
compression technique.

Section 3 introduces the vertex cover LP and explains why the time-cost
tradeoff problem with depth d can be viewed as a special case of finding a
minimum-weight vertex cover in a d-partite hypergraph. In Sect. 4 we describe
our approximation algorithm, which rounds a solution to this LP. Then, in
Sects. 5 and 6 we prove our inapproximability result. We omit some relatively
easy proofs due to lack of space; see arXiv:2011.02446 for the full version.

3 The Vertex Cover LP

Let us define the depth of an instance of the time-cost tradeoff problem to be
the number of jobs in the longest chain in (V,≺), or equivalently the number
of vertices in the longest path in the associated acyclic digraph G = (V,E). We
write n = |V |, and the depth will be denoted by d throughout this paper.

First, we note that one can restrict attention to instances with a simple
structure, where every job has only two alternatives and the task is to decide
which jobs to accelerate. This has been observed already by Skutella [16]. The
following definition describes the structure that we will work with.

Approximating the Discrete Time-Cost Tradeoff Problem 33

Definition 3. An instance I of the time-cost tradeoff problem is called nor-
malized if for each job v ∈ V the set of time/cost pairs is of the form
Sv = {(0, c), (t, 0)} for some c, t ∈ R+ ∪ {∞}.

In a normalized instance, every job has only two possible ways of being
executed. The slow execution is free and the fast execution has a delay of zero.
Therefore, the time-cost tradeoff problem is equivalent to finding a subset F ⊆ V
of jobs that are to be executed fast. The objective is to minimize the total cost of
jobs in F . Note that for notational convenience we allow one of the alternatives
to have infinite delay or cost, but of course such an alternative can never be
chosen in a feasible solution of finite cost, and it could be as well excluded.

We call two instances I and I ′ of the time-cost tradeoff problem equivalent
if any feasible solution to I can be transformed in polynomial time to a feasible
solution to I ′ with the same cost and vice-versa.

Proposition 4 (Skutella [16]). For any instance I of the time-cost tradeoff
problem one can construct an equivalent normalized instance I ′ of the same
depth in polynomial time.

The structure of only allowing two execution times per job gives rise to a
useful property, as we will now see. As noted above, for a normalized instance I
the solutions correspond to subsets of jobs F ⊆ V to be accelerated. Consider the
clutter C of inclusion-wise minimal feasible solutions to I. Denote by B = bl(C)
the blocker of C, i.e., the clutter over the same ground set V whose members
are minimal subsets of jobs that have nonempty intersection with every element
of C.

Let T > 0 be the deadline of our normalized time-cost tradeoff instance and
tv denote the slow delay of executing job v ∈ V . By the properties of a normalized
instance, the elements of B are the minimal chains P ⊆ V with

∑
v∈P tv > T .

The well-known fact that bl(bl(C)) = C [9,12] immediately implies the next
proposition, which also follows from an elementary calculation.

Proposition 5. A set F ⊆ V is a feasible solution to a normalized instance I
of the time-cost tradeoff problem if and only if P ∩ F �= ∅ for all P ∈ B. �

Therefore, our problem is to find a minimum-weight vertex cover in the hyper-
graph (V,B). If our time-cost tradeoff instance has depth d, this hypergraph is
d-partite1 and a d-partition can be computed easily:

Proposition 6. Given a time-cost tradeoff instance with depth d, we can par-
tition the set of jobs in polynomial time into sets V1, . . . , Vd (called layers) such
that v ≺ w implies that v ∈ Vi and w ∈ Vj for some i < j. Then, |P ∩ Vi| ≤ 1
for all P ∈ B and i = 1, . . . , d. �

1 A hypergraph (V, B) is d-partite if there exists a partition V = V1∪̇V2 . . . ∪̇Vd such
that |P ∩Vi| ≤ 1 for all P ∈ B and i ∈ {1, . . . , d}. We call {V1, . . . , Vd} a d-partition.
We do not require the hypergraph to be d-uniform.

34 S. Daboul et al.

This also leads to a simple description as an integer linear program. The
feasible solutions correspond to the vectors x ∈ {0, 1}V with

∑
v∈P xv ≥ 1 for

all P ∈ B. We consider the following linear programming relaxation, which we
call the vertex cover LP :

minimize:
∑

v∈V

cv · xv

subject to:
∑

v∈P

xv ≥ 1 for all P ∈ B (1)

xv ≥ 0 for all v ∈ V.

Let LP denote the value of this linear program (for a given instance). It is
easy to see that the Partition problem reduces to the separation problem of
this linear program. Hence:

Proposition 7. If the vertex cover LP (1) can be solved in polynomial time for
normalized time-cost tradeoff instances, then P = NP.

However, we can solve the LP up to an arbitrarily small error; in fact, there
is a fully polynomial approximation scheme (as essentially shown by [13]):

Proposition 8. For normalized instances of the time-cost tradeoff problem with
bounded depth, the vertex cover LP (1) can be solved in polynomial time. For
general normalized instances and any given ε > 0, a feasible solution of cost at
most (1 + ε)LP can be found in time bounded by a polynomial in n and 1

ε .

We remark that the d-partite hypergraph vertex cover instances given by [1]
can be also considered as normalized instances of the time-cost tradeoff problem.
This shows that the integrality gap of LP (1) is at least d

2 .
Since |P | ≤ d for all P ∈ B, the Bar-Yehuda–Even algorithm [3] can be used

to find an integral solution to the time-cost tradeoff instance of cost at most
d · LP, and can be implemented to run in polynomial time because for integral
vectors x there is a linear-time separation oracle [5]. A d-approximation can also
be obtained by rounding up all xv ≥ 1

d . In the following we will improve on this.

4 Rounding Fractional Vertex Covers in d-Partite
Hypergraphs

In this section, we show how to round a fractional vertex cover in a d-partite
hypergraph with given d-partition. Together with the results of the previous
section, this yields an approximation algorithm for time-cost tradeoff instances
and will prove Theorem 1.

Our algorithm does not need an explicit list of the edge set of the hypergraph,
which is interesting if d is not constant and there can be exponentially many
hyperedges. The algorithm only requires the vertex set, a d-partition, and a

Approximating the Discrete Time-Cost Tradeoff Problem 35

feasible solution to the LP (a fractional vertex cover). For normalized instances
of the time-cost tradeoff problem such a fractional vertex cover can be obtained
as in Proposition 8, and a d-partition by Proposition 6.

Our algorithm builds on two previous works for the unweighted d-partite
hypergraph vertex cover problem. For rounding a given fractional solution,
Lovász [15] obtained a deterministic polynomial-time (d

2 + ε)-approximation
algorithm for any ε > 0. Based on this, Aharoni, Holzman and Krivelevich
[1] described a randomized recursive algorithm that works in more general
unweighted hypergraphs. We simplify their algorithm for d-partite hypergraphs,
which will allow us to obtain a deterministic polynomial-time algorithm that
also works for the weighted problem and always computes a d

2 -approximation.
At the end of this section, we will slightly improve on this guarantee in order to
compensate for an only approximate LP solution.

We will first describe the algorithm in the even simpler randomized form. This
algorithm computes a random threshold for each layer to determine whether a
variable xv is rounded up or down. We will use the following probability distri-
bution, which is easily seen to exist:

Lemma 9. For any d ≥ 2, there is a probability distribution that selects
a1, . . . , ad, such that

∑d
i=1 ai = 1 and ai is uniformly distributed in [2(i−1)

d2 , 2i
d2].

For any i, j such that |i − j| ≥ 3, the random variables corresponding to ai and
aj are independent.

Theorem 10. Let x be a fractional vertex cover in a d-partite hypergraph with
given d-partition. There is a randomized linear-time algorithm that computes an
integral solution x̄ of expected cost E[

∑
v∈V cv · x̄v] ≤ d

2

∑
v∈V cv · xv.

Proof. Let V1, . . . , Vd be the given d-partition of our hypergraph (V,B), so |P ∩
Vi| ≤ 1 for all i = 1, . . . , d and every hyperedge P ∈ B. We write l(v) = i if
v ∈ Vi and call Vi a layer of the given hypergraph.

Now consider the following randomized algorithm, which is also illustrated
in Fig. 1: Choose a random permutation σ : {1, . . . , d} → {1, . . . , d} and choose
random numbers ai uniformly distributed in

[2(σ(i)−1)
d2 , 2σ(i)

d2

]
for i = 1, . . . , d

such that
∑d

i=1 ai = 1, as stated in Lemma 9. Then, for all v ∈ V , set x̄v := 1
if xv ≥ al(v) and x̄v := 0 if xv < al(v).

To show that x̄ is a feasible solution, observe that any hyperedge P ∈ B has∑
v∈P xv ≥ 1 =

∑d
i=1 ai ≥ ∑

v∈P al(v) and hence xv ≥ al(v) for some v ∈ P .
It is also easy to see that the probability that x̄v is set to 1 is exactly

min{1, d
2xv}. Indeed, if xv ≥ 2

d , we surely set x̄v = 1. Otherwise, xv ∈
[2(j−1)

d2 , 2j
d2

]
for some j ∈ {1, . . . , d}; then we set x̄v = 1 if and only if

σ(l(v)) < j or (σ(l(v)) = j and al(v) ≤ xv), which happens with probability
j−1

d + 1
d (xv − 2(j−1)

d2)d2

2 = d
2xv. Hence the expected cost E[

∑
v∈V cv · x̄v] is at

most d
2

∑
v∈V cv · xv. �

This algorithm can be derandomized using bipartite matching to compute σ:

36 S. Daboul et al.

a1

a2

a3 a4

a5
s1

s4
s3

s2
s5

2
5

0

1

V1 V2 V3 V4 V5

σ(i)
1i 2 3 4 5
3 5 2 1 4

Fig. 1. A sketch of thresholds a1, . . . , a5 chosen by our randomized algorithm in The-
orem 10 for the case d = 5. The circles represent vertices in the hypergraph, drawn by
their position in the partition and the value of their corresponding variable in the LP.
Suppose the permutation (σ(1), . . . , σ(5)) = (3, 5, 2, 1, 4) is chosen. Then the thresh-

olds ai are randomly chosen in the light blue intervals
[2(σ(i)−1)

d2 , 2σ(i)
d2

]
; moreover, the

thresholds a1, a3, a4 are chosen independently of the thresholds a2, a5, as indicated by
their color. The points above the thresholds are filled; these variables are rounded up to
1, while the empty circles represent variables that are rounded down to 0. Finally, the
figure also shows “slack” values s1, . . . , s5, telling how much each threshold could be
lowered without changing the solution returned by our algorithm. These will play a
key role to improve the approximation guarantee in Theorem 12. (Color figure online)

Theorem 11. Let x be a fractional vertex cover in a d-partite hypergraph with
given d-partition. There is a deterministic algorithm that computes an integral
solution x̄ of cost

∑
v∈V cv · x̄v ≤ d

2

∑
v∈V cv · xv in time O(n3).

We omit the proof here. In order to obtain a true d
2 -approximation algorithm

(and thus prove Theorem 1), we need a slightly stronger bound.

Theorem 12. Let d ≥ 4. Let x be a fractional vertex cover in a d-partite
hypergraph with given d-partition. There is a randomized linear-time algo-
rithm that computes an integral solution x̄ of expected cost

∑
v∈V cv · x̄v ≤

(d
2 − d

64n)
∑

v∈V cv · xv.

Proof. First we choose the permutation σ and thresholds a1, . . . , ad with sum∑d
i=1 ai = 1 randomly as above such that the thresholds are independent except

within groups of two or three. For i ∈ {1, . . . , d} denote the slack of level i
by si := min{ 1

d , ai, ai − max{xv : v ∈ Vi, xv < ai}}. The slack is always
non-negative. Lowering the threshold ai by less than si would yield the same

Approximating the Discrete Time-Cost Tradeoff Problem 37

solution x̄. The reason for cutting off the slack at 1
d will become clear only

below.
Next we randomly select one level λ ∈ {1, . . . , d}. Let Λ be the corresponding

group (cf. Lemma 9), i.e., λ ∈ Λ ⊆ {1, . . . , d}, |Λ| ≤ 3, and ai is independent of
aλ whenever i /∈ Λ. Now raise the threshold aλ to a′

λ = aλ +
∑

i/∈Λ si. Set a′
i = ai

for i ∈ {1, . . . , d} \ {λ}.
As before, for all v ∈ V , set x̄v := 1 if xv ≥ a′

l(v) and x̄v := 0 if xv < a′
l(v).

We first observe that x̄ is feasible. Indeed, if there were any hyperedge P ∈ B
with xv < a′

l(v) for all v ∈ P , we would get 1 ≤ ∑
v∈P xv <

∑
v∈P :l(v)/∈Λ(al(v) −

sl(v)) +
∑

v∈P :l(v)∈Λ a′
λ ≤ ∑

i/∈Λ(ai − si) +
∑

i∈Λ\{λ} ai + a′
λ =

∑d
i=1 ai = 1, a

contradiction.
We now bound the expected cost of x̄. Let v ∈ V . With probability d−1

d
we have l(v) �= λ and, conditioned on this, an expectation E [x̄v | λ �= l(v)] =
d
2 min{xv, 2

d} ≤ d
2xv as before. Now we condition on l(v) = λ and in addition, for

any S with 0 ≤ S ≤ d−2
d , on

∑
i/∈Λ si = S; note that aλ is independent of S. The

probability that x̄v is set to 1 is d
2 max{0, min{xv −S, 2

d}} ≤ xv
2
d+S

≤ d
2 (1−S)xv

in this case. In the last inequality we used S ≤ d−2
d , and this was the reason to

cut off the slacks. In total we have for all v ∈ V :

E [x̄v] =
d − 1

d
· E[x̄v | λ �= l(v)]

+
1
d

·
∫ d−2

d

0

P

[
∑

i/∈Λ

si = S | λ = l(v)

]

· E
[

x̄v | λ = l(v),
∑

i/∈Λ

si = S

]

dS

≤ d − 1
d

· d

2
xv +

1
d

·
∫ d−2

d

0

P

[
∑

i/∈Λ

si = S | λ = l(v)

]

· d

2
(1 − S)xv dS

≤ d

2

(

1 − 1
d

∫ d−2
d

0

P

[
∑

i/∈Λ

si = S | λ = l(v)

]

· S dS

)

· xv

=
d

2

(

1 − 1
d

· E [S | λ = l(v)]
)

xv.

Let Λ[v] be the set Λ in the event λ = l(v). We estimate

E [S | λ = l(v)] =
∑

i/∈Λ(v)

E [si] ≥
∑

i/∈Λ(v)

1
d(ni + 1)

≥ (d − 3)2

d(n + d)
≥ d

32n
.

Here ni = |Vi|, and the first inequality holds because E [si] is maximal if {xv :
v ∈ Vi} = { 2j

d(ni+1) : j = 1, . . . , ni}. We conclude E
[∑

v∈V cv · x̄v

] ≤ (d
2 −

d
64n)

∑
v∈V cv · xv. �

Let us now derandomize this algorithm. This is easy as we can afford to lose
a little again.

38 S. Daboul et al.

Theorem 13. Let d ≥ 4. Let x be a fractional vertex cover in a d-partite hyper-
graph with given d-partition. There is a deterministic algorithm that computes
an integral solution x̄ of cost

∑
v∈V cv · x̄v ≤ (d

2 − d
128n)

∑
v∈V cv · xv in time

O(n3).

Proof. (Sketch) Round down the costs to integer multiples of dLP
128n2 and com-

pute the best possible choice of threshold values ai for i ∈ {1, . . . , d} such
that

∑d
j=1 aj ≤ 1 and

∑d
j=1

∑
v∈Vj ,xv≥aj

c′
v is minimized; this is a sim-

ple dynamic program. By Theorem 12 there is such a solution with cost∑d
j=1

∑
v∈Vj ,xv≥aj

cv ≤ (d
2 − d

64n)LP. �

As explained above, together with Propositions 6 and 8 (with ε = 1
128n),

Theorem 13 implies Theorem 1.

5 Inapproximability

Guruswami, Sachdeva and Saket [11] proved that approximating the vertex cover
problem in d-partite hypergraphs with a better ratio than d

2 is NP-hard under
the Unique Games Conjecture. We show that even for the special case of time-
cost tradeoff instances2, the problem is hard to approximate by a factor of d+2

4 .
(Theorem 2). Instead of starting from k-uniform hypergraphs like [11], we devise
a reduction from the vertex deletion problem in acyclic digraphs, which Svensson
[17] called DVD.3 Let k be a positive integer; then DVD(k) is defined as follows:
given an acyclic digraph, compute a minimum-cardinality set of vertices whose
deletion destroys all paths with k vertices. This problem is easily seen to admit
a k-approximation algorithm.

Svensson proved that anything better than this simple approximation algo-
rithm would solve the unique games problem:

Theorem 14 ([17]). Let k ∈ N with k ≥ 2 and ρ < k be constants. Let OPT
denote the size of an optimum solution for a given DVD(k) instance. Assuming
the Unique Games Conjecture it is NP-hard to compute a number l ∈ R+ such
that l ≤ OPT ≤ ρl.

This is the starting point of our proof. Svensson [17] already observed that
DVD(k) can be regarded as a special case of the time-cost tradeoff problem.
Note that this does not imply Theorem 2 because the hard instances of DVD(k)
constructed in the proof of Theorem 14 have unbounded depth even for fixed
k. (Recall that the depth of an acyclic digraph is the number of vertices in a
longest path.) The following is a variant (and slight strengthening) of Svensson’s
observation.

2 Note that this is really a special case: for example the 3-partite hypergraph with
vertex set {1, 2, 3, 4, 5, 6} and hyperedges {1, 4, 6}, {2, 3, 6}, and {2, 4, 5} does not
result from a time-cost tradeoff instance of depth 3 with our construction.

3 An undirected version of this problem has been called k-path vertex cover [4] or vertex
cover Pk [18].

Approximating the Discrete Time-Cost Tradeoff Problem 39

p

q

r s

1

2

3 p,3

q,2

q,3

r,2

r,3

s,1

s,3

TCTl(v (

r,1

s,2p,2

p,1 q,1

DVD(k)

Fig. 2. Lemma 15: an instance of DVD(k) is transformed into an equivalent instance of
the time-cost tradeoff problem. Blue squares represent jobs with fixed execution time.
(Color figure online)

Lemma 15. Any instance of DVD(k) (for any k) can be transformed in linear
time to an equivalent instance of the time-cost tradeoff problem, with the same
depth and the same optimum value.

Proof. Let G = (V,E) be an instance of DVD(k), an acyclic digraph, say of
depth d. Let l(v) ∈ {1, . . . , d} for v ∈ V such that l(v) < l(w) for all (v, w) ∈ E.
Let J := {(v, i) : v ∈ V, i ∈ {1, . . . , d}} be the set of jobs of our time-cost tradeoff
instance. Job (v, i) must precede job (w, j) if (v = w and i < j) or ((v, w) ∈ E
and l(v) ≤ i < j). Let ≺ be the transitive closure of these precedence constraints.
For v ∈ V , the job (v, l(v)) is called variable and has a fast execution time 0 at
cost 1 and a slow execution time d + 1 at cost 0. All other jobs are fixed ; they
have a fixed execution time d at cost 0. The deadline is d2 + k − 1. See Fig. 2.
Then, any set of variable jobs whose acceleration constitutes a feasible solution
of this time-cost tradeoff instance corresponds to a set of vertices whose deletion
destroys all paths in G with k vertices, and vice versa. �

Therefore a hardness result for DVD(k) for bounded depth instances transfers
to a hardness result for the time-cost tradeoff problem with bounded depth. We
will show the following strengthening of Theorem 14:

Theorem 16. Let k, d ∈ N with 2 ≤ k ≤ d and ρ < k(d+1−k)
d be constants.

Let OPT denote the size of an optimum solution for a given DVD(k) instance.
Assuming the Unique Games Conjecture it is NP-hard to compute a number
l ∈ R+ such that l ≤ OPT ≤ ρl.

It is easy to see that Theorem 16 and Lemma 15 imply Theorem 2. Indeed, let
d ∈ N with d ≥ 2 and ρ < d+2

4 , and suppose that a ρ-approximation algorithm A
exists for time-cost tradeoff instances of depth d. Let k := �d+1

2 � and consider an
instance of DVD(k) with depth d. Transform this instance to an equivalent time-
cost tradeoff instance by Lemma 15 and apply algorithm A. This constitutes a
ρ-approximation algorithm for DVD(k) with depth d. Since ρ < d+2

4 ≤ k(d+1−k)
d ,

Theorem 16 then implies that the Unique Games Conjecture is false or P = NP.
It remains to prove Theorem 16, which will be the subject of the next section.

40 S. Daboul et al.

6 Reducing Vertex Deletion to Constant Depth

In this section we prove Theorem 16. The idea is to reduce the depth of a
digraph by transforming it to another digraph with small depth but related
vertex deletion number. Let k, d ∈ N with 2 ≤ k ≤ d, and let G be a digraph.
We construct an acyclic digraph Gd of depth at most d by taking the tensor
product with the acyclic tournament on d vertices: Gd = (V d, Ed), where V d =
V × {1, . . . , d} and Ed = {((v, i), (w, j)) : (v, w) ∈ E and i < j}. It is obvious
that Gd has depth d. Here is our key lemma:

Lemma 17. Let G be an acyclic directed graph and k, d ∈ N with 2 ≤ k ≤ d. If
we denote by OPT(G, k) the minimum number of vertices of G hitting all paths
with k vertices, then

(d + 1 − k) · OPT(G, k) ≤ OPT(Gd, k) ≤ d · OPT(G, k). (2)

Lemma 17, together with Theorem 14, immediately implies Theorem 16:
assuming a ρ-approximation algorithm for DVD(k) instances with depth d, with
ρ < k(d+1−k)

d , we can compute OPT(G, k) up to a factor less than k for any
digraph G. By Theorem 14, this would contradict the Unique Games Conjecture
or P �= NP. One can show that the bounds are sharp.

Proof. (Lemma 17) Let G be an acyclic digraph. The upper bound of (2) is
trivial: for any set W ⊆ V that hits all k-vertex paths in G we can take X :=
W × {1, . . . , d} to obtain a solution to the DVD(k) instance Gd.

To show the lower bound, we fix a minimal solution X to the DVD(k) instance
Gd. Let Q be a path in Gd with at most k vertices. We write start(Q) = i if Q
begins in a vertex (v, i). We define Q as the set of paths in Gd with exactly k
vertices. For Q ∈ Q let lasthit(Q) denote the last vertex of Q that belongs to
X. For x ∈ X we define

ϕ(x) := max{start(Q) : Q ∈ Q, lasthit(Q) = x}.

Note that this is well-defined due to the minimality of X, and 1 ≤ ϕ(x) ≤ d+1−k
for all x ∈ X. We will show that for j = 1, . . . , d + 1 − k,

Sj := {v ∈ V : (v, i) ∈ X and ϕ((v, i)) = j for some i ∈ {1, . . . , d}}
hits all k-vertex paths in G. This shows the lower bound in (2) because then
OPT(G, k) ≤ mind+1−k

j=1 |Sj | ≤ |X|
d+1−k .

Let P be a path in G with k vertices v1, . . . , vk in this order. Consider d
“diagonal” copies D1, . . . , Dd of (suffixes of) P in Gd: the path Di consists of
the vertices (vs, s+ i−k), . . . , (vk, i), where s = max{1, k +1− i}. Note that the
paths D1, . . . , Dk−1 have fewer than k vertices.

We show that for each j = 1, . . . , d + 1 − k, at least one of these diagonal
paths contains a vertex x ∈ X with ϕ(x) = j. This implies that Sj ∩ P �= ∅ and
concludes the proof.

Approximating the Discrete Time-Cost Tradeoff Problem 41

D

Di

i+1

j+1

j

Q

Q′

x′

x

Fig. 3. The Claim in the proof of Lemma 17 asserts that if Di+1 contains a vertex
x ∈ X with ϕ(x) = j + 1, then Di contains a vertex x′ ∈ X with ϕ(x′) ≥ j. The
upper diagonal Di+1 is colored in light green, the lower diagonal Di is depicted in dark
green. We start by selecting a path Q with lasthit(Q) ∈ Di+1 and start(Q) = j + 1.
This path is depicted on the left; the vertex x = lasthit(Q) is highlighted in red.
We construct a path Q′ (shown on the right) such that x′ = lasthit(Q′) ∈ Di and
start(Q′) = start(Q) − 1. This path Q′ results from appending the end of path Q to
an appropriate subpath of the next lower diagonal Di. (Color figure online)

First, Dd contains a vertex in x ∈ X with ϕ(x) = d+1−k, namely lasthit(Dd).
Now we show for i = 1, . . . , d − 1 and j = 1, . . . , d − k:

Claim: If Di+1 contains a vertex x ∈ X with ϕ(x) = j + 1, then Di contains a
vertex x′ ∈ X with ϕ(x′) ≥ j.

This Claim implies the theorem because D1 consists of a single vertex (vk, 1),
and if it belongs to X, then ϕ((vk, 1)) = 1.

To prove the Claim (see Fig. 3 for an illustration), let x = (vh, l(x)) ∈ X ∩
Di+1 and ϕ(x) ≥ j+1, and let x be the last such vertex on Di+1. We have ϕ(x) ≥
start(Di+1) for otherwise we have start(Di+1) > 1, so Di+1 contains k vertices
and we should have chosen x = lasthit(Di+1); note that ϕ(lasthit(Di+1)) ≥
start(Di+1).

Let Q ∈ Q be a path attaining the maximum in the definition of ϕ(x). So
start(Q) = ϕ(x) and lasthit(Q) = x. Suppose x is the p-th vertex of Q; then

p ≤ 1 + l(x) − ϕ(x) (3)

because Q starts on level ϕ(x), rises at least one level with every vertex, and
reaches level l(x) at its p-th vertex.

Now consider the following path Q′. It begins with part of the diagonal Di,
namely (vh+1−p, l(x)−p), . . . , (vh, l(x)−1), and continues with the k−p vertices
from the part of Q after x. Note that by (3)

l(x) − p ≥ ϕ(x) − 1 ≥ max{j, start(Di+1) − 1} ≥ max{1, start(Di)},

42 S. Daboul et al.

so Q′ is well-defined. The second part of Q′ does not contain any vertex from
X because lasthit(Q) = x. Hence x′ := lasthit(Q′) is in the diagonal part of Q′,
i.e., in Di. By definition, ϕ(x′) ≥ start(Q′) = l(x) − p ≥ j. �

Acknowledgement. We thank Nikhil Bansal for fruitful discussions at an early stage
of this project.

References

1. Aharoni, R., Holzman, R., Krivelevich, M.: On a theorem of Lovász on covers in
r-partite hypergraphs. Combinatorica 16(2), 149–174 (1996)

2. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret.
Comput. Sci. 237(1–2), 123–134 (2000)

3. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2(2), 198–203 (1981)

4. Brešar, B., Kardoš, F., Katrenič, J., Semanǐsin, G.: Minimum k-path vertex cover.
Discrete Appl. Math. 159(12), 1189–1195 (2011)

5. Daboul, S., Held, S., Vygen, J., Wittke, S.: An approximation algorithm for thresh-
old voltage optimization. TODAES 23(6), 1–16 (2018). Article no. 68

6. De, P., Dunne, E.J., Ghosh, J.B., Wells, C.E.: Complexity of the discrete time-cost
tradeoff problem for project networks. Oper. Res. 45(2), 302–306 (1997)

7. Děıneko, V.G., Woeginger, G.J.: Hardness of approximation of the discrete time-
cost tradeoff problem. OR Lett. 29(5), 207–210 (2001)

8. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.
Math. 162(1), 439–485 (2005)

9. Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. J. Comb. Theory 8(3), 299–306
(1970)

10. Grigoriev, A., Woeginger, G.J.: Project scheduling with irregular costs: complexity,
approximability, and algorithms. Acta Inf. 41(2), 83–97 (2004)

11. Guruswami, V., Sachdeva, S., Saket, R.: Inapproximability of minimum vertex
cover on k-uniform k-partite hypergraphs. SIAM J. Discrete Math. 29(1), 36–58
(2015)

12. Isbell, J.R.: A class of simple games. Duke Math. J. 25(3), 423–439 (1958)
13. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-

dimensional bin-packing problem. In: FOCS 1982, pp. 312–320 (1982)
14. Kelley, J.E., Walker, M.R.: Critical-path planning and scheduling. In: Proceedings

of the AIEE-ACM 1959, pp. 160–173 (1959)
15. Lovász, L.: On minmax theorems of combinatorics. Mathematikai Lapok 26, 209–

264 (1975). Doctoral thesis (in Hungarian)
16. Skutella, M.: Approximation algorithms for the discrete time-cost tradeoff problem.

Math. Oper. Res. 23(4), 909–929 (1998)
17. Svensson, O.: Hardness of vertex deletion and project scheduling. Theory Comput.

9(24), 759–781 (2013)
18. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover P3

problem. Theoret. Comput. Sci. 412(50), 7044–7048 (2011)

Sum-of-Squares Hierarchies for Binary
Polynomial Optimization

Lucas Slot1(B) and Monique Laurent1,2

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{lucas,monique}@cwi.nl

2 Tilburg University, Tilburg, The Netherlands

Abstract. We consider the sum-of-squares hierarchy of approximations
for the problem of minimizing a polynomial f over the boolean hyper-
cube B

n = {0, 1}n. This hierarchy provides for each integer r ∈ N a lower
bound f(r) on the minimum fmin of f , given by the largest scalar λ for
which the polynomial f−λ is a sum-of-squares on B

n with degree at most
2r. We analyze the quality of these bounds by estimating the worst-case
error fmin − f(r) in terms of the least roots of the Krawtchouk polyno-
mials. As a consequence, for fixed t ∈ [0, 1/2], we can show that this
worst-case error in the regime r ≈ t · n is of the order 1/2 − √

t(1 − t) as
n tends to ∞. Our proof combines classical Fourier analysis on B

n with
the polynomial kernel technique and existing results on the extremal
roots of Krawtchouk polynomials. This link to roots of orthogonal poly-
nomials relies on a connection between the hierarchy of lower bounds
f(r) and another hierarchy of upper bounds f (r), for which we are also
able to establish the same error analysis. Our analysis extends to the
minimization of a polynomial over the q-ary cube (Z/qZ)n.

Keywords: Binary polynomial optimization · Lasserre hierarchy ·
Sum-of-squares polynomials · Fourier analysis · Krawtchouk
polynomials · Polynomial kernels · Semidefinite programming

1 Introduction

We consider the problem of minimizing a polynomial f ∈ R[x] of degree d ≤ n
over the n-dimensional boolean hypercube B

n = {0, 1}n, i.e., of computing

fmin := min
x∈Bn

f(x). (1)

This optimization problem is NP-hard in general, already for d = 2. Indeed, as
is well-known, one can model an instance of max-cut on the complete graph
Kn with edge weights w = (wij) as a problem of the form (1) by setting:

f(x) = −
∑

1≤i<j≤n

wij(xi − xj)2,

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 43–57, 2021.
https://doi.org/10.1007/978-3-030-73879-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_4

44 L. Slot and M. Laurent

As another example one can compute the stability number α(G) of a graph
G = (V,E) via the program

α(G) = max
x∈B|V |

∑

i∈V

xi −
∑

{i,j}∈E

xixj .

One may replace the boolean cube B
n = {0, 1}n by the discrete cube {±1}n, in

which case maximizing a quadratic polynomial xT Ax has many other applica-
tions, e.g., to max-cut [13], to the cut norm [1], or to correlation clustering [4].
Approximation algorithms are known depending on the structure of the matrix
A (see [1,6,13]), but the problem is known to be NP-hard to approximate within
any factor less than 13/11 [2].

Problem (1) also permits to capture polynomial optimization over a general
region of the form B

n ∩P where P is a polyhedron [17] and thus a broad range of
combinatorial optimization problems. The general intractability of problem (1)
motivates the search for tractable bounds on the minimum value in (1). For this,
several lift-and-project methods have been proposed, based on lifting the prob-
lem to higher dimension by introducing new variables modelling higher degree
monomials. Such methods also apply to constrained problems on B

n where the
constraints can be linear or polynomial; see, e.g., [3,18,27,33,36,40]. In [21] it is
shown that the sum-of-squares hierarchy of Lasserre [18] in fact refines the other
proposed hierarchies. As a consequence the sum-of-squares approach for poly-
nomial optimization over B

n has received a great deal of attention in the recent
years and there is a vast literature on this topic. Among many other results, let
us just mention its use to show lower bounds on the size of semidefinite pro-
gramming relaxations for combinatorial problems such as max-cut, maximum
stable sets and TSP in [25], and the links to the Unique Game Conjecture in [5].
For background about the sum-of-squares hierarchy applied to polynomial opti-
mization over general semi-algebraic sets we refer to [16,19,23,30] and further
references therein.

This motivates the interest in gaining a better understanding of the quality
of the bounds produced by the sum-of-squares hierarchy. Our objective in this
paper is to investigate such an error analysis for this hierarchy applied to binary
polynomial optimization as in (1).

1.1 The Sum-of-Squares Hierarchy on the Boolean Cube

The sum-of-squares hierarchy was introduced by Lasserre [16,18] and Parrilo
[30] as a tool to produce tractable lower bounds for polynomial optimization
problems. When applied to problem (1) it provides for any integer r ∈ N a lower
bound f(r) ≤ fmin on fmin, given by:

f(r) := sup
λ∈R

{f(x) − λ is a sum-of-squares of degree at most 2r on B
n} . (2)

Throughout, Σr denotes the set of sum-of-squares polynomials with degree at
most 2r, i.e., of the form

∑
i p2i with pi ∈ R[x]r. In program (2), the condition

Sum-of-Squares Hierarchies for Binary Polynomial Optimization 45

‘f(x)−λ is a sum-of-squares of degree at most 2r on B
n’ means that there exists

a sum-of-squares polynomial s ∈ Σr such that f(x) − λ = s(x) for all x ∈ B
n,

or, equivalently, that the polynomial f −λ− s belongs to the ideal generated by
the polynomials x1 − x2

1, . . . , xn − x2
n.

As sums of squares of polynomials can be modelled using semidefinite pro-
gramming, problem (2) can be reformulated as a semidefinite program of size
polynomial in n for fixed r [16,30]. In the case of unconstrained boolean optimiza-
tion, the resulting semidefinite program is known to have an optimum solution
with small coefficients (see [29] and [31]). For fixed r, the parameter f(r) may
therefore be computed efficiently (up to any precision).

The bounds f(r) have finite convergence: f(r) = fmin for r ≥ n [18]. In fact,
it has been shown in [34] that the bound f(r) is exact already for 2r ≥ n+d− 1.
That is,

f(r) = fmin for r ≥ n + d − 1
2

. (3)

In addition, it is shown in [34] that the bound f(r) is exact for 2r ≥ n+d−2 when
the polynomial f has only monomials of even degree. This extends an earlier
result of [12] shown for quadratic forms (d = 2), which applies in particular
to the case of max-cut. Furthermore, this result is tight for max-cut, since
one needs to go up to order 2r ≥ n in order to reach finite convergence (in the
cardinality case when all edge weights are 1) [22]. Similarly, the result (3) is tight
when d is even and n is odd [15].

The main contribution of this work is an analysis of the quality of the bounds
f(r) when 2r < n + d − 1. The following is our main result, which expresses the
error of the bound f(r) in terms of the least roots of Krawtchouk polynomials.

Theorem 1. Fix d ≤ n and let f ∈ R[x] be a polynomial of degree d. For
r, n ∈ N, let ξn

r be the least root of the degree r Krawtchouk polynomial (11) with
parameter n. Then, if (r + 1)/n ≤ 1/2 and d(d + 1) · (ξn

r+1/n) ≤ 1/2, we have:

fmin − f(r)
‖f‖∞

≤ 2Cd · ξn
r+1/n. (4)

Here Cd > 0 is an absolute constant depending only on d and we set ‖f‖∞ :=
maxx∈Bn |f(x)|.

The extremal roots of Krawtchouk polynomials are well-studied in the litera-
ture. The following result of Levenshtein [26] shows their asymptotic behaviour.

Theorem 2 ([26], Sect. 5). For t ∈ [0, 1/2], define the function

ϕ(t) = 1/2 −
√

t(1 − t). (5)

Then the least root ξn
r of the degree r Krawtchouk polynomial with parameter n

satisfies
ξn
r /n ≤ ϕ(r/n) + c · (r/n)−1/6 · n−2/3 (6)

for some universal constant c > 0.

46 L. Slot and M. Laurent

Applying (6) to (4), we find that the relative error of the bound f(r) in the
regime r ≈ t · n behaves as the function ϕ(t) = 1/2 − √

t(1 − t), up to a noise
term in O(1/n2/3), which vanishes as n tends to ∞.

1.2 A Second Hierarchy of Bounds

In addition to the lower bound f(r), Lasserre [20] also defines an upper bound
f (r) ≥ fmin on fmin as follows:

f (r) := inf
s∈Σr

{∫

Bn

f(x) · s(x)dμ(x) :
∫

Bn

s(x)dμ(x) = 1
}

, (7)

where μ is the uniform probability measure on B
n. For fixed r, similarly to f(r),

one may compute f (r) (up to any precision) efficiently by reformulating (7) as a
semidefinite program [20]. Furthermore, as shown in [20] the bound is exact for
some order r, and it is not difficult to see that the bound f (r) is exact at order
r = n and that this is tight.

Essentially as a side result in the proof of our main Theorem 1, we get the
following analog of Theorem 1 for the upper bounds f (r).

Theorem 3. Fix d ≤ n and let f ∈ R[x] be a polynomial of degree d. Then, for
any r, n ∈ N with (r + 1)/n ≤ 1/2, we have:

f (r) − fmin

‖f‖∞
≤ Cd · ξn

r+1/n,

where Cd > 0 is the constant of Theorem 1.

So we have the same estimate of the relative error for the upper bounds f (r)

as for the lower bounds f(r) (up to a constant factor 2) and indeed we will see
that our proof relies on an intimate connection between both hierarchies. Note
that the above analysis of f (r) does not require any condition on the size of ξn

r+1

as was necessary for the analysis of f(r) in Theorem 1. Indeed, this condition
on ξn

r+1 follows from a technical argument which is not required in the proof of
Theorem 3 (namely, the condition Λ ≤ 1/2 above relation (16) in Sect. 2.3).

1.3 Asymptotic Analysis for Both Hierarchies

The results above imply that the relative error of both hierarchies is bounded
asymptotically by the function ϕ(t) from (5) in the regime r ≈ t · n. This is
summarized in the following corollary which can be seen as an asymptotic version
of Theorem 1 and Theorem 3.

Corollary 1. Fix d ≤ n and for n, r ∈ N write

E(r)(n) := sup
f∈R[x]d

{
fmin − f(r) : ‖f‖∞ = 1

}
,

E(r)(n) := sup
f∈R[x]d

{
f (r) − fmin : ‖f‖∞ = 1

}
.

Sum-of-Squares Hierarchies for Binary Polynomial Optimization 47

Let Cd be the constant of Theorem 1 and let ϕ(t) be the function from (5). Then,
for any t ∈ [0, 1/2], we have:

lim
r/n→t

E(r)(n) ≤ Cd · ϕ(t)

and, if d(d + 1) · ϕ(t) ≤ 1/2, we also have:

lim
r/n→t

E(r)(n) ≤ 2 · Cd · ϕ(t).

Here, the limit notation r/n → t means that the claimed convergence holds
for all sequences (nj)j and (rj)j of integers such that limj→∞ nj = ∞ and
limj→∞ rj/nj = t.

We close with some remarks. First, note that ϕ(1/2) = 0. Hence Corollary 1
tells us that the relative error of both hierarchies tends to 0 as r/n → 1/2. We
thus ‘asymptotically’ recover the exactness result (3) of [34].

Our results in Theorems 1 and 3 and Corollary 1 extend directly to the case
of polynomial optimization over the discrete cube {±1}n instead of the boolean
cube B

n = {0, 1}n, as can easily be seen by applying a change of variables
x ∈ {0, 1}
→ 2x − 1 ∈ {±1}. In addition, our results extend to the case of
polynomial optimization over the q-ary cube {0, 1, . . . , q − 1}n for q > 2 (see the
extended version of this work in [38]).

Clearly, we may also obtain upper (resp., lower) bounds on the maximum
fmax of f over B

n by using f(r) (resp., f (r)) applied to −f . To avoid possible
confusion we will also refer to f(r) as the outer Lasserre hierarchy, whereas we
will refer to f (r) as the inner Lasserre hierarchy. This terminology (borrowed
from [7]) is motivated by the following observations. One can reformulate fmin

via optimization over the set M of Borel measures on B
n:

fmin = min
{∫

Bn

f(x)dν(x) : ν ∈ M,

∫

Bn

dν(x) = 1
}

.

If we replace the set M by its inner approximation consisting of all measures
ν(x) = s(x)dμ(x) with polynomial density s ∈ Σr with respect to a given fixed
measure μ, then we obtain the bound f (r). On the other hand, any ν ∈ M gives a
linear functional Lν : p ∈ R[x]2r
→ ∫

Bn p(x)dν(x) which is nonnegative on sum-
of-squares on B

n. These linear functionals thus provide an outer approximation
for M and maximizing Lν(p) over it gives the bound f(r) (in dual formulation).

1.4 Related Work

As mentioned above, the bounds f(r) from (2) are exact when 2r ≥ n+d−1. The
case d = 2 (which includes max-cut) was treated in [12], positively answering
a question posed in [22]. Extending the strategy of [12], the general case was
settled in [34]. These exactness results are best possible for d even and n odd
[15].

48 L. Slot and M. Laurent

In [14], the sum-of-squares hierarchy is considered for approximating
instances of knapsack. This can be seen as a variation on the problem (1),
restricting to a linear polynomial objective with positive coefficients, but intro-
ducing a single, linear constraint, of the form a1x1 + . . .+ anxn ≤ b with ai > 0.
There, the authors show that the outer hierarchy has relative error at most
1/(r−1) for any r ≥ 2. To the best of our knowledge this is the only known case
where one can analyze the quality of the outer bounds for all orders r ≤ n.

For optimization over sets other than the boolean cube, the following results
on the quality of the outer hierarchy f(r) are available. When considering general
semi-algebraic sets (satisfying a compactness condition), it has been shown in
[28] that there exists a constant c > 0 (depending on the semi-algebraic set)
such that f(r) converges to fmin at a rate in O(1/ log(r/c)1/c) as r tends to ∞.
This rate can be improved to O(1/r1/c) if one considers a variation of the sum-
of-squares hierarchy which is stronger (based on the preordering instead of the
quadratic module), but much more computationally intensive [35]. Specializing
to the hypersphere Sn−1, better rates in O(1/r) were shown in [10,32], and
recently improved to O(1/r2) in [11]. Similar improved results exist also for the
case of polynomial optimization on the simplex and the continuous hypercube
[−1, 1]n; we refer, e.g., to [7] for an overview.

The results for semi-algebraic sets other than B
n mentioned above all apply

in the asymptotic regime where the dimension n is fixed and r → ∞. This
makes it difficult to compare them directly to our new results. Indeed, we have
to consider a different regime in the case of the boolean cube Bn, as the hierarchy
always converges in at most n steps. The regime where we are able to provide
an analysis in this paper is when r ≈ t · n with 0 < t ≤ 1/2.

Turning now to the inner hierarchy (7), as far as we are aware, nothing
is known about the behaviour of the bounds f (r) on B

n. For full-dimensional
compact sets, however, results are available. It has been shown that, on the
hypersphere [8], the unit ball and the simplex [37], and the unit box [9], the
bound f (r) converges at a rate in O(1/r2). A slightly weaker convergence rate in
O(log2 r/r2) is known for general (full-dimensional) semi-algebraic sets [24,37].
Again, these results are all asymptotic in r, and thus hard to compare directly
to our analysis on B

n.

1.5 Overview of the Proof

We give here a broad overview of the main ideas that we use to show our results.
Our broad strategy follows the one employed in [11] to obtain information on
the sum-of-squares hierarchy on the hypersphere. The following four ingredients
will play a key role in our proof:

1. we use the polynomial kernel technique in order to produce low-degree sum-of-
squares representations of polynomials that are positive on B

n, thus allowing
an analysis of fmin − f(r);

2. using classical Fourier analysis on the boolean cube B
n we are able to exploit

symmetry and reduce the search for a multivariate kernel to a univariate
sum-of-squares polynomial on the discrete set [0 : n] := {0, 1, . . . , n};

Sum-of-Squares Hierarchies for Binary Polynomial Optimization 49

3. we find this univariate sum-of-squares by applying the inner Lasserre hierar-
chy to an appropriate univariate optimization problem on [0 : n];

4. finally, we exploit a known connection between the inner hierarchy and the
extremal roots of corresponding orthogonal polynomials (in our case, the
Krawtchouk polynomials).

Following these steps we are able to analyze the sum-of-squares hierarchy f(r) as
well as the inner hierarchy f (r). In the next section we will sketch in some more
detail how our proof articulates along these four main steps.

2 Sketch of Proof

Here we sketch the main arguments needed to prove Theorem 1. It turns out
that the proof for Theorem 3 follows essentially from some of these arguments.
For a complete detailed proof we refer to the extended version [38] of this work.
This section is organized along the four main steps outlined in Sect. 1.5.

2.1 The Polynomial Kernel Technique

Let f ∈ R[x]d be the polynomial with degree d for which we wish to analyze the
bounds f(r) and f (r). After rescaling, and up to a change of coordinates, we may
assume w.l.o.g. that f attains its minimum over Bn at 0 ∈ B

n and that fmin = 0
and fmax = 1. So we have ‖f‖∞ = 1. To simplify notation, we will make these
assumptions throughout.

The first key idea is to consider a polynomial kernel K on B
n of the form:

K(x, y) = u2(d(x, y)) (x, y ∈ B
n), (8)

where u ∈ R[t]r is a univariate polynomial of degree at most r and d(x, y) is the
Hamming distance between x and y. Such a kernel K induces an operator K,
which acts linearly on the space of polynomials on B

n by:

p ∈ R[x]
→ Kp(x) :=
∫

Bn

p(y)K(x, y)dμ(y) =
1
2n

∑

y∈Bn

p(y)K(x, y).

Recall that μ is the uniform probability distribution on B
n. An easy but impor-

tant observation is that, if p is nonnegative on B
n, then Kp is a sum-of-squares

(on B
n) of degree at most 2r. We use this observation as follows.

Given a scalar δ ≥ 0, define the polynomial f̃ := f + δ. Assuming that
the operator K is non-singular, we can express f̃ as f̃ = K(K−1f̃). Therefore,
if K−1f̃ is nonnegative on B

n, we find that f̃ is a sum-of-squares on B
n with

degree at most 2r, and thus that fmin − f(r) ≤ δ.
One way to guarantee that K−1f̃ is indeed nonnegative on B

n is to select
the operator K in such a way that K(1) = 1 and

‖K−1 − I‖ := sup
p∈R[x]d

‖K−1p − p‖∞
‖p‖∞

≤ δ. (9)

We collect this as a lemma for further reference.

50 L. Slot and M. Laurent

Lemma 1. If the kernel operator K associated to u ∈ R[t]r via relation (8)
satisfies K(1) = 1 and ‖K−1 − I‖ ≤ δ, then we have fmin − f(r) ≤ δ.

Proof. With f̃ = f + δ, we have: ‖K−1f̃ − f̃‖∞ = ‖K−1f − f‖∞ ≤ δ‖f‖∞ = δ.
Therefore we obtain that K−1f̃(x) ≥ f̃(x) − δ = f(x) ≥ fmin = 0 on B

n. ��
In light of Lemma 1, we want to choose u ∈ R[t]r in such a way that the operator
K−1 (and thus K) is ‘close to the identity operator’ in a certain sense. In other
words, we want the eigenvalues of K to be as close as possible to 1.

2.2 Fourier Analysis on B
n and the Funk-Hecke Formula

As kernels of the form (8) are invariant under the symmetries of B
n, we are

able to use classical Fourier analysis on the boolean cube to express the eigen-
values of K in terms of the polynomial u. More precisely, it turns out that the
eigenvalues of K are given by the coefficients of the expansion of u2 in the basis
of Krawtchouk polynomials. This link is known as the Funk-Hecke formula (cf.
Theorem 4 below).

The Character Basis. Consider the space R[x] of polynomials on B
n, defined

as the quotient of R[x]r under the relation p ∼ q if p(x) = q(x) for all x ∈ B
n.

Equip this space R[x] with the inner product: 〈p, q〉μ =
∫

p(x)q(x)dμ(x), where
μ is the uniform probability measure on B

n. W.r.t. this inner product the space
R[x] has an orthonormal basis given by the set of characters:

χa(x) := (−1)a·x (a ∈ B
n).

The group Aut(Bn) of automorphisms of Bn is generated by the coordinate
permutations, of the form x
→ σ(x) := (xσ(1), . . . , xσ(n)) for σ ∈ Sym(n), and
the permutations corresponding to bit-flips, of the form x ∈ B

n
→ x ⊕ a ∈ B
n

for any a ∈ B
n. If we set

Hk := span{χa : |a| = k} (0 ≤ k ≤ n),

then each Hk is an irreducible, Aut(Bn)-invariant subspace of R[x] of dimension(
n
k

)
. We may then decompose R[x] as the direct sum

R[x] = H0 ⊥ H1 ⊥ · · · ⊥ Hn,

where the subspaces Hk are pairwise orthogonal w.r.t. 〈·, ·〉μ. In fact, we have
that R[x]d = H0 ⊥ H1 ⊥ · · · ⊥ Hd for all d ≤ n, and we may thus write any
p ∈ R[x]d (in a unique way) as

p = p0 + p1 + · · · + pd (pk ∈ Hk). (10)

Sum-of-Squares Hierarchies for Binary Polynomial Optimization 51

The Funk-Hecke Formula. For k ∈ N, the Krawtchouk polynomial of degree
k (and with parameter n) is the univariate polynomial in t given by:

Kn
k (t) :=

k∑

i=0

(−1)i

(
t

i

)(
n − t

k − i

)
(11)

(see, e.g. [39]). Here
(
t
i

)
:= t(t−1) . . . (t− i+1)/i!. The Krawtchouk polynomials

form an orthogonal basis for R[t] with respect to the inner product 〈·, ·〉ω given
by the following discrete probability measure on the set [0 : n] = {0, 1, . . . , n}:

ω :=
1
2n

n∑

t=0

(
n

t

)
δt. (12)

The following lemma explains the connection between the Krawtchouk polyno-
mials and the character basis on R[x].

Lemma 2. Let t ∈ [0 : n] and choose x, y ∈ B
n so that d(x, y) = t. Then for

any 0 ≤ k ≤ n we have:

Kn
k (t) =

∑

|a|=k

χa(x)χa(y). (13)

Using Lemma 2, one is then able to show the Funk-Hecke formula.

Theorem 4 (Funk-Hecke). Given u ∈ R[t]r, decompose u2 in the basis of
Krawtchouk polynomials as u2 =

∑2r
i=0 λiKn

i and consider the kernel operator
K associated to u via (8). For any p ∈ R[x]d with harmonic decomposition
p = p0 + p1 + · · · + pd as in (10), we have:

Kp = λ0p0 + λ1p1 + · · · + λdpd. (14)

2.3 Optimizing the Choice of the Univariate Polynomial u

Recall that in light of Lemma 1 we wish to bound the quantity ‖K−1 − I‖
from (9). To define such K we need to suitably select the polynomial u ∈ R[t]r.
Assume we choose u ∈ R[t]r such that u2 =

∑r
i=0 λiKn

i with λ0 = 1 and λi �= 0
for all i. Then, for any p = p0 + · · · + pd with ‖p‖∞ = 1, we find that

‖K−1p − p‖∞ ≤
d∑

i=1

|1 − λ−1
i | · ‖pi‖∞ ≤ γd

d∑

i=1

|1 − λ−1
i |, (15)

where γd > 0 is a constant depending only on d. The left most inequality follows
after an application of the Funk-Hecke formula (14). The right most inequality
is a result of the following technical lemma (see [38] for the proof).

Lemma 3. There exists a constant γd > 0, depending only on d, such that for
any p = p0 + p1 + . . . + pd ∈ R[x]d, we have:

‖pk‖∞ ≤ γd‖p‖∞ for all 0 ≤ k ≤ d.

52 L. Slot and M. Laurent

The key fact here is that the constant γd in Lemma 3 does not depend on the
dimension n.

The quantity
∑d

i=1 |1−λ−1
i | in (15) is still difficult to analyze. Following [11],

we therefore consider the following ‘linearized’ version instead:

Λ :=
d∑

i=1

(1 − λi).

It turns out that, as long as Λ ≤ 1/2, we have
∑d

i=1 |1 − λ−1
i | ≤ 2Λ, implying:

‖K−1 − I‖ ≤ 2γd · Λ. (16)

Recall that the Krawtchouk polynomials are orthogonal w.r.t. the inner prod-
uct 〈·, ·〉ω, where ω is the discrete probability measure on [0 : n] of (12). There-
fore, we may express the scalars λi as:

λi = 〈K̂n
i , u2〉ω, with K̂n

i := Kn
i /‖Kn

i ‖2ω.

We thus wish to find a univariate polynomial u ∈ R[t]r for which:

λ0 = 〈1, u2〉ω = 1, and

Λ = d −
d∑

i=1

λi = d −
d∑

i=1

〈K̂n
i , u2〉ω is small.

Unpacking the definition of 〈·, ·〉ω, we thus need to solve the following optimiza-
tion problem:

inf
u∈R[t]r

{
Λ :=

∫
g · u2dω :

∫
u2dω = 1

}
, where g(t) := d −

d∑

i=1

K̂n
i (t). (17)

We recognize this program to be the analog of the program (7), where we now
consider the inner Lasserre bound of order r for the minimum gmin = g(0) = 0
of the polynomial g over the set [0 : n], computed with respect to the measure
dω(t) = 2−n

(
n
t

)
on [0 : n]. Hence the optimal value of (17) is equal to g(r) and,

using (16), we may conclude the following result, which tells us how to select
the polynomial u (and thus K).

Theorem 5. Let g be as in (17). Assume that g(r) − gmin ≤ 1/2. Then there
exists a polynomial u ∈ R[t]r such that λ0 = 1 and

‖K−1 − I‖ ≤ 2γd · (g(r) − gmin).

Here, g(r) is the inner Lasserre bound on gmin of order r, computed on [0 : n]
w.r.t. ω, via the program (17), and γd is the constant of Lemma 3.

Sum-of-Squares Hierarchies for Binary Polynomial Optimization 53

2.4 The Inner Lasserre Hierarchy and Orthogonal Polynomials

In order to finish the proof of Theorem 1, it now remains to analyze the range
g(r) − gmin for the polynomial g in (17).

We recall a technique that may be used to perform such an analysis, which
was developed in [9] and further employed for this purpose, e.g., in [8,37]. We
present it here for the special case for optimization over [0 : n] w.r.t. the measure
ω, but it actually applies to univariate optimization w.r.t. general measures.

First, we observe that we may replace g by a suitable upper estimator ĝ which
satisfies ĝmin = gmin and ĝ(t) ≥ g(t) for all t ∈ [0 : n]. Indeed, then we have:

g(r) − gmin ≤ ĝ(r) − gmin = ĝ(r) − ĝmin.

Next, we use the following crucial link to the roots of Krawtchouk polynomials.
This is a special case of a result by de Klerk and Laurent [9], applied to optimiza-
tion over the set [0 : n] equipped with the measure ω, so that the corresponding
orthogonal polynomials are given by the Krawtchouk polynomials Kn

k .

Theorem 6 ([9]). Suppose ĝ(t) = ct is a linear polynomial with c > 0. Then
the Lasserre inner bound ĝ(r) of order r for minimization of ĝ(t) on [0 : n] w.r.t.
the measure ω can be reformulated in terms of the smallest root ξn

r+1 of Kn
r+1 as:

ĝ(r) = c · ξn
r+1.

The upshot is that if we can upper bound the function g in (17) by some linear
polynomial ĝ(t) = ct with c > 0, we then find:

g(r) − gmin ≤ ĝ(r) − ĝmin ≤ c · ξn
r+1.

Indeed, g can be upper bounded on [0 : n] by its linear approximation at t = 0:

g(t) ≤ ĝ(t) := d(d + 1) · (t/n) ∀t ∈ [0 : n].

This inequality can be obtained by combining basic identities and inequalities
concerning Krawtchouk polynomials (see [38]). We have thus shown that:

g(r) − gmin ≤ d(d + 1) · (ξn
r+1/n). (18)

We have now gathered all the tools required to prove Theorem 1.

Theorem 7 (Restatement of Theorem 1). Fix d ≤ n and let f ∈ R[x] be a
polynomial of degree d. Then we have:

fmin − f(r)
‖f‖∞

≤ 2γd · d(d + 1) · (ξn
r+1/n),

whenever d(d + 1) · (ξn
r+1/n) ≤ 1/2. Here, ξn

r+1 is the smallest root of Kn
r+1 and

γd is the constant of Lemma 3.

54 L. Slot and M. Laurent

Proof. Combining Theorem 5 with (18), we find that we may choose u ∈ R[t]r
such that λ0 = 1 and:

‖K−1 − I‖ ≤ 2γd · (g(r) − gmin) ≤ 2γd · d(d + 1) · (ξn
r+1/n).

Using the Funk-Hecke formula (14), we see that λ0 = 1 implies that K(1) = 1.
We may thus use Lemma 1 to conclude the proof, obtaining Theorem 1 with
Cd := γd · d(d + 1). ��

3 Concluding Remarks

Summary. We have shown a theoretical guarantee on the quality of the sum-of-
squares hierarchy f(r) ≤ fmin for approximating the minimum of a polynomial f
of degree d over the boolean cube Bn. As far as we are aware, this is the first such
analysis that applies to values of r smaller than (n+d)/2, i.e., when the hierarchy
is not exact. Additionally, our guarantee applies to a second, measure-based
hierarchy of bounds f (r) ≥ fmin. Our result may therefore also be interpreted as
bounding the range f (r) − f(r).

A limitation of the present work is that no information is gained for low levels
of the hierarchy, when r is fixed and the dimension n grows. Indeed, our results
apply only in the regime r ≈ t · n, where t ∈ [0, 1/2] is a fixed fraction. They are
therefore of limited practical value, as computation beyond the first few levels
of the hierarchy is currently infeasible.

Our analysis also applies to polynomial optimization over the cube {±1}n (by
a simple change of variables). Furthermore, the techniques we use on the binary
cube B

n generalize naturally to the q-ary cube (Z/qZ)n = {0, 1, . . . , q − 1}n for
q > 2. As a result we are able to show close analogs of our results on B

n in
this more general setting as well. We present this generalization in the expanded
version [38] of this work.

The Constant γd . The strength of our results depends in large part on the
size of the constant γd appearing in Theorem 1 and Theorem 3, where we may
set Cd = d(d + 1)γd. In [38] we show the existence of this constant γd, but the
resulting dependence on d there is quite bad. This dependence, however, seems
to be mostly an artifact of our proof. As we explain in [38], it is possible to
compute explicit upper bounds on γd for small values of d. Table 1 lists some of
these upper bounds, which appear much more reasonable than our theoretical
guarantee would suggest.

Table 1. Upper bounds on γd. Values rounded to indicated precision.

d 1 2 3 4 5 6 7 8 9 10 11 12

γd 1.00 2.00 4.00 8.00 20.0 48.1 112 258 578 1306 2992 6377

Sum-of-Squares Hierarchies for Binary Polynomial Optimization 55

Computing Extremal Roots of Krawtchouk Polynomials. Although The-
orem 2 provides only an asymptotic bound on the least root ξn

r of Kn
r , it should

be noted that ξn
r can be computed explicitely for small values of r, n, thus allow-

ing for a concrete estimate of the error of both Lasserre hierarchies via Theorem
1 and Theorem 3, respectively. Indeed, as is well-known, the root ξn

r+1 is equal
to the smallest eigenvalue of the (r + 1) × (r + 1) matrix A (aka Jacobi matrix),
whose entries are given by Ai,j = 〈tK̂n

i (t), K̂n
j (t)〉ω for i, j ∈ {0, 1, . . . , r}. See,

e.g., [39] for more details.

Connecting the Hierarchies. Our analysis of the outer hierarchy f(r) on
B

n relies essentially on knowledge of the inner hierarchy f (r). Although not
explicitely mentioned there, this is the case for the analysis on Sn−1 in [11] as
well. As the behaviour of f (r) is generally quite well understood, this suggests a
potential avenue for proving further results on f(r) in other settings.

For instance, the inner hierarchy f (r) is known to converge at a rate in
O(1/r2) on the unit ball Bn or the unit box [−1, 1]n, but matching results
on the outer hierarchy f(r) are not available. The question is thus whether the
strategy used for the hypersphere Sn−1 in [11] and for the boolean cube B

n here
might be extended to these cases as well.

Although Bn and [−1, 1]n have similar symmetric structure to Sn−1 and
B

n, respectively, the accompanying Fourier analysis is significantly more com-
plicated. In particular, a direct analog of the Funk-Hecke formula (14) is not
available. New ideas are therefore needed to define the kernel K(x, y) (cf. (8))
and analyze its eigenvalues.

Acknowledgments. This work is supported by the European Union’s Framework
Programme for Research and Innovation Horizon 2020 under the Marie Sk�lodowska-
Curie Actions Grant Agreement No. 764759 (MINOA). We wish to thank Sven Polak
and Pepijn Roos Hoefgeest for several useful discussions, as well as the anonymous
referees for their helpful suggestions.

References

1. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. In:
36th Annual ACM Symposium on Theory of Computing, pp. 72–80 (2004)

2. Arora, S., Berger, E., Hazan, E., Kindler, G., Safra, M.: On non-approximability
for quadratic programs. In: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pp. 206–215 (2005)

3. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed 0–1 programs. Math. Program. 58, 295–324 (1993)

4. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 46(1–3),
89–113 (2004)

5. Barak, B., Steurer, D.: Sum-of-squares proofs and the quest toward optimal algo-
rithms. In: Proceedings of International Congress of Mathematicians (ICM) (2014)

6. Charikar, M., Wirth, A.: Maximizing quadratic programs: extending
Grothendieck’s inequality. In: Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 54–60 (2004)

56 L. Slot and M. Laurent

7. Klerk, E., Laurent, M.: A survey of semidefinite programming approaches to the
generalized problem of moments and their error analysis. In: Araujo, C., Benkart,
G., Praeger, C.E., Tanbay, B. (eds.) World Women in Mathematics 2018. AWMS,
vol. 20, pp. 17–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21170-7 1

8. de Klerk, E., Laurent, M.: Convergence analysis of a Lasserre hierarchy of upper
bounds for polynomial minimization on the sphere. Math. Program. (2020).
https://doi.org/10.1007/s10107-019-01465-1

9. de Klerk, E., Laurent, M.: Worst-case examples for Lasserre’s measure-based hier-
archy for polynomial optimization on the hypercube. Math. Oper. Res. 45(1),
86–98 (2020)

10. Doherty, A.C., Wehner, S.: Convergence of SDP hierarchies for polynomial opti-
mization on the hypersphere. arXiv:1210.5048v2 (2013)

11. Fang, K., Fawzi, H.: The sum-of-squares hierarchy on the sphere, and applications
in quantum information theory. Math. Program. (2020). https://doi.org/10.1007/
s10107-020-01537-7

12. Fawzi, H., Saunderson, J., Parrilo, P.A.: Sparse sums of squares on finite abelian
groups and improved semidefinite lifts. Math. Program. 160(1–2), 149–191 (2016).
https://doi.org/10.1007/s10107-015-0977-z

13. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. Assoc. Comput.
Mach. 42(6), 1115–1145 (1995)

14. Karlin, A.R., Mathieu, C., Nguyen, C.T.: Integrality gaps of linear and semi-
definite programming relaxations for knapsack. In: Günlük, O., Woeginger, G.J.
(eds.) IPCO 2011. LNCS, vol. 6655, pp. 301–314. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20807-2 24

15. Kurpisz, A., Leppänen, S., Mastrolilli, M.: Tight sum-of-squares lower bounds for
binary polynomial optimization problems. In: Chatzigiannakis, I., et al. (eds.) 43rd
International Colloquium on Automata, Languages, and Programming (ICALP
2016), vol. 78, pp. 1–14 (2016)

16. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796–817 (2001)

17. Lasserre, J.B.: A max-cut formulation of 0/1 programs. Oper. Res. Lett. 44, 158–
164 (2016)

18. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In:
Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3 23

19. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial
College Press, London (2009)

20. Lasserre, J.B.: A new look at nonnegativity on closed sets and polynomial opti-
mization. SIAM J. Optim. 21(3), 864–885 (2010)

21. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre
relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

22. Laurent, M.: Lower bound for the number of iterations in semidefinite hierarchies
for the cut polytope. Math. Oper. Res. 28(4), 871–883 (2003)

23. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials.
In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry.
The IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 157–270.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-09686-5 7

https://doi.org/10.1007/978-3-030-21170-7_1
https://doi.org/10.1007/978-3-030-21170-7_1
https://doi.org/10.1007/s10107-019-01465-1
http://arxiv.org/abs/1210.5048v2
https://doi.org/10.1007/s10107-020-01537-7
https://doi.org/10.1007/s10107-020-01537-7
https://doi.org/10.1007/s10107-015-0977-z
https://doi.org/10.1007/978-3-642-20807-2_24
https://doi.org/10.1007/3-540-45535-3_23
https://doi.org/10.1007/978-0-387-09686-5_7

Sum-of-Squares Hierarchies for Binary Polynomial Optimization 57

24. Laurent, M., Slot, L.: Near-optimal analysis of of Lasserre’s univariate measure-
based bounds for multivariate polynomial optimization. Math. Program. (2020).
https://doi.org/10.1007/s10107-020-01586-y

25. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefi-
nite programming relaxations. In: STOC 2015: Proceedings of the Forty-Seventh
Annual ACM Symposium on Theory of Computing, pp. 567–576 (2015)

26. Levenshtein, V.I.: Universal bounds for codes and designs. In: Handbook of Coding
Theory, vol. 9, pp. 499–648. North-Holland, Amsterdam (1998)

27. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization.
SIAM J. Optim. 1, 166–190 (1991)

28. Nie, J., Schweighofer, M.: On the complexity of Putinar’s positivstellensatz. J.
Complex. 23(1), 135–150 (2007)

29. O’Donnell, R.: SOS is not obviously automatizable, even approximately. In: 8th
Innovations in Theoretical Computer Science Conference, vol. 59, pp. 1–10 (2017)

30. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. Ph.D. thesis, California Institute of Technology
(2000)

31. Raghavendra, P., Weitz, B.: On the bit complexity of sum-of-squares proofs. In:
44th International Colloquium on Automata, Languages, and Programming, vol.
80, pp. 1–13 (2017)

32. Reznick, B.: Uniform denominators in Hilbert’s seventeenth problem. Mathema-
tische Zeitschrift 220(1), 75–97 (1995)

33. Rothvoss, T.: The Lasserre hierarchy in approximation algorithms. Lecture Notes
for the MAPSP 2013 Tutorial (2013)

34. Sakaue, S., Takeda, A., Kim, S., Ito, N.: Exact semidefinite programming relax-
ations with truncated moment matrix for binary polynomial optimization prob-
lems. SIAM J. Optim. 27(1), 565–582 (2017)

35. Schweighofer, M.: On the complexity of Schmüdgen’s positivstellensatz. J. Com-
plex. 20(4), 529–543 (2004)

36. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete
Math. 3, 411–430 (1990)

37. Slot, L., Laurent, M.: Improved convergence analysis of Lasserre’s measure-based
upper bounds for polynomial minimization on compact sets. Math. Program.
(2020). https://doi.org/10.1007/s10107-020-01468-3

38. Slot, L., Laurent, M.: Sum-of-squares hierarchies for binary polynomial optimiza-
tion. arXiv:2011.04027 (2020)

39. Szegö, G.: Orthogonal Polynomials. American Mathematical Society Colloquium
Publications, vol. 23. American Mathematical Society (1959)

40. Tunçel, L.: Polyhedral and Semidefinite Programming Methods in Combinatorial
Optimization, Fields Institute Monograph. American Mathematical Society, Prov-
idence (2010)

https://doi.org/10.1007/s10107-020-01586-y
https://doi.org/10.1007/s10107-020-01468-3
http://arxiv.org/abs/2011.04027

Complexity, Exactness, and Rationality
in Polynomial Optimization

Daniel Bienstock1, Alberto Del Pia2, and Robert Hildebrand3(B)

1 Departments of IEOR, APAM and EE, Columbia University, New York, NY, USA
dano@columbia.edu

2 Department of Industrial and Systems Engineering and Wisconsin Institute
for Discovery, University of Wisconsin-Madison, Madison, USA

delpia@wisc.edu
3 Grado Department of Industrial and Systems Engineering, Virginia Tech,

Blacksburg, USA
rhil@vt.edu

Abstract. We focus on rational solutions or nearly-feasible rational
solutions that serve as certificates of feasibility for polynomial optimiza-
tion problems. We show that, under some separability conditions, certain
cubic polynomially constrained sets admit rational solutions. However,
we show in other cases that it is NP Hard to detect if rational solu-
tions exist or if they exist of any reasonable size. Lastly, we show that in
fixed dimension, the feasibility problem over a set defined by polynomial
inequalities is in NP.

Keywords: Polynomial optimization · Rational solutions · NP

1 Introduction

This paper addresses basic questions of precise certification of feasibility and
optimality, for optimization problems with polynomial constraints, in polyno-
mial time, under the Turing model of computation. Recent progress in poly-
nomial optimization and mixed-integer nonlinear programming has produced
elegant methodologies and effective implementations; however such implemen-
tations may produce imprecise solutions whose actual quality can be difficult
to rigorously certify, even approximately. The work we address is motivated by
these issues, and can be summarized as follows:

A. Del Pia is partially funded by ONR grant N00014-19-1-2322. D. Bienstock is partially
funded by ONR grant N00014-16-1-2889. R. Hildebrand is partially funded by ONR
grant N00014-20-1-2156 and by AFOSR grant FA9550-21-0107. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the Office of Naval Research or the Air Force
Office of Scientific Research.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 58–72, 2021.
https://doi.org/10.1007/978-3-030-73879-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_5

Exact Polynomial Optimization 59

Question: Given a polynomially constrained problem, what can be said about
the existence of feasible or approximately feasible rational solutions of polyno-
mial size (bit encoding length)1, and more generally the existence of rational,
feasible or approximately-feasible solutions that are also approximately-optimal
for a given polynomial objective?

As is well-known, Linear Programming is polynomially solvable [13,15], and,
moreover, every face of a rational polyhedron contains a point of polynomial
size. [22]. If we instead optimize a quadratic function over linear constraints, the
problem becomes NP-Hard [18], but perhaps surprisingly, Vavasis [24] proved
that a feasible system consisting of linear inequalities and just one quadratic
inequality, all with rational coefficients, always has a rational feasible solution of
polynomial size. This was extended by Del Pia, Dey, and Molinaro [9] to show
that the same result holds in the mixed-integer setting. See also [12] discussion
of mixed-integer nonlinear optimization problems with linear constraints.

On the negative side, there are classical examples of SOCPs all of whose feasi-
ble solutions require exponential size [2,16,20], or all of whose feasible solutions
are irrational (likely, a folklore result. See full paper). In the nonconvex set-
ting, there are examples of quadratically constrained, linear objective problems,
on n bounded variables, and with coefficients of magnitude Op1q, that admit
solutions with maximum additive infeasibility Op2´2Θpnq q but multiplicative (or
additive) superoptimality Θp1q (see full paper). O’Donnell [17] questions whether
SDPs associated with fixed-rank iterates of sums-of-squares hierarchies (which
relax nonconvex polynomially constrained problem) can be solved in polynomial
time, because optimization certificates might require exponential size. The issue
of accuracy in solutions is not just of theoretical interest. As an example, [25]
describes instances of SDPs (again, in the sums-of-squares setting) where a solu-
tion is very nearly certified as optimal, and yet proves substantially suboptimal.

Vavasis’ result suggests looking at systems of two or more quadratic con-
straints, or (to some extent equivalently) optimization problems where the objec-
tive is quadratic, and at least one constraint is quadratic, with all other con-
straints linear. The problem of optimizing a quadratic subject to one quadratic
constraint (and no linear constraints) can be solved in polynomial time using
semidefinite-programming techniques [19], to positive tolerance. When the con-
straint is positive definite (i.e. a ball constraint) the problem can be solved
to tolerance ε in time log log ε´1 [26], [14] (in other words Opkq computations
guarantee accuracy 2´2k

). Vavasis [23] proved, on the other hand, that exact
feasibility of a system of two quadratics can be tested in polynomial time.

With regards to systems of more than two quadratic constraints, Barvinok
[3] proved a fundamental result: for each fixed integer m there is an algorithm
that, given n ˆ n rational matrices Ai (1 ď i ď m) tests, in polynomial-time,
feasibility of the system of equations

1 Throughout we will use the concept of size of rational numbers, vectors, linear
inequalities, and formulations. For these standard definitions we refer the reader to
Section 2.1 in [22].

60 D. Bienstock et al.

xT Aix “ 0 for 1 ď i ď m, x P R
n, ‖x‖2 “ 1.

A feature of this algorithm is that certification does not rely on producing a
feasible vector; indeed, all feasible solutions may be irrational. As a corollary of
this result, [6] proves that, for each fixed integer m there is an algorithm that
solves, in polynomial time, an optimization problem of the form

min f0pxq, s.t. fipxq ď 0 for 1 ď i ď m

where for 0 ď i ď m, fipxq is an n-variate quadratic polynomial, and we assume
that the quadratic part of f1pxq positive-definite; moreover a rational vector that
is (additively) both ε-feasible and -optimal can be computed in time polynomial
in the size of the formulation and log ε´1. An important point with regards to [3]
and [6] is that the analyses do not apply to systems of arbitrarily many linear
inequalities and just two quadratic inequalities.

De Loera et al. [8] use the Nullstellensatz to provide feasibility and infeasi-
bility certificates to systems of polynomial equations through solving a sequence
of large linear equations. Bounds on the size of the certificates are obtained
[11]. This technique does not seem amenable to systems with a large number
of linear inequalities due to the necessary transformation into equations and
then blow up of the number of variables used. Another approach is to use the
Positivestellensatz and compute an infeasibility certificate using sums of squares
hierarchies. As mentioned above, see [17] for a discussion if exactness and size
of these hierarchies needed for a certificate.

Renegar [21] shows that the problem of deciding whether a system of poly-
nomial inequalities is nonempty can be decided in polynomial time provided
that the dimension is considered fixed. This is a landmark result, however, the
algorithm and techniques are quite complicated. Another technique to obtain a
similar result is Cylindrical Algebraic Decomposition. See, e.g., [4]. In this work,
we aim to avoid these techniques and provide an extremely simple certificate
that shows the feasibility question is in NP.

Our Results. The main topic we address in this paper is whether a system
of polynomial inequalities admits rational, feasible or near-feasible solutions of
polynomial size. First, we show that in dimension 2, with one separable cubic
inequality and linear inequalities, there exists a rational solution of polynomial
size (Theorem 2). In the next section, we show that this result fails without
separability. Using this motivating example, we show that it is strongly NP-hard
to test if a system of quadratic inequalities that has feasible rational solutions,
admits feasible rational solutions of polynomial size (Theorem 4). And it is also
hard to test if a feasible system of quadratic inequalities has a rational solution
(Theorem 5).

We next show that, given a system of polynomial inequalities on n variables
that is known to have a bounded, nonempty feasible region, we can produce
as a certificate of feasibility a rational, near-feasible vector that has polynomial
size, for fixed n (Theorem 7). This certificate yields a direct proof that, in fixed
dimension, the feasibility problem over a system of polynomial inequalities is in
NP.

Exact Polynomial Optimization 61

Omitted proofs can be found in the extended version of the paper [7].

2 Existence of Rational Feasible Solutions

Local Minimizers of Cubic Polynomials. We will prove results about the
rationality of local minimizers of cubic polynomials. This will be used in the next
section to argue that rational solutions exist to certain feasibility problems.

We first show that local minimizers of separable cubic polynomials are ratio-
nal provided that the function value is rational.

We will need the following 3 lemmas. The first result is known by
Nicolo de Brescia, a.k.a., Tartaglia. It shows that in a univariate cubic polyno-
mial, shifting by a constant allows us to assume that the x2 term has a zero
coefficient.

Lemma 1 (Rational shift of cubic). Let fpxq “ ax3 ` bx2 ` cx ` d. Then
fpy ´ b

3a q “ ay3 ` c̃y ` d̃ where c̃ “ 27a2c´9ab2

27a2 and d̃ “ 27a2d´9abc`2b3

27a2 .

The next lemma provides bounds on the roots of a univariate polynomial.
We attribute this result to Cauchy; a proof can be found in Theorem 10.2 of [4].

Lemma 2 (Cauchy - size of roots). Let fpxq “ anxn ` · · ·`a1x`a0, where
an, a0 �“ 0. Let x̄ �“ 0 such that fpx̄q “ 0. Then L ď |x̄| ď U , where

U “ 1 ` max
{∣∣∣ a0

an

∣∣∣ , . . . ,
∣∣∣an´1

an

∣∣∣
}

,
1
L

“ 1 ` max
{∣∣∣a1

a0

∣∣∣ , . . . ,
∣∣∣an

a0

∣∣∣
}

.

The next lemma is a special case of Theorem 2.9 in [1].

Lemma 3. Let n ě 1. Let ri P Q` for i “ 0, 1, . . . , n, qi P Q` for i “ 1, . . . , n.
If

∑n
i“1 ri

√
qi “ r0, then

√
qi P Q for all i “ 1, . . . , n. Furthermore, the size of√

qi is polynomial in the size of qi.

Theorem 1 (Rational local minimum). Let fpxq “ ∑n
i“1 fipxiq where

fipxiq “ aix
3
i ` bix

2
i ` cixi ` di P Zrxis and ai �“ 0 for all i P rns. Assume

that the absolute value of the coefficients of f is at most H. Suppose x˚ is the
unique local minimum of f and γ˚ :“ fpx˚q is rational. Then x˚ is rational and
has size that is polynomial in log H and in the size of γ˚.

Proof. For every i P rns, Let c̃i, d̃i be defined as in Lemma 1, let gipyiq :“
aiy

3
i `c̃iyi, and define gpyq “ ∑n

i“1 gipyiq. Then y˚ P R
n defined by yi̊ :“ xi̊ ` bi

3ai
,

i P rns, is the unique local minimum of gpyq and gpy˚q “ γ˚ ´ ∑n
i“1 d̃i.

We now work with the gradient. Since y˚ is a local minimum of g, we have
∇gpy˚q “ 0. Since gpyq is separable, we obtain that for every i P rns,

g′
ipy˚

i q “ 0 ñ y˚
i “ ˘

√´c̃i

3ai
. (1)

https://scholarship.richmond.edu/cgi/viewcontent.cgi?article=1113&context=masters-theses

62 D. Bienstock et al.

Furthermore, we will need to look at the second derivative. Since y˚ is a local
minimizer, then ∇2gpy˚q ě 0. Again, since gpyq is separable, this implies that
g′′

i pyiq ě 0 for every i P rns. Hence we have

g′′
i pyiq ě 0 ñ 6aiy

˚
i ě 0 ñ ai

(
˘

√´c̃i

3ai

)
ě 0. (2)

Also, notice that we must have ´c̃i

3ai
ě 0 for

√
´c̃i

3ai
to be a real number. Thus,

signp´c̃iq “ signpaiq “ sign

(
˘

√´c̃i

3ai

)
. (3)

Finally, we relate this to gpy˚q.

γ˚ ´
n∑

i“1

d̃i “ gpy˚q “
n∑

i“1

(
aip ´c̃i

3ai
q
(

˘
√ ´c̃i

3ai

)
` c̃i

(
˘

√ ´c̃i
3ai

))
“ ´ 2

3

n∑

i“1

|c̃i|
√

´c̃i

3ai
, (4)

where the last equality comes from comparing the signs of the data from (3).
Hence, we have

n∑
i“1

|c̃i|
√´c̃i

3ai
“ ´ 3

2 pγ˚ ´
n∑

i“1

d̃iq. (5)

By Lemma 3, for every i P rns,
√

´c̃i

3ai
is rational and has size polynomial in log H

and in the size of γ˚. From (1), so does y˚, and hence x˚. ��
Rational Solutions to Nice Cubic Feasibility Problems. We denote by
Zrx1, . . . , xns the set of all polynomial functions from R

n to R with integer
coefficients. We next provide a standard result about Lipschitz continuity of a
polynomial on a bounded region.

Lemma 4 (Lipschitz continuity of a polynomial on a box). Let g P
Zrx1, . . . , xns be a polynomial of degree at most d with coefficients of absolute
value at most H. Let y, z P r´M,M sn for some M ą 0. Then

|gpyq ´ gpzq| ď L‖y ´ z‖∞ (6)

where L :“ ndHMd´1pn ` dqd´1.

Next, we present a result that employs Lemma 4 and that will be used in a
couple of proofs in the remainder of the paper.

Proposition 1. Let fi P Zrx1, . . . , xns, for i P rms, of degree one. Let gj P
Zrx1, . . . , xns, for j P r�s, of degree bounded by an integer d. Assume that the
absolute value of the coefficients of fi, i P rms, and of gj, j P r�s, is at most H.
Let δ be a positive integer. Let P :“ {x P R

n | fipxq ď 0, i P rms} and consider
the sets

R :“ {x P P | gjpxq ď 0, j P r�s}, S :“ {x P P | �δgjpxq ď 1, j P r�s}.

Assume that P is bounded. If R is nonempty, then there exists a rational vector
in S of size bounded by a polynomial in n, d, log �, log H, log δ.

Exact Polynomial Optimization 63

Proof. Since P is bounded, it follows from Lemma 8.2 in [5] that P ⊆ r´M,M sn,
where M “ pnHqn. Let L be defined as in Lemma 4, i.e.,

L :“ ndHMd´1pn ` dqd´1 “ ndHpnHqnpd´1qpn ` dqd´1.

Note that log L is bounded by a polynomial in n, d, log H. Let ϕ :“ 	LM�δ
.
Therefore log ϕ is bounded by a polynomial in n, d, log �, log H, log δ.

We define the following p2ϕqn boxes in R
n with j1, . . . , jn P {´ϕ, . . . , ϕ ´ 1}:

Cj1,...,jn
:“

{
x P R

n | M

ϕ
ji ď xi ď M

ϕ
pji ` 1q, i P rns

}
. (7)

Note that the union of these p2ϕqn boxes is the polytope r´M,M sn which con-
tains the polytope P . Furthermore, each of the 2n inequalities defining a box (7)
has size polynomial in n, d, log �, log H, log δ.

Let x̃ be a vector in R, according to the statement of the theorem. Since
x̃ P P , there exists a box among (7), say C̃, that contains x̃. Let x̄ be a vertex of
the polytope P ∩ C̃. Since each inequality defining P or C̃ has size polynomial in
n, d, log �, log H, log δ, it follows from Theorem 10.2 in [22] that also x̄ has size
polynomial in n, d, log �, log H, log δ.

To conclude the proof of the theorem we only need to show x̄ P S. Since
x̄, x̃ P C̃, we have ‖x̄ ´ x̃‖∞ ď M

ϕ . Then, from Lemma 4 we obtain that for each
j P r�s,

|gjpx̄q ´ gjpx̃q| ď L‖x̄ ´ x̃‖∞ ď LM

ϕ
ď 1

�δ
.

If gjpx̄q ď 0 we directly obtain gjpx̄q ď 1
�δ since 1

�δ ą 0. Otherwise we have
gjpx̄q ą 0. Since gjpx̃q ď 0, we obtain gjpx̄q ď |gjpx̄q ´ gjpx̃q| ď 1

�δ . We have
shown that x̄ P S, and this concludes the proof of the theorem.

��
We are now ready to prove our main result of this section.

Theorem 2. Let n P {1, 2}. Let fi P Zrx1, . . . , xns, for i P rms, of degree one.
Let gpxq “ ∑n

i“1paix
3
i ` bix

2
i ` cixi ` diq P Zrx1, . . . , xns with ai �“ 0 for i P rns.

Assume that the absolute value of the coefficients of g, fi, i P rms, is at most H.
Consider the set

R :“ {x P R
n | gpxq ď 0, fipxq ď 0, i P rms}.

If R is nonempty, then it contains a rational vector of size bounded by a polyno-
mial in log H. This vector provides a certificate of feasibility for R that can be
checked in a number of operations that is bounded by a polynomial in m, log H.

Proof. Define P :“ {x P R
n | fipxq ď 0, i P rms}, let x˚ be a vector in P

minimizing gpxq, and let γ˚ :“ gpx˚q. We prove separately the cases n “ 1, 2.
First we consider the case n “ 1. If x˚ is in the boundary of P , then, since

P is an interval described by rational data, we must have x˚ is an endpoint of

64 D. Bienstock et al.

this interval and hence is rational and of size bounded by a polynomial in log H.
Thus, in the remainder of the proof we suppose that x˚ is in the interior of P .
In particular, x˚ is the unique local minimum of g.

Since R is nonempty, we have γ˚ ď 0. If we have γ˚ “ 0, then Theorem 1
implies that the size of x˚ is bounded by a polynomial in log H, thus the result
holds. Therefore, in the remainder of the proof we assume γ˚ ă 0.

Let c̃, d̃ be defined as in Lemma 1. Following the calculation of Theorem 1,

(5) γ˚ ´ d̃ “ ´ 2
3 |c̃|

(
˘

√
´c̃
3a

)
. Hence, pγ˚ ´ d̃q2 “ ´ 4c̃3

27a , that is, γ˚ is a non-zero

root of the above quadratic equation. From Lemma 2, we have that |γ˚| ě 1
δ ,

where δ is an integer and log δ is bounded by a polynomial in log H. Since γ˚ ă 0,
we have thereby shown that x˚ is a vector in P satisfying gpx˚q ď ´ 1

δ .
Clearly x˚ is a root of the quadratic equation g′pxq “ 0, thus using again

Lemma 2 we obtain that ´M ď x˚ ď M , where M is an integer and log M is
bounded by a polynomial in log H. We apply Proposition 1 to the polytope {x P
R | fipxq ď 0, i P rms, ´M ď x ď M}, with j :“ 1, and with g1pxq :“ gpxq ` 1

δ .
Proposition 1 then implies that there exists a vector x̄ P P with g1px̄q ď 1

δ , or
equivalently gpx̄q ď 0, of size bounded by a polynomial in log H. Such a vector
is our certificate of feasibility.

Next, we consider the case n “ 2. If x˚ is in the boundary of P , then we can
restrict to a face of P and reformulate the problem in dimension one. Then the
first part of the proof (n “ 1) secures the result. Thus, in the remainder of the
proof we suppose that x˚ is in the interior of P . In particular, x˚ is the unique
local minimum of g. As in the proof of the case n “ 1, due to Theorem 1, we
can assume γ˚ ă 0.

For every i P rns, let c̃i, d̃i be defined as in Lemma 1. Following the calculation

of Theorem 1, (5)
∑2

i“1 |c̃i|
√

´c̃i

3ai
“ ´ 3

2 pγ˚ ´ ∑2
i“1 d̃iq. Squaring both sides we

obtain
2∑

i“1

´c̃3i
3ai

` 2|c̃1||c̃2|
√

c̃1c̃2
9a1a2

“ 9
4 pγ˚ ´

2∑
i“1

d̃iq2.

If we isolate the square root, and then square again both sides of the equation, we
obtain that γ˚ is a non-zero root of a quartic equation with rational coefficients.
From Lemma 2, we have that |γ˚| ě 1

δ , where δ is an integer and log δ is bounded
by a polynomial in log H. Since γ˚ ă 0, we have thereby shown that x˚ is a vector
in P satisfying gpx˚q ď ´ 1

δ .
Clearly, for i P r2s, xi̊ is a root of the quadratic equation

paix
3
i ` bix

2
i ` cixi ` diq′ “ 3aix

2
i ` 2bixi ` ci “ 0,

thus using again Lemma 2 we obtain that ´M ď xi̊ ď M , where M is an integer
and log M is bounded by a polynomial in log H. We apply Proposition 1 to the
polytope {x P R

2 | fipxq ď 0, i P rms, ´M ď xi ď M, i P r2s}, with j :“ 1,
and with g1pxq :“ gpxq ` 1

δ . Proposition 1 then implies that there exists a vector
x̄ P P with g1px̄q ď 1

δ , or equivalently gpx̄q ď 0, of size bounded by a polynomial
in log H. Such a vector is our certificate of feasibility.

Exact Polynomial Optimization 65

To conclude the proof for both cases n “ 1 and n “ 2, we bound the number
of operations needed to check if x̄ is in R by substituting x̄ in the m`1 inequal-
ities defining R. It is simple to check that x̄ satisfies these m ` 1 inequalities in
a number of operations that is bounded by a polynomial in m, log H. ��

In Example 1 in Sect. 3, we will see that Theorem 2 is best possible. We also
remark that Theorem 2 implies that the corresponding feasibility problem is in
the complexity class NP.

3 NP-Hardness of Determining Existence of Rational
Feasible Solutions

We begin with two, previously unknown, motivating examples.

Example 1 (Feasible system with no rational feasible vector). Define

hpyq :“ 2y3
1 ` y3

2 ´ 6y1y2 ` 4, Rγ :“ r1.259 ´ γ, 1.26s ˆ r1.587, 1.59s. (8)

Then {y P R0 : hpyq ď 0} “ {y˚} where y˚ “ p2 1
3 , 2

2
3 q ≈ p1.2599, 1.5874q.

In particular, for this bi-variate set described by one cubic constraint and
linear inequalities there is a unique feasible solution, and it is irrational.
Observation 3. (1) The point y˚ P Rγ for all γ ě 0. (2) y˚ is the unique
minimizer of hpyq for y P R

2`. (3) For y P R4, hpyq ą ´12. (4) The point
ȳ “ p´2.74, 1.588q P R4 attains hpȳq ă ´7.

Example 2 (Exponentially Small Solutions). Next, consider the following system
of quadratic inequalities on variables d1, . . . , dN and s such that

d1 ď 1
2
, s ď d2N , s ě 0, dk`1 ď d2k for k P rN ´ 1s, dk ě 0 for k P rN s. (9)

In any feasible solution to system (9) we either have s “ 0, or 0 ă s ď 2´2N

and in this case if s is rational then we need more than 2N bits to represent it.
Further, there are rational solutions to system (9) with s ą 0.

Remark. The literature abounds with examples of SOCPs all of whose solu-
tions are doubly exponentially large, see e.g. [2], [20]. Our example is similar,
however it is non-convex. Further, unlike in the SOCP examples, the solutions
have magnitude that is upper-bounded by a value independent on n and N and
exhibit an ‘either-or’ behavior.

NP-Hardness Construction. We will show that it is strongly NP-hard to
test whether a system of quadratic inequalities which is known to have feasible
rational solutions, admits feasible rational solutions of polynomial size (Theorem
4). The same proof technique shows that it is hard to test whether a feasible
system of quadratic inequalities has a rational solution (Theorem 5).

66 D. Bienstock et al.

The main reduction is from the problem 3SAT. An instance of this problem
is defined by n literals w1, . . . , wn as well as their negations w̄1, . . . , w̄n, and a
set of m clauses C1, . . . Cm where each clause Ci is of the form pui1 _ ui2 _ ui3q.
Here, each uij is a literal or its negation, and _ means ‘or’. The problem is to
find ‘true’ or ‘false’ values for each literal, and corresponding values for their
negations, so that the formula

C1 ^ C2 . . . ^ Cm (10)

is true, where ^ means ‘and’.
Let N ě 1 be an integer. For now N is generic; below we will discuss par-

ticular choices. Given an instance of 3SAT as above, we construct a system of
quadratic inequalities on the following 2n ` N ` 7 variables:

– For each literal wj we have a variable xj ; for w̄j we use variable xn`j .
– Additional variables γ,Δ, y1, y2, s, and d1, . . . , dN .

We describe the constraints in our quadratically constrained problem2. For each
clause Ci “ pui1 _ ui2 _ ui3q associate the variable xik

is with uik
for 1 ď k ď 3.

´1 ď xj ď 1 for j P r2ns, xj ` xn`j “ 0, for j P rns. (11a)
xi1 ` xi2 ` xi3 ě ´1 ´ Δ, for each clause Ci “ pui1 _ ui2 _ ui3 q (11b)

0 ď γ, 0 ď Δ ď 2, Δ ` γ

2
ď 2, py1, y2q P Rγ , (11c)

´n5 ∑n
j“1 x2

j ` hpyq ´ s ď ´n6. (11d)

d1 ď 1

2
, s ď d2N , s ě 0, dk`1 ď d2k for k P rN ´ 1s, dk ě 0 for k P rN s, (11e)

Theorem 4. Let n ě 3 and N ě 2. The formula (10) is satisfiable if and only
if there is a rational solution to (11) of size polynomial in n,m and N . As a
result, it is strongly NP-hard to test if a system of quadratic inequalities has a
rational feasible solution of polynomial size, even if the system admits rational
feasible solutions.

Comment. The choice N “ n in the above construction is natural and yields a
result directly interpretable in terms of the formula (10).

Proof. Claim 1: System (11) has a rational feasible solution. To see this, set
xj “ 1 “ ´xn`j for j P rns, Δ “ 2, γ “ 0, dk “ 2´2k´1

for k P rN s and s “ 2´2N

.
By inspection these rational values satisfy (11a), (11b), (11c), and (11e). Since
y˚ and y˚ is in the interior of R0, there exists a small ball B ⊆ R0 containing
y˚. Since h is continuous, y˚ is the unique local minimizer of h, hpy˚q “ 0, and

2 Constraint (11e) as written is cubic, but is equivalent to three quadratic constraints
by defining new variables y2

1 “ y12, y
2
2 “ y22, and rewriting the constraint as

´n5 ∑n
j“1 x

2
j ` y12y1 ` y22y2 ´ 6y1y2 ` 4 ´ s ď ´n6.

Exact Polynomial Optimization 67

the set Q
2 is dense in R

2, there exists a feasible rational choice of y such that
hpyq ď s. Hence, (11d) is also satisfied.

Claim 2: Suppose px, γ,Δ, y, d, sq is feasible for (11). Then for 1 ď j ď 2n,

|xj | ě 1 ´ 12
n5 ´ 2´2N

n5 .

To begin, let σ2 :́ minj{x2
j}. Then ´n5pn ´ 1q ´ n5σ2 ` hpyq ´ s ď ´n6, so

σ2 ě 1 ` phpyq ´ sq/n5 ě 1 ´ 12
n5 ´ 2´2N

n5 , where the last inequality follows from
Observation 3 and the fact that (11d) implies that s ď 2´2N

. ��
Claim 3: Suppose formula (10) is satisfiable. Then (11) has a rational feasible

solution of polynomial size.
For 1 ď j ď n set xj “ 1 “ ´xn`j if wj is true, else set xj “ ´1 “ ´xn`j .
Set Δ “ 0, γ “ 4, and d1 “ . . . “ dN “ s “ 0. Finally (Observation 3) we set
py1, y2q “ p´2.74, 1.588q. ��

The next result concludes the proof of Theorem 4.
Claim 4: Suppose formula (10) is not satisfiable. Then in every feasible

rational solution to (11), s has size at least 2N .
Let px, γ,Δ, y, d, sq be feasible. For 1 ď j ď n set wj to be true if xj ą 0 and
false otherwise. It follows that there is at least one clause Ci “ pui1 _ ui2 _ ui3q
such that every uik (for 1 ď k ď 3) is false, i.e. each xik ă 0. Using constraint
(11b) and Claim 2, we obtain

´3 ` 36
n5

` 3
2´2N

n5
ě ´1 ´ Δ, and by p11cq γ ď 72

n5
` 6

2´2N

n5
ă 1.

This fact has two implications. First, since py1, y2q P Rγ ⊂ R
2`, Observation

3 implies hpyq ą 0 (because y is rational). Second, constraint (11d) implies
´n5

∑n
j“1 x2

j ` hpyq ´ s ď ´n5 and, therefore, hpyq ď s. So s ą 0 and since

s ď 2´2N

(by constraint (11c)) the proof is complete. ��
As an (easy) extension of Theorem 4 we have the following theorem.

Theorem 5. It is strongly NP-hard to test if there exists a rational solution to
a system of the form

fpxq ď 0, Ax ď b,

where f P Zrx1, . . . , xns is of degree 3, and A P Q
mˆn, b P Q

m.

Proof sketch. We proceed with a transformation from 3SAT just as above, except
that we dispense with the variables d1, . . . , dN and s and, rather than constraint
(11d) we impose

´ n5
n∑

j“1

x2
j ` hpyq ď ´n6. (12)

In the analog of Claim 4 we conclude that y P R
2` while also hpyq ď 0 (no term

´s) which yields that y “ y˚. ��

68 D. Bienstock et al.

4 Short Certificate of Feasibility: An Almost Feasible
Point

In this section we are interested in the existence of short certificates of feasibil-
ity for systems of polynomial inequalities, i.e., certificates of feasibility of size
bounded by a polynomial in the size of the system.

We will be using several times the functions ε and δ defined as follows:

εpn,m, d,Hq :“ p24´ n
2 max{H, 2n ` 2m}dnq´n2ndn

,

δpn,m, d,Hq :“ 	2ε´1pn,m, d,Hq
 “ 	2p24´ n
2 max{H, 2n ` 2m}dnqn2ndn
.

A fundamental ingredient in our arguments is the following result by Geron-
imo, Perrucci, and Tsigaridas, which follows from Theorem 1 in [10].

Theorem 6. Let n ě 2. Let g, fi P Zrx1, . . . , xns, for i P rms, of degree bounded
by an even integer d. Assume that the absolute value of the coefficients of g, fi,
i P rms, is at most H. Let T :“ {x P R

n | fipxq ď 0, i P rms}, and let C be a
compact connected component of T . Then, the minimum value that g takes over
C, is either zero, or its absolute value is greater than or equal to εpn,m, d,Hq.

Using Theorem 6 we obtain the following lemma.

Lemma 5. Let n ě 2. Let g, fi P Zrx1, . . . , xns, for i P rms, of degree bounded
by an even integer d. Assume that the absolute value of the coefficients of g, fi,
i P rms, is at most H. Let δ :“ δpn,m, d,Hq. Let T :“ {x | fipxq ď 0, i P rms}
and consider the sets

R :“ {x P T | gpxq ď 0}, S :“ {x P T | δgpxq ď 1}.

Assume that T is bounded. Then R is nonempty if and only if S is nonempty.

Proof. Since δ ą 0 we have R ⊆ S, therefore if R is nonempty also S is nonempty.
Hence we assume that S is nonempty and we show that R is nonempty.

Since S is nonempty, there exists a vector x̄ P T with gpx̄q ď 1/δ ă
εpn,m, d,Hq. Let C be a connected component of T containing x̄. Since T is
compact, we have that C is compact as well. In particular, the minimum value
that g takes over C is less than εpn,m, d,Hq. The contrapositive of Theorem 6
implies that the minimum value that g takes over C is less than or equal to zero.
Thus there exists x̃ P C with gpx̃q ď 0. Hence the set R is nonempty. ��

From Lemma 5 we obtain the following result.

Proposition 2. Let n ě 2. Let fi, gj P Zrx1, . . . , xns, for i P rms, j P r�s,
of degree bounded by an even integer d. Assume that the absolute value of the
coefficients of fi, i P rms, and of gj, j P r�s, is at most H. Let δ :“ δpn,m `
�, 2d, �H2q. Let T :“ {x | fipxq ď 0, i P rms} and consider the sets

R :“ {x P T | gjpxq ď 0, j P r�s}, S :“ {x P T | �δgjpxq ď 1, j P r�s}.

Assume that T is bounded. Then R is nonempty if and only if S is nonempty.

Exact Polynomial Optimization 69

Proof. Since �δ ą 0 we have R ⊆ S, therefore if R is nonempty also S
is nonempty. Hence we assume that S is nonempty and we show that R is
nonempty.

Let x̄ P S, and define the index set J :“ {j P r�s : gjpx̄q ą 0}. We introduce
the polynomial function g P Zrx1, . . . , xns defined by gpxq :“ ∑

jPJ g2j pxq. Note
that the degree of g is bounded by 2d. The absolute value of the coefficients of
each g2j is at most H2, hence the absolute value of the coefficients of g is at most
�H2. Next, let T ′ :“ {x P T | gjpxq ď 0, j P r�s \ J} and

R′ :“ {x P T ′ | gpxq ď 0}, S′ :“ {x P T ′ | δgpxq ď 1}.

First, we show that the vector x̄ is in the set S′, implying that S′ is nonempty.
Clearly x̄ P T , and for every j P r�s \ J we have that gjpx̄q ď 0, thus we have
x̄ P T ′. For every j P J , we have 0 ă gjpx̄q ď 1

�δ , and since �δ ě 1, we have
0 ă g2j px̄q ď 1

�δ . Thus, we obtain gpx̄q ď �
�δ “ 1

δ . We have thus proved x̄ P S′,
and so S′ is nonempty.

Next, we show that the set R′ is nonempty. To do so, we apply Lemma 5
to the sets T ′, R′, S′. The number of inequalities that define T ′ is a number m′

with m ď m′ ď m ` �. The degree of fi, gj , g, for i P rms, j P r�s \ J , is bounded
by 2d. The absolute value of the coefficients of fi, gj , g, for i P rms, j P r�s \ J , is
at most �H2. Since the function δpn,m, d,Hq is increasing in m and m′ ď m` �,
we obtain from Lemma 5 that R′ is nonempty if and only if S′ is nonempty.
Since S′ is nonempty, we obtain that R′ is nonempty.

Finally, we show that the set R is nonempty. Since R′ is nonempty, let x̃ P R′.
From the definition of R′ we then know x̃ P T , gjpx̃q ď 0, for j P r�s \ J , and
gpx̃q ď 0. Since g is a sum of squares, gpx̃q ď 0 implies gpx̃q “ 0, and this in turn
implies gjpx̃q “ 0 for every j P J . Hence x̃ P R, and R is nonempty. ��

Proposition 2 and Proposition 1 directly yield our following main result.

Theorem 7 (Certificate of polynomial size). Let n ě 2. Let fi P
Zrx1, . . . , xns, for i P rms, of degree one. Let gj P Zrx1, . . . , xns, for j P r�s, of
degree bounded by an even integer d. Assume that the absolute value of the coeffi-
cients of fi, i P rms, and of gj, j P r�s, is at most H. Let δ :“ δpn,m`�, 2d, �H2q.
Let P :“ {x P R

n | fipxq ď 0, i P rms} and consider the sets

R :“ {x P P | gjpxq ď 0, j P r�s}, S :“ {x P P | �δgjpxq ď 1, j P r�s}.

Assume that P is bounded. Denote by s the maximum number of terms of gj,
j P r�s, with nonzero coefficients. If R is nonempty, then there exists a rational
vector in S of size bounded by a polynomial in d, log m, log �, log H, for n fixed.
This vector is a certificate of feasibility for R that can be checked in a number
of operations that is bounded by a polynomial in s, d,m, �, log H, for n fixed.

Proof. From the definition of δ, we have that log δ is bounded by a polynomial
in d, log m, log �, log H, for n fixed. From Proposition 1, there exists a vector
x̄ P S of size bounded by a polynomial in d, log m, log �, log H, for n fixed. Such

70 D. Bienstock et al.

a vector is our certificate of feasibility. In fact, from Proposition 2 (applied to
the sets T “ P,R, S), we know that S nonempty implies R nonempty.

To conclude the proof we bound the number of operations needed to check
if the vector x̄ is in S by substituting x̄ in the m ` � inequalities defining S.

The absolute value of the coefficients of fipxq ď 0, i P rms, is at most H.
Thus, it can be checked that x̄ satisfies these m inequalities in a number of
operations that is bounded by a polynomial in d,m, log �, log H, for n fixed.

Next, we focus on the inequalities �δgjpxq ď 1, j P r�s. Note that the
total number of terms of �δgj , j P r�s, with nonzero coefficients is bounded
by s�. The logarithm of the absolute value of each nonzero coefficient of �δgjpxq,
j P r�s, is bounded by logp�δHq, which in turn is bounded by a polynomial in
d, log m, log �, log H, for n fixed. Therefore, it can be checked that x̄ satisfies
these � inequalities in a number of operations that is bounded by a polynomial
in s, d, �, log m, log H, for n fixed. ��

In particular, Theorem 7 implies that polynomial optimization is in NP,
provided that we fix the number of variables.

As mentioned in the introduction, this fact is not new. In fact, it follows from
Theorem 1.1 in Renegar [21] that the problem of deciding whether the set R, as
defined in Theorem 7, is nonempty can be solved in a number of operations that
is bounded by a polynomial in s, d,m, �, log H, for n fixed. Therefore, Renegar’s
algorithm, together with its proof, provides a certificate of feasibility of size
bounded by a polynomial in the size of the system, which in turns implies that
the decision problem is in NP.

The main advantages of Theorem 7 over Renegar’s result are that (i) our
certificate of feasibility is simply a vector in S of polynomial size, and (ii) the
feasibility of the system can be checked by simply plugging the vector into the
system of inequalities defining S. The advantages of Renegar’s result over our
Theorem 7 are: (iii) Renegar does not need to assume that the feasible region is
bounded, while we do need that assumption, and (iv) Renegar shows that the
decision problem is in P, while we show that it is in the larger class NP.

References

1. Albu, T.: The irrationality of sums of radicals via Cogalois theory. Analele stiintifice
ale Universitatii Ovidius Constanta 19(2), 15–36 (2011)

2. Alizadeh, F.: Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM J. Optim. 5, 13–51 (1995)

3. Barvinok, A.I.: Feasibility testing for systems of real quadratic equations. Discrete
Comput. Geom. 10(1), 1–13 (1993). https://doi.org/10.1007/BF02573959

4. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. AACIM,
vol. 10. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

5. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scien-
tific, Belmont (1997)

6. Bienstock, D.: A note on polynomial solvability of the CDT problem. SIAM J.
Optim. 26, 486–496 (2016)

https://doi.org/10.1007/BF02573959
https://doi.org/10.1007/3-540-33099-2

Exact Polynomial Optimization 71

7. Bienstock, D., Del Pia, A., Hildebrand, R.: Complexity, exactness, and rational-
ity in polynomial optimization. Optimization (2020). http://www.optimization-
online.org/DB HTML/2020/11/8105.html. 2020/11/8105

8. De Loera, J.A., Lee, J., Malkin, P.N., Margulies, S.: Computing infeasibility cer-
tificates for combinatorial problems through Hilbert’s Nullstellensatz. J. Sym-
bolic Comput. 46(11), 1260–1283 (2011). https://doi.org/10.1016/j.jsc.2011.08.
007. http://www.sciencedirect.com/science/article/pii/S0747717111001192

9. Del Pia, A., Dey, S.S., Molinaro, M.: Mixed-integer quadratic programming is in
NP. Math. Program. 162(1–2), 225–240 (2016). https://doi.org/10.1007/s10107-
016-1036-0

10. Geronimo, G., Perrucci, D., Tsigaridas, E.: On the minimum of a polynomial func-
tion on a basic closed semialgebraic set and applications. SIAM J. Optim. 23(1),
241–255 (2013). https://doi.org/10.1137/110857751

11. Grigoriev, D., Vorobjov, N.: Complexity of Null- and Positivstellensatz proofs.
Ann. Pure Appl. Logic 113(1), 153–160 (2001). https://doi.org/10.1016/
S0168-0072(01)00055-0. http://www.sciencedirect.com/science/article/pii/S0168
007201000550. First St. Petersburg Conference on Days of Logic and Computabil-
ity

12. Hochbaum, D.S.: Complexity and algorithms for nonlinear optimization prob-
lems. Ann. Oper. Res. 153(1), 257–296 (2007). https://doi.org/10.1007/s10479-
007-0172-6

13. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4), 373–395 (1984). https://doi.org/10.1007/bf02579150

14. Karmarkar, N.: An interior-point approach to NP-complete problems (1989).
manuscript

15. Khachiyan, L.: Polynomial algorithms in linear programming. USSR Com-
put. Math. Math. Phys. 20(1), 53–72 (1980). https://doi.org/10.1016/0041-
5553(80)90061-0. http://www.sciencedirect.com/science/article/pii/0041555380
900610

16. Letchford, A., Parkes, A.J.: A guide to conic optimisation and its applications.
RAIRO-Oper. Res. 52, 1087–1106 (2018)

17. O’Donnell, R.: SOS is not obviously automatizable, even approximately. In:
Papadimitriou, C.H. (ed.) 8th Innovations in Theoretical Computer Science Confer-
ence (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol.
67, pp. 59:1–59:10. Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.
ITCS.2017.59, http://drops.dagstuhl.de/opus/volltexte/2017/8198

18. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigen-
value is NP-hard. J. Global Optim. 1(1), 15–22 (1991). https://doi.org/10.1007/
BF00120662

19. Pólik, S., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49, 371–418 (2007)
20. Ramana, M.: An exact duality theory for semidefinite programming and its com-

plexity implications. Math. Program. 77, 129–162 (1997)
21. Renegar, J.: On the computational complexity and geometry of the first-order the-

ory of the reals. Part I: introduction. Preliminaries. The geometry of semi-algebraic
sets. The decision problem for the existential theory of the reals. J. Symbolic Com-
put. 13, 255–299 (1992)

22. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
23. Vavasis, S., Zippel, R.: Proving polynomial-time for sphere-constrained quadratic

programming. Technical report 90–1182, Department of Computer Science, Cornell
University (1990)

http://www.optimization-online.org/DB_HTML/2020/11/8105.html
http://www.optimization-online.org/DB_HTML/2020/11/8105.html
https://doi.org/10.1016/j.jsc.2011.08.007
https://doi.org/10.1016/j.jsc.2011.08.007
http://www.sciencedirect.com/science/article/pii/S0747717111001192
https://doi.org/10.1007/s10107-016-1036-0
https://doi.org/10.1007/s10107-016-1036-0
https://doi.org/10.1137/110857751
https://doi.org/10.1016/S0168-0072(01)00055-0
https://doi.org/10.1016/S0168-0072(01)00055-0
http://www.sciencedirect.com/science/article/pii/S0168007201000550
http://www.sciencedirect.com/science/article/pii/S0168007201000550
https://doi.org/10.1007/s10479-007-0172-6
https://doi.org/10.1007/s10479-007-0172-6
https://doi.org/10.1007/bf02579150
https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1016/0041-5553(80)90061-0
http://www.sciencedirect.com/science/article/pii/0041555380900610
http://www.sciencedirect.com/science/article/pii/0041555380900610
https://doi.org/10.4230/LIPIcs.ITCS.2017.59
https://doi.org/10.4230/LIPIcs.ITCS.2017.59
http://drops.dagstuhl.de/opus/volltexte/2017/8198
https://doi.org/10.1007/BF00120662
https://doi.org/10.1007/BF00120662

72 D. Bienstock et al.

24. Vavasis, S.A.: Quadratic programming is in NP. Inf. Process. Lett. 36(2),
73–77 (1990). https://doi.org/10.1016/0020-0190(90)90100-C. http://www.science
direct.com/science/article/pii/002001909090100C

25. Waki, H., Nakata, M., Muramatsu, M.: Strange behaviors of interior-point meth-
ods for solving semidefinite programming problems in polynomial optimization.
Comput. Optim. Appl. 53, 823–844 (2012)

26. Ye, Y.: A new complexity result on minimization of a quadratic function with a
sphere constraint. In: Floudas, A., Pardalos, P. (eds.) Recent Advances in Global
Optimization, pp. 19–31. Princeton University Press, Princeton (1992)

https://doi.org/10.1016/0020-0190(90)90100-C
http://www.sciencedirect.com/science/article/pii/002001909090100C
http://www.sciencedirect.com/science/article/pii/002001909090100C

On the Geometry of Symmetry Breaking
Inequalities

José Verschae1(B) , Mat́ıas Villagra2,3(B) , and
Léonard von Niederhäusern4,5(B)

1 Institute for Mathematical and Computational Engineering,
Faculty of Mathematics and School of Engineering,

Pontificia Universidad Católica de Chile, Santiago, Chile
jverschae@uc.cl

2 Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
mjvillagra@uc.cl

3 IEOR, Columbia University, New York City, USA
4 Institute for Engineering Sciences, Universidad de O’Higgins, O’Higgins, Chile

leonard.vonniederhausern@uoh.cl
5 Centro de Modelamiento Matemático (AFB170001 - CNRS UMI 2807),

Universidad de Chile, Santiago, Chile

Abstract. Breaking symmetries is a popular way of speeding up the
branch-and-bound method for symmetric integer programs. We study
polyhedra that break all symmetries, namely, fundamental domains. Our
long-term goal is to understand the relationship between the complexity
of such polyhedra and their symmetry breaking capability.

Borrowing ideas from geometric group theory, we provide structural
properties that relate the action of the group with the geometry of the
facets of fundamental domains. Inspired by these insights, we provide
a new generalized construction for fundamental domains, which we call
generalized Dirichlet domain (GDD). Our construction is recursive and
exploits the coset decomposition of the subgroups that fix given vec-
tors in R

n. We use this construction to analyze a recently introduced
set of symmetry breaking inequalities by Salvagnin [23] and Liberti and
Ostrowski [15], called Schreier-Sims inequalities. In particular, this shows
that every permutation group admits a fundamental domain with less
than n facets. We also show that this bound is tight.

Finally, we prove that the Schreier-Sims inequalities can contain an
exponential number of isomorphic binary vectors for a given permutation
group G, which provides evidence of the lack of symmetry breaking effec-
tiveness of this fundamental domain. Conversely, a suitably constructed
GDD for G has linearly many inequalities and contains unique represen-
tatives for isomorphic binary vectors.

Keywords: Symmetry breaking inequalities · Fundamental domains ·
Polyhedral theory · Orthogonal groups

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 73–88, 2021.
https://doi.org/10.1007/978-3-030-73879-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_6&domain=pdf
http://orcid.org/0000-0002-2049-6467
http://orcid.org/0000-0002-5540-7639
http://orcid.org/0000-0001-6113-8239
https://doi.org/10.1007/978-3-030-73879-2_6

74 J. Verschae et al.

1 Introduction

Symmetries are mappings from one object into itself that preserve its struc-
ture. Their study has proven fruitful across a myriad of fields, including integer
programming, where symmetries are commonly present. For instance, almost
30% of mixed-integer linear programs (MILP) in the model library used by the
solver CPLEX are considerably affected by symmetry [1]. Moreover, symmetry
exploitation techniques are of importance in various situations. In particular,
they help to avoid traversing symmetric branches of the tree considered by a
branch-and-bound algorithm.

Roughly speaking, the symmetry group G of an optimization problem is the
set of functions in R

n that leave the feasible region and the objective function
invariant (see Sect. 2 for a precise definition). The symmetry group G, or any of
its subgroups, partitions Rn into G-orbits, which are sets of isomorphic solutions.
A natural technique for handling symmetries is to add a static set of symmetry
breaking inequalities. That is, we add extra inequalities that remove isomor-
phic solutions while leaving at least one representative per G-orbit. This well
established approach has been studied extensively, both in general settings and
different applications; see e.g. [8–10,12–15,20,23,26]. In most of these works,
the symmetry breaking inequalities select the lexicographically maximal vector
in each G-orbit of binary vectors. However, this constitutes a major drawback
when dealing with general permutation groups: selecting the lexicographically
maximal vector in a G-orbit is an NP-hard problem [2]. Hence, the separation
problem of the corresponding symmetry breaking inequalities is also NP-hard.
On the other hand, there is nothing preventing us to select orbits’ representatives
with a different criteria.

In this article, we are interested in understanding fundamental domains of a
given group G, which are sets that break all the symmetries of G. Ideally, a fun-
damental domain F contains a unique representative per G-orbit. However, such
a set does not necessarily exist for every group. Instead, a fundamental domain
F only contains a unique representative for G-orbits that intersect F in its inte-
rior, while it can contain one or more representatives of a G-orbit intersecting
its boundary. Despite this, F breaks all symmetries in a group, as any proper
closed subset of F leaves some G-orbit unrepresented. On the other hand, a given
symmetry group can admit inherently different fundamental domains. While all
fundamental domains for finite orthogonal groups, including permutation groups
(the main focus when considering mixed integer linear programs), are polyhedral
cones, their polyhedral structure and complexity might differ greatly.

Our long term and ambitious goal is to understand the tension (and potential
trade-offs) between the symmetry breaking effectiveness and the complexity of
fundamental domains. The complexity can be measured in several ways: from the
sizes of the coefficients in its matrix description, the number of facets, or even its
extension complexity. On the other hand, the symmetry breaking effectiveness
is related to the number of representatives that each orbit contains. Hence, the
boundary of a fundamental domain, which can contain overrepresented G-orbits,

On the Geometry of Symmetry Breaking Inequalities 75

becomes problematic in particular if our points of interest (e.g., binary points in
a binary integer program) can lie within it.

More precisely, we contribute to the following essential questions: (i) Which
groups admit fundamental domains in R

n with poly(n) facets? (ii) What is the
structure of these facets? (iii) Which algorithmic methods can we use to construct
different fundamental domains? (iv) Which fundamental domains contain unique
representatives for every orbit?

Related Work. The concept of fundamental domain traces back to the 19th
century; see [21] and the references therein. In particular Dirichlet [7] gives a
construction which implies the existence of a fundamental domain in a general
context, including all groups of isometries in R

n.
Kaibel and Pfetsch [13] introduce the concept of orbitopes as the convex-hull

of 0–1 matrices that are lexicographically maximal under column permutations,
and give a complete description of the facets for the cyclic group and the sym-
metric group. Friedman [9] considers general permutation groups. Based on the
Dirichlet Domain, he introduces the idea of a universal ordering vector, which
yields a fundamental domain with unique representatives of binary points. On
the other hand, this fundamental domain has an exponential number of facets, its
defining inequalities can contain exponentially large coefficients in n, and the sep-
aration problem is NP-hard for general permutation groups [2]. Liberti [14] and
later Dias and Liberti [6] also consider general permutation groups G and derive
a class of symmetry breaking constraints by studying the orbits of G acting on
[n] = {1, . . . , n}. Liberti and Ostrowski [15], and independently Salvagnin [23],
extend this construction and introduce a set of symmetry breaking inequalities
based on a chain of pointwise coordinate stabilizers. We will refer to this set as
the Schreier-Sims inequalities, as they are strongly related to the Schreier-Sims
table from computational group theory [25]. Hojny and Pfetsch [12] study symre-
topes, defined as the convex hulls of lexicographically maximal vectors in binary
orbits. They obtain a linear time algorithm for separating the convex hull of
polytopes derived by a single lexicographic order enforcing inequality and show
how to exploit this construction computationally.

For integer programming techniques, dynamic methods have been used to
deal with symmetries within the Branch-and-Bound tree. Some methods are
Orbital Fixing [17], Isomorphism Pruning [16] and Orbital Branching [19]. A
more geometric approach for solving symmetric integer programs relies on the
theory of core points [5,11]. Schürmann [24] provides an interesting overview of
symmetry exploitation techniques for areas beyond integer programming.

Our Contribution. In this article we focus on finite orthogonal groups in
R

n, that is, groups of linear isometries. We start by presenting basic structural
results from the theory of fundamental domains for a given orthogonal group
G. A basic observation is that each facet is related to a group element g. We
also show the following new property of the facets: for an interesting class of
fundamental domains, which we call subgroup consistent, the vector defining a

76 J. Verschae et al.

facet must be orthogonal to the invariant subspace of g. This implies that each
inequality is of the form αtx ≥ αt(gx) for some vector α ∈ R

n and some element
g ∈ G. In other words, the inequalities of any subgroup consistent fundamental
domain have the same structure as inequalities of Dirichlet domains.

Inspired by these new insights, we state our main contribution: a generalized
construction of fundamental domains for any finite orthogonal group, including
permutation groups. Our method is based on choosing a vector α and finding
the coset decomposition using the stabilizer subgroup Gα = {g ∈ G : gα = α}.
We add inequalities to our fundamental domain, one for each member in the
coset decomposition. Therefore, for a well chosen α the number of cosets can
be bounded, yielding a polynomial number of inequalities. Then, we proceed
recursively on the subgroup Gα. We say that a fundamental domain obtained
with this method is a generalized Dirichlet domain (GDD), as it generalizes
the classical construction by Dirichlet [7]. To the best of our knowledge, this
construction generalizes all convex fundamental domains found in the literature.
For the special case of permutation groups, our construction can be computed in
quasi-polynomial time1. Polynomial time can even be guaranteed for appropriate
choices of the vectors α in the recursive construction.

A natural way of breaking symmetries is to choose the lexicographically max-
imal element for every G-orbit in R

n (not only binary vectors, as in the con-
struction by Friedman [9]). However, it is not hard to see that the obtained set
is not necessarily closed. On the other hand, the set is convex. We show that
the closure of this set coincides with the Schreier-Sims inequalities studied by
Salvagnin [23] and Liberti and Ostrowski [15]. Moreover, we show that this set
is a GDD, which implies that it is a fundamental domain. Finally, we give a
stronger bound on the number of facets for this fundamental domain, implying
that all permutation groups admit a fundamental domain, and hence a set that
breaks all symmetries, with at most n − 1 inequalities. We also show that there
are groups for which any fundamental domain has Ω(n) facets.

Salvagnin [23] recognizes that the symmetry breaking efficiency of the
Schreier-Sims inequalities might be limited: the orbit of a binary vector can
be overrepresented in the set. We give a specific example of a permutation group
in which an orbit of binary vectors can have up to 2Ω(n) many representatives.
Using the flexibility given by our GDD construction, we exhibit a fundamental
domain for the same group with a unique representative for each binary orbit,
while having at most O(n) facets. This exemplifies that exploiting the struc-
ture of the given group can yield a relevant improvement in the way symmetries
are broken. Moreover, we show that the only groups that admit a fundamen-
tal domain with a unique representative for every orbit are reflection groups.
Finally, we propose a new way of measuring the effectiveness of fundamental
domains, which we hope will pave the road for future work in deriving funda-
mental domains that exploit the structure of the groups involved. Due to space
reasons we refer several proofs and details to the full version of this paper [27].

1 Under the common assumption that a group is described by a set of generators [25].

On the Geometry of Symmetry Breaking Inequalities 77

2 Preliminaries

Throughout the whole paper, G denotes a group, and H ≤ G means that H
is a subgroup of G. The element id ∈ G denotes the identity. For a subset S
of G, 〈S〉 is the smallest group containing S. On(R) denotes the orthogonal
group in R

n, that is, the group of all n × n orthogonal matrices (equivalently,
linear isometries). Hence, it holds that if g ∈ On(R) then the inverse g−1 equals
the transpose gt. All groups considered in what follows are finite subgroups of
On(R). Also, G(S) denotes the pointwise stabilizer of the set S, that is G(S) :=
{g ∈ G : x = gx ∀x ∈ S} . If S := {x}, we write Gx := G(S). The set fix(g)
denotes the invariant subspace of g ∈ G, i.e. fix(g) := {x ∈ R

n : gx = x} . For
H ≤ G, a transversal for H in G is a set of representatives from the left cosets
of H in G, the set of left cosets being {gH : g ∈ G}. Given a set of elements
S ⊆ G, we denote by S−1 := {g−1 : g ∈ S}. Given x ∈ R

n, the G-orbit of x is
the set OrbG(x) := {gx : g ∈ G}.

For an exhaustive introduction to group theory, see for instance Rotman [22].
For an exposition on computational aspects of group theory, in particular per-
mutation groups, see Seress [25].

We denote [n] := {1, . . . , n} for all n ∈ N, and Sn denotes the symmetric
group, that is the group of all permutations over [n]. For G ≤ Sn, each element
g ∈ G acts on R

n by the mapping x 	→ gx :=
(
xg−1(i)

)n

i=1
. Equivalently, we

consider G ≤ Sn as a group of isometries where each g ∈ G is interpreted as the
corresponding permutation matrix.

An optimization problem min{f(x) : x ∈ X} is G-invariant if for all feasible
x and g ∈ G,

1. f(x) = f(gx),
2. gx is feasible.

For an introduction and overview on techniques regarding symmetry handling
in mixed integer linear programming see [18].

Given a G-invariant optimization problem, we can use the group G to restrict
the search of solutions to a subset of Rn, namely a fundamental domain.

Definition 1. A subset F of Rn is a fundamental domain for G ≤ On(R) if

1. the set F is closed and convex2,
2. the members of {int(gF) : g ∈ G} are pairwise disjoint,
3. R

n =
⋃

g∈G gF .

Notice that for any x ∈ R
n, its G-orbit OrbG(x) satisfies that |OrbG(x)∩F | ≥ 1.

Also, |OrbG(x)∩F | = 1 if x ∈ int (F). It is not hard to see that all fundamental
domains for a finite subgroup of On(R) are full-dimensional sets.

Definition 2. A subset R of Rn is a fundamental set for a group G ≤ On(R)
if it contains exactly one representative of each G-orbit in R

n.

2 Notice that in part of the literature, e.g. [21], convexity is not part of the definition.

78 J. Verschae et al.

3 The Geometric Structure of Fundamental Domains

In this section we review some basic geometric properties of fundamental
domains and derive new properties. Propositions 1, and 3 are well known; their
proof can be found in [21, Ch. 6]. Proposition 2 was known under stronger
assumptions (namely for exact fundamental domains [21, Ch. 6]). All the proofs
in this section, including known ones, can be found in the full version of this
manuscript [27].

The following proposition, together with the existence of a vector α whose
stabilizer is trivial [21, Thm. 6.6.10.], guarantees the existence of a fundamen-
tal domain for any G ≤ On(R). We will refer to the construction Fα in the
proposition as a Dirichlet domain.

Proposition 1. Let G ≤ On(R) be finite and non-trivial, and let α be a point
in R

n whose stabilizer Gα is trivial. Then the following set is a fundamental
domain for G,

Fα = {x ∈ R
n : αtx ≥ αtgx, ∀g ∈ G}.

A specific kind of Dirichlet domains are k-fundamental domains. For any
integer k ≥ 2, we define k :=

(
kn−1, kn−2, . . . , 1

)
as the k-universal ordering

vector. The set Fk is the k-fundamental domain for the symmetry group G. It
has been proven in [9] that F2 contains a unique representative per G-orbit of
binary points in R

n. This fact easily generalizes for points x ∈ {0, . . . , k − 1}n

with the k-ordering vector (see [18]).
Given a fundamental domain F and g ∈ G \ {id}, let Hg be any closed

half-space that separates F and gF . More precisely, it holds that F ⊆ Hg and
gF ⊆ Hc

g . The existence of this half-space follows from the convex separation
theorem. We say that a collection {Hg}g∈G represents F if for every g ∈ G, the
set Hg is a closed half-space that separates F and gF . Notice that representations
are non unique.

Let us denote by H=
g := ∂(Hg) the hyperplane defining Hg. We let γg be

some defining vector for Hg, i.e., Hg = {x ∈ R
n : γt

gx ≥ 0}, and thus H=
g =

{x ∈ R
n : γt

gx = 0}.

Proposition 2. Let G ≤ On(R) be finite, and let F be a fundamental domain.
Then F =

⋂
g∈G Hg. In particular F is a polyhedral cone. Moreover, if A ⊆ G

is a minimal set such that F =
⋂

g∈A Hg, then A is a set of generators of G.

Note that since A is minimal, the facets of F are F ∩ H=
g for each g ∈ A.

We introduce a new type of fundamental domains and characterize their
facial structure.

Definition 3. A fundamental domain F is said to be subgroup consistent if
there exists a collection {Hg}g∈G representing F such that for every subgroup
G′ ≤ G the set F ′ =

⋂
g∈G′ Hg is a fundamental domain for G′.

On the Geometry of Symmetry Breaking Inequalities 79

It is not hard to see that Dirichlet domains are subgroup consistent. More-
over, subgroup consistent fundamental domains are amenable to be constructed
iteratively, either by starting the construction of a fundamental domain for a sub-
group and extending it to larger subgroups (bottom-up), or adding inequalities
for G and recurse to smaller subgroups (top-down, as our technique in Sect. 4).

With the help of the following lemmas, we show a close relationship between
supporting hyperplanes of a subgroup consistent fundamental domain F : all
facet-defining inequalities of F are of the form αtx ≥ αtgx for some α and
g ∈ G. In this case we say that the inequality is of Dirichlet type. To the best of
our knowledge this property of facets is new.

Lemma 1. Let g ∈ G. Then (fix(g) ∩ F) \ H=
g = ∅.

Proof. Let x ∈ fix(g). If x ∈ F \ H=
g , then γt

gx > 0. Moreover, γt
g(gx) ≤ 0 since

gx ∈ gF . But this is a contradiction as gx = x. �
Lemma 2. If G is Abelian, then for every g ∈ G, the set fix(g) is G-invariant,
i.e., h · fix(g) = fix(g) for all h ∈ G.

Proof. Let g, h ∈ G. We show that h fix(g) = fix(g). Indeed, if y ∈ h fix(g), i.e.,
y = hx for some x ∈ fix(g), then gy = g(hx) = h(gx) = hx = y. Therefore,
y ∈ fix(g), and thus h fix(g) ⊆ fix(g). The inclusion fix(g) ⊆ h fix(g) follows by
applying the previous argument to h−1, implying that h−1 fix(g) ⊆ fix(g). �
Lemma 3. Let F ⊆ R

n be a subgroup consistent fundamental domain for G
and {Hg}g∈G a collection representing F where Hg = {x ∈ R

n : γt
gx ≥ 0}. Then

γg belongs to the orthogonal complement of the fixed space of g, i.e.,

γg ∈ fix(g)⊥ := {x ∈ R
n : gx = x}⊥.

Proof. We start by showing the lemma for the case that G is Abelian. By Lemma
2 we have that fix(g) is G-invariant for every g ∈ G, and hence h fix(g) = fix(g)
for any h ∈ G. Therefore,

fix(g) = fix(g) ∩
(

⋃

h∈G

hF

)

=
⋃

h∈G

(fix(g) ∩ hF) =
⋃

h∈G

h(fix(g) ∩ F).

Let 〈S〉 denote the linear span of a set S. Notice that dim(〈fix(g) ∩ F 〉) =
dim(fix(g)), otherwise, fix(g) would be contained in the union of finitely many
subspaces of strictly smaller dimension, which is clearly a contradiction. Since
F ∩ fix(g) ⊆ fix(g), we conclude that 〈F ∩ fix(g)〉 = fix(g). As by Lemma 1 we
have that F ∩fix(g) ⊆ H=

g , this implies that fix(g) = 〈F ∩fix(g)〉 ⊆ H=
g . Since by

definition γg is orthogonal to every vector in H=
g , we conclude that γg ∈ fix(g)⊥.

The lemma follows if G is Abelian.
For the general case, assume that F is subgroup consistent and F =⋂

h∈G Hh. Therefore, the Abelian subgroup G′ = 〈g〉 has F ′ =
⋂

h∈G′ Hh as
a fundamental domain. Then our argument for the Abelian case implies that
γg ∈ fix(g)⊥. �

80 J. Verschae et al.

Theorem 1. Let F ⊆ R
n be a subgroup consistent fundamental domain for G

and let {Hg}g∈G be a collection representing F , where Hg = {x : γt
gx ≥ 0}. Then

there exists αg ∈ R
n such that γg = (id−g)αg. In particular, any facet-defining

inequality for F is of the form αt
gx ≥ αt

gg
−1x for some g ∈ G, and hence of

Dirichlet type.

Proof. Recall that any automorphism f of Rn satisfies Im(f)⊥ = ker(f t). Since
fix(g) = ker(id−g), by Lemma 3 we have that

γg ∈ fix(g)⊥ = fix(g−1)⊥ = ker(id −gt)⊥ = Im (id −g) .

Hence, there exists αg ∈ R
n such that γg = (id −g)αg. �

We say that a fundamental domain F is exact if for every facet S of F
there exists a group element g ∈ G such that S = F ∩ gF . In this case we say
that g defines a facet of F . Notice that it also holds that S = F ∩ H=

g . Exact
fundamental domains are well structured and studied extensively [21]. It is worth
noticing that Dirichlet domains are exact.

For exact fundamental domains, facets come in pairs, i.e., if g defines a facet
of F , then g−1 also does.

Proposition 3. Let F ⊆ R
n be an exact fundamental domain for G ≤ On(R)

finite. If S is a facet of F , then there is a unique non-trivial element g ∈ G such
that S = F ∩ gF , moreover g−1S is a facet of F .

Proposition 3 and Theorem 1 together imply the following corollary.

Corollary 1. Let F ⊆ R
n be an exact and subgroup consistent fundamental

domain for G ≤ On(R) finite. Suppose that γt
gx ≥ 0 defines the facet F ∩ gF ,

and let αg be a vector such that γg = (id−g)αg. Then γg−1 = (id −gt)αg and
hence we can take αg−1 = αg.

4 Generalized Dirichlet Domains

In this section we present our main contribution, an algorithm which constructs a
fundamental domain for an arbitrary finite orthogonal group. We use the insights
gained from the geometric properties of the previous section to guide our search
for new constructions. In particular we create fundamental domains based on a
sequence of nested stabilizers of the G action on R

n. This construction generalizes
Dirichlet domains, and hence k-fundamental domains, as well as the Schreier-
Sims fundamental domain, presented in Sect. 4.1. Both types of fundamental
domains can be easily constructed using our algorithm. Moreover, in Sect. 5 we
use the flexibility of our construction to define a new fundamental domain with
better properties for a specific group.

Theorem 1 and Corollary 1 suggest that we should consider vectors αg for
some g ∈ G and consider inequalities of the form αt

gx ≥ αt
ggx and αt

gx ≥ αt
gg

−1x,
although it seems hard to decide whether we should pick different vectors αg

On the Geometry of Symmetry Breaking Inequalities 81

for each pair g, g−1, and if so, how to choose them. For instance, as a special
case, if we fix a vector γ = αg for all g ∈ G, we would obtain a Dirichlet
domain. However, if γ’s stabilizer is not trivial, then all inequalities αt

gx ≥
αt

gg
−1x in a coset of Gγ are equivalent. This hints that we should choose a

vector γ, apply a coset decomposition using a stabilizer subgroup, and add the
Dirichlet inequalities related to all members of the decomposition. Then, we
recurse on G = Gγ . Formally, this process is described in Algorithm 1.

Algorithm 1. Construction of a generalized Dirichlet domain (GDD)
Input: A set of generators SG of a finite orthogonal group G
Output: A fundamental domain F for G

1: Set F := R
n, G0 := G, and i := 1

2: while i ≤ n and Gi−1 does not fix R
n pointwise do

3: Choose γi ∈ R
n such that gγi �= γi for some g ∈ Gi−1

4: Compute Gi := {g ∈ Gi−1 : gγi = γi}
5: Choose a transversal Hi for Gi in Gi−1 and add the inverses Hi := Hi ∪ H−1

i

6: Set Fi := {x ∈ R
n : γt

ix ≥ γt
ihx ∀h ∈ Hi}

7: F := F ∩ Fi and i := i + 1
8: end while
9: return F

Theorem 2. Algorithm 1 outputs a fundamental domain F .

Proof. Let x ∈ int(F) and let g be a non-trivial element of G. We will show that
gx /∈ F . There are two cases. First, suppose that g /∈ G1, and hence g−1 /∈ G1.
Let h ∈ H1 be such that g−1 ∈ hG1, which implies that g−1γ1 = hγ1. Recall
that isometries correspond to orthogonal matrices, and thus for r ∈ G, it holds
that r−1 = rt. As h−1 ∈ H1, we have that

γt
1x > γt

1(h
−1x) = γt

1(h
tx) = (hγ1)tx = (g−1γ1)tx = γt

1gx. (1)

Similarly, let s ∈ H1 such that g ∈ sG1, and thus gγ1 = sγ1. Thus, by Eq. (1),

γt
1(gx) < γt

1x = γt
1g

−1(gx) = (gγ1)t(gx) = (sγ1)t(gx) = γt
1s

−1(gx),

where s−1 ∈ H1 by construction. We conclude that gx /∈ F . If g ∈ G1, consider
recursively G = G1 to show that x �∈ ⋂

i>1 Fi.
Now we show that for all x ∈ R

n, there exists g ∈ G such that gx ∈ F . We
also have two cases. First assume that x /∈ F1 and let us show that there exists
g ∈ G such that gx ∈ F1. Let h ∈ argmax{γt

1hx : h ∈ H1}. We show that
h̄x ∈ F1. Indeed, for all h ∈ H1,

γt
1hx ≥ γt

1hx = γt
1(hh

−1
)hx = (h̄htγ1)th̄x. (2)

Consider an arbitrary s ∈ H1. We will show that there exists hs ∈ H1 s.t.
sγ1 = h̄ht

sγ1. This together with (2) implies that h̄x ∈ F1. To show that hs exists,

82 J. Verschae et al.

let r ∈ H1 be a representative of the coset of h̄−1s, that is, h̄−1s ∈ rG1. Hence,
h̄−1s = rg1 for some g1 ∈ G1, and therefore h̄−1sγ1 = rγ1. Hence, it suffices to
take hs = rt = r−1 ∈ H1. This concludes that gx ∈ F1. Now we can replicate
the argument with gx as x, G1 as G and F2 as F1. Hence, there exists g′ ∈ G1

such that g′(gx) ∈ F2. Notice that it also holds that g′(gx) ∈ F1, as gx ∈ F1 and
g′ ∈ G1. Indeed, simply notice that γt

1g
′(gx) = γt

1gx = max{γt
1h(gx) : h ∈ H1}.

Hence we can follow the argument as above. Therefore g′(gx) ∈ F2∩F1. Iterating
the argument shows that rx ∈ F for some r ∈ G. �

It is worth noticing that if we take γ1 such that G1 is trivial, then the
algorithm finishes in one iteration. Indeed, the obtained fundamental domain is
the Dirichlet domain Fγ1 . This justifies the name generalized Dirichlet domain.

Complexity. First notice that the algorithm terminates after at most n iter-
ations, as the vectors in {γi}i must be linearly independent. For the rest of
the runtime analysis we focus on permutation groups. Lines 4 and 5 are the
most challenging with respect to the algorithm’s computational complexity. The
result of the computation in line 4 is a setwise stabilizer of the coordinates of
γ. Computing a set of generators for this subgroup can be performed in quasi-
polynomial time with the breakthrough result by Babai [3,4] for String Isomor-
phism. In general, however, H1 might be of exponential size, and hence line 5
can take exponential time. Indeed, the number of cosets of G1 in G equals the
size of the orbit |OrbG(γ1)|, by the Orbit-Stabilizer Theorem. If we choose γ1
with pair-wise different coordinates, then |OrbG(γ1)| = |G|. This is exactly the
case for the Dirichlet domain.

On the other hand, we can choose the γi vectors carefully in order to avoid
the exponential time complexity. Consider, for example, a vector γ of the form
(γ(1), . . . , γ(k), 0, . . . , 0) such that γ(i) �= γ(j) for i �= j in [k], and γ(i) �= 0 for
i ∈ [k]. Hence, a set of generators for the stabilizer Gγ can be computed in poly-
nomial time. Indeed, it corresponds to the pointwise stabilizers of coordinates 1
to k [25, Section 5.1.1]. Moreover, the number of cosets is O(nk), as again the
number of cosets equals the cardinality of the orbit of γ. Therefore, we get a
polynomial running time if k is a constant.

4.1 The Lex-Max Fundamental Domain

In this section, we study a natural idea for breaking symmetries: in any orbit,
choose the vector that is lexicographically maximal.

Let � denote a lexicographic order on R
n, that is for any pair x, y ∈ R

n,
y � x if and only if there exists j ∈ [n] such that yj > xj and yi = xi for all
i < j. Therefore � defines a total order on R

n, where, y � x if and only if y � x
or y = x. Given a group G ≤ Sn acting on R

n, we define

LexG := {x ∈ R
n : x � gx, ∀g ∈ G}.

In what follows we show an alternative characterization of the set of lexico-
graphically maximal points using k-fundamental domains. Recall that k-funda-
mental domains are Dirichlet domains Fk for some integer k ≥ 2.

On the Geometry of Symmetry Breaking Inequalities 83

Lemma 4. Let n ∈ N and x, y ∈ R
n. If x � y, then there exists N ∈ N

such that for every k ∈ N greater or equal than N , k
t
x > k

t
y, where k :=

(kn−1, kn−2, . . . , k, 1) for k ≥ 2 integer.

With the help of the previous lemma, we provide an alternative characteri-
zation of LexG. Recall that a fundamental set is a set that contains exactly one
representative for each G-orbit.

Lemma 5. Let G ≤ Sn. Then LexG is a convex fundamental set and

LexG = lim inf
k→∞

Fk =
∞⋃

i=1

∞⋂

k=i

Fk.

Since LexG is a convex fundamental set for any permutation group G,
its closure seems a reasonable candidate for being a fundamental domain.
This is actually the case, which implies that LexG is a polyhedral cone by
Proposition 2.

Theorem 3. For any G ≤ Sn, the closure of LexG is a fundamental domain.

A Characterization of LexG Using the Schreier-Sims Table. In what
follows, we provide a characterization of LexG, which in particular allows to
compute its facets efficiently. Indeed, we show that its description coincides with
the Schreier-Sims inequalities for G [23].

The Schreier-Sims table is a representation of a permutation group G ≤ Sn.
The construction is as follows. Consider the chain of nested pointwise stabilizers
defined as: G0 := G and Gi := {g ∈ Gi−1 : g(i) = i} for each i ∈ [n]. Note
that the chain is not necessarily strictly decreasing (properly), and we always
have that Gn−1 = {id}. For a given i ∈ [n] and j ∈ OrbGi−1(i), let hi,j be any
permutation in Gi−1 which maps i to j. Hence, Ui := {hi,j : j ∈ OrbGi−1(i)} is
a transversal for the cosets of Gi in Gi−1.

We arrange the permutations in the sets Ui, for i ∈ [n], in an n × n table T
where Ti,j = hi,j if j ∈ OrbGi−1(i) and Ti,j = ∅ otherwise.

The most interesting property of this representation of G is that each g ∈ G
can be uniquely written as g = g1g2 · · · gn with gi ∈ Ui, for i ∈ [n]. Therefore,
the permutations in the table form a set of generators of G which is called a
strong generating set (SGS) for G [25].

The Schreier-Sims polyhedron, denoted by SSG, is the polyhedron given by
the inequalities xi ≥ xj for all Ti,j �= ∅. The following theorem states that
LexG = SSG. A crucial observation to prove this is that for any vector x ∈ R

n,
x is in the closure of LexG if and only if x can be perturbed into the interior of
LexG, where the perturbed vector is lexicographically maximal in its orbit.

Theorem 4. Let G ≤ Sn. Then LexG = SSG.

The next result exhibits the generality of our GDD method for constructing
fundamental domains. It shows that by choosing γi as the cannonical vectors in
our GDD construction the algorithm outputs SSG. We note that this also gives
an alternative proof to Theorem 3.

84 J. Verschae et al.

Proposition 4. For any group G ≤ Sn the set SSG is a GDD.

We finish this section by showing that several inequalities in the description
of SSG are redundant, and that at most n − 1 of them define facets.

Theorem 5. Let G ≤ Sn and f denote the number of G-orbits in [n]. Then
SSG is a polyhedron with at most n − f facets.

Proof. Let D = ([n], E) be a directed graph defined as follows. For each i ∈ [n]
we have that (i, j) ∈ E for each j ∈ OrbGi−1(i) \ {i}. By construction, D is a
topological sort, and hence it is a directed acyclic graph (DAG).

Claim: Let j ∈ [n]. If (i, j), (k, j) ∈ E then either (i, k) ∈ E or (k, i) ∈ E.

Indeed, without loss of generality, let us assume that i < k. As (i, j) ∈ E
then j ∈ OrbGi−1(i). Similarly, it holds that j ∈ OrbGk−1(k) ⊆ OrbGi−1(k).
Therefore, by transivity, k ∈ OrbGi−1(i), and hence (i, k) ∈ E. This shows the
claim.

Let D̃ = ([n], Ẽ) be the minimum equivalent graph of D, that is, a subgraph
with a minimum number of edges that preserves the reachability of D. Hence,
there exists a (u, v)-dipath in D if and only if there exist a (u, v)-dipath in D̃.
Notice that

SSG = {x : xi ≥ xj for all (i, j) ∈ E}.

Let us define
S̃SG = {x : xi ≥ xj for all (i, j) ∈ Ẽ}.

Now we show that SSG = S̃SG. Clearly we have that SSG ⊆ S̃SG. On the other
hand, if xi ≥ xj is an inequality of SSG, then there exists an (i, j)-dipath in D̃

and hence xi ≥ xi1 ≥ xi2 ≥ . . . ≥ xik ≥ xj is a valid set of inequalities for S̃SG,
for certain nodes i1, . . . , ik. We conclude that SSG = S̃SG.

Now we argue that D̃ is a collection of at least f out-trees. Indeed, let us
assume by contradiction that for j ∈ [n] there exists two distinct nodes i, k
such that (i, j), (k, j) ∈ Ẽ. By our previous claim, k is reachable from i in
D (or analogously i is reachable from k), and hence the same is true in D̃.
This is a contradiction as the edge (i, j) could be removed from D̃ preserving
the reachability. As D̃ is a DAG, then D̃ must be a collection of node-disjoint
out-trees. Finally, note that the smallest element in each orbit of G in [n] has
in-degree 0 in D, and hence also in D̃. Therefore D̃ has at least f different trees,
which implies that D̃ has at most n − f edges. We conclude that S̃SG is defined
by at most n − f inequalities. �

This means that every permutation group admits a fundamental domain
with at most n − 1 facets. We complement this result by showing that this
bound is tight.

Proposition 5. Any fundamental domain for Sn has n − 1 facets.

On the Geometry of Symmetry Breaking Inequalities 85

5 Overrepresentation of Orbit Representatives

A desirable property of symmetry breaking polyhedra is that they select a unique
representative per G-orbit. In general, the definition of fundamental domains
only guarantees this for vectors in their interior. Recall that a subset R of Rn

which contains exactly one point from each G-orbit is called a fundamental set.
The following result shows that closed convex fundamental sets are only attained
by reflection groups. In other words, the only groups that admit fundamental
domains containing unique representatives for every orbit are reflection groups.

Theorem 6. Let G ≤ On(R) finite. Then G admits a fundamental domain F
with |F ∩O| = 1 for every G-orbit O ⊆ R

n if and only if G is a reflection group.

As a corollary we can characterize when the fundamental set LexG is closed.
Alternatively, this characterizes when SSG contains a unique representative for
every orbit.

Corollary 2. Let G ≤ Sn be such that it partitions [n] into the orbits
O1, . . . , Om. Then LexG is closed if and only if G � S|O1| × · · · × S|Om| acts
on R

n = R
|O1| × · · · × R

|Om|, where S|Oi| acts on R
|Oi| by permuting its coordi-

nates.

In integer programming problems, we are concerned about the number of
representatives of binary orbits in a fundamental domain. The Schreier-Sims
domain can be weak in this regard, as shown in the following example.

Example 1. Let n ∈ N be divisible by 3, and consider the direct product
G := C1 × C2 × · · · × Cn/3 where Ci for i ∈ [n/3] is the cyclic group on
the triplet (3(i − 1) + 1, 3(i − 1) + 2, 3(i − 1) + 3). Consider the binary vector
x := (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0). For each vector in the G-orbit of x, there are three
possible values for each triplet: (1, 1, 0), (0, 1, 1) or (1, 0, 1). Therefore, the orbit
of x has cardinality 3n/3. The fundamental domain SSG for G can be described
by the set of inequalities x3(i−1)+1 ≥ x3(i−1)+2 and x3(i−1)+1 ≥ x3(i−1)+3 for all
i ∈ [n/3]. It is clear that each vector in SSG ∩OrbG(x) admits two options for
its index triplets: 1, 1, 0 and 1, 0, 1. As a result |SSG ∩OrbG(x)| = 2n/3. ∇

Let X be a G-invariant subset of Rn (e.g. X = {0, 1}n). Let O(G,X) be the
set of all G-orbits in X. Motivated by our previous discussion, we define, for a
fixed G, the worst-case effectiveness of F on X as

ΛG,X(F) := max
O∈O(G,X)

|F ∩ O|.

Now, we use our GDD algorithm to obtain a suitable fundamental domain in
Example 1 with ΛG,{0,1}n(F) = 1 while ΛG,{0,1}n(SSG) = 2Ω(n).

Example 1 (continued). We construct a GDD F with ΛG,{0,1}n(F) = 1. First,
note that G has n/3 orbits in [n] given by: Δi := {3(i− 1)+1, 3(i− 1)+2, 3(i−
1) + 3} for i ∈ [n/3]. In our GDD construction we choose for every i ∈ [n/3]

86 J. Verschae et al.

a vector γi = (03(i−1), 4, 2, 1, 0n−3i), where 0r is an r-dimension 0 vector. We
obtain that OrbG(x) ∩ F = {x} for any x ∈ {0, 1}n. The number of cosets in
each iteration is 3. Omitting the trivial coset, the number of inequalities that
defines our GDD is 2 · (n/3). ∇

6 Future Work

Our work leaves several major questions.
Q1: Does our GDD construction exhaust all possible fundamental domains for a
group of isometries, or are there other fundamental domains that are not GDDs?

Any light on this question can help creating new fundamental domains with
potential practical relevance, or help us show impossibility results. This can
also have consequences regarding our long term goal: understanding the ten-
sion (potentially trade-off) between the symmetry breaking effectiveness of a
polyhedron and its complexity.
Q2: Does every group of isometries admit a fundamental domain with a single
representative of each binary orbit, and with a polynomial number of facets?

It is not hard to imagine other interesting variants of this question. For exam-
ple, we could be interested either in the extension complexity or complexity of
the separation problem, instead of the number of facets. At the moment, the only
information we have is that blindly choosing lexicographically maximal binary
vectors as representatives should not help, as finding them is NP-hard [2]. It is
worth noticing that an answer to Q1 might help answering Q2, either positively
or negatively. Alternatively, the relation between ΛG,X(F) and the number of
facets of a fundamental domain F is of interest, for example for X = {0, 1}n.
On the other hand, we know that only reflection groups admit fundamental
domains with ΛG,Rn(F) = 1. Characterizing, for example, the class of groups
that allows for ΛG,Rn(F) = O(1) might also give us a better understanding on
the limitations of symmetry breaking polyhedra.

Acknowledgements. This work was partially funded by Fondecyt Proyect Nr.
1181527 and ANID – Millennium Science Initiative Program – NCN17 059. Part of
this work was done while the first author was affiliated to the University of O’Higgins,
Chile. Léonard von Niederhäusern was supported by CMM ANID PIA AFB170001
from ANID (Chile). We are greatly indebted to C. Hojny, M. Pfetsch, A. Behn, and
V. Verdugo for fruitful discussions on the topic of this paper. We are also thankful for
the insightful comments of anonymous reviewers that helped improving the quality of
this manuscript.

References

1. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years
of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimiza-
tion, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38189-8 18

https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/978-3-642-38189-8_18

On the Geometry of Symmetry Breaking Inequalities 87

2. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fif-
teenth Annual ACM Symposium on Theory of Computing (STOC 1983), pp. 171–
183 (1983)

3. Babai, L.: Graph isomorphism in quasipolynomial time. arXiv preprint
arXiv:1512.03547v2 (2016)

4. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the
Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 684–697
(2016)

5. Bödi, R., Herr, K., Joswig, M.: Algorithms for highly symmetric linear and integer
programs. Math. Program. Ser. A 137, 65–90 (2013)

6. Dias, G., Liberti, L.: Exploiting symmetries in mathematical programming via
orbital independence. Ann. Oper. Res. 298, 149–182 (2019)

7. Dirichlet, G.L.: Über die reduction der positiven quadratischen formen mit drei
unbestimmten ganzen zahlen. J. für die reine und angewandte Mathematik
1850(40), 209–227 (1850)

8. Faenza, Y., Kaibel, V.: Extended formulations for packing and partitioning
orbitopes. Math. Oper. Res. 34(3), 686–697 (2009)

9. Friedman, E.J.: Fundamental domains for integer programs with symmetries. In:
Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 146–153.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4 17

10. Ghoniem, A., Sherali, H.D.: Defeating symmetry in combinatorial optimization via
objective perturbations and hierarchical constraints. IIE Trans. 43, 575–588 (2011)

11. Herr, K., Rehn, T., Schürmann, A.: Exploiting symmetry in integer convex opti-
mization using core points. Oper. Res. Lett. 41, 298–304 (2013)

12. Hojny, C., Pfetsch, M.: Polytopes associated with Symmetry handling. Math. Pro-
gram. Ser. A 175, 197–240 (2018)

13. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program. 114,
1–36 (2008)

14. Liberti, L.: Reformulations in mathematical programming: automatic symmetry
detection and exploitation. Math. Program. Ser. A 131, 273–304 (2012)

15. Liberti, L., Ostrowski, J.: Stabilizer-based Symmetry breaking constraints for
mathematical programs. J. Glob. Optim. 60, 183–194 (2014)

16. Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. Ser. A
94, 71–90 (2002)

17. Margot, F.: Exploiting orbits in symmetric integer linear program. Math. Program.
Ser. B 98, 3–21 (2003)

18. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.)
50 Years of Integer Programming 1958-2008, pp. 647–686. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-540-68279-0 17

19. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Pro-
gram. Ser. A 126, 147–178 (2011)

20. Ostrowski, J., Anjos, M.F., Vannelli, A.: Symmetry in scheduling problems (2010).
cahier du GERAD G-2010-69

21. Ratcliffe, J.G.: Foundation of Hyperbolic Manifolds, 3rd edn. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-31597-9

22. Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer, Hei-
delberg (1995). https://doi.org/10.1007/978-1-4612-4176-8

23. Salvagnin, D.: Symmetry breaking inequalities from the schreier-sims table. In:
International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, pp. 521–529 (2018)

http://arxiv.org/abs/1512.03547v2
https://doi.org/10.1007/978-3-540-73556-4_17
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1007/978-3-030-31597-9
https://doi.org/10.1007/978-1-4612-4176-8

88 J. Verschae et al.

24. Schürmann, A.: Exploiting symmetries in polyhedral computations. In: Bezdek, K.,
Deza, A., Ye, Y. (eds.) Discrete Geometry and Optimization, vol. 69, pp. 265–278.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00200-2 15

25. Seress, A.: Permutation Group Algorithms. Cambridge University Press, Cam-
bridge (2003)

26. Sherali, H.D., Smith, J.C.: Improving discrete model representations via symmetry
considerations. Manag. Sci. 47, 1396–1407 (2001)

27. Verschae, J., Villagra, M., von Niederhäusern, L.: On the Geometry of Symmetry
Breaking Inequalities. arXiv:2011.09641 (2020)

https://doi.org/10.1007/978-3-319-00200-2_15
http://arxiv.org/abs/2011.09641

Affinely Representable Lattices, Stable
Matchings, and Choice Functions

Yuri Faenza and Xuan Zhang(B)

Columbia University, New York, NY 10027, USA
{yf2414,xz2569}@columbia.edu

Abstract. Birkhoff’s representation theorem [11] defines a bijection
between elements of a distributive lattice L and the family of upper sets
of an associated poset B. When elements of L are the stable matchings
in an instance of Gale and Shapley’s marriage model, Irving et al. [22]
showed how to use B to devise a combinatorial algorithm for maximizing
a linear function over the set of stable matchings. In this paper, we intro-
duce a general property of distributive lattices, which we term as affine
representability, and show its role in efficiently solving linear optimization
problems over the elements of a distributive lattice, as well as describing
the convex hull of the characteristic vectors of lattice elements. We apply
this concept to the stable matching model with path-independent quota-
filling choice functions, thus giving efficient algorithms and a compact
polyhedral description for this model. To the best of our knowledge,
this model generalizes all models from the literature for which similar
results were known, and our paper is the first that proposes efficient
algorithms for stable matchings with choice functions, beyond extension
of the Deferred Acceptance algorithm [31].

Keywords: Stable matching · Choice function · Distributive lattice ·
Birkhoff’s representation theorem

1 Introduction

Since Gale and Shapley’s seminal publication [17], the concept of stability in
matching markets has been widely studied by the optimization community. With
minor modifications, the one-to-many version of Gale and Shapley’s original
stable marriage model is currently employed in the National Resident Matching
Program [30], which assigns medical residents to hospitals in the US, and for
matching eighth-graders to public high schools in many major cities in the US [1].

In this paper, matching markets have two sides, which we call firms F and
workers W . In the marriage model, every agent from F ∪W has a strict preference
list that ranks agents from the opposite side of the market. The problem asks
for a stable matching, which is a matching where no pair of agents prefer each
other to their assigned partner. A stable matching can be found efficiently via
the Deferred Acceptance algorithm [17].
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 89–103, 2021.
https://doi.org/10.1007/978-3-030-73879-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_7

90 Y. Faenza and X. Zhang

Although successful, the marriage model does not capture features that have
become of crucial importance both inside and outside academia. For instance,
there is growing attention to models that can increase diversity in school
cohorts [28,37]. Such constraints cannot be represented in the original model, or
even its one-to-many or many-to-many generalizations, since admission decisions
with diversity concerns cannot be captured by a strict preference list.

To model these and other markets, every agent a ∈ F ∪ W is endowed with
a choice function Ca that picks a team she prefers the best from a given set
of potential partners. See, e.g., [7,14,23] for more applications of models with
choice functions, and the literature review section for more references. Mutatis
mutandis, one can define a concept of stability in this model as well (for this
and the other technical definitions mentioned below, see Sect. 2). Two classi-
cal assumptions on choices functions are substitutability and consistency, under
which the existence of stable matchings is guaranteed [6,20]. Clearly, existence
results are not enough for applications (and for optimizers). Interestingly, little
is known about efficient algorithms in models with choice functions. Only exten-
sions of the classical Deferred Acceptance algorithm for finding the one-side
optimal matching have been studied for this model [13,31].

The goal of this paper is to study algorithms for optimizing a linear function
w over the set of stable matchings in models with choice functions, where w is
defined over firm-worker pairs. Such algorithms can be used to obtain a stable
matching that is e.g., egalitarian, profit-optimal, and minimum regret [25]. We
focus in particular on the model where choice functions are assumed to be sub-
stitutable, consistent, and quota-filling. This model (QF-Model) generalizes all
classical models where agents have strict preference lists, on which results for
the question above were known. For this model, Alkan [3] has shown that stable
matchings form a distributive lattice. As we argue next, this is a fundamental
property that allows us to solve our optimization problem efficiently. For missing
proofs, extended discussions, and examples, see the full version of the paper [15].
Our contributions and techniques. We give a high-level description of our
approach and results. For the standard notions of posets, distributive lattices,
and related definitions, see [19]. All sets considered in this paper are finite.

Let L = (X ,�) be a distributive lattice, where all elements of X are distinct
subsets of a base set E and � is a partial order on X . We refer to S ∈ X as an
element (of the lattice). Birkhoff’s theorem [11] implies that we can associate1

to every distributive lattice L a poset B = (Y,��) such that there is a bijection
ψ : X → U(B), where U(B) is the family of upper sets of B. U ⊆ Y is an upper set
of B if y ∈ U and y′ �� y for some y′ ∈ Y implies y′ ∈ U . We say therefore that
B is a representation poset for L with representation function ψ. See Example 1
for a demonstration. B may contain much fewer elements than the lattice L it
represents, thus giving a possibly “compact” description of L.

The representation function ψ satisfies that for S, S′ ∈ X , S � S′ if and only
if ψ(S) ⊆ ψ(S′). Albeit B and ψ explain how elements of X are related to each

1 The result proved by Birkhoff is actually a bijection between the families of lattices
and posets, but in this paper we shall not need it in full generality.

Affinely Representable Lattices, Stable Matchings, and Choice Functions 91

other with respect to �, they do not contain any information on which items from
E are contained in each lattice element. We introduce therefore Definition 1. For
S ∈ X and U ∈ U(B), we write χS ∈ {0, 1}E and χU ∈ {0, 1}Y to denote their
characteristic vectors, respectively.

Definition 1. Let L = (X ,�) be a distributive lattice on a base set E and
B = (Y,��) be a representation poset for L with representation function ψ. B
is an affine representation of L if there exists an affine function g : R

Y → R
E

such that g(χU) = χψ−1(U), for all U ∈ U(B). In this case, we also say that B
affinely represents L via affine function g and that L is affinely representable.

Note that in Definition 1, we can always assume g(u) = Au + x0, where x0

is the characteristic vector of the maximal element of L and A ∈ {0,±1}E×Y .

Example 1. Consider the distributive lattice L = (X ,�) with base set E =
{1, 2, 3, 4} whose Hasse diagram is given below.

S1 = {1, 2}

S2 = {1, 3} S3 = {1, 2, 4}

S4 = {1, 3, 4}

A =

⎛
⎜⎜⎝

0 0
−1 0
1 0
0 1

⎞
⎟⎟⎠

The representation poset B = (Y,��) of L is composed of two non-
comparable elements, y1 and y2. The representation function ψ is defined as

ψ(S1) = ∅ =: U1; ψ(S2) = {y1} =: U2; ψ(S3) = {y2} =: U3; ψ(S4) = Y =: U4.

That is, U(B) = {U1, U2, U3, U4}. One can think of y1 as the operation of adding
{3} and removing {2}, and y2 as the operation of adding {4}. B affinely represents
L via the function g(χU) = AχU + χS1 , with matrix A given above.

Now consider the distributive lattice L′ obtained from L by switching S3 and
S4. One can check that L′ is not affinely representable [15]. �

As we show next, affine representability allows one to efficiently solve linear
optimization problems over elements of a distributive lattice. In particular, it
generalizes a property that is at the backbone of combinatorial algorithms for
optimizing a linear function over the set of stable matchings in the marriage
model and its one-to-many and many-to-many generalizations (see, e.g., [10,22]).
In the marriage model, the base set E is the set of pairs of agents from two sides
of the market, X is the set of stable matchings, and for S, S′ ∈ X , S � S′ if
every firm prefers its partner in S to its partner in S′ or is indifferent between
the two. Elements of its representation poset are certain (trading) cycles, called
rotations.

Lemma 1. Assume poset B = (Y,��) affinely represents lattice L = (X ,�).
Let w : E → R be a linear function over the base set E of L. Then the problem
max{wᵀχS : S ∈ X} can be solved in time min-cut(|Y | + 2), where min-cut(k)
is the time complexity required to solve a minimum cut problem with nonnegative
weights in a digraph with k nodes.

92 Y. Faenza and X. Zhang

Proof. Let g(u) = Au + x0 be the affine function for the representation. Then,

max
S∈X

wᵀχS = max
U∈U(B)

wᵀg(χU) = max
U∈U(B)

wᵀ(AχU + x0) = wᵀx0 + max
U∈U(B)

(wᵀA)χU .

Thus, our problem boils down to the optimization of a linear function over
the upper sets of B. It is well-known that the latter problem is equivalent to
computing a minimum cut in a digraph with |Y | + 2 nodes [29].

We want to apply Lemma 1 to the QF-Model model. Observe that a choice
function may be defined on all the (exponentially many) subsets of agents from
the opposite side of the market. We avoid this computational concern by model-
ing choice functions via an oracle model. That is, choice functions can be thought
of as agents’ private information. The complexity of our algorithms will therefore
be expressed in terms of |F |, |W |, and the time required to compute the choice
function Ca(X) of an agent a ∈ F ∪ W , where the set X is in the domain of
Ca. The latter running time is denoted by oracle-call and we assume it to be
independent of a and X. Our first result is the following.

Theorem 1. The distributive lattice (S,�) of stable matchings in the QF-
Model is affinely representable. Its representation poset (Π,��) has O(|F ||W |)
elements. (Π,��), as well as its representation function ψ and affine function
g(u) = Au + x0, can be computed in time O(|F |3|W |3oracle-call). Moreover,
matrix A has full column rank.

In Theorem 1, we assumed that operations, such as checking if two sets coin-
cide and obtaining an entry from the set difference of two sets, take constant
time. If this is not the case, the running time needs to be scaled by a factor
mildly polynomial in |F | · |W |. Observe that Theorem 1 is the union of two
statements. First, the distributive lattice of stable matchings in the QF-Model
is affinely representable. Second, this representation and the corresponding func-
tions ψ and g can be found efficiently. Those two results are proved in Sect. 3
and Sect. 4, respectively. Combining Theorem 1, Lemma 1 and algorithms for
finding a minimum cut (see, e.g., [34]), we obtain the following.

Corollary 1. The problem of optimizing a linear function over the set of stable
matchings in the QF-Model can be solved in time O(|F |3|W |3oracle-call).

As an interesting consequence of studying a distributive lattice via the poset
that affinely represents it, one immediately obtains a linear description of the
convex hull of the characteristic vectors of elements of the lattice (see Sect. 5).
In contrast, most stable matching literature (see the literature review section)
has focused on deducing linear descriptions for special cases of our model via
ad-hoc proofs, independently of the lattice structure.

Theorem 2. Let L = (X ,�) be a distributive lattice and B = (Y,��) be a
poset that affinely represents it via the affine function g(u) = Au+x0. Then the
extension complexity of conv(X) := conv{χS : S ∈ X} is O(|Y |2). If moreover
A has full column rank, then conv(X) has O(|Y |2) facets.

Affinely Representable Lattices, Stable Matchings, and Choice Functions 93

Theorem 1 and Theorem 2 imply the following description for the stable
matching polytope conv(S), i.e., the convex hull of the characteristic vectors of
stable matchings in the QF-Model.

Corollary 2. conv(S) has O(|F |2|W |2) facets.

We conclude with an example of a lattice represented via a non-full-column
rank matrix A.

Example 2. Consider the distributive lattice given below.

S1 = {1, 2}

S2 = {1, 3}

S3 = {1, 2, 4}

S4 = {1, 3, 4}

A =

⎛
⎜⎜⎝

0 0 0
−1 1 −1
1 −1 1
0 1 0

⎞
⎟⎟⎠

It can be represented via the poset B = (Y,��), that contains
three elements y1, y2, and y3 where y1 �� y2 �� y3. Thus, U(B) =
{∅, {y1}, {y1, y2}, {y1, y2, y3}}. In addition, B affinely represents L via the func-
tion g(χU) = AχU + χS1 , where A is given below. It is clear that matrix A does
not have full column rank. �

Relationship with the literature. Gale and Shapley [17] introduced the
one-to-one stable marriage (SM-Model) and the one-to-many stable admission
model (SA-Model), and presented an algorithm which finds a stable matching.
McVitie and Wilson [27] proposed the break-marriage procedure that finds the
full set of stable matchings. Irving et al. [22] presented an efficient algorithm
for the maximum-weighted stable matching problem with weights over pairs
of agents, using the fact that the set of stable matchings forms a distributive
lattice [24] and that its representation poset – an affine representation following
our terminology – can be constructed efficiently via the concept of rotations [21].
The above-mentioned structural and algorithm results have been also shown for
its many-to-many generalization (MM-Model) in [8,10]. A complete survey of
results on these models can be found, e.g., in [19,25].

For models with substitutable and consistent choice functions, Roth [31]
proved that stable matchings always exist by generalizing the algorithm pre-
sented in [17]. Blair [12] proved that stable matchings form a lattice, although
not necessarily distributive. Alkan [3] showed that if choice functions are further
assumed to be quota-filling, the lattice is distributive. Results on (non-efficient)
enumeration algorithms in certain models with choice functions appeared in [26].

It is then natural to investigate whether algorithms from [10,21] can be
directly extended to construct the representation poset in the QF-Model. How-
ever, definition of rotations and techniques in [10,21] rely on the fact that there
is a strict ordering of partners, which is not available with choice functions. This,

94 Y. Faenza and X. Zhang

for instance, leads to the fact that the symmetric difference of two stable match-
ings that are adjacent in the lattice is always a simple cycle, which is not always
true in the QF-Model. We take then a more fundamental approach by show-
ing a carefully defined ring of sets is isomorphic to the set of stable matchings,
and thus we can construct the rotation poset following a maximal chain of the
stable matching lattice. This approach conceptually follows the one in [19] for
the SM-Model and leads to a generalization of the break-marriage procedure
from [27]. Again, proofs in [19,27] heavily rely on having a strict ordering of
partners, while we need to tackle the challenge of not having one.

Besides the combinatorial perspective, another line of research focuses on
the polyhedral aspects. Linear descriptions of the convex hull of the characteris-
tic vectors of stable matchings are provided for the SM-Model [32,33,38], the
SA-Model [9], and the MM-Model [16]. In this paper, we provide a polyhe-
dral description for the QF-Model, by drawing connection between the order
polytope (i.e., the convex hull of the characteristic vectors of the upper sets of a
poset) and Birkhoff’s representation theorem of distributive lattices. A similar
approach has been proposed in [5]: their result can be seen as a specialization of
Theorem 2 to the SM-Model.

Aside from the stable matching problem, the feasible spaces of many other
combinatorial optimization problems form a distributive lattice. Examples, as
pointed out in [18], include feasible rooted trees for the shortest path problem,
and market clearing prices for the assignment game [35].

2 The QF-MODEL

Let F and W denote two disjoint finite sets of agents, say firms and workers,
respectively. Associated with each firm f ∈ F is a choice function Cf : 2W (f) →
2W (f) where W (f) ⊆ W is the set of acceptable partners of f and Cf satisfies
the property that for every S ⊆ W (f), Cf (S) ⊆ S. Similarly, a choice function
Cw : 2F (w) → 2F (w) is associated to each worker w. We assume that for every
firm-worker pair (f, w), f ∈ F (w) if and only if w ∈ W (f). We let CW and
CF denote the collection of firms’ and workers’ choice functions respectively. A
matching market is a tuple (F,W, CF , CW).

Following Alkan [3], we define the QF-Model by assuming that the choice
function Ca of every agent a ∈ F ∪ W satisfies the three properties below.

Definition 2 (Substitutability). Ca is substitutable if for any set of partners
S, b ∈ Ca(S) implies that for all T ⊆ S, b ∈ Ca(T ∪ {b}).

Definition 3 (Consistency). Ca is consistent if for any sets of partners S and
T , Ca(S) ⊆ T ⊆ S implies Ca(S) = Ca(T).

Definition 4 (Quota-filling). Ca is quota-filling if there exists qa ∈ N such
that for any set of partners S, |Ca(S)| = min(qa, |S|). We call qa the quota of a.

Affinely Representable Lattices, Stable Matchings, and Choice Functions 95

Intuitively, substitutability implies that an agent selected from a set of can-
didates will also be selected from a smaller subset; consistency is also called
“irrelevance of rejected contracts”; and quota-filling means that an agent has
a number of positions and she tries to fill those as many as possible. A choice
function is substitutable and consistent if and only if it is path-independent [2].

Definition 5 (Path-independence). Ca is path-independent if for any sets of
partners S and T , Ca(S ∪ T) = Ca

(
Ca(S) ∪ T

)
.

A matching μ is a mapping from F ∪ W to 2F∪W such that for all w ∈ W
and all f ∈ F , (1) μ(w) ⊆ F (w), (2) μ(f) ⊆ W (f), and (3) w ∈ μ(f) if and only
if f ∈ μ(w). A matching can also be viewed as a collection of firm-worker pairs.
That is, μ ≡ {(f, w) : f ∈ F,w ∈ μ(f)}. We say a matching μ is individually
rational if for every agent a, Ca(μ(a)) = μ(a). An acceptable firm-worker pair
(f, w) /∈ μ is called a blocking pair if w ∈ Cf (μ(f)∪{w}) and f ∈ Cw(μ(w)∪{f}),
and when such pair exists, we say μ is blocked by the pair or the pair blocks μ. A
matching μ is stable if it is individually rational and it admits no blocking pairs.
If f is matched to w in some stable matching, we say that f (resp. w) is a stable
partner of w (resp. f). We denote by S(CF , CW) the set of stable matchings in
the market (F,W, CF , CW). Alkan [3] showed the following.

Theorem 3 ([3]). Consider a matching market (F,W, CF , CW) in the QF-
Model. Then, S(CF , CW) is a distributive lattice under the partial order � where
μ1 � μ2 if for all f ∈ F , Cf (μ1(f)) ∪ μ2(f)) = μ1(f).

We denote by μF and μW the firm- and worker-optimal stable matchings,
respectively. For every a ∈ F ∪ W , let Φa = {μ(a) : μ ∈ S(CF , CW)}. Alkan [3]
showed that for all S, T ∈ Φa the following holds: |S| = |T | =: qa (equal-quota);
and qa < qa =⇒ |Φa| = 1 (full-quota).

3 Affine Representability of the Stable Matching Lattice

For the rest of the paper, we fix a matching market (F,W, CF , CW) and often
abbreviate S := S(CF , CW). In this section, we show that the distributive lattice
of stable matchings (S,�) in the QF-Model is affinely representable. Our app-
roach is as follows. First, we show that (S,�) is isomorphic to a lattice (P,⊆)
belonging to a special class, that is called ring of sets. We then show that rings
of sets are always affinely representable. Next, we show a poset (Π,��) repre-
senting (S,�). We last show how to combine all those results and “translate”
the affine representability of (P,⊆) to the affine representability of (S,�). We
note in passing that in this section we actually rely on weaker assumptions than
those from the QF-Model, essentially matching those from [4]. That is, instead
of quota-filling, we can assume a weaker condition called cardinal monotonicity :
Ca is cardinal monotone if for all sets of partners S ⊆ T , |Ca(S)| ≤ |Ca(T)|.
Isomorphism between the stable matching lattice and a ring of sets. A
family H of subsets of a base set B is a ring of sets over B if H is closed under

96 Y. Faenza and X. Zhang

set union and set intersection [11]. A ring of sets is a distributive lattice with the
partial order relation ⊆, and the join (∨) and meet (∧) operations corresponding
to set intersection and set union, respectively.

Let φ(a) := {b : b ∈ μ(a) for some μ ∈ S} denote the set of stable partners of
agent a. For a stable matching μ, let Pf (μ) := {w ∈ φ(f) : w ∈ Cf (μ(f)∪{w})},
and define the P-set of μ as P (μ) := {(f, w) : f ∈ F, w ∈ Pf (μ)}.

The following theorem gives a “description” of the stable matching lattice as
a ring of sets. Let P(CF , CW) denote the set {P (μ) : μ ∈ S(CF , CW)}, and we
often abbreviate P := P(CF , CW).

Theorem 4.(1) the mapping P : S → P is a bijection;
(2) (P,⊆) is isomorphic to (S,�). Moreover, P (μ1 ∨ μ2) = P (μ1) ∩ P (μ2) and

P (μ1 ∧μ2) = P (μ1)∪P (μ2). In particular, (P,⊆) is a ring of sets over the
base set E = {(f, w) ∈ F × W : w ∈ φ(f)}.

Remark 1. An isomorphism between the lattice of stable matchings and a ring of
set is proved in the SM-Model as well [19], where the authors define Pf (μ) :=
{w : f prefers w to μ(f)}, hence including firm-worker pairs that are not stable.
Interestingly, there are examples showing that in the QF-Model, if we were to
use the natural extension of the definition in [19], i.e., Pf (μ) := {w ∈ W (f) :
w ∈ Cf (μ(f) ∪ {w})}, then P is not a ring of set, see [15].

Affine representability of rings of sets. Consider a poset (X,≥). Let a, a′ ∈
X. If a′ > a and there is no b ∈ X such that a′ > b > a, we say that a′ is an
immediate predecessor of a in (X,≥) and that a is an immediate descendant of
a′ in (X,≥). Fix a ring of set (H,⊆) over a base set B and define set D(H) :=
{H\H ′ : H ′ is an immediate predecessor of H in (H,⊆)} of minimal differences
among elements of H. We note that minimal differences are disjoint [19]. We
elucidate in Example 3 these definitions and the facts below.

Theorem 5 ([11]). There is a partial order � over D(H) such that (D(H),�)
is a representation poset for (H,⊆) where the representation function ψ is defined
as follows: for any upper set D of (D(H),�), ψ−1(D) =

⋃
{K : K ∈ D} ∪ H0

where H0 is the minimal element of H. Moreover, |D(H)| = O(|B|).

From Theorem 5, it is not hard to prove the following.

Theorem 6. (D(H),�) affinely represents (H,⊆) via the affine function g(u) =
Au + x0, where x0 = χH0 , and A ∈ {0, 1}B×D(H) has columns χK for each
K ∈ D(H). Moreover, A has full column rank.

Example 3. Consider the ring of sets and its representation poset given below.

Affinely Representable Lattices, Stable Matchings, and Choice Functions 97

a H1

a bH2 a c H3

a b cH4 a c d e H5

a b c d eH6

a b c d e fH7

(a) (H, ⊆)

b c

d e

f

(b) (D(H), �)

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Representation function ψ maps H1, · · · ,H7 to ∅, {{b}}, {{c}}, {{b}, {c}},
{{c}, {d, e}}, {{b}, {c}, {d, e}}, and {{b}, {c}, {d, e}, {f}}, respectively.
The affine function is g(u) = Au + x0 with xᵀ

0 = (1, 0, 0, 0, 0, 0) and matrix
A given above. Note that columns of A correspond to {b}, {c}, {d, e}, {f} in this
order. �

Representation of (S,�) via the poset of rotations. For μ′ � μ ∈ S
with μ′ being an immediate predecessor of μ in the stable matching lattice, let
ρ+(μ′, μ) = {(f, w) : (f, w) ∈ μ \ μ′} and ρ−(μ′, μ) = {(f, w) : (f, w) ∈ μ′ \ μ}.
We call ρ(μ′, μ) := (ρ+(μ′, μ), ρ−(μ′, μ)) a rotation of (S,�). Let Π(S) denote
the set of rotations of (S,�). We abbreviate D := D(P) and Π := Π(S).

Theorem 7.(1) the mapping Q : Π → D, with Q(ρ) := ρ+, is a bijection;
(2) (D,�) is isomorphic to (Π,��) where for two rotations ρ1, ρ2 ∈ Π, ρ1 �� ρ2

if Q(ρ1) � Q(ρ2);
(3) (Π,��) is a representation poset for (S,�), where the representation func-

tion ψS is defined as follows: ψ−1
S (Π) = μF ∪ (

⋃
ρ∈Π ρ+) \ (

⋃
ρ∈Π ρ−), for

any upper set Π of (Π,��).

(Π,��) is called the rotation poset. By Theorem 6 and Theorem 7, we deduce
|Π| = O(|F ||W |) and the following, proving the structural statement from The-
orem 1. The base set E of (S,�) is the set of acceptable firm-worker pairs.

Theorem 8. The rotation poset (Π,��) affinely represents the stable matching
lattice (S,�) with affine function g(u) = Au + μF , where A ∈ {0,±1}E×Π has
columns χρ+ − χρ− for each ρ ∈ Π. Moreover, matrix A has full column rank.

4 Algorithms

To conclude the proof of Theorem 1, we show how to efficiently find the elements
of Π, and how they relate to each other via ��. First, we employ Roth’s extension
of the Deferred Acceptance algorithm to find a firm- or worker-optimal stable
matching. Second, we feed its output to an algorithm that produces a maximal
chain C0, C1, . . . , Ck of (S,�) and the set Π. We then provide an algorithm that,
given a maximal chain of a ring of sets, constructs the partial order for the poset

98 Y. Faenza and X. Zhang

Algorithm 1. break-marriage(μ′, f ′, w′) with (f ′, w′) ∈ μ′ ∈ S
1: for each firm f �= f ′ do X

(0)
f = Xf (μ′) end for

2: let X
(0)
f ′ = Xf ′(μ′) \ {w′}; set the step count s = 0

3: repeat
4: for each worker w do
5: let X

(s)
w = {f ∈ F : w ∈ Cf (X

(s)
f)}

6: if w �= w′ then Y
(s)

w = Cw(X
(s)
w) else Y

(s)
w = Cw(X

(s)
w ∪ {f ′}) \ {f ′}

7: end for
8: for each firm f do X

(s+1)
f = X

(s)
f \ {w ∈ W : f ∈ X

(s)
w \ Y

(s)
w } end for

9: update the step count s = s + 1
10: until X

(s−1)
f = X

(s)
f for every firm f

Output: matching μ with μ(w) = Y
(s−1)

w for every worker w

of minimal differences. This and previous facts are then exploited to obtain the
partial order �� on rotations of Π. Lastly, we argue on the overall running time.

For a matching μ and f ∈ F , let Xf (μ) := {w ∈ W (f) : Cf (μ(f) ∪ {w}) =
μ(f)}. Define the closure of μ, denoted by X(μ), as the collection of sets {Xf (μ) :
f ∈ F}. If μ is individually rational, then μ(f) ⊆ Xf (μ) for every f ∈ F .

Lemma 2. Let μ1, μ2 ∈ S such that μ1 � μ2. Then, ∀f ∈ F , μ2(f) ⊆ Xf (μ1).

Deferred Acceptance Algorithm. Roth [31] generalized to choice function
models the algorithm proposed in [17]. There is one side that is proposing –
for the following, we let it be F . Initially, for each f ∈ F , let Xf := W (f),
i.e., the set of acceptable workers of f . At every step, every f ∈ F proposes
to workers in Cf (Xf). Then, every w ∈ W considers the set of firms Xw who
made a proposal to w, temporarily accepts Yw := Cw(Xw), and rejects the rest.
Afterwards, each firm f removes from Xf all workers that rejected f . Hence,
throughout the algorithm, Xf denotes the set of acceptable workers of f that
have not rejected f yet. The firm-proposing algorithm iterates until there is no
rejection.

Theorem 9. Roth’s algorithms outputs μF in time O(|F ||W |oracle-call).

By symmetry, swapping the role of firms and workers, we have the worker-
proposing deferred acceptance algorithm, which outputs μW .
Constructing Π via a maximal chain of (S,�). A maximal chain C0, · · · , Ck

in (S,�) is an ordered subset of S such that Ci−1 is an immediate predecessor
of Ci in (S,�) for all i ∈ [k], C0 = μF , and Ck = μW .

We now extend to our setting the break-marriage idea proposed by McVitie
and Wilson [27]. This algorithm produces a matching μ starting from μ′ ∈ S.
A formal description is given in Algorithm 1. Roughly speaking, the algorithm
re-initiates the deferred acceptance algorithm from μ′ after suitably breaking
a matched pair. Repeated applications of Algorithm 1 allow us to obtain an
immediate descendant of μ′ in (S,�).

Affinely Representable Lattices, Stable Matchings, and Choice Functions 99

Algorithm 2. Immediate descendant of μ′ ∈ S
1: set T = ∅
2: for each (f ′, w′) ∈ μ′ \ μW do
3: run the break-marriage(μ′, f ′, w′) procedure
4: if the procedure is successful then add the output matching μ to T
5: end for
Output: a maximal matching μ∗ from T wrt �, i.e. � μ ∈ T such that μ 	 μ∗

It is easy to see that break-marriage(μ′, f ′, w′) always terminates. We let
s� be the value of step count s at the end of the algorithm. Note that by the
termination condition, μ(f) = Cf (X(s�)

f) for every firm f . Let (f, w) ∈ F × W .

We say f is rejected by w at step s if f ∈ X
(s)
w \ Y

(s)
w , and we say f is rejected by

w if f is rejected by w at some step during the break-marriage procedure. Note
that a firm f is rejected by all and only the workers in Xf (μ′) \ X

(s�)
f .

Theorem 10. The running time of Algorithm 1 is O(|F ||W |oracle-call).

Lemma 3. The matching μ output by Algorithm 1 is individually rational, and
for every firm f ∈ F , we have Cf (μ(f) ∪ μ′(f)) = μ′(f).

We say break-marriage(μ′, f ′, w′) is successful if f ′ /∈ Cw′(X(s�−1)
w′ ∪ {f ′}).

Lemma 4. If break-marriage(μ′, f ′, w′) is successful, then μ ∈ S and μ′ � μ.

Next theorem shows a sufficient condition for the break-marriage procedure
to output an immediate descendant in the stable matching lattice.

Theorem 11. Let μ′ � μ ∈ S and assume μ′ is an immediate predecessor of
μ in the stable matching lattice. Pick (f ′, w′) ∈ μ′ \ μ and let μ be the output
matching of break-marriage(μ′, f ′, w′). Then, μ = μ.

Proof. Note that by Lemma 2, μ(f) ⊆ Xf (μ′) for every f ∈ F . We start by
showing that during the algorithm, for every firm f , no worker in μ(f) rejects
f . Assume by contradiction that this is not true. Let s′ be the first step where
such a rejection happens, with firm f1 being rejected by worker w1 ∈ μ(f1).

Claim 1. There exists a firm f2 ∈ Y
(s′)
w1 \μ(w1) such that f2 ∈ Cw1(μ(w1)∪{f2}).

Let f2 be the firm whose existence is guaranteed by Claim 1. In particular,
f2 ∈ Y

(s′)
w1 implies w1 ∈ Cf2(X

(s′)
f2

). Note that by our choice of f1, μ(f2) ⊆ X
(s′)
f2

.

Therefore, using substitutability and w1 ∈ X
(s′)
f2

, we have w1 ∈ Cf2(μ(f2)∪{w1}).
Thus, (f2, w1) is a blocking pair of μ, which contradicts the stability of μ.

Hence, for every firm f , no worker in μ(f) rejects f and thus, μ(f) ⊆ X
(s�)
f .

Because of path-independence and μ(f) = Cf (X(s�)
f), we have Cf (μ(f)∪μ(f)) =

Cf (Cf (X(s�)
f) ∪ μ(f)) = Cf

(
Cf (X(s�)

f ∪ μ(f))
)

= Cf (X(s�)
f) = μ(f) (§). This in

100 Y. Faenza and X. Zhang

Algorithm 3. A maximal chain of (S,�) and the set of rotations Π

1: set counter k = 0; let Ck = μF

2: while Ck �= μW do
3: run Algorithm 2 with μ′ = Ck, and let μ∗ be its output
4: update counter k = k + 1; let Ck = μ∗

5: end while
Output: maximal chain C0, C1, · · · , Ck; and Π = {ρi := ρ(Ci−1, Ci)}i∈[k].

particular implies |μ(f)| ≥ |μ(f)| due to individual rationality of μ and quota-
filling. Note also that |μ(f)| = |μ′(f)| = |Cf (μ(f)∪μ′(f))| ≥ |Cf (μ(f))| = |μ(f)|,
where the first equality is due to the equal-quota property, the second and the last
by Lemma 3, and the inequality by quota-filling. We deduce |μ(f)| = |μ′(f)| =
|μ(f)| (�). We now show that break-marriage(μ′, f ′, w′) is successful.

Claim 2. |μ(w)| = |μ′(w)| for every worker w �= w′.

Hence, |μ(w′)| = |μ′(w′)| = qw′ = qw′ , where the first equality holds from
Claim 2 and (�), the second by the equal-quota property, and the last because
μ(w′) �= μ′(w′) by choice of w′ and the full-quota property. Therefore, f ′ �∈
Cw′(X(s�−1)

w′ ∪ {f ′}) because otherwise |μ(w′)| = |Cw′(X(s�−1)
w′ ∪ {f ′}) \ {f ′}| <

|Cw′(X(s�−1)
w′ ∪ {f ′})| ≤ qw′ , where the last inequality holds by quota-filling, a

contradiction. Thus, break-marriage(μ′, f ′, w′) is successful.
Finally, by Lemma 4, we have μ ∈ S and μ′ � μ. Because of (§), we also have

μ � μ. Therefore, it must be that μ = μ by the choice of μ.
We now present in Algorithm 2 a procedure that finds an immediate descen-

dant for any given stable matching, using the break-marriage procedure.

Lemma 5. Let μ1 � μ2 � μ3 ∈ S. If (f, w) ∈ μ1 \ μ2, then (f, w) /∈ μ3.

Theorem 12. The output μ∗ of Algorithm 2 is an immediate descendant of μ′

in (S,�). Its running time is O(|F |2|W |2oracle-call).

Proof. First note that due to Lemma 4, all matchings in the set T are stable
matchings. Assume by contradiction that the output matching μ∗ is not an
immediate descendant of μ′ in (S,�). Then, there exists a stable matching μ
such that μ′ � μ � μ∗. By Lemma 5, for every firm-worker pair (f ′, w′) ∈ μ′ \μ,
we also have (f ′, w′) /∈ μW . Thus, μ ∈ T due to Theorem 11. However, this
means that μ∗ is not a maximal matching from T , which is a contradiction. The
runtime follows from Theorem 10 and the fact that |μ′| = O(|F ||W |).

Algorithm 3 employs Algorithm 2 to find a maximal chain of the stable
matching lattice, as well as the set of rotations.

Theorem 13. Algorithm 3 is correct and runs in time O(|F |3|W |3
oracle-call).

Affinely Representable Lattices, Stable Matchings, and Choice Functions 101

Algorithm 4. Construction of the rotation poset (Π,��)

1: Run Roth’s algorithm [30], to obtain μF and μW .
2: Run Algorithm 3 to obtain a maximal chain C0, C1, · · · , Ck of the stable matching

lattice (S, �), and the set of rotations Π ≡ {ρ1, ρ2, · · · , ρk}.

3: Run the algorithm from Theorem 14 to obtain the partial order ��.

Proof. By Theorem 7 and Theorem 12, the maximal chain output is correct.
Additionally, by Theorem 5, |Π| = O(|F ||W |) and the running time follows.
By [19, Section 2.4.3], all elements of D(P) are found on a maximal chain of
P. Then, by Theorem 7, Π can also be found on a maximal chain of S. Thus,
output Π is correct.

Partial order �� over Π. Consider a ring of sets (H,⊆). We can produce an
efficient algorithm that obtains the partial order � of (D(H),�) from a maximal
chain of (H,⊆), based on the classical concept of irreducible elements: see [15]
for details. Together with Theorem 4 and Theorem 7, we have the following.

Theorem 14. There is an algorithm with runtime O(|F |3|W |3oracle-call)
that constructs the partial order �� given as input the output of Algorithm 3.

Summary and time complexity analysis. The complete procedure to build
the rotation poset is summarized in Algorithm 4. Its correctness and runtime of
O(|F |3|W |3oracle-call) follow from Theorem 9, Theorem 13, and Theorem 14.
This concludes the proof of Theorem 1.

5 The Convex Hull of Lattice Elements: Proof of
Theorem 2

The order polytope associated with poset (Y,��) is defined as

O(Y,��) := {y ∈ [0, 1]Y : yi ≥ yj , ∀i, j ∈ Y s.t. i �� j}.

Stanley [36] showed that the vertices of O(Y,��) are the characteristic vectors
of upper sets of (Y,��), and gave a complete characterization of the O(|Y |2)
facets of O(Y,��). We claim that

conv(X) = {x0} ⊕ A · O(Y,��) = {x ∈ R
E : x = x0 + Ay, y ∈ O(Y,��)},

where ⊕ denotes the Minkowski sum operator. Indeed, g defines a bijection
between vertices of O(Y,��) and vertices of conv(X). The claim them follows
by convexity. As O(Y,��) has O(|Y |2) facets, we conclude the first statement
from Theorem 2.

Now suppose that A has full column rank. Then, since O(Y,��) is full-
dimensional, conv(X) is affinely isomorphic to O(Y,��). Hence, there is a one-
to-one correspondence between facets of O(Y,��) and facets of conv(X). The
second statement then follows from the characterization given in [36]. Example 4
shows that statements above do not hold when A does not have full column-rank.

102 Y. Faenza and X. Zhang

Example 4. Consider the lattice (X ,�) and its representation poset (Y,��) from
Example 2. Note that

conv(X) = {x ∈ [0, 1]4 : x1 = 1, x2 + x3 = 1}.

Thus, conv(X) has dimension 2. On the other hand, O(Y,��) has dimension 3.
So the two polytopes are not affinely isomorphic.

More generally, one can easily construct a distributive lattice (X ,�) such
that the number of facets of O(Y,��) gives no useful information on the number
of facets of conv(X), where (Y,��) is a poset that affinely represents (X ,�).
In fact, the vertices of any 0/1 polytope can be arbitrarily arranged in a chain
to form a distributive lattice (X ,�). A poset O(Y,��) that affinely represents
(X ,�) is given by a chain with |Y | = |X | − 1. It is easy to see that O(Y,��) is
a simplex and has therefore |Y | + 1 = |X | facets. However, conv(X) could have
much more (or much less) facets than the number of its vertices. �

References

1. Abdulkadiroğlu, A., Sönmez, T.: School choice: a mechanism design approach. Am.
Econ. Rev. 93(3), 729–747 (2003)

2. Aizerman, M., Malishevski, A.: General theory of best variants choice: some
aspects. IEEE Trans. Autom. Control 26(5), 1030–1040 (1981)

3. Alkan, A.: On preferences over subsets and the lattice structure of stable matchings.
Rev. Econ. Design 6(1), 99–111 (2001)

4. Alkan, A.: A class of multipartner matching markets with a strong lattice structure.
Econ. Theor. 19(4), 737–746 (2002)

5. Aprile, M., Cevallos, A., Faenza, Y.: On 2-level polytopes arising in combinatorial
settings. SIAM J. Discret. Mathe. 32(3), 1857–1886 (2018)

6. Aygün, O., Sönmez, T.: Matching with contracts: comment. Am. Econ. Rev.
103(5), 2050–51 (2013)

7. Aygün, o., Turhan, B.: Dynamic reserves in matching markets: Theory and appli-
cations. Available at SSRN 2743000 (2016)

8. Bäıou, M., Balinski, M.: Many-to-many matching: stable polyandrous polygamy
(or polygamous polyandry). Discret. Appl. Math. 101(1–3), 1–12 (2000)

9. Bäıou, M., Balinski, M.: The stable admissions polytope. Math. Program. 87(3),
427–439 (2000). https://doi.org/10.1007/s101070050004

10. Bansal, v., Agrawal, A., Malhotra, V.S.: Polynomial time algorithm for an optimal
stable assignment with multiple partners. Theoret. Comput. Sci. 379(3), 317–328
(2007)

11. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)
12. Blair, C.: The lattice structure of the set of stable matchings with multiple partners.

Math. Oper. Res. 13(4), 619–628 (1988)
13. Chambers, C.P., Yenmez, M.B.: Choice and matching. Am. Econ. J. Microecon.

9(3), 126–47 (2017)
14. Echenique, F., Yenmez, M.B.: How to control controlled school choice. Am. Econ.

Rev. 105(8), 2679–2694 (2015)
15. Faenza, Y., Zhang, X.: Affinely representable lattices, stable matchings, and choice

functions (2020). Available on arXiv

https://doi.org/10.1007/s101070050004

Affinely Representable Lattices, Stable Matchings, and Choice Functions 103

16. Fleiner, T.: On the stable b-matching polytope. Math. Soc. Sci. 46(2), 149–158
(2003)

17. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Month. 69(1), 9–15 (1962)

18. Garg, V.K.: Predicate detection to solve combinatorial optimization problems. In:
Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pp. 235–245 (2020)

19. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms.
MIT press (1989)

20. Hatfield, J.W., Milgrom, P.R.: Matching with contracts. Am. Econ. Rev. 95(4),
913–935 (2005)

21. Irving, R.W., Leather, P.: The complexity of counting stable marriages. SIAM J.
Comput. 15(3), 655–667 (1986)

22. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal”
stable marriage. J. ACM (JACM) 34(3), 532–543 (1987)

23. Kamada, Y., Kojima, F.: Efficient matching under distributional constraints: the-
ory and applications. Am. Econ. Rev. 105(1), 67–99 (2015)

24. Knuth, D.E.: Marriages stables. Technical report (1976)
25. Manlove, D.: Algorithmics of matching under preferences, vol. 2. World Scientific

(2013)
26. Mart́ınez, R., Massó, J., Neme, A., Oviedo, J.: An algorithm to compute the full

set of many-to-many stable matchings. Math. Soc. Sci. 47(2), 187–210 (2004)
27. McVitie, D.G., Wilson, L.B.: The stable marriage problem. Commun. ACM 14(7),

486–490 (1971)
28. Nguyen, T., Vohra, R.: Stable matching with proportionality constraints. Oper.

Res. 67(6), 1503–1519 (2019)
29. Picard, J.-C.: Maximal closure of a graph and applications to combinatorial prob-

lems. Manage. Sci. 22(11), 1268–1272 (1976)
30. Roth, A.E.: The evolution of the labor market for medical interns and residents: a

case study in game theory. J. Polit. Econo. 92(6), 991–1016 (1984)
31. Roth, A.E.: Stability and polarization of interests in job matching. Econom. J.

Econ. Soc. 52, 47–57 (1984)
32. Roth, A.E., Rothblum, U.G., Vate, J.H.V.: Stable matchings, optimal assignments,

and linear programming. Math. Oper. Res. 18(4), 803–828 (1993)
33. Rothblum, U.G.: Characterization of stable matchings as extreme points of a poly-

tope. Math. Program. 54(1–3), 57–67 (1992)
34. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.

Springer Science & Business Media, Heidelberg (2003)
35. Shapley, L.S., Shubik, M.: The assignment game I: the core. Int. J. Game Theory,

1(1), 111–130 (1971). https://doi.org/10.1007/BF01753437
36. Stanley, R.P.: Two poset polytopes. Discret. Comput. Geom. 1(1), 9–23 (1986).

https://doi.org/10.1007/BF02187680
37. Tomoeda, K.: Finding a stable matching under type-specific minimum quotas. J.

Econ. Theory 176, 81–117 (2018)
38. Vate, J.H.V.: Linear programming brings marital bliss. Oper. Res. Lett. 8(3), 147–

153 (1989)

https://doi.org/10.1007/BF01753437
https://doi.org/10.1007/BF02187680

A Finite Time Combinatorial Algorithm
for Instantaneous Dynamic Equilibrium

Flows

Lukas Graf(B) and Tobias Harks

Augsburg University, Institute of Mathematics, Augsburg 86135, Germany
{lukas.graf,tobias.harks}@math.uni-augsburg.de

Abstract. Instantaneous dynamic equilibrium (IDE) is a standard
game-theoretic concept in dynamic traffic assignment in which individual
flow particles myopically select en route currently shortest paths towards
their destination. We analyze IDE within the Vickrey bottleneck model,
where current travel times along a path consist of the physical travel
times plus the sum of waiting times in all the queues along a path.
Although IDE have been studied for decades, no exact finite time algo-
rithm for equilibrium computation is known to date. As our main result
we show that a natural extension algorithm needs only finitely many
phases to converge leading to the first finite time combinatorial algo-
rithm computing an IDE. We complement this result by several hardness
results showing that computing IDE with natural properties is NP-hard.

1 Introduction

Flows over time or dynamic flows are an important mathematical concept in net-
work flow problems with many real world applications such as dynamic traffic
assignment, production systems and communication networks (e.g., the Inter-
net). In such applications, flow particles that are sent over an edge require a
certain amount of time to travel through each edge and when routing decisions
are being made, the dynamic flow propagation leads to later effects in other
parts of the network. A key characteristic of such applications, especially in traf-
fic assignment, is that the network edges have a limited flow capacity which,
when exceeded, leads to congestion. This phenomenon can be captured by the
fluid queueing model due to Vickrey [23]. The model is based on a directed graph
G = (V,E), where every edge e has an associated physical transit time τe ∈ Q>0

and a maximal rate capacity νe ∈ Q>0. If flow enters an edge with higher rate
than its capacity, the excess particles start to form a queue at the edge’s tail,
where they wait until they can be forwarded onto the edge. Thus, the total travel
time experienced by a single particle traversing an edge e is the sum of the time
spent waiting in the queue of e and the physical transit time τe.

This physical flow model then needs to be enhanced with a behavioral model
prescribing the actions of flow particles. There are two main standard behavioral
models in the traffic assignment literature known as dynamic equilibrium (DE)
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 104–118, 2021.
https://doi.org/10.1007/978-3-030-73879-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_8&domain=pdf
http://orcid.org/0000-0001-9212-0277
https://doi.org/10.1007/978-3-030-73879-2_8

A Finite Time Combinatorial Algorithm for IDE Flows 105

(cf. Ran and Boyce [19, Sect. V–VI]) and instantaneous dynamic equilibrium
(IDE) ([19, Sect. VII–IX]). Under DE, flow particles have complete information
on the state of the network for all points in time (including the future evolution
of all flow particles) and based on this information travel along a shortest path.
The full information assumption is usually justified by assuming that the game
is played repeatedly and a DE is then an attractor of a learning process. In an
IDE, at every point in time and at every node of the graph, flow particles only
enter those edges that lie on a currently shortest path towards their respective
sink. The behavioral model of IDE is based on the concept that drivers are
informed in real-time about the current traffic situation and, if beneficial, reroute
instantaneously no matter how good or bad that route will be in hindsight. IDE
has been proposed already in the late 80’s (cf. Boyce, Ran and LeBlanc [1,20]
and Friesz et al. [7]).

A line of recent works starting with Koch and Skutella [17] and Cominetti,
Correa and Larré [3] derived a complementarity description of DE flows via so-
called thin flows with resetting which leads to an α-extension property stating
that for any equilibrium up to time θ, there exists α > 0 so that the equilibrium
can be extended to time θ + α. An extension that is maximal with respect to
α is called a phase in the construction of an equilibrium and the existence of
equilibria on the whole R≥0 then follows by a limit argument over phases using
Zorn’s lemma. In the same spirit, Graf, Harks and Sering [10] established a
similar characterization for IDE flows and also derived an α-extension property.

For both models (DE or IDE), it is an open question whether for constant
inflow rates and a finite time horizon, a finite number of phases suffices to con-
struct an equilibrium, see [3,10,17]. Proving finiteness of the number of phases
would imply an exact finite time combinatorial algorithm. Such an algorithm is
not known to date neither for DE nor for IDE.1 More generally, the computa-
tional complexity of equilibrium computation is widely open.

1.1 Our Contribution and Proof Techniques

In this paper, we study IDE flows and derive algorithmic and computational com-
plexity results. As our main result we settle the key question regarding finiteness
of the α-extension algorithm.

Theorem 1: For single-sink networks with piecewise constant inflow rates
with bounded support, there is an α-extension algorithm computing an IDE

1 Algorithms for DE or IDE computation used in the transportation science literature
are numerical, that is, only approximate equilibrium flows are computed given a cer-
tain numerical precision using a discretized model, see for example [1,6,11]. While a
recent computational study [24] showed some positive results in regards to conver-
gence for DE, Otsubo and Rapoport [18] also reported “significant discrepancies”
between the continuous and a discretized solution for the Vickrey model.

106 L. Graf and T. Harks

after finitely many extension phases. This implies the first finite time com-
binatorial exact algorithm computing IDE within the Vickrey model.

The proof of our result is based on the following ideas. We first consider the
case of acyclic networks and use a topological order of nodes in order to schedule
the extension phases in the algorithm. The key argument for the finiteness of
the number of extension phases is that for a single node v and any interval with
linearly changing distance labels of nodes closer to the sink and constant inflow
rate into v, this flow can be redistributed to the outgoing edges in a finite number
of phases of constant outflow rates from v. We show this using the properties
(derivatives) of suitable edge label functions for the outgoing edges. The overall
finiteness of the algorithm follows by induction over the nodes and time. We then
generalize to arbitrary single-sink networks by considering dynamically changing
topological orders depending on the current set of active edges.

We then turn to the computational complexity of IDE flows and show that
several natural decision problems about the existence of IDE with certain prop-
erties are NP-hard.

Theorem 2: The following decision problems are all NP-hard:

– Given a specific edge: Is there an IDE using/not using this edge?
– Given some time horizon T : Is there an IDE that terminates before T?
– Given some k ∈ N: Is there an IDE with at most k phases?

1.2 Related Work

The concept of flows over time was studied by Ford and Fulkerson [5]. Shortly after,
Vickrey [23] introduced a game-theoretic variant using a deterministic queueing
model. Since then, dynamic equilibria have been studied extensively in the trans-
portation science literature, see Friesz et al. [7]. New interest in this model was
raised after Koch and Skutella [17] gave a novel characterization of dynamic equi-
libria in terms of a family of static flows (thin flows). Cominetti et al. [3] refined
this characterization and Sering and Vargas-Koch [22] incorporated spillbacks in
the fluid queuing model. In a very recent work, Kaiser [16] showed that the thin
flows needed for the extension step in computing dynamic equilibria can be deter-
mined in polynomial time for series-parallel networks. The papers [3,16] explic-
itly mention the problem of possible non-finiteness of the extension steps. For fur-
ther results regarding a discrete packet routing model, we refer to Cao et al. [2],
Ismaili [14,15], Scarsini et al. [21], Harks et al. [12] and Hoefer et al. [13].

A Finite Time Combinatorial Algorithm for IDE Flows 107

2 Model and the Extension-Algorithm

In this paper we consider networks N = (G, (νe)e∈E , (τe)e∈E , (uv)v∈V \{ t }, t)
given by a directed graph G = (V,E), edge capacities νe ∈ Q>0, edge travel
times τe ∈ Q>0, and a single sink node t ∈ V which is reachable from anywhere
in the graph. Each node v ∈ V \ { t } has a corresponding (network) inflow rate
uv : R≥0 → Q≥0 indicating for every time θ ∈ R≥0 the rate uv(θ) at which
the infinitesimal small agents enter the network at node v and start traveling
through the graph until they leave the network at the common sink node t. We
will assume that these network inflow rates are right-constant step functions
with bounded support and finitely many, rational jump points.

A flow over time in N is a tuple f = (f+, f−) where f+, f− : E×R≥0 → R≥0

are integrable functions. For any edge e ∈ E and time θ ∈ R≥0 the value
f+

e (θ) describes the (edge) inflow rate into e at time θ and f−
e (θ) is the

(edge) outflow rate from e at time θ. For any such flow over time f we
define the cumulative (edge) in- and outflow rates F+ and F− by F+

e (θ) :=
∫ θ

0
f+

e (ζ)dζ and F−
e (θ) :=

∫ θ

0
f−

e (ζ)dζ, respectively. The queue length of
edge e at time θ is then defined as qe(θ) := F+

e (θ) − F−
e (θ + τe).

Such a flow f is called a feasible flow in N , if it satisfies the following con-
straints (1) to (4). The flow conservation constraints are modeled for all nodes
v �= t as

∑

e∈δ+
v

f+
e (θ) −

∑

e∈δ−
v

f−
e (θ) = uv(θ) for all θ ∈ R≥0, (1)

where δ+v := { vu ∈ E } and δ−
v := {uv ∈ E } are the sets of outgoing edges from

v and incoming edges into v, respectively. For the sink node t we require
∑

e∈δ+
t

f+
e (θ) −

∑

e∈δ−
t

f−
e (θ) ≤ 0 (2)

and for all edges e ∈ E we always assume

f−
e (θ) = 0 for all θ < τe. (3)

Finally we assume that the queues operate at capacity which can be modeled by

f−
e (θ + τe) =

{
νe, if qe(θ) > 0
min { f+

e (θ), νe } , if qe(θ) ≤ 0
for all e ∈ E, θ ∈ R≥0. (4)

Following the definition in [10] we call a feasible flow an IDE (flow) if when-
ever a particle arrives at a node v �= t, it can only ever enter an edge that is
the first edge on a currently shortest v-t path. In order to formally describe this
property we first define the current or instantaneous travel time of an edge e at
θ by

ce(θ) := τe +
qe(θ)
νe

. (5)

108 L. Graf and T. Harks

We then define time dependent node labels �v(θ) corresponding to current short-
est path distances from v to the sink t. For v ∈ V and θ ∈ R≥0, define

�v(θ) :=

{
0, for v = t

min
e=vw∈E

{�w(θ) + ce(θ)}, else. (6)

We say that an edge e = vw is active at time θ, if �v(θ) = �w(θ) + ce(θ), denote
the set of active edges by Eθ ⊆ E and call the subgraph induced by Eθ the active
subgraph at time θ.

Definition 1. A feasible flow over time f is an instantaneous dynamic equilib-
rium (IDE), if for all θ ∈ R≥0 and e ∈ E it satisfies

f+
e (θ) > 0 ⇒ e ∈ Eθ. (7)

During the computation of an IDE we also temporarily need the concept of
a partial IDE up to some time θ̂. This is a flow f such that constraints (1) to (4)
as well as constraint (7) only hold for all θ ∈ [0, θ̂), while f+

e (θ) = f−
e (θ+τe) = 0

for all θ ≥ θ̂. For any such flow, we then define the gross node inflow rates b−
v by

setting b−
v (θ) :=

∑
e∈δ−

v
f−

e (θ) + uv(θ) for all v ∈ V \ { t } and θ ∈ [θ̂, θ̂ + τmin),
where τmin := min { τe | e ∈ E } > 0.

As shown in [10, Sect. 3] such a partial IDE can always be extended for some
additional proper2 time interval on a node by node basis using constant edge
inflow rates. The existence of IDE for the whole R≥0 then follows by applying
Zorn’s lemma. This also leads to the following natural algorithm for computing
IDE in single-sink networks:

1. Start with the zero-flow f – a partial IDE up to time 0.
2. While f is not an IDE for all times, extend f for some additional interval.

In the extension step, we first determine a topological order of the nodes in the
active subgraph (e.g. sort the nodes w.r.t. to their current node labels �v). Then
we go through the nodes in this order (beginning with the sink node t) and at
each node determine a constant distribution of the current gross node inflow rate
to the outgoing active edges in such a way that the used edges remain active for
some proper time interval into the future. Finally, we take the smallest of these
intervals and extend the whole partial IDE over it. For the extension at a single
node v at some time θ, we can use a solution to the following convex optimization
problem, which can be determined in polynomial time using a simple water filling
procedure (see [10, Algorithm 1 (electronic supplementary material)]):

min
∑

e=vw∈δ+
v ∩Eθ

∫ xe

0

ge(z)
νe

+ ∂+�w(θ)dz (OPT-b−
v (θ))

s.t.
∑

e∈δ+
v ∩Eθ

xe = b−
v (θ), xe ≥ 0 for all e ∈ δ+v ∩ Eθ,

2 We call an interval [a, b) proper if a < b.

A Finite Time Combinatorial Algorithm for IDE Flows 109

where ∂+ denotes the right side derivative and ge(z) := z − νe, if qe(θ) > 0, and
ge(z) := max { z − νe, 0 }, otherwise. Any solution to (OPT-b−

v (θ)) corresponds
to a flow distribution to active edges so that for every edge e = vw ∈ δ+v ∩ Eθ

the following condition is satisfied (see [10, Lemma 3.1])

f+
e (θ) > 0 =⇒ ∂+�v(θ) = ∂+ce(θ) + ∂+�w(θ)

f+
e (θ) = 0 =⇒ ∂+�v(θ) ≤ ∂+ce(θ) + ∂+�w(θ).

(8)

Because the network inflow rates as well as all already constructed edge inflow
rates are piecewise constant and the node label functions as well as the queue
length functions are continuous, the used edges will remain active for some proper
time interval. As IDE flows in single-sink networks always have a finite termi-
nation time ([10, Theorem 4.6]) it suffices to extend the flow for some finite
time horizon (in [9] we even provide a way to explicitly compute such a time
horizon). Thus, the only possible obstruction for the extension algorithm to
terminate within finite time is some Zeno-type behavior of the lengths of the
extension phases, e.g. some sequence of extension phases of lengths α1, α2, . . .
such that

∑∞
i=1 αi converges to some point strictly before the IDE’s termination

time. In fact, in the full version of this paper [8], we provide an example of a
rather simple network wherein extension phases may indeed become arbitrarily
small, provided a long enough lasting network inflow rate.3 However, this is not
a counter example to the finiteness of the extension algorithm, as the shrinking
of the extension phases is slow enough to still allow for a finite number of phases
to span any fixed time horizon. In the following section we will show that this
is in fact true for all single-sink networks, i.e. that we can reach any given time
horizon within a finite number of phases.

3 Finite IDE-Construction Algorithm

For the proof of our main theorem we will employ two reductions: First, we
observe that for acyclic networks, it suffices to consider a single node with con-
stant gross node inflow rate for a given interval and linear node label functions
at all the nodes reachable via a single edge from this node. For this situation, we
show that the incoming flow can be distributed over active edges using a finite
number of phases. Second, we argue that for general networks, we can group
the extension phases into finitely many larger intervals such that during each
such interval the extension algorithm only has to consider a certain fixed acyclic
subgraph (reducing to the first case).

3 This example also shows that the number of (distinct!) extension phases can be
exponential in the encoding size of the given instance and that networks with forever
lasting network inflow rates may require IDE flows which never reach a stable state.
An exponential number of extension phases has also been observed in DE flows while
stable states are always reached there (see [4]).

110 L. Graf and T. Harks

Acyclic Networks. Due to our first reduction, which we will justify afterwards,
the proof for acyclic networks essentially rests on the following key lemma.

Lemma 1. Let N be a single-sink network on an acyclic graph with some fixed
topological order on the nodes, v some node in N and θ1 < θ2 ≤ θ1 + τmin two
times. If f is a flow over time in N such that

– f is a partial IDE up to time θ1 for nodes at least as far away from t as v,
– f is a partial IDE up to time θ2 for nodes closer to t than v,
– during [θ1, θ2) the gross node inflow rate into v is constant and
– the label functions at the nodes reachable via direct edges from v are linear on

this interval,

then we can extend f to a partial IDE up to θ2 at v in a finite number of phases.

Fig. 1. The situation in Lemma 1: We have an acyclic graph and a partial IDE up to
some time θ2 for all nodes closer to the sink t than v and up to some earlier time θ1
for v and all nodes further away than v from t. Additionally, over the interval [θ1, θ2)
the edges leading into v have a constant outflow rate (and a physical travel time of at
least θ2 − θ1) and the nodes wi all have affine label functions �wi . The edges vwi start
with some current queue lengths qvwi(θ1) ≥ 0.

Proof. Let f be the flow after an, a priori, infinite number of maximal extension
steps getting us to a partial IDE up to some θ̂ ∈ (θ1, θ2] at node v. Furthermore,
let δ+v = { vw1, . . . , vwp } be the set of outgoing edges from v. Then for every
such edge vwi we can define a function hi : [θ1, θ̂) → R≥0, θ
→ cvwi

(θ) + �wi
(θ),

denoting for every time θ ∈ [θ1, θ̂) the shortest current travel time to the sink t
for a particle entering edge vwi at that time. Consequently, during this interval
we have vwi ∈ Eθ if and only if hi(θ) = min {hj(θ) | j ∈ [p] } = �v(θ). We start
by stating several important observations and then proceed by showing two key-
properties of the functions hi and �v, which are also visualized in Figs. 2 and 3:

A Finite Time Combinatorial Algorithm for IDE Flows 111

Fig. 2. The first three phases of a possible flow distribution from the node v for the
situation depicted in Fig. 1. The corresponding functions hi are depicted in Fig. 3

Fig. 3. The functions hi corresponding to the flow distribution for the situation
depicted in Fig. 1 and depicted in Fig. 2 for the first three phases. The second, third
and fifth phase start because an edge becomes newly active (edges vw3, vw1 and vw3

again, respectively). The fourth phase starts because the queue on the active edge vw1

runs empty. These are the only two possible events which can trigger the beginning of
a new phase. Edge vw2 is inactive for the whole time interval and, thus, has a convex
graph. The bold gray line marks the graph of the function �v.

(i) The functions hi are continuous and piece-wise linear. In particular they
are differentiable almost everywhere and their left and right side deriva-
tives ∂−hi and ∂+hi, respectively, exist everywhere. The same holds for the
function �v.

(ii) A new phase begins at a time θ ∈ [θ1, θ̂) if and only if at least one of the
following two events occurs at time θ: An edge vwi becomes newly active
or the queue of an active edge vwi runs empty.

(iii) There are uniquely defined numbers �I,J for all subsets J ⊆ I ⊆ [p] such
that �′

v(θ) = �I,J within all phases, where { vwi | i ∈ I } is the set of active
edges in δ+v and { vwi | i ∈ J } is the subset of such active edges that also
have a non-zero queue during this phase.

Claim 1. If an edge vwi is inactive during some interval (a, b) ⊆ [θ1, θ̂), the
graph of hi is convex on this interval.

112 L. Graf and T. Harks

Claim 2. For any time θ define I(θ) := { i ∈ [p] | hi(θ) = �v(θ) }. Then, we have

min { ∂−hi(θ) | i ∈ I(θ) } ≤ ∂+�v(θ). (9)

If no edge becomes newly active at time θ, we also have ∂−�v(θ) ≤ ∂+�v(θ).

Proof of Claim 1. By the lemma’s assumption �wi
is linear on the whole interval.

For an inactive edge vwi its queue length function consists of at most two linear
sections: One where the queue depletes at a constant rate of −νe and one where
it remains constant 0. Thus, hi is convex as sum of two convex functions. �

Proof of Claim 2. To show (9), let I ′ be the set of indices of edges active imme-
diately after θ, i.e. I ′ := { i ∈ I(θ) | ∂+hi(θ) = ∂+�v(θ) }. Since the total outflow
from node v is constant during [θ1, θ̂) and flow may only enter edges vwi with
i ∈ I ′ after θ, there exists some j ∈ I ′, where the inflow rate into vwj after θ is
the same or larger than before. But then we have ∂+hj(θ) ≥ ∂−hj(θ) and, thus,

min { ∂−hi(θ) | i ∈ I(θ) } ≤ ∂−hj(θ) ≤ ∂+hj(θ) = ∂+�v(θ).

If, additionally, no edge becomes newly active at time θ, all edges vwi with i ∈ I ′

have been active directly before θ as well implying

∂−�v(θ) = min { ∂−hi(θ) | i ∈ I(θ) }
(9)

≤ ∂+�v(θ).

�
Using these properties we can now first show a claim which implies that

the derivative of �v can attain the smallest �I,J only for a finite number of
intervals. Inductively the same then holds for all of the finitely many �I,J , which
by observation (iii) are the only values �′

v can attain. The proof of the lemma
finally concludes by observing that an interval with constant derivative of �v can
contain only finitely many phases.

Claim 3. Let (a1, b1), (a2, b2) ⊆ [θ1, θ̂) be two disjoint maximal non-empty
intervals with constant �′

v(θ) =: c. If b1 < a2 and �′
v(θ) ≥ c for all θ ∈ (b1, a2)

where the derivative exists, then there exists an edge vwi such that

1. the first phase of (a2, b2) begins because vwi becomes newly active and
2. this edge is not active between a1 and a2.

In particular, the first phase of (a1, b2) is not triggered by vwi becoming active.

Claim 4. Let (a, b) ⊆ [θ1, θ̂) be an interval during which �′
v is constant. Then

(a, b) contains at most 2p phases.

Proof of Claim 3. Since we have ∂+�v(a2) = c, Claim 2 implies that there exists
some edge vwi with hi(a2) = �v(a2) and ∂−hi(a2) ≤ c. As (a2, b2) was chosen to
be maximal and �′

v(θ) ≥ c holds almost everywhere between b1 and a2, we have
∂−�v(a2) > c. Thus, vwi was inactive before a2.

A Finite Time Combinatorial Algorithm for IDE Flows 113

Now let θ̃ < a2 be the last time before a2, where vwi was active. By Claim 1
we know then that h′

i(θ) ≤ c holds almost everywhere on [θ̃, a2]. At the same
time we have �′

v(θ) ≥ c almost everywhere on [a1, a2] and �′
v(θ) > c for at least

some proper subinterval of [b1, a2], since the intervals (a1, b1) and (a2, b2) were
chosen to be maximal. Combining these two facts with �v(θ) = hi(θ) implies
�v(θ) < hi(θ) for all θ ∈ [θ̃, a2) ∩ [a1, a2). As both functions are continuous we
must have θ̃ < a1. Thus, vwi is inactive for all of [a1, a2). �

Proof of Claim 4. By Claim 1 an edge that changes from active to inactive during
the interval (a, b) will remain inactive for the rest of this interval. Thus, at most
p phases can start because an edge becomes newly active. By Claim 3 if a phase
begins because the queue on an active edge vwi runs empty at time θ, we have
∂+hi(θ) > ∂−hi(θ) = ∂−�v(θ) = ∂+�v(θ) meaning that this edge will become
inactive. Thus, at most p phases start because the queue of an active edge runs
empty. Since by observation (ii) these are the only ways to start a new phase,
we conclude that there can be no more than 2p phases during (a, b). �

Combining Claims 3 and 4 we see that [θ1, θ̂) only contains a finite number
of phases and, thus, we achieve θ̂ = θ2 with finitely many extensions. ��

For acyclic networks we can now fix some topological order of the nodes w.r.t.
the whole graph at the beginning of the algorithm and then always do the node-
wise extensions in this order. Since in a partial IDE up to time θ̂ the gross node
inflow rates are already completely determined for the interval [θ̂, θ̂ + τmin) we
can – for the purpose of the following analysis – slightly rearrange the extension
steps, without changing the outcome of the algorithm, by directly extending the
partial IDE at each node for this whole interval (using multiple phases). It then
suffices to show that these extensions (of constant length τmin > 0) at a single
node only need a finite amount of phases, which follows by repeatedly applying
Lemma 1 and using the fact that, by induction, the gross node inflow rate at
the current node as well as the label functions �wi

at all nodes closer to the sink
are piece-wise constant and piece-wise linear with finitely many breakpoints,
respectively.

General Networks. In order to extend this result to general networks, we
introduce the concept of a lazy set of active edges, which is a time dependent
subset of edges Ẽ(θ) satisfying the following properties:

– At every time θ the set Ẽ(θ) contains all currently active edges but no cycle.
– There are (flow independent) constants C,D > 0 such that during any time

interval of length at most C the set Ẽ(θ) changes at most D times.

This allows us to subdivide the whole time into a finite number of intervals
during which Ẽ(θ) does not change and, during those, we can restrict ourselves
to considering only edges in the fixed acyclic subgraph induced by the edges in
Ẽ(θ). To obtain such a lazy set of active edges we add edges, whenever they
become active, but only remove edges if, otherwise, Ẽ(θ) would contain a cycle.
Additionally, in this case we always only remove the “most inactive” edge of

114 L. Graf and T. Harks

the cycle. This leads to the final variant of the extension algorithm which is
formalized in Algorithm1 and for which we will now show our main theorem.

Algorithm 1: IDE-Construction Algorithm for single-sink networks
Input: A network N with piecewise constant network inflow rates
Output: An IDE flow f in N

1 Choose T large enough such that all IDE flows in N terminate before T

2 Let f be the zero flow, set θ ← 0 and Ẽ ← E0

3 Determine a top. order t = v1 < v2 < · · · < vn w.r.t. the edges in Ẽ
4 while θ < T do
5 Choose the largest α0 > 0 s.th. all b−v are constant over (θ, θ + α0)
6 for i = 1, . . . , n do
7 Compute a constant distribution to the outgoing active edges from vi

satisfying (8)
8 Determine the largest αi ≤ αi−1 such that the set of active edges does

not change during (θ, θ + αi)
9 end for

10 Extend the flow f up to time θ + αn and set θ ← θ + αn

11 if Eθ \ Ẽ �= ∅ then

12 Define Ẽ ← Ẽ ∪ Eθ.

13 while there exists a cycle C in Ẽ do
14 Remove an edge e = xy ∈ C with maximal �y(θ) − �x(θ)

15 end while

16 Find a top. order t = v1 < v2 < · · · < vn w.r.t. the edges in Ẽ

17 end if

18 end while

Theorem 1. For any single-sink network with piecewise constant network-
inflow rates an IDE flow can be constructed in finite time using the natural
extension algorithm (Algorithm1).

Proof. As we already have the above theorem for acyclic networks and Algo-
rithm1 only uses a fixed acyclic subgraph of the whole network as long as the
set Ẽ used in Algorithm 1 remains unchanged, it suffices to show that this set is
indeed a lazy set of active edges. The first property is obvious from the way Ẽ is
obtained in the algorithm, for the second one we need the following two claims:

Claim 5. Any edge xy removed from Ẽ in line 14 satisfies �x(θ) < �y(θ).

Claim 6. For any given network there exists some constant L > 0 such that for
all flows, all nodes v and all times θ we have |�′

v(θ)| ≤ L.

Proof of Claim 5. Let C ⊆ Ẽ be a cycle containing the removed edge xy. Since Ẽ
was acyclic before we added the newly active edges in line 12, this cycle also has to

A Finite Time Combinatorial Algorithm for IDE Flows 115

contain some edge vw which is currently active, therefore satisfying �v(θ) > �w(θ).
Thus, summing the differences of the label functions at the two ends of every edge
over all edges in C yields the existence of at least one edge uz ∈ C with �z(θ) −
�u(θ) > 0. This then, in particular, also holds for edge xy. �
Proof of Claim 6. For any node v we can bound the maximal inflow rate into this
node by the constant Lv :=

∑
e∈δ−

v
νe +max {uv(θ) | θ ∈ R≥0 } using constraint

(4). Together with flow conservation (1) this, in turn, allows us to upper bound
the inflow rates into all edges e ∈ δ+v and, thus, the rate at which the queue length
and the current travel time on these edges can change by Le := Lv

νe
. Since this rate

of change is also lower bounded by −1 setting L :=
∑

e∈E max { 1, Le } proves
the claim, as for all nodes v and times θ, we then have |�′

v(θ)| ≤ ∑
e∈E |c′

e(θ)| ≤∑
e∈E max { 1, Le } = L. �
Combining these two claims with the fact that an edge xy is only added to

Ẽ if it becomes active, i.e. �x(θ) = �y(θ) + cxy(θ) ≥ �y(θ) + τxy, shows that no
edge can enter Ẽ twice during any sufficiently small time interval, which implies
the second property concluding the proof of the theorem. ��
Remark 1. A closer inspection of the proofs allows us to also derive the following
rough but explicit bound on the number of phases needed assuming that all
edge travel times and capacities are integers (which can always be achieved by
rescaling the network):

O
(

P
(
2(Δ + 1)4

Δ+1
)D/C·T ·|V |)

.

Hereby, Δ := max { |δ+v | | v ∈ V } is the maximum out-degree of any edge, T
the termination time of the IDE and P is the number of intervals with constant
network inflow rates. A formal deduction of this bound can be found in the full
version of this paper [8].

4 Computational Complexity of IDE

While Theorem 1 shows that IDE can be constructed in finite time, the derived
explicit bound is clearly superpolynomial. In this section we complement this
result by showing that many natural decision problems about IDE are NP-hard.

Theorem 2. The following decision problems are NP-hard:

(i) Given a network and a specific edge: Is there an IDE not using this edge?
(ii) Given a network and a specific edge: Is there an IDE using this edge?
(iii) Given a network and a time T : Is there an IDE that terminates before T?
(iv) Given a network and some k ∈ N: Is there an IDE with at most k phases?

This theorem can be shown by a reduction from the NP-complete problem
3SAT to the above problems. The main idea of the reduction is as follows: For
any given instance of 3SAT we construct a network which contains a source node

116 L. Graf and T. Harks

for each clause with three outgoing edges corresponding to the three literals
of the clause. Any satisfying interpretation of the 3SAT-formula translates to a
distribution of the network inflow to the literal edges (where sending at least 1/3
of the flow along an edge corresponds to the respective literal being true), which
leads to an IDE flow that passes through the whole network in a straightforward
manner. If, on the other hand, the formula is unsatisfiable, every IDE flow will
cause a specific type of congestion which will divert a certain amount of flow into
a different part of the graph. This part of the graph may contain an otherwise
unused edge (for (i)), a gadget blocking access to an otherwise used edge (for
(ii)), a gadget which results in a long travel time (for (iii)) or one which produces
many phases (for (iv)). The congestion occurs because the flow corresponding
to a variable being false forms a queue while the flow corresponding to the same
variable being true is delayed. Thus, when the latter finally arrives, the former
has already blocked the direct path and diverts the latter away from it. On the
other hand, in a flow corresponding to a satisfying interpretation of the formula
this does not happen, as only one of the two types of flow is present for every
variable. The detailed construction of the described gadgets as well as the formal
proof of the reduction’s correctness can be found in the full version of this paper
[8]. For an illustration of the reduction see Fig. 4.

Fig. 4. The whole network for the 3SAT-formula (x1∨x2∨¬x3)∧(x1∨¬x2∨x4)∧(¬x1∨
x3 ∨ x4). The bold edges have infinite capacity, while all other edges have capacity 1.
The solid edges have a travel time of 1, the dashdotted edges may have variable travel
time (depending on the subnetwork N). The network inflow rates are 12 over the
interval [0, 1] at all nodes ci and 0 everywhere else.

5 Conclusion

We showed that Instantaneous Dynamic Equilibria can be computed in finite
time for single-sink networks by applying the natural extension algorithm. We

A Finite Time Combinatorial Algorithm for IDE Flows 117

complemented this result by showing that several natural decision problems
involving IDE flows are NP-hard by describing a reduction from 3SAT. One
common observation that can be drawn from many proofs involving IDE flows
(in this paper as well as in [9,10]) is that they often allow for some kind of local
analysis of their structure – something which seems out of reach for DE flows.
This was a key aspect of the positive result about the finiteness of the extension
algorithm where it allowed us to use inductive reasoning over the single nodes
of the given network. At the same time, such local argumentation allows us to
analyse the behavior of IDE flows in the rather complex instance resulting from
the reduction in the hardness-proof by looking at the local behavior inside the
much simpler gadgets from which the larger instance is constructed. We think
that this local approach to the analysis of IDE flows might also help to answer
further open questions about IDE flows in the future. One such topic might be a
further investigation of the computational complexity of IDE flows. While both
our upper bound on the number of extension steps as well as our lower bound for
the worst case computational complexity are superpolynomial bounds, the latter
is at least still polynomial in the termination time of the constructed flow, which
is not the case for the former. Thus, there might still be room for improvement
on either bound.

Acknowledgments. We are grateful to the anonymous reviewers for their valuable
feedback on this paper. Additionally, we thank the Deutsche Forschungsgemeinschaft
(DFG) for their financial support. Finally, we want to thank the organizers and partic-
ipants of the 2020 Dagstuhl seminar on “Mathematical Foundations of Dynamic Nash
Flows”, where we had many helpful and inspiring discussions on the topic of this paper.

Funding. The research of the authors was funded by the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) - HA 8041/1-2

References

1. Boyce, D.E., Ran, B., LeBlanc, L.J.: Solving an instantaneous dynamic user-
optimal route choice model. Transp. Sci. 29(2), 128–142 (1995)

2. Cao, Z., Chen, B., Chen, X., Wang, C.: A network game of dynamic traffic. In:
Daskalakis, C., Babaioff, M., Moulin, H. (eds.) Proceedings of the 2017 ACM Con-
ference on Economics and Computation, EC 2017, Cambridge, MA, USA, 26–30
June 2017, pp. 695–696. ACM (2017)

3. Cominetti, R., Correa, J., Larré, O.: Dynamic equilibria in fluid queueing networks.
Oper. Res. 63(1), 21–34 (2015)

4. Cominetti, R., Correa, J., Olver, N.: Long term behavior of dynamic equilibria
in fluid queuing networks. Oper. Res. (2020, to appear). https://doi.org/10.1287/
opre.2020.2081

5. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-
ton (1962)

6. Friesz, T.L., Han, K.: The mathematical foundations of dynamic user equilibrium.
Transp. Res. Part B Methodol. 126, 309–328 (2019)

https://doi.org/10.1287/opre.2020.2081
https://doi.org/10.1287/opre.2020.2081

118 L. Graf and T. Harks

7. Friesz, T.L., Luque, J., Tobin, R.L., Wie, B.-W.: Dynamic network traffic assign-
ment considered as a continuous time optimal control problem. Oper. Res. 37(6),
893–901 (1989)

8. Graf, L., Harks, T.: A finite time combinatorial algorithm for instantaneous
dynamic equilibrium flows. https://arxiv.org/abs/2007.07808 (2020)

9. Graf, L., Harks, T.: The price of anarchy for instantaneous dynamic equilibria.
In: Chen, X., Gravin, N., Hoefer, M., Mehta, R. (eds.) WINE 2020. LNCS, vol.
12495, pp. 237–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64946-3 17

10. Graf, L., Harks, T., Sering, L.: Dynamic flows with adaptive route choice. Math.
Program. 183(1), 309–335 (2020). https://doi.org/10.1007/s10107-020-01504-2

11. Han, K., Friesz, T.L., Yao, T.: A partial differential equation formulation of Vick-
rey’s bottleneck model, part ii: numerical analysis and computation. Transp. Res.
Part B Methodol. 49, 75–93 (2013)

12. Harks, T., Peis, B., Schmand, D., Tauer, B., Vargas-Koch, L.: Competitive packet
routing with priority lists. ACM Trans. Econ. Comput. 6(1), 4:1–4:26 (2018)

13. Hoefer, M., Mirrokni, V.S., Röglin, H., Teng, S.-H.: Competitive routing over time.
Theor. Comput. Sci. 412(39), 5420–5432 (2011)

14. Ismaili, A.: Routing games over time with FIFO policy. In: Devanur, N.R., Lu,
P. (eds.) WINE 2017. LNCS, vol. 10660, pp. 266–280. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71924-5 19

15. Ismaili, A.: The complexity of sequential routing games. CoRR, abs/1808.01080
(2018)

16. Kaiser, M.: Computation of dynamic equilibria in series-parallel networks. Math.
Oper. Res. (2020, forthcoming)

17. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over
time. Theory Comput. Syst. 49(1), 71–97 (2011)

18. Otsubo, H., Rapoport, A.: Vickrey’s model of traffic congestion discretized. Transp.
Res. Part B Methodol. 42(10), 873–889 (2008)

19. Ran, B., Boyce, D.E.: Dynamic Urban Transportation Network Models: Theory
and Implications for Intelligent Vehicle-Highway Systems. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer, New York (1996). https://doi.org/
10.1007/978-3-662-00773-0

20. Ran, B., Boyce, D.E., LeBlanc, L.J.: A new class of instantaneous dynamic user-
optimal traffic assignment models. Oper. Res. 41(1), 192–202 (1993)

21. Scarsini, M., Schröder, M., Tomala, T.: Dynamic atomic congestion games with
seasonal flows. Oper. Res. 66(2), 327–339 (2018)

22. Sering, L., Vargas-Koch, L.: Nash flows over time with spillback. In: Proceedings
of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM (2019)

23. Vickrey, W.S.: Congestion theory and transport investment. Am. Econ. Rev. 59(2),
251–60 (1969)

24. Ziemke, T., Sering, L., Vargas-Koch, L., Zimmer, M., Nagel, K., Skutella, M.:
Flows over time as continuous limits of packet-based network simulations. In:
Transportation Research Procedia, vol. 52, pp. 123–130 (2021). https://doi.org/
10.1016/j.trpro.2021.01.014

https://arxiv.org/abs/2007.07808
https://doi.org/10.1007/978-3-030-64946-3_17
https://doi.org/10.1007/978-3-030-64946-3_17
https://doi.org/10.1007/s10107-020-01504-2
https://doi.org/10.1007/978-3-319-71924-5_19
https://doi.org/10.1007/978-3-662-00773-0
https://doi.org/10.1007/978-3-662-00773-0
https://doi.org/10.1016/j.trpro.2021.01.014
https://doi.org/10.1016/j.trpro.2021.01.014

A Combinatorial Algorithm for
Computing the Degree of the

Determinant of a Generic Partitioned
Polynomial Matrix with 2 × 2

Submatrices

Yuni Iwamasa(B)

Kyoto University, Kyoto 606-8501, Japan
iwamasa@i.kyoto-u.ac.jp

Abstract. In this paper, we consider the problem of computing the
degree of the determinant of a block-structured symbolic matrix (a
generic partitioned polynomial matrix) A = (Aαβxαβtdαβ), where Aαβ

is a 2 × 2 matrix over a field F, xαβ is an indeterminate, and dαβ is an
integer for α, β = 1, 2, . . . , n, and t is an additional indeterminate. This
problem can be viewed as an algebraic generalization of the maximum
perfect bipartite matching problem.

The main result of this paper is a combinatorial O(n5)-time algo-
rithm for the deg-det computation of a (2× 2)-type generic partitioned
polynomial matrix of size 2n × 2n. We also present a min-max theorem
between the degree of the determinant and a potential defined on vector
spaces. Our results generalize the classical primal-dual algorithm (Hun-
garian method) and min-max formula (Egerváry’s theorem) for maxi-
mum weight perfect bipartite matching.

Keywords: Generic partitioned polynomial matrix · Weighted
Edmonds’ problem · Weighted noncommutative Edmonds’ problem

1 Introduction

Many of matching-type combinatorial optimization problems have an algebraic
formulation as the rank computation of a symbolic matrix. One of the most typ-
ical examples is the maximum bipartite matching problem; the maximum cardi-
nality of a matching in a bipartite graph G = ({1, 2, . . . , n}, {1, 2, . . . , n};E) is
equal to the rank of the n×n symbolic matrix A defined by (A)ij := xij if ij ∈ E
and zero otherwise, where xij is a variable for each edge ij. Such an algebraic
interpretation is also known for generalizations of maximum bipartite match-
ing, including nonbipartite maximum matching, linear matroid intersection, and

The author was supported by JSPS KAKENHI Grant Number JP17K00029, 20K23323,
20H05795, Japan.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 119–133, 2021.
https://doi.org/10.1007/978-3-030-73879-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_9&domain=pdf
http://orcid.org/0000-0002-6794-3543
https://doi.org/10.1007/978-3-030-73879-2_9

120 Y. Iwamasa

linear matroid parity; see [20,23]. All of the above algebraic formulations are gen-
eralized to Edmonds’ problem [3], which asks to compute the rank of a symbolic
matrix A represented by

A = A1x1 + A2x2 + · · · + Amxm. (1.1)

Here Ai is a matrix over a field F and xi is a variable for i = 1, 2, . . . ,m.
Although a randomized polynomial-time algorithm for Edmonds’ problem is
known (if |F| is large) [19,22], a deterministic polynomial-time algorithm is not
known, which is one of the prominent open problems in theoretical computer
science (see e.g., [17]).

The computation of the degree of the determinant (deg-det computation)
of a symbolic matrix with an additional indeterminate is the weighted analog
of the rank computation of a symbolic matrix. Indeed, for a bipartite graph
G endowed with edge weights dij for ij ∈ E, we define the matrix A(t) by
(A(t))ij := xijt

dij if ij ∈ E and zero otherwise, where t is a new variable. Then
the maximum weight of a perfect matching in G is equal to the degree of the
determinant of A(t), where we regard the determinant detA(t) as a polynomial
in t. Weighted Edmonds’ problem, which is a unified algebraic generalization of
maximum weight perfect matching problems, asks to compute the degree of the
determinant of

A(t) = A1(t)x1 + A2(t)x2 + · · · + Am(t)xm, (1.2)

in which Ak(t) is a polynomial matrix with an indeterminate t for each k =
1, 2, . . . ,m. As well as Edmonds’ problem, the computational complexity of
weighted Edmonds’ problem is open.

In this paper, we address the deg-det computation (weighted Edmonds’ prob-
lem) of the following block-structured matrix:

A(t) =

⎛
⎜⎜⎜⎝

A11x11t
d11 A12x12t

d12 · · · A1νx1ntd1n

A21x21t
d21 A22x22t

d22 · · · A2νx2ntd2n

...
...

. . .
...

An1xn1t
dn1 An2xn2t

dn2 · · · Annxnntdnn

⎞
⎟⎟⎟⎠ , (1.3)

where Aαβ is a 2×2 matrix over a field F, xαβ is a variable, and dαβ is an integer
for α, β = 1, 2, . . . , n, and t is another variable. The degree of the determinant
of A(t), denoted by deg detA(t), is with respect to t. A matrix A(t) of the
form (1.3) is called a (2×2)-type generic partitioned polynomial matrix. We note
that the maximum weight perfect bipartite matching problem coincides with
the case where each Aαβ in (1.3) is a 1 × 1 matrix. Our main result is to devise
the first combinatorial and strongly polynomial-time algorithm for the deg-det
computation of a (2 × 2)-type generic partitioned polynomial matrix.

Theorem 1. There exists a combinatorial O(n5)-time algorithm for computing
deg det A(t) for a (2 × 2)-type generic partitioned polynomial matrix A(t) of the
form (1.3).

Computing the Degree of the Determinant of a 2 × 2 Type GPPM 121

Our problem and result are related to the noncommutative analog of
(weighted) Edmonds’ problem. Noncommutative Edmonds’ problem [13] asks to
compute the rank of a matrix of the form (1.1), where xi and xj are supposed
to be noncommutative, i.e., xixj �= xjxi for i �= j. Here the “rank” is defined
via the inner rank of a matrix over a free skew field, and is called noncommuta-
tive rank or nc-rank. Surprisingly, the noncommutative setting makes the rank
computation easier; Garg, Gurvits, Oliveira, and Wigderson [6], Ivanyos, Qiao,
and Subrahmanyam [14], and Hamada and Hirai [7,8] independently developed
deterministic polynomial-time algorithms for noncommutative Edmonds’ prob-
lem. The algorithm of Garg, Gurvits, Oliveira, and Wigderson works for the case
of F = Q, that of Ivanyos, Qiao, and Subrahmanyam for an arbitrary field, and
that of Hamada and Hirai in [7] for a field F provided arithmetic operations on F
can be done in constant time while the bit-length may be unbounded if F = Q;
in [8] they resolve the above bit-length issue. Their algorithms were conceptually
different.

Weighted noncommutative Edmonds’ problem [9] is the noncommutative ana-
log of weighted Edmonds’ problem, or the weighted analog of noncommutative
Edmonds’ problem. In this problem, given a matrix A(t) of the form (1.2), in
which xi and xj are supposed to be noncommutative but t is commutative any
variable xi, we are asked to compute the degree of the Dieudonné determinant
DetA(t) of A(t). Here the Dieudonné determinant [2] (see also [1]) is a determi-
nant concept of a matrix over a skew field. By utilizing the algorithm of Hamada
and Hirai [7] for noncommutative Edmonds’ problem, Hirai [9] developed a
pseudopolynomial-time algorithm for weighted noncommutative Edmonds’ prob-
lem, provided arithmetic operations on the base field can be done in constant
time. Oki [21] devised another pseudopolynomial-time algorithm, via the reduc-
tion to the nc-rank computation, that works for an arbitrary field.

Very recently, Hirai and Ikeda [10] have presented a strongly polynomial-time
algorithm for computing deg DetA(t) of A(t) having the following special form

A(t) = A1x1t
d1 + A2x2t

d2 + · · · + Amxmtdm , (1.4)

where Ai is a matrix over F and di is an integer for i = 1, 2, . . . ,m. Note that a
(2 × 2)-type generic partitioned polynomial matrix (with noncommutative vari-
ables xαβ) can be represented as (1.4). They also showed that, for a (2×2)-type
generic partitioned polynomial matrix A(t), it holds deg detA(t) = deg Det A(t).
That is, the strongly polynomial-time solvability of the deg-det computation of
a (2 × 2)-type generic partitioned polynomial matrix follows from their result.
Their algorithm is conceptually simple, but is slow and not combinatorial. They
first present an O(n7 log D)-time algorithm via a cost scaling technique, where
D := log maxα,β=1,2,...,n |dαβ |. Then, by utilizing the perturbation technique
in [5] for dαβ so that log D is bounded by O(n6) in polynomial time, they devise a
strongly polynomial-time algorithm. Moreover, in case of F = Q, their algorithm
requires an additional procedure (used in [15]) for bounding the bit-complexity.

Our algorithm is a combinatorial primal-dual augmenting path algorithm,
which is the weighted analog of our previous work [11] (see also its full ver-
sion [12]) on the rank computation of a (2 × 2)-type generic partitioned matrix.

122 Y. Iwamasa

We introduce, in this article, the concept of det-matching, which plays a role
as a perfect matching in the maximum weight perfect matching problem. The
deg-det computation is reduced to the problem of finding a maximum weight det-
matching. We also introduce another matching concept named pseudo-matching,
which corresponds to a (special) bipartite matching, and define a potential on
vector spaces. They enable us to define the auxiliary graph and an augmenting
path on it. By repeating the augmenting procedures via an augmenting path,
we can finally obtain a maximum weight det-matching, as required. The validity
of the algorithm provides a constructive proof of a min-max formula between
the degree of the determinant and a potential. The proposed algorithm and
min-max formula are algebraically generalizations of the classical primal-dual
algorithm, so-called the Hungarian method [18], and minimax theorem, so-called
Egerváry’s theorem [4], for the maximum weight perfect bipartite matching prob-
lem, respectively. In particular, the latter result also generalizes Iwata–Murota’s
duality theorem [16] on the rank of a (2 × 2)-type generic partitioned matrix.
Our algorithm is simpler and faster than Hirai–Ikeda’s algorithm; ours requires
no perturbation of the weight and no additional care for bounding the bit size.

All proofs are omitted and will be given in the full version of this paper.

Notations. Let A(t) be a (2×2)-type generic partitioned polynomial matrix of the
form (1.3). The matrix A(t) is regarded as a matrix over the field F(x, t) of ratio-
nal functions with variables t and xαβ for α, β = 1, 2, . . . , n. If rankA(t) < 2n,
then we let deg det A(t) := −∞. Symbols α, β, and γ are used to represent a row-
block index, column-block index, and row- or column-block index of A(t), respec-
tively. We often drop “= 1, 2, . . . , n” from the notation of “α, β = 1, 2, . . . , n” if
it is clear from the context. Each α and β is endowed with the 2-dimensional
F-vector space F2, denoted by Uα and Vβ , respectively. Each submatrix Aαβ is
considered as the bilinear map Uα × Vβ → F defined by Aαβ(u, v) := u�Aαβv
for u ∈ Uα and v ∈ Vβ . We denote by kerL(Aαβ) and kerR(Aαβ) the left and
right kernels of Aαβ , respectively. Let us denote by Mα and Mβ the sets of
1-dimensional vector subspaces of Uα and of Vβ , respectively.

We define the (undirected) bipartite graph G := ({1, 2, . . . , n}, {1, 2,
. . . , n};E) by E := {αβ | Aαβ �= O}. For I ⊆ E, let AI(t) denote the matrix
obtained from A(t) by replacing each submatrix Aαβ with αβ �∈ I by the 2 × 2
zero matrix. An edge αβ ∈ E is said to be rank-k (k = 1, 2) if rankAαβ = k. For
notational simplicity, the subgraph ([n], [n]; I) for I ⊆ E is also denoted by I.
For a node γ, let degI(γ) denote the degree of γ in I, i.e., the number of edges in
I incident to γ. An edge αβ ∈ I is said to be isolated if degI(α) = degI(β) = 1.
An edge subset I is said to be spanning if degI(γ) ≥ 1 for any γ.

2 Matchings, Potentials, and Min-Max Formulas

In this section, we introduce the concepts of det-matching, pseudo-matching, and
potential for a (2 × 2)-type generic partitioned polynomial matrix A(t) of the
form (1.3). They play a central role in devising our algorithm. We also present
a min-max theorem between the degree of the determinant and a potential.

Computing the Degree of the Determinant of a 2 × 2 Type GPPM 123

2.1 Matching Concepts

An edge subset I ⊆ E is called a det-matching of A(t) if the polynomial detA(t)
has a term ctw(I) ·

∏
αβ∈I x

kαβ

αβ for some nonzero c ∈ F, an integer w(I), and
positive integers kαβ , where it holds w(I) =

∑
αβ∈I kαβdαβ . We call w(I) the

weight of I. A det-matching I is said to be maximum if w(I) ≥ w(I ′) for every
det-matching I ′, or equivalently, if w(I) = deg det A(t). This matching concept
is an algebraic generalization of perfect bipartite matching; for a matrix A(t) of
the form (1.3) with 1 × 1 blocks Aαβ and the corresponding bipartite graph G

to A, an edge subset I admits a term ctw(I) ·
∏

αβ∈I x
kαβ

αβ in detA(t) if and only
if I is a perfect bipartite matching of G (note that kαβ = 1 for each αβ ∈ I).

Let us return to a (2 × 2)-type generic partitioned polynomial matrix. For a
det-matching I, we have

w(I) =
∑

{dαβ | αβ ∈ I} +
∑

{dαβ | αβ ∈ I : αβ is an isolated rank-2 edge}.

(2.1)

Indeed, since ctw(I) ·
∏

αβ∈I x
kαβ

αβ is a term of det A(t), I is spanning and consists
of isolated rank-2 edges and cycle components. For such I, it clearly holds that
kαβ = 1 if αβ belongs to a cycle component and kαβ = 2 if αβ forms an isolated
rank-2 edge. This implies the identity (2.1).

We mainly consider a special subclass of det-matchings. An edge subset I ⊆ E
is called a pseudo-matching or p-matching if it satisfies the following combinato-
rial and algebraic conditions (Deg), (Cycle), and (VL):

(Deg) degI(γ) ≤ 2 for each node γ of G.

Suppose that I satisfies (Deg). Then each connected component of I forms a
path or a cycle. Thus I is 2-edge-colorable, namely, there are two edge classes
such that any two incident edges are in different classes. An edge in one color
class is called a +-edge, and an edge in the other color class is called a −-edge.

(Cycle) Each cycle component of I has at least one rank-1 edge.

A labeling V = ({U+
α , U−

α }, {V +
β , V −

β })α,β for I is a node-labeling that assigns two
1-dimensional subspaces to each node, U+

α , U−
α ∈ Mα for α and V +

β , V −
β ∈ Mβ

for β, such that for each edge αβ ∈ I, it holds that

Aαβ(U+
α , V −

β) = Aαβ(U−
α , V +

β) = {0}, (2.2)

(kerL(Aαβ), kerR(Aαβ)) =

{
(U+

α , V +
β) if αβ is a rank-1 + -edge,

(U−
α , V −

β) if αβ is a rank-1 − -edge.
(2.3)

For α, we refer to U+
α and U−

α as the +-space and −-space of α with respect to
V, respectively. The same terminology is also used for β. A labeling V is said
to be valid if, for each vertex, its +-space and −-space with respect to V are
different.

124 Y. Iwamasa

(VL) I admits a valid labeling.

In the following, we use the symbol σ as one of the signs + and −. The
opposite sign of σ is denoted by σ, i.e., σ = − if σ = +, and σ = + if σ = −.

Remark 1. Let αβ be a rank-1 σ-edge in I. The condition (2.3) determines Uσ
α

and V σ
β , and the condition (2.2) determines V σ

β′ and Uσ
α′ (resp. Uσ

α′ and V σ
β′) for

α′ and β′ belonging to the path in I that starts with α (resp. β) and consists of
rank-2 edges.

Suppose that I satisfies (Deg) and (Cycle). For each node in some cycle
component of I, its +-space and −-space are uniquely determined by the above
argument, since every cycle component has a rank-1 edge by (Cycle). Let C be
a path component of I, which has the end nodes γ and γ′ incident to a σ-edge
and a σ′-edge, respectively. When we set the σ-space of γ and σ′-space of γ′, the
+-space and −-space of every node belonging to C are uniquely determined. �

A p-matching I is said to be perfect if I is spanning and each connected
component of I forms a cycle or an isolated rank-2 edge. The class of perfect
p-matchings forms a subclass of det-matchings.

Lemma 1. A perfect p-matching is a det-matching.

The following lemma says that a maximum det-matching is attained by a
perfect p-matching.

Lemma 2. deg det A(t) = max{w(I) | I : perfect p-matching}.
Hence our problem can be reduced to the problem of finding a maximum weight
perfect p-matching.

2.2 Minimax Theorems

In this subsection, we provide a min-max formula between the maximum weight
of perfect p-matchings (or equivalently deg detA(t) by Lemma 2) and the min-
imum value corresponding to a potential, defined below. This formula is an
algebraic generalization of Egerváry’s theorem [4] that is the minimax theorem
for the maximum perfect bipartite matching problem.

A function p :
⋃

γ Mγ → R is called a potential if it satisfies p(Xα)+p(Yβ) ≥
dαβ for all αβ ∈ E, Xα ∈ Mα, and Yβ ∈ Mβ such that Aαβ(Xα, Yβ) �= {0}.
The minimax theorem is the following:

Theorem 2.

max{w(I) | I : perfect p-matching}

= min

⎧⎨
⎩

∑
α

(
p(Xα) + p(Xα)

)
+

∑
β

(
p(Yβ) + p(Y β)

)
⎫⎬
⎭ ,

where the minimum is taken over all potentials p and all distinct Xα,Xα ∈ Mα

and distinct Yβ , Y β ∈ Mβ for α and β. In particular, there exists an integer-
valued potential p that attains the minimum.

Computing the Degree of the Determinant of a 2 × 2 Type GPPM 125

We can refine the above min-max formula by introducing the concept of com-
patibility for potentials. Let I be a p-matching, V = {(U+

α , U−
α), (V +

β , V −
β)}α,β

a valid labeling of I, and p a potential. An edge αβ is said to be double-tight
with respect to (V, p) if there are signs σ, σ′ ∈ {+,−} satisfying Aαβ(Uσ

α , V σ′
β) �=

{0} �= Aαβ(Uσ
α , V σ′

β) and p(Uσ
α) + p(V σ′

β) = dαβ = p(Uσ
α) + p(V σ′

β). An edge αβ
is said to be single-tight with respect to (V, p) if there are signs σ, σ′ ∈ {+,−}
satisfying Aαβ(Uσ

α , V σ′
β) �= {0} and p(Uσ

α) + p(V σ′
β) = dαβ but not double-tight.

For a path component C of I, an end edge is an edge αβ ∈ C with degI(α) = 1
or degI(β) = 1.

A potential p is said to be compatible with (I,V) if p satisfies the following
conditions (Tight), (Reg), and (Path):

(Tight) For αβ ∈ I,

dαβ =

{
p(U−

α) + p(V −
β) if αβ is a + -edge,

p(U+
α) + p(V +

β) if αβ is a − -edge.

(Reg) For each α and β,

p(Xα) = max{p(U+
α), p(U−

α)} (Xα ∈ Mα \ {U+
α , U−

α }),

p(Yβ) = max{p(V +
β), p(V −

β)} (Yβ ∈ Mβ \ {V +
β , V −

β }).

(Path) For each non-isolated path component C of I such that |C| is odd and
both the end edges of C are σ-edges, C has a single-tight σ-edge.

The following theorem says that the minimum in the min-max formula in
Theorem 2 is attained by a valid labeling and a compatible potential.

Theorem 3.

max{w(I) | I : perfect p-matching}

= min

⎧⎨
⎩

∑
α

(
p(U+

α) + p(U−
α)

)
+

∑
β

(
p(V +

β) + p(V −
β)

)
⎫⎬
⎭ ,

where the minimum is taken over all valid labelings V = {(U+
α , U−

α), (V +
β ,

V −
β)}α,β for I and compatible potentials p with (I,V). In particular, there exists

an integer-valued compatible potential p that attains the minimum.

For a potential p, we define

rp(I) := |I| + the number of isolated double-tight edges in I

The function rp can be used for an optimality witness of a p-matching:

Lemma 3. Let p be a potential compatible with (I,V). If rp(I) = 2n, then I is
perfect and

w(I) =
∑
α

(
p(U+

α) + p(U−
α)

)
+

∑
β

(
p(V +

β) + p(V −
β)

)
.

126 Y. Iwamasa

2.3 Elimination

Let I be a p-matching and p a potential satisfying (Tight) and (Reg) but not
(Path). The elimination is an operation of modifying I to a p-matching I ′ with
rp(I ′) > rp(I): For each connected component C violating (Path), i.e., each non-
isolated path component C of I such that |C| is odd, both the end edges of C
are σ-edges, and all σ-edges in C are double-tight, we delete all σ-edges in C
from I.

By executing the above deletion to C, the number of edges decreases by
(|C| − 1)/2 but that of isolated double-tight edges increases by (|C| + 1)/2.
Namely, rp increases by one. Clearly V is still a valid labeling for the resulting I,
p satisfies (Tight) and (Reg) for (I,V), and the number of connected components
of I violating (Path) strictly decreases. Thus the following holds.
Lemma 4. Let I be a p-matching, V a valid labeling for I, p a potential satis-
fying (Tight) and (Reg) but not (Path), and I∗ the p-matching obtained from I
by the elimination. Then p is compatible with (I∗,V) and rp(I∗) > rp(I).

3 Augmenting Path

Our proposed algorithm is a primal-dual algorithm, in which we utilize a poten-
tial and an augmenting path introduced in Sect. 3.1. An outline of our algorithm
is as follows; the formal description is given in Sect. 3.2. Let I be a p-matching,
V a valid labeling for I, and p a compatible potential with (I,V). If rp(I) = 2n,
then output deg detA(t) = w(I) by Lemma 3 and stop the algorithm. Otherwise,
we

– verify deg detA(t) = −∞ (or equivalently rankA(t) < 2n),
– find a potential satisfying (Tight) and (Reg) but not (Path) for (I,V), or
– find an augmenting path for (I,V, p).

In the first case, we output deg detA(t) = −∞ and stop this procedure. The
others are the cases where we augment a p-matching; in the second case, we
execute the elimination to I and obtain I∗ such that rp(I∗) > rp(I) by Lemma
4; in the last case, via the augmenting path, we update I and V to a p-matching
I∗ and a valid labeling V∗ for I∗ so that p is a compatible potential with (I∗,V∗)
and rp(I∗) > rp(I).

As the initialization, we set I as the emptyset, and V = {(U+
α , U−

α), (V +
β ,

V −
β)}α,β for I as distinct U+

α , U−
α ∈ Mα and distinct V +

β , V +
β ∈ Mβ . We define

p by p(Xα) := max{dαβ | αβ ∈ E} for each α and Xα ∈ Mα, and p(Yβ) := 0
for each β and Yβ ∈ Mβ . It is clear that I is a p-matching, V is a valid labeling
for I, and p is compatible with (I,V).

A non-isolated connected component C of I is said to be single-counted if
the number of edges in C contributes to rp(I) only once, or equivalently, C does
not form a isolated double-tight edge in I. For a vector space X ⊆ Uα, let X⊥αβ

(or X⊥βα) denote the orthogonal vector space with respect to Aαβ :

X⊥αβ (= X⊥βα) := {y ∈ Vβ | Aαβ(x, y) = 0 for all x ∈ X}.

For a vector space Y ⊆ Vβ , Y ⊥αβ (or Y ⊥βα) is defined analogously.

Computing the Degree of the Determinant of a 2 × 2 Type GPPM 127

3.1 Definition

Our augmenting path is defined on the auxiliary graph G(V, p): The vertex set
is {α+, α− | α} ∪ {β+, β− | β}, and the edge set, denoted by E(V, p), is {ασβσ′ |
Aαβ(Uσ

α , V σ′
β) �= {0}, p(Uσ

α) + p(V σ′
β) = dαβ}. We denote by G(V, p)|I the sub-

graph of G(V, p) such that its edge set E(V, p)|I is {ασβσ′ ∈ E(V, p) | αβ ∈ I}.
By (2.2), for each αβ ∈ I, neither α+β− nor α−β+ belongs to E(V, p). In addi-
tion, if αβ ∈ I is a σ-edge, then ασβσ ∈ E(V, p)|I , since Aαβ(Uσ

α , V σ
β) �= {0} and

p satisfies (Tight). The edge αβ in I is double-tight if and only if both α+β+

and α−β− exists in E(V, p). A σ-path is a path in G(V, p) consisting of edges
ασβσ. For paths P and Q in G(V, p) such that the last node of P coincides with
the first node of Q, we denote by P ◦ Q the concatenation of P and Q.

We next define the source set and the target set as follows, in which nodes
βσ in the former and ασ′

in the latter can be the initial and the last nodes of an
augmenting path, respectively. Let Γ be the set of the end nodes of some single-
counted path component of I. For each γ ∈ Γ , which is incident to a σ-edge in
I, let Cγ be the connected component of G(V, p)|I containing γσ. The source set
S(I,V, p) and the target set T (I,V, p) for (I,V, p) are defined by

S(I,V, p) := {β+, β− | degI(β) = 0} ∪
⋃

{the nodes belonging to Cβ | β ∈ Γ},

T (I,V, p) := {α+, α− | degI(α) = 0} ∪
⋃

{the nodes belonging to Cα | α ∈ Γ}.

Then the following holds.

Lemma 5. (1) S(I,V, p) ∩ T (I,V, p) = ∅.
(2) For each γ ∈ Γ incident to a σ-edge, Cγ forms either an isolated connected
component {γσ} or an even length σ-path in G(V, p)|I that starts with γσ.
(3) Both |S(I,V, p)∩{β+, β− | β}|− |S(I,V, p)∩{α+, α− | α}| and |T (I,V, p)∩
{α+, α− | α}| − |T (I,V, p) ∩ {β+, β− | β}| are equal to 2n − rp(I).

We then define the components of augmenting path. An outer path P for
(I,V, p) is a path in G(V, p) of the form

(βσ0
0 ασ1

1 , ασ1
1 βσ1

1 , . . . , βσk

k α
σk+1
k+1)

such that

(O1) βiαi+1 belongs to E \ I for each i = 0, 1, . . . , k and αi+1βi+1 is an isolated
double-tight edge in I for each i = 0, 1, . . . , k − 1, and

(O2) Aαi+1βi
(Uσi+1

αi+1 , V σi

βi
) = {0} for each i = 0, 1, . . . , k − 1.

Note that (O2) does not require Aαk+1βk
(Uσk+1

αk+1 , V σk

βk
) = {0} on the last edge

βσk

k α
σk+1
k+1 . The initial vertex βσ0

0 and last vertex α
σk+1
k+1 are denoted by β(P) and

α(P), respectively.
An inner path Q for (I,V, p) is a path in G(V, p) of the form

(ασ
0βσ

1 , βσ
1 ασ

1 , . . . , ασ
kβσ

k+1),

such that

128 Y. Iwamasa

(I1) the underlying path (α0β1, β1α1, . . . , αkβk+1) of Q in G belongs to a single-
counted connected component of I, and

(I2) α0β1, α1β2, . . . , αkβk+1 are σ-edges and β1α1, β2α2, . . . , βkαk are σ-edges.

The former condition implies that Q can also be viewed as a σ-path in G(V, p)|I ,
and the latter implies that the σ-edges β1α1, β2α2, . . . , βkαk are double-tight.
The initial vertex ασ

0 and last vertex βσ
k+1 are denoted by β(Q) and α(Q),

respectively.
We are now ready to define an augmenting path. An augmenting path R for

(I,V, p) is a path in G(V, p) such that

(A1) R is the concatenation P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qm ◦ Pm of outer paths
P0,P1, . . . ,Pm and inner paths Q1, . . . ,Qm for (I,V, p) in which α(Pi) =
α(Qi+1) and β(Qi+1) = β(Pi+1) for each i, and

(A2) β(P0) ∈ S(I,V, p), α(Pm) ∈ T (I,V, p), and all intermediate vertices exit
S(I,V, p) ∪ T (I,V, p).

Theorem 4. For a matching I, a valid labeling V for I, a potential p compatible
with (I,V), and an augmenting path for (I,V, p), we can obtain a p-matching
I∗ and a valid labeling V∗ for I∗ such that p is compatible with (I∗,V∗) and
rp(I∗) > rp(I) in O(n4) time.

3.2 Finding an Augmenting Path

In this subsection, we present an algorithm for verifying deg detA(t) = −∞,
finding a potential satisfying (Tight) and (Reg) but not (Path) for (I,V), or
finding an augmenting path for (I,V, p).

Suppose that we are given as the input a p-matching I0, a valid labeling V0

for I0, and a compatible potential p0 with (I0,V0) such that rp0(I0) < 2n. We
initialize I ← I0, V ← V0, and p ← p0. In addition, during the algorithm, we
maintain a forest F in G(V, p) such that each connected component of F has
exactly one node in S(I,V, p); we initialize F ← S(I,V, p), which is nonempty
by rp(I) < 2n and Lemma 5 (3).

The algorithm consists of the primal update and the dual update. While
there is an edge βσασ′ ∈ E(V, p) such that βσ ∈ F and ασ′ �∈ F , we execute the
primal update. If there is no such edge, then we execute the dual update:

Primal update: We first add an edge βσασ′ ∈ E(V, p) such that βσ ∈ F and
ασ′ �∈ F to F .

(P1) If ασ′ ∈ T (I,V, p), then output (I,V, p) and the unique path R in
F from a vertex in S(I,V, p) to ασ′

as an augmenting path. Stop this
procedure.

(P2) Suppose that ασ′ �∈ T (I,V, p) and α is incident to an isolated double-
tight edge αβ′ in I. Then update the valid labeling V for I as

Uσ′
α ← (V σ

β)⊥αβ , V σ′
β′ ← (Uσ′

α)⊥αβ′ ,

and add ασ′
β′σ′

to F . Also update G(V, p) for the resulting V. (This case
will be an expansion of an outer path.)

Computing the Degree of the Determinant of a 2 × 2 Type GPPM 129

(P3) Suppose that ασ′ �∈ T (I,V, p) and α belongs to a single-counted con-
nected component of I. Let Q be the longest inner path in G(V, p)|I
starting with ασ′

such that Q does not meet F . Then add Q to F . (This
case will be an addition of an inner path.)

Dual update: For each βσ ∈ F , define

εβσ := min{p(Uσ′
α) + p(V σ

β) − dαβ | ασ′ �∈ F , Aαβ(Uσ′
α , V σ

β) �= {0}},

where εβσ := +∞ if there is no ασ′ �∈ F such that Aαβ(Uσ′
α , V σ

β) �= {0}. Let
ε be the minimum value of εβσ over βσ ∈ F .

(D1) If ε = +∞, then output “deg detA(t) = −∞” and stop this procedure.
(D2) If ε < +∞, then update p as

p(V σ
β) ← p(V σ

β) − ε if βσ ∈ F ,

p(Uσ
α) ← p(Uσ

α) + ε if ασ ∈ F ,

and adjust p so that p satisfies (Reg), that is, for each α and β,

p(Xα) ← max{p(U+
α), p(U−

α)} (Xα ∈ Mα \ {U+
α , U−

α }),

p(Yβ) ← max{p(V +
β), p(V −

β)} (Yβ ∈ Mβ \ {V +
β , V −

β }).

(D2-1) Suppose that the resulting p does not satisfy (Path) or that the
number of isolated double-tight edges in I with respect to the resulting
p increases. If p does not satisfy (Path), then we apply the elimination
to I. Output the resulting (I,V, p); stop this procedure.

(D2-2) Otherwise, suppose that the resulting target set T (I,V, p)
enlarges. In this case, it holds F ∩ T (I,V, p) �= ∅. Output (I,V, p)
and a minimal path R in F with respect to inclusion from a vertex in
S(I,V, p) to a vertex in F ∩ T (I,V, p) as an augmenting path. Stop
this procedure.

(D2-3) Otherwise, update

F ← F ∪ S(I,V, p)

if the resulting S(I,V, p) enlarges. �

The following theorem says that the above algorithm correctly works.

Theorem 5. (1) Suppose that the algorithm reaches (P1) or (D2-2). Then the
output I is a p-matching, V is a valid labeling for I, p is a compatible potential
with (I,V), rp(I) = rp0(I0), and R is an augmenting path for (I,V, p).
(2) If the algorithm reaches (D1), then deg det A(t) = −∞.
(3) Suppose that the algorithm reaches (D2-1). Then the output I is a p-matching,
V is a valid labeling for I, p is a compatible potential with (I,V), and rp(I) >
rp0(I0).
(4) The running-time of the algorithm is O(n3).

130 Y. Iwamasa

Theorems 4 and 5 imply Theorems 1, 2, and 3. Indeed, Theorem 1 follows
from that at most 2n augmentations occur in the algorithm. Theorems 2 and 3
follow from that the above algorithm detects deg detA(t) = −∞ or outputs a
p-matching I, a valid labeling V, and a compatible potential p satisfying rp(I) =
2n. In the latter case, the minimum in the min-max formulas in Theorems 2
and 3 is attained by such V and p by Lemma 3. In particular, since every dαβ is
integer, so is ε in the dual update (D2). Hence p is integer-valued.

4 Augmentation

In this section, we present an overview of the augmentation procedure for a given
p-matching I, a valid labeling V = {(U+

α , U−
α), (V +

β , V −
β)}α,β of I, a potential p

compatible with (I,V), and an augmenting path R = P0 ◦Q1 ◦P1 ◦· · ·◦Qm ◦Pm

for (I,V, p).
For an outer path P = (βσ0

0 ασ1
1 , ασ1

1 βσ1
1 , . . . , βσk

k α
σk+1
k+1), we denote by its italic

font P the underlying walk (β0α1, α1β1, . . . , βkαk+1) in G. The initial vertex β0

and last vertext αk+1 of P are denoted by β(P) and α(P), respectively. Similarly,
the underlying path of an inner path Q is denoted by its italic font Q.

4.1 Base Case: R = P0 and P0 Is a Path

We consider the case where R consists only of a single outer path P0

of the form (βσ0
0 ασ1

1 , ασ1
1 βσ1

1 , . . . , βσk

k α
σk+1
k+1) such that its underlying walk

(β0α1, α1β1, . . . , βkαk+1) is actually a path in G.
We first modify I so that the degrees of β0 and of αk+1 in I are at most

one, β0 is incident to a σ0-edge in I if degI(β0) = 1, and αk+1 is incident to
a σk+1 in I if degI(αk+1) = 1, as follows. Since βσ0

0 ∈ S(I,V, p), there is a
σ0-path P in G(V, p)|I from βσ0

0 to βσ0∗ , where β∗ is an end node of a single-
counted path component of I incident to a σ0-edge in I. Then we delete all
σ0-edges in the underlying path P of P. It is clear that the resulting I is a
p-matching, V is a valid labeling for I, p satisfies (Tight) and (Reg) for (I,V),
and degI(β0) ≤ 1. Furthermore, if degI(β0) = 1, then β0 is incident to a σ0-edge
in I. Since all σ0-edges in P are double-tight, p satisfies (Path), and hence is
compatible with (I,V). Furthermore, |P |/2 edges (the σ0-edges in P) are deleted
from I, and |P |/2 edges (the σ0-edges in P) become isolated double-tight edges
by this deletion. Hence rp(I) does not change. Similarly, we can modify I so
that degI(αk+1) ≤ 1 and αk+1 is incident to a σk+1-edge in I if degI(αk+1) = 1
without changing rp. Since P0 does not meet any newly appeared isolated double-
tight edges, R = P0 is still an augmenting path for (I,V, p).

We then redefine +- and −-edges of I and +- and −-spaces of V so that all
α1β1, α2β2, . . . , αkβk are +-edges and P0 = (β+

0 α+
1 , α+

1 β+
1 , . . . , β+

k α+
k+1).

We are ready to augment I. Let us define Î by

Î := I ∪ P0,

Computing the Degree of the Determinant of a 2 × 2 Type GPPM 131

where P0 is regarded as an edge set. Since degI(βi) ≤ 1 and degI(αi) ≤ 1 for each
i, Î satisfies (Deg). However V may be no longer a labeling for Î, particularly,
on the connected component Ĉ of Î containing P0. We define a labeling V̂ for Î
as follows: If Ĉ is a cycle component of Î, then we redefine the +- and −-spaces
of each node in Ĉ so that (2.2) and (2.3) hold. If Ĉ is a path component of
Î that has the end nodes are γ and γ′ incident to a σ-edge and to a σ′-edge,
respectively, then we set the σ-space of γ and the σ′-space of γ′ with respect to
V̂ as those with respect to V, and define the other spaces of each node in Ĉ so
that (2.2) and (2.3) hold. Recall that such a labeling is uniquely determined (see
Remark 1).

The following holds.

Lemma 6. The edge set Î is a p-matching, V̂ is a valid labeling for Î, p is a
potential satisfying (Tight) and (Reg) for (Î , V̂), and rp(Î) ≥ rp(I) + 1.

If p also satisfies (Path), then p is compatible with (V̂, p). If p fails (Path), then
we execute the elimination to Î, which makes p compatible and increases rp by
Lemma 4. In the both cases, we can obtain a larger p-matching (in the sense of
rp) with a valid labeling and a compatible potential.

4.2 General Case

Suppose that R = P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qm ◦ Pm with m ≥ 1. We can assume
that Qm forms a +-path in G(V, p)|I . Let C be the single-counted connected
component of I containing Qm. For the space-limitation, we only explain the
procedure for the case where Pm is a path in G, C is a cycle component having
a single-tight +-edge, and Pk and Qk for k < m do not meet nodes in C and
in Pm.

We modify I so that degI(α(Pm)) ≤ 1 as in Sect. 4.1. Then R may no longer
be an augmenting path for the resulting I. Indeed, there can exist an outer
path Pk = (βσ0

0 ασ1
1 , ασ1

1 βσ1
1 , . . . , βσk

k α
σk+1
k+1) in R such that αk+1 is incident to

a newly appeared isolated double-tight edge and Aαk+1βk
(Uσk+1

αk+1 , V σk

βk
) �= {0}.

Then the concatenation Pk ◦ Qk+1 ◦ Pk+1 satisfies the first condition (O1) of
an outer path but fails the second condition (O2). Hence, for each such Pk, we
update V as U

σk+1
αk+1 ← (V σk

βk
)⊥βkαk+1 and propagate this update according to

Pk ◦Qk+1 ◦Pk+1 so that Pk ◦Qk+1 ◦Pk+1 also satisfies (O2). One can show that
R is an augmenting path for I, p, and the resulting V.

We then define Î by

Î := (I \ {the last − -edge of Qm}) ∪ Pm,

and define a labeling V̂ for Î as in Sect. 4.1. Similarly to Lemma 6, the following
holds.

Lemma 7. The edge set Î is a p-matching, V̂ is valid for Î, p is a potential
satisfying (Tight) and (Reg) for (Î , V̂), and rp(Î) = rp(I).

132 Y. Iwamasa

If p fails (Path), then we obtain a larger p-matching (in the sense of rp) with
a valid labeling and a compatible potential by executing the elimination to Î
(Lemma 4). If p satisfies (Path), then we define R̂ by

R̂ := P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Pm−1,

which is still a path in G(V̂, p).

Lemma 8. The path R̂ forms an augmenting path for (Î , V̂, p).

In this case, we obtain a new augmenting path for (Î , V̂ , p) of a shorter length.
In this way, with modifying a p-matching and its valid labeling, we can

shorten an augmenting path to reach the base case. There remain several other
cases to be dealt with, e.g., Pm has repeated edges, or meets a previous outer
alternating path Pm′ , and so on. In these cases, we need further considerations
including a “no short-cut property”; similar arguments for the rank computation
setting are given in [12]. The remaining arguments for the deg-det computation
setting are not explained here by space-limitation and will be given in the full
version of this paper.

References

1. Cohn, P.M.: Skew Fields: Theory of General Division Rings. Cambridge University
Press, Cambridge (1995)

2. Dieudonné, J.: Les déterminants sur un corps non commutatif. Bull. de la Société
Mathématique de France 71, 27–45 (1943)

3. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Natl.
Bureau Stand. 71B(4), 241–245 (1967)

4. Egerváry, J.: Matrixok kombinatorius tulajdonságairól. In: Matematikai és Fizikai
Lapok, pp. 16–28 (1931)

5. Frank, A., Tardos, E.: An application of simultaneous Diophantine approximation
in combinatorial optimization. Combinatorica 7, 49–65 (1987)

6. Garg, A., Gurvits, L., Oliveira, R., Wigderson, A.: Operator scaling: theory and
applications. Found. Comput. Math. 20, 223–290 (2019)

7. Hamada, M., Hirai, H.: Maximum vanishing subspace problem, CAT(0)-
space relaxation, and block-triangularization of partitioned matrix (2017).
arXiv:1705.02060

8. Hamada, M., Hirai, H.: Computing the nc-rank via discrete convex optimization
on CAT(0) spaces (2020). arXiv:2012.13651v1

9. Hirai, H.: Computing the degree of determinants via discrete convex optimization
on Euclidean buildings. SIAM J. Appl. Geom. Algebra 3(3), 523–557 (2019)

10. Hirai, H., Ikeda, M.: A cost-scaling algorithm for computing the degree of deter-
minants (2020). arXiv:2008.11388v2

11. Hirai, H., Iwamasa, Y.: A combinatorial algorithm for computing the rank of a
generic partitioned matrix with 2×2 submatrices. In: Proceedings of the 21st Con-
ference on Integer Programming and Combinatorial Optimization (IPCO 2020).
LNCS, vol. 12125, pp. 196–208 (2020)

12. Hirai, H., Iwamasa, Y.: A combinatorial algorithm for computing the rank of a
generic partitioned matrix with 2× 2 submatrices (2020). arXiv:2004.10443

http://arxiv.org/abs/1705.02060
http://arxiv.org/abs/2012.13651v1
http://arxiv.org/abs/2008.11388v2
http://arxiv.org/abs/2004.10443

Computing the Degree of the Determinant of a 2 × 2 Type GPPM 133

13. Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: Non-commutative Edmonds’ problem
and matrix semi-invariants. Comput. Complexity 26, 717–763 (2017)

14. Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: Constructive non-commutative rank
computation is in deterministic polynomial time. Comput. Complexity 27, 561–593
(2018). https://doi.org/10.1007/s00037-018-0165-7

15. Iwata, S., Kobayashi, Y.: A weighted linear matroid parity algorithm. SIAM J.
Comput. (2021)

16. Iwata, S., Murota, K.: A minimax theorem and a Dulmage-Mendelsohn type
decomposition for a class of generic partitioned matrices. SIAM J. Matrix Anal.
Appl. 16(3), 719–734 (1995)

17. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Comput. Complexity 13, 1–46 (2004)

18. Kuhn, H.W.: The Hungarian method for assignment problems. Naval Res. Logist.
Q. 2, 83–97 (1955)

19. Lovász, L.: On determinants, matchings, and random algorithms. In: International
Symposium on Fundamentals of Computation Theory (FCT 1979) (1979)

20. Lovász, L.: Singular spaces of matrices and their application in combinatorics.
Boletim da Sociedade Brasileira de Matemática 20(1), 87–99 (1989)

21. Oki, T.: On solving (non)commutative weighted Edmonds’ problem. In: Proceed-
ings of the 47th International Colloquium on Automata, Languages and Program-
ming (ICALP’20), Leibniz International Proceedings in Informatics (LIPIcs), vol.
168, pp. 89:1–89:14 (2020)

22. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

23. Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 22(2), 107–111
(1947)

https://doi.org/10.1007/s00037-018-0165-7

On the Implementation
and Strengthening of Intersection

Cuts for QCQPs

Antonia Chmiela1 , Gonzalo Muñoz2(B) , and Felipe Serrano1

1 Zuse Institute Berlin, Berlin, Germany
{chmiela,serrano}@zib.de

2 Universidad de O’Higgins, Rancagua, Chile
gonzalo.munoz@uoh.cl

Abstract. The generation of strong linear inequalities for QCQPs has
been recently tackled by a number of authors using the intersection cut
paradigm—a highly studied tool in integer programming whose flexi-
bility has triggered these renewed efforts in non-linear settings. In this
work, we consider intersection cuts using the recently proposed construc-
tion of maximal quadratic-free sets. Using these sets, we derive closed-
form formulas to compute intersection cuts which allow for quick cut-
computations by simply plugging-in parameters associated to an arbi-
trary quadratic inequality being violated by a vertex of an LP relax-
ation. Additionally, we implement a cut-strengthening procedure that
dates back to Glover and evaluate these techniques with extensive com-
putational experiments.

Keywords: Intersection cuts · QCQP · Quadratic-free sets

1 Introduction

Nowadays, the reach of state-of-the-art optimization solvers is vast and certain
classes of non-convex optimization problems that years ago seemed impenetra-
ble can now be solved in moderate running times. However, we still encounter
computational challenges preventing us to solve many non-convex optimization
instances to provable optimality. In this work, we focus on the generation of
general purpose cutting planes for quadratically constrained quadratic programs
(QCQPs). These problems can be assumed, without loss of generality, to have
the following form

min c̄Ts (1a)
s.t. s ∈ S ⊆ R

p, (1b)

where S = {s ∈ R
p : sTQis + bTi s + ci ≤ 0, i = 1, . . . ,m}.

In order to find cutting planes for (1) we follow the intersection cut paradigm
[4,19,33] which requires the following. We assume we have s̄ �∈ S, a basic optimal
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 134–147, 2021.
https://doi.org/10.1007/978-3-030-73879-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_10&domain=pdf
http://orcid.org/0000-0002-4809-2958
http://orcid.org/0000-0002-9003-441X
http://orcid.org/0000-0002-7892-3951
https://doi.org/10.1007/978-3-030-73879-2_10

On the Implementation and Strengthening of Intersection Cuts for QCQPs 135

Fig. 1. On the left, an intersection cut (red) separating s̄ from S (blue). On the right,
the effect of using another S-free set C′

� C. (Color figure online)

solution of a linear programming (LP) relaxation of (1)1. Such a relaxation can
be obtained, for example, using linear over- and under-estimators of the terms
sisj [22]. Additionally, we require a simplicial conic relaxation K ⊇ S with
apex s̄, and an S-free set C—a convex set satisfying int(C) ∩ S = ∅—such that
s̄ ∈ int(C). With these ingredients, we can find a cutting plane guaranteed to
separate s̄ from S. In Fig. 1(left) we show a simple intersection cut in the case
when all p rays of K intersect the boundary of the S-free set C. In this case, the
cut is defined by the hyperplane containing all such intersection points.

When the intersection cuts are computed using the intersection points
between the S-free set and the extreme rays of K, the larger the S-free set the
better: if two S-free sets C,C ′ are such that C � C ′, the intersection cut derived
from C ′ is at least as strong as the one derived from C [13]. In Fig. 1(right) we
show this phenomenon. This makes inclusion-wise maximality of an S-free set a
desirable goal. Note that if s̄ �∈ S, there exists i ∈ {1, . . . , m} such that

s̄ �∈ Si := {s ∈ R
p : sTQis + bTi s + ci ≤ 0},

and constructing an Si-free set containing s̄ suffices to ensure separation. We
refer to these sets as quadratic-free sets. Recently, Muñoz and Serrano [26] pro-
vided a method for constructing maximal quadratic-free sets for any arbitrary
quadratic inequality. Their focus is the construction and maximality proofs of
these sets, leaving aside the actual calculation of the cuts and their computa-
tional impact.

Contribution. The first contribution of this work is an implementation and
extensive testing of intersection cuts based on the maximal quadratic-free sets
proposed by Muñoz and Serrano. In [26], they showed how to construct maximal
Sh-free and Sg-free sets for the quadratic-representable sets

Sh := {(x, y) ∈ R
n+m : ‖x‖ ≤ ‖y‖} (2)

Sg := {(x, y) ∈ R
n+m : ‖x‖ ≤ ‖y‖, aTx + dTy = −1}, (3)

where max{‖a‖, ‖d‖} = 1. They also argued that one can always transform

S := {s ∈ R
p : sTQs + bTs + c ≤ 0}, (4)

1 If s̄ ∈ S the problem would be solved.

136 A. Chmiela et al.

a generic quadratic set, into Sh or Sg and use the maximal Sh-free and Sg-
free to construct maximal S-free sets. The maximal S-free sets of Muñoz and
Serrano, however, are described only with respect to Sh and Sg. Here, we provide
transformations from S into Sh and Sg explicitly, and show descriptions of the
resulting S-free sets. Moreover, we derive closed-form expressions to compute a
valid inequality violated by s̄ �∈ S.

Additionally, we implement a well known cut strengthening procedure
designed to improve the cut coefficient of a ray of K that never intersects the
boundary of the S-free set. We show that computing the strengthened cuts
involves solving a single-variable convex optimization problems, which we pro-
vide explicitly. We also implemented a family of cuts obtained from implied
quadratic constraints in an extended space. These were used in the maximal
outer-product-free sets by Bienstock et al. [7,8], which here we reinterpret as
maximal quadratic-free sets. All our ideas are tested using the general-purpose
solver SCIP [28].

Henceforth, we assume Q in (4) is a symmetric indefinite matrix. Otherwise,
S is convex or reverse-convex; in the former case, cutting planes can be computed
using supporting hyperplanes, and in the latter case the unique maximal S-free
set is the complement of S, which can be used directly in the intersection cuts
framework.

1.1 Literature Review

The basic idea behind intersection cuts can be traced back to Tuy [33]. Later
on, intersection cuts were introduced in integer programming by Balas [4] and
have been largely studied since. See e.g. [6,13,14] for in-depth analyses of the
relation of intersection cuts using maximal Z

n-free sets and the generation of
facets of conv(S), when S is a mixed-integer set. We also refer the reader to
[2,3,5,10,15,20] and references therein. Intersection cuts have also been extended
to the mixed-integer conic case: see e.g. [1,21,24,25]. A different, but related,
method was proposed by Towle and Luedtke [32].

Lately, there has been a number of methods proposed for the use of the inter-
section cut framework in non-convex non-linear settings. Fischetti et al. [16]
applied intersection cuts to bilevel optimization. Bienstock et al. [7,8] stud-
ied outer-product-free sets, which can be used for generating intersection cuts
for polynomial optimization. Serrano [31] showed how to construct a concave
underestimator of any factorable function and from them one can build inter-
section cuts. Fischetti and Monaci [17] constructed bilinear-free sets through
a bound disjunction and underestimating the bilinear term with McCormick
inequalities [22]. Muñoz and Serrano [26] constructed multiple families of maxi-
mal quadratic-free sets that can be used to compute intersection cuts for QCQPs.

Alternative cutting-plane-generation approaches to intersection cuts can be
obtained from the work of [11,21], and from [27]. We refer to the survey [9] for
other efforts of extending cutting planes to the non-linear setting.

On the Implementation and Strengthening of Intersection Cuts for QCQPs 137

2 Maximal Quadratic-Free Sets and Cut Computations

In this section, we show how to use the maximal Sh- and Sg-free sets from
[26] in order to construct a maximal quadratic-free for an arbitrary quadratic.
Consider S defined in (4), with Q a symmetric matrix, and let Q = V ΘV T be
its eigenvalue decomposition. Then, S = {s ∈ R

p : sTV ΘV Ts + bTs + c ≤ 0}.
Let θi, i = 1, . . . , p, be the eigenvalues of Q, and define I+ = {i : θi > 0},
I− = {i : θi < 0}, and I0 = {i : θi = 0}. After algebraic manipulations of this
last description of S, we obtain the following equivalent description

S = {s ∈ R
p : ‖x(s)‖2 − ‖y(s)‖2 + (b̄I0)

Tz(s) + κ ≤ 0}.

where b̄I0 is the sub-vector of b̄ := V Tb with entries in I0 and

xi(s) =
√

θiv
T
i (s +

b

2θi
), ∀i ∈ I+,

zi(s) = vT
i s, ∀i ∈ I0,

yi(s) =
√

−θiv
T
i (s +

b

2θi
), ∀i ∈ I−,

κ = c − 1
4

∑

i∈I+∪I−

(vT
i b)2

θi
,

where vi is the i-th eigenvector, that is, the i-th column of V .

Remark 1. Using an eigenvalue decomposition is not crucial. Other factoriza-
tions of the Q matrix can have the same effect, and can lead to other maximal
quadratic-free sets. We chose the eigenvalue decomposition since it can be com-
puted efficiently, and it is available within SCIP without extra computations.

Recall that we assume we have a basic solution s̄ /∈ S. In the following, we
construct a maximal S-free containing s̄ by distinguishing four different scenarios
of S. All our maximal S-free sets are described as C = {s : g(s) ≤ 0}. For a ray
r of the simplicial conic relaxation obtained from a basis associated to s̄, the cut
coefficient of the non-basic variable associated to r is found through the smallest
t > 0 such that g(s̄ + tr) = 0 (recall that g(s̄) < 0). If t∗ is such a root, which
is typically called step-length, the cut coefficient is 1/t∗. If no such t exists, then
t∗ = ∞ and the cut coefficient is 0. For convenience, we uniformly use the term
“smallest positive root”, defining it as ∞ if none exists and consider 1/∞ := 0.

2.1 Case 1: b̄I0 = 0 and κ = 0

Maximal S-free set. In this case, S simplifies to S = {s ∈ R
p : ‖x(s)‖2 −

‖y(s)‖2 ≤ 0}. Using that the map s → (x(s), y(s), z(s)) is affine and invertible,
and the maximal Sh-free sets of [26, Theorem 2], we obtain that

C =
{
s ∈ R

p : x(s̄)Tx(s)/‖x(s̄)‖ ≥ ‖y(s)‖}

is a maximal S-free set and contains s̄ in its interior.

138 A. Chmiela et al.

Computation of Cut Coefficients. As described above, in order to find the cut-
coefficients we need to find the smallest positive solution to

‖y(s̄ + tr)‖ − x(s̄)T

‖x(s̄)‖x(s̄ + tr) = 0. (5)

Below, we show a unified result (Lemma 1) that indicates explicitly how to
compute such a root in this and the next two cases.

2.2 Case 2: b̄I0 = 0 and κ > 0

Maximal S-free set. In this case we need to homogenize the quadratic expression
using a new variable ζ: S =

{
s ∈ R

p : ‖x(s)‖2 − ‖y(s)‖2 + ζ2 ≤ 0, ζ√
κ

= 1
}

.

Let x̂(s) = x(s)√
κ

, ŷ(s) = y(s)√
κ

, and ζ̂ = ζ√
κ
. The following reformulation of S

shows how it can be mapped to a set of type Sg (see (3)):

S = {s ∈ R
p : ‖(x̂(s), ζ̂)‖2 − ‖ŷ(s)‖2 ≤ 0, aT(x̂(s), ζ̂) + dTŷ(s) = −1},

where a = −ep++1, d = 0, and p+ = |I+|. Using that s → (x̂(z), ŷ(z), z(s), 1) is
affine and one-to-one along with the constructions in [26, Theorem 3], we prove
that

C =
{
s ∈ R

p : ‖y(s)‖ ≤ λT(x(s),
√

κ)
}

with λ = (x(s̄),
√

κ)
‖(x(s̄),

√
κ)‖ , is a maximal S-free set and contains s̄ in its interior.

Computation of Cut Coefficients. Given a ray r, the cut coefficient of the non-
basic variable associated to r is given by the smallest t > 0 such that

‖y(s̄ + tr)‖ − (x(s̄),
√

κ)
‖(x(s̄),

√
κ)‖

T

(x(s̄ + tr),
√

κ) = 0. (6)

As for Case 1, in Lemma 1 we show how to compute such a root explicitly.

2.3 Case 3: b̄I0 = 0 and κ < 0

Maximal S-free set. Using a similar homogenization to the last case, and the
constructions in [26, Theorem 3], we can show that

C =
{
s ∈ R

p : ‖(y(s),
√−κ)‖ ≤ λTx(s)

}
,

with λ = x(s̄)
‖x(s̄)‖ , is a maximal S-free set and contains s̄ in its interior.

On the Implementation and Strengthening of Intersection Cuts for QCQPs 139

Computation of Cut Coefficients. Similarly to the previous case, we need to find
the smallest positive solution of

‖(y(s̄ + tr),
√−κ)‖ − x(s̄)T

‖x(s̄)‖x(s̄ + tr) = 0. (7)

The next lemma shows how to compute this root, as well as the ones correspond-
ing to cases 1 and 2.

Lemma 1. Consider S and s̄ as defined above and r an arbitrary ray. The step-
length associated to r for Cases 1, 2 and 3 is obtained as the smallest positive
root of a single-variable quadratic equation of the form

Art
2 + Brt + Cr − (Drt + Er)2 = 0, (8)

where the coefficients Ar, Br, Cr,Dr, Er for each case are displayed in Table 2.
In all cases, Eq. (8) has at most one positive root, and it has no such root if and
only if

√
Ar ≤ Dr.

Note that computing these roots can be done efficiently. From the coefficients
displayed in Table 2, we can see that we just need to compute and store vT

i r,
vT

i s̄, and vT
i b for all i ∈ I+ ∪ I−. After computing these coefficients, we just need

to compute the roots of a single-variable quadratic.

2.4 Case 4: b̄I0 �= 0

Maximal S-free set. For this case, we define w(s) := (b̄I0)
Tz(s). A homogenization

and further diagonalization yields the following representation of S

S = {s ∈ R
p : ‖x̂(s)‖2 − ‖ŷ(s)‖2 ≤ 0, aTx̂(s) + dTŷ(s) = −1},

where

x̂(s) =
1

4
√

1 + κ2

(
x(s),

1
2 4
√

1 + κ2
(w(s) + (κ +

√
1 + κ2)ζ)

)

ŷ(s) =
1

4
√

1 + κ2

(
y(s),

1
2 4
√

1 + κ2
(w(s) + (κ −

√
1 + κ2)ζ)

)

and a = −ep++1, d = ep−+1, p+ = |I+|, and p− = |I−|. Using [26, Theorem 4],
the following maximal S-free set can be obtained

C =

⎧
⎪⎨

⎪⎩
s :

‖ŷ(s)‖ ≤ λTx̂(s), if − λp++1‖ŷ(s)‖ + ŷp−+1(s) ≤ 0
‖x(s̄)‖√
1 + κ2

‖y(s)‖ + x̂p++1(s̄)ŷp−+1(s) ≤ x̂(s̄)Tx̂(s), otherwise

⎫
⎪⎬

⎪⎭
.

where λ = x̂(s̄)
‖x̂(s̄)‖ . For brevity, we omit some transformation steps, but we refer

the interested reader to the full-length version [12] for these details.

140 A. Chmiela et al.

Computation of Cut Coefficients. Since the maximal S-free set of this case is
piecewise-defined, the computation of the cut coefficient associated to a ray r
involves computing (potentially) two roots:

‖ŷ(s̄ + tr)‖ − λTx̂(s̄ + tr) = 0 (9)
‖x(s̄)‖√
1 + κ2

‖y(s̄ + tr)‖ + x̂p++1(s̄)ŷp−+1(s̄ + tr) − x̂(s̄)Tx̂(s̄ + tr) = 0. (10)

Lemma 2. Both (9) and (10) have at most one positive solution. If (9) does
not have a positive solution, neither does (10). If (9) has a positive solution t̄1,
then it is the desired step-length if and only if

− λp++1‖ŷ(s̄ + t̄1r)‖ + ŷp−+1(s̄ + t̄1r) ≤ 0. (11)

If (11) does not hold, the smallest positive root t̄2 of (10) is the step-length.

This last lemma indicates how to orderly use both parts in the definition of C to
compute the desired cut coefficient based on the solutions to (9) and (10). The
next lemma shows exactly how to compute such solutions.

Lemma 3. Consider S and s̄ as defined above and r an arbitrary ray. The
smallest positive root t̄1 of (9) can be found using the quadratic Eq. (8) with the
coefficients displayed in Table 3, column “Case 4–1”. We have t̄1 = ∞ if and
only if

√
Ar ≤ Dr.

Similarly, the smallest positive root t̄2 of (10) can be found using the
quadratic Eq. (8) with the coefficients displayed in Table 3, column “Case 4–2”.
We have t̄2 = ∞ if and only if

√
Ar ≤ Dr.

2.5 Implied Quadratics in an Extended Space

We also incorporated cutting planes using implied quadratic constraints of an
extended formulation. Most LP relaxations for QCQPs linearize bilinear terms
xixj using a new variable Xi,j = xixj , therefore these variables must satisfy

Xi1,j1Xi2,j2 = Xi1,j2Xi2,j1 . (12)

We interpret (12) as two inequalities which fall into our Case 1 above. Whenever
i1 �= j1, i1 �= j2, i2 �= j1 and i2 �= j2, the maximal quadratic-free set we construct
is exactly one of the maximal outer-product-free sets constructed by Bienstock
et al. [7,8]. Additionally if, for instance, i1 = j1, we can use the extra valid
inequality Xi1,j1 ≥ 0 to enlarge the (12)-free set. Consider

SM :={X : Xi1,j1Xi2,j2 − Xi1,j2Xi2,j1 ≤ 0, Xi1,j1 ≥ 0}.

This is defined using a homogenous quadratic and a homogenous linear inequal-
ity, which is also handled in [26]. Roughly speaking, they show that with the
same set used in Case 4 above, one can construct a maximal SM -free set. For
details see the full-length version [12].

On the Implementation and Strengthening of Intersection Cuts for QCQPs 141

3 Strengthening Procedure

When a ray r of the simplicial conic relaxation lies in rec(C), the corresponding
cut-coefficient is 0 and may be strengthened using a negative edge extension.
This technique was proposed by Glover [18], and many authors have shown its
theoretical strength [8,29,30]. Let ri, i = 1, . . . , p, be the extreme rays of the
simplicial conic relaxation, and α∗

i ∈ (0,∞] the step-length computed for ri. Let
F = {i : α∗

i < ∞}. The negative edge extension computes, for each j �∈ F ,

ρj = max
ρ<0

{ρ : α∗
i r

i − ρrj ∈ rec(C) ∀i ∈ F}. (13)

and uses the cut-coefficient 1/ρj < 0 instead of 0. It is not hard to see that
ρj = min{ρi

j : i ∈ F}, where

ρi
j = max

ρ<0
{ρ : α∗

i r
i − ρrj ∈ rec(C)}. (14)

We could solve (14) directly through a single-variable convex optimization prob-
lem. However, we can reformulate the problem so as to not consider all ρ < 0.

Lemma 4. If ri and rj are linearly dependent2, ρi
j = −α∗

i ‖ri‖/‖rj‖. Otherwise,
ρi

j = (μ̄ − 1)α∗
i /μ̄, where

μ̄ := max{μ ∈ [0, 1] : μri + (1 − μ)rj ∈ rec(C)}. (15)

While (14) and (15) look similar, in our experiments the latter proved to be
computationally better: the domain of the variable to optimize is bounded, which
resulted in a faster and numerically more stable strengthening routine.

Since (15) is a single-variable problem over a bounded domain, we use a
binary-search approach to solve it, and thus having an efficient membership
oracle of rec(C) suffices. Using that our S-free sets have the form C = {s :
g(s) ≤ 0}, from our previous discussion we further note that r ∈ rec(C) if and
only if g(s̄ + tr) = 0 has no positive solution. What follows is based on this fact.

Cases 1, 2 and 3. Since r ∈ rec(C) is equivalent to determining if g(s̄+ tr) = 0
has no positive solution, we see that r ∈ rec(C) if and only if

√
Ar ≤ Dr (see

Lemma 1). Let us denote Ai the coefficient Ari (according to Table 2), and
similarly for the other coefficients. In order to solve (15) we show

Lemma 5. μri + (1 − μ)rj ∈ rec(C) if and only if
√

μ2Ai + (1 − μ)2Aj + 2μ(1 − μ)
∑

k∈I−

θk(vT
k ri)(vT

k rj) − μDi − (1 − μ)Dj ≤ 0.

2 Since we are considering rays of a simplicial cone of dimension p, they are all linearly
independent. However, in practice, the set S is usually of dimension � p. In these
cases, one can either extend the S-free set to dimension p, or restrict the rays to the
support of S for computational purposes. The latter might create linear dependence.

142 A. Chmiela et al.

This casts (15) as a single-variable single-constraint convex problem.

Case 4. As each part in the definition of C is a convex function we show:

Lemma 6. Let τ(t) = −λp++1‖ŷ(s̄ + tr)‖ + ŷp−+1(s̄ + tr). If limt→∞ τ(t) > 0,
then r ∈ rec(C) if and only if (9) has a positive root. Otherwise, r ∈ rec(C) if
and only if (10) has a positive root.

This lemma frames how we can check for a ray r to be in rec(C). The two
following results show precisely how to verify each condition.

Lemma 7. Let Ar, Br, Cr,Dr, Er be defined as in Table 3, column “Case 4–1”,
and τ(t) as in the previous lemma. Then

lim
t→∞ τ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(−λp++1)∞, if
√

Ār > D̄r

sgn(λp++1)∞, if
√

Ār < D̄r

sgn(−λp++1)(B̄r

2
√

Ār

− Ēr), if
√

Ār = D̄r.

where

Ār := λ2
p++1Ar, B̄r := λ2

p++1Br, C̄r := λ2
p++1Cr, D̄r := − w(r)

2 4√1−κ2 , Ēr := ŷp−+1(s̄).

Finally, the only missing ingredient is the verification of when (9) or (10)
have a positive root for the ray r = μri + (1 − μ)rj . We show

Lemma 8. Let r = μri + (1 − λ)rj. Then, (9) has a positive root if and only if
√

μ2Ai + (1 − μ)2Aj + 2μ(1 − μ)
(

||x(s̄)||2
4(1+κ)2

∑
k∈I− θk(vT

k ri)(vT
k rj)

)
− μDi + (1 − μ)Dj ≤ 0.

where the coefficients are obtained using Table 3, column “Case 4–1”. Similarly,
(10) has a positive root if and only if
√

μ2Ai + (1 − μ)2Aj − 2μ(1 − μ)
(

ω(ri)ω(rj)
4(1+κ)2 − 1√

1+κ2

∑
k∈I− θk(vT

k ri)(vT
k rj)

)
− μDi + (1 − μ)Dj ≤ 0.

where the coefficients are obtained using Table 3, column “Case 4–2”.

4 Computational Experiments

To test our approach, we use what is commonly known as root node experiments:
we start from an LP relaxation of a QCQP (providing a dual bound d1) and
incorporate our cutting planes to SCIP via a separator. After SCIP stops, we
compute the gap closed : if d2 is the dual bound obtained when the algorithm
finishes, and p a reference primal bound, the function GC(p, d1, d2) = d2−d1

p−d1
is

the gap closed improvement of d2 with respect to d1.
For our experiments, we used a Linux cluster of Intel Xeon CPU E5-2660

v3 2.60 GHz with 25 MB cache and 128 GB main memory. The time limit in all

On the Implementation and Strengthening of Intersection Cuts for QCQPs 143

Table 1. Summary of gap closed in between intersection cuts and default SCIP. The
columns rel denote the corresponding relative improvement with respect to default
SCIP. The #solved row shows the number of instances solved in the root node.

Subset DEFAULT ICUTS ICUTS-S MINOR MINOR-S ICUTS+MINOR ICUTS+MINOR-B

Mean Mean Rel Mean Rel Mean Rel Mean Rel Mean Rel Mean Rel

Clean 0.56 0.61 1.08 0.60 1.07 0.59 1.04 0.58 1.04 0.61 1.09 0.62 1.09

Affected 0.52 0.59 1.12 0.58 1.11 0.55 1.06 0.55 1.06 0.60 1.14 0.60 1.15

#solved 90 116 114 92 91 116 117

experiments was set to one hour. The test set we used consists of the publicly
available instances of the MINLPLib [23]. We selected all non-convex instances
with at least one quadratic constraint, and discarded instances for which no
primal solution was available, no dual solution was found, or SCIP failed. This
resulted in a test set of 587 instances. To compute the gap closed improvement,
we used the MINLPLib’s best primal bounds as a reference.

Below, we refer to the following settings: DEFAULT refers to SCIP’s default
settings, ICUTS refers to including our intersections cuts, MINOR refers to includ-
ing the cuts in extended space obtained from (12), ICUTS-S and MINOR-S refers
to their strengthened versions. Finally, MINOR-B refers to cuts obtained from (12)
including non-negativity bounds, as discussed in Sect. 2.5. Combinations of these
settings are displayed with a ‘+’ sign. Since the root node experiments aim at
showing how much gap can be closed by a family of cuts, we did not put any
restrictions on the number of cuts added by SCIP. On average, the non-default
settings added between 1155–73049 intersection cuts.

The overall best performing setting was ICUTS+MINOR-B, thus we mainly
report comparisons of this setting with respect to variations of it. In Table 1 we
show summarized results for various settings. On average, we see an improve-
ment of 8% in the gap closed of ICUTS+MINOR-B with respect to DEFAULT. This
improvement becomes 12% if we restrict to the 395 affected instances, i.e.,
instances for which at least one of the non-default settings added cutting planes.
Considering the heterogeneity of these instances, these improvements are sig-
nificant. Additionally, using our cutting planes SCIP was able to solve 27 more
instances in the root node.

Surprisingly, we can see a (slightly) negative effect of the strengthening. This
was an unexpected phenomenon, which we examined in detail on a number of
instances. We observe that the cut coefficients are not improved significantly in
many cases. If we also consider that the strengthening increases the density of
a cut, we conclude that, overall, the coefficient’s modest improvement does not
compensate the extra difficulties associated to a dense LP. Preliminary exper-
iments we conducted with spatial branch-and-bound support this claim: when
using the strengthening routine, around 10% less LP iterations per second were
executed compared to default. In contrast, the cuts without the strengthening
reduced the LP iterations per second by only 4%.

144 A. Chmiela et al.

Fig. 2. Scatter plots showing comparisons of gap closed in root node experiments
between various pairs of settings.

When comparing ICUTS+MINOR-B with ICUTS and with MINOR, we see that
both cutting plane families are complementing each other well. Although the
contribution of MINOR on top of ICUTS is modest, including both does make a
difference in some cases. Since these two families are using quadratic inequalities
that lie in different spaces, combining them is providing significantly different
violated constraints. In addition, from ICUTS+MINOR-B and ICUTS+MINOR, we
see that also considering the non-negativity bounds has an important positive
impact.

In Fig. 2 we show scatter plots comparing different settings. These plots sup-
port our previous analysis, and also show that the results are stable: if a setting
improves the performance on average, the improvement is relatively consistent
among the whole test set. While there are instances where the cutting planes
negatively impact SCIP’s performance, these were only a small fraction of the
total set.

Overall, we believe these results are encouraging for our families of cutting
planes. Given the heterogeneity of the instances, and how generic the cutting
planes are, the results we are obtaining advocate for our approach as a promising
tool for solving QCQPs.

5 Final Remarks

In this work, we have shown an implementation of intersection cuts for QCQPs
using the newly developed maximal quadratic-free sets. We show a detailed

On the Implementation and Strengthening of Intersection Cuts for QCQPs 145

framework on how to construct cutting planes using any violated quadratic, and
the necessary results showing the correctness of our computations. Our results
allow for efficient cut computations that any researcher can embed in their opti-
mization routines by simply plugging into our formulas the necessary parameters
of a generic quadratic inequality.

Our careful implementation resulted in encouraging results: we were able to
close more gap in a significant number of instances and solve more instances in
the root node. We also showed that these and the cuts proposed by Bienstock
et al. are complementing each other well. While, unfortunately, the strengthening
procedure did not yield good results, we believe it still provides valuable insights
for the optimization community.

Our current and future work involves a full incorporation of these cutting
planes in spatial branch-and-bound. This will require a much more careful han-
dling of the density of the cuts we create, as well as special cut selection rules.

Table 2. Coefficients of equation Art
2+Brt+Cr−(Drt+Er)

2 = 0 in the cut-coefficient
computations for a ray r in Cases 1, 2 and 3.

Coefficient Case 1 Case 2 Case 3

Ar − ∑
i∈I− θi(v

T
i r)2

Br −2
∑

i∈I− θi

(
vT

i (s̄ + b
2θi

)
)

(vT
i r)

Cr − ∑
i∈I− θi

(
vT

i (s̄ + b
2θi

)
)2 − ∑

i∈I− θi

(
vT

i (s̄ + b
2θi

)
)2 −κ − ∑

i∈I− θi

(
vT

i (s̄ + b
2θi

)
)2

Dr
1

Er

∑
i∈I+

θi

(
vT

i (s̄ + b
2θi

)
)

(vT
i r)

Er

√
∑

i∈I+
θi

(
vT

i (s̄ + b
2θi

)
)2

√

κ +
∑

i∈I+
θi

(
vT

i (s̄ + b
2θi

)
)2

√
∑

i∈I+
θi

(
vT

i (s̄ + b
2θi

)
)2

Table 3. Coefficients of equations Art
2 + Brt + Cr − (Drt + Er)

2 = 0 in the cut-
coefficient computations for a ray r in Case 4.

Coefficient Case 4–1 Coefficient Case 4–2

Ar
w(r)2

4(1+κ2)
− 1√

1+κ2

∑
i∈I− θi(v

T
i r)2 Ar − ‖x(s̄)‖2

1+κ2
∑

i∈I− θi(v
T
i r)2

Br 2

(
w(r)

2
√

1+κ2

)

ŷp−+1(s̄) − 2√

1+κ2

∑
i∈I− θi

(
vT

i (s̄ + b
2θi

)
)

(vT
i r) Br −2

‖x(s̄)‖2

1+κ2
∑

i∈I− θi

(
vT

i (s̄ + b
2θi

)
)

(vT
i r)

Cr ŷp−+1(s̄)2 − 1√

1+κ2

∑
i∈I− θi

(
vT

i (s̄ + b
2θi

)
)2

Cr − ‖x(s̄)‖2

1+κ2
∑

i∈I− θi

(
vT

i (s̄ + b
2θi

)
)2

Dr
1

Er

√

1+κ2

(
∑

i∈I+
θi

(
vT

i (s̄ + b
2θi

)
)

(vT
i r) +

(w(s̄)+κ+
√

1+κ2)w(r)

4
√

1+κ2

)

Dr
1√

1+κ2

∑
i∈I+

θi

(
vT

i (s̄ + b
2θi

)
)

(vT
i r)

Er
1

4
√

1+κ2

√
√
√
√ (w(s̄)+κ+

√

1+κ2)2

4
√

1+κ2
+

∑
i∈I+

θi

(
vT

i (s̄ + b
2θi

)
)2

Er
1√

1+κ2

(

‖x(s̄)‖2 +
w(s̄)+κ+

√

1+κ2

2

)

References

1. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic
sets. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 37–48.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9 4

2. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear
sets based on lattice point free convex sets. Math. Oper. Res. 35(1), 233–256 (2010)

https://doi.org/10.1007/978-3-642-36694-9_4

146 A. Chmiela et al.

3. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two
rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007.
LNCS, vol. 4513, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72792-7 1

4. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming.
Oper. Res. 19(1), 19–39 (1971). https://doi.org/10.1287/opre.19.1.19

5. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex
sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010). https://doi.org/
10.1287/moor.1100.0461

6. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities for an
infinite relaxation of integer programs. SIAM J. Discrete Math. 24(1), 158–168
(2010)

7. Bienstock, D., Chen, C., Muñoz, G.: Intersection cuts for polynomial optimiza-
tion. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 72–87.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3 6

8. Bienstock, D., Chen, C., Gonzalo, M., et al.: Outer-product-free sets for polynomial
optimization and oracle-based cuts. Math. Program. 183, 105–148 (2020). https://
doi.org/10.1007/s10107-020-01484-3

9. Bonami, P., Linderoth, J., Lodi, A.: Disjunctive cuts for mixed integer nonlinear
programming problems. Prog. Comb. Optim., 521–541 (2011)

10. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints.
Math. Oper. Res. 34(3), 538–546 (2009). https://doi.org/10.1287/moor.1080.0370

11. Burer, S., Fatma, K.K.: How to convexify the intersection of a second order cone
and a nonconvex quadratic. Math. Program. 162, 393–429 (2016). https://doi.org/
10.1007/s10107-016-1045-z

12. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening
of intersection cuts for QCQPs. Online preprint (2020). https://opus4.kobv.de/
opus4-zib/frontdoor/index/index/docId/7999

13. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-
generating functions and S-free sets. Math. Oper. Res. 40(2), 276–391 (2015).
https://doi.org/10.1287/moor.2014.0670

14. Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating functions. Math.
Program. 152(1), 643–651 (2014). https://doi.org/10.1007/s10107-014-0780-2

15. Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities corre-
sponding to lattice-free triangles. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.)
IPCO 2008. LNCS, vol. 5035, pp. 463–475. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68891-4 32

16. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Intersection cuts for bilevel opti-
mization. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp.
77–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33461-5 7

17. Fischetti, M., Monaci, M.: A branch-and-cut algorithm for mixed-integer bilinear
programming. Eur. J. Oper. Res. 282, 506–514 (2019). https://doi.org/10.1016/j.
ejor.2019.09.043

18. Glover, F.: Polyhedral convexity cuts and negative edge extensions. Zeitschrift für
Oper. Res. 18(5), 181–186 (1974)

19. Glover, F.: Convexity cuts and cut search. Oper. Res. 21(1), 123–134 (1973).
https://doi.org/10.1287/opre.21.1.123

20. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra. Math. Program. 3(1), 23–85 (1972). https://doi.org/10.1007/bf01584976

21. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs.
Math. Oper. Res. 41(2), 477–510 (2015)

https://doi.org/10.1007/978-3-540-72792-7_1
https://doi.org/10.1007/978-3-540-72792-7_1
https://doi.org/10.1287/opre.19.1.19
https://doi.org/10.1287/moor.1100.0461
https://doi.org/10.1287/moor.1100.0461
https://doi.org/10.1007/978-3-030-17953-3_6
https://doi.org/10.1007/s10107-020-01484-3
https://doi.org/10.1007/s10107-020-01484-3
https://doi.org/10.1287/moor.1080.0370
https://doi.org/10.1007/s10107-016-1045-z
https://doi.org/10.1007/s10107-016-1045-z
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7999
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7999
https://doi.org/10.1287/moor.2014.0670
https://doi.org/10.1007/s10107-014-0780-2
https://doi.org/10.1007/978-3-540-68891-4_32
https://doi.org/10.1007/978-3-540-68891-4_32
https://doi.org/10.1007/978-3-319-33461-5_7
https://doi.org/10.1016/j.ejor.2019.09.043
https://doi.org/10.1016/j.ejor.2019.09.043
https://doi.org/10.1287/opre.21.1.123
https://doi.org/10.1007/bf01584976

On the Implementation and Strengthening of Intersection Cuts for QCQPs 147

22. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part i – convex underestimating problems. Math. Program. 10(1), 147–175
(1976). https://doi.org/10.1007/bf01580665

23. MINLP library. http://www.minlplib.org/
24. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for

mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)
25. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer pro-

gramming: convexification techniques for structured sets. Math. Program. 155(1–
2), 575–611 (2016)

26. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. In: Bienstock, D., Zambelli,
G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 307–321. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45771-6 24

27. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope.
arXiv preprint arXiv:1812.10160 (2018)

28. SCIP - Solving Constraint Integer Programs. http://scip.zib.de
29. Sen, S., Sherali, H.D.: Facet inequalities from simple disjunctions in cutting plane

theory. Math. Program. 34(1), 72–83 (1986). https://doi.org/10.1007/bf01582164
30. Sen, S., Sherali, H.D.: Nondifferentiable reverse convex programs and facetial con-

vexity cuts via a disjunctive characterization. Math. Program. 37(2), 169–183
(1987)

31. Serrano, F.: Intersection cuts for factorable MINLP. In: Lodi, A., Nagarajan, V.
(eds.) IPCO 2019. LNCS, vol. 11480, pp. 385–398. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17953-3 29

32. Towle, E., Luedtke, J.: Intersection disjunctions for reverse convex sets. arXiv
preprint arXiv:1901.02112 (2019)

33. Tuy, H.: Concave programming with linear constraints. In: Doklady Akademii
Nauk, vol. 159, pp. 32–35. Russian Academy of Sciences (1964)

https://doi.org/10.1007/bf01580665
http://www.minlplib.org/
https://doi.org/10.1007/978-3-030-45771-6_24
http://arxiv.org/abs/1812.10160
http://scip.zib.de
https://doi.org/10.1007/bf01582164
https://doi.org/10.1007/978-3-030-17953-3_29
https://doi.org/10.1007/978-3-030-17953-3_29
http://arxiv.org/abs/1901.02112

Lifting Convex Inequalities for Bipartite
Bilinear Programs

Xiaoyi Gu1(B), Santanu S. Dey1, and Jean-Philippe P. Richard2

1 Georgia Institute of Technology, Atlanta, GA 30332, USA
xiaoyigu@gatech.edu, santanu.dey@isye.gatech.edu

2 University of Minnesota, Minneapolis, MN 55455, USA
jrichar@umn.edu

Abstract. The goal of this paper is to derive new classes of valid convex
inequalities for quadratically constrained quadratic programs (QCQPs)
through the technique of lifting. Our first main result shows that, for
sets described by one bipartite bilinear constraint together with bounds,
it is always possible to lift a seed inequality that is valid for a restric-
tion obtained by fixing variables to their bounds, when the lifting is
accomplished using affine functions of the fixed variables. In this setting,
sequential lifting involves solving a non-convex nonlinear optimization
problem each time a variable is lifted, just as in Mixed Integer Linear
Programming. To reduce the computational burden associated with this
procedure, we develop a framework based on subadditive approxima-
tions of lifting functions that permits sequence independent lifting of
seed inequalities for separable bipartite bilinear sets. In particular, this
framework permits the derivation of closed-form valid inequalities. We
then study a separable bipartite bilinear set where the coefficients form
a minimal cover with respect to right-hand-side. For this set, we derive a
“bilinear cover inequality”, which is second-order cone representable. We
argue that this bilinear covering inequality is strong by showing that it
yields a constant-factor approximation of the convex hull of the original
set. We study its lifting function and construct a two-slope subadditive
upper bound. Using this subadditive approximation, we lift fixed variable
pairs in closed-form, thus deriving a “lifted bilinear cover inequality” that
is valid for general separable bipartite bilinear sets with box constraints.

Keywords: Lifting · Bipartite bilinear sets · Subadditivity

1 Introduction

1.1 Generating Strong Cutting Planes Through Lifting

Lifting is a technique that is used to derive or strengthen classes of cutting
planes. It was first introduced to optimization in the context of mixed integer
linear programming (MILP); see [44] for a review. The lifting process has two
steps:
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 148–162, 2021.
https://doi.org/10.1007/978-3-030-73879-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_11

Lifting Convex Inequalities for Bipartite Bilinear Programs 149

– Fixing and generation of a seed inequality : In the first step, the set S of
interest is restricted by fixing a subset of variables, say xF , to different values
(typically to one of their bounds), say x̃F . A valid inequality h(x) ≥ h0, which
we call seed inequality, is then generated for the restriction S|xF=x̃F .

– Lifting the seed inequality: The seed inequality h(x) ≥ h0, when viewed with
“zero coefficients” for the fixed variables h(x) + 0 · xF ≥ h0 is typically not
valid for the original set S. The task in the “lifting step” is to generate an
inequality h(x) + g(xF) ≥ h0 + g0, which (i) is valid for S and (ii) satisfies
g(x̃F) = g0. Under condition (ii), inequality h(x) + g(xF) ≥ h0 + g0 reduces
to inequality h(x) ≥ h0 when xF is set to x̃F . The process of lifting is often
accomplished by rotating or titling the seed inequality [26].

Even though condition (ii) is not strictly necessary to impose, we require it in
the remainder of the paper as otherwise h(x) + g(xF) ≥ h0 + g0 is weak on the
face xF = x̃F .

Lifting, as a technique for generating cutting-planes in mixed integer pro-
gramming, has been extensively researched. Originally devised for node packing
and knapsack sets [7,10,33,41,42], lifting was extended to general MIP settings
[4,29,30,46,47,52,53] and used to derive families of valid inequalities for many
sets including [1,3,18,21,27,34,36,54–56] among many other examples. Many of
the classes of cutting planes that have yielded significant computational gains
can be obtained through lifting. This includes lifted cover inequalities [29], lifted
tableaux cuts [21,39], and even the Gomory mixed integer cut [25]; see [6,9,11–
13,13,14,20,23,24,48] for papers related to lifting in the infinite group problem
model. Similarly, mixing inequalities [31] can be viewed as an outcome of lift-
ing [23].

Significantly fewer articles have focused on studying how lifting can be
applied to nonlinear programs and mixed integer nonlinear programs. Excep-
tions include [49], which develops a general theory for lifting linear inequalities
in nonlinear programming, [40] which applies lifting to derive the convex hull of
a nonlinear set, [32] which studies lifting for the pooling problem, [5] which uses
lifting for conic integer programs, and [19] which develops strong inequalities for
mixed integer bilinear programs.

1.2 Goal of This Paper

The goal of this paper is to derive new classes of valid convex inequalities for
quadratically constrained quadratic programs (QCQPs) through the technique of
lifting.

Generating valid inequalities for single row relaxations (together with bounds
and integrality restrictions), i.e., for knapsack constraints, was the first, and
arguably the most important step in the development of computationally useful
cutting-planes in MILP. Motivated by this observation, various cutting-planes
and convexification techniques for sets defined by a single non-convex quadratic
constraint together with bounds have recently been investigated; see [2,19,51] for
classes of valid inequalities for single constraint QCQPs and [22,50] for convex

150 X. Gu et al.

hull results for such sets. The paper [43] studies a set similar to the one we study,
albeit with integer variables. Further, [22] demonstrates that cuts obtained from
one-row relaxations of QCQPs can be useful computationally. The paradigm of
intersection cuts has also been explored to generate cuts for single-constraint
QCQPs [16,38]. Due to lack of space, we refrain from describing here the vast
literature on convexification techniques for QCQPs and instead refer interested
readers to [17,50] and the references therein.

In this paper, we investigate the lifting of a convex seed inequality for a
feasible region defined by a single (non-convex) quadratic constraint together
with bound constraints. Apart from [5], we are not aware of any paper that
attempts to study or employ lifting of convex non-linear inequalities. To the
best of our knowledge, this is the first study that derives lifted valid inequalities
for general non-convex quadratic constraints with arbitrary number of variables.

1.3 Main Contributions

– Can we always lift? We first present a simple example in two variables that
illustrates that, even when a set is defined by a convex quadratic constraint,
it might not always be possible to lift a linear seed inequality, valid for the
restriction obtained by fixing a variable at lower bound, when we assume
g(·) − g0 is an affine function of the fixed variable. Our first main result, by
contrast, establishes that there exists a large class of sets, described through
a single bipartite bilinear constraint [22] together with bounds, for which it
is always possible to lift when variables were fixed at their bounds. We note
that any quadratic constraint can be relaxed to produce a bipartite bilinear
constraint.

– Sequence-independent lifting. The lifting of a fixed variable requires the solu-
tion of a non-convex nonlinear optimization problem. When multiple variables
must be lifted one at a time, this process (sometimes referred to as sequen-
tial lifting) can be computationally prohibitive. In this setting, the form of
the lifted inequality obtained will differ depending on the order in which
variables are lifted. For MILPs, it was shown in [53] that when the so-called
lifting function (or a suitable approximation) is subadditive, lifting is far more
computationally tractable in part because the form of the lifted inequality is
independent of the order in which variables are lifted. We develop a similar
general result for sequence-independent lifting of seed inequalities for separa-
ble bipartite bilinear constraints.

– Bilinear covering set and bilinear cover inequality. We next study a separable
bipartite bilinear set whose coefficients form a minimal cover with respect
to right-hand-side. For this set, we derive a “bilinear cover inequality.” This
second order cone representable inequality produces a constant-factor approx-
imation of the convex hull of the original set.

– Sequence-independent lifting for the bilinear cover inequality. We finally study
the lifting function corresponding to the bilinear cover inequality and con-
struct a two-slope subadditive upper bound. This function is reminiscent of
the two-slope subadditive functions studied in the context of cutting-planes

Lifting Convex Inequalities for Bipartite Bilinear Programs 151

for the infinite group relaxation [28,35,45], although there is no apparent
connection between these sets and the infinite group model. Using this sub-
additive function, we lift fixed variable pairs in closed-form, thus describing
a family of “lifted bilinear cover inequalities,” which are valid for general
separable bipartite bilinear constraints.

1.4 Notation and Organization of the Paper

Given a positive integer n, we denote the set {1, . . . , n} by [n]. Given a set
S ⊆ R

n and θ > 0, we use θ · S to denote the set {θx |x ∈ S}. We also use
conv(S) to denote the convex hull of set S.

The rest of the paper is organized as follows: In Sect. 2 we present our main
results. In Sect. 3 we discuss some key directions for future research. Due to lack
of space we do not present proofs.

2 Main Results

2.1 Sufficient Conditions Under Which Seed Inequalities Can Be
Lifted

Before we introduce our first main result in Theorem 1, we first give an example
of how lifting can be performed for a set defined through a quadratic constraint.

Example 1. Consider the set

S :=
{
(x1, x2, x3) ∈ [0, 1]3 |x1x2 + 2x1x3 ≥ 1

}
.

– Fixing and seed inequality: Fix x3 = 0 to obtain the restriction S|x3=0 :=
{(x1, x2) |x1x2 ≥ 1}. The seed inequality

√
x1x2 ≥ 1,

is a valid convex inequality for S|x3=0.
– Lifting the seed inequality: Although valid for S|x3=0, the seed inequality is

not valid for S, since (x1, x2, x3) = (1, 0, 1/2) violates it while belonging to
S. We therefore must introduce variable x3 into the seed inequality so as to
make it valid. In particular we seek to determine whether there exist α ∈ R

such that
√

x1x2 + αx3 ≥ 1, (1)

is valid for S. This question can be answered by solving the problem

α∗ := sup
1 − √

x1x2

x3

s.t. x1x2 + 2x1x3 ≥ 1
x3 ∈ (0, 1], x1, x2 ∈ [0, 1],

(2)

152 X. Gu et al.

where the key challenge is to first ascertain that the supremum is finite.
When α∗ is finite, it is clear that choosing any α ≥ α∗ in (1) will yield a valid
inequality for S. Problem (2) can be analyzed using the following facts: (1)
for any fixed value of x3, we can always assume that an extreme point is the
optimal solution, as the objective is to maximize a convex function, and (2)
the extreme points of the set where x3 is fixed to a value within its bounds are
well-understood [50]. This suggests that one can inspect all different values of
x3 to establish that the supremum is finite. We illustrate these calculations
next.
We obtain α∗ by computing the supremum α∗

1 of (2) for x3 ∈ [1/2, 1] and then
computing the supremum α∗

2 of (2) for x3 ∈ (0, 1/2]. When x3 ∈ [1/2, 1], one
optimal solution is x1 = 1

2x3
and x2 = 0, thus α∗

1 = supx3∈[1/2,1]
1
x3

= 2. When
x3 ∈ (0, 1/2], one optimal solution is x1 = 1 and x2 = 1 − 2x3, thus

α∗
2 = sup

x3∈(0,1/2]

1 − √
1 − 2x3

x3
= sup

x3∈(0,1/2]

2
1 +

√
1 − 2x3

= 2.

Choosing any α ≥ α∗ = max{α∗
1, α

∗
2} = 2 yields a valid inequality for S. The

strongest such valid inequality is
√

x1x2 + 2x3 ≥ 1.

The above example might suggest that lifting can always be performed when
seeking to derive a linear valid inequality. The following example shows that it
is not so, even when fixing inequalities at bounds.

Example 2. Consider the set

S =
{
(x1, x2) ∈ [0, 1]2

∣
∣ −x2

1 − (x2 − 0.5)2 ≥ −0.52
}

.

The inequality −x1 ≥ 0 is valid for the set obtained by fixing x2 = 0. By setting
up an optimization problem similar to (2), it is easy to verify that there is no
α ∈ R for which −x1 + αx2 ≥ 0 is valid for S.

In Example 2, (i) set S is convex, (ii) we are trying to lift a linear inequality,
and (iii) x2 is fixed to a bound. Even then, it is not possible to lift the seed
inequality when we insist that the lifting should be accomplished using an affine
function of the fixed variable; see Example 4 in Sect. 3 for further discussion.

Our first result identifies a large class of single row QCQPs where lifting can
be accomplished using affine functions of the fixed variables.

Theorem 1. Consider a set described by one bipartite1 bilinear constraint and
bounds on variables:

S = {(x, y) ∈ [0, 1]m × [0, 1]n
∣
∣ xᵀQy + aᵀx + bᵀy ≥ c},

1 We use the term bipartite, perhaps redundantly, to highlight that variables can be
divided into two groups, such that any degree two term comes from product of
variables one each from these two groups [22].

Lifting Convex Inequalities for Bipartite Bilinear Programs 153

where Q ∈ R
m×n, a ∈ R

m, b ∈ R
n, and c ∈ R. Given C × D ⊂ [m] × [n] and

x̃i, ỹj ∈ {0, 1} for i ∈ [m]\C, j ∈ [n]\D, assume that inequality

h(xC , yD) ≥ r

is valid for {(x, y) ∈ S |x[m]\C = x̃[m]\C , y[n]\D = ỹ[n]\D} �= ∅, where h is a
concave function defined on [0, 1]|C|+|D|. Then, for any k ∈ [m]\C, there exists
a finite fk ∈ (−∞,∞) for which

h(xC , yD) + fkxk ≥ r + fkx̃k

is valid for {(x, y) ∈ S |x([m]\C)\{k} = x̃([m]\C)\{k}, y[n]\D = ỹ[n]\D}.
Remark 1. The result of Theorem 1 can be applied iteratively to all the fixed
variables one at a time to obtain a valid inequality for S. Also note that Theo-
rem 1 holds even when the bounds on variables are not [0, 1], since we can always
rescale and translate variables.

The proof of Theorem 1 uses calculations similar to those presented in Exam-
ple 1. In particular, using a characterization of extreme points of the bipartite
bilinear set S [22], the proof reduces to establishing the result for three-variable
problems where one of the variables is fixed. For a three-variable problem, a
number of cases have to be analyzed to verify that the optimal objective func-
tion value of the optimization problem similar to (2) is finite. We mention that
this proof can be turned into an algorithm to compute the lifting coefficients,
although not necessarily an efficient or practical one.

Theorem 1 assumes that, when variables x and y are fixed, they are fixed
at their bounds (either 0 or 1.) When this assumption is not imposed, we show
next through an example that lifting may not be possible.

Example 3. Inequality x ≥ 3/4 is valid for the bipartite bilinear problem obtained
by fixing x̂ = 1/2 in

S =
{

(x, y, x̂) ∈ [0, 1]3
∣
∣
∣ (x − 1/4) (y − 1/2) ≥ x̂/4 + 1/8

}
.

Further, there is no α ∈ R such that x + α(x̂ − 1/2) ≥ 3/4 is valid for S.

2.2 A Framework for Sequence-Independent Lifting

Given a set of variables fixed at their bounds and a seed inequality for the corre-
sponding restriction, a valid inequality for the original problem can be obtained
by lifting each fixed variable one at the time. This computationally demanding
process requires the solution of a non-convex nonlinear optimization problem,
similar to (2), to lift each variable. It results in a lifted inequality whose form
depends on the order in which variables are lifted. Next, we study situations
where the lifting inequality obtained does not depend on the order in which
variables are lifted. In particular, we develop a subadditive theory for lifting in
QCQPs that is inspired by that originally developed in MILP in [53]. We con-
sider the special case of the separable bipartite bilinear constraint defined below.

154 X. Gu et al.

Definition 1. A set Q is said to be a separable bipartite bilinear set if it is of
the form

Q :=

{

(x, y) ∈ [0, 1]n × [0, 1]n
∣
∣
∣

n∑

i=1

aixiyi ≥ d

}

,

where d and ai ∈ R for i ∈ [n], i.e., each variable xi or yi, for i ∈ [n], appears
in only one term.

In the separable case, it is natural to lift each pair of variables xi and yi

together. Next, we derive conditions on the lifting function of a seed inequality
that guarantees that the form of the lifted inequality obtained is independent of
the order in which these pairs are lifted. This result is obtained, as is common
in MILP, by deriving a subadditive upper bound on the lifting function of the
seed inequality, from which all lifting coefficients can be derived.

Proposition 1. Let Q be a separable bipartite bilinear set. Assume that Λ =
{I, J0, J1} is a partition of [n], i.e., I ∪ J0 ∪ J1 = [n] with I ∩ J0 = I ∩ J1 =
J0 ∩ J1 = ∅, and that

h(xI , yI) ≥ r

is a valid inequality for {(x, y) ∈ Q |xJ0 = yJ0 = 0, xJ1 = yJ1 = 1} where h is a
concave function. For δ ∈ R, compute the lifting function

φ(δ) := max

{

r − h(xI , yI)
∣
∣
∣
∑

i∈I

aixiyi ≥
(

d −
∑

i∈J1

ai

)

− δ, x, y ∈ [0, 1]n
}

.

Let ψ : R �→ R be such that (i) ψ(δ) ≥ φ(δ), ∀δ ∈ R; (ii) ψ subadditive, (i.e.,
ψ(δ1)+ψ(δ2) ≥ ψ(δ1+δ2), ∀δ1, δ2 ∈ R) with ψ(0) = 0; (iii) for any i ∈ J0, there
exists a concave function γi(x, y) such that γi(x, y) ≥ ψ(aixy),∀x, y ∈ [0, 1],
and for any i ∈ J1, there exists a concave function γi(x, y) such that γi(x, y) ≥
ψ(aixy − ai),∀x, y ∈ [0, 1]. Then, the lifted inequality

h(xI , yI) +
∑

i∈J0∪J1

γi(xi, yi) ≥ r

is a valid convex inequality for Q.

The statement of Proposition 1 does not specify the type of functional forms
γi(xi, yi) to use in ensuring that condition (iii) is satisfied. It is however clear
from the definition that choosing γi(x, y) to be the concave envelope of ψ(aixy)
over [0, 1]2 when i ∈ J0, and the concave envelope of ψ(aixy − ai) over [0, 1]2

when i ∈ J1 is the preferred choice for γi.

Remark 2. While we state the result of Proposition 1 for a set Q defined by a
single separable bipartite bilinear constraint, a similar result would also hold for
sets defined by multiple separable bipartite bilinear constraints.

Lifting Convex Inequalities for Bipartite Bilinear Programs 155

2.3 A Seed Inequality from a “Minimal Covering Set”

To generate lifted inequalities for separable bipartite bilinear sets, we focus next
on a family of restrictions we refer to as minimal covering sets. For such minimal
covering sets, we introduce a provably strong convex, second-order cone repre-
sentable valid inequality. We will use this inequality as the seed in our lifting
procedures.

Definition 2. Let k ∈ Z+ be a positive integer. We say that ai ∈ R, i ∈ [k]
form a minimal cover of d ∈ R, if

1. ai > 0 for all i ∈ [k], d > 0,
2.

∑k
i=1 ai > d

3.
∑

i∈K�[k] ai ≤ d.

For a separable bipartite bilinear set Q, we say that a partition Λ = {I, J0, J1}
of [n], where I �= ∅, is a minimal cover yielding partition if: ai, i ∈ I form a
minimal cover of dΛ := d − ∑

i∈J1
ai. For a minimal cover yielding partition,

we let J+
0 := {i ∈ J0|ai > 0}, J−

0 := {i ∈ J0|ai < 0}; we define J+
1 and J−

1

similarly.

Remark 3. When k ≥ 2, conditions (2.) and (3.) in the definition of minimal
cover imply condition (1.). For example, if ai ≤ 0 for some i ∈ [k], then (2.)
implies

∑
j∈[k]\{i} aj > d, contradicting (3.) Now (3.) together with ai > 0 for

i ∈ [k] implies d > 0.

Our overall plan is the following. We will fix xiyi = 0 for i ∈ J0 and xiyi = 1
for i ∈ J1. Then, we will find a valid seed inequality for the set where the
coefficients form a minimal cover (I). Finally, we will lift this seed inequality. One
key reason to generate cuts from a seed inequality corresponding to a minimal
cover is the following result.

Theorem 2. For a separable bilinear set Q, either there exists at least one min-
imal cover yielding partition or we have that Q = ∅ or that conv(Q) is polyhedral.

Loosely speaking, the proof of the above theorem is based on showing that
if there is no minimal cover yielding partition, then Q is “almost” a packing-
type set, i.e., a set of the form {x, y ∈ [0, 1]n | ∑n

i=1 aixiyi ≤ d} where ais are
non-negative.2 For packing sets Q, it is shown in [49] that conv(Q) = projx,y(G)
where

G =

{

(x, y, w) ∈ [0, 1]3n
∣
∣
∣

n∑

i=1

aiwi ≤ d, xi + yi − 1 ≤ wi, ∀i ∈ [n]

}

.

2 We say “almost”, since there are non-packing examples, such as S := {x, y ∈
[0, 1]2 | x1y1 − 100x2y2 ≥ −98}, where there is no partition that yields a minimal
cover. Such sets are “overwhelmingly” like a packing set; in the case of the example,
it is a perturbation of the packing set {x2, y2 ∈ [0, 1] | 100x2y2 ≤ 98}. For such sets
it is not difficult to show that conv(S) is polyhedral.

156 X. Gu et al.

Since the main focus of this paper is the study of lifting convex (nonlinear)
inequalities and since in the packing case the convex hull is trivially obtained
using McCormick inequalities [37], the remainder of the paper will concentrate
on the case where there exists a minimal cover yielding partition.

Associated with a minimal cover is a specific convex valid inequality that we
present next.

Theorem 3. Consider the bipartite bilinear minimal covering set

Q :=

{

(x, y) ∈ [0, 1]n × [0, 1]n
∣
∣
∣

n∑

i=1

aixiyi ≥ d

}

, (3)

where the ai, i ∈ [n] form a minimal cover of d. Then the inequality

n∑

i=1

√
ai√

ai − √
di

(
√

xiyi − 1) ≥ −1, (4)

which we refer to as bilinear cover inequality is valid for Q, where di = d −∑
j∈[n]\{i} aj.

Our proof of Theorem 2 uses techniques from disjunctive programming [8]
and an “approximate version” of Fourier-Motzkin projection. In particular, using
the minimal covering property of the coefficients in (3) and a characterization of
the extreme points of bipartite bilinear sets [22], we obtain n second order cone
representable sets whose union contains all the extreme points of (3). Next we
set up an extended formulation [8,15] of the convex hull of the union of these
sets. Finally, we use the Fourier-Motzkin procedure to project out the auxiliary
variables of the extended formulation one at a time. This procedure works to
project out most of the variables. The last steps however require a relaxation to
be constructed so that projection can be carried in closed-form. We obtain (4).

It can be easily verified that (4) does not produce the convex hull of Q. How-
ever there are a number of reasons to use this inequality as a seed for lifting. The
first reason is that, not only is inequality (4) second-order cone representable,
we only need to introduce one extra variable representing

√
xiyi for each i ∈ [n],

to write it as a second order cone representable set. Apart from the convenience
of using this inequality within modern conic solvers, the main reason for consid-
ering it as a seed inequality is its strength. In particular, we prove next that (4)
provides a constant factor approximation of the convex hull of the original set.

Theorem 4. Let Q be a bipartite bilinear minimal covering set as described in
(3). Let R := {(x, y) ∈ R

n
+ × R

n
+ | (4)}. Then

(4 · R) ∩ [0, 1]n ⊆ conv(Q) ⊆ R ∩ [0, 1]n.

Since R is a covering-type set (that is, the recession cone is the non-negative
orthant), we have that 4 · R ⊆ R. To give intuition as to why Theorem 4 holds,
we note that in any feasible solution of (3), xiyi ≥ di/ai for i ∈ [n]. This condition

Lifting Convex Inequalities for Bipartite Bilinear Programs 157

is also enforced by the bilinear cover inequality (4). Therefore, there is no point in
the set R that is very close to the origin, so that it must be substantially rescaled
to be in convex hull of (3). The proof of Theorem 4 is based on optimizing linear
functions with non-negative coefficients on R and Q and proving a bound of 4
on the ratio of their optimal objective function values.

A set similar to (3) is studied in [51], except that there are no upper bounds
on the variables. In this case, the convex hull can be described in closed form
using a single nonlinear inequality that is similar in structure to (4). We can
formally verify, however, that inequality (4), which also uses the information of
upper bounds, dominates the inequality presented in [51]. Moreover, if n ≥ 2 and
their exists i ∈ [n] such that di > 0, then (4) strictly dominates the inequality
presented in [51].

2.4 Lifting the Bilinear Cover Inequality (4)

We now follow the steps of Proposition 1 to perform sequence-independent lifting
of the bilinear cover inequality. The first step is to study the lifting function
associated with (4).

Theorem 5. Consider the lifting function for valid inequality (4):

φ(δ) := max
n∑

i=1

√
ai√

ai − √
di

(1 − √
xiyi) − 1

s.t.
n∑

i=1

aixiyi ≥ d − δ, x, y ∈ [0, 1]n.

Let Δ :=
∑n

i=1 ai − d and let ai0 = min{ai|ai > Δ} if it exists. Define

ψ(δ) :=

⎧
⎨

⎩

l+δ 0 ≤ δ
l−δ −Δ ≤ δ ≤ 0
l+(δ + Δ) − 1 δ ≤ −Δ,

(5)

where l+ =
√

ai0+
√

di0

Δ
√

di0

if ai0 exists and l+ = 1
Δ otherwise, and where l− = 1

Δ .

Then (i) l+ ≥ l− > 0, (ii) ψ(δ) is subadditive over R with ψ(0) = 0, and (iii)
φ(δ) ≤ ψ(δ) for δ ∈ R.

Although computing the lifting function for an arbitrary valid inequality,
in general, appears to be a difficult task, the bilinear cover inequality (4) has
sufficient structure that we can derive a strong subadditive upper bound in
Theorem 5. The key to proving Theorem 5 is to first obtain the lifting function
exactly in a region around the origin, and to argue that the linear upper bound
of the lifting function for this region upper bounds the lifting function globally.
Figure 1 presents examples of the lifting function φ, and the upper bound ψ we
derived in Theorem 5 for the two cases when ai0 exists and when it does not.

158 X. Gu et al.

-2 -1 1 2

-4

-2

2

4

6

()
()

(a) ai = 2, Δ = 1

-2 -1 1 2

-2

-1

1

2

()
()

(b) ai = 1, Δ = 1

Fig. 1. Lifting function φ(δ) in red and subadditive upper bound ψ(δ) in blue (Color
figure online)

We observe in Fig. 1 that the lifting function is not subadditive since it
is convex in a neighborhood of the origin. Therefore, building a subadditive
approximation is required to achieve sequence-independent lifting.

Building on the subadditive upper bound derived in Theorem 5, we are now
able to lift the bilinear cover inequality in a sequence-independent manner.

Theorem 6. Consider the separable bipartite bilinear set presented in Defi-
nition 1. Let Λ = {I, J0, J1} be a minimal cover yielding partition and let
Δ, ai0 , di, l+, l− be defined as in Theorem 3 and Theorem 5 (We clarify that
they are calculated using dΛ instead of d). Let J+

0 , J−
0 , J+

1 , and, J−
1 be as in

Definition 2. Then inequality

∑

i∈I

√
ai√

ai − √
di

(
√

xiyi − 1) +
∑

i/∈I

γi(xi, yi) ≥ −1, (6)

is valid for Q where γi : R2 → R for i ∈ [n] \ I are the concave functions:

1. γi(x, y) = l+ai min{x, y} for i ∈ J+
0 ;

2. γi(x, y) = −l+ai min{2 − x − y, 1} for i ∈ J−
1 ;

3. γi(x, y) = min{−l−ai(1 − x − y),−l+ai(1 − x − y) + l+Δ − 1, 0} for i ∈ J−
0 ;

4. γi(x, y) = min{g̃i(x, y), h̃i(x, y), gi(x, y), hi(x, y)}, for i ∈ J+
1 with ai > ai0

when ai0 exists, and γi(x, y) = min{g̃i(x, y), h̃i(x, y)} in all other cases where
i ∈ J+

1 , with

g̃i(x, y) = l+ai(min{x, y} − 1) + l+Δ − 1

h̃i(x, y) = l−ai(min{x, y} − 1)

gi(x, y) =
√

ai − Δ
√

ail+
√

xy − l+(ai − Δ) − 1

hi(x, y) =
√

ai√
ai − √

di

(
√

xy − 1).

Lifting Convex Inequalities for Bipartite Bilinear Programs 159

We refer to inequality (6) as lifted bilinear cover inequality. We note here that
the lifted inequality (6) is second order cone representable. As discussed before,
the key to proving Theorem 6 is to obtain good approximations of concave
envelope of the functions ψ(·). In particular, in the case of J+

1 , is is possible to
obtain a

√
xy type-term which appears to be incomparable with affine terms.

3 Future Directions

The results presented in this paper open up new avenues for generating cutting-
planes for QCQPs. They also raise new theoretical and computational questions
that can be investigated.

To illustrate this assertion, we revisit next Example 2.

Example 4. Consider S := {(x1, x2) ∈ [0, 1]2 | − x2
1 − (x2 − 0.5)2 ≥ −0.52} with

the same fixing as in Example 2, i.e., x2 = 0. For the associated restriction, we
consider the seed inequality −x1 ≥ 0.

In contrast to our earlier discussion, consider now the problem of lifting this
seed inequality into an inequality of the form −x1 + α

√
x2 ≥ 0. Finding the

values of α that generate a valid inequality is equivalent to solving the problem

α∗ := sup
x1√
x2

s.t. − x2
1 − (x2 − 0.5)2 ≥ −0.52

x1 ∈ [0, 1], x2 ∈ (0, 1].

Using constraint −x2
1 − (x2 − 0.5)2 ≥ −0.52 we can bound the objective

function as follows:

x1√
x2

≤
√

0.52 − (x2 − 0.5)2√
x2

=

√
(1 − x2)(x2)√

x2
=

√
1 − x2.

It follows that selecting α ≥ α∗ = 1 yields a valid inequality for S. Note first
that α < 0 leads to an invalid inequality since x1 = 0, x2 = 0.5 is a feasible
point. Moreover, any α ∈ [0, 1) yields an invalid inequality, since the point (x1 =√

x2(1 − x2), x2 = 1 − ((1 + α)/2)2) is feasible. Therefore, the inequality

−x1 +
√

x2 ≥ 0,

is the strongest such lifted inequality.

The above example raises the question of obtaining a complete characterization
of when one can accomplish lifting, i.e., of generalizing Theorem 1 to situations
where the functional form of the lifted variable is not necessarily linear. It would
also be valuable to develop a theory to accomplish sequence-independent lifting
in the more general case of bipartite bilinear programs, instead of just the sepa-
rable case. Even for the separable case, one could also explore the possibility of
constructing other subadditive upper bounds to the lifting function. On the com-
putational side, one key question is to understand the complexity of separating

160 X. Gu et al.

the lifted bilinear cover inequality presented in Theorem 6 and to design effi-
cient computational schemes to perform separation. Finally, extensive numerical
experiments should be conducted to understand the strength of these inequali-
ties and to determine how useful they can be in the solution of QCQPs. Given
the strength of the seed inequality, we are hopeful that these lifted inequalities
could yield non-trivial dual bound improvements.

References

1. Agra, A., Constantino, M.F.: Lifting two-integer knapsack inequalities. Math. Pro-
gram. 109(1), 115–154 (2007). https://doi.org/10.1007/s10107-006-0705-9

2. Anstreicher, K.M., Burer, S., Park, K.: Convex hull representations for bounded
products of variables. arXiv preprint arXiv:2004.07233 (2020)

3. Atamtürk, A.: On the facets of the mixed-integer knapsack polyhedron. Math.
Program. 98(1), 145–175 (2003). https://doi.org/10.1007/s10107-003-0400-z

4. Atamtürk, A.: Sequence independent lifting for mixed-integer programming. Oper.
Res. 52(3), 487–490 (2004)

5. Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Math.
Program. 126(2), 351–363 (2011). https://doi.org/10.1007/s10107-009-0282-9

6. Averkov, G., Basu, A.: Lifting properties of maximal lattice-free polyhedra. Math.
Program. 154(1–2), 81–111 (2015). https://doi.org/10.1007/s10107-015-0865-6

7. Balas, E.: Facets of the knapsack polytope. Math. Program. 8(1), 146–164 (1975).
https://doi.org/10.1007/BF01580440

8. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points.
Discrete Appl. Math. 89(1–3), 3–44 (1998)

9. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J.
Oper. Res. 4(4), 224–234 (1980)

10. Balas, E., Zemel, E.: Facets of the knapsack polytope from minimal covers. SIAM
J. Appl. Math. 34(1), 119–148 (1978)

11. Basu, A., Campêlo, M., Conforti, M., Cornuéjols, G., Zambelli, G.: Unique lifting
of integer variables in minimal inequalities. Math. Program. 141(1–2), 561–576
(2013). https://doi.org/10.1007/s10107-012-0560-9

12. Basu, A., Cornuéjols, G., Köppe, M.: Unique minimal liftings for simplicial poly-
topes. Math. Oper. Res. 37(2), 346–355 (2012)

13. Basu, A., Dey, S.S., Paat, J.: Nonunique lifting of integer variables in minimal
inequalities. SIAM J. Discrete Math. 33(2), 755–783 (2019)

14. Basu, A., Paat, J.: Operations that preserve the covering property of the lifting
region. SIAM J. Optim. 25(4), 2313–2333 (2015)

15. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis,
algorithms, and engineering applications. SIAM (2001)

16. Bienstock, D., Chen, C., Munoz, G.: Outer-product-free sets for polynomial opti-
mization and oracle-based cuts. Math. Program. 183, 1–44 (2020). https://doi.
org/10.1007/s10107-020-01484-3

17. Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Pro-
gram. 151(1), 89–116 (2015). https://doi.org/10.1007/s10107-015-0888-z

18. Ceria, S., Cordier, C., Marchand, H., Wolsey, L.A.: Cutting planes for integer
programs with general integer variables. Math. Program. 81(2), 201–214 (1998).
https://doi.org/10.1007/BF01581105

https://doi.org/10.1007/s10107-006-0705-9
http://arxiv.org/abs/2004.07233
https://doi.org/10.1007/s10107-003-0400-z
https://doi.org/10.1007/s10107-009-0282-9
https://doi.org/10.1007/s10107-015-0865-6
https://doi.org/10.1007/BF01580440
https://doi.org/10.1007/s10107-012-0560-9
https://doi.org/10.1007/s10107-020-01484-3
https://doi.org/10.1007/s10107-020-01484-3
https://doi.org/10.1007/s10107-015-0888-z
https://doi.org/10.1007/BF01581105

Lifting Convex Inequalities for Bipartite Bilinear Programs 161

19. Chung, K., Richard, J.P.P., Tawarmalani, M.: Lifted inequalities for 0–1 mixed-
integer bilinear covering sets. Math. Program. 145(1–2), 403–450 (2014). https://
doi.org/10.1007/s10107-013-0652-1

20. Conforti, M., Cornuéjols, G., Zambelli, G.: A geometric perspective on lifting.
Oper. Res. 59(3), 569–577 (2011)

21. Dey, S.S., Richard, J.P.P.: Linear-programming-based lifting and its application to
primal cutting-plane algorithms. INFORMS J. Comput. 21(1), 137–150 (2009)

22. Dey, S.S., Santana, A., Wang, Y.: New SOCP relaxation and branching rule for
bipartite bilinear programs. Optim. Eng. 20(2), 307–336 (2019)

23. Dey, S.S., Wolsey, L.A.: Composite lifting of group inequalities and an application
to two-row mixing inequalities. Discrete Optim. 7(4), 256–268 (2010)

24. Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs. SIAM J.
Optim. 20(6), 2890–2912 (2010)

25. Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program.
124(1–2), 143–174 (2010). https://doi.org/10.1007/s10107-010-0362-x

26. Espinoza, D., Fukasawa, R., Goycoolea, M.: Lifting, tilting and fractional program-
ming revisited. Oper. Res. Lett. 38(6), 559–563 (2010)

27. Gómez, A.: Submodularity and valid inequalities in nonlinear optimization with
indicator variables (2018)

28. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra. Math. Program. 3(1), 23–85 (1972). https://doi.org/10.1007/BF01584976

29. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted flow cover inequalities for
mixed 0–1 integer programs. Math. Program. 85(3), 439–467 (1999). https://doi.
org/10.1007/s101070050067

30. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Sequence independent lifting in
mixed integer programming. J. Comb. Optim. 4(1), 109–129 (2000)

31. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3),
429–457 (2001). https://doi.org/10.1007/PL00011430

32. Gupte, A.: Mixed integer bilinear programming with applications to the pooling
problem. Ph.D. thesis, Georgia Institute of Technology (2012)

33. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facet of regular 0–1 polytopes. Math.
Program. 8(1), 179–206 (1975). https://doi.org/10.1007/BF01580442

34. Kaparis, K., Letchford, A.N.: Local and global lifted cover inequalities for the 0–1
multidimensional knapsack problem. Eur. J. Oper. Res. 186(1), 91–103 (2008)

35. Köppe, M., Zhou, Y.: An electronic compendium of extreme functions for the
Gomory-Johnson infinite group problem. Oper. Res. Lett. 43(4), 438–444 (2015)

36. Martin, A., Weismantel, R.: The intersection of knapsack polyhedra and extensions.
In: Bixby, R.E., Boyd, E.A., Ŕıos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol.
1412, pp. 243–256. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-
69346-7 19

37. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: part I - convex underestimating problems. Math. Program. 10(1), 147–175
(1976). https://doi.org/10.1007/BF01580665

38. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. In: Bienstock, D., Zambelli,
G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 307–321. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45771-6 24

39. Narisetty, A.K., Richard, J.P.P., Nemhauser, G.L.: Lifted tableaux inequalities for
0–1 mixed-integer programs: a computational study. INFORMS J. Comput. 23(3),
416–424 (2011)

https://doi.org/10.1007/s10107-013-0652-1
https://doi.org/10.1007/s10107-013-0652-1
https://doi.org/10.1007/s10107-010-0362-x
https://doi.org/10.1007/BF01584976
https://doi.org/10.1007/s101070050067
https://doi.org/10.1007/s101070050067
https://doi.org/10.1007/PL00011430
https://doi.org/10.1007/BF01580442
https://doi.org/10.1007/3-540-69346-7_19
https://doi.org/10.1007/3-540-69346-7_19
https://doi.org/10.1007/BF01580665
https://doi.org/10.1007/978-3-030-45771-6_24

162 X. Gu et al.

40. Nguyen, T.T., Richard, J.P.P., Tawarmalani, M.: Deriving convex hulls through
lifting and projection. Math. Program. 169(2), 377–415 (2018). https://doi.org/
10.1007/s10107-017-1138-3

41. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program.
5(1), 199–215 (1973). https://doi.org/10.1007/BF01580121

42. Padberg, M.W.: A note on zero-one programming. Oper. Res. 23(4), 833–837
(1975)

43. Rahman, H., Mahajan, A.: Facets of a mixed-integer bilinear covering set with
bounds on variables. J. Global Optim. 74(3), 417–442 (2019)

44. Richard, J.P.P.: Lifting techniques for mixed integer programming. In: Wiley Ency-
clopedia of Operations Research and Management Science (2010)

45. Richard, J.-P.P., Dey, S.S.: The group-theoretic approach in mixed integer pro-
gramming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-
2008, pp. 727–801. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
540-68279-0 19

46. Richard, J.P.P., de Farias Jr, I.R., Nemhauser, G.L.: Lifted inequalities for 0–1
mixed integer programming: basic theory and algorithms. Math. Program. 98(1–
3), 89–113 (2003). https://doi.org/10.1007/s10107-003-0398-2

47. Richard, J.P.P., de Farias Jr, I.R., Nemhauser, G.L.: Lifted inequalities for 0–1
mixed integer programming: superlinear lifting. Math. Program. 98(1–3), 115–143
(2003). https://doi.org/10.1007/s10107-003-0399-1

48. Richard, J.P.P., Li, Y., Miller, L.A.: Valid inequalities for MIPs and group polyhe-
dra from approximate liftings. Math. Program. 118(2), 253–277 (2009). https://
doi.org/10.1007/s10107-007-0190-9

49. Richard, J.P.P., Tawarmalani, M.: Lifting inequalities: a framework for generat-
ing strong cuts for nonlinear programs. Math. Program. 121(1), 61–104 (2010).
https://doi.org/10.1007/s10107-008-0226-9

50. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope.
SIAM J. Optim. 30(4), 2983–2997 (2020)

51. Tawarmalani, M., Richard, J.P.P., Chung, K.: Strong valid inequalities for orthog-
onal disjunctions and bilinear covering sets. Math. Program. 124(1–2), 481–512
(2010). https://doi.org/10.1007/s10107-010-0374-6

52. Wolsey, L.A.: Facets and strong valid inequalities for integer programs. Oper. Res.
24(2), 367–372 (1976)

53. Wolsey, L.A.: Valid inequalities and superadditivity for 0–1 integer programs.
Math. Oper. Res. 2(1), 66–77 (1977)

54. Zeng, B., Richard, J.-P.P.: A framework to derive multidimensional superadditive
lifting functions and its applications. In: Fischetti, M., Williamson, D.P. (eds.)
IPCO 2007. LNCS, vol. 4513, pp. 210–224. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-72792-7 17

55. Zeng, B., Richard, J.P.P.: A polyhedral study on 0–1 knapsack problems with dis-
joint cardinality constraints: facet-defining inequalities by sequential lifting. Dis-
crete Optim. 8(2), 277–301 (2011)

56. Zeng, B., Richard, J.P.P.: A polyhedral study on 0–1 knapsack problems with
disjoint cardinality constraints: strong valid inequalities by sequence-independent
lifting. Discrete Optim. 8(2), 259–276 (2011)

https://doi.org/10.1007/s10107-017-1138-3
https://doi.org/10.1007/s10107-017-1138-3
https://doi.org/10.1007/BF01580121
https://doi.org/10.1007/978-3-540-68279-0_19
https://doi.org/10.1007/978-3-540-68279-0_19
https://doi.org/10.1007/s10107-003-0398-2
https://doi.org/10.1007/s10107-003-0399-1
https://doi.org/10.1007/s10107-007-0190-9
https://doi.org/10.1007/s10107-007-0190-9
https://doi.org/10.1007/s10107-008-0226-9
https://doi.org/10.1007/s10107-010-0374-6
https://doi.org/10.1007/978-3-540-72792-7_17
https://doi.org/10.1007/978-3-540-72792-7_17

A Computational Status Update
for Exact Rational Mixed Integer

Programming

Leon Eifler1(B) and Ambros Gleixner1,2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{eifler,gleixner}@zib.de

2 HTW Berlin, Treskowallee 8, 10313 Berlin, Germany

Abstract. The last milestone achievement for the roundoff-error-free
solution of general mixed integer programs over the rational numbers
was a hybrid-precision branch-and-bound algorithm published by Cook,
Koch, Steffy, and Wolter in 2013. We describe a substantial revision and
extension of this framework that integrates symbolic presolving, features
an exact repair step for solutions from primal floating-point heuristics,
employs a faster rational LP solver based on LP iterative refinement,
and is able to produce independently verifiable certificates of optimality.
We study the significantly improved performance and give insights into
the computational behavior of the new algorithmic components. On the
MIPLIB 2017 benchmark set, we observe an average speedup of 6.6x over
the original framework and 2.8 times as many instances solved within a
time limit of two hours.

1 Introduction

It is widely accepted that mixed integer programming (MIP) is a powerful tool
for solving a broad variety of challenging optimization problems and that state-
of-the-art MIP solvers are sophisticated and complex computer programs. How-
ever, virtually all established solvers today rely on fast floating-point arithmetic.
Hence, their theoretical promise of global optimality is compromised by roundoff
errors inherent in this incomplete number system. Though tiny for each single
arithmetic operation, these errors can accumulate and result in incorrect claims
of optimality for suboptimal integer assignments, or even incorrect claims of
infeasibility. Due to the nonconvexity of MIP, even performing an a posteriori
analysis of such errors or postprocessing them becomes difficult.

In several applications, these numerical caveats can become actual limita-
tions. This holds in particular when the solution of mixed integer programs is
used as a tool in mathematics itself. Examples of recent work that employs MIP

The work for this article has been conducted within the Research Campus Modal
funded by the German Federal Ministry of Education and Research (BMBF grant
numbers 05M14ZAM, 05M20ZBM).

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 163–177, 2021.
https://doi.org/10.1007/978-3-030-73879-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_12&domain=pdf
http://orcid.org/0000-0003-0245-9344
http://orcid.org/0000-0003-0391-5903
https://doi.org/10.1007/978-3-030-73879-2_12

164 L. Eifler and A. Gleixner

to investigate open mathematical questions include [11,12,18,28,29,32]. Some of
these approaches are forced to rely on floating-point solvers because the availabil-
ity, the flexibility, and most importantly the computational performance of MIP
solvers with numerically rigorous guarantees is currently limited. This makes
the results of these research efforts not as strong as they could be. Examples
for industrial applications where the correctness of results is paramount include
hardware verification [1] or compiler optimization [35].

The milestone paper by Cook, Koch, Steffy, and Wolter [16] presents a hybrid-
precision branch-and-bound implementation that can still be considered the state
of the art for solving general mixed integer programs exactly over the rational
numbers. It combines symbolic and numeric computation and applies different
dual bounding methods [19,31,33] based on linear programming (LP) in order
to dynamically trade off their speed against robustness and quality.

However, beyond advanced strategies for branching and bounding, [16] does
not include any of the supplementary techniques that are responsible for the
strong performance of floating-point MIP solvers today. In this paper, we make
a first step to address this research gap in two main directions.

First, we incorporate a symbolic presolving phase, which safely reduces the
size and tightens the formulation of the instance to be passed to the branch-and-
bound process. This is motivated by the fact that presolving has been identified
by several authors as one of the components—if not the component—with the
largest impact on the performance of floating-point MIP solvers [2,4]. To the best
of our knowledge, this is the first time that the impact of symbolic preprocessing
routines for general MIP is analyzed in the literature.

Second, we complement the existing dual bounding methods by enabling the
use of primal heuristics. The motivation for this choice is less to reduce the
total solving time, but rather to improve the usability of the exact MIP code
in practical settings where finding good solutions earlier may be more relevant
than proving optimality eventually. Similar to the dual bounding methods, we
follow a hybrid-precision scheme. Primal heuristics are exclusively executed on
the floating-point approximation of the rational input data. Whenever they pro-
duce a potentially improving solution, this solution is checked for approximate
feasibility in floating-point arithmetic. If successful, the solution is postprocessed
with an exact repair step that involves an exact LP solve.

Moreover, we integrate the exact LP solver SoPlex, which follows the recently
developed scheme of LP iterative refinement [23], we extend the logging of cer-
tificates in the recently developed VIPR format to all available dual bounding
methods [13], and produce a thoroughly revised implementation of the original
framework [16], which improves multiple technical details. Our computational
study evaluates the performance of the new algorithmic aspects in detail and
indicates a significant overall speedup compared to the original framework.

The overarching goal and contribution of this research is to extend the com-
putational practice of MIP to the level of rigor that has been achieved in recent
years, for example, by the field of satisfiability solving [34], while at the same time
retaining most of the computational power embedded in floating-point solvers.

A Computational Status Update for Exact Rational MIP 165

In MIP, a similar level of performance and rigor is certainly much more diffi-
cult to reach in practice, due to the numerical operations that are inherently
involved in solving general mixed integer programs. However, we believe that
there is no reason why this vision should be fundamentally out of reach for the
rich machinery of MIP techniques developed over the last decades. The goal of
this paper is to demonstrate the viability of this agenda within a first, small
selection of methods. The resulting code is freely available for research purposes
as an extension of SCIP 7.0 [17].

2 Numerically Exact Mixed Integer Programming

In the following, we describe related work in numerically exact optimization,
including the main ideas and features of the framework that we build upon.
Before turning to the most general case, we would like to mention that roundoff-
error-free methods are available for several specific classes of pure integer prob-
lems. One example for such a combinatorial optimization problem is the trav-
eling salesman problem, for which the branch-and-cut solver Concorde applies
safe interval-arithmetic to postprocess LP relaxation solutions and ensures the
validity of domain-specific cutting planes by their combinatorial structure [5].

A broader class of such problems, on binary decision variables, is addressed in
satisfiability solving (SAT) and pseudo-Boolean optimization (PBO) [10]. Solvers
for these problem classes usually do not suffer from numerical errors and often
support solver-independent verification of results [34]. While optimization vari-
ants exist, the development of these methods is to a large extent driven by
feasibility problems. The broader class of solvers for satisfiability modulo theo-
ries (SMT), e.g., [30], may also include real-valued variables, in particular for
satisfiability modulo the theory of linear arithmetic. However, as pointed out
also in [20], the target applications of SMT solvers differ significantly from the
motivating use cases in LP and MIP.

Exact optimization over convex polytopes intersected with lattices is also
supported by some software libraries for polyhedral analysis [7,8]. These tools
are not particularly targeted towards solving LPs or MIPs of larger scale and
usually follow the naive approach of simply executing all operations symbolically,
in exact rational arithmetic. This yields numerically exact results and can even
be highly efficient as long as the size of problems or the encoding length of
intermediate numbers is limited. However, as pointed out by [19] and [16], this
purely symbolic approach quickly becomes prohibitively slow in general.

By contrast, the most effective methods in the literature rely on a hybrid
approach and combine exact and numeric computation. For solving pure LPs
exactly, the most recent methods that follow this paradigm are incremental pre-
cision boosting [6] and LP iterative refinement [23]. In an exact MIP solver,
however, it is not always necessary to solve LP relaxations completely, but it
often suffices to provide dual bounds that underestimate the optimal relaxation
value safely. This can be achieved by postprocessing approximate LP solutions.
Bound-shift [31] is such a method that only relies on directed rounding and

166 L. Eifler and A. Gleixner

interval arithmetic and is therefore very fast. However, as the name suggests it
requires upper and lower bounds on all variables in order to be applicable. A
more widely applicable bounding method is project-and-shift [33], which uses an
interior point or ray of the dual LP. These need to be computed by solving an
auxiliary LP exactly in advance, though only once per MIP solve. Subsequently,
approximate dual LP solutions can be corrected by projecting them to the feasi-
ble region defined by the dual constraints and shifting the result to satisfy sign
constraints on the dual multipliers.

The hybrid branch-and-bound method of [16] combines such safe dual bound-
ing methods with a state-of-the-art branching heuristic, reliability branching [3].
It maintains both the exact problem formulation

min{cTx | Ax ≥ b, x ∈ Q
n, xi ∈ Z ∀i ∈ I}

with rational input data A ∈ Q
m×n, c ∈ Qn, b ∈ Q

m, as well as a floating-point
approximation with data Ā, b̄, c̄, which are defined as the componentwise clos-
est numbers representable in floating-point arithmetic. The set I ⊆ {1, . . . , n}
contains the indices of integer variables.

During the solve, for all LP relaxations, the floating-point approximation
is first solved in floating-point arithmetic as an approximation and then post-
processed to generate a valid dual bound. The methods available for this safe
bounding step are the previously described bound-shift [31], project-and-shift
[33], and an exact LP solve with the exact LP solver QSopt ex based on incre-
mental precision boosting [6]. (Further dual bounding methods were tested, but
reported as less important in [16].) On the primal side, all solutions are checked
for feasibility in exact arithmetic before being accepted.

Finally, this exact MIP framework was recently extended by the possibility
to generate a certificate of correctness [13]. This certificate is a tree-less encoding
of the branch-and-bound search, with a set of dual multipliers to prove the dual
bound at each node or its infeasibility. Its correctness can be verified indepen-
dently of the solving process using the checker software VIPR [14].

3 Extending and Improving an Exact MIP Framework

The exact MIP solver presented here extends [16] in four ways: the addition
of a symbolic presolving phase, the execution of primal floating-point heuristics
coupled with an exact repair step, the use of a recently developed exact LP solver
based on LP iterative refinement, and a generally improved integration of the
exact solving routines into the core branch-and-bound algorithm.

Symbolic Presolving. The first major extension is the addition of symbolic
presolving. To this end, we integrate the newly available presolving library
PaPILO [25] for integer and linear programming. PaPILO has several benefits
for our purposes.

First, its code base is by design fully templatized with respect to the arith-
metic type. This enables us to integrate it with rational numbers as data type

A Computational Status Update for Exact Rational MIP 167

for storing the MIP data and all its computations. Second, it provides a large
range of presolving techniques already implemented. The ones used in our exact
framework are coefficient strengthening, constraint propagation, implicit integer
detection, singleton column detection, substitution of variables, simplification
of inequalities, parallel row detection, sparsification, probing, dual fixing, dual
inference, singleton stuffing, and dominated column detection. For a detailed
explanation of these methods, we refer to [2]. Third, PaPILO comes with a
sophisticated parallelization scheme that helps to compensate for the increased
overhead introduced by the use of rational arithmetic. For details see [21].

When SCIP enters the presolving stage, we pass a rational copy of the prob-
lem to PaPILO, which executes its presolving routines iteratively until no suffi-
ciently large reductions are found. Subsequently, we extract the postsolving infor-
mation provided by PaPILO to transfer the model reductions to SCIP. These
include fixings, aggregations, and bound changes of variables and strengthening
or deletion of constraints, all of which are performed in rational arithmetic.

Primal Heuristics. The second extension is the safe activation of SCIP’s
floating-point heuristics and the addition of an exact repair heuristic for their
approximate solutions. Heuristics are not known to reduce the overall solving
time drastically, but they can be particularly useful on hard instances that cannot
be solved at all, and in order to avoid terminating without a feasible solution.

In general, activating SCIP’s floating-point heuristics does not interfere with
the exactness of the solving process, although care has to be taken that no
changes to the model are performed, e.g., the creation of a no-good constraint.
However, the chance that these heuristics find a solution that is feasible in the
exact sense can be low, especially if equality constraints are present in the model.
Thus, we postprocess solutions found by floating-point heuristics in the following
way. First, we fix all integer variables to the values found by the floating-point
heuristic, rounding slightly fractional values to their nearest integer. Then an
exact LP is solved for the remaining continuous subproblem. If that LP is feasi-
ble, this produces an exactly feasible solution to the mixed integer program.

Certainly, frequently solving this subproblem exactly can create a signifi-
cant overhead compared to executing a floating-point heuristic alone, especially
when a large percentage of the variables is continuous and thus cannot be fixed.
Therefore, we impose working limits on the frequency of running the exact repair
heuristic, which are explained in more detail in Sect. 4.

LP Iterative Refinement. Exact linear programming is a crucial part of the
exact MIP solving process. Instead of QSopt ex, we use SoPlex as the exact
linear programming solver. The reason for this change is that SoPlex uses LP
iterative refinement [24] as the strategy to solve LPs exactly, which compares
favorably against incremental precision boosting [23].

168 L. Eifler and A. Gleixner

Further Enhancements. We improved several algorithmic details in the
implementation of the hybrid branch-and-bound method. We would like to high-
light two examples for these changes. First, we enable the use of an objective limit
in the floating-point LP solver, which was not possible in the original framework.
Passing the primal bound as an objective limit to the floating-point LP solver
allows the LP solver to stop early just after its dual bound exceeds the global
primal bound. However, if the overlap is too small, postprocessing this LP solu-
tion with safe bounding methods can easily lead to a dual bound that no longer
exceeds the objective limit. For this reason, before installing the primal bound
as an objective limit in the LP solver, we increase it by a small amount com-
puted from the statistically observed bounding error so far. Only when safe dual
bounding fails, the objective limit is solved again without objective limit.

Second, we reduce the time needed for checking exact feasibility of primal
solutions by prepending a safe floating-point check. Although checking a sin-
gle solution for feasibility is fast, this happens often throughout the solve and
doing so repeatedly in exact arithmetic can become computationally expensive.
To implement such a safe floating-point check, we employ running error anal-
ysis [27]. Let x∗ ∈ Q

n be a potential solution and let x̄∗ be the floating-point
approximation of x∗. Let a ∈ Q

n be a row of A with floating-point approxima-
tion ā, and right hand side bj ∈ Q. Instead of computing

∑n
i=1 aix

∗
i symbolically,

we instead compute
∑n

i=1 āix̄
∗
i in floating-point arithmetic, and alongside com-

pute a bound on the maximal rounding error that may occur. We adjust the
running error analysis described in [27, Alg. 3.2] to also account for roundoff
errors |x̄∗ −x∗| and |ā− a|. After doing this computation, we can check if either
s − µ ≥ bj or s + µ ≤ bj . In the former, the solution x∗ is guaranteed to fulfill∑n

i=1 aix
∗
i ≥ bj ; in the latter, we can safely determine that the inequality is vio-

lated; only if neither case occurs, we recompute the activity in exact arithmetic.
We note that this could alternatively be achieved by directed rounding, which

would give tighter error bounds at a slightly increased computational effort.
However, empirically we have observed that most equality or inequality con-
straints are either satisfied at equality, where an exact arithmetic check cannot
be avoided, or they are violated or satisfied by a slack larger than the error
bound µ, hence the running error analysis is sufficient to determine feasibility.

4 Computational Study

We conduct a computational analysis to answer three main questions. First, how
does the revised branch-and-bound framework compare to the previous implemen-
tation, and to which components can the changes be attributed? To answer this
question, we compare the original framework [16] against our improved imple-
mentation, including the exact LP solver SoPlex, but with primal heuristics
and exact presolving still disabled. In particular, we analyze the importance and
performance of the different dual bounding methods.

Second, what is the impact of the new algorithmic components symbolic pre-
solving and primal heuristics? To answer this question, we compare their impact

A Computational Status Update for Exact Rational MIP 169

on the solving time and the number of solved instances, as well as present more
in-depth statistics, such as e.g., the primal integral [9] for heuristics or the num-
ber of fixings for presolving. In addition, we compare the effectiveness of per-
forming presolving in rational and in floating-point arithmetic.

Finally, what is the overhead for producing and verifying certificates? Here,
we consider running times for both the solver and the certificate checker, as well
as the overhead in the safe dual bounding methods introduced through enabling
certificates. This provides an update for the analysis in [13], which was limited
to the two bounding methods project-and-shift and exact LP.

The experiments were performed on a cluster of Intel Xeon CPUs E5-2660
with 2.6 GHz and 128 GB main memory. As in [16], we use CPLEX as floating-
point LP solver. Due to compatibility issues, we needed to use CPLEX 12.3.0 for
the original and CPLEX 12.8.0 for the new framework. Although these versions
are different, they are only used to solve floating-point LPs and have limited
impact on the reported results: The vast majority of solving time is spent in the
safe dual bounding methods. For exact LP solving, we use the same QSopt ex
version as in [16] and SoPlex 5.0.2. For all symbolic computations, we use the
GNU Multiple Precision Library (GMP) 6.1.4 [26]. For symbolic presolving, we
use PaPILO 1.0.1 [21,25]; all other SCIP presolvers are disabled.

As main test sets, we use the two test sets specifically curated in [16]: one
set with 57 instances that were found to be easy for an inexact floating-point
branch-and-bound solver (fpeasy), and one set of 50 instances that were found
to be numerically challenging, e.g., due to poor conditioning or large coefficient
ranges (numdiff). For a detailed description of the selection criteria, we refer
to [16]. To complement these test sets with a set of more ambitious and recent
instances, we conduct a final comparison on the MIPLIB 2017 [22] benchmark
set. All experiments to evaluate the new code are run with three different random
seeds, where we treat each instance-seed combination as a single observation. As
this feature is not available in the original framework, all comparisons with the
original framework were performed with one seed. The time limit was set to
7200 s for all experiments. If not stated otherwise all aggregated numbers are
shifted geometric means with a shift of 0.001 s or 100 branch-and-bound nodes,
respectively.

The Branch-and-Bound Framework. As a first step, we compare the behav-
ior of the safe branch-and-bound implementation from [16] with QSopt ex as
the exact LP solver, against its revised implementation with SoPlex 5.0.2 as
exact LP solver. The original framework uses the “Auto-Ileaved” bounding strat-
egy as recommended in [16]. It dynamically chooses the dual bounding method,
attempting to employ bound-shift as often as possible. An exact LP is solved
whenever a node would be cut off within tolerances, but not with the exact the
safe dual bound computed. In the new implementation we use a similar strategy,
however we solve the rational LP relaxation every 5 depth levels of the tree, due
to improved performance in the exact LP solver.

170 L. Eifler and A. Gleixner

Table 1 reports the results for solving time, number of nodes, and total time
spent in safe dual bounding (“dbtime”), for all instances that could be solved
by at least one solver. The new framework could solve 10 instances more on
fpeasy and 7 more on numdiff. On fpeasy, we observe a reduction of 69.8% in
solving time and of 87.3% in safe dual bounding time. On numdiff, we observe
a reduction of 80.3% in solving time, and of 88.3% in the time spent overall
in the safe dual bounding methods. We also see this significant performance
improvement reflected in the two performance profiles in Fig. 1.

Table 1. Comparison of original and new framework with presolving and primal heuris-
tics disabled

Original framework New framework

Test set Size Solved Time Nodes dbtime Solved Time Nodes dbtime

fpeasy 55 45 128.4 8920.1 86.8 55 38.8 5940.8 11.0

numdiff 21 13 237.0 8882.7 114.6 20 46.6 6219.3 13.4

Table 2. Comparison of safe dual bounding techniques

Original framework New framework

Test set Stats bshift pshift exlp bshift pshift exlp

fpeasy Calls/node 0.92 0.44 0.28 0.53 0.39 0.06

Time/call [s] 0.0026 0.0022 0.050 0.0072 0.0066 0.010

Time/solving time 2.9% 40.3% 32.1% 10.8% 27.8% 4.4%

numdiff Calls/node 0.78 0.36 0.52 0.36 0.39 0.28

Time/call [s] 0.0055 0.0036 0.4197 0.0247 0.0356 0.1556

Time/solving time 1.4% 22.7% 62.2% 5.2% 24.8% 40.1%

We identify a more aggressive use of project-and-shift and faster exact LP
solves as the two key factors for this improvement. In the original framework,
project-and-shift is restricted to instances that had less than 10000 nonzeros.
One reason for this limit is that a large auxiliary LP has to be solved by the
exact LP solver to compute the relative interior point in project-and-shift. With
the improvements in exact LP performance, it proved beneficial to remove this
working limit in the new framework.

The effect of this change can also be seen in the detailed analysis of bounding
times given in Table 2. For calls per node and the fraction of bounding time per
total solving time, which are normalized well, we report the arithmetic means; for
time per call, we report geometric means over all instances where the respective
bounding method was called at least once.

A Computational Status Update for Exact Rational MIP 171

The fact that time per call for project-and-shift (“pshift”) in the new frame-
work increased by a factor of 3 (fpeasy) and 9.9 (numdiff) is for the reason
discussed above—it is now also called on larger instances. This is beneficial
overall since it replaces many slower exact LP calls. The decrease in exact LP
solving time per call (“exlp”) by a factor of 2.7 (numdiff) and 5 (fpeasy) can
also partly be explained by this change, and partly by an overall performance
improvement in exact LP solving due to the use of LP iterative refinement [24].
The increase in bound-shift time (“bshift”) is due to implementation details,
that will be addressed in future versions of the code, but its fraction of the
total solving time is still relatively low. Finally, we observe a decrease in the
total number of safe bounding calls per node. One reason is that we now disable
bound-shift dynamically if its success rate drops below 20%.

Overall, we see a notable speedup and more solved instances, mainly due to
the better management of dual bounding methods and faster exact LP solving.

Fig. 1. Performance profiles comparing solving time of original and new framework
without presolving and heuristics for fpeasy (left) and numdiff (right)

Symbolic Presolving. Before measuring the overall performance impact of
exact presolving, we address the question how effective and how expensive pre-
solving in rational arithmetic is compared to standard floating-point presolving.
For both variants, we configured PaPILO to use the same tolerances for deter-
mining whether a reduction found is strong enough to be accepted. The only
difference in the rational version is that all computations are done in exact
arithmetic and the tolerance to compare numbers and the feasibility tolerance
are zero. Note that a priori it is unclear whether rational presolving yields more
or less reductions. Dominated column detection may be less successful due to the
stricter comparison of coefficients; the dual inference presolver might be more
successful if it detects earlier that a dual multiplier is strictly bounded away
from zero.

Table 3 presents aggregated results for presolving time, the number of pre-
solving rounds, and the number of found fixings, aggregations, and bound
changes. We use a shift of 1 for the geometric means of rounds, aggregations,
fixings, and bound changes to account for instances where presolving found no

172 L. Eifler and A. Gleixner

such reductions. Remarkably, both variants yield virtually the same results on
fpeasy. On numdiff, there are small differences, with a slight decrease in the
number of fixings and aggregations and a slight increase in the number of bound
changes for the exact variant. The time spent for exact presolving increases by
more than an order of magnitude but symbolic presolving is still not a per-
formance bottleneck. It consumed only 0.86% (fpeasy) and 2.1% (numdiff)
of the total solving time, as seen in Table 4. Exploiting parallelism in presolv-
ing provided no measureable benefit for floating-point presolving, but reduced
symbolic presolving time by 44% (fpeasy) to 43.8% (numdiff). However, this
benefit can be more pronounced on individual instances, e.g., on nw04, where
parallelization reduces the time for rational presolving by a factor of 6.4 from
1770 to 277 s.

To evaluate the impact of exact presolving, we compare the perfor-
mance of the basic branch-and-bound algorithm established above against
the performance with presolving enabled. The results for all instances that
could be solved to optimality by at least one setting are presented in
Table 4. Enabling presolving solves 3 more instances on fpeasy and 20 more
instances on numdiff. We observe a reduction in solving time of 39.4% (fpeasy)
and 72.9% (numdiff). The stronger impact on numdiff is correlated with the
larger number of reductions observed in Table 3.

Table 3. Comparison of exact and floating-point presolving

Floating-point presolving Exact presolving

Test set thrds Time rnds Fixed agg bdchg Time rnds Fixed agg bdchg

fpeasy 1 0.01 3.2 8.5 3.5 10.4 0.25 3.2 8.5 3.5 10.4

20 0.01 3.2 8.5 3.5 10.4 0.14 3.2 8.5 3.5 10.4

numdiff 1 0.04 8.3 53.8 55.7 51.4 0.89 7.2 41.4 42.9 55.8

20 0.04 8.3 53.8 55.7 51.4 0.50 7.2 41.4 42.9 55.8

Table 4. Comparison of new framework with and without presolving (3 seeds)

Presolving disabled Presolving enabled

Test set Size Solved Time Nodes Solved Time (presolving) Nodes

fpeasy 168 165 42.1 6145.3 168 25.5 (0.22) 4724.1

numdiff 91 66 216.6 7237.2 86 58.7 (1.23) 2867.2

Primal Heuristics. To improve primal performance, we enabled all SCIP
heuristics that the floating-point version executes by default. To limit the fraction
of solving time for the repair heuristic described in Sect. 3, the repair heuristic is
only allowed to run at any point in the solve, if it was called at most half as often
as the exact LP calls for safe dual bounding. Furthermore, the repair heuristic is

A Computational Status Update for Exact Rational MIP 173

disabled on instances with more than 80% continuous variables, since the over-
head of the exact LP solves can drastically worsen the performance on those
instances. Whenever the repair step is not executed, the floating-point solutions
are checked directly for exact feasibility.

First, we evaluate the cost and success of the exact repair heuristic over all
instances where it was called at least once. The results are presented in Table
5. The repair heuristic is effective at finding feasible solutions with a success
rate of 46.9% (fpeasy) and 25.6% (numdiff). The fraction of the solving time
spent in the repair heuristic is well below 1%. Nevertheless, the strict working
limits we imposed are necessary since there exist outliers for which the repair
heuristic takes more than 5% of the total solving time, and performance on these
instances would quickly deteriorate if the working limits were relaxed.

Table 5. Statistics of repair heuristic for instances where repair step was called

Time

Test set Size Total solving Repair Fail Success Success rate

fpeasy 82 39.8 0.0020 0.0017 0.0003 46.9%

numdiff 42 383.6 0.0187 0.0077 0.0062 25.6%

Table 6. Comparison of new framework with and without primal heuristics (3 seeds,
presolving enabled, instances where repair step was called)

Heuristics disabled Heuristics enabled

Test set Size Solv. time Time-to-first Primal int. Solv. time Time-to-first Primal int.

fpeasy 82 32.5 0.75 2351.8 32.6 0.10 2037.2

numdiff 41 101.7 4.77 8670.7 103.1 1.30 9093.6

Table 6 shows the overall performance impact of enabling heuristics over all
instances that could be solved by at least one setting. On both sets, we see almost
no change in total solving time. On fpeasy, the time to find the first solution
decreases by 86.7% and the primal integral decreases by 13.4%. The picture is
slightly different on the numerically difficult test set. Here, the time to find the
first solution decreases by 72.7%, while the primal integral increases by 4.9%.

The worse performance and success rate on numdiff is expected, considering
that this test set was curated to contain instances with numerical challenges. On
those instances floating-point heuristics find solutions that might either not be
feasible in exact arithmetic or are not possible to fix for the repair heuristic. In
both test sets, the repair heuristic was able to find solutions, while not imposing
any significant overhead in solving time.

174 L. Eifler and A. Gleixner

Producing and Verifying Certificates. The possibility to log certificates as
presented in [13] is available in the new framework and is extended to also work
when the dual bounding method bound-shift is active. Presolving must currently
be disabled, since PaPILO does not yet support generation of certificates.

Besides ensuring correctness of results, certificate generation is valuable to
ensure correctness of the solver. Although it does not check the implementation
itself, it can help identify and eliminate incorrect results that do not directly
lead to fails. For example, on instance x 4 from numdiff, the original framework
claimed infeasibility at the root node, and while the instance is indeed infeasible,
we found the reasoning for this to be incorrect due to the use of a certificate.

Table 7 reports the performance overhead when enabling certificates. Here
we only consider instances that were solved to optimality by both versions since
timeouts would bias the results in favor of the certificate. We see an increase in
solving time of 101.2% on fpeasy and of 51.4% on numdiff. This confirms the
measurements presented in [13]. The increase is explained in part by the effort to
keep track of the tree structure and print the exact dual multipliers, and in part
by an increase in dual bounding time. The reason for the latter is that bound-shift
by default only provides a safe objective value. The dual multipliers needed for
the certificate must be computed in a postprocessing step, which introduces the
overhead in safe bounding time. This overhead is larger on fpeasy, since bound-
shift is called more often. The time spent in the verification of the certificate is
on average significantly lower than the time spent in the solving process. Overall,
the overhead from printing and checking certificates is significant, but it does
not drastically change the solvability of instances.

Table 7. Overhead for producing and verifying certificates on instances solved by both
variants

Certificate disabled Certificate enabled

Test set Size Solving time dbtime Solving time dbtime Check time Overhead

fpeasy 53 32.6 9.1 65.6 16.5 0.9 103.9%

numdiff 21 41.6 11.9 63.0 18.0 0.5 52.6%

Table 8. Comparison on MIPLIB 2017 benchmark set

Original framework New framework

Test set Size Solved Found Time Gap Solved Found Time Gap

All 240 17 74 6003.6 ∞ 47 167 3928.1 ∞
Both 66 16 66 4180.0 67.9% 29 66 1896.2 33.8%

Onesolved 49 17 31 3317.5 ∞ 47 47 505.1 ∞

A Computational Status Update for Exact Rational MIP 175

Performance Comparison on MIBLIB 2017. As a final experiment, we
wanted to evaluate the performance on a more ambitious and diverse test set.
To that end, we ran both the original framework and the revised framework
with presolving and heuristics enabled on the recent MIPLIB 2017 benchmark
set. The results in Table 8 show that the new framework solved 30 instances
more and the mean solving time decreased by 84.8% on the subset “onesolved”
of instances that could be solved to optimality by at least one solver. On more
than twice as many instances at least one primal solution was found (167 vs.
74). On the subset of 66 instances that had a finite gap for both versions, the
new algorithm achieved a gap of 33.8% in arithmetic mean compared to 67.9%
in the original framework.

To conclude, we presented a substantially revised and extended solver for
numerically exact mixed integer optimization that significantly improves upon
the existing state of the art. We also observe, however, that the performance gap
to floating-point solvers is still large. This is not surprising, given that crucial
techniques such as numerically safe cutting plane separation, see, e.g., [15], are
not yet included. This must be addressed in future research.

Acknowledgements. We wish to thank Dan Steffy for valuable discussions on the
revision of the original branch-and-bound framework, Leona Gottwald for creating
PaPILO, and Antonia Chmiela for help with implementing the primal repair heuristic.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Univer-
sität Berlin (2007)

2. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reduc-
tions in mixed integer programming. INFORMS J. Comput. 32(2), 473–506 (2020).
https://doi.org/10.1287/ijoc.2018.0857

3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett.
33(1), 42–54 (2005). https://doi.org/10.1016/j.orl.2004.04.002

4. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years
of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimiza-
tion, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38189-8 18

5. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP Solver (2006)
6. Applegate, D., Cook, W., Dash, S., Espinoza, D.G.: Exact solutions to linear pro-

gramming problems. Oper. Res. Lett. 35(6), 693–699 (2007). https://doi.org/10.
1016/j.orl.2006.12.010

7. Assarf, B., et al.: Computing convex hulls and counting integer points with
polymake. Math. Program. Comput. 9(1), 1–38 (2017). https://doi.org/10.1007/
s12532-016-0104-z

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

9. Berthold, T.: Measuring the impact of primal heuristics. Oper. Res. Lett. 41(6),
611–614 (2013). https://doi.org/10.1016/j.orl.2013.08.007

https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1016/j.orl.2006.12.010
https://doi.org/10.1016/j.orl.2006.12.010
https://doi.org/10.1007/s12532-016-0104-z
https://doi.org/10.1007/s12532-016-0104-z
https://doi.org/10.1016/j.orl.2013.08.007

176 L. Eifler and A. Gleixner

10. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume
185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam
(2009)

11. Bofill, M., Manyà, F., Vidal, A., Villaret, M.: New complexity results for
�Lukasiewicz logic. Soft. Comput. 23, 2187–2197 (2019). https://doi.org/10.1007/
s00500-018-3365-9

12. Burton, B.A., Ozlen, M.: Computing the crosscap number of a knot using inte-
ger programming and normal surfaces. ACM Trans. Math. Softw. 39(1) (2012).
https://doi.org/10.1145/2382585.2382589

13. Cheung, K.K.H., Gleixner, A., Steffy, D.E.: Verifying integer programming results.
In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 148–
160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 13

14. Cheung, K., Gleixner, A., Steffy, D.: VIPR. Verifying Integer Programming
Results. https://github.com/ambros-gleixner/VIPR. Accessed 11 Nov 2020

15. Cook, W., Dash, S., Fukasawa, R., Goycoolea, M.: Numerically safe gomory mixed-
integer cuts. INFORMS J. Comput. 21, 641–649 (2009). https://doi.org/10.1287/
ijoc.1090.0324

16. Cook, W., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach
for exact rational mixed-integer programming. Math. Program. Comput. 5(3), 305–
344 (2013). https://doi.org/10.1007/s12532-013-0055-6

17. Eifler, L., Gleixner, A.: Exact SCIP - a development version. https://github.com/
leoneifler/exact-SCIP. Accessed 11 Nov 2020

18. Eifler, L., Gleixner, A., Pulaj, J.: A safe computational framework for integer
programming applied to Chvátal’s conjecture (2020)

19. Espinoza, D.G.: On linear programming, integer programming and cutting planes.
Ph.D. thesis, Georgia Institute of Technology (2006)

20. Faure, G., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: SAT modulo
the theory of linear arithmetic: exact, inexact and commercial solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 77–90. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7 8

21. Gamrath, G., et al.: The SCIP Optimization Suite 7.0. ZIB-Report 20–10, Zuse
Institute Berlin (2020)

22. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library. Math. Program. Comput. 1–48 (2021). https://doi.org/10.
1007/s12532-020-00194-3

23. Gleixner, A., Steffy, D.E.: Linear programming using limited-precision ora-
cles. Math. Program. 183, 525–554 (2020). https://doi.org/10.1007/s10107-019-
01444-6

24. Gleixner, A., Steffy, D.E., Wolter, K.: Iterative refinement for linear programming.
INFORMS J. Comput. 28(3), 449–464 (2016). https://doi.org/10.1287/ijoc.2016.
0692

25. Gottwald, L.: PaPILO – Parallel Presolve for Integer and Linear Optimization.
https://github.com/lgottwald/PaPILO. Accessed 9 Sep 2020

26. Granlund, T., Team, G.D.: GNU MP 6.0 Multiple Precision Arithmetic Library.
Samurai Media Limited, London, GBR (2015)

27. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society
for Industrial and Applied Mathematics, Philadelphia (2002). https://doi.org/10.
1137/1.9780898718027

https://doi.org/10.1007/s00500-018-3365-9
https://doi.org/10.1007/s00500-018-3365-9
https://doi.org/10.1145/2382585.2382589
https://doi.org/10.1007/978-3-319-59250-3_13
https://github.com/ambros-gleixner/VIPR
https://doi.org/10.1287/ijoc.1090.0324
https://doi.org/10.1287/ijoc.1090.0324
https://doi.org/10.1007/s12532-013-0055-6
https://github.com/leoneifler/exact-SCIP
https://github.com/leoneifler/exact-SCIP
https://doi.org/10.1007/978-3-540-79719-7_8
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s10107-019-01444-6
https://doi.org/10.1007/s10107-019-01444-6
https://doi.org/10.1287/ijoc.2016.0692
https://doi.org/10.1287/ijoc.2016.0692
https://github.com/lgottwald/PaPILO
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027

A Computational Status Update for Exact Rational MIP 177

28. Kenter, F., Skipper, D.: Integer-programming bounds on pebbling numbers of
Cartesian-product graphs. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA
2018. LNCS, vol. 11346, pp. 681–695. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04651-4 46

29. Lancia, G., Pippia, E., Rinaldi, F.: Using integer programming to search for coun-
terexamples: a case study. In: Kononov, A., Khachay, M., Kalyagin, V.A., Parda-
los, P. (eds.) MOTOR 2020. LNCS, vol. 12095, pp. 69–84. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-49988-4 5

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

31. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer program-
ming. Math. Program. 99, 283–296 (2002). https://doi.org/10.1007/s10107-003-
0433-3

32. Pulaj, J.: Cutting planes for families implying Frankl’s conjecture. Math. Comput.
89(322), 829–857 (2020). https://doi.org/10.1090/mcom/3461

33. Steffy, D.E., Wolter, K.: Valid linear programming bounds for exact mixed-integer
programming. INFORMS J. Comput. 25(2), 271–284 (2013). https://doi.org/10.
1287/ijoc.1120.0501

34. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

35. Wilken, K., Liu, J., Heffernan, M.: Optimal instruction scheduling using integer
programming. SIGPLAN Not. 35(5), 121–133 (2000). https://doi.org/10.1145/
358438.349318

https://doi.org/10.1007/978-3-030-04651-4_46
https://doi.org/10.1007/978-3-030-04651-4_46
https://doi.org/10.1007/978-3-030-49988-4_5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10107-003-0433-3
https://doi.org/10.1007/s10107-003-0433-3
https://doi.org/10.1090/mcom/3461
https://doi.org/10.1287/ijoc.1120.0501
https://doi.org/10.1287/ijoc.1120.0501
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1145/358438.349318
https://doi.org/10.1145/358438.349318

New Exact Techniques Applied to a Class
of Network Flow Formulations

Vińıcius L. de Lima1(B), Manuel Iori2, and Flávio K. Miyazawa1

1 Institute of Computing, University of Campinas, Campinas, Brazil
{v.loti,fkm}@ic.unicamp.br

2 DISMI, University of Modena and Reggio Emilia, Reggio Emilia, Italy
manuel.iori@unimore.it

Abstract. We propose a number of solution techniques for general net-
work flow formulations derived from Dantzig-Wolfe decompositions. We
present an arc selection method to derive reduced network flow mod-
els that may potentially provide good feasible solutions. This method
is explored as a variable selection rule for branching. With the aim of
improving reduced-cost variable-fixing, we also propose a method to pro-
duce different dual solutions of network flow models and provide con-
ditions that guarantee the correctness of the method. We embed the
proposed techniques in an innovative branch-and-price method for net-
work flow formulations, and test it on the cutting stock problem. In our
computational experiments, 162 out of 237 open benchmark instances
are solved to proven optimality within a reasonable computational time,
consistently improving previous results in the literature.

Keywords: Network flow models · Variable selection · Variable fixing

1 Introduction

Mixed Integer Linear Programming (MILP) is one of the most popular math-
ematical programming tools to solve optimization problems. The strength of
MILP models has been enhanced in many applications by using the Dantzig-
Wolfe (DW) decomposition [7], which relies on the fact that every point of a
non-empty polyhedron can be represented as a convex combination of its extreme
points. The model resulting from a DW decomposition is called DW model. A
relation between integer solutions of polyhedra with paths in acyclic networks
allows us to represent DW models as network flow formulations (see, e.g., page
322 of [21]), i.e., formulations that require to determine an optimal flow in a
network. According to Ahuja et al. [1], the two main classes of network flow for-
mulations are path flow formulations, in which variables correspond to the flow
on each path (and cycle) of the network, and arc flow formulations, in which
variables correspond to flow on individual arcs.

The first and third authors acknowledge the support by CNPq (Proc. 314366/2018-0,
425340/2016-3) and by FAPESP (Proc. 2015/11937-9, 2016/01860-1, 2017/11831-1).

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 178–192, 2021.
https://doi.org/10.1007/978-3-030-73879-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_13

New Exact Techniques Applied to a Class of Network Flow Formulations 179

In practice, path flow formulations for NP-hard problems have a huge num-
ber of variables and are typically solved by sophisticated branch(-and-cut)-and-
price (B&P) algorithms (see, e.g., [22]). In contrast, arc flow formulations have
a linear number of variables with respect to the number of arcs of the network
and have been used to solve medium-sized instances directly by general-purpose
MILP solvers (for a recent survey, see [8]). Few authors explore the correspon-
dence between path flow and arc flow models by combining them into a unique
solution method. For instance, Pessoa et al. [23] proposed a B&P algorithm
based on a path flow model that solves the problem at the root node as an arc
flow model by a MILP solver if the network is sufficiently small.

In B&P algorithms, additional constraints derived from branching can impact
the pricing problem, making it substantially harder. A number of researches
propose general branching schemes that minimize the impact on the pricing
problem and at the same time help convergence to optimality (see, e.g., [27–
29]). However, not many general branching schemes exploit the network flow
representation of DW models. Although branching based on arc flow variables
is robust, i.e., it does not change the structure of the pricing, Vanderbeck [27]
alerted that the selection of which arcs to branch is a difficult task.

In this paper, we present techniques for network flow formulations derived
from DW decomposition. First, we present a non-trivial column generation algo-
rithm that generates multiple columns and can be used to solve the relaxation
of both path flow and arc flow models. In order to improve solution methods
for network flow formulations, one can consider the reduced-cost variable-fixing
method in [16], which uses a dual solution of a path flow model to remove
non-optimal arcs, i.e., arcs that do not improve the incumbent integer solution.
Notably, different dual solutions usually lead to the removal of different sets
of arcs. Here, we propose a method to obtain dual solutions that improves the
practical effectiveness of the method in [16].

We also present a method to select arcs that, when removed from the model,
lead to a significantly smaller problem that may potentially provide good-quality
feasible solutions. The resulting problem may represent an arc flow model of
practical size, which could be solved reasonably fast by a MILP solver. This arc
selection method leads to a binary branching scheme: the left branch solves the
problem resulted from the arc removal as an arc flow model, whereas the right
branch solves the problem with an additional linear constraint enforcing that at
least one of the arcs removed in the left branch should be in the solution.

All the proposed techniques are embedded into an innovative B&P algorithm
that exploits the equivalence between path flow and arc flow formulations and
solves a network flow model received in input. The algorithm is applied to the
cutting stock problem (CSP). For this problem, we propose a method that may
consistently reduce the size of networks by removing arcs without loss of optimal-
ity. The effectiveness of the B&P algorithm and its main components is proved
by means of extensive computational tests. We also provide hints for applying
the developed techniques to other classes of difficult combinatorial optimization
problems.

180 V. L. de Lima et al.

2 Network Flow Formulations

A network N is a directed graph with a set of nodes V and a set of arcs A ⊆ V×V.
Two special nodes in V are the source v+ and the sink v−, in which no arcs in
A enters v+ or leaves v−. The set of all paths from v+to v− is given by P, and
the set of all arcs of a path p ∈ P is given by Ap. The set of all paths in P that
contain an arc (u, v) is given by P(u,v). Let variable λp ∈ Z

+ represent the flow
on path p ∈ P. The following is a general path flow model:

min
∑

p∈P
cpλp, (1)

s.t.:
∑

p∈P
apλp ≥ b, (2)

λp ∈ Z+, ∀p ∈ P, (3)

where b ∈ R
m and, for each p ∈ P, ap ∈ R

m and cp ∈ R. We are interested
in path flow formulations derived from DW models, where N is acyclic and
each arc (u, v) ∈ A admits unique c(u,v) ∈ R and a(u,v) ∈ R

m, such that cp =∑
(u,v)∈Ap

c(u,v) and ap =
∑

(u,v)∈Ap
a(u,v), for every p ∈ P (see, e.g., [8]). Then,

path flow model (1)–(3) admits an equivalent arc flow model:

min
∑

(u,v)∈A
c(u,v)ϕ(u,v), (4)

s.t.: FN ,ϕ(v) =

⎧
⎪⎨

⎪⎩

−z, if v = v+,

z, if v = v−,

0, otherwise,
∀v ∈ V, (5)

∑

(u,v)∈A
a(u,v)ϕ(u,v) ≥ b, (6)

ϕ(u,v) ∈ Z+, ∀(u, v) ∈ A, (7)
z ∈ Z, (8)

where FN ,ϕ(v) =
∑

(u,v)∈A ϕ(u,v) −
∑

(v,w)∈A ϕ(v,w). Variable ϕ(u,v) corresponds
to the flow on arc (u, v) ∈ A and variable z corresponds to the total flow in the
network. The objective function (4) minimizes the total cost from individual arcs,
(5) are the flow conservation constraints, and (6) are general linear constraints
equivalent to (2). The flow conservation theorem by Ahuja et al. [1] guarantees
a correspondence between the linear relaxation of path flow models and arc flow
models that are based on the same network. In this way, formulations (1)–(3)
and (4)–(7) model the same problem and have the same primal strength. We
exploit this equivalence to derive a number of exact techniques (Sects. 3, 4 and
5) and to produce a method for general network flow formulations based on DW
decomposition (Sect. 6).

New Exact Techniques Applied to a Class of Network Flow Formulations 181

3 Column Generation

DW models for NP-hard problems are often associated with networks that have
pseudo-polynomial or exponential size with respect to the size of the input.
Consequently, large instances of both path flow and arc flow models derived
from DW decompositions often have a huge number of variables, and their linear
relaxation is usually solved by column generation algorithms. In such algorithms,
the linear relaxation with a restricted set of columns, called restricted master
problem (RMP), is iteratively solved. At each iteration, an oracle solves the
pricing problem to generate non-basic columns with negative reduced cost. The
algorithm halts when none of such columns can be found. For a general discussion
on column generation, we refer the interested reader to [11] and [19].

In column generation for the path flow model (1)–(3), given a dual solution
β associated to the linear relaxation of (2), the corresponding pricing problem

min{cp − ap
�β : p ∈ P} (9)

can be solved as a shortest path problem on N , where the cost of arc (u, v) ∈ A
is set to c(u,v)−a(u,v)

�β. Since networks from DW models are acyclic, a shortest
path can be efficiently found in O(|A|) by a topological ordering of the nodes
(see, e.g., [1]).

In arc flow models, the oracle may generate a single arc, but in practice gen-
erating complete paths (to be decomposed in a set of arcs) can make a significant
difference in convergence time (see [26]). Since the dual solutions associated to
the linear relaxation of (2) and (6) are equivalent, the pricing problem that
generates a complete path for an arc flow model can still be described as (9).

In some problems, generating a single column per iteration may lead to a
slow convergence. In network flow formulations, it may be preferable to generate
multiple paths at each iteration. For this purpose, we implemented an oracle
that generates multiple paths with negative reduced cost (if any exists), and can
be used to solve the pricing of both path flow and arc flow models.

The oracle that we developed works as follows. First, we solve a bidirectional
dynamic programming (DP) model in O(|A|) to compute, for each arc (u, v) ∈ A,
the minimum reduced cost c(u,v) = min{cp − ap

�β : p ∈ P(u,v)} associated with
paths in P(u,v) (for details, we refer to [16]). Then, for each row k = 1, ...,m
in (2) or in (6), the algorithm selects an arc (u, v) with minimum c(u,v) among
the arcs that cover (i.e., has non-zero row coefficient) k, and, by using the DP
structure, it generates a path in P(u,v) of minimum reduced cost. At the end, the
oracle has generated for each row k, a path of minimum reduced cost that covers
k. For instance, the algorithm generates the columns of minimum reduced cost,
such that each item (in packing problems) or each client (in routing problems)
is covered by at least one of such columns. Notice that different rows may lead
to the same column, so repeated columns are discarded. The overall algorithm
has O(mζ + |A|) time complexity, where ζ is the maximum length of a path, and
it is preferable to use it when the matrix of (2) is sparse, so that more different
columns are generated.

182 V. L. de Lima et al.

4 Variable Fixing Based on Reduced Costs

Reduced-cost variable-fixing (RCVF) is a domain propagation technique that,
for MILP (minimization) models, computes a primal bound zub on the optimal
integer solution value and a dual-feasible solution of objective value zlb. Then,
it eliminates from the model any integer variable having a reduced cost greater
than or equal to zub − zlb (see, e.g., [15] and page 389 of [21]). The way in which
the dual solution of a path flow model can be used in an RCVF algorithm to
remove non-optimal arcs has been discussed in [16]. The authors proposed a
bidirectional search to compute, for each arc (u, v), the minimum reduced cost
associated to paths in P(u,v), which is then used to determine whether (u, v) can
be removed from the network. An equivalent approach has been implemented
by [3] in the general context of Lagrangian bounds for multivalued decision
diagrams.

Different dual solutions may correspond to different reduced costs, and this
directly affects the effectiveness of the RCVF. Moreover, although counter-
intuitive, dual solutions that maximize the effectiveness of RCVF are often sub-
optimal (for a theoretical discussion, see [24]). Next, we present a method to
obtain dual solutions with the aim of maximizing the RCVF effectiveness. Such
method improves [16] in terms of reduction effectiveness, but at the cost of addi-
tional computational effort (see Sect. 8). The dual of the linear relaxation of the
arc flow model (4)–(7) is given by:

max b�β (10)

s.t.: − αu + αv + a(u,v)
�β ≤ c(u,v), ∀(u, v) ∈ A, (11)

αv+ − αv− ≤ 0, (12)
αu ∈ R, ∀u ∈ V, (13)
βk ≥ 0, ∀k = 1, ...,m, (14)

where α and β are the dual variables associated with, respectively, (5) and (6).
Let θ(u,v) = c(u,v)−(−αu +αv +a(u,v)

�β) denote the reduced cost of (u, v) ∈
A. A dual solution β which allows the removal of (u, v) by RCVF is one which
satisfies b�β + θ(u,v) ≥ zub. If one such solution exists, it can be obtained by
solving (10)–(14) with a modified objective function given by max b�β + θ(u,v).
However, optimizing a model tailored for each arc can be very time consuming
in practice. For this reason, [2] proposed a method to maximize the impact of
RCVF on general MILP models, by solving a single MILP model derived from an
extension of the dual linear relaxation of the original model. This MILP model
has an additional binary variable for each original variable, indicating whether
the resulting dual solution is able to eliminate the associated original variable
by RCVF. In our case, this method is generally non-practical, since the models
we are concerned with usually have a huge number of variables and must rely
on methods based on column generation. We thus propose a heuristic approach
that solves a single LP model that considers an objective function modified by a
subset A′ of arcs, instead of a single one. This model is obtained by replacing (10)

New Exact Techniques Applied to a Class of Network Flow Formulations 183

with max b�β +
∑

(u,v)∈A′ θ(u,v). The resulting objective function has additional
terms related to α which lead to a (primal) problem with additional source and
sink nodes that are forced to be in the solution. Consequently, from a primal
point of view, a very large number of flow conservation constraints may be in the
solution base, and this may substantially affect the computational performance.
We consider a further simplification obtained by eliminating all additional α
variables from the modified objective function. The resulting problem is thus:

max{b�β −
∑

(u,v)∈A′ a(u,v)
�β : (11), (12), (13), (14)}. (15)

Despite the additional terms in the objective function, (15) is still the dual of
a general arc flow model, and can be solved by the column generation algorithm
of Sect. 3. Following the correspondence of arc flow and path flow models, we
solve the primal of (15) as a path flow model, and then use its dual solution β
as the input of the RCVF method in [16]. In general, depending on the selection
of A′, the additional terms in the objective function may lead to an unbounded
model (15), but there are special cases that guarantee a bounded model.

Proposition 1. If the model (10)–(14) is bounded, and: (i) ap ≥ 0 for every
p ∈ P; or (ii) A′ can be partitioned into a set of complete paths, then the corre-
sponding model (15) is also bounded.

Proof. Suppose that the dual model (10)–(14) is bounded and, consequently, its
primal (4)–(7) admits a feasible solution ϕ′. We show that the corresponding
model (15) is bounded under assumptions (i) or (ii) by showing that its primal
is feasible. The primal of (15) is equivalent to (4)–(7), where b is incremented by∑

(u,v)∈A′ a(u,v). In this way, to prove that (15) is bounded under any assumption
(i) or (ii), it suffices to find a set P ′ ⊆ P whose corresponding columns cover∑

(u,v)∈A′ a(u,v) and the inclusion of one copy of each path p ∈ P ′ in ϕ′ does not
lead to a loss of feasibility in (4)–(7).

Suppose that (i) is true. Then, model (4)–(7) can be seen as a covering
formulation, which guarantees that feasibility holds under the addition of any
set of paths to the solution. In this case, P ′ can be given as any set of paths
whose corresponding columns cover

∑
(u,v)∈A′ a(u,v). A trivial choice is P ′ = P.

Now, suppose that (ii) is true. In this case, P ′ can be given as the partition
of A′ into a set of paths. Then, adding one copy of each path p ∈ P ′ to ϕ′ cancels
the additional increment in b given by

∑
(u,v)∈A′ a(u,v), and the only significant

changes appear in the objective function. As a result,
∑

(u,v)∈A′ a(u,v) is covered
without losing feasibility in (4)–(7). ��

5 A Variable-Selection Method Based on Arcs

Exact solutions for DW models represented as path flow models are typically
based on B&P, which embeds column generation in a branch-and-bound scheme.
On the other hand, exact solutions for arc flow models are typically based on the

184 V. L. de Lima et al.

use of a general-purpose MILP solver. Although the practical efficiency of this
method is usually limited to medium-sized instances, the consistent improvement
of MILP solvers in the last decades allowed many hard problems to be solved by
arc flow models (see, e.g., [8]).

This section presents a variable-selection method that can be useful in the
solution of both path flow and arc flow models. It groups arcs that share mutual
characteristics into subsets. It then considers arcs in subsets having null flow in
the optimal linear solution of a model, and either eliminates all of them or forces
at least one of them to be in the solution. This variable selection is then used as
a base of a B&P scheme: in the left branch we solve the problem resulted from
the arc-elimination as an arc flow model by a MILP solver (the resulting model
is indeed expected to be substantially smaller and possibly hold good feasible
solutions); whereas in the right branch we add a linear constraint imposing that
at least one of the removed arcs is in the solution (hopefully improving the lower
bound value). In the following, Sect. 5.1 presents the advantages of branching
based on arc flow variables, Sect. 5.2 formally presents our variable-selection
method, and Sect. 5.3 gives examples of possible applications.

5.1 Advantages of Branching Based on Arc Flow Variables

Any constraint
∑

(u,v)∈A a′
(u,v)ϕ(u,v) ≥ b′ based on a linear combination of arc

flow variables impacts on a pricing solved as a shortest path problem by simply
incrementing a′

(u,v)
�

β′ to the cost of each arc (u, v) ∈ A, where β′ is the dual
solution related to the constraint. A consequent result is the following:

Remark 1. Additional constraints based on a linear combination of arc flow vari-
ables do not increase the complexity of the pricing problem (9).

Remark 1 guarantees that branching rules based solely on arc flow variables
are robust. Furthermore, any arc flow variable ϕ(u,v) can be represented as a sum∑

p∈P(u,v)
λp of variables from the equivalent path flow model. Consequently,

any linear constraint based on arc flow variables can be directly represented as
a linear constraint in the equivalent path flow model. On the other hand, it is
not always possible to rewrite a linear constraint based on path flow variables as
a linear constraint based on arc flow variables. This motivates branching rules
based on arc flow variables, as the resulting branching constraints can be easily
handled by both path flow and arc flow models.

5.2 Variable-Selection Based on Arcs

We define an arc family F ⊂ 2A as a set of mutually disjoint subsets of A. For
each F ∈ F , let variable ΦF =

∑
(u,v)∈F ϕ(u,v) represent the aggregated sum

of arc flow variables associated to arcs in F . Given a linear solution ϕ of the
arc flow model, we represent as ΦF =

∑
(u,v)∈F ϕ(u,v) the cumulated sum of the

solution values of arcs in F . We consider three variable-selection methods.
The first variable-selection method (VS1) considers all variables related to

the subfamily B1 = {F ∈ F : ΦF = 0}, which are used to create two branches.

New Exact Techniques Applied to a Class of Network Flow Formulations 185

In the left branch, we implicitly consider the branching constraint
∑

F∈B1
ΦF = 0

by removing all arcs in each F ∈ B1 from the network, and in the right branch we
add the constraint

∑
F∈B1

ΦF ≥ 1 to the model, implying that at least one arc
in B must be in the solution. Depending on the definition of F , the left branch
is expected to lead to a great reduction on the size of the network, while keeping
variables that should provide good feasible solutions. The reduced problem may
be solved by an alternative method. In particular, we conclude this branch by
solving the residual arc flow model by a MILP solver. The domain reduction
in the right branch may be weaker, but the branching constraint may behave
as a strong cutting plane. In fact, although no arcs are explicitly removed from
the network in the right branch, the branching constraint provides a stronger
relaxation that may improve the effectiveness of RCVF.

Sometimes, the reduction on the left branch can be too large, so that no good
feasible solutions are found. A more balanced reduction of the problem in this
branch should increase the chance of finding better feasible solutions. For that,
we propose a filtering method to obtain a smaller subfamily B2 ⊆ B1 of branching
variables. The aim of the second variable-selection method (VS2) is to remove
from B1 sets of arcs that assume aggregated values greater than or equal to 1
in an alternative optimal linear solution. This is done by solving the path flow
model related to the current node with a different objective function, given by
max

∑
F∈B1

ΦF and an additional linear constraint
∑

(u,v)∈A c(u,v)ϕ(u,v) ≤ zlb,
where zlb is the optimal linear solution value. The model is optimized by column
generation, with an additional criterion to stop whenever a solution with ΦF ≥ 1,
for some F ∈ B1, is found. Then, from the solution Φ obtained, we derive B2 =
B1 \ {F ∈ B1 : ΦF ≥ 1}.

When B1 = ∅, we proceed with the third variable-selection method (VS3),
which randomly chooses a set F ′ ∈ {F ∈ F : ΦF is fractional and minimum}.
Then, two branches are created, one with the addition of constraint ΦF ′ ≤
�ΦF ′�, and the other with the addition of constraint ΦF ′ ≥ ΦF ′�. Depending
on the definition of F , branching on variables Φ may not be sufficient to achieve
integrality. Then, whenever a solution that is integer with respect to the variables
ΦF is found, an alternative method may be used to conclude the enumeration.

5.3 Examples of Arc Families

One may use intuition based on the problem being solved to determine a good
choice of F . Next, we give some examples to be explored on some applications:

(i) In many scheduling problems, network flow formulations have arcs relating
a job to its start time (see, e.g., [18]). The optimal linear solution could
provide a good time interval where a job should be processed in an optimal
solution. In such cases, a definition of F could be based on splitting the
time horizon in many parts, and each set in F is associated with starting
the processing of a job in a given split of the time horizon.

186 V. L. de Lima et al.

(ii) In many vehicle routing problems, network flow formulations have arcs rep-
resenting the departure of a vehicle with a given capacity from a client to
another. Usually, optimal solutions do not consider very long arcs between
clients. In such cases, the arc family can be defined by having two sets per
client: one having arcs related to the visit of the closest next clients; and one
having arcs related to the visit of the farthest next clients. An appropriate
ordering of the clients should be considered to guarantee that each arc is
in a single set. Then, in the left branch, we expect to eliminate most of
the longest arcs. In the right branch, it is enforced that one of the longest
arcs should be used. This idea is related to the sparsification heuristic by
Fukasawa et al. [12], which eliminates long arcs that are unlikely to be in
an optimal solution.

(iii) A general arc family that can be used in any network flow formulation is
given by F = {Fu = {(u, v) ∈ A} : u ∈ V}. The sets are defined by the
nodes of the network, each having all arcs that have a tail on the associated
node. Then, the branching over this arc family corresponds to disabling all
nodes of a set in the left branch, and enforcing that one node of the set
must be in the solution in the right branch.

A number of arc families can be derived for the CSP. However, for the sake of
conciseness, our computational experiments below only consider the arc family
in (iii), which provided the best results.

6 A Solution Method for Network Flow Formulations

We combine the techniques presented in the previous sections into a solver for
network flow formulations. The solver is based on the iterative solution of either
path flow or arc flow models by column generation with the oracle discussed in
Sect. 3, and of arc flow models by a MILP solver. The input read by the solver
is a network N , an arc family F , an upper bound on the optimal solution value,
and the parameters of the arc flow model (4)–(7), i.e., the objective coefficients
and the linear constraints.

At the root node, the linear relaxation is solved by the column generation
algorithm of Sect. 3. Then, RCVF is applied for π1 iterations. In the first itera-
tion, the dual solution considered is the one obtained at the end of the column
generation. In the next π1 − 1 iterations, the dual solution is obtained by the
method of Sect. 4. The solver uses the branching scheme of Sect. 5 based on
the input F , and the branching tree is limited to π2 levels. At each level of
the tree, the left branch, i.e., the branch related to the elimination of arcs from
the model, is directly solved as an arc flow model by a MILP solver. Although
the intention of the algorithm is to provide relatively easier problems in the left
branch, in some cases those problems can be small but still hard enough and
consume most of the overall time limit. However, it is important to mention
that no additional stopping criterion is used to deal with such cases. In the right
branch, the linear relaxation with the additional branching constraint is solved,
and it is followed by two iterations of RCVF, the first using the dual solution

New Exact Techniques Applied to a Class of Network Flow Formulations 187

from the column generation and the second using a dual solution obtained by
the method in Sect. 4.

The right branch is to be branched again in the first π2 − 1 levels of the
tree or to be solved as an arc flow model by a MILP solver in the last level of
the tree. The branching at the first π2 − 1 levels of the tree are based on VS1,
whereas the last level of branching is based on VS2. The tree is explored by
breadth-first search by prioritizing left branches. No parallelism is implemented
in the exploration of the tree.

7 An Application to the Cutting Stock Problem

We apply the proposed methods to the CSP. In the CSP, we are given an unlim-
ited number of stock rolls of length W ∈ Z+ and a set I of items, each i ∈ I
associated to a width wi ∈ Z+ and a demand di ∈ Z+. The objective is to cut
the minimum number of stock rolls in order to obtain the demands of all items.
An equivalent problem is the bin packing problem (BPP), where all demands
are unitary. We refer the interested reader to [10] for a recent survey and to [9],
[22], and [30] for the most recent exact methods that solve the CSP/BPP.

The classical pattern-based model by Gilmore and Gomory [13,14] can be
derived from a DW decomposition of the textbook model by Martello and Toth
[20]. The DW model in [13,14] can be seen as a path flow model based on the
DP network of an unbounded knapsack problem (see, e.g., [8]). The equivalent
arc flow model was first solved by Valério de Carvalho [26]. The author proposed
reduction criteria to remove arcs from the network, without loss of optimality, by
considering that items can always be cut from a stock roll following an ordering of
non-increasing widths. Later, Cótê and Iori [6] proposed the meet-in-the-middle
patterns, which allowed to produce significantly smaller networks.

Based on the following property, we developed a technique that further
reduces the network from [26] and may lead to networks smaller than the ones
resulting from the meet-in-the-middle patterns.

Property 1. Given a CSP instance, let W ∈ Z+ be a value ensuring that there
exists an optimal solution where the maximum waste of a single stock roll is at
most W . Then, all arcs contained only in paths associated to cutting patterns
with a waste larger than W can be removed from the network.

A straightforward way to compute W considers that in any solution of the CSP
with K stock rolls, the maximum waste on each roll is at most KW −∑

i∈I widi.
All arcs that only lead to cutting patterns with a waste larger than W are
computed by a back propagation in the network, similar to the method by Trick
[25] to propagate knapsack graphs in a constraint programming context. The
reduction effectiveness depends on the maximum waste computed. In particular,
instances with a weak continuous lower bound may lead even to no reduction
at all. The maximum waste computation that we presented is very basic, but
it obtained good results on the instances that we attempted and could even be
replaced by more sophisticated methods, as, e.g., LP formulations.

188 V. L. de Lima et al.

We solve the CSP as a network flow formulation based on the network in
[26] with the reductions based on Property 1. We use the method of Sect. 6,
with π1 = 4 and π2 = 10, and solve its linear relaxation as a path flow model.
The RMP initial base consists of all cutting patterns with three items and no
waste. In our experiments, a simple best-fit heuristic always produced an initial
upper bound at most equal to the dual bound plus 1 unit. Indeed, there is no
known CSP instance with an optimal solution greater than this (see, e.g., [4]
and [17]). We highlight that the matrix of the pattern-based model for the CSP
follows the case (i) of Proposition 1. Then, when computing the alternative dual
solutions with the method of Sect. 4, we consider the subset A′ equal to A. The
branch is based on arc family (iii) of Sect. 5.3, where each u ∈ V corresponds
to the partial length of a stock roll. The overall algorithm is referred to as
CSP-BAP.

8 Computational Experiments

The algorithms were coded in C++ and Gurobi 9.0.3 was used to solve the
LP and the MILP models. The experiments were run on a computer with an
Intel Xeon X3470 at 2.93 Ghz and 8 GB of RAM. We did not impose an upper
limit on the number of threads used by Gurobi. The experiments focus on the
most difficult classes of benchmark instances for the CSP, namely the AI and
ANI classes proposed in [10]. Each of these classes has 250 instances divided
into 5 groups, each composed of 50 instances having the same number of items.
Instances in AI have optimal solution value equal to the optimal dual bound
zlb of the pattern-based model, whereas instances in ANI have optimal solution
value equal to zlb + 1. Thus, class AI tests the ability to quickly find better fea-
sible solutions, whereas class ANI tests the ability to increase the lower bound.
Overall, the reduction criterion based on Property 1 allowed to obtain networks
with an average of 63% less arcs when compared to the meet-in-the-middle net-
works. This reduction is explained by the fact that the considered instances do
not allow waste in any solution of value zlb. At the root node, the basic RCVF
presented in [16] eliminated on average 61.4% of arcs. A single additional itera-
tion of RCVF based on a dual solution obtained by the method in Sect. 4 further
removed on average 37.2% of the arcs from the residual network, within just an
average additional time of 19.6 s.

In Table 1, we compare four variations of CSP-BAP to analyze the different
components of the algorithm. Algorithm Arc Flow solves the problem directly
as an arc flow model by Gurobi, i.e., no custom branching or RCVF is applied.
Algorithm no-branch solves the root node of CSP-BAP, and after the five itera-
tions of RCVF, solves the resulting model as an arc-flow with Gurobi. Algorithm
no-opt-rcvf corresponds to CSP-BAP without the last four iterations of RCVF at
the root node, and without the second iteration of RCVF at the remaining nodes.
Algorithm no-VS2 corresponds to CSP-BAP where the variable selection at the
last level of the tree is based on VS1 instead of VS2. Algorithm no-property1
corresponds to CSB-BAP without the reduction on the network given by

New Exact Techniques Applied to a Class of Network Flow Formulations 189

Property 1. For each algorithm, columns time and |opt| present, for each group
of 50 instances, the average solution time and the total number of instances
solved to optimality within the time limit of 600 s. Overall, CSP-BAP solved the
largest number of instances. Comparing the results in columns no-opt-rcvf and
CSP-BAP, we notice that the method in Sect. 4 produced a negative impact
on CSP-BAP for the AI class, but it allowed to solve 12 more ANI instances.
Comparing columns no-VS2 and CSP-BAP, we notice that the use of VS2 in
the last iteration of CSP-BAP allowed to solve 10 additional AI instances. From
column no-property1 we notice that the reduction given by Property 1 produced
a negative impact on overall results of AI. This may be due to the fact that a
larger number of arcs allows a larger number of distinct optimal solutions (as
already observed in [9]), and hence, it may be easier to find an optimal solution.
However, we can also observe that the reduction is crucial (although not suf-
ficient) to solve a substantially larger number of ANI instances. This happens
because for those instances the focus is to prove optimality, i.e., to show that no
solution of value zlb exists. In this way, differently from what happens for the AI
instances, a more reduced domain is always preferable.

Table 1. Comparison on the efficiency of individual components (time limit: 600s)

Arc flow no-branch no-opt-rcvf no-VS2 no-property1 CSP-BAP

Class |I| time |opt| time |opt| time |opt| time |opt| time |opt| time |opt|
AI 202 25.7 50 17.8 50 0.5 50 1.0 50 1.8 50 0.8 50

403 495.5 16 177.9 37 8.4 50 23.3 49 32.2 49 10.2 50

601 600.0 0 313.7 26 46.5 49 89.9 46 126.3 45 71.2 49

802 600.0 0 334.1 26 220.5 37 260.6 35 221.3 39 260.3 37

1003 600.0 0 453.4 17 391.2 26 487.8 20 415.5 30 458.6 24

Avg./total 464.4 66 259.4 156 133.4 212 172.5 200 159.4 213 160.2 210

ANI 201 24.0 50 6.5 50 15.3 50 9.6 50 145.3 44 9.7 50

402 586.5 6 61.5 46 75.1 46 65.4 46 395.3 19 60.0 47

600 600.0 0 151.6 39 173.4 39 162.1 41 529.6 7 161.8 40

801 600.0 0 271.0 31 329.5 28 287.0 31 600 0 298.2 31

1002 600.0 0 405.3 22 460.3 18 397.8 25 600 0 427.8 25

Avg./total 482.1 56 179.2 188 210.7 181 184.4 193 454.04 70 191.5 193

Overall 473.3 122 219.3 344 172.1 393 178.4 393 306.7 283 175.8 403

Table 2 presents a comparison of CSP-BAP with the most recent exact results
for the BPP/CSP. The method in [9] is based on an enhanced solution of the
reflect formulation (a pseudo-polynomial arc flow model for the CSP) and it was
solved with an Intel Xeon at 3.10 GHz and 8 GB RAM. The method in [30]
is a branch-and-cut-and-price algorithm for the BPP solved with a Intel Xeon
E5-1603 at 2.80-GHz and 8 GB RAM. The method in [22] is a branch-and-cut-
and-price algorithm for a general class of optimization problems that was solved
with a Intel Xeon E5-2680 at 2.50 GHz with 128 GB RAM shared between 8
copies of the algorithm running in parallel. All experiments considered a time
limit of 3600 s per instance. In order to compare the performance of each CPU,
we provide their passmark indicators (available at www.passmark.com), where

www.passmark.com

190 V. L. de Lima et al.

higher values are associated with better performance. The computer used in
the experiments of [9,22,30], and the present work have single-thread passmark
indicators 2132, 1763, 1635, and 1414, respectively. When compared to the best
previous results (presented in [22]), CSP-BAP could solve 64 (i.e., 40%) more
AI instances and 98 (i.e., 95%) more ANI instances.

Table 2. Comparison with the state-of-the-art for the CSP (time limit:3600 s)

Delorme and Iori [9] Wei et al. [30] Pessoa et al. [22] CSP-BAP

Class |I| Time |opt| Time |opt| Time |opt| Time |opt|
AI 202 8.5 50 4.2 50 52.3 50 0.8 50

403 1205 40 398.1 46 491.4 47 10.2 50

601 – – 1759.6 27 1454.1 35 72.8 50

802 – – 2766.3 15 2804.7 28 667.8 46

1003 – – 3546.1 2 – – 1825.2 28

Avg./Total 606.8 90 1694.9 140 1200.6 160 515.3 224

ANI 201 49.3 50 13.9 50 16.7 50 10.1 50

402 2703.9 17 436.2 47 96.0 50 229.4 48

600 – – 3602.7 0 3512.5 3 659.5 42

801 – – 3605.9 0 3600.0 0 1318.8 33

1002 – – 3637.7 0 – – 1734.2 28

Avg./Total 1376.6 67 2259.3 97 1806.3 103 790.4 201

Overall 991.7 157 1977.1 237 1503.5 263 652.9 425

9 Conclusions

In this paper, we proposed techniques for general network flow formulations
derived from DW decompositions. The proposed techniques were combined into
a method based on column generation and on the iterative solutions of arc flow
models by a MILP solver. The method was then applied to solve the CSP. In our
computational experiments, 162 out of 237 open instances for the CSP could be
solved to proven optimality for the first time.

We performed preliminary tests on different arc families for the CSP. Some
of them obtained promising results, but we presented here only the one that
provided the best results. As future research, we will explore additional arc
families for the CSP and the combination of branching based on different arc
families. We expect that an appropriate combination of arc families may increase
the efficiency of the solver in finding good feasible solutions. We also intend to
explore the application of the techniques to different problems. From preliminary
tests, we verified that the proposed method may improve the solution of a class
of scheduling problems. We also intend to study the possibility of embedding
our method within an iterative aggregation/disaggregation framework (see, e.g.,
[5]) to improve the solution of instances with very large networks.

New Exact Techniques Applied to a Class of Network Flow Formulations 191

References

1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Appli-
cations. Prentice-Hall, New Jersey (1993)

2. Bajgiran, O.S., Cire, A.A., Rousseau, L.-M.: A first look at picking dual variables
for maximizing reduced cost fixing. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR
2017. LNCS, vol. 10335, pp. 221–228. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59776-8 18

3. Bergman, D., Cire, A.A., van Hoeve, W.-J.: Lagrangian bounds from decision dia-
grams. Constraints 20(3), 346–361 (2015). https://doi.org/10.1007/s10601-015-
9193-y

4. Caprara, A., Dell’Amico, M., Dı́az-Dı́az, J., Iori, M., Rizzi, R.: Friendly bin packing
instances without integer round-up property. Math. Program. 150, 5–17 (2015)

5. Clautiaux, F., Hanafi, S., Macedo, R., Voge, M.E., Alves, C.: Iterative aggregation
and disaggregation algorithm for pseudo-polynomial network flow models with side
constraints. Eur. J. Oper. Res. 258(2), 467–477 (2017)

6. Côté, J.F., Iori, M.: The meet-in-the-middle principle for cutting and packing prob-
lems. INFORMS J. Comput. 30(4), 646–661 (2018)

7. Dantzig, G., Wolfe, P.: The decomposition algorithm for linear programs. Econo-
metrica 29(4), 767–778 (1961)

8. de Lima, V., Alves, C., Clautiaux, F., Iori, M., Valério de Carvalho, J.: Arc flow
formulations based on dynamic programming: Theoretical foundations and appli-
cations (2020). https://arxiv.org/abs/2010.00558

9. Delorme, M., Iori, M.: Enhanced pseudo-polynomial formulations for bin packing
and cutting stock problems. INFORMS J. Comput. 32(1), 101–119 (2020)

10. Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: math-
ematical models and exact algorithms. Eur. J. Oper. Res. 255(1), 1–20 (2016)

11. Desaulniers, G., Desrosiers, J., Solomon, M.: Column Generation. Springer, New
York (2006)

12. Fukasawa, R., et al.: Robust branch-and-cut-and-price for the capacitated vehi-
cle routing problem. Math. Program. 106(3), 491–511 (2006). https://doi.org/10.
1007/s10107-005-0644-x

13. Gilmore, P., Gomory, R.: A linear programming approach to the cutting-stock
problem. Oper. Res. 9(6), 849–859 (1961)

14. Gilmore, P., Gomory, R.: A linear programming approach to the cutting stock
problem - part II. Oper. Res. 11(6), 863–888 (1963)

15. Hadjar, A., Marcotte, O., Soumis, F.: A branch-and-cut algorithm for the multiple
depot vehicle scheduling problem. Oper. Res. 54(1), 130–149 (2006)

16. Irnich, S., Desaulniers, G., Desrosiers, J., Hadjar, A.: Path-reduced costs for elim-
inating arcs in routing and scheduling. INFORMS J. Comput. 22(2), 297–313
(2010)

17. Kartak, V., Ripatti, A., Scheithauer, G., Kurz, S.: Minimal proper non-IRUP
instances of the one-dimensional cutting stock problem. Discrete Appl. Math. 187,
120–129 (2015)

18. Kramer, A., Dell’Amico, M., Iori, M.: Enhanced arc-flow formulations to minimize
weighted completion time on identical parallel machines. Eur. J. Oper. Res. 275(1),
67–79 (2019)

19. Lübbecke, M., Desrosiers, J.: Selected topics in column generation. Oper. Res.
53(6), 1007–1023 (2005)

https://doi.org/10.1007/978-3-319-59776-8_18
https://doi.org/10.1007/978-3-319-59776-8_18
https://doi.org/10.1007/s10601-015-9193-y
https://doi.org/10.1007/s10601-015-9193-y
https://arxiv.org/abs/2010.00558
https://doi.org/10.1007/s10107-005-0644-x
https://doi.org/10.1007/s10107-005-0644-x

192 V. L. de Lima et al.

20. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York (1990)

21. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley, New
York (1988)

22. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: A generic exact solver forve-
hicle routing and related problems. Math. Program. 183, 483–523 (2020)

23. Pessoa, A., Uchoa, E., de Aragão, M., Rodrigues, R.: Exact algorithm over an
arc-time-indexed formulation for parallel machine scheduling problems. Math. Pro-
gram. Comput. 2, 259–290 (2010)

24. Sellmann, M.: Theoretical foundations of CP-based Lagrangian relaxation. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 634–647. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8 46

25. Trick, M.: A dynamic programming approach for consistency and propagation for
knapsack constraints. Ann. Oper. Res. 118(1–4), 73–84 (2003)

26. Valério de Carvalho, J.: Exact solution of bin-packing problems using column gen-
eration and branch-and-bound. Ann. Oper. Res. 86, 629–659 (1999)

27. Vanderbeck, F.: On Dantzig-Wolfe decomposition in integer programming and
ways to perform branching in a branch-and-price algorithm. Oper. Res. 48(1),
111–128 (2000)

28. Vanderbeck, F.: Branching in branch-and-price: a generic scheme. Math. Program.
130, 249–294 (2011)

29. Villeneuve, D., Desrosiers, J., Lübbecke, M., Soumis, F.: On compact formulations
for integer programs solved by column generation. Ann. Oper. Res. 139, 375–388
(2005)

30. Wei, L., Luo, Z., Baldacci, R., Lim, A.: A new branch-and-price-and-cut algorithm
for one-dimensional bin-packing problems. INFORMS J. Comput. 32(2), 428–443
(2020)

https://doi.org/10.1007/978-3-540-30201-8_46

Multi-cover Inequalities for
Totally-Ordered Multiple Knapsack Sets

Alberto Del Pia1,2 , Jeff Linderoth1,2 , and Haoran Zhu1(B)

1 Department of Industrial and Systems Engineering,
University of Wisconsin-Madison, Madison, USA

{delpia,linderoth,hzhu94}@wisc.edu
2 Wisconsin Institute for Discovery, Madison, USA

Abstract. We propose a method to generate cutting-planes from mul-
tiple covers of knapsack constraints. The covers may come from different
knapsack inequalities if the weights in the inequalities form a totally-
ordered set. Thus, we introduce and study the structure of a totally-
ordered multiple knapsack set. The valid multi-cover inequalities we
derive for its convex hull have a number of interesting properties. First,
they generalize the well-known (1, k)-configuration inequalities. Second,
they are not aggregation cuts. Third, they cannot be generated as a
rank-1 Chvátal-Gomory cut from the inequality system consisting of the
knapsack constraints and all their minimal covers. Finally, we provide
conditions under which the inequalities are facet-defining for the convex
hull of the totally-ordered knapsack set.

Keywords: Multiple knapsack set · Cutting-planes · Cover
inequalities

1 Introduction

We study cutting-planes related to covers of 0–1 knapsack sets. For a 0–1 knap-
sack set

Kknap := {x ∈ {0, 1}n | aT x ≤ b},

with (a, b) ∈ Z
n+1
+ , a cover is any subset of elements C ⊆ [n] such that∑

j∈C aj > b. The cover inequality (CI)
∑

j∈C

xj ≤ |C| − 1

is a valid inequality for the knapsack polytope conv(Kknap) that separates the
invalid characteristic vector of C. There is a long and rich literature on (lifted)
cover inequalities for the knapsack polytope [1,7,8,10,15], and the readers are
directed to the recent survey of [9] for a more complete background.

For the binary-valued set

X = {x ∈ {0, 1}n | Ax ≤ b},

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 193–207, 2021.
https://doi.org/10.1007/978-3-030-73879-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_14&domain=pdf
http://orcid.org/0000-0001-8428-3914
http://orcid.org/0000-0003-4442-3059
http://orcid.org/0000-0001-8219-6147
https://doi.org/10.1007/978-3-030-73879-2_14

194 A. Del Pia et al.

where [A, b] ∈ Z
m×(n+1)
+ , a standard and computationally-useful way for gen-

erating valid inequalities to improve the linear programming relaxation of X is
to generate lifted cover inequalities for the knapsack sets defined by the indi-
vidual constraints of X [4]. In this way, the extensive literature regarding valid
inequalities for conv(Kknap) can be leveraged to solve integer programs whose
feasible region is X. In contrast to Kknap, very little is known about polyhedra
that arise as the convex hull of the intersection of multiple knapsack sets. In this
paper, we introduce a family of cutting-planes, called (antichain) multi-cover
inequalities ((A)MCIs), that are derived by simultaneously considering multiple
covers which satisfy some particular condition. The covers may come from any
inequality in the formulation, so long as the weights appearing in the knapsack
inequalities are totally-ordered.

More formally, we give a new approach to generate valid inequalities
for a special multiple knapsack set, called the totally-ordered multiple knap-
sack set (TOMKS). Given a constraint matrix A ∈ Z

m×n
+ whose columns

{A1, A2, . . . , An} form a chain ordered by component-wise order, i.e., A1 ≥
A2 . . . ≥ An, and a right-hand-side vector b ∈ Z

m
+ , the TOMKS is the set

K = {x ∈ {0, 1}n | Ax ≤ b}. (1)

TOMKS can arise in the context of chance-constrained programming. Specif-
ically, consider a knapsack constraint where the weights of the items (a) depend
on a random variable (ξ), and we wish to satisfy the chance constraint

P{a(ξ)T x ≤ β} ≥ 1 − ε, (2)

selecting a subset of items (x ∈ {0, 1}n) so that the likelihood that these items
fit into the knapsack is sufficiently high. In the scenario approximation approach
proposed in [3,12], an independent Monte Carlo sample of N realizations of the
weights (a(ξ1), . . . a(ξN)) is drawn and the deterministic constraints

a(ξi)T x ≤ β ∀i = 1 . . . , N (3)

are enforced. In [11] it is shown that if the sample size N is sufficiently large:

N ≥ 1
2ε2

(

log
(

1
δ

)

+ n log(2)
)

,

then any feasible solution to (3) satisfies the constraint (2) with probability at
least 1−δ. If the random weights of the items a1(ξ), a2(ξ), . . . an(ξ) are indepen-
dently distributed with means μ1 ≥ μ2 . . . ≥ μn, then the feasible region in (3)
may either be a TOMKS, or the constraints can be (slightly) relaxed to obey
the ordering property.

But the TOMKS may arise in more general situations as well. For a general
binary set X, if two knapsack inequalities aT

1 x ≤ b1 and aT
2 x ≤ b2 have non-zero

coefficients in very few of the same variables, their intersection may be totally-
ordered, and the (A)MCI would be applicable in this case. In the special case

Multi-cover Inequalities 195

where the multiple covers come from the same knapsack set, the (A)MCI can also
produce interesting inequalities. For example, the well-known (1, k)-configuration
inequalities for conv(Kknap) [13] are a special case of (A)MCI where all covers
come from the same inequality (see Proposition 4). We also give an example
where a facet of conv(Kknap) found by a new lifting procedure described in [10]
is a MCI.

A MCI is generated by a simple algorithm (given in Algorithm 1) that takes
as input a special family of covers C = {C1, C2, . . . Ck} that obeys a certain
maximality criterion (defined in Definition 3). For many types of cover families
C , the MCI may be given in closed-form. In the case that the family of covers C
is an antichain in a certain partial order, the resulting MCI has the interesting
property that it simultaneously cuts off at least two of the characteristic vectors
of the covers in C . We also give conditions under which the MCI yields a facet
for conv(K) in Sect. 5.

The MCI may be generated by simultaneously considering multiple knapsack
inequalities defining K. Another mechanism to generate inequalities taking into
account information from multiple constraints of the formulation is to aggregate
inequalities together, forming the set

A(A, b) :=
⋂

λ∈R
m
+

conv({x ∈ {0, 1}n | λT Ax ≤ λT b}).

Inequalities valid for A(A, b) are known as aggregation cuts, and have been shown
to be quite powerful from both an empirical [6] and theoretical [2] viewpoint.
The well-known Chvátal-Gomory (CG) cuts, lifted knapsack cover inequalities,
and weight inequalities [14] are all aggregation cuts. In Example 3, we show that
MCI are not aggregation cuts. Further, in Example 4, we show that MCI cannot
be obtained as a (rank-1) Chvátal-Gomory cut from the linear system consisting
of all minimal cover inequalities from K.

The paper is structured as follows: In Sect. 2, we define a certain type of
dominance relationship between covers that is necessary for MCI. The MCI is
defined in Sect. 3, where we also give many examples to demonstrate that MCIs
are not dominated by other well-known families of cutting-planes. In Sect. 4,
we propose a strengthening of MCI in the case that the cover-family forms an
antichain in a certain partially ordered set. Section 5 provides sufficient condition
for the MCI to be a facet-defining inequality for conv(K).

Notation. For a positive integer n, we denote by [n] := {1, . . . , n}. For x ∈ R
n,

supp(x) := {i ∈ [n] | xi �= 0} denotes the support of x. The characteristic vector
of a set S ⊆ [n] is denoted by χS . Therefore, given a TOMKS K, we say that a
set S ⊆ [n] is a cover for K if χS /∈ K. For a vector x ∈ R

n and a set S ⊆ [n],
we define x(S) :=

∑
i∈S xi. This in particular means x(∅) = 0. We denote the

power set of a set S by 2S , which is the set of all subsets of S.

196 A. Del Pia et al.

2 A Dominance Relation

In this section we define and provide some properties of a type of dominance
relationship between covers.

Definition 1 (Domination). For S1, S2 ⊆ [n], we say that S1 dominates
S2 and write S1 � S2, if there exists an injective function f : S2 → S1 with
f(i) ≤ i ∀i ∈ S2.

The dominance relation in Definition 1 is reflexive, antisymmetric, and tran-
sitive, so (2[n], �) forms a partially ordered set (poset). For two sets S1, S2 ⊆ [n],
we say S1 and S2 are comparable if S1 � S2 or S2 � S1.

The dominance relation has a natural use in the context of covers. In fact, if
C2 is a cover for a TOMKS K and C1 dominates C2, then C1 is also a cover for
K. Next, we present two technical lemmas. The proofs are technical and can be
found in the full version of the paper [5].

Lemma 1. Let S1, S2 ⊆ [n] with S1 �= S2. Then for any S′ ⊆ S1 ∩ S2, S1 � S2

if and only if S1 \ S′ � S2 \ S′.

Lemma 2. Let S ⊆ [n] and let S1, S2 ⊆ S. Then, S1 � S2 if and only if S \ S2 �
S \ S1.

3 Multi-cover Inequalities

Throughout this section, we consider a TOMKS K := {x ∈ {0, 1}n | Ax ≤ b},
and we introduce the multi-cover inequalities (MCIs), which form a novel family
of valid inequalities for K. Each MCI can be obtained from a special family
of covers {C1, . . . , Ck} for K that we call a multi-cover. In order to define a
multi-cover, we first introduce the discrepancy family.

Definition 2 (Discrepancy family). For a family of sets C = {C1, . . . , Ck},
we say that {C1 \∩k

h=1Ch, . . . , Ck \∩k
h=1Ch} is the discrepancy family of C , and

we denote it by D(C).

Now we can define the concept of a multi-cover.

Definition 3 (Multi-cover). Let C be a family of covers for K. We then say
that C is a multi-cover for K if for any set T ⊆ ∪D∈D(C)D with T /∈ D(C),
there exists some D′ ∈ D(C) such that T is comparable with D′.

For a given family of covers {C1, . . . , Ck} for K, throughout this paper, for
ease of notation we define C0 := ∩k

h=1Ch, C := ∪k
h=1Ch, C̄h := C\Ch for h ∈ [k],

and similarly T̄ := C \ T for any T ⊆ C.
We are now ready to introduce our multi-cover inequalities for K. These

inequalities are defined by the following algorithm.

Multi-cover Inequalities 197

Algorithm 1. Multi-cover inequality (MCI)
Input: A multi-cover {C1, . . . , Ck} for K.
Output: A multi-cover inequality.

1: Let C \ C0 = {i1, . . . , im}, with i1 < . . . < im.
2: Set αi := 1 if i ∈ {i1, . . . , im}, and αi := 0 otherwise.
3: for t = m − 1, . . . , 1 do
4: αit := maxh∈[k]:it∈Ch

max�∈C̄h:�>it
α� + 1.

5: for j ∈ C0 do
6: αj := minh∈[k] max

{
max�<j,l∈C̄h

α�,
∑

t>j,t∈C̄h
αt + 1

}
.

7: β := maxk
h=1 α(Ch) − 1.

8: return the inequality αT x ≤ β.

We remark that in Algorithm 1, in the case where we take the minimum or
maximum over an empty set (see Step 4 and 6), the corresponding minimum or
maximum is defaulted to take the value zero.

For the above algorithm, we have the following easy observations.

Observation 1. Given a multi-cover {Ch}k
h=1, Algorithm 1 performs a number

of operations that is polynomial in |C| and k. Furthermore, supp(α) = C.

The main result of this section is that, given a multi-cover for K, the corre-
sponding MCI is valid for conv(K). Before presenting the theorem, we will need
the following auxiliary result.

Proposition 1. Let {Ch}k
h=1 be a multi-cover and let αT x ≤ β be the associated

MCI. If there exists T ⊆ C \ C0, T /∈ {C̄h}k
h=1, with T � C̄h′ for some h′ ∈ [k],

then α(T) > α(C̄h′).

Proof. Let T and C̄h′ be the sets as assumed in the statement of this proposition,
with T � C̄h′ . Denote T0 := T ∩ C̄h′ , T1 := T \ T0, and T2 := C̄h′ \ T0. Then
T = T0 ∪T1, C̄h′ = T0 ∪T2. Since T �= C̄h′ and T � C̄h′ , then we know T1 �= ∅. By
Lemma 1, we know that T1�T2. If T2 = ∅, then α(T) = α(T0)+α(T1) > α(T0) =
α(C̄h′). Hence we assume T2 �= ∅. Denote T2 := {j1, . . . , jt}. Since T1 � T2 and
T1∩T2 = ∅, we know there exists {k1, . . . , kt} ⊆ T1 such that k1 < j1, . . . , kt < jt.

W.l.o.g., consider k1 and j1. By definition, there is k1 < j1, k1 /∈ C̄h′ , j1 ∈ C̄h′ ,
which is just saying: k1 < j1, k1 ∈ Ch′ , j1 ∈ C̄h′ . Therefore, j1 ∈ {
 |
 > k1,
 ∈
C̄h′ , k1 ∈ Ch′}. By Step 4 of Algorithm 1, we know that αk1 > αj1 . For the
remaining j2 and j2, . . . , kt and jt we can do the exact same argument and
obtain αk2 > αj2 , . . . , αkt

> αjt
.

Therefore, α(T) = α(T1) + α(T0) ≥ αk1 + . . . + αkt
+ α(T0) > αj1 + . . . +

αjt
+ α(T0) = α(C̄h′), which concludes the proof. �
Now we are ready to present the first main result of this paper.

Theorem 1. Given a multi-cover {Ch}k
h=1 for a TOMKS K, the MCI produced

by Algorithm 1 is valid for conv(K).

198 A. Del Pia et al.

Proof. Since supp(α) = C, in order to show that αT x ≤ β is valid to conv(K),
it suffices to show that, for any T ⊆ C with α(T) ≥ β + 1, T must be a
cover to K. Note that from Step 7 there is β + 1 = maxk

h=1 α(Ch), and for
any T1, T2 ⊆ C, α(T1) ≥ α(T2) is equivalent to α(T̄1) ≤ α(T̄2), furthermore
from Lemma 2, therefore it suffices for us to show that: for any T ⊆ C with
α(T̄) ≤ mink

h=1 α(C̄h), there must exist some h∗ ∈ [k] such that C̄h∗ � T̄ . We will
assume that T /∈ {Ch}k

h=1 since otherwise C̄h∗ �T̄ trivially holds. In the following,
the proof is subdivided into two cases, depending on whether T̄ ∩C0 = ∅ or not.

First, we consider the case T̄ ∩ C0 = ∅. In this case, there is C0 ⊆ T . by
Definition 3 of multi-cover, we know there must exist h∗ ∈ [k] such that either
Ch∗ \ C0 � T \ C0, or T \ C0 � Ch∗ \ C0. By the above assumption C0 ⊆ T and
Lemma 1, we know that either Ch∗ � T or T � Ch∗ . If T � Ch∗ , then Lemma 2
implies C̄h∗ �T̄ , which completes the proof. So we assume Ch∗ �T , or equivalently,
T̄ � C̄h∗ . Since T̄ ⊆ C \ C0 and T̄ /∈ {C̄h}k

h=1, By Proposition 1 we obtain that
α(T̄) > α(C̄h∗), and this contradicts to the assumption of α(T̄) ≤ mink

h=1 α(C̄h).
Next, we consider the case T̄ ∩ C0 �= ∅. In this case, we want to construct

a D̄ ⊆ C with D̄ ∩ C0 = ∅, α(D̄) ≤ α(T̄), and D̄ � T̄ . Then since α(T̄) ≤
mink

h=1 α(C̄h), we have α(D̄) ≤ mink
h=1 α(C̄h) where D̄ ∩ C0 = ∅. According to

our discussion in the previous case, we know there exists some h∗ ∈ [k] such that
C̄h∗ � D̄, which implies C̄h∗ � T̄ since � forms a partial order, and the proof is
completed.

Arbitrarily pick t∗ ∈ T̄ ∩ C0. Then by Step 6, we know there exists
h∗ ∈ [k] such that αt∗ = max

{
min�<t∗,�∈C̄h∗ α�,

∑
t>t∗,t∈C̄h∗ αt + 1

}
. If {
 ∈

C̄h∗ |
 < t∗} ⊆ T̄ , then we have α(T̄) ≥ ∑
�<t∗,�∈C̄h∗ α� + αt∗ , which is

at least
∑

�<t∗,�∈C̄h∗ α� +
∑

t>t∗,t∈C̄h∗ αt + 1. Since t∗ /∈ C̄h∗ , we know that
∑

�<t∗,�∈C̄h∗ α� +
∑

t>t∗,t∈C̄h∗ αt + 1 = α(C̄h∗) + 1. Hence α(T̄) > α(C̄h∗),
and this contradicts to the initial assumption of α(T̄) ≤ mink

h=1 α(C̄h). There-
fore we can find some
∗ ∈ C̄h∗ ,
∗ < t∗ such that
∗ /∈ T̄ . Now define
D̄ := T̄ ∪{
∗}\{t∗}. Since
∗ < t∗, clearly D̄ � T̄ . Also α(T̄)−α(D̄) = αt∗ −α�∗ ,
since αt∗ ≥ max�<t∗,�∈C̄h∗ α�, we know that α(T̄) − α(D̄) ≥ 0. If D̄ ∩ C0 = ∅,
then we are done. Otherwise, we can replace T̄ by D̄, consider any index in
D̄ ∩ C0 and do the above discussion one more time. Every time we are able to
obtain a set D̄ with |D̄ ∩ C0| decreasing by 1. In the end we will obtain a set D̄
with the desired property: D̄ ∩C0 = ∅, α(D̄) ≤ α(T̄), and D̄ � T̄ . This completes
the proof for the case T̄ ∩ C0 �= ∅.

Therefore, from the discussion for the above two cases, we have concluded
the proof of MCI αT x ≤ β being a valid inequality for conv(K). �

For some multi-covers with a special discrepancy family, we are able to write
the associated MCI in closed form. We provide two examples.

Example 1. Consider {C1, C2} with discrepancy family {{i1, it+1}, {i2, . . . , it}}
for some t ≥ 3, with i1 < . . . < it+1. Easy to verify that such {C1, C2} is a
multi-cover, and the obtained MCI is:

Multi-cover Inequalities 199

∑

i<i1,i∈C

(2t − 1)xi +
∑

i1≤i<i2,i∈C

(2t − 3)xi +
t∑

�=3

∑

i�−1<i<i�,i∈C

(2t − 2� + 3)xi

+
t∑

�=2

2xi� +
∑

it<i<it+1,i∈C

2xi + xit+1 +
∑

i>it+1,i∈C

2xi ≤ α(C1) − 1,

(4)

where α is the vector associated with the left-hand-side term. �
Example 2. Consider {C1, C2, C3} with discrepancy family {{i1, i3}, {i1, i4, i5},
{i2, i3, i5}}, with i1 < . . . < i5. Here the family of covers {C1, C2, C3} is a
multi-cover, and the obtained MCI is:

∑

i<i1,i∈C

5xi +
∑

i1≤i<i2,i∈C

3xi + 2xi2 +
∑

i2<i<i3,i∈C

3xi + 2xi3

+
∑

i3<i<i4,i∈C

2xi + xi4 +
∑

i4<i<i5,i∈C

2xi + xi5 +
∑

i>i5,i∈C

2xi ≤ α(C1) − 1,
(5)

where α is the vector associated with the left-hand-side term. �
Next, we present some illustrative examples to showcase the novelty of MCIs.

The first example shows that, unlike lifted cover inequalities or CG cuts, MCIs
are not aggregation cuts of the original linear system.

Example 3. Consider the TOMKS:

K := {x ∈ {0, 1}5 | 19x1 + 11x2 + 5x3 + 4x4 + 2x5 ≤ 31,

16x1 + 10x2 + 7x3 + 5x4 + 3x5 ≤ 30}.

Then {C1, C2} := {{1, 2, 5}, {1, 3, 4, 5}} is a multi-cover for K, point χC1 only
violates the first knapsack constraint, and point χC2 only violates the second
knapsack constraint. The associated MCI is

3x1 + 2x2 + x3 + x4 + x5 ≤ 5, (6)

and (6) is violated by both χC1 and χC2 .
Now consider an aggregation of the knapsack inequalities of K given by

λ1(19, 11, 5, 4, 2)T x + λ2(16, 10, 7, 5, 3)T x ≤ 31λ1 + 30λ2, where λ1, λ2 ≥ 0. For
any choice of λ1 ≥ 0, λ2 ≥ 0, it can be verified that C1 and C2 cannot both be
covers to the knapsack set given by this single inequality, so any aggregation cut
for K can cut off at most one of χC1 and χC2 . Therefore, the inequality (6) is not
an aggregation cut. In some cases, it may be possible to obtain an MCI as a CG
cut of the original linear system augmented with its minimal cover inequalities.
In this example, consider the set

KCI := {x ∈ {0, 1}5 | 19x1 + 11x2 + 5x3 + 4x4 + 2x5 ≤ 31,

16x1 + 10x2 + 7x3 + 5x4 + 3x5 ≤ 30,

x1 + x2 + x3 ≤ 2, x1 + x2 + x4 ≤ 2,

x1 + x2 + x5 ≤ 2, x1 + x3 + x4 + x5 ≤ 3}.

200 A. Del Pia et al.

The inequality (6) is indeed a CG cut with respect to KCI , as shown by multi-
pliers 1

12 · (19, 11, 5, 4, 2) + 1
4 · (1, 1, 1, 0, 0) + 1

3 · (1, 1, 0, 1, 0) + 1
2 · (1, 1, 0, 0, 1) +

1
3 · (1, 0, 1, 1, 1) = (3, 2, 1, 1, 1), 1

12 · 31 + 1
4 · 2 + 1

3 · 2 + 1
2 · 2 + 1

3 · 3 = 5.75. Hence
(3, 2, 1, 1, 1)T x ≤ �5.75� = 5 is a CG cut for KCI . �

Example 3 demonstrates that MCI can be obtained from multiple knapsack
sets simultaneously. Specifically, the inequality (6) is facet-defining for conv(K),
but it is neither valid for {x ∈ {0, 1}5 | 19x1 + 11x2 + 5x3 + 4x4 + 2x5 ≤ 31} nor
{x ∈ {0, 1}5 | 16x1 + 10x2 + 7x3 + 5x4 + 3x5 ≤ 30}. Example 3 also shows that
an MCI can be a CG cut for the linear system given by the original knapsack
constraints along with all their minimal cover inequalities. In the next example,
we will see that this is not always the case.

Example 4. Consider the following TOMKS:

K := {x ∈ {0, 1}8 | 28x1 + 24x2 + 20x3 + 19x4 + 15x5 + 10x6 + 7x7 + 6x8 ≤ 96,

27x1 + 24x2 + 21x3 + 19x4 + 13x5 + 12x6 + 7x7 + 4x8 ≤ 96}.

Consider the family of covers C1 = {2, 3, 4, 5, 6, 7, 8}, C2 = {1, 3, 4, 5, 6, 8}, C3 =
{1, 2, 3, 5, 6}, C4 = {1, 2, 3, 5, 7, 8}. We have C = [8], C0 = {3, 5}, and the
discrepancy family is D(C) = {{2, 4, 6, 7, 8}, {1, 4, 6, 8}, {1, 2, 6}, {1, 2, 7, 8}} =:
{D1,D2,D3,D4}.

First, we verify that C is a multi-cover. For any set S ⊆ C \ C0 and S /∈
D(C), if 1 ∈ S, |S| = 2, then it is clearly dominated by either D2,D3 or D4. If
1 ∈ S, |S| = 3, then either S � D3 or D3 � S. If 1 ∈ S, |S| = 4, then S must be
comparable with D2 or D3. If 1 ∈ S, |S| = 5, then S � D1. If 1 /∈ S, then clearly
D1 � S since S ⊆ D1. Hence for any S ⊆ C \ C0 and S /∈ D(C), S must be
comparable with some set in D(C). Therefore, C is a multi-cover.

When Algorithm 1 is applied to C , we obtain the inequality

αT x ≤ β := 4x1 + 3x2 + 3x3 + 2x4 + 3x5 + 2x6 + x7 + x8 ≤ 14, (7)

and it can be shown that (7) is a facet-defining inequality for conv(K).
Consider the linear system given by all the minimal cover inequalities for

K, as well as the original two linear constraints. We refer to this linear system
as KCI , which consists of 30 inequalities. Solving max{αT x | x ∈ KCI} gives
optimal value 15.307, so any corresponding CG cut with respect to KCI is αT x ≤
15, and it is weaker than inequality (7). �

Even when the cover-family consists of covers all coming from the same
knapsack inequality, the MCI can produce interesting inequalities. In the next
example, we show a MCI that cannot be obtained as a standard lifted cover
inequality, regardless of the lifting order.

Example 5 (Example 3 in [10]). Let K := {x ∈ {0, 1}5 | 10x1 + 7x2 + 7x3 +
4x4 + 4x5 ≤ 16}, and consider the multi-cover C := {{1, 3}, {1, 4, 5}, {2, 3, 5}}.
From inequality (5) of Example 2, we know that the corresponding MCI is

3x1 + 2x2 + 2x3 + x4 + x5 ≤ 4. (8)

Multi-cover Inequalities 201

The inequality (8) is the same inequality produced by the new lifting procedure
described in [10], and the authors of [10] state that (8) is both a facet of conv(K)
and cannot be obtained from any cover inequality by standard sequential lifting
methods, regardless of the lifting order. �

4 Antichain Multi-cover Inequalities

In this section we propose a way to strengthen MCI when the associated multi-
cover forms an antichain in a certain poset. Recall that in order theory, an
antichain is a subset of a poset such that any two distinct elements in the subset
are incomparable, and a maximal antichain is an antichain that is not a proper
subset of any other antichain.

Definition 4 (Antichain multi-cover). Let C be a family of covers for K.
Then we say C is an antichain multi-cover for K, if D(C) is a maximal antichain
of the poset (2∪D∈D(C)D, �).

We are now ready to define our antichain multi-cover inequalities (AMCIs)
by Algorithm 2. AMCIs have the interesting property (proved in Theorem 3)
that they cut off at least two characteristic vectors of covers in the antichain
multi-cover C .

Algorithm 2. Antichain multi-cover inequality (AMCI)
Input: An antichain multi-cover C := {C1, . . . , Ck} for K, and its MCI αT x ≤ β.
Output: An antichain multi-cover inequality.

1: Let C \ C0 = {i1, . . . , im}, with i1 < . . . < im.
2: if ∃h∗ ∈ [k] such that α(Ch∗) is the unique maximum of {α(Ch) | h ∈ [k]} then
3: Let it∗ be the minimum of {i1, . . . , im} such that

{h ∈ [k] : |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1} �= ∅.

4: δ := min{α(Ch∗) − α(Ch) : |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1}.
5: for t = 1, . . . , t∗ do
6: αit := αit + δ.

7: for j ∈ C0 do
8: αj := minh∈[k] max

{
max�<j,l∈C̄h

α�,
∑

t>j,t∈C̄h
αt + 1

}
.

9: β := maxk
h=1 α(Ch) − 1.

return the inequality αT x ≤ β.

Note that an AMCI is not necessarily different from its corresponding MCI,
it depends on if condition 2 is satisfied or not.

First, we show that Algorithm 2 can perform all required steps. The only
nontrivial step is Step 3. Thus, we only need to prove the following proposition.

202 A. Del Pia et al.

Proposition 2. In Step 3, for any h ∈ [k], there exists an index it∗ in
{i1, . . . , im} such that |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1.

Proof. First, we claim that there exists t◦ ∈ [m], such that

|Ch ∩ {i1, . . . , it◦}| − |Ch∗ ∩ {i1, . . . , it◦}| ≥ 1. (9)

We prove this claim by contradiction. Thus we assume that for every t ∈ [m] we
have |Ch ∩ {i1, . . . , it}| − |Ch∗ ∩ {i1, . . . , it}| ≤ 0. Let Ch \ C0 = {j1, . . . , j�} ⊆
{i1, . . . , im} with j1 < · · · < j�. To prove our claim it suffices to construct an
injective function f : Ch \C0 → Ch∗ \C0 such that f(j1) ≤ j1, . . . , f(j�) ≤ j�. In
fact, Definition 1 then implies Ch∗ \ C0 � Ch \ C0, which gives us a contradiction
since by Definition 4 of antichain multi-cover, the discrepancy family {Ch \
C0}h∈[k] forms an antichain. Let s1 ∈ [m] be an index such that is1 = j1. From
our assumption, we know that |Ch∗ ∩ {i1, . . . , is1}| ≥ |Ch ∩ {i1, . . . , is1}| = 1.
So we can find ir1 ∈ Ch∗ with ir1 ≤ is1 = j1, and let f(j1) := ir1 . Now let s2
such that is2 = j2. From our assumption, we know that |Ch∗ ∩ {i1, . . . , is2}| ≥
|Ch ∩ {i1, . . . , is2}| = 2, thus |(Ch∗ \ {ir1}) ∩ {i1, . . . , is2}| ≥ 1. So we can find
ir2 ∈ Ch∗ with ir2 �= ir1 and ir2 ≤ is2 = j2. We then set f(j2) := ir2 . Recursively,
we can then construct an injective function f : Ch \ C0 → Ch∗ \ C0 such that
f(j1) ≤ j1, . . . , f(j�) ≤ j�. This concludes the proof of (9).

For every t ∈ [m − 1], we clearly have 0 ≤ |Ch ∩ {i1, . . . , it+1}| − |Ch ∩
{i1, . . . , it}| ≤ 1, and the same observation holds if we replace h with h∗. Thus

−1 ≤ (|Ch ∩ {i1, . . . , it+1}| − |Ch∗ ∩ {i1, . . . , it+1}|)
− (|Ch ∩ {i1, . . . , it}| − |Ch∗ ∩ {i1, . . . , it}|) ≤ 1.

From |Ch ∩{i1}|−|Ch∗ ∩{i1}| ≤ 1 and (9), we then obtain that there must exist
some t∗ ∈ [t◦], such that |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1. �

Next, we show that AMCIs are valid for K. The validity proof is analogous
to that of Theorem 1, which also requires the following auxiliary result.

Proposition 3. Let {Ch}k
h=1 be an antichain multi-cover and let αT x ≤ β be

the associated AMCI. If there exists T ⊆ C \ C0, T /∈ {C̄h}k
h=1, with T � C̄h′ for

some h′ ∈ [k], then α(T) > α(C̄h′).

Proof. We will assume that the condition at Step 2 in Algorithm 2 is satisfied,
since if not, then the AMCI coincides with its MCI, and the statement of this
proposition coincides with Proposition 1. Let T and C̄h′ be the sets as assumed in
the statement of this proposition, with T �C̄h′ . Denote T0 := T ∩C̄h′ , T1 := T \T0,
and T2 := C̄h′ \ T0. Then T = T0 ∪ T1, C̄h′ = T0 ∪ T2. Since T �= C̄h′ and
T � C̄h′ , then we know T1 �= ∅. By Lemma 1, we know that T1 � T2. If T2 = ∅,
then α(T) = α(T0) + α(T1) > α(T0) = α(C̄h′). Hence we assume T2 �= ∅.
Denote T2 := {j1, . . . , jt}. Since T1 � T2 and T1 ∩ T2 = ∅, we know there exists
{k1, . . . , kt} ⊆ T1 such that k1 < j1, . . . , kt < jt.

Let γT x ≤ θ be the MCI of antichain multi-cover {Ch}k
h=1. From the proof

of Proposition 1, we know that γk1 > γj1 , . . . , γkt
> γjt

. By Step 5 and 6, we

Multi-cover Inequalities 203

know for any i ∈ C \ C0, αi = γi + δ · 1{i ≤ it∗}. Since k1 < j1, . . . , kt < jt,
therefore we have 1{k1 ≤ it∗} ≥ 1{j1 ≤ it∗}, . . . ,1{kt ≤ it∗} ≥ 1{jt ≤ it∗}.
Hence αk1 = γk1 + δ · 1{k1 ≤ it∗} > γj1 + δ · 1{j1 ≤ it∗} = αj1 , and similarly
there is also αk2 > αj2 , . . . , αkt

> αjt
.

Therefore, α(T) = α(T1) + α(T0) ≥ αk1 + . . . + αkt
+ α(T0) > αj1 + . . . +

αjt
+ α(T0) = α(T2) + α(T0) = α(C̄h′). �
Given the above proposition, the proof of the following theorem is exactly

the same as that of Theorem 1. For the completeness of this paper, we present
its proof in the following.

Theorem 2. Given an antichain multi-cover C for a TOMKS K, the AMCI
produced by Algorithm 2 is valid for conv(K).

Proof. Since supp(α) = C, in order to show that AMCI αT x ≤ β is valid to
conv(K), it suffices to show that, for any T ⊆ C with α(T) ≥ β + 1, T must
be a cover to K. Note that from Step 7 there is β + 1 = maxk

h=1 α(Ch), and
for any T1, T2 ⊆ C, α(T1) ≥ α(T2) is equivalent to α(T̄1) ≤ α(T̄2), furthermore
from Lemma 2, therefore it suffices for us to show that: for any T ⊆ C with
α(T̄) ≤ mink

h=1 α(C̄h), there must exist some h∗ ∈ [k] such that C̄h∗ � T̄ . We will
assume that T /∈ {Ch}k

h=1 since otherwise C̄h∗ �T̄ trivially holds. In the following,
the proof is subdivided into two cases, depending on whether T̄ ∩C0 = ∅ or not.

First, we consider the case T̄ ∩ C0 = ∅. In this case, there is C0 ⊆ T . by
Definition 3 of multi-cover, we know there must exist h∗ ∈ [k] such that either
Ch∗ \ C0 � T \ C0, or T \ C0 � Ch∗ \ C0. By the above assumption C0 ⊆ T and
Lemma 1, we know that either Ch∗ � T or T � Ch∗ . If T � Ch∗ , then Lemma 2
implies C̄h∗ �T̄ , which completes the proof. So we assume Ch∗ �T , or equivalently,
T̄ � C̄h∗ . Since T̄ ⊆ C \ C0 and T̄ /∈ {C̄h}k

h=1, By Proposition 3 we obtain that
α(T̄) > α(C̄h∗), and this contradicts to the assumption of α(T̄) ≤ mink

h=1 α(C̄h).
Next, we consider the case T̄ ∩ C0 �= ∅. In this case, we want to construct

a D̄ ⊆ C with D̄ ∩ C0 = ∅, α(D̄) ≤ α(T̄), and D̄ � T̄ . Then since α(T̄) ≤
mink

h=1 α(C̄h), we have α(D̄) ≤ mink
h=1 α(C̄h) where D̄ ∩ C0 = ∅. According to

our discussion in the previous case, we know there exists some h∗ ∈ [k] such that
C̄h∗ � D̄, which implies C̄h∗ � T̄ since � forms a partial order, and the proof is
completed.

Arbitrarily pick t∗ ∈ T̄ ∩ C0. Then by Step 6, we know there exists
h∗ ∈ [k] such that αt∗ = max

{
min�<t∗,�∈C̄h∗ α�,

∑
t>t∗,t∈C̄h∗ αt + 1

}
. If {
 ∈

C̄h∗ |
 < t∗} ⊆ T̄ , then we have α(T̄) ≥ ∑
�<t∗,�∈C̄h∗ α� + αt∗ , which is

at least
∑

�<t∗,�∈C̄h∗ α� +
∑

t>t∗,t∈C̄h∗ αt + 1. Since t∗ /∈ C̄h∗ , we know that
∑

�<t∗,�∈C̄h∗ α� +
∑

t>t∗,t∈C̄h∗ αt + 1 = α(C̄h∗) + 1. Hence α(T̄) > α(C̄h∗),
and this contradicts to the initial assumption of α(T̄) ≤ mink

h=1 α(C̄h). There-
fore we can find some
∗ ∈ C̄h∗ ,
∗ < t∗ such that
∗ /∈ T̄ . Now define
D̄ := T̄ ∪{
∗}\{t∗}. Since
∗ < t∗, clearly D̄ � T̄ . Also α(T̄)−α(D̄) = αt∗ −α�∗ ,
since αt∗ ≥ max�<t∗,�∈C̄h∗ α�, we know that α(T̄) − α(D̄) ≥ 0. If D̄ ∩ C0 = ∅,
then we are done. Otherwise, we can replace T̄ by D̄, consider any index in
D̄ ∩ C0 and do the above discussion one more time. Every time we are able to

204 A. Del Pia et al.

obtain a set D̄ with |D̄ ∩ C0| decreasing by 1. In the end we will obtain a set D̄
with the desired property: D̄ ∩C0 = ∅, α(D̄) ≤ α(T̄), and D̄ � T̄ . This completes
the proof of the case T̄ ∩ C0 �= ∅. �

The next theorem shows that each AMCI cuts off at least two characteristic
vectors of covers from the associated antichain multi-cover.

Theorem 3. Given an antichain multi-cover C , the AMCI produced by Algo-
rithm 2 is violated by at least two characteristic vectors of covers in C .

Proof. Let C := {Ch}h∈[k]. When the “if” condition 2 does not hold, meaning
there already exist at least two covers Ch1 and Ch2 from C , such that α(Ch1) =
α(Ch2) = maxk

h=1 α(Ch). Then according to Step 9, we know that αT x ≤ β cuts
off χCh1 and χCh2 .

Now assuming the condition 2 is satisfied. For any i ∈ C \ C0, denote the
intermediate coefficient of αi at Step 2 before the updating operation 5 and 6
to be γi. Then according to the algorithm, there is γ(Ch∗) = maxk

h=1 γ(Ch), δ =
min{γ(Ch∗) − γ(Ch) : |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1} where
it∗ is defined by Step 3, and αi = γi + δ for any i = i1, . . . , it∗ . Let Ch∗∗

be the cover which satisfies |Ch∗∗ ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1
and γ(Ch∗) − γ(Ch∗∗) = δ. Next we are going to show that: α(Ch∗) =
α(Ch∗∗) = maxk

h=1 α(Ch). Since α(Ch∗)−α(Ch∗∗) = γ(Ch∗)−γ(Ch∗∗)+δ ·|Ch∗ ∩
{i1, . . . , it∗}| − δ · |Ch∗∗ ∩ {i1, . . . , it∗}|, then we obtain that α(Ch∗) = α(Ch∗∗).

Claim. α(Ch∗) = maxk
h=1 α(Ch).

Proof of claim. Arbitrarily pick h ∈ [k], h �= h∗, h �= h∗∗, we want to show that
α(Ch∗) ≥ α(Ch).

If |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| = 1, then by definition of δ, we
have γ(Ch∗) − γ(Ch) ≥ δ. Therefore α(Ch∗) − α(Ch) = γ(Ch∗) + δ · |Ch∗ ∩
{i1, . . . , it∗}| − (γ(Ch) + δ · |Ch ∩ {i1, . . . , it∗}|) = γ(Ch∗) − γ(Ch) − δ · (|Ch ∩
{i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}|) = γ(Ch∗) − γ(Ch) − δ ≥ 0.

If |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| ≤ 0, then α(Ch∗) − α(Ch) =
γ(Ch∗)−γ(Ch)− δ · (|Ch ∩{i1, . . . , it∗}|− |Ch∗ ∩{i1, . . . , it∗}|) ≥ 0. Here the last
inequality is because γ(Ch∗) = maxk

h=1 γ(Ch).
If |Ch ∩ {i1, . . . , it∗}| − |Ch∗ ∩ {i1, . . . , it∗}| > 1, then because |Ch ∩ {i1}| −

|Ch∗ ∩ {i1}| ≤ 1 and (|Ch ∩ {i1, . . . , it+1}| − |Ch∗ ∩ {i1, . . . , it+1}|) − (|Ch ∩
{i1, . . . , it}| − |Ch∗ ∩ {i1, . . . , it}|) ≤ 1, we know there must exist some i�∗ < it∗ ,
such that |Ch ∩{i1, . . . , i�∗}|− |Ch∗ ∩{i1, . . . , i�∗}| = 1, which contradicts to the
minimum choice of it∗ at Step 3. �
Hence we have shown that α(Ch∗) = α(Ch∗∗) = maxk

h=1 α(Ch). According to
the definition of β at Step 9, we know that αT x ≤ β cuts off χCh∗ and χCh∗∗ . �

Note that the multi-covers in Example 1 and Example 2 are both antichain
multi-covers, and the corresponding MCIs are violated by the characteristic vec-
tors of all covers. Therefore the AMCIs of those examples coincide with their
MCIs. Next, we give an example where an AMCI is different from the corre-
sponding MCI.

Multi-cover Inequalities 205

Example 6. Consider {C1, C2} with discrepancy family {{i1}, {i2, . . . , it}} for
some t ≥ 3, with i1 < . . . < it. {C1, C2} is obviously an antichain multi-cover,
and the obtained MCI is:

γT x :=
∑

i<i1,i∈C

3xi +
∑

i1≤i<i2,i∈C

2xi +
t∑

�=3

∑

i�−1<i<i�,i∈C

2xi

+
t∑

�=2

xi� +
∑

i>it,i∈C

xi ≤ γ(C2) − 1.

(10)

This MCI is different from the corresponding AMCI obtained by Algorithm 2:

αT x :=
∑

i<i1,i∈C

txi +
∑

i1≤i<i2,i∈C

(t − 1)xi +
t∑

�=3

∑

i�−1<i<i�,i∈C

(t − � + 2)xi

+
t∑

�=2

xi� +
∑

i>it,i∈C

xi ≤ α(C1) − 1.

(11)

�
The next result states that the well-known (1, k)-configuration inequality can

be obtained from the AMCI (11) in Example 6.

Proposition 4. Consider a knapsack set K = {x ∈ {0, 1}n | aT x ≤ b}, a
nonempty subset N ⊆ [n], and t ∈ [n] \ N . Assume that

∑
i∈N ai ≤ b and

that H ∪ {t} is a minimal cover for all H ⊂ N with |H| = k. Then for any
T (r) ⊆ N with |T (r)| = r, k ≤ r ≤ |N |, the (1, k)-configuration inequality
(r − k + 1)xt +

∑
j∈T (r) xj ≤ r can be obtained from an AMCI (11) associated

with an antichain multi-cover of a knapsack set.

Proof. When r = k, then the above inequality reduces to a cover inequality.
Hence we assume r > k. W.l.o.g. assuming a1 ≥ . . . ≥ an. Consider a new
knapsack set K ′ := {x ∈ {0, 1}n+1 | a′T x ≤ b}, with a′

i = ai ∀i ≤ t, a′
t+1 =

at, a
′
j = aj−1 ∀j > t + 1. Then clearly there is also a′

1 ≥ . . . ≥ a′
n+1.

Since for any H ⊂ N with |H| = k, H ∪{t} is a cover to K, we know for any
j ∈ N,N ∪ {t} \ {j} is also a cover to K, which means

∑
i∈N ai − aj + at > b.

From the assumption that
∑

i∈N ai ≤ b, we have at > aj , or equivalently, t < j
for any j ∈ N . Now for any T (r) ⊆ N with |T (r)| = r, k ≤ r ≤ |N |, denote
T (r) := {j1, . . . , jr} with j1 < . . . < jr, so we have t < j1 from above. Then
consider C1 := {t}∪{jr−k+1, . . . , jr}, C ′

1 := {t}∪{jr−k+1 +1, . . . , jr +1}, C ′
2 :=

{t+1}∪{j1+1, . . . , jr+1}. Since {jr−k+1, . . . , jr} ⊂ N with |{jr−k+1, . . . , jr}| =
k, we know that C1 is a cover to K, so C ′

1 is a cover to K ′ from the construction
of K ′. Furthermore it is obvious that C ′

2 is also a cover to K ′ since a′
t+1 = a′

t.
Note that the discrepancy family of {C ′

1, C
′
2} is {{t}, {t+1, j1+1, . . . , jr−k +1}},

then from the AMCI (11) of Example 6, we obtain the AMCI associated with
{C ′

1, C
′
2} for K ′:

(r − k + 1)xt + xt+1 +
r∑

�=1

xj�+1 ≤ r.

206 A. Del Pia et al.

Since K can be obtained by simply projecting out of the xt+1 variable of K ′,
therefore we obtain that the following inequality is valid for K:

(r − k + 1)xt +
r∑

�=1

xj�
= (r − k + 1)xt +

∑

j∈T (r)

xj ≤ r.

�

5 Facet-Inducing MCI

In this section we provide a sufficient condition for the the MCI to define a facet
of conv(K). The proof can be found in the full version of the paper [5].

Given a multi-cover {C1, . . . , Ck} with its corresponding MCI αT x ≤ β, we
denote by {it,1, . . . , it,nt

} := {i ∈ C \ C0 | αi = t}, with it,1 < . . . < it,nt
.

Theorem 4. Let {C1, . . . , Ck} be a multi-cover for a TOMKS K, and let αT x ≤
β be the associated MCI. Assume that the following conditions hold:

1. C0 = ∅;
2. For each h ∈ [k], cover Ch is a minimal cover;
3. For any t = 2, . . . ,maxn

i=1 αi, there exist some it−1,�t
/∈ Cht

∈ {Ch}k
h=1 with

it,1 ∈ Cht
and i1,n1 ∈ Cht

, such that Cht
∪ {it−1,�t

} \ {it,nt
} is not a cover;

4. There exists some Ch1 ∈ {Ch}k
h=1, such that i1,1 ∈ Ch1 and for any i′ /∈ C,

Ch1 ∪ {i′} \ {i1,1} is not a cover.
5. For any t = 1, . . . ,maxn

i=1 αi, α(Cht
) = β + 1.

Then αT x ≤ β is a facet-defining inequality for conv(K).

Example 7. Consider the TOMKS and the multi-cover in Example 5. We have
C1 = {1, 3}, C2 = {1, 4, 5}, C3 = {2, 3, 5}, and the associated MCI αT x ≤ β is
3x1 + 2x2 + 2x3 + x4 + x5 ≤ 4, here i1,1 = 4, i1,2 = 5, i2,1 = 2, i2,2 = 3, i3,1 = 1.

Clearly condition 1 in Theorem 4 holds. Since α(C1)−α3 = 10 ≤ 16, α(C2)−
α5 = 14 ≤ 16, α(C3) − α5 = 14 ≤ 16, condition 2 holds as well. For t = 2, let
Ch2 = C3, then i1,1 /∈ Ch2 , i1,2 ∈ Ch2 , i2,1 ∈ Ch2 , and Ch2 ∪ {i1,1} \ {i2,2} =
{2, 4, 5} is not a cover. For t = 3, let Ch3 = C2, then i2,1 /∈ Ch3 , i1,2 ∈ Ch3 , i3,1 ∈
Ch3 , and Ch3∪{i2,1}\{i3,1} = {2, 4, 5} is not a cover. Therefore condition 3 holds.
Let Ch1 = C2, then i1,1 ∈ Ch1 , since here C = [5], condition 4 holds. Lastly,
α(Ch1) = α(Ch2) = α(Ch3) = 5, so condition 5 also holds. Hence Theorem 4
yields that this MCI is a facet-defining inequality for conv(K).

6 Conclusion

In this work, we give a new family of valid inequalities for the intersection of
knapsack sets and demonstrate several ways in which the inequalities are not
implied by other known cutting-plane methods. We are aware of very little work
that explicitly studies the polyhedral structure of the intersection of multiple
knapsack sets, and we hope the ideas presented here will give rise to new methods
for generating strong valid inequalities for complex binary sets that arise in
practical settings.

Multi-cover Inequalities 207

Acknowledgements. A. Del Pia is partially funded by ONR grant N00014-19-1-2322.
Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the Office of Naval
Research. J. Linderoth and H. Zhu are in part supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR)
under Contract DEAC02-06CH11347.

References

1. Balas, E.: Facets of the knapsack polytope. Math. Program. 8(1), 146–164 (1975)
2. Bodur, M., Del Pia, A., Dey, S., Molinaro, M., Pokutta, S.: Aggregation-based

cutting-planes for packing and covering integer programs. Math. Program. 171,
331–359 (2018)

3. Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE
Trans. Autom. Control 51, 742–753 (2006)

4. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear pro-
gramming problems. Oper. Res. 31(5), 803–834 (1983)

5. Del Pia, A., Linderoth, J., Zhu, H.: Multi-cover inequalities for totally-ordered mul-
tiple knapsack sets. Optimization Online (2020). http://www.optimization-online.
org/DB HTML/2020/11/8107.html

6. Fukasawa, R., Goycoolea, M.: On the exact separation of mixed integer knapsack
cuts. Math. Program. 128, 19–41 (2011)

7. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Lifted cover inequalities for 0–1
integer programs: computation. INFORMS J. Comput. 10(4), 427–437 (1998)

8. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facet of regular 0–1 polytopes. Math.
Program. 8(1), 179–206 (1975)

9. Hojny, C., et al.: Knapsack polytopes: a survey. Ann. Oper. Res. 292, 469–517
(2020)

10. Letchford, A.N., Souli, G.: On lifted cover inequalities: a new lifting procedure
with unusual properties. Oper. Res. Lett. 47(2), 83–87 (2019)

11. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with
probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)

12. Nemirovski, A., Shapiro, A.: Scenario approximation of chance constraints. In:
Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design
Under Uncertainty. pp. 3–48. Springer, London (2005) https://doi.org/10.1007/1-
84628-095-8 1

13. Padberg, M.W.: (1, k)-configurations and facets for packing problems. Math. Pro-
gram. 18(1), 94–99 (1980)

14. Weismantel, R.: On the 0/1 knapsack polytope. Math.l Program. 77(3), 49–68
(1997)

15. Wolsey, L.A.: Facets and strong valid inequalities for integer programs. Oper. Res.
24(2), 367–372 (1976)

http://www.optimization-online.org/DB_HTML/2020/11/8107.html
http://www.optimization-online.org/DB_HTML/2020/11/8107.html
https://doi.org/10.1007/1-84628-095-8_1
https://doi.org/10.1007/1-84628-095-8_1

Semi-streaming Algorithms
for Submodular Matroid Intersection

Paritosh Garg(B), Linus Jordan, and Ola Svensson

EPFL, Lausanne, Switzerland
{paritosh.garg,ola.svensson}@epfl.ch, linus.jordan@bluewin.ch

Abstract. While the basic greedy algorithm gives a semi-streaming
algorithm with an approximation guarantee of 2 for the unweighted
matching problem, it was only recently that Paz and Schwartzman
obtained an analogous result for weighted instances. Their approach is
based on the versatile local ratio technique and also applies to gener-
alizations such as weighted hypergraph matchings. However, the frame-
work for the analysis fails for the related problem of weighted matroid
intersection and as a result, the approximation guarantee for weighted
instances did not match the factor 2 achieved by the greedy algorithm
for unweighted instances. Our main result closes this gap by developing
a semi-streaming algorithm with an approximation guarantee of 2+ε for
weighted matroid intersection, improving upon the previous best guar-
antee of 4 + ε. Our techniques also allow us to generalize recent results
by Levin and Wajc on submodular maximization subject to matching
constraints to that of matroid-intersection constraints.

While our algorithm is an adaptation of the local ratio technique used
in previous works, the analysis deviates significantly and relies on struc-
tural properties of matroid intersection, called kernels. Finally, we also
conjecture that our algorithm gives a (k+ε) approximation for the inter-
section of k matroids but prove that new tools are needed in the analysis
as the used structural properties fail for k ≥ 3.

1 Introduction

For large problems, it is often not realistic that the entire input can be stored in
random access memory so more memory efficient algorithms are preferable. A
popular model for such algorithms is the (semi-)streaming model (see e.g. [13]):
the elements of the input are fed to the algorithm in a stream and the algorithm
is required to have a small memory footprint.

This research was supported by the Swiss National Science Foundation project 200021-
184656 “Randomness in Problem Instances and Randomized Algorithms.”

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 208–222, 2021.
https://doi.org/10.1007/978-3-030-73879-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_15

Semi-streaming Algorithms for Submodular Matroid Intersection 209

Consider the classic maximum matching problem in an undirected graph
G = (V,E). An algorithm in the semi-streaming model1 is fed the edges
one-by-one in a stream e1, e2, . . . , e|E| and at any point of time the algorithm
is only allowed O(|V |polylog(|V |)) bits of storage. The goal is to output a large
matching M ⊆ E at the end of the stream. Note that the allowed memory usage
is sufficient for the algorithm to store a solution M but in general it is much
smaller than the size of the input since the number of edges may be as many as
|V |2/2. Indeed, the intuitive difficulty in designing a semi-streaming algorithm is
that the algorithm needs to discard many of the seen edges (due to the memory
restriction) without knowing the future edges and still return a good solution at
the end of the stream.

For the unweighted matching problem, the best known semi-streaming algo-
rithm is the basic greedy approach:

Initially, let M = ∅. Then for each edge e in the stream, add it to M if
M ∪ {e} is a feasible solution, i.e., a matching; otherwise the edge e is
discarded.

The algorithm uses space O(|V | log |V |) and a simple proof shows that it
returns a 2-approximate solution in the unweighted case, i.e., a matching of size
at least half the size of an maximum matching. However, this basic approach
fails to achieve any approximation guarantee for weighted graphs.

Indeed, for weighted matchings, it is non-trivial to even get a small constant-
factor approximation. One way to do so is to replace edges if we have a much
heavier edge. This is formalized in [6] who get a 6-approximation. Later, [12]
improved this algorithm to find a 5.828-approximation; and, with a more involved
technique, [4] provided a (4 + ε)-approximation.

It was only in recent breakthrough work [14] that the gap in the approxima-
tion guarantee between unweighted and weighted matchings was closed. Specif-
ically, [14] gave a semi-streaming algorithm for weighted matchings with an
approximation guarantee of 2 + ε for every ε > 0. Shortly after, [9] came up
with a simplified analysis of their algorithm, reducing the memory requirement
from Oε(|V | log2 |V |) to Oε(|V | log |V |). These results for weighted matchings are
tight (up to the ε) in the sense that any improvement would also improve the
state-of-the-art in the unweighted case, which is a long-standing open problem.

The algorithm of [14] is an elegant use of the local ratio technique ([1])
([2]) in the semi-streaming setting. While this technique is very versatile and
it readily generalizes to weighted hypergraph matchings, it is much harder to
use it for the related problem of weighted matroid intersection. This is perhaps
surprising as many of the prior results for the matching problem also applies to
the matroid intersection problem in the semi-streaming model (see Sect. 2 for
definitions). Indeed, the greedy algorithm still returns a 2-approximate solution
1 This model can also be considered in the multi-pass setting when the algorithm is

allowed to take several passes over the stream. However, in this work we focus on
the most basic and widely studied setting in which the algorithm takes a single pass
over the stream.

210 P. Garg et al.

in the unweighted case and the algorithm in [4] returns a (4 + ε)-approximate
solution for weighted instances. So, prior to our work, the status of the matroid
intersection problem was that of the matching problem before [14].

We now describe on a high-level the reason that the techniques from [14] are
not easily applicable to matroid intersection and our approach for dealing with
this difficulty. The approach in [14] works in two parts, first certain elements of
the stream are selected and added to a set S, and then at the end of the stream
a matching M is computed by the greedy algorithm that inspects the edges of
S in the reverse order in which they were added. This way of constructing the
solution M greedily by going backwards in time is a standard framework for
analyzing algorithms based on the local ratio technique. Now in order to adapt
their algorithm to matroid intersection, recall that the bipartite matching prob-
lem can be formulated as the intersection of two partition matroids. We can
thus reinterpret their algorithm and analysis in this setting. Furthermore, after
this reinterpretation, it is not too hard to define an algorithm that works for
the intersection of any two matroids. However, bipartite matching is a special
case of matroid intersection which captures a rich set of seemingly more com-
plex problems. This added expressiveness causes the analysis and the standard
framework for analyzing local ratio algorithms to fail. Specifically, we prove that
a solution formed by running the greedy algorithm on S in the reverse order (as
done for the matching problem) fails to give any constant-factor approximation
guarantee for the matroid intersection problem. To overcome this and to obtain
our main result, we make a connection to a concept called matroid kernels (see
[7] for more details about kernels), which allows us to, in a more complex way,
identify a subset of S with an approximation guarantee of 2 + ε.

Finally, for the intersection of more than two matroids, the same approach
in the analysis does not work, because the notion of matroid kernel does not
generalize to more than two matroids. However, we conjecture that the subset S
generated for the intersection of k matroids still contains a (k+ε)-approximation.
Currently, the best approximation results are a (k2 + ε)-approximation from [4]
and a (2(k +

√
k(k − 1)) − 1)-approximation from [3]. For k = 3, the former is

better, giving a (9 + ε)-approximation. For k > 3, the latter is better, giving an
O(k)-approximation.

Generalization to Submodular Functions. Very recently, Levin and Wajc [11]
obtained improved approximation ratios for matching and b-matching problems
in the semi-streaming model with respect to submodular functions. Specifically,
they get a (3+2

√
2)-approximation for monotone submodular b-matching, (4+

3
√

2)-approximation for non-monotone submodular matching, and a (3 + ε)-
approximation for maximum weight (linear) b-matching. In our paper, we are
able to extend our algorithm for weighted matroid intersection to work with
submodular functions by combining our and their ideas. In fact, we are able
to generalize all their results to the case of matroid intersection with better or
equal2 approximation ratios: we get (3 + 2

√
2 + δ)-approximation for monotone

2 One can get rid of the δ factor if we assume that the function value is polynomially
bounded by |E|, an assumption made by [11].

Semi-streaming Algorithms for Submodular Matroid Intersection 211

submodular matroid intersection, (4+3
√

2+δ)-approximation for non-monotone
submodular matroid intersection and (2+ε)-approximation for maximum weight
(linear) matroid intersection. Due to space limitations, we refer the reader to the
full version [8] of our paper for this generalization.

Outline. In Sect. 2, we introduce basic matroid concepts and we formally
define the weighted matroid intersection problem in the semi-streaming model.
Section 3 is devoted to our main result. Here, we adapt the algorithm of [14]
without worrying about the memory requirements, show why the standard anal-
ysis fails, and then give our new analysis to get a 2-approximation. We then
make the obtained algorithm memory efficient in Sect. 4. Finally, in Sect. 5, we
discuss the case of more than two matroids.

2 Preliminaries

Matroids. We define and give a brief overview of the basic concepts related to
matroids that we use in this paper. For a more comprehensive treatment, we
refer the reader to [15]. A matroid is a tuple M = (E, I) consisting of a finite
ground set E and a family I ⊆ 2E of subsets of E satisfying:

– if X ⊆ Y, Y ∈ I, then X ∈ I; and
– if X ∈ I, Y ∈ I and |Y | > |X|, then ∃ e ∈ Y \ X such that X ∪ {e} ∈ I.

The elements in I (that are subsets of E) are referred to as the independent sets
of the matroid and the set E is referred to as the ground set. With a matroid
M = (E, I), we associate the rank function rankM : 2E → N and the span
function spanM : 2E → 2E defined as follows for every E′ ⊆ E,

rankM (E′) = max{|X| | X ⊆ E′ and X ∈ I},

spanM (E′) = {e ∈ E | rankM (E′ ∪ {e}) = rankM (E′)}.

We simply write rank(·) and span(·) when the matroid M is clear from the
context. In words, the rank function equals the size of the largest independent
set when restricted to E′ and the span function equals the elements in E′ and
all elements that cannot be added to a maximum cardinality independent set
of E′ while maintaining independence. The rank of the matroid equals rank(E),
i.e., the size of the largest independent set.

The Weighted Matroid Intersection Problem in the Semi-Streaming Model. In
the weighted matroid intersection problem, we are given two matroids M1 =
(E, I1),M2 = (E, I2) on a common ground set E and a non-negative weight
function w : E → R≥0 on the elements of the ground set. The goal is to find a
subset X ⊆ E that is independent in both matroids, i.e., X ∈ I1 and X ∈ I2,
and whose weight w(X) =

∑
e∈X w(e) is maximized.

In seminal work [5], Edmonds gave a polynomial-time algorithm for solving
the weighted matroid intersection problem to optimality in the classic model of

212 P. Garg et al.

computation when the whole input is available to the algorithm throughout the
computation. In contrast, the problem becomes significantly harder and tight
results are still eluding us in the semi-streaming model where the memory foot-
print of the algorithm and its access pattern to the input are restricted. Specif-
ically, in the semi-streaming model the ground set E is revealed in a stream
e1, e2, . . . , e|E| and at time i the algorithm gets access to ei and can perform
computation based on ei and its current memory but without knowledge of
future elements ei+1, . . . , e|E|. The algorithm has independence-oracle access to
the matroids M1 and M2 restricted to the elements stored in the memory, i.e., for
a set of such elements, the algorithm can query whether the set is independent
in each matroid. The goal is to design an algorithm such that (i) the memory
usage is near-linear O((r1 + r2) polylog(r1 + r2)) at any time, where r1 and r2
denote the ranks of the input matroids M1 and M2, respectively, and (ii) at
the end of the stream the algorithm should output a feasible solution X ⊆ E,
i.e., a subset X that satisfies X ∈ I1 and X ∈ I2, of large weight w(X). We
remark that the memory requirement O((r1 + r2) polylog(r1 + r2)) is natural as
r1 + r2 = |V | when formulating a bipartite matching problem as the intersection
of two matroids3.

The difficulty in designing a good semi-streaming algorithm is that the mem-
ory requirement is much smaller than the size of the ground set E and thus the
algorithm must intuitively discard many of the elements without knowledge of
the future and without significantly deteriorating the weight of the final solu-
tion X. The quality of the algorithm is measured in terms of its approximation
guarantee: an algorithm is said to have an approximation guarantee of α if it is
guaranteed to output a solution X, no matter the input and the order of the
stream, such that w(X) ≥ OPT/α where OPT denotes the weight of an optimal
solution to the instance. As aforementioned, our main result in this paper is a
semi-streaming algorithm with an approximation guarantee of 2 + ε, for every
ε > 0, improving upon the previous best guarantee of 4 + ε [4].

3 The Local Ratio Technique for Weighted Matroid
Intersection

In this section, we first present the local ratio algorithm for the weighted match-
ing problem that forms the basis of the semi-streaming algorithm in [14]. We
then adapt it to the weighted matroid intersection problem. While the algo-
rithm is fairly natural to adapt to this setting, we give an example in Sect. 3.2
that shows that the same techniques as used for analyzing the algorithm for

3 The considered problem can also be formulated as the problem of finding an inde-
pendent set in one matroid, say M1, and maximizing a submodular function which
would be the (weighted) rank function of M2. For that problem, [10] recently gave a
streaming algorithm with an approximation guarantee of (2+ε). However, the space
requirement of their algorithm is exponential in the rank of M1 (which would corre-
spond to be exponential in |V | in the matching case) and thus it does not provide a
meaningful guarantee for our setting.

Semi-streaming Algorithms for Submodular Matroid Intersection 213

matchings does not work for matroid intersection. Instead, our analysis, which
is presented in Sect. 3.3, deviates from the standard framework for analyzing
local ratio algorithms and it heavily relies on a structural property of matroid
intersection known as kernels. We remark that the algorithms considered in this
section do not have a small memory footprint.

Fig. 1. The top part shows an example execution of the local ratio technique for
weighted matchings The bottom part shows how to adapt this (bipartite) example
to the language of weighted matroid intersection (Algorithm 1).

3.1 Local-Ratio Technique for Weighted Matching

The local ratio algorithm for the weighted matching problem is as follows. The
algorithm maintains vertex potentials w(u) for every vertex u, a set S of selected
edges, and an auxiliary weight function g : S → R≥0 of the selected edges.
Initially the vertex potentials are set to 0 and the set S is empty. When an edge
e = {u, v} arrives, the algorithm computes how much it gains compared to the
previous edges, by taking its weight minus the weight/potential of its endpoints
(g(e) = w(e)−w(u)−w(v)). If the gain is positive, then we add the edge to S, and
add the gain to the weight of the endpoints, that is, we set w(u) = w(u) + g(e)
and w(v) = w(v) + g(e). At the end, we return a maximum weight matching M
among the edges stored on the stack S.

For a better intuition of the algorithm, consider the example depicted on the
top of Fig. 1. The stream consists of four edges e1, e2, e3, e4 with weights w(e1) = 1
and w(e2) = w(e3) = w(e4) = 2. At each time step i, we depict the arriving edge ei

in thick along with its weight; the vertex potentials before the algorithm considers
this edge is written on the vertices, and the updated vertex potentials (if any) after
considering ei are depicted next to the incident vertices. The edges that are added
to S are solid and those that are not added to S are dashed.

214 P. Garg et al.

Algorithm 1. Local ratio for matroid intersection
Input: A stream of the elements of the common ground set of matroids M1 =

(E, I1), M2 = (E, I2).
Output: A set X ⊆ E that is independent in both matroids.

S ← ∅
for element e in the stream do

calculate w∗
i (e) = max

({0} ∪ {θ : e ∈ spanMi
({f ∈ S | wi(f) ≥ θ})})

for i ∈
{1, 2}.
if w(e) > w∗

1(e) + w∗
2(e) then

g(e) ← w(e) − w∗
1(e) − w∗

2(e)
w1(e) ← w∗

1(e) + g(e)
w2(e) ← w∗

2(e) + g(e)
S ← S ∪ {e}

end if
end for
return a maximum weight set T ⊆ S that is independent in M1 and M2

At the arrival of the first edge of weight w(e1) = 1, both incident vertices
have potential 0 and so the algorithm adds this edge to S and increases the
incident vertex potentials with the gain g(e1) = 1. For the second edge of weight
w(e2) = 2, the sum of incident vertex potentials is 1 and so the gain of e2 is
g(e2) = 2 − 1, which in turn causes the algorithm to add this edge to S and
to increase the incident vertex potentials by 1. The third time step is similar to
the second. At the last time step, edge e4 arrives of weight w(e4) = 2. As the
incident vertex potentials sum up to 2 the gain of e4 is not strictly positive and
so this edge is not added to S and no vertex potentials are updated. Finally,
the algorithm returns the maximum weight matching in S which in this case
consists of edges {e1, e3} and has weight 3. Note that the optimal matching of
this instance had weight 4 and we thus found a 4/3-approximate solution.

In general, the algorithm has an approximation guarantee of 2. This is proved
using a common framework to analyze algorithms based on the local ratio tech-
nique: We ignore the weights and greedily construct a matching M by inspecting
the edges in S in reverse order, i.e., we first consider the edges that were added
last. An easy proof (see e.g. [9]) then shows that the matching M constructed
in this way has weight at least half the optimum weight.

In the next section, we adapt the above described algorithm to the context
of matroid intersections. We also give an example that the above framework
for the analysis fails to give any constant-factor approximation guarantee. Our
alternative (tight) analysis of this algorithm is then given in Sect. 3.3.

3.2 Adaptation to Weighted Matroid Intersection

When adapting the local ratio algorithm for weighted matching to matroid inter-
section to obtain Algorithm 1, the first problem we encounter is the fact that
matroids do not have a notion of vertices, so we cannot keep a weight/potential
for each vertex. To describe how we overcome this issue, it is helpful to consider

Semi-streaming Algorithms for Submodular Matroid Intersection 215

the case of bipartite matching and in particular the example depicted in Fig. 1. It
is well known that the weighted matching problem on a bipartite graph with edge
set E and bipartition V1, V2 can be modelled as a weighted matroid intersection
problem on matroids M1 = (E, I1) and M2 = (E, I2) where for i ∈ {1, 2}

Ii = {E′ ⊆ E | each vertex v ∈ Vi is incident to at most one vertex in E′} .

Instead of keeping a weight for each vertex, we will maintain two weight
functions w1 and w2, one for each matroid. These weight functions will be set so
that the following holds in the special case of bipartite matching: on the arrival
of a new edge e, let Ti ⊆ S be an independent set in Ii of selected edges that
maximizes the weight function wi. Then we have that

min
f∈Ti:Ti\{f}∪{e}∈Ii

wi(f) if Ti ∪ {e} 	∈ Ii and 0 otherwise (1)

equals the vertex potential of the incident vertex Vi when running the local ratio
algorithm for weighted matching. It is well-known (e.g. by the optimality of the
greedy algorithm for matroids) that the cheapest element f to remove from Ti

to make Ti \ {f} ∪ {e} an independent set equals the largest weight θ so that
the elements of weight at least θ spans e. We thus have that (1) equals

max
({0} ∪ {θ : e ∈ spanMi

({f ∈ S | wi(f) ≥ θ})})

and it follows that the quantities w∗
1(e) and w∗

2(e) in Algorithm 1 equal the
incident vertex potentials in V1 and V2 of the local ratio algorithm in the special
case of bipartite matching. To see this, let us return to our example in Fig. 1 and
let V1 be the two vertices on the left and V2 be the two vertices on the right.
In the bottom part of the figure, the weight functions w1 and w2 are depicted
(at the corresponding side of the edge) after the arrival of each edge. At time
step 1, e1 does not need to replace any elements in any of the matroids and
so w∗

1(e1) = w∗
2(e1) = 0. We therefore have that its gain is g(e1) = 1 and the

algorithm sets w1(e1) = w2(e1) = 1. At time 2, edge e2 of weight 2 arrives. It is
not spanned in the first matroid whereas it is spanned by edge e1 of weight 1 in
the second matroid. It follows that w∗

1(e2) = 0 and w∗
2(e2) = w2(e1) = 1 and so

e2 has positive gain g(e2) = 1 and it sets w1(e2) = 1 and w2(e2) = w2(e1)+1 = 2.
The third time step is similar to the second. At the last time step, e4 of weight
2 arrives. However, since it is spanned by e1 with w1(e1) = 1 in the first matroid
and by e3 with w2(e3) = 1 in the second matroid, its gain is 0 and it is thus
not added to the set S. Note that throughout this example, and in general for
bipartite graphs, Algorithm 1 is identical to algorithm for weighted matching.
One may therefore expect that the analysis of the latter also generalizes to
Algorithm 1. We explain next that this is not the case for general matroids.

Counter Example to Same Approach in Analysis. We give a simple
example showing that the greedy selection (as done in the analysis for local
ratio algorithm for weighted matching) does not work for matroid intersection.
Still, it turns out that the set S generated by Algorithm 1 always contains a
2-approximation but the selection process is more involved.

216 P. Garg et al.

Lemma 1. There exist two matroids M1 = (E, I1) and M2 = (E, I2) on a
common ground set E and a weight function w : E → R≥0 such that a greedy
algorithm that considers the elements in the set S in the reverse order of when
they were added by Algorithm 1 does not provide any constant-factor approxi-
mation.

Proof. The example consists of the ground set E = {a, b, c, d} with weights
w(a) = 1, w(b) = 1+ε, w(c) = 2ε, w(d) = 3ε for a small ε > 0 (the approximation
guarantee will be at least Ω(1/ε)). The matroids M1 = (E, I1) and M2 = (E, I2)
are defined by

– a subset of E is in I1 if and only if it does not contain {a, b}; and
– a subset of E is in I2 if and only if it contains at most two elements.

To see that M1 and M2 are matroids, note that M1 is a partition matroid
with partitions {a, b}, {c}, {d}, and M2 is the 2-uniform matroid (alternatively,
one can easily check that M1 and M2 satisfy the definition of a matroid). Now
consider the execution of Algorithm 1 when given the elements of E in the order
a, b, c, d:

– Element a has weight 1, and {a} is independent both in M1 and M2, so we
set w1(a) = w2(a) = g(a) = 1 and a is added to S.

– Element b is spanned by a in M1 and not spanned by any element in M2. So
we get g(b) = w(b) − w∗

1(b) − w∗
2(b) = 1 + ε − 1 − 0 = ε. As ε > 0, we add b

to S, and set w1(b) = w1(a) + ε = 1 + ε and w2(b) = ε.
– Element c is not spanned by any element in M1 but is spanned by {a, b}

in M2. As b has the smallest w2 weight, w∗
2(c) = w2(b) = ε. So we have

g(c) = 2ε − w∗
1(c) − w∗

2(c) = 2ε − 0 − ε = ε > 0, and we set w1(c) = ε and
w2(c) = 2ε and add c to S.

– Element d is similar to c. We have g(d) = 3ε − 0 − 2ε = ε > 0 and so we set
w1(d) = ε and w2(d) = 3ε and add d to S.

As the algorithm selected all the elements, we have S = E. It follows that the
greedy algorithm on S (in the reverse order of when elements were added) will
select d and c, after which the set is a maximal independent set in M2. This gives
a weight of 5ε, even though a and b both have weight at least 1, which shows
that this algorithm does not guarantee any constant factor approximation.
�

3.3 Analysis of Algorithm 1

We prove that Algorithm 1 has an approximation guarantee of 2.

Theorem 1. Let S be the subset generated by Algorithm 1 on a stream E of
elements, matroids M1 = (E, I1),M2 = (E, I2) and weight function w : E →
R≥0. Then there exists a subset T ⊆ S independent in M1 and in M2 whose
weight w(T) is at least w(S∗)/2, where S∗ denotes an optimal solution to the
weighted matroid intersection problem.

Semi-streaming Algorithms for Submodular Matroid Intersection 217

Throughout the analysis we fix the input matroids M1 = (E, I1),M2 =
(E, I2), the weight function w : R → R≥0, and the order of the elements in the
stream. While Algorithm 1 only defines the weight functions w1 and w2 for the
elements added to the set S, we extend them in the analysis by, for i ∈ {1, 2},
letting wi(e) = w∗

i (e) for the elements e not added to S.
We now prove Theorem 1 by showing that g(S) ≥ w(S∗)/2 (Lemma 3) and

that there is a solution T ⊆ S such that w(T) ≥ g(S) (Lemma 4). In the proof
of both these lemmas, we use the following properties of the computed set S.

Lemma 2. Let S be the set generated by Algorithm 1 and S′ ⊆ S any subset.
Consider one of the matroids Mi with i ∈ {1, 2}. There exists a subset T ′ ⊆ S′

that is independent in Mi, i.e., T ′ ∈ Ii, and wi(T ′) ≥ g(S′). Furthermore, the
maximum weight independent set in Mi over the whole ground set E can be
selected to be a subset of S, i.e. Ti ⊆ S, and it satisfies wi(Ti) = g(S).

Proof. Consider matroid M1 (the proof is identical for M2) and fix S′ ⊆ S. The
set T ′

1 ⊆ S′ that is independent in M1 and that maximizes w1(T ′
1) satisfies

w1(T
′
1) =

∫ ∞

0
rank({e ∈ T ′

1 | w1(e) ≥ θ}) dθ =

∫ ∞

0
rank({e ∈ S′ | w1(e) ≥ θ}) dθ .

The second equality follows from the fact that the greedy algorithm that consid-
ers the elements in decreasing order of weight is optimal for matroids and thus
we have rank({e ∈ T ′

1 | w1(e) ≥ θ}) = rank({e ∈ S′ | w1(e) ≥ θ}) for any θ ∈ R.
Now index the elements of S′ = {e1, e2, . . . , e�} in the order they were added

to S by Algorithm 1 and let S′
j = {e1, . . . , ej} for j = 0, 1, . . . , � (where S′

0 = ∅).
By the above equalities and by telescoping,

w1(T
′
1) =

�∑
i=1

∫ ∞

0

(
rank({e ∈ S′

i | w1(e) ≥ θ}) − rank({e ∈ S′
i−1 | w1(e) ≥ θ})) dθ .

We have that rank({e ∈ S′
i | w1(e) ≥ θ}) − rank({e ∈ S′

i−1 | w1(e) ≥ θ}) equals
1 if w(ei) ≥ θ and ei 	∈ span({e ∈ S′

i−1 | w1(e) ≥ θ}) and it equals 0 otherwise.
Therefore, by the definition of w∗

1(·), the gain g(·) and w1(ei) = w∗
1(ei) + g(ei)

in Algorithm 1 we have

w1(T ′
1) =

�∑

i=1

[
w1(ei) − max

({0} ∪ {θ : ei ∈ span
({f ∈ S′

i−1 | wi(f) ≥ θ})})]

≥
�∑

i=1

g(ei) = g(S′) .

The inequality holds because S′
i−1 is a subset of the set S at the time when

Algorithm 1 considers element ei. Moreover, if S′ = S, then S′
i−1 equals the set

S at that point and so we then have

w∗
1(ei) = max

({0} ∪ {θ : ei ∈ span
({f ∈ S′

i−1 | wi(f) ≥ θ})})
.

This implies that the above inequality holds with equality in that case. We can
thus also conclude that a maximum weight independent set T1 ⊆ S satisfies

218 P. Garg et al.

w1(T1) = g(S). Finally, we can observe that T1 is also a maximum weight inde-
pendent set over the whole ground set since we have rank({e ∈ S | w1(e) ≥
θ}) = rank({e ∈ E | w1(e) ≥ θ}) for every θ > 0, which holds because, by the
extension of w1, an element e 	∈ S satisfies e ∈ span({f ∈ S : w1(f) ≥ w1(e)}).

�
We can now relate the gain of the elements in S with the weight of an optimal

solution.

Lemma 3. Let S be the subset generated by Algorithm 1. Then g(S) ≥ w(S∗)/2.

Proof. We first observe that w1(e) + w2(e) ≥ w(e) for every element e ∈ E.
Indeed, for an element e ∈ S, we have by definition w(e) = g(e)+w∗

1(e)+w∗
2(e),

and wi(e) = g(e) + w∗
i (e), so w1(e) + w2(e) = 2g(e) + w∗

1(e) + w∗
2(e) = w(e) +

g(e) > w(e). In the other case, when e 	∈ S then w∗
1(e) + w∗

2(e) ≥ w(e), and
wi(e) = w∗

i (e), so automatically, w1(e) + w2(e) ≥ w(e).
The above implies that w1(S∗) + w2(S∗) ≥ w(S∗). On the other hand, by

Lemma 2, we have wi(Ti) ≥ wi(S∗) (since Ti is a max weight independent set
in Mi with respect to wi) and wi(Ti) = g(S), thus g(S) ≥ wi(S∗) for i = 1, 2.
�

We finish the proof of Theorem 1 by proving that there is a T ⊆ S indepen-
dent in both M1 and M2 such that w(T) ≥ g(S). As described in Sect. 3.2, we
cannot select T using the greedy method. Instead, we select T using the concept
of kernels studied in [7].

Lemma 4. Let S be the subset generated by Algorithm 1. Then there exists a
subset T ⊆ S independent in M1 and in M2 such that w(T) ≥ g(S).

Proof. Consider one of the matroids Mi with i ∈ {1, 2} and define a total order
<i on E such that e <i f if wi(e) > wi(f) or if wi(e) = wi(f) and e appeared
later in the stream than f . The pair (Mi, <i) is known as an ordered matroid.
We further say that a subset E′ of E dominates element e of E if e ∈ E′ or there
is a subset Ce ⊆ E′ such that e ∈ span(Ce) and c < e for all elements c of Ce.
The set of elements dominated by E′ is denoted by DMi

(E′). Note that if E′

is an independent set, then the greedy algorithm that considers the elements of
DMi

(E′) in the order <i selects exactly the elements E′.
Theorem 2 in [7] says that for two ordered matroids (M1, <1), (M2, <2) there

always is a set K ⊆ E, which is referred to as a M1M2-kernel, such that

– K is independent in both M1 and in M2; and
– DM1(K) ∪ DM2(K) = E.

We use the above result on M1 and M2 restricted to the elements in S.
Specifically we select T ⊆ S to be the kernel such that DM1(T) ∪ DM2(T) = S.
Let S1 = DM1(T) and S2 = DM2(T). By Lemma 2, there exists a set T ′ ⊆
S1 independent in M1 such that w1(T ′) ≥ g(S1). As noted above, the greedy
algorithm that considers the element of S1 in the order <i (decreasing weights)
selects exactly the elements in T . It follows by the optimality of the greedy

Semi-streaming Algorithms for Submodular Matroid Intersection 219

algorithm for matroids that T is optimal for S1 in M1 with weight function w1,
which in turn implies w1(T) ≥ g(S1). In the same way, we also have w2(T) ≥
g(S2). By definition, for any e ∈ S, we have w(e) = w1(e) + w2(e) − g(e).
Together, we have w(T) = w1(T) + w2(T) − g(T) ≥ g(S1) + g(S2) − g(T). As
elements from T are in both S1 and S2, and all other elements are in at least
one of both sets, we have g(S1)+ g(S2) ≥ g(S)+ g(T), and thus w(T) ≥ g(S).
�

4 Making the Algorithm Memory Efficient

We now modify Algorithm 1 to only select elements with a significant gain,
parametrized by α > 1, and delete elements if we have too many in memory,
parametrized by a real number y. Let us call this algorithm EMI. If α is close
enough to 1 and y is large enough, then EMI is very close to Algorithm 1, and
allows for a similar analysis. This method is very similar to the one used in [14]
and [9], but our analysis is quite different.

More precisely, we take an element e only if w(e) > α(w∗
1(e)+w∗

2(e)) instead
of w(e) > w∗

1(e) + w∗
2(e), and we delete all elements e′ in the current stack

S for which the ratio between the g weight and the maximum g weight i.e.,
gmax = maxe∈S g(e) exceeds y (i.e., gmax

g(e′) > y). For technical purposes, we also
need to keep independent sets T1 and T2 which maximize the weight functions
w1 and w2 respectively. If an element with small g weight is in T1 or T2, we
do not delete it, as this would modify the wi-weights and selection of coming
elements. We show that this algorithm is a semi-streaming algorithm with an
approximation guarantee of (2+ε) for an appropriate selection of the parameters
(see Lemma 6 for the space requirement and theorem2 for the approximation
guarantee).

Lemma 5. Let S be the subset generated by EMI with α ≥ 1 and y = ∞. Then
w(S∗) ≤ 2αg(S).

Proof. We define wα : E → R by wα(e) = w(e) if e ∈ S and wα(e) = w(e)
α

otherwise. By construction, EMI and Algorithm 1 give the same set S, and
the same weight function g for this modified weight function. By Lemma 3,
wα(S∗) ≤ 2g(S). On the other hand, w(S∗) ≤ αwα(S∗).
�
Lemma 6. Let S be the subset generated generated by EMI with α = 1 + ε

and y = min(r1,r2)
ε2 and S∗ be a maximum weight independent set, where r1

and r2 are the ranks of M1 and M2 respectively. Then w(S∗) ≤ 2(1 + 2ε +
o(ε))g(S). Furthermore, at any point of time, the size of S is at most r1 + r2 +
min(r1, r2) logα(y

ε).

Proof. We first prove that the generated set S satisfies w(S∗) ≤ 2(1 + 2ε +
o(ε))g(S) and we then verify the space requirement of the algorithm, i.e., that
it is a semi-streaming algorithm.

Let us call S′ the set of elements selected by EMI, including the elements
deleted later. By Lemma 5, we have 2αg(S′) ≥ w(S∗), so all we have to prove

220 P. Garg et al.

is that g(S′) − g(S) ≤ εg(S). We set i ∈ {1, 2} to be the index of the matroid
with smaller rank.

In our analysis, it will be convenient to think that the algorithm maintains
the maximum weight independent set Ti of Mi throughout the stream. We have,
at the arrival of an element e that is added to S, that the set Ti is updated as
follows. If Ti ∪{e} ∈ Ii then e is simply added to Ti. Otherwise, before updating
Ti, there is an element e∗ ∈ Ti such that wi(e∗) = w∗

i (e) and Ti \ {e∗} ∪ {e} is
maximum weight independent set in Mi with respect to wi. Thus we can speak
of elements which are replaced be another element in Ti. By construction, if e
replaces f in Ti, then wi(e) > αwi(f).

We can now divide the elements of S′ into stacks in the following way: If e
replaces an element f in Ti, then we add e on top of the stack containing f ,
otherwise we create a new stack containing only e. At the end of the stream,
each element e ∈ Ti is in a different stack, and each stack contains exactly
one element of Ti, so let us call S′

e the stack containing e whenever e ∈ Ti.
We define Se to be the restriction of S′

e to S. In particular, each element from
S′ is in exactly one S′

e stack, and each element from S is in exactly one Se

stack. For each stack S′
e, we set edel(S′

e) to by the highest element of S′
e which

was removed from S. By construction, g(S′
e) − g(Se) ≤ wi(edel(S′

e)). On the
other hand, wi(f) < 1

εg(f) for any element f ∈ S′ (otherwise we would not
have selected it), so g(S′

e) − g(Se) < 1
εg(edel(S′

e)). As edel(S′
e) was removed

from S, we have g(edel(S′
e)) < gmax

y . As there are exactly ri stacks, we get

g(S′) − g(S) < ri
gmaxε2

riε
= εgmax ≤ εg(S).

We now have to prove that the algorithm fits the semi-streaming criteria. In
fact, the size of S never exceeds r1 +r2 +ri logα(y

ε). By the pigeonhole principle,
if S has at least ri logα(y

ε) elements, then there is at least one stack Se which has
at least logα(y

ε) elements. By construction, the wi weight increases by a factor
of at least α each time we add an element on the same stack, so the wi weight
difference between the lowest and highest element on the biggest stack would be
at least y

ε . As wi(f) < 1
εg(f), the g weight difference would be at least y, and

we would remove the lowest element, unless it was in T1 or T2.
�
Theorem 2. Let S be the subset generated by running EMI with α = 1 + ε and
y = min(r1,r2)

ε2 . Then there exists a subset T ⊆ S independent in M1 and in M2

such that w(T) ≥ g(S). Furthermore, T is a 2(1 + 2ε + o(ε))-approximation for
the intersection of two matroids.

Proof. Let S∗ be a maximum weight independent set. By Lemma 6, we have
2(1 + 2ε + o(ε)g(S) ≥ w(S∗). By Lemma 4 we can select an independent set T
with w(T) ≥ g(S) if the algorithm does not delete elements. Let S′ be the set
of elements selected by EMI, including the elements deleted later. As long as we
do not delete elements from T1 or T2, Algorithm 1 restricted to S′ will select the
same elements, with the same weights, so we can consider S′ to be generated
by Algorithm 1. We now observe that all the arguments used in Lemma 4 also
work for a subset of S′, in particular, it is also true for S that we can find an
independent set T ⊆ S such that w(T) ≥ g(S).
�

Semi-streaming Algorithms for Submodular Matroid Intersection 221

Remark 1. EMI is not the most efficient possible in terms of memory, but is
aimed to be simpler instead. Using the notion of stacks introduced in the proof
of Lemma 6, it is possible to modify the algorithm and reduce the memory
requirement by a factor log(min(rank(M1), rank(M2))).

Remark 2. The techniques of this section can also be used in the case when the
ranks of the matroids are unknown. Specifically, the algorithm can maintain the
stacks created in the proof of Lemma 6 and allow for an error ε in the first two
stacks created, an error of ε/2 in the next 4 stacks, and in general an error of
ε/2i in the next 2i stacks.

Remark 3. It is easy to construct examples where the set S only contains a
2α-approximation (for example with bipartite graphs), so up to a factor ε our
analysis is tight.

5 More Than Two Matroids

We can easily extend the algorithm EMI in the previous section to the intersec-
tion of k matroids. Now for any element e, if w(e) > α

∑k
i=1 w∗

i (e), we add it to
our stack and update the weight functions w1, . . . , wk similarly as EMI. The only
part which does not work is the selection of the independent set from S. Indeed,
matroid kernels are very specific to two matroids. We refer the reader to the full
version [8] to see why a similar approach fails and that a counter-example can
arise. Thus, any attempt to find a k approximation using our techniques must
bring some fundamentally new idea. Still, we conjecture that the generated set
S contains such an approximation.

Acknowledgements. The authors thank Moran Feldman for pointing us to the recent
paper [11].

References

1. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. In: Ausiello, G., Lucertini, M. (eds.) Analysis and
Design of Algorithms for Combinatorial Problems, North-Holland Mathemat-
ics Studies, vol. 109, pp. 27–45. North-Holland (1985). https://doi.org/10.
1016/S0304-0208(08)73101-3, http://www.sciencedirect.com/science/article/pii/
S0304020808731013

2. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: A unified frame-
work for approximation algorithms. in memoriam: Shimon even 1935–2004. ACM
Comput. Surv. (CSUR) 36, 422–463 (2004). https://doi.org/10.1145/1041680.
1041683

3. Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: Matchings,
matroids, and more. CoRR abs/1309.2038 (2013). http://arxiv.org/abs/1309.2038

4. Crouch, M., Stubbs, D.: Improved streaming algorithms for weighted matching, via
unweighted matching. In: Leibniz International Proceedings in Informatics, LIPIcs,
vol. 28, pp. 96–104 (2014). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.
2014.96

https://doi.org/10.1016/S0304-0208(08)73101-3
https://doi.org/10.1016/S0304-0208(08)73101-3
http://www.sciencedirect.com/science/article/pii/S0304020808731013
http://www.sciencedirect.com/science/article/pii/S0304020808731013
https://doi.org/10.1145/1041680.1041683
https://doi.org/10.1145/1041680.1041683
http://arxiv.org/abs/1309.2038
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96

222 P. Garg et al.

5. Edmonds, J.: Matroid intersection. In: Discrete Optimization I, Annals of Discrete
Mathematics, vol. 4, pp. 39–49. Elsevier (1979)

6. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2–3), 207–216 (2005)

7. Fleiner, T.: A matroid generalization of the stable matching polytope. In: Aardal,
K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 105–114. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3 9

8. Garg, P., Jordan, L., Svensson, O.: Semi-streaming algorithms for submodular
matroid intersection. arXiv preprint arXiv:2102.04348 (2021)

9. Ghaffari, M., Wajc, D.: Simplified and Space-Optimal Semi-Streaming (2+epsilon)-
Approximate Matching. In: Fineman, J.T., Mitzenmacher, M. (eds.) 2nd Sympo-
sium on Simplicity in Algorithms (SOSA 2019). OpenAccess Series in Informatics
(OASIcs), vol. 69, pp. 13:1–13:8. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2018). https://doi.org/10.4230/OASIcs.SOSA.2019.
13, http://drops.dagstuhl.de/opus/volltexte/2018/10039

10. Huang, C., Kakimura, N., Mauras, S., Yoshida, Y.: Approximability of monotone
submodular function maximization under cardinality and matroid constraints in
the streaming model. CoRR abs/2002.05477 (2020)

11. Levin, R., Wajc, D.: Streaming submodular matching meets the primal-dual
method. arXiv preprint arXiv:2008.10062 (2020)

12. McGregor, A.: Finding graph matchings in data streams. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624,
pp. 170–181. Springer, Heidelberg (2005). https://doi.org/10.1007/11538462 15

13. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends
Theor. Comput. Sci. 1(2), 117–236 (2005). https://doi.org/10.1561/0400000002

14. Paz, A., Schwartzman, G.: A (2+ε)-approximation for maximum weight matching
in the semi-streaming model. CoRR abs/1702.04536 (2017), http://arxiv.org/abs/
1702.04536

15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Algorithms and Combinatorics (2003)

https://doi.org/10.1007/3-540-45535-3_9
http://arxiv.org/abs/2102.04348
https://doi.org/10.4230/OASIcs.SOSA.2019.13
https://doi.org/10.4230/OASIcs.SOSA.2019.13
http://drops.dagstuhl.de/opus/volltexte/2018/10039
http://arxiv.org/abs/2008.10062
https://doi.org/10.1007/11538462_15
https://doi.org/10.1561/0400000002
http://arxiv.org/abs/1702.04536
http://arxiv.org/abs/1702.04536

Pfaffian Pairs and Parities: Counting
on Linear Matroid Intersection

and Parity Problems

Kazuki Matoya and Taihei Oki(B)

Department of Mathematical Informatics, Graduate School of Information Science
and Technology, University of Tokyo, Tokyo 113-8656, Japan

{kazuki matoya,taihei oki}@mist.i.u-tokyo.ac.jp

Abstract. Spanning trees are a representative example of linear
matroid bases that are efficiently countable. Perfect matchings of Pfaf-
fian bipartite graphs are a countable example of common bases of two
matrices. Generalizing these two, Webb (2004) introduced the notion of
Pfaffian pairs as a pair of matrices for which counting of their common
bases is tractable via the Cauchy–Binet formula.

This paper studies counting on linear matroid problems extending
Webb’s work. We first introduce “Pfaffian parities” as an extension of
Pfaffian pairs to the linear matroid parity problem, which is a com-
mon generalization of the linear matroid intersection problem and the
matching problem. We show that a large number of efficiently countable
discrete structures are interpretable as special cases of Pfaffian pairs and
parities.

We also observe that the fastest randomized algorithms for the linear
matroid intersection and parity problems by Harvey (2009) and Cheung–
Lau–Leung (2014) can be derandomized for Pfaffian pairs and parities.
We further present polynomial-time algorithms to count the number of
minimum-weight solutions on weighted Pfaffian pairs and parities.

Keywords: Linear matroid intersection · Linear matroid parity ·
Pfaffian · Matrix-tree theorem · Matching · Pfaffian orientation ·
S-path · Counting algorithm

1 Introduction

Let A be a totally unimodular matrix of row-full rank; that is, any minor of A
is 0 or ±1. The (generalized) matrix-tree theorem [24] claims that the number
of column bases of A is equal to det AA�. This can be observed by setting
A1 = A2 = A in the Cauchy–Binet formula

det A1A
�
2 =

∑

J⊆E:|J|=r

det A1[J] det A2[J], (1)

The full version of this paper is available at https://arxiv.org/abs/1912.00620.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 223–237, 2021.
https://doi.org/10.1007/978-3-030-73879-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_16&domain=pdf
https://arxiv.org/abs/1912.00620
https://doi.org/10.1007/978-3-030-73879-2_16

224 K. Matoya and T. Oki

where A1, A2 are matrices of size r × n with common column set E and Ak[J]
denotes the submatrix of Ak indexed by columns J ⊆ E for k = 1, 2. If A comes
from the incidence matrix of an undirected graph, the formula (1) provides the
celebrated matrix-tree theorem due to Kirchhoff [18] for counting spanning trees.

From a matroidal point of view, the matrix-tree theorem is regarded as a
theorem for counting bases of regular matroids, which are linear matroids rep-
resented by totally unimodular matrices. Regular matroids are recognized as
the largest class of matroids for which base counting is exactly tractable. For
general matroids (even for binary or transversal matroids), base counting is #P-
complete [4,29] and hence approximation algorithms have been well-studied [1,2].

Another example of a polynomial-time countable object is perfect matchings
of graphs with Pfaffian orientation [16]. The Pfaffian is a polynomial of matrix
entries defined for a skew-symmetric matrix S of even order. If S is the Tutte
matrix of a graph G, its Pfaffian is the sum over all perfect matchings of G
except that each matching has an associated sign as well. Suppose that edges of
G are oriented so that all terms in the Pfaffian become +1 by assigning +1 or
−1 to each variable in the Tutte matrix according to the edge direction. This
means that there are no cancellations in the Pfaffian, and thus it coincides with
the number of perfect matchings of G. Such an orientation is called Pfaffian1

and a graph that admits a Pfaffian orientation is also called Pfaffian. Whereas
counting of perfect matchings is #P-complete even for bipartite graphs [32],
characterizations of Pfaffian graphs and polynomial-time algorithms to give a
Pfaffian orientation have been intensively studied [16,21,27,30,33].

From the viewpoint of matroids again, the bipartite matching problem is gen-
eralized to the linear matroid intersection problem [5,6]. This is the problem to
find a common column base of two matrices A1, A2 of the same size. The weighted
linear matroid intersection problem is to find a common base of A1, A2 that min-
imizes a given column weight w : E → R. Various polynomial-time algorithms
have been proposed for both the unweighted and weighted linear matroid inter-
section problems [5–7,13]. However, the counting of common bases is intractable
even for a pair of totally unimodular matrices, as it includes counting of perfect
bipartite matchings.

Commonly generalizing Pfaffian bipartite graphs and regular matroids,
Webb [34] introduced the notion of a Pfaffian (matrix) pair as a pair of totally
unimodular matrices A1, A2 such that detA1[B] det A2[B] is constant for any
common base B of A1 and A2. This condition means due to the Cauchy–Binet
formula (1) that the number of common bases of (A1, A2) can be retrieved from
det A1A

�
2 . For example, bases of a totally unimodular matrix A are clearly com-

mon bases of a Pfaffian pair (A,A). Webb [34] indicated that the set of perfect
matchings of a Pfaffian bipartite graph can also be represented as common bases
of a Pfaffian pair. Although the Pfaffian pairs concept nicely integrates these two

1 An equivalent definition of Pfaffian orientation is as follows: an orientation of G is
Pfaffian if every even-length cycle C such that G−V (C) has a perfect matching has
an odd number of edges directed in either direction.

Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection 225

Table 1. List of discrete structures representable as Pfaffian pairs or parities. The
second column indicates those who first showed the polynomial-time countability.

Discrete structures Countability Pairs/Parities

Spanning trees Kirchhoff [18] Pairs (folklore)

Regular matroid bases Maurer [24] Pairs (folklore)

Feasible sets of regular delta-matroids Webb [34] Pairs (Webb [34])

Arborescences Tutte [31] Pairs (folklore)

Perf. matchings of Pfaffian bip. graphs Kasteleyn [16,17] Pairs (Webb [34])

Perf. matchings of Pfaffian graphs Kasteleyn [16,17] Parities (this work)

Spanning hypertrees of 3-Pfaffian
3-Uniform Hypergraphs

Goodall [12] Parities (this work)

Disjoint S–T paths of DAGs in the
LGV position

Lindström [20],
Gessel–Viennot [11]

Pairs (this work)

Shortest disjoint S–T paths of
undirected graphs in the LGV position

This work Weighted pairs (this
work)

Shortest disjoint S–T–U paths of
undirected graphs in the LGV position

This work Weighted parities (this
work)

celebrated countable objects, its existence and importance do not seem to have
been recognized besides the original thesis [34] of Webb.

The linear matroid intersection and the (nonbipartite) matching problems
are commonly generalized to the linear matroid parity problem [19], which is
explained as follows. Let A be a 2r × 2n matrix whose column set is partitioned
into pairs, called lines. Let L be the set of lines. In this paper, we call (A,L) a
(linear) matroid parity. The linear matroid parity problem on (A,L) is to find a
parity base of (A,L), which is a column base of A consisting of lines. The linear
matroid parity problem is known to be solvable in polynomial time since the
pioneering work of Lovász [22]. Recently, Iwata–Kobayashi [15] presented the
first polynomial-time algorithm for the weighted linear matroid parity problem,
which is to find a parity base of (A,L) that minimizes a given line weight w :
L → R.

In this paper, we explore Pfaffian pairs and their generalization to the linear
matroid parity problem, which we call Pfaffian (linear matroid) parities. The
contributions of this paper are twofold: structural and algorithmic results.

Structural Results. Generalizing Pfaffian pairs, we introduce a new concept
“Pfaffian parity” as a matroid parity (A,L) such that detA[B] is constant for all
parity base B of (A,L). As in the case of Pfaffian pairs, this condition ensures
that the number of parity bases can be retrieved from the Pfaffian of a skew-
symmetric matrix associated with (A,L). This itself is a straightforward conse-
quence of a generalization of the Cauchy–Binet formula (1) to the Pfaffian given
by Ishikawa–Wakayama [14] (see Proposition 2.1).

We then present a collection of discrete structures that can be interpreted
as common/parity bases of Pfaffian pairs/parities (or minimum-weight ones of

226 K. Matoya and T. Oki

weighted Pfaffian pairs/parities), which are summarized in Table 1. The vari-
ety of the list illustrates that Pfaffian pairs/parities nicely serve as a unified
framework of discrete structures for which counting is tractable. Due to page
limitations, this extended abstract describes only prefect matchings and short-
est disjoint S–T–U paths. Readers interested in other structures are referred to
the full version of this paper.

Algorithmic Results. Let (A1, A2) be an r ×n Pfaffian pair and (A,L) a 2r × 2n
Pfaffian parity over a field K with characteristic ch(K). The definitions of Pfaf-
fian pairs and parities guarantee that one can count the number (modulo ch(K))
of common bases in (A1, A2) and of parity bases in (A,L) just by matrix com-
putations. Here, we regard N modulo 0 as N for an integer N . This, however, is
valid only when we know the value of detA1[B] det A2[B] with an arbitrary com-
mon base B of (A1, A2) and detA[B] with an arbitrary parity base B of (A,L).
These are called constants. If we do not know constants, we need to obtain
one common/parity base B beforehand by executing linear matroid intersec-
tion/parity algorithms. The current best time complexity for the linear matroid
intersection is deterministic O

(
nr

5−ω
4−ω log r

)
-time due to Gabow–Xu [9] and ran-

domized O
(
nrω−1

)
-time due to Harvey [13], where ω is the exponent in the

complexity of matrix multiplication. Also, the current best time complexity for
the linear matroid parity problem is deterministic O(nrω)-time due to Gabow–
Stallmann [8] and Orlin [26], and randomized O

(
nrω−1

)
-time due to Cheung–

Lau–Leung [3]. We describe that one can derandomize the algorithms of [3,13]
for Pfaffian pairs and parities over K with ch(K) = 0 due to “no cancellation”
property.

Theorem 1.1. When ch(K) = 0, we can count the number of common bases of
an r×n Pfaffian pair and the number of parity bases of a 2r×2n Pfaffian parity
over K in deterministic O

(
nrω−1

)
-time.

We next present a polynomial-time counting algorithm for minimum-weight
parity bases of a line-weighted Pfaffian parity. Iwata–Kobayashi [15] gave not
only a polynomial-time algorithm but also an algebraic optimality criterion for
the weighted linear matroid parity problem. Based on this criterion, we show that
the number of minimum-weight parity bases coincides with the leading coefficient
of the Pfaffian of a skew-symmetric polynomial matrix. We then apply Murota’s
upper-tightness testing algorithm [25] to compute the leading coefficient.

Theorem 1.2. Let (A,L) be a 2r × 2n Pfaffian parity with line weight w : L →
R. We can compute the number of minimum-weight parity bases of (A,L) modulo
ch(K) in deterministic O

(
n3r

)
-time.

We can also design a more efficient algorithm tailored for weighted Pfaffian
pairs, which is based on the weight splitting; see the full version of this paper.

Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection 227

Organization. The rest of this paper is organized as follows. After introducing
some preliminaries, Sect. 2 gives formal definitions of Pfaffian pairs and parities.
Section 3 present two combinatorial examples of Pfaffian pairs and parities.
Finally, Sect. 4 presents our counting algorithms for unweighted and weighted
Pfaffian pairs and parities.

2 Pfaffian Pairs and Pfaffian Parities

2.1 Preliminaries

Let R denote the set of all reals. For a nonnegative integer n, we denote
{1, 2, . . . , n} by [n]. For a matrix A, denote by A[I, J] the submatrix of A with
row subset I and column subset J . If I is all the rows, we denote A[I, J] by
A[J]. The identity matrix of order n is denoted by In. The vector of ones is
represented as 1.

Let A ∈ K
r×n be a matrix with column set E over a field K. The linear

matroid represented by A is a set family

B(A) := {B ⊆ E | |B| = r, A[B] is nonsingular}.

We refer to each element of B(A) as a base of A.
Let Sn be the set of all permutations on [n] and sgnσ the sign of a permuta-

tion σ ∈ Sn. A square matrix S is said to be skew-symmetric if S� = −S and all
diagonal entries are 0. For a skew-symmetric matrix S = (Si,j)i,j∈[2n] ∈ K

2n×2n

of even order, the Pfaffian of S is defined as

Pf S :=
∑

σ∈F2n

sgn σ

n∏

i=1

Sσ(2i−1),σ(2i), (2)

where

F2n := {σ ∈ S2n | σ(1) < · · · < σ(3) < σ(2n − 1) and σ(2i − 1) < σ(2i) for i ∈ [n]}.

It is well-known that (Pf S)2 = det S and Pf ASA� = det APf S hold, where
A ∈ K

2n×2n is any square matrix. The following formula is a generalization of
the Cauchy–Binet formula (1) to Pfaffian given by Ishikawa–Wakayama [14].

Proposition 2.1 ([14, Theorem 1]). Let S ∈ K
2n×2n be skew-symmetric with

rows and columns E and A ∈ K
2r×2n with columns E. Then it holds

Pf ASA� =
∑

J⊆E:|J|=2r

det A[J]Pf S[J, J].

228 K. Matoya and T. Oki

2.2 Pfaffian Pairs and Parities

Now we define Pfaffian (matrix) pairs slightly generalizing that of Webb [34].

Definition 2.2 (Pfaffian matrix pair; see [34]). We say that a matrix pair
(A1, A2) of the same size over K is Pfaffian if there is c ∈ K\{0}, called constant,
such that det A1[B] det A2[B] = c for all B ∈ B(A1, A2) := B(A1) ∩ B(A2).

For a matrix pair (A1, A2) with common column set E and a vec-
tor z = (zj)j∈E indexed by E, we define Ξ(z) :=

(
O A1

A�
2 D(z)

)
, where

D(z) := diag(zj)j∈E . Taking the Schur complement, we have detΞ(z) =

det D(z) det
(−A1D(z)−1

A�
2

)
. Hence the following holds from the Cauchy–Binet

formula (1) and Definition 2.2.

Proposition 2.3. Let (A1, A2) be an r × n Pfaffian pair of constant c and z =
(zj)j∈E a vector indexed by the common column set E of (A1, A2). Then it holds

det A1D(z)A�
2 = c

∑

B∈B(A1,A2)

∏

j∈B

zj , det Ξ(z) = (−1)r
c

∑

B∈B(A1,A2)

∏

j∈E\B

zj .

In particular, the number of common bases of (A1, A2) modulo ch(K) is equal to
c−1 det A1A

�
2 = c−1 det Ξ(1).

We next introduce Pfaffian parities. Let (A,L) be a matroid parity over K.
We regard parity bases of (A,L) as a subset of L and denote by B(A,L) the set
of all parity bases of A with respect to L. For J ⊆ L, we denote by A[J] the
submatrix of A consisting of columns corresponding to lines in J .

Definition 2.4 (Pfaffian matroid parity). We say that a matroid parity
(A,L) over K is Pfaffian if there exists c ∈ K \ {0} such that det A[B] = c
for all B ∈ B(A,L). The value c is called the constant.

We abbreviate Pfaffian matroid parity as Pfaffian parity for short. For a
vector z = (zl)l∈L indexed by L, we denote by ΔL(z) the 2n×2n skew-symmetric
block-diagonal matrix defined as follows: the row and column sets are indexed
by the columns E of A, and each block corresponding to a line l ∈ L is a 2 × 2
skew-symmetric matrix

(
0 +zl−zl 0

)
. Then Δ(z)[J, J] is nonsingular if and only if

J consists of lines and zl �= 0 for l ∈ J . In addition, for Φ(z) :=
(

O A
−A� Δ(z)

)
, we

have Pf Φ(z) = Pf Δ(z)Pf AΔ(z)−1
A� by the Schur complement again. Then

the following is obtained from Proposition 2.1 and Definition 2.4.

Proposition 2.5. Let (A,L) be a Pfaffian parity of constant c and z = (zl)l∈L

a vector indexed by L. Then it holds

Pf AΔ(z)A� = c
∑

B∈B(A,L)

∏

l∈B

zl, Pf Φ(z) = c
∑

B∈B(A,L)

∏

l∈L\B

zl.

In particular, the number of parity bases of (A,L) modulo ch(K) is equal to
c−1Pf AΔ(1)A� = c−1Pf Φ(1).

Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection 229

The standard reduction of the linear matroid intersection problem to the
parity problem [19, Chapter 9.2] retains the property of Pfaffian (see the full
paper for proof). Hence Pfaffian parities generalize Pfaffian pairs.

3 Combinatorial Examples

3.1 Perfect Matchings of Pfaffian Graphs

A matching of an undirected graph G is an edge subset M such that no two
disjoint edges in M share the same end. We also define a matching for a directed
graph by ignoring its orientation. A matching M is said to be perfect if every
vertex of G is covered by some edge in M . Webb [34] observed that perfect
bipartite matchings can be represented as a common bases of a Pfaffian pair
if the bipartite graph is Pfaffian-oriented. Here we show a generalized relation
between general matchings and parity bases of a Pfaffian parity.

Let G = (V,E) be a simple undirected graph that is not necessarily bipartite.
Suppose that |V | is even and vertices are ordered as v1, . . . , v2n. We define A ∈
R

|V |×2|E| as follows: each row is indexed by v ∈ V and each two columns are
associated with an edge e ∈ E. For v ∈ V and e = {vi, vj} ∈ E with i < j, the
corresponding 1 × 2 submatrix of A to v and e is defined to be

(
+1 0

)
if v = vi,(

0 +1
)

if v = vj and O otherwise. We regard each e ∈ E as a line of A. Then
M ⊆ E is a perfect matching of G if and only if M ∈ B(A,E) [19, Chapter 9.2].

A perfect matching M of G uniquely corresponds to a permutation σM ∈ F2n

such that
{
vσM (2i−1), vσM (2i)

} ∈ M for i ∈ [n]. We define the sign of M as
sgn M := sgnσM . Note that sgn M depends on the ordering of V .

Let z = (ze)e∈E be a vector of distinct indeterminates indexed by E. The
skew-symmetric matrix AΔ(z)A� is called the Tutte matrix of G. Its (i, j)th
entry is equal to ze if e = {ui, vj} ∈ E and i < j, to −ze if e = {ui, vj} ∈ E and
i > j and to 0 otherwise for i, j ∈ [n]. By the definition (2) of Pfaffian, it holds

Pf AΔ(z)A� =
∑

M∈B(A,E)

sgn M
∏

e∈M

ze.

We also have

Pf AΔ(z)A� =
∑

M∈B(A,E)

det A[M]
∏

e∈M

ze.

by Proposition 2.1. Hence the following holds.

Lemma 3.1. The sign of a perfect matching M of G is equal to det A[M].

We next consider an orientation �G = (V, �E) of G. Define a vector s = (se)e∈E

indexed by E as follows: for each �e = (vi, vj) ∈ �E, we set se := +1 if i < j
and se := −1 if i > j. We also construct a symmetric block-diagonal matrix
X = diag(Xe)e∈E , where Xe is a 2 × 2 matrix defined by Xe := I2 if se = +1

230 K. Matoya and T. Oki

and Xe :=
(

0 +1
+1 0

)
if se = −1 for e ∈ E. Put �A := AX, i.e., �A is obtained

from A by interchanging two columns associated with each (vi, vj) ∈ �E with
i > j. Note that XΔ(1)X = Δ(s) and B(A,E) = B(�A,E) hold. Put S =(
Si,j

)
i,j∈[2n]

:= �AΔ(1) �A� = AΔ(s)A�. It can be confirmed that Si,j = +1 if

(vi, vj) ∈ �E, −1 if (vj , vi) ∈ �E and 0 otherwise. For a perfect matching M of
G, it holds se = SσM (2i−1),σM (2i) for every e =

{
vσM (2i−1), vσM (2i)

} ∈ M since
σM (2i − 1) < σM (2i). We define the sign of a perfect matching �M of �G as

sgn �M := sgnM
∏

e∈M

se = sgnM

n∏

i=1

SσM (2i−1),σM (2i) ∈ {+1,−1}.

By Lemma 3.1 and det �A[M] = detA[M]
∏

e∈M se, we have the following.

Lemma 3.2. The sign of a perfect matching �M of �G is equal to det �A[M].

Recall that an orientation �G of G is called Pfaffian if the signs of all perfect
matchings of �G are constant. The following holds from Lemma 3.2.

Theorem 3.3. Let G = (V,E) be a graph, �G an orientation of G and �A the
matrix defined above from �G. Then B(�A,E) coincides with the set of perfect
matchings of G. In addition, if �G is Pfaffian, so is (�A,E).

3.2 Shortest Disjoint S–T–U Paths on Undirected Graphs

We first introduce Mader’s disjoint S-path problem [10,23]. Let G = (V,E) be
an undirected graph and S = {S1, . . . , Ss} a family of disjoint subsets of V .
Suppose that Σ := S1 ∪ · · · ∪ Ss is of cardinality 2k and ordered as u1, . . . , u2k.
Vertices in Σ are called terminals. An S-path P of G is the union of k paths
P1, . . . , Pk ⊆ E of G satisfying the following: there exists σ ∈ F2k such that Pi

is a path between uσ(2i−1) ∈ Sα and uσ(2i) ∈ Sβ with α �= β for each i ∈ [k]
Namely, P is an S-path if the ends of each Pi belong to distinct parts in S and
the ends of Pi and Pj are disjoint for all distinct i, j ∈ [k]. We call an S-path
P disjoint if Pi and Pj have no common vertices for all distinct i, j ∈ [k]. For a
disjoint S-path P , a permutation satisfying the above condition uniquely exists
in F2k and we denote it by σP . The sign of a disjoint S-path P is defined as
sgn P := sgnσP . The disjoint S-path problem on G is to find a disjoint S-path of
G. We also consider the situation when G has a positive edge length l : E → R>0.
The length of an S-path P is defined as l(P) :=

∑
e∈P l(e). The shortest disjoint

S-path problem is to find a disjoint S-path of G with minimum length.
We next describe a reduction of the disjoint S-path problem to the linear

matroid parity problem, based on Schrijver’s linear representation [28] of Lovász’
reduction [22]. We assume that there are no edges connecting terminals. Put
Ṽ := V \ Σ, Ẽ :=

{
{u, v} ∈ E

∣∣∣ u, v ∈ Ṽ
}

, m := |E|, and m̃ := |Ẽ|. Fix two-
dimensional row vectors b1, . . . , bs which are pairwise linearly independent. We

Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection 231

construct a matrix X =
(

X1 O
X2 X3

)
from G as follows. The size of each block is

2k × 2m̃ for X1, (2n − 4k) × 2m̃ for X2, and (2n − 4k) × 2(m − m̃) for X3.
Each edge e ∈ Ẽ is associated with two columns of

(
X1
X2

)
and each e ∈ E \ Ẽ is

associated with two columns of
(

O
X3

)
. Each terminal ui ∈ Σ corresponds to the

ith row of
(
X1 O

)
for i ∈ [2k] and each v ∈ Ṽ is associated with two rows of(

X2 X3

)
. Entries of each block are determined as follows:

– The 1 × 2 submatrix of X1 associated with ui ∈ U and e ∈ E \ Ẽ is bα if
e ∩ Sα = {ui} and O otherwise.

– The 2×2 submatrix of X2 associated with v ∈ Ṽ and e ∈ E \Ẽ is the identify
matrix I2 of order two if v ∈ e and O otherwise.

– The matrix X3 is defined to be the Kronecker product H[Ṽ , Ẽ] ⊗ I2, where
H is the vertex-edge incidence matrix of any orientation of G. Namely, X3 is
obtained from H[Ṽ , Ẽ] by replacing ±1 with ±I2 and 0 with O.

We regard each edge e ∈ E as a line of X, which consists of the two columns
associated with e.

Lemma 3.4 ([35, Lemma 4]). An edge subset B ⊆ E is a parity base of (X,E)
if and only if B is a spanning forest of G such that every connected component
covers exactly two terminals belonging to distinct parts of S.

Note that if B is a parity base of (X,E), then B has k connected components
since B covers all vertices of G by Lemma 3.4. Hence (X,E) has a parity base if
and only if G has a disjoint S-path. Unfortunately, this reduction does not yield
a one-to-one correspondence between B(X,E) and disjoint S-paths of G.

Yamaguchi [35] showed that the shortest disjoint S-path problem can be
reduced to the weighted linear matroid parity problem. Here we present a sim-
plified reduction for our setting (where an S-path covers all terminals), together
with a one-to-one correspondence of optimal solutions. Let G∗ be the graph
obtained from G by adding a new vertex v∗ and an edge set E′ :=

{{v, v∗} ∣∣ v ∈
Ṽ

}
. We construct a matrix X∗ from G∗ in the same way as the construction of

X from G. Let A be the matrix obtained from X∗ by removing the two rows
corresponding to v∗. Namely, by an appropriate column permutation and an
edge orientation on E′, the matrix A is written as

(
X1 O O
X2 X3 I2n−4k

)
, where each

two columns of the left, middle and right blocks correspond to an edge in Ẽ,
E \ Ẽ and E′, respectively. Regarding E∗ := E ∪ E′ as the set of lines on A,
we set a line weight w : E∗ → R as w(e) := l(e) for e ∈ E and as w(e) = 0 for
e ∈ E′.

Lemma 3.5 (see [35]). The minimum length of a disjoint S-path of G with
respect to l is equal to the minimum weight of a parity base of (A,E∗) with
respect to w. In addition, there is a one-to-one correspondence between shortest
disjoint S-paths of G and minimum-weight parity bases of (A,E∗).

232 K. Matoya and T. Oki

We next connect sgn P and detA[B]. For a disjoint S-path P , define

cP := (−1)k
k∏

i=1

det
(

bα2i−1

bα2i

)
∈ R \ {0}, (3)

where αi is the element in [s] such that uσP (i) ∈ Sαi
for i ∈ [2k]. Then the

following holds; refer to the full paper for proof.

Lemma 3.6. Let P be a disjoint S-path of G and B a parity base of (A,E∗)
containing P . Then we have cP sgn P = det A[B].

We say that S is in the LGV position on G if sgn P is constant for all disjoint
S-path P of G. Since det A[B] depends not only on sgnP but on cP by (3), the
matroid parity (A,E∗) might not be Pfaffian even if S is in the LGV position.
Nevertheless, cP is constant when |S| = 3; see the full paper for proof again. We
refer to the (shortest) disjoint S-path problem with S = {S = S1, T = S2, U =
S3} as the (shortest) disjoint S–T–U path problem. An S–T–U path means an
{S, T, U}-path. We have the following conclusion.

Fig. 1. Example of S, T, U that are in the LGV position, where S = {s1, s2, s3}, T =
{t1, t2, t3} and U = {u1, u2}. The gray area represents a planar graph.

Theorem 3.7. Let G be an undirected graph and take disjoint vertex subsets
S, T, U . Let (A,E∗) be the matroid parity defined above. When {S, T, U} is in
the LGV position, then (A,E∗) is Pfaffian. In addition, when G is equipped with
a positive edge length l, there is a one-to-one correspondence between shortest
disjoint S–T–U paths of G and minimum-weight parity bases of (A,E∗) with
respect to the line weight w defined above.

We show one example of the LGV position for the S–T–U case (see Fig. 1).
Let G be a planar graph and suppose that terminals are aligned on the boundary
of one face of G in the order of S, U , T clockwise. Then the connecting pattern
of terminals are uniquely determined from |S|, |T |, |U |. Hence σP is constant for
all disjoint S–T–U path P , which means that {S, T, U} is in the LGV position.

Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection 233

4 Algorithms

4.1 Counting on Unweighted Pfaffian Pairs and Parities

We describe how we can derandomize the linear matroid intersection algorithm
of Harvey [13] and the linear matroid parity algorithm of Cheung–Lau–Leung [3]
for Pfaffian pairs and parities over K with ch(K) = 0. In these algorithms, ran-
domness is used only to find a vector over K satisfying some genericity conditions,
summarized below. Recall the matrices Ξ(z) and Φ(z) defined in Sect. 2.2.

Let (A1, A2) be a matrix pair with common column set E. A column subset
J ⊆ E is said to be extensible if there exists a common base of (A1, A2) containing
J . For a vector z = (zj)j∈E and J ⊆ E, let φJ(z) denote a vector whose each
component is defined as φJ(z)j := 0 if j ∈ J and zj otherwise. Then Harvey’s
algorithm [13] constructs a common base if a vector z = (zj)j∈E ∈ K

n such that
every J ⊆ E is extensible if and only if Ξ(φJ(z)) is nonsingular is provided.
Similarly, for a matroid parity (A,L), we call J ⊆ L extensible if there exists
a parity base of (A,L) containing J . We also define φJ(z) for z = (zl)l∈L and
J ⊆ L in the same way. Then the algorithm of Cheung–Lau–Leung [3] outputs
a parity base if a vector z = (zj)j∈L ∈ K

n such that every J ⊆ L is extensible if
and only if Φ(φJ(z)) is nonsingular is provided.

It is shown in [13, Theorem 4.4], [3, Theorem 6.4] that a vector of distinct
indeterminates satisfies the requirements of z. The algorithms of [3,13] use a
random vector over K instead of indeterminates to avoid symbolic computations.
For Pfaffian pairs and parities over a field K with ch(K) = 0, we can use 1 for
z, as the definition of Pfaffian ensures numerical cancellations do not occur; see
the full paper for proof. Theorem 1.1 is obtained as a consequence of this fact.

4.2 Counting on Weighted Pfaffian Parities

Let (A,L) be a 2r ×2n Pfaffian parity of constant c with line weight w : L → R.
We describe an algorithm to count the number of minimum-weight parity bases
of (A,L) modulo ch(K). Suppose that (A,L) has at least one parity base. Let
ζ denote the minimum weight of a parity base of (A,L) and N the number of
minimum-weight parity bases modulo ch(K). Note that N is nonzero if ch(K) =
0. We put δ := w(L) − ζ and θw :=

(
θw(l)

)
l∈L

for an indeterminate θ. Then the
following holds from Proposition 2.5.

Lemma 4.1. The coefficient of θδ in Pf Φ
(
θw

)
is equal to cN . In addition, it

holds δ ≥ deg Pf Φ
(
θw

)
and the equality is attained if and only if N �= 0.

We first obtain a minimum-weight parity base B ∈ B(A,L) applying the
algorithm of Iwata–Kobayashi [15]. Then we perform a row transformation and
a line (column) permutation on A so that the left 2r columns of A correspond
to B and A[B] = I2r. Namely, A is in the form of A =

(
I2r C

)
for some matrix

C ∈ K
2r×(2n−2r). Note that these transformations retain (A,L) Pfaffian but

234 K. Matoya and T. Oki

change the constant to 1. We perform the same transformations on Φ
(
θw

)
(and

on Δ
(
θw

)
) accordingly. Now the polynomial matrix Φ

(
θw

)
is in the form of

where U is the row set of A identified with B.
Besides the minimum-weight parity base B, the algorithm of Iwata–

Kobayashi [15] output an extra matrix C∗. Its row set U∗ and column set E∗ con-
tains U and E \B, respectively, and elements in U∗ \U and E∗ \E = E∗ \(E \B)
are newly introduced ones. The Schur complement of C∗ with respect to
Y := C∗[U∗ \ U,E∗ \ E] coincides with C, i.e., it holds

C = C∗[U,E \ B] − C∗[U,E∗ \ E]Y −1C∗[U∗ \ U,E \ B].

In addition, the cardinalities of U∗ and E∗ are guaranteed to be O(n). We put
W := U∗ ∪ B ∪ E∗ and c∗ := det Y . Consider the skew-symmetric polynomial
matrix Φ∗(θ) =

(
Φ∗

u,v(θ)
)
u,v∈W

defined by

Then we have Pf Φ∗(θ) = c∗Pf Φ
(
θw

)
. Using this equality, Lemma 4.1 can be

rephrased in terms of Φ∗(θ) as follows.

Lemma 4.2. The coefficient of θδ in Pf Φ∗(θ) is equal to c∗N . In addition, it
holds δ ≥ deg Pf Φ∗(θw) and the equality is attained if and only if N �= 0.

We next define an undirected graph G = G(Φ∗) associated with Φ∗(θ). The
vertex set of G is W and the edge set is given by

F :=
{{u, v} ∣∣ u, v ∈ W, Φ∗

u,v(θ) �= 0
}
.

We set the weight of every edge {u, v} ∈ F to deg Φ∗
u,v(θ). Let δ̂(Φ∗) denote the

maximum weight of a perfect matching of G. We set δ̂(Φ∗) := −∞ if G has no
perfect matching. Here we put δ̂ := δ̂(Φ∗). From the definition (2) of Pfaffian, δ̂
serves as a combinatorial upper bound on deg Pf Φ∗(θ).

Define Ω := {Z ⊆ W | |Z| is odd and |Z| ≥ 3} and Ωu,v := {Z ∈ Ω | |Z ∩
{u, v}| = 1} for u, v ∈ W . The dual problem of the maximum-weight perfect
matching problem on G is as follows (see [15] and [28, Theorem 25.1]):

Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection 235

(D)

minimize
π,ξ

∑

u∈W

π(u) −
∑

Z∈Ω

ξ(Z)

subject to π(u) + π(v) −
∑

Z∈Ωu,v

ξ(Z) ≥ deg Φ∗
u,v(θ) ({u, v} ∈ F),

ξ(Z) ≥ 0 (Z ∈ Ω).

The following claim is proved in [15] as a key ingredient of the optimality certi-
fication on the weighted linear matroid parity problem.

Proposition 4.3 ([15, Claim 6.3]). There exists a feasible solution of (D) hav-
ing the objective value δ.

We make use of Proposition 4.3 for the purpose of counting.

Lemma 4.4. δ ≥ δ̂ ≥ deg Pf Φ∗(θ) holds. The equalities are attained if N �= 0.

Proof. We have δ ≥ δ̂ by Proposition 4.3 and the weak duality of (D). The latter
inequality is due to (2). The equality condition is obtained from Lemma 4.2. ��

By Lemma 4.4, we have N = 0 if δ > δ̂. Otherwise, our goal is to compute the
coefficient of θδ = θδ̂ in Pf Φ∗(θ) by Lemma 4.2. This is obtained by executing
Murota’s upper-tightness testing algorithm on combinatorial relaxation for skew-
symmetric polynomial matrices [25, Section 4.4] (with det replaced with Pf).

Proposition 4.5 ([25]). Let S(θ) be a 2n × 2n skew-symmetric polynomial
matrix. We can compute the coefficient of θδ̂(S) in Pf S(θ) in O(n3)-time.

Algorithm 1 shows the entire procedure of our algorithm. The time complex-
ity can be estimated as in Theorem 1.2.

Algorithm 1. Counting minimum-weight parity bases of a Pfaffian parity.
Input : An 2r × 2n Pfaffian parity (A, L) and a line weight w : L → Z

Output: The number of minimum-weight common bases of (A1, A2) modulo ch(K)
1: Compute a minimum-weight parity base B ∈ B(A, L) and the matrix C∗

2: Construct the matrix Φ∗(θ) and the graph G = G(Φ∗)
3: Compute the maximum weight δ̂ := δ̂(Φ∗) of a perfect matching of G
4: if δ := w(B) > δ̂ then
5: return 0
6: else
7: Compute the coefficient a of θδ̂ in Pf Φ∗(θ)
8: return c∗−1a, where c∗ := Pf C∗[U∗ \ U, E∗ \ E]

Acknowledgments. The authors thank Satoru Iwata for his helpful comments, and
Yusuke Kobayashi, Yutaro Yamaguchi, and Koyo Hayashi for discussions. This work
was supported by JST ACT-I Grant Number JPMJPR18U9, Japan, and Grant-in-Aid
for JSPS Research Fellow Grant Number JP18J22141, Japan.

236 K. Matoya and T. Oki

References

1. Anari, N., Gharan, S.O., Vinzant, C.: Log-concave polynomials, entropy, and a
deterministic approximation algorithm for counting bases of matroids. In: Proceed-
ings of the 59th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2018), pp. 35–46 (2018). https://doi.org/10.1109/FOCS.2018.00013

2. Anari, N., Liu, K., Gharan, S.O., Vinzant, C.: Log-concave polynomials II: high-
dimensional walks and an FPRAS for counting bases of a matroid. In: Proceedings
of the 51st Annual ACM Symposium on Theory of Computing (STOC 2019), pp.
1–12 (2019). https://doi.org/10.1145/3313276.3316385

3. Cheung, H.Y., Lau, L.C., Leung, K.M.: Algebraic algorithms for linear matroid
parity problems. ACM Trans. Algorithms 10(3), 1–26 (2014). https://doi.org/10.
1145/2601066

4. Colbourn, C.J., Provan, J.S., Vertigan, D.: The complexity of computing the Tutte
polynomial on transversal matroids. Combinatorica 15(1), 1–10 (1995). https://
doi.org/10.1007/BF01294456

5. Edmonds, J.: Matroid partition. In: Dantzig, G.B., Veinott, Jr., A.F. (eds.) Math-
ematics of the Decision Sciences: Part I, Lectures in Applied Mathematics, vol.
11, pp. 335–345. AMS, Providence, RI (1968). https://doi.org/10.1007/978-3-540-
68279-0 7

6. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R.,
Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their
Applications, pp. 69–87. Gordon and Breach, New York, NY (1970). https://doi.
org/10.1007/3-540-36478-1 2

7. Frank, A.: Connections in Combinatorial Optimization. Oxford Lecture Series in
Mathematics and Its Applications, Oxford University Press, New York, NY (2011)

8. Gabow, H.N., Stallmann, M.: An augmenting path algorithm for linear matroid
parity. Combinatorica 6(2), 123–150 (1986). https://doi.org/10.1007/BF02579169

9. Gabow, H.N., Xu, Y.: Efficient theoretic and practical algorithms for linear matroid
intersection problems. J. Comput. Syst. Sci. 53(1), 129–147 (1996). https://doi.
org/10.1006/jcss.1996.0054

10. Gallai, T.: Maximum-Minimum Sätze und verallgemeinerte Faktoren von Graphen.
Acta Mathematica Academiae Scientiarum Hungaricae 12, 131–173 (1964).
https://doi.org/10.1007/BF02066678

11. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length
formulae. Adv. Math. 58(3), 300–321 (1985). https://doi.org/10.1016/0001-
8708(85)90121-5

12. Goodall, A., De Mier, A.: Spanning trees of 3-uniform hypergraphs. Adv. Appl.
Math. 47(4), 840–868 (2011). https://doi.org/10.1016/j.aam.2011.04.006

13. Harvey, N.J.A.: Algebraic algorithms for matching and matroid problems. SIAM
J. Comput. 39(2), 679–702 (2009). https://doi.org/10.1137/070684008

14. Ishikawa, M., Wakayama, M.: Minor summation formula of Pfaffians. Linear Multi-
linear Algebra 39(3), 285–305 (1995). https://doi.org/10.1080/03081089508818403

15. Iwata, S., Kobayashi, Y.: A weighted linear matroid parity algorithm. SIAM J.
Comput. (to appear). https://doi.org/10.1137/17M1141709

16. Kasteleyn, P.W.: The statistics of dimers on a lattice: I. the number of dimer
arrangements on a quadratic lattice. Physica, 27(12), 1209–1225 (1961). https://
doi.org/10.1016/0031-8914(61)90063-5

17. Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph The-
ory and Theoretical Physics, pp. 43–110. Academic Press, New York, NY (1967)

https://doi.org/10.1109/FOCS.2018.00013
https://doi.org/10.1145/3313276.3316385
https://doi.org/10.1145/2601066
https://doi.org/10.1145/2601066
https://doi.org/10.1007/BF01294456
https://doi.org/10.1007/BF01294456
https://doi.org/10.1007/978-3-540-68279-0_7
https://doi.org/10.1007/978-3-540-68279-0_7
https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/BF02579169
https://doi.org/10.1006/jcss.1996.0054
https://doi.org/10.1006/jcss.1996.0054
https://doi.org/10.1007/BF02066678
https://doi.org/10.1016/0001-8708(85)90121-5
https://doi.org/10.1016/0001-8708(85)90121-5
https://doi.org/10.1016/j.aam.2011.04.006
https://doi.org/10.1137/070684008
https://doi.org/10.1080/03081089508818403
https://doi.org/10.1137/17M1141709
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1016/0031-8914(61)90063-5

Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection 237

18. Kirchhoff, G.: Ueber die Auflösung der Gleichungen, auf welche man bei der Unter-
suchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der
Physik 148(12), 497–508 (1847). https://doi.org/10.1002/andp.18471481202

19. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, New York, NY (1976)

20. Lindström, B.: On the vector representations of induced matroids. Bull. London
Math. Soc. 5(1), 85–90 (1973). https://doi.org/10.1112/blms/5.1.85

21. Little, C.H.C.: An extension of Kasteleyn’s method of enumerating the 1-factors
of planar graphs. In: Holton, D.A. (ed.) Combinatorial Mathematics. LNM, vol.
403, pp. 63–72. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0057377

22. Lovász, L.: Matroid matching and some applications. J. Comb. Theor. Ser. B 28(2),
208–236 (1980). https://doi.org/10.1016/0095-8956(80)90066-0

23. Mader, W.: Über die Maximalzahl kreuzungsfreier H-Wege. Archiv der Mathe-
matik 31(1), 387–402 (1978). https://doi.org/10.1007/BF01226465

24. Maurer, S.B.: Matrix generalizations of some theorems on trees, cycles and cocycles
in graphs. SIAM J. Appl. Math. 30(1), 143–148 (1976). https://doi.org/10.1137/
0130017

25. Murota, K.: Computing the degree of determinants via combinatorial relaxation.
SIAM J. Comput. 24(4), 765–796 (1995)

26. Orlin, J.B.: A fast, simpler algorithm for the matroid parity problem. In: Lodi,
A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 240–258.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4 17

27. Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations, and
even directed circuits. Ann. Math. 150(3), 929–975 (1999). https://doi.org/10.
2307/121059

28. Schrijver, A.: Combinatorial Optimization, Algorithms and Combinatorics, vol. 24.
Springer, Berlin (2003)

29. Snook, M.: Counting bases of representable matroids. Electron. J. Comb. 19(4),
P41 (2012)

30. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics-an
exact result. Philos. Mag. 6(68), 1061–1063 (1961). https://doi.org/10.1080/
14786436108243366

31. Tutte, W.T.: The dissection of equilateral triangles into equilateral triangles.
Math. Proc. Camb. Philos. Soc. 44(4), 463–482 (1948). https://doi.org/10.1017/
S030500410002449X

32. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci.
8(2), 189–201 (1979). https://doi.org/10.1016/0304-3975(79)90044-6

33. Vazirani, V.V.: NC algorithms for computing the number of perfect matchings
in K3,3-free graphs and related problems. Inf. Comput. 80(2), 152–164 (1989).
https://doi.org/10.1016/0890-5401(89)90017-5

34. Webb, K.P.: Counting Bases. Ph.D. thesis, University of Waterloo, Waterloo, ON
(2004)

35. Yamaguchi, Y.: Shortest disjoint S-paths via weighted linear matroid parity. In:
Hong, S.H. (ed.) Proceedings of the 27th International Symposium on Algorithms
and Computation (ISAAC ’16). Leibniz International Proceedings in Informatics,
vol. 64, pp. 63:1–63:13. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2016).
https://doi.org/10.4230/LIPIcs.ISAAC.2016.63

https://doi.org/10.1002/andp.18471481202
https://doi.org/10.1112/blms/5.1.85
https://doi.org/10.1007/BFb0057377
https://doi.org/10.1016/0095-8956(80)90066-0
https://doi.org/10.1007/BF01226465
https://doi.org/10.1137/0130017
https://doi.org/10.1137/0130017
https://doi.org/10.1007/978-3-540-68891-4_17
https://doi.org/10.2307/121059
https://doi.org/10.2307/121059
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1017/S030500410002449X
https://doi.org/10.1017/S030500410002449X
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0890-5401(89)90017-5
https://doi.org/10.4230/LIPIcs.ISAAC.2016.63

On the Recognition of {a, b, c}-Modular
Matrices

Christoph Glanzer(B), Ingo Stallknecht, and Robert Weismantel

ETH Zürich, Zürich, Switzerland
christoph.glanzer@ifor.math.ethz.ch

Abstract. Let A ∈ Z
m×n be an integral matrix and a, b, c ∈ Z satisfy

a ≥ b ≥ c ≥ 0. The question is to recognize whether A is {a, b, c}-
modular, i.e., whether the set of n× n subdeterminants of A in absolute
value is {a, b, c}. We will succeed in solving this problem in polynomial
time unless A possesses a duplicative relation, that is, A has nonzero n×n
subdeterminants k1 and k2 satisfying 2·|k1| = |k2|. This is an extension of
the well-known recognition algorithm for totally unimodular matrices. As
a consequence of our analysis, we present a polynomial time algorithm to
solve integer programs in standard form over {a, b, c}-modular constraint
matrices for any constants a, b and c.

Keywords: Integer optimization · Recognition algorithm · Bounded
subdeterminants

1 Introduction

A matrix is called totally unimodular (TU) if all of its subdeterminants are equal
to 0, 1 or −1. Within the past 60 years the community has established a deep
and beautiful theory about TU matrices. A landmark result in the understand-
ing of such matrices is Seymour’s decomposition theorem [14]. It shows that
TU matrices arise from network matrices and two special matrices using row-,
column-, transposition-, pivoting-, and so-called k-sum operations. As a conse-
quence of this theorem it is possible to recognize in polynomial time whether a
given matrix is TU [13,16]. An implementation of the algorithm in [16] by Walter
and Truemper [19] returns a certificate if A is not TU: For an input matrix with
entries in {0,±1}, the algorithm finds a submatrix Ã which is minimal in the
sense that |det(Ã)| = 2 and every proper submatrix of Ã is TU. We refer to
Schrijver [13] for a textbook exposition of a recognition algorithm arising from
Seymour’s decomposition theorem and further material on TU matrices.

There is a well-established relationship between totally unimodular and uni-
modular matrices, i.e., matrices whose n × n subdeterminants are equal to 0, 1
or −1. In analogy to this we define for A ∈ Z

m×n and m ≥ n,

D(A) := {|det(AI,·)| : I ⊆ [m], |I| = n},

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 238–251, 2021.
https://doi.org/10.1007/978-3-030-73879-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_17

On the Recognition of {a, b, c}-Modular Matrices 239

the set of all n × n subdeterminants of A in absolute value, where AI,· is the
submatrix formed by selecting all rows with indices in I. It follows straightfor-
wardly from the recognition algorithm for TU matrices that one can efficiently
decide whether D(A) ⊆ {1, 0}. A technique in [2, Section 3] allows us to recog-
nize in polynomial time whether D(A) ⊆ {2, 0}. If all n × n subdeterminants
of A are nonzero, the results in [1] can be applied to calculate D(A) given that
max{k : k ∈ D(A)} is constant. Nonetheless, with the exception of these results
we are not aware of other instances for which it is known how to determine D(A)
in polynomial time.

The main motivation for the study of matrices with bounded subdetermi-
nants comes from integer optimization problems (IPs). It is a well-known fact
that IPs of the form max{cTx : Ax ≤ b, x ∈ Z

n} for A ∈ Z
m×n of full column

rank, b ∈ Z
m and c ∈ Z

n can be solved efficiently if D(A) ⊆ {1, 0}, i.e., if A
is unimodular. This leads to the natural question whether the problem remains
efficiently solvable when the assumptions on D(A) are further relaxed. Quite
recently in [2] it was shown that for D(A) ⊆ {2, 1, 0} and rank(A) = n, a gen-
eral linear integer optimization problem can be solved in strongly polynomial
time. Recent results have also led to understand IPs when A is nondegenerate,
i.e., if 0 �∈ D(A). The foundation to study the nondegenerate case was laid by
Veselov and Chirkov [17]. They describe a polynomial time algorithm to solve
IPs if D(A) ⊆ {2, 1}. In [1] the authors showed that IPs over nondegenerate
constraint matrices are solvable in polynomial time if the largest n × n subde-
terminant of the constraint matrix is bounded by a constant.

The role of bounded subdeterminants in complexity questions and in the
structure of IPs and LPs has also been studied in [7–9,12], as well as in the
context of combinatorial problems in [4,5,11]. The sizes of subdeterminants also
play an important role when it comes to the investigation of the diameter of
polyhedra, see [6] and [3].

1.1 Our Results

A matrix A ∈ Z
m×n, m ≥ n, is called {a, b, c}-modular if D(A) = {a, b, c},

where a ≥ b ≥ c ≥ 0.1 The paper presents three main results. First, we prove
the following structural result for a subclass of {a, b, 0}-modular matrices.

Theorem 1 (Decomposition Property). Let a ≥ b > 0, gcd({a, b}) = 1 and
assume that {a, b} �= {2, 1}. Using row permutations, multiplications of rows by
−1 and elementary column operations, any {a, b, 0}-modular matrix A ∈ Z

m×n

can be brought into a block structure of the form[
L 0 0/a

0 R 0/b

]
, (1)

in time polynomial in n, m and log ||A||∞, where L ∈ Z
m1×n1 and R ∈ Z

m2×n2

are TU, n1+n2 = n−1, m1+m2 = m. In the representation above the rightmost
1 For reasons of readability, we will stick to the notation that a ≥ b ≥ c although the
order of these elements is irrelevant.

240 C. Glanzer et al.

column has entries in {0, a} and {0, b}, respectively. The matrix
[
L 0
0 R

]
contains

the (n − 1)-dimensional unit matrix as a submatrix.

The first n−1 columns of (1) are TU since they form a 1-sum of two TU matrices
(see [13, Chapter 19.4]). This structural property lies at the core of the following
recognition algorithm. We say that a matrix A possesses a duplicative relation
if it has nonzero n × n subdeterminants k1 and k2 satisfying 2 · |k1| = |k2|.
Theorem 2 (Recognition Algorithm). There exists an algorithm that solves
the following recognition problem in time polynomial in n, m and log ||A||∞:
Either, it calculates D(A), or gives a certificate that |D(A)| ≥ 4, or returns a
duplicative relation.

For instance, Theorem 2 cannot be applied to check whether a matrix is {4, 2, 0}-
modular, but it can be applied to check whether a matrix is {3, 1, 0}-, or {6, 4, 0}-
modular. More specifically, Theorem 2 recognizes {a, b, c}-modular matrices
unless (a, b, c) = (2 · k, k, 0), k ∈ Z≥1 . In particular, this paper does not give a
contribution as to whether so-called bimodular matrices (the case k = 1) can be
recognized efficiently.

The decomposition property established in Theorem 1 is a major ingredient
for the following optimization algorithm to solve standard form IPs over {a, b, c}-
modular constraint matrices for any constant a ≥ b ≥ c ≥ 0.

Theorem 3 (Optimization Algorithm). Consider a standard form integer
program of the form

max{cTx : Bx = b, x ∈ Z
n
≥0}, (2)

for b ∈ Z
m, c ∈ Z

n and B ∈ Z
m×n of full row rank, where D(BT) is constant,

i.e., max{k : k ∈ D(BT)} is constant.2 Then, in time polynomial in n, m and the
encoding size of the input data, one can solve (2) or output that |D(BT)| ≥ 4.

Notably, in Theorem 3, the assumption that D(BT) is constant can be dropped
if B is degenerate, i.e., if 0 ∈ D(BT).

2 Notation and Preliminaries

We quickly review the terminology used in this abstract, where we resort to
standard notation whenever possible. For k ∈ Z≥1, [k] := {1, . . . , k}. In is the
n-dimensional unit matrix, where we leave out the subscript if the dimension
is clear from the context. For a matrix A ∈ Z

m×n, we denote by Ai,· the i-th
row of A. For a subset I of [m], AI,· is the submatrix formed by selecting all
rows with indices in I, in increasing order. An analogous notation is used for
the columns of A. For k ∈ Z, we write Ik := {i ∈ [m] : Ai,n = k}, the indices of

2 Note that we use D(BT) instead of D(B) since B has full row-rank and we refer to
its m × m subdeterminants.

On the Recognition of {a, b, c}-Modular Matrices 241

the rows whose n-th entry is equal to k. Set ||A||∞ := maxi∈[m],j∈[n] |Aij |. For
simplicity, we assume throughout the document that the input matrix A to any
recognition algorithm satisfies m ≥ n and rank(A) = n as rank(A) < n implies
that D(A) = {0}. Left-out entries in figures and illustrations are equal to zero.

D(A) is preserved under elementary column operations, permutations of rows
and multiplications of rows by −1. By a series of elementary column operations
on A, any nonsingular n × n submatrix B of A can be transformed to its Her-
mite Normal Form (HNF), in which B becomes a lower-triangular, nonnegative
submatrix with the property that each of its rows has a unique maximum entry
on the main diagonal of B [13]. This can be done in time polynomial in n, m
and log ||A||∞ [15]. At various occasions we will make use of a simple adaptation
of the HNF described in [1, Section 3]: For any nonsingular n × n submatrix B of
A, permute the rows of A such that A[n],· = B. Apply elementary column opera-
tions to A such that B is in HNF. After additional row and column permutations
and multiplications of rows by −1,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
∗ · · · ∗ δ1
...

...
...

.
∗ · · · · · · · · · ∗ δl

An,1 · · · · · · · · · · · · An,n−1 An,n

An+1,1 · · · · · · · · · · · · An+1,n−1 An+1,n

...
...

...
...

...
...

...
Am,1 · · · · · · · · · · · · Am,n−1 Am,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where A·,n ≥ 0, |det(B)| =
∏l

i=1 δi · An,n, all entries marked by ∗ are numbers
between 0 and the diagonal entry of the same row minus one, and δi ≥ 2 for all
i ∈ [l]. In particular, the rows with diagonal entries strictly larger than one are
at positions n − l, . . . , n.

We note that it is not difficult to efficiently recognize nondegenerate matrices
given a constant upper bound on |D(A)|. This will allow us to exclude the
nondegenerate case in all subsequent algorithms. We wish to emphasize that the
results in [1] can be applied to solve this task given that max{k : k ∈ D(A)} is
constant.

Lemma 1. Given a constant d ∈ Z, there exists an algorithm that solves the
following recognition problem in time polynomial in n, m and log ||A||∞: Either,
it calculates D(A), or gives a certificate that |D(A)| ≥ d + 1, or that 0 ∈ D(A).

We omit the proof from this abstract as it is merely a technical counting
argument.

242 C. Glanzer et al.

3 Proof of Theorem 1

Transform A to (3), thus A·,n ≥ 0. As a first step we show that we can assume
An,n > 1 without loss of generality. For this purpose, assume that An,n = 1,
i.e., that l = 0. This implies that A[n],· = In. Consequently, any nonsingular
submatrix B of A can be extended to an n×n submatrix with same determinant
by (a) appending unit vectors from the topmost n rows of A to B and (b) for each
unit vector appended in step (a), by appending the column to B in which this
unit vector has its nonzero entry. By Laplace expansion, the n×n submatrix we
obtain admits the same determinant in absolute value. Therefore, if we identify
any submatrix of A with determinant larger than one in absolute value, we can
transform A once more to (3) with respect to its corresponding n×n submatrix
which yields An,n > 1 as desired. To find a subdeterminant of A of absolute
value larger than one, if present, test A for total unimodularity. If the test
fails, it returns a desired subdeterminant. If the test returns that A is TU, then
a = b = 1 and A is already of the form

[
L 0/1

]
for L TU.

The n-th column is not divisible by any integer larger than one as otherwise,
all n × n subdeterminants of A would be divisible by this integer, contradicting
gcd({a, b}) = 1. In particular, since An,n > 1, A·,n is not divisible by An,n.
This implies that there exists an entry Ak,n �= 0 such that Ak,n �= An,n. Thus,
there exist two n×n subdeterminants, det(A[n],·) and det(A[n−1]∪k,·), of different
absolute value. This allows us to draw two conclusions: First, the precondition
An,n > 1 which we have established in the previous paragraph implies a > b.
We may therefore assume for the rest of the proof that a ≥ 3 as {a, b} �= {2, 1}.
Secondly, it follows that l = 0: For the purpose of contradiction assume that
l ≥ 1. Then the aforementioned two subdeterminants det(A[n],·) and
det(A[n−1]∪k,·) are both divisible by

∏l
i=1 δi > 1. Since one of those subdetermi-

nants must be equal to ±a and the other must be equal to ±b, this contradicts
our assumption of gcd({a, b}) = 1.

As a consequence of l = 0, the topmost n − 1 rows of A form unit vectors.
Thus, any subdeterminant of rows n, . . . , m of A which includes elements of the
n-th column can be extended to an n × n subdeterminant of the same abso-
lute value by appending an appropriate subset of these unit vectors. To further
analyze the structure of A we will study the 2 × 2 subdeterminants

θh
i,j := det

[
Ai,h Ai,n

Aj,h Aj,n

]
, (4)

where i, j ≥ n, i �= j and h ≤ n − 1. It holds that |θh
i,j | ∈ {a, b, 0}.

Claim 1. There exists a sequence of elementary column operations and row
permutations which turn A into the form⎡

⎢⎢⎣
In−1
0/± 1 a
0/± 1 b
0/± 1 0

⎤
⎥⎥⎦ , (5)

On the Recognition of {a, b, c}-Modular Matrices 243

where [0/± 1 a], [0/± 1 b] and [0/± 1 0] are submatrices consisting of rows whose
first n − 1 entries lie in {0,±1}, and whose n-th entry is equal to a, b or 0.

Proof (Proof of Claim 1). We start by analyzing the n-th column of A. To
this end, note that |det(A[n−1]∪k,·)| = |Ak,n| ∈ {a, b, 0} for k ≥ n. It follows
that A·,n ∈ {a, b, 0}m as A·,n ≥ 0. In addition, by what we have observed two
paragraphs earlier, at least one entry of A·,n must be equal to a and at least
one entry must be equal to b. Sort the rows of A by their respective entry in the
n-th column as in (5).

In the remaining proof we show that after column operations, A·,[n−1] ∈
{0,±1}m×(n−1). To this end, let h ∈ [n − 1] be an arbitrary column index.
Recall that Ik := {i ∈ [m] : Ai,n = k}. We begin by noting a few properties
which will be used to prove the claim. For i ∈ Ia and j ∈ Ib, it holds that
θh

i,j = b · Ai,h − a · Aj,h ∈ {±a,±b, 0}. These are Diophantine equations which
are solved by

(i) (Ai,h, Aj,h) = (k · a,∓1 + k · b), k ∈ Z,

(ii) (Ai,h, Aj,h) = (±1 + k · a, k · b), k ∈ Z, (6)
(iii) (Ai,h, Aj,h) = (k · a, k · b), k ∈ Z.

Furthermore, for any i1, i2 ∈ Ia, it holds that θh
i1,i2

= a · (Ai1,h − Ai2,h). Since
this quantity is a multiple of a and since θh

i1,i2
∈ {±a,±b, 0}, it follows that

|Ai1,h − Ai2,h| ≤ 1, ∀i1, i2 ∈ Ia. (7)

We now perform a column operation on A·,h: Let us fix arbitrary indices p ∈ Ia

and q ∈ Ib. The pair (Ap,h, Aq,h) solves one of the three Diophantine equations
for a fixed k. Add (−k)·A·,n to A·,h. Now, (Ap,h, Aq,h) ∈ {(0,∓1), (±1, 0), (0, 0)}.
We claim that as a consequence of this column operation, A·,h ∈ {0,±1}m.

We begin by showing that AIa,h and AIb,h have entries in {0,±1}. First,
assume for the purpose of contradiction that there exists j ∈ Ib such that
|Aj,h| > 1. This implies that the pair (Ap,h, Aj,h) satisfies (6) for |k| ≥ 1. As
a ≥ 3, this contradicts that Ap,h ∈ {0,±1}. Secondly, assume for the purpose of
contradiction that there is i ∈ Ia such that |Ai,h| > 1.3 As |Ap,h| ≤ 1, it follows
from (7) that |Ai,h| = 2 and |Ap,h| = 1. Therefore, as either Ap,h or Aq,h must
be equal to zero, Aq,h = 0. This implies that |θh

i,q| = 2 ·b which is a contradiction
to θh

i,q ∈ {±a,±b, 0} as A has no duplicative relation, i.e., 2 · b �= a.
It remains to prove that AI0,h has entries in {0,±1}. For the purpose of

contradiction, assume that there exists i ∈ I0, i ≥ n, such that |Ai,h| ≥ 2.
Choose any s ∈ Ia. Then,

θh
s,i = det

[
As,h a
Ai,h 0

]
= −a · Ai,h,

which is larger than a in absolute value, a contradiction.
�
3 We cannot use the same approach as for the first case as b could be equal to 1 or 2.

244 C. Glanzer et al.

In the next claim, we establish the desired block structure (1). We will show
afterwards that the blocks L and R are TU.

Claim 2. There exists a sequence of row and column permutations which turn
A into (1) for matrices L and R with entries in {0,±1}.
Proof (Proof of Claim 2). For reasons of simplicity, we assume that A has no
rows of the form

[
0 · · · 0 a

]
or

[
0 · · · 0 b

]
as such rows can be appended to A

while preserving the properties stated in this claim. We construct an auxiliary
graph G = (V,E), where we introduce a vertex for each nonzero entry of A·,[n−1]

and connect two vertices if they share the same row or column index. Formally,
set

V := {(i, j) ∈ [m] × [n − 1] : Ai,j �= 0},

E := {{(i1, j1), (i2, j2)} ∈ V × V : i1 = i2 or j1 = j2, (i1, j1) �= (i2, j2)}.

Let K1, . . . ,Kk ⊆ V be the vertex sets corresponding to the connected compo-
nents in G. For each l ∈ [k], set

Il := {i ∈ [m] : ∃j ∈ [n − 1] s.t. (i, j) ∈ Kl},

Jl := {j ∈ [n − 1] : ∃i ∈ [m] s.t. (i, j) ∈ Kl}.

These index sets form a partition of [m], resp. [n−1]: Since every row of A·,[n−1]

is nonzero,
⋃

l∈[k] Il = [m] and since rank(A) = n, every column of A contains
a nonzero entry, i.e.,

⋃
l∈[k] Jl = [n − 1]. Furthermore, by construction, it holds

that Ip ∩ Iq = ∅ and Jp ∩ Jq = ∅ for all p �= q. The entries Ai,j for which
(i, j) /∈ ⋃

l∈[k](Il ×Jl) are equal to zero. Therefore, sorting the rows and columns
of A·,[n−1] with respect to the partition formed by Il, resp. Jl, l ∈ [k], yields

A·,[n−1] =

⎡
⎢⎢⎢⎢⎣

AI1,J1 0 . . . 0

0
.

...
...

. 0
0 . . . 0 AIk,Jk

⎤
⎥⎥⎥⎥⎦ . (8)

In what follows we show that for all l ∈ [k], it holds that either Il ∩Ia = ∅ or that
Il ∩ Ib = ∅. From this property the claim readily follows: We obtain the form (1)
from (8) by permuting the rows and columns such that the blocks which come
first are those which correspond to the connected components Kl with Il∩Ia �= ∅.
For the purpose of contradiction, assume that there exists l ∈ [k] such that
Il ∩ Ia �= ∅ and Il ∩ Ib �= ∅. Denote by Ka

l := {(i, j) ∈ Kl : i ∈ Ia} and Kb
l :=

{(i, j) ∈ Kl : i ∈ Ib}. Among all paths in the connected component induced
by Kl which connect the sets Ka

l and Kb
l , let P := {(i(1), j(1)), . . . , (i(t), j(t))}

be a shortest one. By construction, (i(1), j(1)) is the only vertex of P which
lies in Ka

l and (i(t), j(t)) is the only vertex of P which lies in Kb
l . This implies

that P starts and ends with a change in the first component, i.e., i(1) �= i(2)

and i(t−1) �= i(t). Furthermore, since P has minimal length, it follows from the

On the Recognition of {a, b, c}-Modular Matrices 245

construction of the edges that it alternates between changing first and second
components, i.e., for all s = 1, . . . , t − 2, i(s) �= i(s+1) ⇔ j(s+1) �= j(s+2) and
j(s) �= j(s+1) ⇔ i(s+1) �= i(s+2).

Define B := A{i(1),...,i(t)},{j(1),...,j(t),n} ∈ Z
t+2
2 × t+2

2 . Permute the rows and
columns of B such that they are ordered with respect to the order i(1), . . . , i(t)

and j(1), . . . , j(t), n. We claim that B is of the form

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

±1 a
±1 ±1 0

±1
. . .

...
. . . ±1

...
±1 ±1 0

±1 b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To see this, first observe that the entries on the main diagonal and the diagonal
below are equal to ±1 and that the entries B1, t+2

2
and B t+2

2 , t+2
2

are equal to a or

b, respectively, by construction. As we have observed above, (i(1), j(1)) is the only
vertex of P which lies in Ka

l and (i(t), j(t)) is the only vertex of P which lies in Kb
l ,

implying that all other entries of the rightmost column, B2, t+2
2

, . . . , B t+2
2 −1, t+2

2
,

are equal to zero. For the purpose of contradiction, assume that any other entry
of B, say Bv,w, is nonzero. Let us consider the case that w > v, i.e., that Bv,w

lies above the main diagonal of B. Among all vertices of P whose corresponding
entries lie in the same row as Bv,w, let (i(s), j(s)) be the vertex with minimal s.
Among all vertices of P whose corresponding entries lie in the same column as
Bv,w, let (i(s

′), j(s
′)) be the vertex with maximal s′. Then, consider the following

path: Connect (i(1), j(1)) with (i(s), j(s)) along P ; then take the edge to the vertex
corresponding to Bv,w; take the edge to (i(s

′), j(s
′)); then connect (i(s

′), j(s
′))

with (i(t), j(t)) along P . This path is shorter than P which is a contradiction.
An analogous argument yields a contradiction if w < v − 1, i.e., if Bv,w lies in
the lower-triangular part of B. Thus, B is of the form stated above. By Laplace
expansion applied to the last column of B, det(B) = ±a ± b /∈ {±a,±b, 0} as
2 · b �= a. Since B can be extended to an n × n submatrix of A of the same
determinant in absolute value, this is a contradiction.

Regarding the computational running time of this operation, note that G can
be created and its connected components can be calculated in time polynomial
in n and m. A subsequent permutation of the rows and columns as noted above
yields the desired form.
�
It remains to show that L and R are TU. We will prove the former, the proof for
the latter property is analogous. Assume for the purpose of contradiction that
L is not TU. As the entries of L are all ±1 or 0, it contains a submatrix Ã of
determinant ±2 [13, Theorem 19.3]. Extend Ã by appending the corresponding
entries of A·,n and by appending an arbitrary row of AIb,·. We obtain a submatrix
of the form [

Ã 0/a

0 b

]
,

246 C. Glanzer et al.

whose determinant in absolute value is 2 · b, a contradiction as A has no duplica-
tive relations. Similarly, one obtains a submatrix of determinant ±2 · a if R is
not TU.
�

4 Proof of Theorem 2

In this section, the following recognition problem will be of central importance:
For numbers a ≥ b ≥ c ≥ 0, we say that an algorithm tests for {a, b, c}-
modularity if, given an input matrix A ∈ Z

m×n (m ≥ n), it checks whether
D(A) = {a, b, c}. As a first step we state the following lemma which allows us to
reduce the gcd in all subsequent recognition algorithms. The proof uses a similar
technique as was used in [10, Remark 5]. It is deferred to a longer version of this
paper.

Lemma 2 (cf. [10, Remark 5]). Let a ≥ b > 0 and γ := gcd({a, b}). Testing
for {a, b, 0}-modularity can be reduced to testing for { a

γ , b
γ , 0}-modularity in time

polynomial in n, m and log ||A||∞, where A is the input matrix.

We proceed by using the decomposition established in Theorem 1 to construct
an algorithm which tests for {a, b, 0}-modularity if a ≥ b > 0 without duplicative
relations, i.e., if 2 ·b �= a. We will see that this algorithm quickly yields a proof of
Theorem 2. The main difference between the following algorithm and Theorem 2
is that in the former, a and b are fixed input values while in Theorem 2, a, b
(and c) also have to be determined.

Lemma 3. Let a ≥ b > 0 such that 2·b �= a. There exists an algorithm with run-
ning time polynomial in n, m and log ||A||∞ which tests for {a, b, 0}-modularity
or returns one of the following certificates: |D(A)| ≥ 4, gcd(D(A)) �= gcd({a, b})
or a set D′

� {a, b, 0} such that D(A) = D′.

Proof. Applying Lemmata 1 and 2 allows us to assume w.l.o.g. that 0 ∈ D(A)
and that gcd({a, b}) = 1. Note that the case a = b implies a = b = 1. Then,
testing for {1, 0}-modularity can be accomplished by first transforming A to (3)
and by subsequently testing whether the transformed matrix is TU.

Thus, consider the case a > b. Since gcd({a, b}) = 1, 2 · b �= a ⇔ {a, b} �=
{2, 1}. Therefore, the numbers a and b fulfill the prerequisites of Theorem 1.
Follow the proof of Theorem 1 to transform A to (1). If the matrix is {a, b, 0}-
modular, we will arrive at a representation of the form (1). Otherwise, the proof
of Theorem 1 (as it is constructive) exhibits a certificate of the following form:
|D(A)| ≥ 4, gcd(D(A)) �= gcd({a, b}) or a set D′

� {a, b, 0} such that D(A) =
D′. Without loss of generality, we can also assume that A has at least one n × n
subdeterminant equal to ±a and ±b, i.e., that {a, b, 0} ⊆ D(A).

Next, we show that i) holds if and only if both ii) and iii) hold, where

i) every nonsingular n × n submatrix of A has determinant ±a or ±b,
ii) every nonsingular n × n submatrix of AIa∪I0,· has determinant ±a,
iii) every nonsingular n × n submatrix of AIb∪I0,· has determinant ±b.

On the Recognition of {a, b, c}-Modular Matrices 247

AI0,· contains the first n − 1 unit vectors and hence, AIa∪I0,· and AIb∪I0,· have
full column rank. We first show that ii) and iii) follow from i). Let us start
with iii). For the purpose of contradiction, assume that i) holds but not iii).
By construction, the n-th column of AIb∪I0 is divisible by b. Denote by A′ the
matrix which we obtain by dividing the last column of AIb∪I0,· by b. The entries
of A′ are all equal to ±1 or 0. As we have assumed that iii) is invalid, it follows
that there exists a nonsingular n × n submatrix of A′ whose determinant is not
equal to ±1. In particular, A′ is not TU. By [13, Theorem 19.3], as the entries
of A′ are all ±1 or 0 but it is not TU, it contains a submatrix of determinant
±2. Since A′

·,[n−1] is TU, this submatrix must involve entries of the n-th column
of A′. Thus, it corresponds to a submatrix of AIb∪I0,· of determinant ±2 · b.
Append a subset of the first n − 1 unit vectors to extend this submatrix to an
n × n submatrix. This n × n submatrix is also an n × n submatrix of A. Its
determinant is ±2 · b, which is not contained in {±a,±b, 0} because 2 · b �= a, a
contradiction to i). For ii), the same argument yields an n × n subdeterminant
of ±2 · a, which is also a contradiction to i).

Next, we prove that i) holds if both ii) and iii) hold. This follows from the
1-sum structure of A. Let B be any nonsingular n × n submatrix of A. B is of
the form

B =
[
C 0/a

D 0/b

]
,

where C ∈ Z
m1×n1 , D ∈ Z

m2×n2 for n1, n2,m1 and m2 satisfying n1 + n2 + 1 =
n = m1 + m2. As B is nonsingular, ni ≤ mi and mi ≤ ni + 1, i ∈ {1, 2}. Thus,
ni ≤ mi ≤ ni + 1, i ∈ {1, 2}, and we identify two possible cases which are
symmetric: m1 = n1 + 1, m2 = n2 and m1 = n1, m2 = n2 + 1. We start with
the analysis of the former. By Laplace expansion applied to the last column,

det
[
C 0/a

D 0/b

]
= det

[
C 0/a

D 0

]
± det

[
C 0

D 0/b

]
.

The latter determinant is zero as m1 = n1 + 1. As the former matrix is block-
diagonal, |det B| = |det[C | 0/a]|·|det D|. B is nonsingular and D is TU, therefore
|det D| = 1. [C | 0/a] is a submatrix of AIa∪I0 which can be extended to an n×n
submatrix of the same determinant in absolute value by appending a subset of
the n − 1 unit vectors contained in AIa∪I0 . Therefore by ii), |det B| = |det[C |
0/a]| = a. In the case m1 = n1, m2 = n2 + 1 a symmetric analysis leads to
|det B| = |det[D | 0/b]| = b by iii).

To test for ii), let A′ be the matrix which we obtain by dividing the n-th
column of AIa∪I0,· by a. Then, ii) holds if and only if every nonsingular n × n
submatrix of A′ has determinant ±1. Transform A′ to (3). The topmost n rows
of A′ must form a unit matrix. Therefore, ii) is equivalent to A′ being TU, which
can be tested efficiently. Testing for iii) can be done analogously.
�

We now have all the necessary ingredients to prove Theorem 2. In essence,
what remains is a technique to find sample values a, b and c for which we test
whether A is {a, b, c}-modular using our previously established algorithms.

248 C. Glanzer et al.

Proof (Proof of Theorem 2). Apply Lemma 1 for d = 3. Either, the algorithm
calculates D(A) or gives a certificate that |D(A)| ≥ 4, or that 0 ∈ D(A). In the
former two cases we are done. Assume therefore that 0 ∈ D(A). By assumption A
has full column rank. Thus, find k1 ∈ D(A), k1 �= 0, using Gaussian Elimination.
Apply Lemma 3 to check whether D(A) = {k1, 0}. Otherwise, |D(A)| ≥ 3.
At this point, a short technical argument is needed to determine an element
k2 ∈ D(A) \ {k1, 0}, which we defer to a longer version of this paper.

Assume w.l.o.g. that k1 > k2. If 2 · k2 = k1, then A has duplicative relations.
If not, test A for {k1, k2, 0}-modularity using Lemma 3. As {k1, k2, 0} ⊆ D(A),
either, this algorithm returns that D(A) = {k1, k2, 0} or a certificate of the form
|D(A)| ≥ 4 or gcd(D(A)) �= gcd({k1, k2}). In the former two cases we are done
and in the third case it also follows that |D(A)| ≥ 4.
�

5 Proof of Theorem 3

One ingredient to the proof of Theorem 3 is the following result by Gribanov,
Malyshev and Pardalos [10] which reduces the standard form IP (2) to an IP
in inequality form in dimension n − m such that the subdeterminants of the
constraint matrices are in relation.

Lemma 4 ([10, Corollary 1.1, Remark 5, Theorem 3]4). In time polynomial in
n, m and log ||B||∞, (2) can be reduced to the inequality form IP

max{hTy : Cy ≤ g, y ∈ Z
n−m}, (9)

where h ∈ Z
n−m, g ∈ Z

n and C ∈ Z
n×(n−m), with D(C) = 1

gcd(D(BT))
· D(BT).

To prove this reduction, the authors apply a theorem by Shevchenko and
Veselov [18] which was originally published in Russian. In a longer version of
this paper, we will provide an alternative elementary proof for Lemma 4.

As a second ingredient to the proof of Theorem 3, we will make use of
some results for bimodular integer programs (BIPs). BIPs are IPs of the form
max{cTx : Ax ≤ b, x ∈ Z

n}, where c ∈ Z
n, b ∈ Z

m and A ∈ Z
m×n is bimod-

ular, i.e., rank(A) = n and D(A) ⊆ {2, 1, 0}. As mentioned earlier, [2] proved
that BIPs can be solved in strongly polynomial time. Their algorithm uses the
following structural result for BIPs by [17] which will also be useful to us.

Theorem 4 ([17, Theorem 2], as formulated in [2, Theorem 2.1]).
Assume that the linear relaxation max{cTx : Ax ≤ b, x ∈ R

n} of a BIP is
feasible, bounded and has a unique optimal vertex solution v. Denote by I ⊆ [m]
the indices of the constraints which are tight at v, i.e., AI,·v = bI . Then, an
optimal solution x∗ for max{cTx : AIx ≤ bI , x ∈ Z

n} is also optimal for the
BIP.

4 Note that in [10], the one-to-one correspondence between D(C) and D(BT) is not
explicitly stated in Corollary 1.1 but follows from Theorem 3.

On the Recognition of {a, b, c}-Modular Matrices 249

Proof (Proof of Theorem 3). Using Lemma 4, we reduce the standard form
IP (2) to (9). Note that gcd(D(C)) = 1. Let us denote (9) with objective vector
h ∈ Z

n−m by IP≤(h) and its natural linear relaxation by LP≤(h). We apply
Theorem 2 to C and perform a case-by-case analysis depending on the output.

i) The algorithm calculates and returns D(C). If 0 /∈ D(C), C is nondegen-
erate and IP≤(h) can be solved using the algorithm in [1]. Thus, assume
0 ∈ D(C). C has no duplicative relations. As gcd(D(C)) = 1, this implies
that C is {a, b, 0}-modular for a ≥ b > 0, where gcd({a, b}) = 1 and
{a, b} �= {2, 1}. Thus, C satisfies the assumptions of Theorem 1. As a con-
sequence of Theorem 1, there exist elementary column operations which
transform C such that its first n − m − 1 columns are TU, i.e., there is
U ∈ Z

(n−m)×(n−m) unimodular such that CU = [T | d], where T is
TU and d ∈ Z

n. Substituting z := U−1y yields the equivalent problem
max{hTUz : [T | d]z ≤ g, z ∈ Z

n−m}, which can be solved by solving its
mixed-integer relaxation, where z1, . . . , zn−m−1 ∈ R and zn−m ∈ Z. This
can be done in polynomial time [13, Chapter 18.4].

ii) The algorithm returns that |D(C)| ≥ 4. Then, |D(BT)| = |D(C)| ≥ 4.
iii) The algorithm returns a duplicative relation, i.e., {2 · k, k} ⊆ D(C), k > 0.

Assume w.l.o.g. that LP≤(h) is feasible and that LP≤(h) is bounded. Using
standard techniques, the unbounded case can be reduced to the bounded
case. Calculate an optimal vertex solution v to LP≤(h). If v ∈ Z

n−m, then v
is also optimal for IP≤(h). Thus, assume that v �∈ Z

n−m and let I ⊆ [n] be
the indices of tight constraints at v, i.e., CI,·v = gI . Next we prove that we
may assume w.l.o.g. that (a) 0 ∈ D(C), (b) k = 1 and (c) CI is bimodular.

(a) From Lemma 1 applied to C for d = 3 we obtain three possible results:
|D(C)| ≥ 4, 0 /∈ D(C) or 0 ∈ D(C). In the first case we are done and in
the second case, C is nondegenerate and IP≤(h) can be solved using the
algorithm in [1]. Therefore, w.l.o.g., 0 ∈ D(C).

(b) If {2 · k, k, 0} ⊆ D(C) for k > 1, it follows from gcd(D(C)) = 1 that
|D(C)| ≥ 4. Therefore, w.l.o.g., k = 1.

(c) Since v /∈ Z
n−m, it holds that 1 /∈ D(CI) as otherwise, v ∈ Z

n−m due to
Cramer’s rule. Apply Theorem 2 once more, but this time to CI . If the
algorithm returns that |D(CI)| ≥ 4, then |D(C)| ≥ 4. If the algorithm
returns a duplicative relation, i.e., {2 · s, s} ⊆ D(CI), then s �= 1 as
1 /∈ D(CI). Since by (a) and (b), {2, 1, 0} ⊆ D(C), it follows that {2 ·
s, 2, 1, 0} ⊆ D(C). Thus, |D(C)| ≥ 4. If the algorithm calculates and
returns D(CI), then it has either found that D(CI) ⊆ {2, 0} or it returns
an element t ∈ D(CI) \ {2, 0}. Then, t �= 1 as 1 /∈ D(CI), implying that
{t, 2, 1, 0} ⊆ D(C) and |D(C)| ≥ 4. Thus, w.l.o.g., CI is bimodular.

Let IPcone≤ (h) := max{hTy : CIy ≤ gI , y ∈ Z
n−m}. As CI is bimodular, this

is a BIP. By possibly perturbing the vector h (e.g. by adding 1
M · ∑i∈I Ci,·

for a sufficiently large M > 0), we can assume that v is the unique optimal
solution to LP≤(h). Solve IPcone≤ (h) using the algorithm by [2]. If IPcone≤ (h) is
infeasible, so is IP≤(h). Let y ∈ Z

n−m be an optimal solution for IPcone≤ (h).
We claim that either, y is also optimal for IP≤(h) or it follows that |D(C)| ≥

250 C. Glanzer et al.

4: If y is feasible for IP≤(h), it is also optimal since IPcone≤ (h) is a relaxation
of IP≤(h). If C is bimodular, Theorem 4 states that y is feasible for IP≤(h),
i.e., it is optimal for IP≤(h). Thus, if y is not feasible for IP≤(h), D(C)
contains an element which is neither 0, 1 nor 2. As {2, 1, 0} ⊆ D(C) by (a)
and (b), this implies that |D(C)| ≥ 4.

�

Acknowledgments. This work was partially supported by the Einstein Foundation
Berlin. We are grateful to Miriam Schlöter for proofreading the manuscript, and to the
anonymous reviewers for several helpful comments.

References

1. Artmann, S., Eisenbrand, F., Glanzer, C., Oertel, T., Vempala, S., Weismantel,
R.: A note on non-degenerate integer programs with small subdeterminants. Oper.
Res. Lett. 44(5), 635–639 (2016)

2. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for
bimodular integer linear programming. In: Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing. ACM, New York (2017)

3. Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-
determinants and the diameter of polyhedra. Discrete Comput. Geometry 52(1),
102–115 (2014)

4. Conforti, M., Fiorini, S., Huynh, T., Joret, G., Weltge, S.: The stable set problem
in graphs with bounded genus and bounded odd cycle packing number. In: SODA
2020: Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2896–2915 (2020)

5. Conforti, M., Fiorini, S., Huynh, T., Weltge, S.: Extended formulations for stable
set polytopes of graphs without two disjoint odd cycles. In: Bienstock, D., Zambelli,
G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 104–116. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45771-6 9

6. Dyer, M., Frieze, A.: Random walks, totally unimodular matrices, and a ran-
domised dual simplex algorithm. Math. Program. 64(1–3), 1–16 (1994)

7. Eisenbrand, F., Vempala, S.: Geometric random edge. Math. Programm. 164(1-2),
325–339 (2017)

8. Glanzer, C., Weismantel, R., Zenklusen, R.: On the number of distinct rows of a
matrix with bounded subdeterminants. SIAM J. Discret. Math. 32(3), 1706–1720
(2018)

9. Gribanov, D.V., Veselov, S.I.: On integer programming with bounded determi-
nants. Optim. Lett. 10(6), 1169–1177 (2015). https://doi.org/10.1007/s11590-015-
0943-y

10. Gribanov, D., Malyshev, D., Pardalos, P.: A note on the parametric integer pro-
gramming in the average case: sparsity, proximity, and FPT-algorithms. arXiv
preprint arXiv:2002.01307 (2020)

11. Nägele, M., Sudakov, B., Zenklusen, R.: Submodular minimization under congru-
ency constraints. In: Czumaj, A. (ed.) SODA pp. 849–866. SIAM (2018)

12. Paat, J., Schlöter, M., Weismantel, R.: The Integrality Number of an Integer Pro-
gram. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp.
338–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45771-6 26

https://doi.org/10.1007/978-3-030-45771-6_9
https://doi.org/10.1007/s11590-015-0943-y
https://doi.org/10.1007/s11590-015-0943-y
http://arxiv.org/abs/2002.01307
https://doi.org/10.1007/978-3-030-45771-6_26

On the Recognition of {a, b, c}-Modular Matrices 251

13. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
14. Seymour, P.: Decomposition of regular matroids. J. Comb. Theory, Series B 28(3),

305–359 (1980)
15. Storjohann, A., Labahn, G.: Asymptotically fast computation of hermite normal

forms of integer matrices. In: Proceedings of the 1996 International Symposium on
Symbolic and Algebraic Computation, pp. 259–266 (1996)

16. Truemper, K.: A decomposition theory for matroids. v. testing of matrix total
unimodularity. Journal of Combinatorial Theory, Series B 49(2), 241–281 (1990)

17. Veselov, S., Chirkov, A.: Integer program with bimodular matrix. Discret. Optim.
6(2), 220–222 (2009)

18. Veselov, S., Shevchenko, V.: Bounds for the maximal distance between the points of
certain integer lattices (in Russian). Combinatorial-Algebraic Methods in Applied
Mathematics, pp. 26–33 (1980)

19. Walter, M., Truemper, K.: Implementation of a unimodularity test. Math. Pro-
gram. Comput. 5(1), 57–73 (2013)

On the Power of Static Assignment
Policies for Robust Facility Location

Problems

Omar El Housni1(B), Vineet Goyal2, and David Shmoys3

1 ORIE, Cornell Tech, New York, NY, USA
oe46@cornell.edu

2 IEOR, Columbia University, New York, NY, USA
vg2277@columbia.edu

3 ORIE, Cornell University, Ithaca, NY, USA
david.shmoys@cornell.edu

Abstract. We consider a two-stage robust facility location problem on a
metric under an uncertain demand. The decision-maker needs to decide
on the (integral) units of supply for each facility in the first stage to
satisfy an uncertain second-stage demand, such that the sum of first
stage supply cost and the worst-case cost of satisfying the second-stage
demand over all scenarios is minimized. The second-stage decisions are
only assignment decisions without the possibility of adding recourse sup-
ply capacity. This makes our model different from existing work on two-
stage robust facility location and set covering problems. We consider an
implicit model of uncertainty with an exponential number of demand
scenarios specified by an upper bound k on the number of second-stage
clients. In an optimal solution, the second-stage assignment decisions
depend on the scenario; surprisingly, we show that restricting to a fixed
(static) fractional assignment for each potential client irrespective of the
scenario gives us an O(log k/ log log k)-approximation for the problem.
Moreover, the best such static assignment can be computed efficiently
giving us the desired guarantee.

Keywords: Facility location · Approximation algorithms · Robust
optimization

1 Introduction

We consider two-stage robust facility location problems under demand uncer-
tainty where we are given a set of clients and a set of facilities in a common
metric space. In the first stage, the decision-maker needs to select the (integral)
units supply at each facility. The uncertain demand is then selected adversarially

V. Goyal—Supported in part by NSF CMMI 1636046.
D. Shmoys—Supported by CCF-1526067, CMMI-1537394, CCF-1522054, CCF-1740
822, CCF-1526067, CNS-1952063, and DMS-1839346.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 252–267, 2021.
https://doi.org/10.1007/978-3-030-73879-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_18

On the Power of Static Assignment Policies 253

and needs to be satisfied by the existing supply with the minimum assignment
cost in the second stage. The goal is to determine the first-stage supply such
that the sum of first-stage supply cost and the worst-case assignment cost over
all demand scenarios is minimized. Our problem is motivated by settings where
the lead time to procure supply is large and obtaining additional units of supply
in the second stage is not feasible. The uncertain second-stage demand must
then be satisfied by supply units from the first stage, a common constraint in
many applications. This is a departure from existing work on two-stage robust
facility location, network design and, more generally, robust covering problems
that have been studied extensively in the literature [1,6,8,10] where the second-
stage decisions allow for “adding more supply” (more specifically adding more
sets/facilities to satisfy the requirement).

In this paper, we consider an implicit model of uncertainty with
exponentially-many demand scenarios specified by an upper bound k on the
number of second-stage demand clients. Since the number of scenarios is
exponentially-many, we can not efficiently solve even the LP relaxation for the
problem. In contrast, if the set of second-stage scenarios are explicitly specified
(see, for instance, [1,6]), we can write a polynomially-sized LP relaxation with
assignment decisions for each scenario. The main challenge then is related to
obtaining an integral solution, which for the case of set covering and several net-
work design problems can be reduced to deterministic versions (see, for instance,
Dhamdhere et al. [6]).

In contrast, in an implicit model of uncertainty (with possibly exponentially-
many scenarios), one of the fundamental challenges is to even approximately
solve the linear relaxation of the problem efficiently. The implicit model of uncer-
tainty with an upper bound on number of uncertain second-stage clients or
elements has been studied extensively in the literature. Feige et al. [8] show
under a reasonable complexity assumption that it is hard to solve the LP
relaxation of a two-stage set covering problem within a factor better than
Ω(log n/ log log n) under this implicit model of uncertainty. They also give
an O(log2 n)-approximation for the 0 − 1 two-stage robust set-covering prob-
lem. Gupta et al. [10] give an improved O(log n)-approximation for the set-
covering problem, thereby matching the deterministic approximation guaran-
tee. El Housni and Goyal [7] show that a static policy (that is, linear in the
set of second-stage elements, also referred to as an affine policy) gives an
O(log n/ log log n)-approximation for the two-stage LP, thereby matching the
hardness lower bound for the fractional problem. Gupta et al. [11] present
approximations for several covering network design problems under the implicit
model of uncertainty. Although there is a large body of work in this direction,
as we mentioned earlier, our problem is different from set covering, since there is
no possibility of adding recourse capacity; prior results do not imply an approx-
imation for our model.

Khandekar et al. [15] consider uncapacitated two-stage robust facility loca-
tion problems where there is a first-stage cost for opening a facility with unlim-
ited supply and an inflated second-stage cost to open recourse facilities in the
second-stage. They give a constant approximation algorithm for this model.

254 O. El Housni et al.

Our setting is different as we consider a capacitated version of the problem
with a linear supply cost in the first stage as opposed to a fixed opening cost.

Other Related Work. Many variants of facility location problems have been
studied extensively in the literature, including both deterministic versions as
well as variants that address demand uncertainty. We refer the reader to [18]
for a review of the deterministic facility location problems. Among the models
that address demand uncertainty in the facility location problems, in addition to
robust [2,4], there are also stochastic [12,14,17,21] and distributionally robust
[3,5,16] models that have been studied extensively in the literature. In a stochas-
tic model, there is a distribution on the second-stage demand scenarios and the
goal is to minimize the total expected cost. A distributionally robust model can
be thought of as a hybrid between stochastic and robust where the second-stage
distribution is selected adversarially from a pre-specified set and the goal is to
minimize the worst-case expected cost. We refer the reader to the survey [20] for
an extensive review of facility location problems under uncertainty.

1.1 Our Contributions

Let us begin with a formal problem definition. We are given a set of n facilities
F and m clients C in a common metric d where dij denotes the distance between
i and j. For each facility i ∈ F , there is a cost ci per unit of supply at i. The
demand uncertainty is modeled by an implicit set of scenarios Ck that includes
all subsets of clients C of size at most k. The decision-maker needs to select an
(integral) number of units of supply xi for each facility i ∈ F in the first-stage.
An adversary observes the first stage decisions and selects a worst-case demand
scenario S ∈ Ck that must be satisfied with the first-stage supply, where each
client in the realized scenario needs one unit of supply. The goal is to minimize
the sum of the first-stage supply cost and the worst-case assignment cost over
all second-stage demand scenarios. We refer to this problem as soft-capacitated
robust facility location (SCRFL). Typically in the literature, soft-capacitated refer
to settings where violations of capacity upper bounds are allowed. The analogue
here is that we can add any amount of supply in a facility without upper bounds
(xi ∈ Z+) but we pay a per unit cost of supply.

We consider a class of static assignment policies, where each of the m clients
has a static fractional assignment to facilities that is independent of the sce-
nario, leading to a feasible second-stage solution for each demand scenario, while
respecting supply capacities. Note this is a restriction, since the optimal second-
stage assignment decisions are scenario-dependent in general. As a warm-up, we
show that static assignment policies are optimal for the uncapacitated case with
unlimited supply at each open facility (i.e., there is a cost ci to open facility i
with unlimited supply). We refer to this problem as uncapacitated robust facility
location (URFL). This is based on the intuition that each client can be assigned
to the closest open facilities in an optimal solution in any scenario; this leads to
optimality of a static assignment policy for the LP relaxation (Theorem1).

On the Power of Static Assignment Policies 255

Theorem 1. A static assignment policy is optimal for the linear relaxation of
(URFL).

The optimality of static assignment is not true in general when the supply at
facilities is constrained (or equivalently, there is a cost per unit of supply). The
main contribution in this paper is to show that static assignment policies give an
O(log k/ log log k)-approximation for the LP relaxation of (SCRFL) (Theorem 2).
We show this by constructing such a solution, starting from an optimal first-stage
supply. The optimal static assignment policies can be computed efficiently by
solving a compact LP.

Theorem 2. A static assignment policy gives O(log k/ log log k)-approximation
for the linear relaxation of (SCRFL).

Furthermore, the fractional supply in the first stage can be rounded to an
integral supply using ideas similar to rounding algorithms for the deterministic
facility location [19]. In particular, the static assignment solution for the unca-
pacitated case can be rounded to give a 4-approximation algorithm for (URFL).
The static assignment solution for the soft-capacitated case can be rounded
within a constant factor, which results in an O(log k/ log log k)-approximation
algorithm for (SCRFL). We would like to note that while the fractional assign-
ment is static in our approximate LP solution, our integral assignment for any
client in the second-stage depends on the other demand clients in the scenario;
thereby, making our static assignment policy adaptive in implementation.

2 Warm-Up: Uncapacitated Robust Facility
Location

2.1 Problem Formulation

In this section, we consider the uncapacitated robust facility location problem
(URFL) where for each i ∈ F , there is a cost ci to open facility i with unlimited
supply. The problem can be stated as the following integer program, where each
binary variable zi, i ∈ F indicates if facility i is opened and each yS

ij , i ∈ F , j ∈
S, S ∈ Ck indicates the assignment of client j to facility i in scenario S.

min
∑

i∈F
cizi + max

S∈Ck

∑

i∈F

∑

j∈S

dijy
S
ij

s.t.
∑

i∈F
yS

ij ≥ 1, ∀S ∈ Ck,∀j ∈ S,

zi ≥ yS
ij , ∀i ∈ F ,∀S ∈ Ck,∀j ∈ S,

zi ∈ {0, 1}, yS
ij ≥ 0, ∀i ∈ F ,∀S ∈ Ck,∀j ∈ S.

(URFL)

256 O. El Housni et al.

Note that the second-stage assignment is a transportation problem and since
the demand of a client is integral (0 or 1), the optimal solutions yS

ij are integral
as well. The special case of (URFL) where the uncertainty set contains a single
scenario corresponds to the NP-hard classical uncapacitated facility location
problem, which is hard to approximate within a constant better than 1.463
under a reasonable complexity assumption [9]. We let (LP-URFL) denote the
linear relaxation of (URFL), where we replace zi ∈ {0, 1} by zi ≥ 0 for each
i ∈ F . While it is challenging in general to even solve the linear relaxation of a
problem under the implicit model of uncertainty, we show that (LP-URFL) can be
solved in polynomial time using a Static Assignment Policy for the second-stage
variables. Moreover, we can round the fractional solution losing only a constant
factor, thereby getting a constant approximation for (URFL).

2.2 Static Assignment Policy

Consider an optimal solution of (URFL). Since each open facility can have an
unlimited amount of supply, each client in the realized scenario is assigned to the
closest facility among the opened ones. The same observation holds as well for
(LP-URFL) where each client is assigned to the same fractionally opened facilities
independent of the realized scenario. Thus, the assignment of a client is static.
This can be captured by the following policy.

Static Assignment Policy. There exists yij ≥ 0 for each i ∈ F , j ∈ C such
that

∀S ∈ Ck,∀i ∈ F ,∀j ∈ S, yS
ij = yij . (1)

Proof of Theorem 1. Let (z∗,y∗S , S ∈ Ck) be an optimal solution to (LP-URFL).
Since there are no capacities on facilities, each client j is assigned to the clos-
est fractionally opened facilities. In particular, for each j ∈ C, let πj be a
permutation of F = {1, . . . , n} such that dπj(1)j ≤ dπj(2)j ≤ . . . ≤ dπj(n)j ,
and let � = min{p | z∗

πj(1)
+ z∗

πj(2)
+ . . . + z∗

πj(p)
≥ 1}. Denote ẑπj(�) =

1 − (z∗
πj(1)

+ . . . + z∗
πj(�−1)). The optimal solution can be written in the form

(1) as follows: for S ∈ Ck and j ∈ S; yS
ij = z∗

i for i ∈ {πj(1), . . . , πj(� − 1)},
yS

ij = ẑi for i = πj(�), and yS
ij = 0, otherwise. ��

Let (Static-URFL) denote the problem after restricting the second-stage vari-
ables yS

ij in (LP-URFL) to a policy (1), which can then be reformulated as follows:

min
∑

i∈F
cizi + max

S∈Ck

∑

i∈F

∑

j∈C
1(j ∈ S) · dijyij

s.t.
∑

i∈F
yij ≥ 1, ∀j ∈ C,

zi ≥ yij ≥ 0, ∀i ∈ F ,∀j ∈ C.

(Static-URFL)

From Theorem 1, (Static-URFL) is equivalent to (LP-URFL). The number of
variables in (Static-URFL) is reduced to a polynomial number since the yij no

On the Power of Static Assignment Policies 257

longer depend on the scenario S. The inner maximization problem is still taken
over an exponential number of scenarios; however we can separate efficiently over
these scenarios and write an efficient compact LP formulation for (Static-URFL):

max
S∈Ck

{
∑

i∈F

∑

j∈C
1(j ∈ S) · dijyij} = max

h∈[0,1]|C|
{
∑

i∈F

∑

j∈C
dijyijhj |

∑

j∈C
hj ≤ k}

= min
μ,ω≥0

{kμ +
∑

j∈C
ωj | μ + ωj ≥

∑

i∈F
dijyij , ∀j ∈ C},

(2)

where the first equality holds because the optimal solution of the right max-
imization problem occurs at the extreme points of the k-ones polytope, which
correspond to the worst-case scenarios of Ck and the second equality follows from
strong duality. Therefore, by dropping the min and introducing μ and all ωj as
variables, we reformulate (Static-URFL) as the following linear program:

min
∑

i∈F
cizi + kμ +

∑

j∈C
ωj

s.t. μ + ωj ≥
∑

i∈F
dijyij , ∀j ∈ C,

∑

i∈F
yij ≥ 1, ∀j ∈ C,

zi ≥ yij , ∀i ∈ F ,∀j ∈ C,

zi ≥ 0, yij ≥ 0, ωj ≥ 0, μ ≥ 0, ∀i ∈ F ,∀j ∈ C.

(3)

Finally, we round the solution of (Static-URFL) to an integral solution for
(URFL) while losing only a constant factor. This can be done using prior work on
rounding techniques from the literature of deterministic facility location prob-
lems. In fact, the LP rounding technique in Shmoys et al. [19], which gives a
4-approximation algorithm to the deterministic uncapacitated problem also gives
a 4-approximation algorithm for (Static-URFL). The idea is to define a ball
around each client of radius equal to the fractional assignment cost of the client
(which is independent of any scenario for our static policy). Then, we open facili-
ties in non-intersecting balls of ascending radius. We state the result in Theorem
3 and defer the details of the rounding to the full version of the paper [13].

Theorem 3. (Static-URFL) can be rounded to give a 4-approximation to
(URFL).

We would like to note that Khandekar et al. [15] consider the uncapacitated
robust facility location problem where additional facilities can be open in the
second-stage at an inflated cost. Their results imply a 10-approximation for
URFL, by taking the inflation factor to be infinite in their model. While our
constant approximation is better than this previous result, our focus in this
section is not about finding the best constant approximation for (URFL), but
rather we introduce it as a warm-up for motivating static assignment policies
before presenting our main result.

258 O. El Housni et al.

3 Soft-Capacitated Robust Facility Location

3.1 Problem Formulation

In this section, we consider the soft-capacitated robust facility location (SCRFL)
which is similar to (URFL) except that each facility i incurs a linear supply cost,
where ci is the cost per unit of supply. We refer to xi as the supply (or capacity)
in facility i. Each client in the realized scenario needs to be satisfied by one unit
of supply. The problem can be stated as the following integer program:

min
∑

i∈F
cixi + max

S∈Ck

∑

i∈F

∑

j∈S

dijy
S
ij

s.t.
∑

i∈F
yS

ij ≥ 1, ∀S ∈ Ck,∀j ∈ S,

xi ≥
∑

j∈S

yS
ij , ∀i ∈ F ,∀S ∈ Ck,∀j ∈ S,

xi ∈ N, yS
ij ≥ 0, ∀i ∈ F ,∀S ∈ Ck,∀j ∈ S.

(SCRFL)

We let (LP-SCRFL) denote the linear relaxation of (SCRFL), where we replace
xi ∈ N by xi ≥ 0, for each i ∈ F . We would like to note that even the linear
relaxation (LP-SCRFL) is challenging to solve since it has exponentially-many
variables (scenarios). Unlike the uncapacitated case, the static assignment pol-
icy (1) is not optimal for (LP-SCRFL) and the optimal assignment for each client
is scenario dependent. In particular, the same client could be assigned to dif-
ferent facilities in different scenarios. In contrast, we show the surprising result
that a static assignment policy gives O(log k/ log log k)-approximation to (LP-
SCRFL). Moreover, we can round the solution of the static assignment policy
to an integral solution for (SCRFL) and only lose an additional constant factor.
We let (Static-SCRFL) denote the problem when we restrict the second-stage
variables yS

ij in (LP-SCRFL) to static assignment policies (1). The problem can
then be reformulated as follows:

min
∑

i∈F
cixi + max

S∈Ck

∑

i∈F

∑

j∈C
1(j ∈ S) · dijyij

s.t.
∑

i∈F
yij ≥ 1, ∀j ∈ C,

xi ≥ max
S∈Ck

∑

j∈C
1(j ∈ S) · yij , ∀i ∈ F ,

xi ≥ 0, yij ≥ 0, ∀i ∈ F ,∀j ∈ C.

(Static-SCRFL)

On the Power of Static Assignment Policies 259

3.2 An O(log k
log log k

)-Approximation Algorithm

Our main contribution in this section is to show that a static assignment pol-
icy (1) gives O(log k/ log log k)-approximation for (LP-SCRFL) (Theorem 2). To
prove this theorem, we consider an optimal solution of (LP-SCRFL) and massage
it to construct a solution of the form (1) while losing O(log k/ log log k) factor.
We first present our construction and several structural lemmas and then give
the proof of Theorem 2.

Our Construction. Let x∗ : (x∗
i)i∈F be an optimal first-stage solution of

(LP-SCRFL), let OPT1 be the corresponding optimal first-stage cost and let
OPT2 be the corresponding optimal second-stage cost. We will classify the clients
C into three subsets C1, C2, C3 using Procedure 1 (below) and then specify a
static assignment policy for each subset. We use the following notation in the
procedure. Let α > 1 and r = 5 · OPT2/k. For � ≥ 1 and j ∈ C, we let B�

j

denote the ball centered at client j of radius �r. We initialize the sets F ← F
and C ← C and update them at each iteration, as explained in the procedure,
until C becomes empty. We let Cl(B) denote the set of clients in C that are
inside the ball B and let Sp(B) denote the total optimal supply of facilities F
that are inside the ball B, i.e.,

Sp(B) =
∑

i∈F

1(i ∈ B) · x∗
i and Cl(B) = {j ∈ C | j ∈ B}.

Note that both Sp(B) and Cl(B) depend on the current sets of facilities F and
clients C, which we update at each iteration of the while loop in the procedure.
But for the ease of notation, we do not refer to them with the indices F and C.

In the procedure, while the set C is not empty, we pick a client j ∈ C and
grow three balls around it: B2�−1

j (internal ball), B2�
j (medium ball) and B2�+1

j

(external ball) starting with � = 1. For each �, we check if the number of clients
in the internal ball B2�−1

j is greater than k (line 4); if this is the case, we remove
them from C, put them in C1 and restart in line 2. If not, we check if the supply
in the medium ball B2�

j is sufficient to satisfy half of the clients in the internal
ball B2�−1

j (line 7); if that is not the case, we remove those clients from C, put
them in C2, and restart in line 2. Otherwise, we finally check if the supply in
the medium ball B2�

j is sufficient to satisfy a fraction 1/2α of the clients in the
external ball B2�+1

j (line 10); if that is the case we remove all the clients in B2�+1
j

and put them in C3, we also remove all the facilities in B2�
j and restart in line

2. If none of these three conditions holds, we increase � to � + 1. First, we show
that after at most logα k increments (i.e., � ≤ logα k), one of three conditions
must hold and therefore we will remove some clients from C and restart in line 2.
Which implies that after a finite number of iterations, the set C becomes empty.
In particular, We have the following lemma.

Lemma 1. In Procedure 1, after a finite number of iterations, the set C becomes
empty and C1 ∪ C2 ∪ C3 is equal to C. Moreover, � is always less than logα k.

260 O. El Housni et al.

Proof. Fix a client j and let � ≥ 1. If none of the three conditions holds then

α · |Cl(B2�−1
j)| ≤ 2α · Sp(B2�

j) < |Cl(B2�+1
j)|.

Therefore, the number of clients grows geometrically when we increase the radius
of the balls and by induction, we have that

α� ≤ α� · |Cl(B1
j)| < |Cl(B2�+1

j)|,

where |Cl(B1
j)| ≥ 1, since Cl(B1

j) contains at least the client j. Hence, after
at most logα k increments, we will reach k clients, and must stop by the first
condition, and return to line 2. Hence, we always have � ≤ logα k. Finally since,
we remove at least one client at each iteration of the while loop, the set C
becomes empty after at most |C| iterations, and finally C1 ∪ C2 ∪ C3 = C. ��

Procedure 1
1: Initialize C ← C, C1 ← ∅, C2 ← ∅, C3 ← ∅, F ← F .
2: while C �= ∅ do
3: Pick a client j ∈ C. Initialize � = 1
4: if |Cl(B2�−1

j)| ≥ k then

5: C1 ← C1 ∪ Cl(B2�−1
j), C ← C \ Cl(B2�−1

j)
6: Stop, return to line 2

7: if Sp(B2�
j) < 1

2 · |Cl(B2�−1
j)| then

8: C2 ← C2 ∪ Cl(B2�−1
j), C ← C \ Cl(B2�−1

j)
9: Stop, return to line 2

10: if Sp(B2�
j) ≥ 1

2α
· |Cl(B2�+1

j)| then

11: C3 ← C3 ∪ Cl(B2�+1
j), C ← C \ Cl(B2�+1

j),

12: F ← F \ {i ∈ F | i ∈ B2�
j }

13: Stop, return to line 2
14: else � ← � + 1, return to line 4.

Now we are ready to present our static assignment policy for (LP-SCRFL).
The following three lemmas show our constructed static assignment for each
client in the subsets C1, C2, C3. We specify the supply used to satisfy each subset
of these clients and the assignment cost. First, we know that each client in C1

belongs to a ball with at least k clients. By the feasibility of the optimal solution,
this implies that there exists k units of supply in x∗ “close” to this ball. Hence,
we show that we can satisfy this client with a static assignment that uses x∗/k
while paying a small assignment cost (roughly a constant times the radius of
the ball). We need to dedicate only one x∗ for all clients in C1 since each one is
using at most x∗/k in our solution. Formally, we have the following lemma.

On the Power of Static Assignment Policies 261

Lemma 2. There exists a static assignment policy for C1 such that each client
in C1 is using at most the supply x∗/k and has an assignment cost that is
O(logα k/k) · OPT2, i.e., there exists (ỹij)i∈F,j∈C1 such that for each j ∈ C1 :

∑

i∈F
ỹij ≥ 1,

x∗
i

k
≥ ỹij ≥ 0, ∀i ∈ F , and

∑

i∈F
dij ỹij = O(logα k) · OPT2

k
.

Proof. Let j be a client of C1. It is sufficient to show that the following mini-
mization problem is feasible and its optimal cost is O(logα k/k) · OPT2,

min

{
∑

i∈F
dijyij

∣∣∣∣
∑

i∈F
yij ≥ 1,

x∗
i

k
≥ yij ≥ 0, ∀i ∈ F

}
. (4)

Problem (4) must be feasible since the total supply in x∗ is greater than the total
demand in any scenario, i.e.,

∑
i∈F x∗

i ≥ k. Recall that a client j in C1 belongs
to one of the sets Cl(B2�−1

t) for some t ∈ C and � ≤ logα k (Lemma 1) such that
|Cl(B2�−1

t)| ≥ k. Consider a scenario S formed by k clients from Cl(B2�−1
t). Let

denote yS the assignment of scenario S in the optimal solution of (LP-SCRFL).
Consider the following candidate solution for (4):

yij =
1
k

·
∑

p∈S

yS
ip, ∀i ∈ F .

We have, by the feasibility of the optimal solution, 0 ≤ yij ≤ 1
kx∗

i ,∀i ∈ F and

∑

i∈F
yij =

1
k

·
∑

i∈F

∑

p∈S

yS
ip ≥ 1

k

∑

p∈S

1 = 1.

Therefore, our solution is feasible for (4). Moreover, we have

∑

i∈F
dijyij =

1
k

·
∑

i∈F

∑

p∈S

dijy
S
ip

≤ 1
k

·
∑

i∈F

∑

p∈S

dipy
S
ip +

1
k

·
∑

p∈S

dpj

≤ 1
k

· OPT2 + 2(2� − 1)r

≤ OPT2

k
+ 2(2 logα k − 1) · 5 · OPT2

k
= O(logα k) · OPT2

k
,

where the first inequality follows from the triangle inequality and the fact that∑
i∈F yS

ip = 1 for all p ∈ S in the optimal solution. For the second inequality:
the first term is bounded by OPT2 by definition, the second term dpj is bounded
by the diameter of the ball B2�−1

j since it contains clients j and all p ∈ S. ��

262 O. El Housni et al.

Now, consider the set C2. By construction, these are clients such that there
is not enough supply within a distance r = 5OPT2/k to satisfy half of them.
Therefore, intuitively they need to pay “large” distances in the optimal assign-
ment cost if they show up all together in the same scenario. In the following
lemma, we show that we can have no more than k of these clients. As we would
show later, this would imply that we can dedicate a supply x∗ to C2 and make
a static assignment of all the clients C2 to this x∗.

Lemma 3. The set C2 has at most k clients.

Proof. Suppose, for the sake of contradiction, that |C2| > k. Let G1, G2, . . . , GT

be the disjoint subsets of clients added at each iteration in the construction of
C2 in Procedure 1. In particular, C2 = G1 ∪ G2 ∪ . . . ∪ GT for some T where:

(i) for t = 1, 2, . . . , T, Gt = Cl(B2�t−1
jt

) for some client jt and 1 ≤ �t ≤ logα k.
(ii) the supply Sp(B2�t

jt
) is less than half of the clients in Gt.

(iii) each set Gt has strictly less than k clients, since the procedure has to fail
the first “if” statement before adding Gt into C2.

Recall that
Sp(B2�t

jt
) =

∑

i∈F

1(i ∈ B2�t
jt

) · x∗
i ,

where F is the current set of facilities in the procedure (and is not all F since
some facilities have been removed previously in line 12). However, we would like
to emphasize that when a facility has been removed (in line 12), all clients within
distance r from this facility were removed as well (line 11). This is true, since
when we remove the facilities in a medium ball, say B2�

j , (line 12), we remove all
clients in the corresponding external ball B2�+1

j (line 11). Hence, the remaining
clients in C are at least (2� + 1)r − (2�)r = r away from the removed facilities.
In particular, for the clients Gt, the supply that has been removed before they
were added to C2 is at least r away from them. Therefore, all the facilities in F
that are within a distance r from a client in Gt belong to the set F that verifies∑

i∈F 1(i ∈ B2�t
jt

) · x∗
i < |Gt|/2. This implies that the supply of all facilities

within a distance r from Gt in the optimal solution, is less than half of the
clients Gt. Hence, if the clients Gt show up together in a scenario, the optimal
second-stage solution needs to pay an assignment cost of at least r · |Gt|/2.

Order the sets Gt according to their cardinalities: wlog assume that |G1| ≥
|G2| ≥ . . . ≥ |GT |. We construct a scenario Ŝ by taking clients from the sets G1,
G2, . . . until we hit k. This is possible because |C2| > k. Assume that

|G1| + |G2| + . . . |Gp−1| + |Ḡp| = k,

for some p, where 2 ≤ p ≤ T . Note that Ḡp is a subset of Gp, since we can reach
k before taking all the clients of the last set Gp. For each t = 1, . . . , p − 1, the
optimal second-stage decision needs to pay at least r · |Gt|/2. Therefore,

OPT2 ≥ 1
2

· r · (|G1| + |G2| + . . . |Gp−1|).

On the Power of Static Assignment Policies 263

We did not include Gp, since not all these clients are necessary in the scenario
Ŝ, but only |Ḡp| of them. Since Ḡp has the smallest cardinality

|G1| + |G2| + . . . |Gp−1| ≥ 1
2
(|G1| + |G2| + . . . |Gp−1| + |Ḡp|) =

k

2
.

Therefore, OPT2 ≥ r · k/4 = 5 · OPT2/4, which is a contradiction. ��
Finally, for clients C3, we show that there exists |C3|/2α units of supply

“close” to them. In particular, we can multiply these units by 2α, dedicate them
to C3 and make a static assignment for C3. We have the following lemma.

Lemma 4. There exists a supply x̂ that has a cost at most 2α ·OPT1 and there
exists a static assignment policy such that all clients in C3 are assigned to supply
x̂ and each client in C3 has an assignment cost that is O(logα k/k) · OPT2, i.e.,
there exists (ŷij)i∈F,j∈C3 and (x̂i)i∈F such that for all j ∈ C3 :

∑

i∈F
ŷij ≥ 1, x̂i ≥

∑

j∈C3

ŷij , ∀i ∈ F , x̂i ≥ 0, ŷij ≥ 0, ∀i ∈ F ,

∑

i∈F
cix̂i ≤ 2α · OPT1 and

∑

i∈F
dij ŷij = O(logα k) · OPT2

k
.

Proof. Let G1, G2, . . . , GT be the disjoint subsets of clients added at each itera-
tion to construct C3 in Procedure 1. In particular, C3 = G1 ∪ G2 ∪ . . . ∪ GT for
some T such that: for all t = 1, 2, . . . , T, Gt = Cl(B2�t+1

jt
) for some client jt and

some integer �t with 1 ≤ �t ≤ logα k. Moreover, the supply Sp(B2�t
jt

) is greater
than a 1/2α fraction of the clients in Gt. Hence, for each ball B2�t

jt
, we multiply

the supply by 2α, move it to the cheapest facility in this ball and make a static
assignment of all clients Gt to this cheapest facility. Since the supply in B2�t

jt
is

removed along with clients Gt, it will not be used by the other clients in C3.
Formally, let it be the cheapest facility in the ball B2�t

jt
. We define, for each

facility i in B2�t
jt

, x̂i = 2α
∑

i′∈F 1(i′ ∈ B2�t
jt

) · x∗
i′ if i = it and x̂i = 0 otherwise.

For each client j ∈ C3, we let ŷij = 1 for i = it and j ∈ Gt, and let ŷij = 0,
otherwise. Therefore, the first desired constraints in the lemma are verified. Let
us check the last one. The distance between a client and its assigned facility in
our solution is at most r plus the diameter of the ball B2�t

jt
, i.e., r + 4�tr which

is at most (4 logα k + 1) · 5 · OPT2/k = O(logα k/k) · OPT2. ��
Proof of Theorem 2. Let (ỹij)i∈F,j∈C1 be the solution given in Lemma 2 for sat-
isfying the clients in C1. We dedicate a supply x∗ to clients C1. Let (ŷij)i∈F,j∈C3

and (x̂i)i∈F be the solution given in Lemma 4 for satisfying the clients in C3.
Finally, we know from Lemma 3 that C2 has at most k clients, and therefore C2

is a scenario. So we dedicate a supply x∗ to C2 and let the optimal assignment
yC2

ij be our static assignment solution for C2. In particular, we give the following
solution to (LP-SCRFL), where the first stage solution is 2x∗ + x̂ and the static

264 O. El Housni et al.

assignment policy is for all i ∈ F : yij = ỹij for j ∈ C1, yij = yC2
ij for j ∈ C2, and

yij = ŷij for j ∈ C3. It is clear that
∑

i∈F yij ≥ 1, for each j in C1 ∪ C2 ∪ C3.
Moreover, for any scenario S ∈ Ck and i ∈ F ,

∑

j∈S

yij =
∑

j∈S∩C1

ỹij +
∑

j∈S∩C2

yC2
ij +

∑

j∈S∩C3

ŷij

≤
⎛

⎝
∑

j∈S∩C1

x∗
i

k

⎞

⎠ + x∗
i + x̂i ≤ 2x∗

i + x̂i.

Therefore, our solution is feasible for (LP-SCRFL). Let us evaluate its cost. The
cost of the first stage is at most 2OPT1 + 2αOPT1 = O(α) · OPT1. For the
second-stage cost, consider any scenario S ∈ Ck, We have
∑

i∈F

∑

j∈S

dijyij =
∑

j∈S∩C1

∑

i∈F
dij ỹij +

∑

j∈S∩C2

∑

i∈F
dijy

C2
ij +

∑

j∈S∩C3

∑

i∈F
dij ŷij

≤
∑

j∈S∩C1

O(logα k) · OPT2

k
+ OPT2 +

∑

j∈S∩C3

O(logα k) · OPT2

k

≤ O(logα k) · OPT2.

By balancing the terms α and logα k, we choose α = log k/ log log k which gives
O(log k/ log log k)-approximation to (LP-SCRFL). ��

Similar to the uncapacitated problem, we can solve (Static-SCRFL) efficiently
using a compact linear program. In fact, we dualize the inner maximization
problem in the objective function of (Static-SCRFL) in the same way as (2). In
addition to that, we reformulate the second constraint in (Static-SCRFL) using
the same dualization technique as follows: for each i ∈ F ,

max
S∈Ck

{
∑

j∈S

yij} = max
h∈[0,1]|C|

{
∑

j∈C
yijhj |

∑

j∈C
hj ≤ k}

= min
ηi,λij≥0

{kηi +
∑

j∈C
λij | ηi + λij ≥ yij , ∀j ∈ C}.

The linear program is given by

min
∑

i∈F
cixi + kμ +

∑

j∈C
ωj

s.t. μ + ωj ≥
∑

i∈F
dijyij , ∀j ∈ C,

∑

i∈F
yij ≥ 1, ∀j ∈ C,

xi ≥ kηi +
∑

j∈C
λij , ∀i ∈ F ,

ηi + λij ≥ yij , ∀i ∈ F ,∀j ∈ C,

xi, yij , λij , ηi, ωj , μ ≥ 0, ∀i ∈ F ,∀j ∈ C,

(5)

On the Power of Static Assignment Policies 265

which can be reduced, after removing the variables yij , to

min
∑

i∈F
cixi + kμ +

∑

j∈C
ωj

s.t. μ + ωj ≥
∑

i∈F
dij(ηi + λij), ∀j ∈ C,

∑

i∈F
ηi + λij ≥ 1, ∀j ∈ C,

xi ≥ kηi +
∑

j∈C
λij , ∀i ∈ F ,

xi, λij , ηi, ωj , μ ≥ 0, ∀i ∈ F ,∀j ∈ C.

(6)

Finally, we round the optimal solution of (Static-SCRFL) using the filter-
ing and rounding techniques from Shmoys et al. [19] while losing only a fac-
tor of 12. This rounding technique was designed for the deterministic problem,
but the same argument works as well for (Static-SCRFL). We defer the details
of the rounding to the full version of the paper [13]. Since we showed that
(Static-SCRFL) gives O(log k/ log log k)-approximation to (LP-SCRFL) and we
only lose a constant factor in the rounding, this results in O(log k/ log log k)-
approximation algorithm for (SCRFL) (Theorem 4). Note that after rounding
the supply in our static solution, the second-stage assignment for each scenario
is a transportation problem and therefore its optimal solution is integral. We
would like to emphasize that while our fractional assignment is static, our inte-
gral assignment is not necessarily static.

Theorem 4. (Static-SCRFL) can be rounded to give O(log k
log log k)-approximation

algorithm to (SCRFL).

4 Conclusion

In this paper, we give a O(log k/ log log k)-approximation for soft-capacitated
robust facility location problems with an implicit model of demand uncertainty.
It is an interesting open question to study whether there exists a constant approx-
imation algorithm for the problem, even in special cases such as the Euclidean
metric. Our solution approach relies on static fractional assignment policies,
which we show are optimal for the uncapacitated problem and give a strong
theoretical guarantee for soft-capacitated case. Static assignment policies, while
reasonable for the case of soft-capacities can be shown to be arbitrarily bad for
the case of hard-capacities, where in addition to cost per unit, there is also an
upper bound on supply at each facility. It is another interesting open direction
to study any non-trivial approximation in this setting.

266 O. El Housni et al.

References

1. Anthony, B., Goyal, V., Gupta, A., Nagarajan, V.: A plant location guide for the
unsure: approximation algorithms for min-max location problems. Math. Oper.
Res. 35(1), 79–101 (2010)

2. Atamtürk, A., Zhang, M.: Two-stage robust network flow and design under demand
uncertainty. Oper. Res. 55(4), 662–673 (2007)

3. Basciftci, B., Ahmed, S., Shen, S.: Distributionally robust facility location prob-
lem under decision-dependent stochastic demand. arXiv preprint arXiv:1912.05577
(2019)

4. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 642–651 (2001)

5. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty
with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

6. Dhamdhere, K., Goyal, V., Ravi, R., Singh, M.: How to pay, come what may:
approximation algorithms for demand-robust covering problems. In: 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 367–376
(2005)

7. El Housni, O., Goyal, V.: On the optimality of affine policies for budgeted uncer-
tainty sets. Mathematics of Operations Research (2021, to appear)

8. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.: Robust combinatorial optimization
with exponential scenarios. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007.
LNCS, vol. 4513, pp. 439–453. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72792-7 33

9. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
J. Algorithms 31(1), 228–248 (1999)

10. Gupta, A., Nagarajan, V., Ravi, R.: Thresholded covering algorithms for robust
and max-min optimization. Math. Program. 146(1–2), 583–615 (2014)

11. Gupta, A., Nagarajan, V., Ravi, R.: Robust and maxmin optimization under
matroid and knapsack uncertainty sets. ACM Trans. Algorithms (TALG) 12(1),
10 (2016)

12. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algo-
rithms for stochastic optimization. In: Proceedings of the Thirty-Sixth Annual
ACM Symposium on Theory of Computing, pp. 417–426 (2004)

13. Housni, O.E., Goyal, V., Shmoys, D.: On the power of static assignment policies
for robust facility location problems. arXiv preprint arXiv:2011.04925 (2020)

14. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of
procrastination: approximation algorithms for stochastic combinatorial optimiza-
tion problems. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 691–700 (2004)

15. Khandekar, R., Kortsarz, G., Mirrokni, V., Salavatipour, M.R.: Two-stage robust
network design with exponential scenarios. Algorithmica 65(2), 391–408 (2013)

16. Linhares, A., Swamy, C.: Approximation algorithms for distributionally-robust
stochastic optimization with black-box distributions. In: Proceedings of the 51st
Annual ACM Symposium on Theory of Computing, pp. 768–779 (2019)

17. Ravi, R., Sinha, A.: Hedging uncertainty: approximation algorithms for stochastic
optimization problems. In: Bienstock, D., Nemhauser, G. (eds.) IPCO 2004. LNCS,
vol. 3064, pp. 101–115. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25960-2 8

http://arxiv.org/abs/1912.05577
https://doi.org/10.1007/978-3-540-72792-7_33
https://doi.org/10.1007/978-3-540-72792-7_33
http://arxiv.org/abs/2011.04925
https://doi.org/10.1007/978-3-540-25960-2_8
https://doi.org/10.1007/978-3-540-25960-2_8

On the Power of Static Assignment Policies 267

18. Shmoys, D.B.: Approximation algorithms for facility location problems. In: Pro-
ceedings of the Third International Workshop on Approximation Algorithms for
Combinatorial Optimization, pp. 27–33 (2000)

19. Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility loca-
tion problems. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, pp. 265–274 (1997)

20. Snyder, L.V.: Facility location under uncertainty: a review. IIE Trans. 38(7), 547–
564 (2006)

21. Swamy, C., Shmoys, D.B.: Approximation algorithms for 2-stage stochastic opti-
mization problems. ACM SIGACT News 37(1), 33–46 (2006)

Robust k-Center with Two Types of Radii

Deeparnab Chakrabarty(B) and Maryam Negahbani(B)

Dartmouth College, Hanover, NH 03755, USA
deeparnab@dartmouth.edu, maryam@cs.dartmouth.edu

Abstract. In the non-uniform k-center problem, the objective is to
cover points in a metric space with specified number of balls of differ-
ent radii. Chakrabarty, Goyal, and Krishnaswamy [ICALP 2016, Trans.
on Algs. 2020] (CGK, henceforth) give a constant factor approximation
when there are two types of radii. In this paper, we give a constant
factor approximation for the two radii case in the presence of outliers.
To achieve this, we need to bypass the technical barrier of bad integral-
ity gaps in the CGK approach. We do so using “the ellipsoid method
inside the ellipsoid method”: use an outer layer of the ellipsoid method
to reduce to stylized instances and use an inner layer of the ellipsoid
method to solve these specialized instances. This idea is of independent
interest and could be applicable to other problems.

Keywords: Approximation · Clustering · Outliers · Round-or-Cut

1 Introduction

In the non-uniform k-center (NUkC) problem, one is given a metric space (X, d)
and balls of different radii r1 > · · · > rt, with ki balls of radius type ri. The
objective is to find a placement C ⊆ X of centers of these

∑
i ki balls, such

that they cover X with as little dilation as possible. More precisely, for every
point x ∈ X there must exist a center c ∈ C of some radius type ri such that
d(x, c) ≤ α · ri and the objective is to find C with α as small as possible.

Chakrabarty, Goyal, and Krishnaswamy [10] introduced this problem as a
generalization to the vanilla k-center problem [16–18] which one obtains with
only one type of radius. One motivation arises from source location and vehicle
routing: imagine you have a fleet of t-types of vehicles of different speeds and your
objective is to find depot locations so that any client point can be served as fast
as possible. This can be modeled as an NUkC problem. The second motivation
arises in clustering data. The k-center objective forces one towards clustering
with equal sized balls, while the NUkC objective gives a more nuanced way to
model the problem. Indeed, NUkC generalizes the robust k-center problem [13]
which allows the algorithm to throw away z points as outliers. This is precisely
the NUkC problem with two types of radii, r1 = 1, k1 = k, r2 = 0, and k2 = z.

Partially supported by NSF grant #1813053.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 268–282, 2021.
https://doi.org/10.1007/978-3-030-73879-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_19

Robust K-Center with Two Types of Radii 269

Chakrabarty et al. [10] give a 2-approximation for the special case of robust
k-center which is the best possible [16,17]. Furthermore, they give a (1 +

√
5)-

factor approximation algorithm for the NUkC problem with two types of radii
(henceforth, the 2-NUkC problem). [10] also prove that when t, the number of
types of radii, is part of the input, there is no constant factor approximation
algorithms unless P = NP. They explicitly leave open the case when the number
of different radii types is a constant, conjecturing that constant-factor approx-
imations should be possible. We take the first step towards this by looking at
the robust 2-NUkC problem. That is, the NUkC problem with two kinds of radii
when we can throw away z outliers. This is the case of 3-radii with r3 = 0.

Theorem 1. There is a 10-approximation for the Robust 2-NUkC problem.

Although the above theorem seems a modest step towards the CGK conjecture,
it is in fact a non-trivial one which bypasses multiple technical barriers in the [10]
approach. To do so, our algorithm applies a two-layered round-or-cut framework,
and it is foreseeable that this idea will form a key ingredient for the constantly
many radii case as well. In the rest of this section, we briefly describe the [10]
approach, the technical bottlenecks one faces to move beyond 2 types of radii,
and our approach to bypass them. A more detailed description appears in Sect. 2.

One key observation of [10] connects NUkC with the firefighter problem on
trees [1,12,15]. In the latter problem, one is given a tree where there is a fire
at the root. The objective is to figure out if a specified number of firefighters
can be placed in each layer of the tree, so that the leaves can be saved. To be
precise, the objective is to select ki nodes from layer i of the tree so that every
leaf-to-root path contains at least one of these selected nodes.

Chakrabarty et al. [10] use the integrality of a natural LP relaxation for the
firefighter problem on height-2 trees to obtain their constant factor approxima-
tion for 2-NUkC. In particular, they show how to convert a fractional solution
of the standard LP relaxation of the 2-NUkC problem to a feasible fractional
solution for the firefighter LP. Since the latter LP is integral for height-2 trees,
they obtain an integral firefighting solution from which they construct an O(1)-
approximate solution for the 2-NUkC problem. Unfortunately, this idea breaks
down in the presence of outliers as the firefighter LP on height-2 trees when cer-
tain leaves can be burnt (outlier leaves, so to speak) is not integral anymore. In
fact, the standard LP-relaxation for Robust 2-NUkC has unbounded integrality
gap. This is the first bottleneck in the CGK approach.

Although the LP relaxation for the firefighter problem on height-2 trees is
not integral when some leaves can be burnt, the problem itself (in fact for any
constant height) is solvable in polynomial time using dynamic programming
(DP). Using the DP, one can then obtain (see, for instance, [20]) a polynomial
sized integral LP formulation for the firefighting problem. This suggests the fol-
lowing enhancement of the CGK approach using the ellipsoid method. Given a
fractional solution x to Robust 2-NUkC, use the CGK approach to obtain a frac-
tional solution y to the firefighting problem. If y is feasible for the integral LP
formulation, then we get an integral solution to the firefighting problem which in

270 D. Chakrabarty and M. Negahbani

turn gives an O(1)-approximation for the Robust 2-NUkC instance via the CGK
approach. Otherwise, we would get a separating hyperplane for y and the poly-
sized integral formulation for firefighting. If we could only use this to separate
the fractional solution x from the integer hull of the Robust 2-NUkC problem,
then we could use the ellipsoid method to approximate Robust 2-NUkC. This is
the so-called “round-or-cut” technique in approximation algorithms.

Unfortunately, this method also fails and indicates a much more serious bot-
tleneck in the CGK approach. Specifically, there is an instance of Robust 2-NUkC
and an x in the integer hull of its solutions, such that the firefighting instance out-
put by the CGK has no integral solution! Thus, one needs to enhance the CGK
approach in order to obtain O(1)-approximations even for the Robust 2-NUkC
problem. The main contribution of this paper is to provide such an approach. We
show that if the firefighting instance does not have an integral solution, then we
can tease out many stylized Robust 2-NUkC instances on which the round-or-cut
method provably succeeds, and an O(1)-approximation to any one of them gives
an O(1)-approximation to the original Robust 2-NUkC instance.

Our Approach. Any solution x in the integer hull of NUkC solutions gives an
indication of where different radii centers are opened. As it turns out, the key
factor towards obtaining algorithms for the Robust 2-NUkC problem is observing
where the large radii (that is, radius r1) balls are opened. Our first step is showing
that if the fractional solution x tends to open the r1-centers only on “well-
separated” locations then in fact, the round-or-cut approach described above
works. More precisely, if the Robust 2-NUkC instance is for some reason forced
to open its r1 centers on points which are at least cr1 apart from each other
for some constant c > 4, then the CGK approach plus round-or-cut leads to
an O(1)-approximation for the Robust 2-NUkC problem. We stress that this is
far from trivial and the natural LP relaxations have bad gaps even in this case.
We use our approach from a previous paper [11] to handle these well-separated
instances.

But how and why would such well-separated instances arise? This is where we
use ideas from recent papers on fair colorful clustering [3,7,19]. If x suggested
that the r1-radii centers are not well-separated, then one does not need that
many balls if one allows dilation. In particular, if p and q are two r1-centers
of a feasible integral solution, and d(p, q) ≤ cr1, then just opening one ball
at either p or q with radius (c + 1)r1 would cover every point that they each
cover with radius r1-balls. Thus, in this case, the approximation algorithm gets
a “saving” in the budget of how many balls it can open. We exploit this savings
in the budget by utilizing yet another observation from Adjiashvili, Baggio, and
Zenklusen [1] on the natural LP relaxation for the firefighter problem on trees.
This asserts that although the natural LP relaxation for constant height trees is
not integral, one can get integral solutions by violating the constraints additively
by a constant. The aforementioned savings allow us to get a solution without
violating the budget constraints.

Robust K-Center with Two Types of Radii 271

In summary, given an instance of the Robust 2-NUkC problem, we run an
outer round-or-cut framework and use it to check whether an instance is well-
separated or not. If not, we straightaway get an approximate solution via the
CGK approach and the ABZ observation. Otherwise, we use enumeration (sim-
ilar to [3]) to obtain O(n) many different well-separated instances and for each,
run an inner round-or-cut framework. If any of these well-separated instances are
feasible, we get an approximate solution for the initial Robust 2-NUkC instance.
Otherwise, we can assert a separating hyperplane for the outer round-or-cut
framework.

Related Work. NUkC was introduced in [10] as a generalization to the
k-center problem [16–18] and the robust k-center problem [13]. In particular
CGK reduce NUkC to the firefighter problem on trees which has constant approx-
imations [1,12,15] and recently, a quasi-PTAS [23]. NUkC has also been stud-
ied in the perturbation resilient [4,5,14] settings. An instance is ρ-perturbation
resilient if the optimal clustering does not change even when the metric is per-
turbed up to factor ρ. Bandapadhyay [6] gives an exact polynomial time algo-
rithm for 2-perturbation resilient instances with constant number of radii.

As mentioned above, part of our approach is inspired by ideas from fair
colorful k-center clustering [3,7,19] problems studied recently. In this problem,
the points are divided into t color classes and we are asked to cover mi, i ∈
{1, . . . , t} many points from each color by opening k-centers. The idea of moving
to well-separated instances are present in these papers. We should mention,
however, that the problems are different, and their results do not imply ours.

The round-or-cut framework is a powerful approximation algorithm tech-
nique first used in a paper by Carr et al. [8] for the minimum knapsack problem,
and since then has found use in other areas such as network design [9] and clus-
tering [2,3,11,21,22]. Our multi-layered round-or-cut approach may find uses in
other optimization problems as well.

2 Detailed Description of Our Approach

In this section, we provide the necessary technical preliminaries required for
proving Theorem 1 and give a more detailed description of the CGK bottleneck
and our approach. We start with notations. Let (X, d) be a metric space on a
set of points X with distance function d : X ×X −→ R≥0 satisfying the triangle
inequality. For any u ∈ X we let B(u, r) denote the set of points in a ball of
radius r around u, that is, B(u, r) = {v ∈ X : d(u, v) ≤ r}. For any set U ⊆ X
and function f : U → R, we use the shorthand notation f(U) :=

∑
u∈U f(u).

For a set U ⊆ X and any v ∈ X we use d(v, U) to denote minu∈U d(v, u).
The 2-radii NUkC problem and the robust version are formally defined as

follows.

Definition 1 (2-NUkC and Robust 2-NUkC). The input to 2-NUkC is a met-
ric space (X, d) along with two radii r1 > r2 ≥ 0 with respective budgets
k1, k2 ∈ N. The objective of 2-NUkC is to find the minimum ρ ≥ 1 for which

272 D. Chakrabarty and M. Negahbani

there exists subsets S1, S2 ⊆ X such that (a) |Si| ≤ ki for i ∈ {1, 2}, and (b)⋃
i

⋃
u∈Si

B(u, ρri) = X. The input to Robust 2-NUkC contains an extra param-
eter m ∈ N, and the objective is the same, except that condition (b) is changed
to |

⋃
i

⋃
u∈Si

B(u, ρri)| ≥ m.

An instance I of Robust 2-NUkC is denoted as ((X, d), (r1, r2), (k1, k2),m). As
is standard, we will focus on the approximate feasibility version of the problem.
An algorithm for this problem takes input an instance I of Robust 2-NUkC, and
either asserts that I is infeasible, that is, there is no solution with ρ = 1, or
provides a solution with ρ ≤ α. Using binary search, such an algorithm implies
an α-approximation for Robust 2-NUkC.

Linear Programming Relaxations. The following is the natural LP relaxation for
the feasibility version of Robust 2-NUkC. For every point v ∈ X, covi(v) denotes
its coverage by balls of radius ri. Variable xi,u denotes the extent to which a
ball of radius ri is open at point u. If instance I is feasible, then the following
polynomial sized system of inequalities has a feasible solution.

{(covi(v) : v ∈ X, i ∈ {1, 2}) :
∑

v∈X

cov(v) ≥ m (Robust 2-NUkC LP)

∑

u∈X

xi,u ≤ ki ∀i ∈ {1, 2}

cov1(v) =
∑

u∈B(v,r1)

x1,u, cov2(v) =
∑

u∈B(v,r2)

x2,u ∀v ∈ X

cov(v) = cov1(v) + cov2(v) ≤ 1 ∀v ∈ X

xi,u ≥ 0 ∀i ∈ {1, 2},∀u ∈ X}

For our algorithm, we will work with the following integer hull of all possible frac-
tional coverages. Fix a Robust 2-NUkC instance I = ((X, d), (r1, r2), (k1, k2),m)
and let F be the set of all tuples of subsets (S1, S2) with |Si| ≤ ki. For v ∈ X
and i ∈ {1, 2}, we say F covers v with radius ri if d(v, Si) ≤ ri. Let Fi(v) ⊆ F
be the subset of solutions that cover v with radius ri. Moreover, we would like
F1(v) and F2(v) to be disjoint, so if S ∈ F1(v), we do not include it in F2(v).
The following is the integer hull of the coverages. If I is feasible, there must exist
a solution in PI

cov.

{(covi(v) : v ∈ X, i ∈ {1, 2}) :
∑

v∈X

(cov1(v) + cov2(v)) ≥ m (PI
cov)

∀v ∈ X, i ∈ {1, 2} covi(v) −
∑

S∈Fi(v)

zS = 0 (PI
cov.1)

∑

S∈F

zS = 1 (PI
cov.2)

∀S ∈ F zS ≥ 0} (PI
cov.3)

Robust K-Center with Two Types of Radii 273

Fact 1. PI
cov lies inside Robust 2-NUkC LP.

Firefighting on Trees. As described in Sect. 1, the CGK approach [10] is via
the firefighter problem on trees. Since we only focus on Robust 2-NUkC, the
relevant problem is the weighted 2-level fire fighter problem. The input includes
a set of height-2 trees (stars) with root nodes L1 and leaf nodes L2. Each leaf
v ∈ L2 has a parent p(v) ∈ L1 and an integer weight w(v) ∈ N. We use Leaf(u) to
denote the leaves connected to a u ∈ L1 (that is, {v ∈ L2 : p(v) = u}). Observe
that {Leaf(u) : u ∈ L1} partitions L2. So we could represent the edges of the
trees by this Leaf partition. Hence the structure is identified as (L1, L2, Leaf,w).

Definition 2. (2-Level Fire Fighter (2-FF) Problem). Given height-2 trees
(L1, L2, Leaf,w) along with budgets k1, k2 ∈ N, a feasible solution is a pair T =
(T1, T2), Ti ⊆ Li, such that |Ti| ≤ ki for i ∈ {1, 2}. Let C(T) := {v ∈ L2 : v ∈
T2 ∨ p(v) ∈ T1} be the set of leaves covered by T . The objective is to maximize
w(C(T)). Hence a 2-FF instance is represented by ((L1, L2, Leaf,w), k1, k2).

The standard LP relaxation for this problem is quite similar to the
Robust 2-NUkC LP. For each vertex u ∈ L1 ∪ L2 there is a variable 0 ≤ yu ≤ 1
that shows the extent to which u is included in the solution. For a leaf v, Y (v) is
the fractional amount by which v is covered through both itself and its parent.

max
∑

v∈L2

w(v)Y (v) :
∑

u∈Li

yu ≤ ki, ∀i ∈ {1, 2}; (2-FF LP)

Y (v) := yp(v) + yv ≤ 1, ∀v ∈ L2; yu ≥ 0, ∀u ∈ L1 ∪ L2

Remark 1. The following figure shows an example where the above LP relaxation
has an integrality gap. However, 2-FF can be solved via dynamic programming
in O(n3) time and has similar sized integral LP relaxations.

Fig. 1. A 2-FF instance with budgets k1 = k2 = 1. Multiplicity w is 1 for the circle
leaves and 3 for the triangles. The highlighted nodes have y = 1/2 and the rest of the
nodes have y = 0. The objective value for this y is 4 × 1/2 + 6 = 8 but no integral
solution can get an objective value of more than 7.

274 D. Chakrabarty and M. Negahbani

2.1 CGK’s Approach and Its Shortcomings

Given fractional coverages (cov1(v), cov2(v) : v ∈ X), the CGK algorithm [10]
runs the classic clustering subroutine by Hochbaum and Shmoys [17] in a greedy
fashion. In English, the Hochbaum-Shmoys (HS) routine partitions a metric
space such that the representatives of each part are well-separated with respect
to an input parameter. The CGK algorithm obtains a 2-FF instance by applying
the HS routine twice. Once on the whole metric space in decreasing order of
cov(v) = cov1(v)+ cov2(v), and the set of representatives forms the leaf layer L2

with weights being the size of the parts. The next time on L2 itself in decreasing
order of cov1 and the representatives form the parent layer L1. These subroutines
and the subsequent facts form a part of our algorithm and analysis.

Algorithm 1. HS
Input: Metric (U, d), parameter r ≥ 0, and assignment {cov(v) ∈ R≥0 : v ∈ U}
1: R ← ∅ � The set of representatives
2: while U �= ∅ do
3: u ← arg maxv∈U cov(v) � The first client in U in non-increasing cov order
4: R ← R ∪ u
5: Child(u) ← {v ∈ U : d(u, v) ≤ r} � Points in U at distance r from u (including

u itself)
6: U ← U\Child(u)
7: end while
Output: R, {Child(u) : u ∈ R}

Algorithm 2. CGK
Input: Robust 2-NUkC instance ((X, d), (r1, r2), (k1, k2),m), dilation factors α1, α2 >

0, and assignments cov1(v), cov2(v) ∈ R≥0 for all v ∈ X
1: (L2, {Child2(v), v ∈ L2}) ← HS((X, d), α2r2, cov = cov1 + cov2)
2: (L1, {Child1(v), v ∈ L1}) ← HS((L2, d), α1r1, cov1)
3: w(v) ← |Child2(v)| for all v ∈ L2

4: Leaf(u) ← Child1(u) for all u ∈ L1

Output: 2-FF instance ((L1, L2, Leaf,w), (k1, k2))

Definition 3. (Valuable 2-FF instances). We call an instance T returned by
the CGK algorithm valuable if it has an integral solution of total weight at least
m. Using dynamic programming, there is a polynomial time algorithm to check
whether T is valuable.

Fact 2. The following are true regarding the output of HS: (a) ∀u ∈ R,∀v ∈
Child(u) : d(u, v) ≤ r, (b) ∀u, v ∈ R : d(u, v) > r, (c) The set {Child(u) : u ∈ R}
partitions U , and (d) ∀u ∈ R,∀v ∈ Child(u) : cov(u) ≥ cov(v).

Robust K-Center with Two Types of Radii 275

Lemma 1 (rewording of Lemma 3.4. in [10]). Let I be a Robust 2-NUkC
instance. If for any fractional coverages (cov1(v), cov2(v)) the instance 2-FF cre-
ated by Algorithm 2 is valuable, then one obtains an (α1 + α2)-approximation
for I.

Lemma 1 suggests that if we can find fractional coverages so that the correspond-
ing 2-FF instance T is valuable, then we are done. Unfortunately, the example
illustrated in Fig. 2 shows that for any (α1, α2) there exists Robust 2-NUkC
instances and fractional coverages (cov1(v), cov2(v)) ∈ PI

cov in the integer hull,
for which the CGK algorithm returns 2-FF instances that are not valuable.

Fig. 2. At the top, there is a feasible Robust 2-NUkC instance with k1 = 2, k2 = 3,
and m = 24. There are 6 triangles representing 3 collocated points each, along with 12
circles, each representing one point. The black edges are distance r1 > α2r2 and the grey
edges are distance α1r1. There are two integral solutions S and S′ each covering exactly
24 points. S1 = {u1, u4}, S2 = {u2, v2, u3}, S′

1 = {u2, u3}, and S′
2 = {u1, v1, u4}.

Having zS = zS′ = 1/2 in PI
cov, gives cov1 of 1/2 for all the points and cov2 of 1/2 for

the triangles. The output of Algorithm 2 is the 2-FF instance at the bottom. According
to Proposition 1 the highlighted nodes have y = 1/2 and the rest of the nodes have
y = 0 with objective value 12 × 1/2 + 18 = 24 but no integral solution can get an
objective value of more than 23. (Color figure online)

2.2 Our Idea

Although the 2-FF instance obtained by Algorithm 2 from fractional coverages
(cov1(v), cov2(v) : v ∈ X) may not be valuable, [10] proved that if these coverages
come from (Robust 2-NUkC LP), then there is always a fractional solution to
(2-FF LP) for this instance which has value at leastm.

Proposition 1 (rewording of Lemma 3.1. in [10]). Let (cov1(v), cov2(v) :
v ∈ X) be any feasible solution to Robust 2-NUkC LP. As long as α1, α2 ≥ 2, the
following is a fractional solution of 2-FF LP with value at least m for the 2-FF
instance output by Algorithm 2.

yv =

{
cov1(v) v ∈ L1

min{cov2(v), 1 − cov1(p(v))} v ∈ L2.

276 D. Chakrabarty and M. Negahbani

Therefore, the problematic instances are precisely 2-FF instances that are inte-
grality gap examples for (2-FF LP). Our first observation stems from what Adji-
ashvili, Baggio, and Zenklusen [1] call “the narrow integrality gap of the fire-
fighter LP”.

Lemma 2 (From Lemma 6 of [1]). Any basic feasible solution {yv : i ∈
{1, 2}, v ∈ Li} of the 2-FF LP polytope has at most 2 loose variables. A variable
yv is loose if 0 < yv < 1 and yp(v) = 0 in case v ∈ L2.

In particular, if y(L1) ≤ k1 − 2, then the above lemma along with Proposition
1 implies there exists an integral solution with value ≥ m. That is, the 2-FF
instance is valuable. Conversely, the fact that the instance is not valuable asserts
that y(L1) > k1 − 2 which in turn implies cov1(L1) > k1 − 2. In English, the
fractional coverage puts a lot of weight on the points in L1.

This is where we exploit the ideas in [3,7,19]. By choosing α1 > 2 to be large
enough in Proposition 1, we can ensure that points in L1 are “well-separated”.
More precisely, we can ensure for any two u, v ∈ L1 we have d(u, v) > α1r1
(from Fact 2). The well-separated condition implies that the same center cannot
be fractionally covering two different points in L1. Therefore, cov1(L1) > k1 − 2
if (cov1, cov2) ∈ PI

cov is in the integer hull, then there must exist an integer
solution which opens at most 1 center that does not cover points in L1. For the
time being assume in fact no such center exists and cov1(L1) = k1. Indeed, the
integrality gap example in Fig. 2 satisfies this equality.

Our last piece of the puzzle is that if the cov1’s are concentrated on sepa-
rated points, then indeed we can apply the round-or-cut framework to obtain
an approximation algorithm. To this end, we make the following definition, and
assert the following theorem.

Definition 4 (Well-Separated Robust 2-NUkC). The input is the same as
Robust 2-NUkC, along with Y ⊆ X where d(u, v) > 4r1 for all pairs u, v ∈ Y ,
and the algorithm is allowed to open the radius r1-centers only on points in Y .

Theorem 2. Given a Well-Separated Robust 2-NUkC instance there is a polyno-
mial time algorithm using the ellipsoid method that either gives a 4-approximate
solution, or proves that the instance is infeasible.

We remark the natural (Robust 2-NUkC LP) relaxation still has a bad integrality
gap, and we need the round-or-cut approach. Formally, given fractional coverages
(cov1, cov2) we run Algorithm 2 (with α1 = α2 = 2) to get a 2-FF instance. If
the instance is valuable, we are done by Lemma 1. Otherwise, we prove that
(cov1, cov2) /∈ PI

cov by exhibiting a separating hyperplane. This crucially uses
the well-separated-ness of the instance and indeed, the bad example shown in Fig.
2 is not well-separated. This implies Theorem 2 using the ellipsoid method.

In summary, to prove Theorem 1, we start with (cov1, cov2) purported to
be in PI

cov. Our goal is to either get a constant approximation, or separate
(cov1, cov2) from PI

cov. We first run the CGK Algorithm 2 with α1 = 8 and
α2 = 2. If cov1(L1) ≤ k1 − 2, we can assert that the 2-FF instance is valuable

Robust K-Center with Two Types of Radii 277

and get a 10-approximation. Otherwise, cov1(L1) > k1 − 2, and we guess the
O(n) many possible centers “far away” from L1, and obtain that many well-
separated instances. We run the algorithm promised by Theorem 2 on each of
them. If any one of them gives a 4-approximate solution, then we immediately
get an 8-approximate1 solution to the original instance. If all of them fail, then
we can assert cov1(L1) ≤ k1 − 2 must be a valid inequality for PI

cov, and thus
obtain a hyperplane separating (cov1, cov2) from PI

cov. The polynomial running
time is implied by the ellipsoid algorithm. Note that there are two nested runs
of the ellipsoid method in the algorithm. Figure 3 below shows an illustration of
the ideas.

Fig. 3. Our framework for approximating Robust 2-NUkC. The three black arrows
each represent separating hyperplanes we feed to the outer ellipsoid. The box in the
bottom row stating “4-approximation for well-separated Robust 2-NUkC” runs the inner
ellipsoid method.

2.3 Discussion

Before we move to describing algorithms proving Theorem 2 and Theorem 1,
let us point out why the above set of ideas does not suffice to prove the full
CGK conjecture, that is, give an O(1)-approximation for NUkC with constant
many type of radii. Given fractional coverages, the CGK algorithm now returns
a t-layered firefighter instance and again if such an instance is valuable (which
can be checked in nO(t) time), we get an O(1)-approximation. As above, the
main challenge is when the firefighter instance is not valuable. Theorem 2, in
fact, does generalize if all layers are separated. Formally, if there are t types
of radii, and there are t sets Y1, . . . , Yt such that (a) any two points p, q ∈ Yi

are well-separated, that is, d(p, q) > 4ri, and (b) the ri-radii centers are only
1 The factor doubles as we need to double the radius, but that is a technicality.

278 D. Chakrabarty and M. Negahbani

allowed to be opened in Yi, then in fact there is an O(1)-approximation for such
instances. Furthermore, if we had fractional coverages (cov1, cov2, . . . , covt) such
that in the t-layered firefighter instance returned, all layers have “slack”, that is
covi(Li) ≤ ki − t, then one can repeatedly use Lemma 2 to show that the tree
instance is indeed valuable.

The issue we do not know how to circumvent is when some layers have slack
and some layers do not. In particular, even with 3 kinds of radii, we do not know
how to handle the case when the first layer L1 is well-separated and cov1(L1) =
k1, but the second layer has slack cov2(L2) ≤ k2 − 3. Lemma 2 does not help
since all the loose vertices may be in L1, but they cannot all be picked without
violating the budget. At the same time, we do not know how to separate such
cov’s, or whether such a situation arises when cov’s are in the integer hull. We
believe one needs more ideas to resolve the CGK conjecture.

3 Approximating Well-Separated Robust 2-NUkC

In this section we prove Theorem 2 stated in Sect. 2.2. As mentioned there, the
main idea is to run the round-or-cut method, and in particular use ideas from a
previous paper [11] of ours. The main technical lemma is the following.

Lemma 3. Given Well-Separated Robust 2-NUkC instance I and fractional cov-
erages (ˆcov1(v), ˆcov2(v)), if the output of the CGK Algorithm 2 is not valuable,
there is a hyperplane separating (ˆcov1(v), ˆcov2(v)) from PI

cov. Furthermore, the
coefficients of this hyperplane are bounded in value by |X|.

Remark 2. We need to be careful in one place. Recall that HS is used in the
CGK Algorithm 2. We need to assert in HS, that points u with d(u, Y) ≤ r1 are
prioritized over points v with d(v, Y) > r1 to be taken in L1. This is w.l.o.g. since
cov1(v) = 0 if d(v, Y) > r1 by definition of Well-Separated Robust 2-NUkC . Using
the ellipsoid method, the above lemma implies Theorem 2 (See the full version of
the paper for a detailed proof). The rest of this section is dedicated to proving
Lemma 3. Fix a well-separated Robust 2-NUkC instance I. Recall that Y ⊆ X is a
subset of points, and the radius r1 centers are only allowed to be opened at Y . Let
T be the 2-FF instance output by Algorithm 2 on I and cov with α1 = α2 = 2.
Recall, T = ((L1, L2, Leaf,w), k1, k2). The key part of the proof is the following
valid inequality in case T is not valuable.

Lemma 4. If T is not valuable
∑

v∈L2
w(v)cov(v) ≤ m − 1 for any cov(v) ∈

PI
cov.

Before we prove Lemma 4, let us show how it proves Lemma 3. Given (ˆcov1, ˆcov2)
we first check2 that

∑
u∈X ˆcov(u) ≥ m, or otherwise that would be the hyper-

plane separating it from PI
cov. Now recall that in Algorithm 2, for v ∈ L2,

2 recall, ˆcov(v) = ˆcov1(v) + ˆcov2(v).

Robust K-Center with Two Types of Radii 279

w(v) = |Child2(v)| which is the number of points assigned to v by HS (see Line
1 of Algorithm 2). By definition of w and then parts d) and c) of Fact 2,
∑

v∈L2

w(v) ˆcov(v) =
∑

v∈L2

∑

u∈Child(v)

ˆcov(v) ≥
∑

v∈L2

∑

u∈Child(v)

ˆcov(u) =
∑

u∈X

ˆcov(u) ≥ m.

That is, (ˆcov1, ˆcov2) violates the valid inequality asserted in Lemma 4, and this
would complete the proof of Lemma 3. All that remains is to prove the valid
inequality lemma above.

Proof (of Lemma 4). Fix a solution cov ∈ PI
cov and note that this is a convex

combination of coverages induced by integral feasible solutions in F . The main
idea of the proof is to use the solutions in F to construct solutions to the tree
instance T . Since T is not valuable, each of these solutions will have “small”
value, and then we use this to prove the lemma. To this end, fix S = (S1, S2) ∈ F
where |Si| ≤ ki for i ∈ {1, 2}. The corresponding solution T = (T1, T2) for T is
defined as follows: For i ∈ {1, 2} and any u ∈ Li, u is in Ti iff Si ∈ Fi(u). That
is, d(u, Si) ≤ ri.

Proposition 2. T satisfies the budget constraints |Ti| ≤ ki for i ∈ {1, 2}.
The next claim is the only place where we need the well-separated-ness of I.
Basically, we will argue that the leaves covered by T1 capture all the points
covered by S1.

Proposition 3. If u ∈ L1 but u /∈ T1 then no v ∈ Leaf(u) can be covered by a
ball of radius r1 in S1.

Next, we can prove that overall, the leaves covered by T capture the whole set
of points covered by S. Recall that C(T) = {v ∈ L2 : v ∈ T2 ∨ p(v) ∈ T1} is the
set of leaves covered by T . For v ∈ X let F (v) := F1(v) ∪ F2(v) be the set of
solutions that cover v.

Proposition 4. Take 2-FF solution T corresponding to Well-Separated Robust
2-NUkC solution S as described earlier. We have:

∑

v∈L2:S∈F (v)

w(v) ≤ w(C(T)).

That is, the total w of the points covered by S is at most w(C(T)).

The proof of Lemma 4 now follows from the fact that T is not valuable thus
w(C(T)) ≤ m − 1 and therefore, for any S ∈ F we have

∑
v∈L2:S∈F (v) w(v) ≤

m − 1. So we have:
∑

v∈L2

w(v)cov(v) =(P I
cov.1)

∑

v∈L2

w(v)
∑

S∈F (v)

zS =
∑

S∈F

zS
∑

v∈L2:
S∈F (v)

w(v)

≤ (m − 1)
∑

S∈F

zS =(P I
cov.2)

m − 1.

��
Proofs of Propositions 2 to 4 can be found in the full version of the paper.

280 D. Chakrabarty and M. Negahbani

4 The Main Algorithm: Proof of Theorem 1

As mentioned in Sect. 2, we focus on the feasibility version of the problem: given
an instance I of Robust 2-NUkC we either want to prove it is infeasible, that is,
there are no subsets S1, S2 ⊆ X with (a) |Si| ≤ ki and (b) |

⋃
i

⋃
u∈Si

B(u, ri)| ≥
m, or give a 10-approximation that is, open subsets S1, S2 that satisfy (a) and
|
⋃

i

⋃
u∈Si

B(u, 10ri)| ≥ m. To this end, we apply the round-or-cut methodology
on PI

cov. Given a purported ˆcov := (ˆcov1(v), ˆcov2(v) : v ∈ X) we want to
either use it to get a 10-approximate solution, or find a hyperplane separating it
from PI

cov. Furthermore, we want the coefficients in the hyperplane to be poly-
bounded. Using the ellipsoid method we indeed get a polynomial time algorithm
thereby proving Theorem 1.

Upon receiving ˆcov, we first check whether ˆcov(X) ≥ m or not, and if not
that will be the separating hyperplane. Henceforth, we assume this holds. Then,
we run CGK Algorithm 2 with α1 = 8 and α2 = 2 to get 2-FF instance T =
((L1, L2, Leaf,w), (k1, k2)). Let {yv : v ∈ L1 ∪ L2} be the solution described
in Proposition 1. Next, we check if ˆcovi(Li) = y(Li) ≤ ki for both i ∈ {1, 2}; if
not, by Proposition 1 that hyperplane would separate ˆcov from PI

cov (and even
Robust 2-NUkC LP in fact). The algorithm then branches into two cases.

Case I: y(L1) ≤ k1 − 2. In this case, we assert that T is valuable, and therefore
by Lemma 1 we get an α1 + α2 = 10-approximate solution for I via Lemma 1,
and we are done.

Proposition 5. If y(L1) ≤ k1 − 2, then there is an integral solution T for T
with w(C(T)) ≥ m.

Proof. Since y(L1) ≤ k1−2, we see that there is a feasible solution to the slightly
revised LP below.

max
∑

v∈L2

w(v)Y (v) :
∑

u∈L1

yu ≤ k1 − 2,
∑

u∈L2

yu ≤ k2,

Y (v) := yp(v) + yv ≤ 1, ∀v ∈ L2

Consider a basic feasible solution {y′
v : v ∈ L1 ∪ L2} for this LP, and let T1 :=

{v ∈ L1 : y′
v > 0}. By definition y′(T1) = y′(L1) ≤ k1 − 2. According to Lemma

2, there are at most 2 loose variables in y′. So there are at most 2 fractional
vertices in T1. This implies |T1| ≤ k1. Let U be the set of leaves that are not
covered by T1, that is, U := {v ∈ L2 : p(v) /∈ T1}. Let T2 be the top k2 members
of U according to decreasing w order. We return T = (T1, T2).

We claim T has value at least m, that is, w(C(T)) ≥ m. Note that
w(C(T)) = w(T2) +

∑
u∈T1

w(Leaf(u)). By the greedy choice of T2, w(T2) ≥∑
v∈U w(v)y′

v. Since y′
p(v) = 0 for any v ∈ U , we have w(T2) ≥

∑
v∈U w(v)y′

v =
∑

v∈U w(v)Y ′(v). Furthermore, by definition,
∑

u∈T1
w(Leaf(u)) =∑

v∈L2\U w(v) which in turn is at least
∑

v∈L2\U w(v)Y ′(v). Adding up proves
the claim as the objective value is at least m.

w(C(T)) ≥
∑

v∈U

w(v)Y ′(v) +
∑

v∈L2\U
w(v)Y ′

v =
∑

v∈L2

w(v)Y ′(v) ≥ m.

Robust K-Center with Two Types of Radii 281

Case II, y(L1) > k1 − 2. In this case, we either get an 8-approximation or
prove that the following is a valid inequality which will serve as the separating
hyperplane (recall ˆcov1(L1) = y(L1)).

cov1(L1) ≤ k1 − 2. (1)

To do so, we need the following proposition which formalizes the idea stated
in Sect. 2.2 that in case II, we can enumerate over O(|X|) many well-separated
instances.

Proposition 6. Let (cov1, cov2) ∈ PI
cov be fractional coverages and suppose

there is a subset Y ⊆ X with d(u, v) > 8r1 for all u, v ∈ Y . Then either
cov1(Y) ≤ k1 −2, or at least one of the following Well-Separated Robust 2-NUkC
instances are feasible

I∅ := ((X, d), (2r1, r2), (k1, k2), Y,m)
Iq := ((X\B(q, r1), d), (2r1, r2), (k1 − 1, k2), Y,m − |B(q, r1)|) ∀q ∈ X :

d(q, Y) > r1.

The proof is left to the full version of the paper. Now we use the above propo-
sition to complete the proof of Theorem 1. We let Y := L1, and obtain the
instances I∅ and Iq’s as mentioned in the proposition. We apply the algorithm
in Theorem 2 on each of them. If any of them returns a solution, then we
have an 8-approximation. More precisely, if I∅ is feasible, Theorem 2 gives a
4-approximation for it which is indeed an 8-approximation for I (the extra fac-
tor 2 is because I∅ uses 2r1 as its largest radius). If Iq is feasible for some
q ∈ X and Theorem 2 gives us a 4-approximate solution S′ = (S′

1, S
′
2) for it and

S = (S′
1 ∪{q}, S′

2) is an 8-approximation for I. If none of them are feasible, then
we see that cov1(L1) ≤ k1 − 2 indeed serves as a separating hyperplane between
ˆcov and PI

cov. This ends the proof of Theorem 1.

References

1. Adjiashvili, D., Baggio, A., Zenklusen, R.: Firefighting on trees beyond integrality
gaps. ACM Trans. Algorithms (TALG) 15(2), 20 (2018). Also appeared in Proc.,
SODA 2017

2. An, H., Singh, M., Svensson, O.: LP-based algorithms for capacitated facility loca-
tion. SIAM J. Comput. (SICOMP) 46(1), 272–306 (2017). Also appeared in Proc.,
FOCS 2014

3. Anegg, G., Angelidakis, H., Kurpisz, A., Zenklusen, R.: A technique for obtaining
true approximations for k-center with covering constraints. In: Proceedings, MPS
Conference on Integer Programming and Combinatorial Optimization (IPCO), pp.
52–65 (2020)

4. Angelidakis, H., Makarychev, K., Makarychev, Y.: Algorithms for stable and
perturbation-resilient problems. In: Proceedings, ACM Symposium on Theory of
Computing (STOC), pp. 438–451 (2017)

5. Awasthi, P., Blum, A., Sheffet, O.: Center-based clustering under perturbation
stability. Inf. Process. Lett. 112(1–2), 49–54 (2012)

282 D. Chakrabarty and M. Negahbani

6. Bandyapadhyay, S.: On Perturbation Resilience of Non-Uniform k-Center. In: Pro-
ceedings, International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX) (2020)

7. Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.R.: A constant approxi-
mation for colorful k-center. In: Proceedings, European Symposium on Algorithms
(ESA), pp. 12:1–12:14 (2019)

8. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: Proceedings, ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 106–115 (2000)

9. Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of capaci-
tated network design. Algorithmica 72(2), 493–514 (2015). Also appeared in Proc.,
IPCO 2011

10. Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center prob-
lem. ACM Trans. Algorithms (TALG) 16(4), 1–19 (2020). Also appeared in Proc.
ICALP, 2016

11. Chakrabarty, D., Negahbani, M.: Generalized center problems with outliers. ACM
Trans. Algorithms (TALG) 15(3), 1–14 (2019). Also appeared in ICALP 2018

12. Chalermsook, P., Chuzhoy, J.: Resource minimization for fire containment. In:
Proceedings, ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1334–
1349 (2010)

13. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facil-
ity location problems with outliers. In: Proceedings, ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 642–651 (2001)

14. Chekuri, C.S., Gupta, S.: Perturbation resilient clustering for k-center and related
problems via LP relaxations. In: Proceedings, International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX), p. 9
(2018)

15. Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs
of maximum degree three. Discret. Math. 307(16), 2094–2105 (2007)

16. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theo-
ret. Comput. Sci. 38, 293–306 (1985)

17. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

18. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for Bottleneck problems. J. ACM 33(3), 533–550 (1986)

19. Jia, X., Sheth, K., Svensson, O.: Fair colorful k-center clustering. In: Proceed-
ings, MPS Conference on Integer Programming and Combinatorial Optimization
(IPCO), pp. 209–222 (2020)

20. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7
(2011)

21. Li, S.: On uniform capacitated k-median beyond the natural LP relaxation. In:
Proceedings, ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 696–
707 (2015)

22. Li, S.: Approximating capacitated k-median with (1 + ε)k open facilities. In: Pro-
ceedings, ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 786–796
(2016)

23. Rahgoshay, M., Salavatipour, M.R.: Asymptotic quasi-polynomial time approxi-
mation scheme for resource minimization for fire containment. In: Proceedings,
International Symposium on Theoretical Aspects of Computer Science (STACS)
(2020)

Speed-Robust Scheduling

Sand, Bricks, and Rocks

Franziska Eberle1(B), Ruben Hoeksma2, Nicole Megow1, Lukas Nölke1,
Kevin Schewior3, and Bertrand Simon4

1 Faculty of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

{feberle,nmegow,noelke}@uni-bremen.de
2 Department of Applied Mathematics, University of Twente,

Enschede, The Netherlands
r.p.hoeksma@utwente.nl

3 Department of Mathematics and Computer Science, Universität zu Köln,
Cologne, Germany

schewior@cs.uni-koeln.de
4 IN2P3 Computing Center, CNRS, Villeurbanne, France

bertrand.simon@cc.in2p3.fr

Abstract. The speed-robust scheduling problem is a two-stage prob-
lem where, given m machines, jobs must be grouped into at most m
bags while the processing speeds of the machines are unknown. After the
speeds are revealed, the grouped jobs must be assigned to the machines
without being separated. To evaluate the performance of algorithms,
we determine upper bounds on the worst-case ratio of the algorithm’s
makespan and the optimal makespan given full information. We refer to
this ratio as the robustness factor. We give an algorithm with a robust-
ness factor 2 − 1

m
for the most general setting and improve this to 1.8

for equal-size jobs. For the special case of infinitesimal jobs, we give an
algorithm with an optimal robustness factor equal to e

e−1 ≈ 1.58. The
particular machine environment in which all machines have either speed 0
or 1 was studied before by Stein and Zhong (SODA 2019). For this set-
ting, we provide an algorithm for scheduling infinitesimal jobs with an

optimal robustness factor of 1+
√
2

2 ≈ 1.207. It lays the foundation for an
algorithm matching the lower bound of 4

3 for equal-size jobs.

1 Introduction

Scheduling problems with incomplete knowledge of the input data have been
studied extensively. There are different ways to model such uncertainty, the
major frameworks being online optimization, where parts of the input are
revealed incrementally, stochastic optimization, where parts of the input are
modeled as random variables, and robust optimization, where uncertainty in the

Partially supported by the German Science Foundation (DFG) under contract ME
3825/1.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 283–296, 2021.
https://doi.org/10.1007/978-3-030-73879-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_20

284 F. Eberle et al.

data is bounded. Most scheduling research in this context assumes uncertainty
about the job characteristics. Examples include online scheduling, where the job
set is a priori unknown [1,18], stochastic scheduling, where the processing times
are modeled as random variables [17], robust scheduling, where the unknown
processing times are within a given interval [14], two/multi-stage stochastic and
robust scheduling [5,19], and scheduling with explorable execution times [8,15].

A lot less research addresses uncertainty about the machine environment,
particularly, where the processing speeds of machines change in an unforesee-
able manner. A majority of such research focuses on the special case of scheduling
with unknown non-availability periods, that is, machines break down temporar-
ily [2,7] or permanently [20]. Arbitrarily changing machine speeds have been
considered for scheduling on a single machine [10,16].

We consider a two-stage robust scheduling problem with multiple machines
of unknown speeds. Given n jobs and m machines, we ask for a partition of the
jobs into m groups, we say bags, that have to be scheduled on the machines after
their speeds are revealed without being split up. That is, in the second stage,
when the machine speeds are known, a feasible schedule assigns jobs in the same
bag to the same machine. The goal is to minimize the second-stage makespan.

More formally, we define the speed-robust scheduling problem as follows. We
are given n jobs with processing times pj ≥ 0, for j ∈ {1, . . . , n}, and the
number of machines, m ∈ N. Machines run in parallel but their speeds are a
priori unknown. In the first stage, the task is to group jobs into at most m bags.
In the second stage, the machine speeds si ≥ 0, for i ∈ {1, . . . , m}, are revealed.
The time needed to execute job j on machine i is pj

si
, if si > 0. If a machine has

speed si = 0, then it cannot process any job; we say the machine fails. Given the
machine speeds, the second-stage task is to assign the bags to the machines such
that the makespan Cmax is minimized, where the makespan is the maximum sum
of execution times of jobs assigned to the same machine.

Given a set of bags and machine speeds, the second-stage problem emerges as
classical makespan minimization on related parallel machines. It is well-known
that this problem can be solved arbitrarily close to optimality by polynomial-
time approximation schemes [3,12,13]. As we are interested in the information-
theoretic tractability and allow superpolynomial running times, ignoring any
computational concern, we assume that the second-stage problem is solved opti-
mally. Thus, an algorithm for speed-robust scheduling defines a job-to-bag allo-
cation, i.e., it gives a solution to the first-stage problem. We may use non-optimal
bag-to-machine allocations to simplify the analysis.

We evaluate the performance of algorithms by a worst-case analysis, com-
paring an algorithm’s makespan with the optimal makespan achievable when
machine speeds are known in advance. We say that an algorithm is ρ-robust if,
for any instance, its makespan is within a factor ρ ≥ 1 of the optimal solution.
The robustness factor of the algorithm is defined as the infimum over all such ρ.

The special case of speed-robust scheduling with machine speeds in {0, 1}
has been studied by Stein and Zhong [20]. They introduced the problem with
identical machines and an unknown number of machines that fail (speed 0) in the

Speed-Robust Scheduling 285

second stage. They present a simple lower bound of 4
3 on the robustness factor

with equal jobs and design a general 5
3 -robust algorithm. For infinitesimal jobs,

they give a 1.2333-robust algorithm complemented by a lower bound for each
number of machines which tends to 1+

√
2

2 ≈ 1.207 for large m. Stein and Zhong
also consider the objective of minimizing the maximum difference between the
most and least loaded machine, motivated by questions on fair allocation.

Our Contribution
We introduce the speed-robust scheduling problem and present robust algo-
rithms. The algorithmic difficulty of this problem is to construct bags in the
first stage that are robust under any choice of machine speeds in the second
stage. The straight-forward approach of using any makespan-optimal solution
on m identical machines is not sufficient. Lemma 6 shows that such an algorithm
might have an arbitrarily large robustness factor. Using Longest Processing Time
first (LPT) to create bags does the trick and is

(
2 − 1

m

)
-robust for arbitrary

job sizes (Theorem 4). While this was known for speeds in {0, 1} [20], our most
general result is much less obvious.

Note that LPT aims at “balancing” the bag sizes which cannot lead to a bet-
ter robustness factor than 2− 1

m as we show in Lemma 7. Hence, to improve upon
this factor, we need to carefully construct bags with imbalanced bag sizes. There
are two major challenges with this approach: (i) finding the ideal imbalance in
the bag sizes independent from the actual job processing times that would be
robust for all adversarial speed settings simultaneously and (ii) to adapt bag
sizes to accommodate discrete jobs.

A major contribution of this paper is an optimal solution to the first challenge
by considering infinitesimal jobs (Theorem 1). One can think of this as filling
bags with sand to the desired level. Thus, the robust scheduling problem boils
down to identifying the best bag sizes as placing the jobs into bags becomes
trivial. We give, for any number of machines, optimally imbalanced bag sizes
and prove a robustness factor of

ρ̄(m) =
mm

mm − (m − 1)m
≤ e

e − 1
≈ 1.58 .

For infinitesimal jobs in the particular machine environment in which all
machines have either speed 0 or 1, we obtain an algorithm with robustness
factor

ρ̄01(m) = max
t≤ m

2 , t∈N

1
t

m−t + m−2t
m

≤ 1 +
√

2
2

≈ 1.207 = ρ̄01 .

This improves the previous upper bound of 1.233 by Stein and Zhong [20] and
matches exactly their lower bound for each m. Furthermore, we show that the
lower bound in [20] holds even for randomized algorithms and, thus, our algo-
rithm is optimal for both, deterministic and randomized scheduling (Theorem 2).

The above tight results for infinitesimal jobs are crucial for our further results
for discrete jobs. Following the figurative notion of sand for infinitesimal jobs,

286 F. Eberle et al.

Table 1. Summary of results on speed-robust scheduling.

General speeds Speeds from {0, 1}
Lower bound Upper bound Lower bound Upper bound

Discrete jobs ρ̄(m) 2 − 1
m

4
3

5
3

(Rocks) (Lemma 1) (Theorem 4) [20] [20]

Equal-size jobs ρ̄(m) 1.8 4
3

(Bricks) (Lemma 1) (Theorem 5) ([20], Theorem 6)

Infinitesimal jobs ρ̄(m) ≤ e
e−1 ≈ 1.58 ρ̄01(m) ≤ 1+

√
2

2 ≈ 1.207

(Sand) (Lemma 1, Theorem 1) ([20], Theorem 2)

we think of equal-size jobs as bricks and arbitrary jobs as rocks. Building on
those ideal bag sizes, our approaches differ substantially from the methods
in [20]. When all jobs have equal processing time, we obtain a 1.8-robust solu-
tion through a careful analysis of the trade-off between using slightly imbalanced
bags and a scaled version of the ideal bag sizes computed for the infinitesimal
setting (Theorem 5).

When machines have only speeds in {0, 1} and jobs have arbitrary equal
sizes, i.e., unit size, we give an optimal 4

3 -robust algorithm (Theorem 6). This is
an interesting class of instances as the best known lower bound of 4

3 for discrete
jobs uses only unit-size jobs [20]. To achieve this result, we exploit the ideal bag
sizes computed for infinitesimal jobs by using a scaled variant of these sizes.
Some cases, depending on m and the optimal makespan on m machines, have to
be handled individually. Here, we use a direct way of constructing bags with at
most four different bag sizes and some cases can be solved by an integer linear
program. We summarize our results in Table 1.

Inspired by traditional one-stage scheduling problems where jobs have
machine-dependent execution times (unrelated machine scheduling), one might
ask for such a generalization of our problem. However, it is easy to rule out any
robustness factor for such a setting: Consider four machines and five jobs, where
each job may be executed on a unique pair of machines. Any algorithm must
build at least one bag with at least two jobs. For this bag there is at most one
machine to which it can be assigned with finite makespan. If this machine fails,
the algorithm cannot complete the jobs whereas an optimal solution can split
this bag on multiple machines to get a finite makespan.

Due to space constraints, we omit proof details. They can be found in a full
version of this paper [9].

2 Speed-Robust Scheduling with Infinitesimal Jobs

In this section, we consider speed-robust scheduling with infinitely many jobs
that have infinitesimal processing times. We give optimal algorithms in both the
general case and the special case with speeds in {0, 1}.

Speed-Robust Scheduling 287

2.1 General Speeds

Theorem 1. There is an algorithm for speed-robust scheduling with infinitesi-
mal jobs that is ρ̄(m)-robust for all m ≥ 1, where

ρ̄(m) =
mm

mm − (m − 1)m
≤ e

e − 1
≈ 1.58 .

This is the best possible robustness factor that can be achieved by any algorithm.

To prove Theorem 1, we first show that, even when we restrict the adversary
to a particular set of m speed configurations, no algorithm can achieve a robust-
ness factor better than ρ̄(m). Note that since we can scale all speeds equally by
an arbitrary factor without influencing the robustness factor, we can assume that
the sum of the speeds equals 1. Similarly, we assume that the total processing
time of the jobs equals 1 such that the optimal makespan of the adversary is 1
and the worst-case makespan of an algorithm is equal to its robustness factor.

Intuitively, the idea behind the set of speed configurations is that the adver-
sary can set m − 1 machines to equal low speeds and one machine to a high
speed. The low speeds are set such that one particular bag size just fits on that
machine when aiming for the given robustness factor. This immediately implies
that all larger bags have to be put on the fast machine together. This way, the
speed configuration can target a certain bag size. We provide specific bag sizes
that achieve a robustness of ρ̄(m) and show that for the speeds targeting these
bag sizes, other bag sizes would result in even larger robustness factors.

We define U = mm, L = mm − (m − 1)m, as well as tk = (m − 1)m−kmk−1

for k ∈ {1, . . . , m}. Intuitively, these values are chosen such that the bag sizes ti

L
are optimal and ti

U corresponds to the low speed of the i-th speed configuration.
It is easy to verify that ρ̄(m) = U

L and for all k we have
∑

i<k

ti = (m − 1)tk − U + L . (1)

In particular, this implies that
∑

i≤m ti = mtm − U + L = L, and therefore, the
sum of the bag sizes is 1. Let a1 ≤ · · · ≤ am denote the bag sizes chosen by an
algorithm and s1 ≤ · · · ≤ sm the speeds chosen by the adversary.

Lemma 1. For any m ≥ 1, no algorithm for speed-robust scheduling with
infinitesimal jobs can have a robustness factor less than ρ̄(m).

Proof. We restrict the adversary to the following m speed configurations indexed
by k ∈ {1, . . . , m}:

Sk :=
{

s1 =
tk
U

, s2 =
tk
U

, . . . , sm−1 =
tk
U

, sm = 1 − (m − 1)
tk
U

}
.

Note that for all k ∈ {1, . . . , m}, we have mtk ≤ U and, thus, sm ≥ sm−1.
We show that for any bag sizes a1, . . . , am, the adversary can force the

algorithm to have a makespan of at least U
L with some Sk. Since the optimal

288 F. Eberle et al.

makespan is fixed to be equal to 1 by assumption, this implies a robustness factor
of at least U

L .
Let k� be the smallest index such that ak ≥ tk

L . Such an index exists because
the sum of the ti’s is equal to L (Eq. (1)) and the sum of the ai’s is equal to 1.
Now, consider the speed configuration Sk� . If one of the bags ai for i ≥ k� is not
scheduled on the m-th machine, then the makespan is at least ai

s1
≥ ak�

U
tk�

≥ U
L .

Otherwise, all ai for i ≥ k� are scheduled on machine m. Then, using Eq. (1),
the load on that machine is at least

∑

i≥k�

ai = 1 −
∑

i<k�

ai ≥ 1 − 1
L

∑

i<k�

ti =
1
L

(L − (m − 1)tk� + U − L) =
U

L
sm .

Thus, either a machine i < m with a bag i′ ≥ k∗ or machine i = m has a load
of at least si · U

L and determines the makespan. ��
For given bag sizes, we call a speed configuration that maximizes the mini-

mum makespan a worst-case speed configuration. Before we provide the strategy
that obtains a matching robustness factor, we state a property of such best
strategies for the adversary.

Lemma 2. Given bag sizes and a worst-case speed configuration, for each
machine i, there exists an optimal assignment of the bags to the machines such
that only machine i determines the makespan.

Note that, by Lemma 2, for a worst-case speed configuration, there are many
different bag-to-machine assignments that obtain the same optimal makespan.
Lemma 2 also implies that for such speed configurations all speeds are non-zero.

Let Sand denote the algorithm that creates m bags of the following sizes

a1 =
t1
L

, a2 =
t2
L

, . . . , am =
tm
L

.

Note that this is a valid algorithm since the sum of these bag sizes is equal to 1.
Moreover, these bag sizes are exactly such that if we take the speed configurations
from Lemma 1, placing bag j on a slow machine in configuration j results in
a makespan that is equal to ρ̄(m). We proceed to show that Sand ensures a
robustness factor of ρ̄(m).

Lemma 3. For any m ≥ 1, Sand is ρ̄(m)-robust for speed-robust scheduling
with infinitely many infinitesimal jobs.

Proof. Let a1, . . . , am be the bag sizes as specified by Sand and let s1, . . . , sm

be a worst-case speed configuration given these bag sizes. Consider an optimal
assignment of bags to machines and let C∗

max denote its makespan. We use one
particular (optimal) assignment to obtain an upper bound on C∗

max. By Lemma
2, an optimal assignment exists where only machine 1 determines the makespan,
i.e., machine 1 has load C∗

max · s1 and any other machine i has load strictly less
than C∗

max · si. Consider such an assignment. If there are two bags assigned to

Speed-Robust Scheduling 289

machine 1, then there is an empty machine with speed at least s1. Therefore,
we can put one of the two bags on that machine and decrease the makespan.
This contradicts that C∗

max is the optimal makespan, so there is exactly one bag
assigned to machine 1. Let k be the index of the unique bag placed on machine 1,
i.e., C∗

max = ak

s1
, and let � be the number of machines of speed s1.

If ak > a�, then machine i ∈ {1, . . . , �}, with speed s1, can be assigned bag i
with a load that is strictly less than C∗

max ·s1. Thus, given the current assignment,
we can remove bag ak from machine 1 and place the � smallest bags on the �
slowest machines, one per machine, e.g., bag ai on machine i for i ∈ {1, . . . , �}.
This empties at least one machine of speed strictly larger than s1. Then, we
can place bag ak on this (now empty) machine, which yields a makespan that
is strictly smaller than C∗

max. This contradicts the assumption that C∗
max is the

optimal makespan, and thus, ak ≤ a�, which implies k ≤ �.
Let Pi denote the total processing time of bags assigned to machine i, and C

the total remaining capacity of the assignment, that is, C :=
∑m

i=1(siC
∗
max−Pi).

We bound C, which allows us to bound C∗
max.

Machines in the set {2, . . . , �} cannot be assigned a bag of size larger than ak

since their load would be greater than C∗
max · s1, causing a makespan greater

than C∗
max. Therefore, we assume without loss of generality that all bags aj < ak

are assigned to a machine with speed s1. The total remaining capacity on the
first k machines is therefore equal to (k − 1)ak − ∑

i<k ai.
Consider a machine i > k. If the remaining capacity of this machine is greater

than ak, then we can decrease the makespan of the assignment by moving bag k
to machine i. Therefore, the remaining capacity on machine i is at most ak.

Combining the above and using (1), we obtain:

C ≤ (m − 1)ak −
∑

i<k

ai =
1
L

(

(m − 1)tk −
∑

i<k

ti

)

=
1
L

(U − L) .

The total processing time is
∑m

i=1 ai = 1, and the maximum total pro-
cessing time that the machines could process with makespan C∗

max is equal
to

∑m
i=1 siC

∗
max = C∗

max. Since the latter is equal to the total processing time plus
the remaining capacity, we have C∗

max = 1 + C ≤ U
L , which proves the lemma. ��

The robustness factor ρ̄(m) is not best possible for every m when we allow
algorithms that make randomized decisions and compare to an oblivious adver-
sary. For m = 2, uniformly randomizing between bag sizes a1 = a2 = 1

2 and a1 =
1
4 , a2 = 3

4 yields a robustness factor that is slightly better than ρ̄(2) = 4
3 .

Interestingly, with speeds in {0, 1} the optimal robustness factor is equal for
deterministic and randomized algorithms.

2.2 Speeds in {0, 1}
Theorem 2. For all m ≥ 1, there is a deterministic ρ̄01(m)-robust algorithm
for speed-robust scheduling with speeds in {0, 1} and infinitesimal jobs, where

ρ̄01(m) = max
t∈N, t≤ m

2

1
t

m−t + m−2t
m

≤ 1 +
√

2
2

= ρ̄01 ≈ 1.207 .

290 F. Eberle et al.

This is the best possible robustness factor that can be achieved by any algorithm,
even by a randomized algorithm against an oblivious adversary.

The deterministic version of the lower bound and some useful insights were
already presented in [20]. We recall some of these insights here because they
are used in the proof. To do so, we introduce some necessary notation used
in the remainder of this paper. The number of failing machines (i.e., machines
with speed equal to 0) is referred to as t, with t ∈ {0, . . . , m − 1}, and we
assume w.l.o.g. that these are machines 1, . . . , t. Furthermore, we assume for
this subsection, again w.l.o.g., that the total volume of infinitesimal jobs is m,
and we define bags 1, . . . , m with respective sizes a1 ≤ · · · ≤ am summing to at
least m (the potential excess being unused).

Lemma 4 (Statement (3) in [20]). For all m ≥ 1 and t ≤ m
2 , there exists

a makespan-minimizing allocation of bags to machines for speed-robust schedul-
ing with speeds in {0, 1} and infinitely many infinitesimal jobs that assigns the
smallest 2t bags to machines t + 1, . . . , 2t.

Since Lemma 4 only works for t ≤ m
2 , one may worry that, for larger t, there is

a more difficult structure to understand. The following insight shows that this
worry is unjustified. Indeed, if m′ < m

2 is the number of machines that do not
fail, one can simply take the solution for 2m′ machines, and assign the bags from
any two machines to one machine. The optimal makespan is doubled and that
of the algorithm is at most doubled, so the robustness is conserved.

Lemma 5 (Proof of Theorem 2.2 in [20]). Let ρ > 1. For all m ≥ 1, if
an algorithm is ρ-robust for speed-robust scheduling with speeds in {0, 1} and
infinitely many infinitesimal jobs for t ≤ m

2 , it is ρ-robust for t ≤ m − 1.

Therefore, we focus on computing bag sizes such that the makespan of a best allo-
cation according to Lemma 4 is within a ρ̄01(m) factor of the optimal makespan
when t ≤ m

2 . The approach in [20] to obtain the (as we show tight) lower
bound ρ̄01(m) is as follows. Given some t ≤ m

2 and a set of bags allocated
according to Lemma 4,

(i) The makespan on machines t+1, . . . , 2t is at most ρ̄01(m) times the optimal
makespan m

m−t , and
(ii) The makespan on machines 2t + 1, . . . , m is a most ρ̄01(m) because those

machines only hold a single bag after a simple “folding” strategy for assign-
ing bags to machines, which we define below.

In particular, since t = 0 is possible (ii) implies that all bag sizes are at
most ρ̄01(m). The fact that the total processing volume of m has to be accom-
modated and maximizing over t results in the lower bound given in Theorem 2.

To define bag sizes leading to a matching upper bound, we further restrict our
choices when t ≤ m

2 machines fail. Of course, as we match the lower bound, the
restriction is no limitation but rather a simplification. When t ≤ m

2 machines fail,
we additionally assume that machines t+1, . . . , 2t receive exactly two bags each:

Speed-Robust Scheduling 291

Assuming t ≤ m
2 , the simple folding of these bags onto machines assigns bags

i ≥ t+1 to machine i, and bags i ≤ t (recall machine i fails) to machine 2t−i+1.
Hence, bags 1, . . . , t are “folded” onto machines 2t, . . . , t + 1 (sic).

For given m, let t� be an optimal adversarial choice for t in Theorem 2.
Assuming there are bag sizes a1, . . . , am that match the bound ρ̄01(m) through
simple folding, by (i) and (ii), we precisely know the makespan on all machines
after folding when t = t�. That fixes ai + a2t�+1−i = ρ̄01(m) · m

m−t� for all i ∈
{1, . . . , t�} and a2t�+1 = · · · = am = ρ̄01(m). In contrast to [20], we show that
defining ai for i ∈ {1, . . . , t�} to be essentially a linear function of i, and thereby
fixing all bag sizes, suffices to match ρ̄01(m). The word “essentially” can be
dropped when replacing ρ̄01(m) by ρ̄01.

A clean way of thinking about the bag sizes is through profile functions which
reflect the distribution of load over bags in the limit case m → ∞. Specifically,
we identify the set {1, . . . , m} with the interval [0, 1] and define a continuous
non-decreasing profile function f̄ : [0, 1] → R+ integrating to 1. A simple way of
getting back from the profile function to actual bag sizes of total size approxi-
mately m is equidistantly “sampling” f̄ , i.e., by letting ai = f̄

(i−1/2
m

)
for all i.

Our profile function f̄ implements the above observations and ideas in the
continuous setting. Indeed, our choice

f̄(x) = min
{

1
2

+ ρ̄01 · x, ρ̄01

}
= min

{
1
2

+
(1 +

√
2) · x

2
,
1 +

√
2

2

}

is linear up to β = 2−√
2 = limm→∞ 2t�

m and from then on it is constantly ρ̄01 =
limm→∞ ρ̄01(m). We give some intuition for why this function works using the
continuous counterpart of folding: When t ≤ t� machines fail, i.e., a continuum
of machines with measure x ≤ β

2 , we fold the corresponding part of f̄ onto the
interval [x, 2x], yielding a rectangle of width x and height f̄(0)+ f̄(2x) = 2f̄(x).
We have to prove that the height does not exceed the optimal makespan 1

1−x

by more than a factor of ρ̄01. Equivalently, we maximize 2f̄(x)(1 − x) (even
over x ∈ R) and observe the maximum of ρ̄01 = 1+

√
2

2 at x = β
2 . When x ∈ (

β
2 , 1

2

]
,

note that by folding we still obtain a rectangle of height 2f̄(x) (but width β−x),
dominating the load on the other machines. Hence, the makespan is at most ρ̄01

1−x

for every x ∈ [
0, 1

2

]
.

Directly “sampling” f̄ , we obtain a weaker bound (stated below) than that
in Theorem 2. The proof (and the algorithm) is substantially easier than that
of the main theorem: Firstly, we translate the above continuous discussion into
a discrete proof. Secondly, we exploit that f̄ is concave to show that the total
volume of the “sampled” bags is larger than m for every m ∈ N. Later, we make
use of the corresponding simpler algorithm. Let Sand01 denote the algorithm
that creates m bags of size ai := f̄

(i−1/2
m

)
, for i ∈ {1, . . . , m}.

Theorem 3. Sand01 is ρ̄01-robust for speed-robust scheduling with speeds
in {0, 1} and infinitely many infinitesimal jobs for all m ≥ 1.

292 F. Eberle et al.

As the profile function disregards specific machines, obtaining bag sizes
through this function seems too crude to match ρ̄01(m) for every m. Indeed,
our proof of Theorem 2 is based on a much more careful choice of the bag sizes.

3 Speed-Robust Scheduling with Discrete Jobs

In this section, we consider the most general version of Speed Robust Scheduling.
While in Sects. 2 and 4 we crucially use in our algorithm design the assumptions
that all jobs are infinitesimally small (sand) or are of the same size (bricks),
respectively, here, their sizes can vary arbitrarily (rocks).

By a scaling argument, we may assume w.l.o.g. that the machine speeds
satisfy

∑m
i=1 si =

∑n
j=1 pj . Observe that minimizing the size of a largest bag

may not yield a robust algorithm.

Lemma 6. Algorithms for speed-robust scheduling that minimize the size of a
largest bag may not have a constant robustness factor.

Proof. Consider any integer k ≥ 1, a number of machines m = k2 + 1, one job
with processing time k, and k2 unit-size jobs. The maximum bag size is at least k,
so an algorithm that builds k + 1 bags of size k respects the conditions of the
lemma. Consider the speed configuration where k2 machines have speed 1 and
one machine has speed k. It is possible to schedule all jobs on these machines
with makespan 1. However, the algorithm must either place a bag on a machine
of speed 1 or all bags on the machine of speed k, which gives a makespan of k.

��
For machine speeds in {0, 1}, such algorithms are

(
2 − 2

m

)
-robust. Once the

number m′ of speed-1 machines is revealed, simply combine the two smallest
bags repeatedly if m′ < m. The makespan is then at most twice the average load
on m′ + 1 machines, i.e., 2m′

m′+1 times the average load on m′ machines.
The lower bound in Lemma 6 exploits the fact that bags sizes of such algo-

rithms might be very unbalanced. An algorithm is called balanced if, for an
instance of unit-size jobs, the bag sizes created by the algorithm differ by at
most one unit. In particular, a balanced algorithm creates m bags of size k when
confronted with mk unit-size jobs and m bags. For balanced algorithms, we give
a lower bound in Lemma 7 and a matching upper bound in Theorem 4.

Lemma 7. No balanced algorithm for speed-robust scheduling can obtain a better
robustness factor than 2 − 1

m for any m ≥ 1.

We now show that this lower bound is attained by a simple algorithm, com-
monly named as Longest Processing Time first (LPT) which considers jobs in
non-increasing order of processing times and assigns each job to the bag that
currently has the smallest size, i.e., the minimum allocated processing time.

Theorem 4. LPT is
(
2 − 1

m

)
-robust for speed-robust scheduling for all m ≥ 1.

Speed-Robust Scheduling 293

Proof. While we may assume that the bags are allocated optimally to the
machines once the speeds are given, we use a different allocation for the analysis.
This cannot improve the robustness.

Consider the m bags and let b denote the size of a largest bag, B, that
consists of at least two jobs. Consider all bags of size strictly larger than b,
each containing only a single job, and place them on the same machine as Opt
places the corresponding jobs. We define for each machine i with given speed si

a capacity bound of
(
2 − 1

m

) · si. Then, we consider the remaining bags in non-
increasing order of bag sizes and iteratively assign them to the – at the time of
assignment – least loaded machine with sufficient remaining capacity.

By the assumption
∑m

i=1 si =
∑n

j=1 pjand the capacity constraint
(
2− 1

m

)·si,
it is sufficient to show that LPT can successfully place all bags.

The bags larger than b fit by definition as they contain a single job. Assume
by contradiction that there is a bag which cannot be assigned. Consider the first
such bag and let T be its size. Let k < m be the number of bags that have been
assigned already. Further, denote by w the size of a smallest bag. Since we used
LPT to create the bags, we have w ≥ 1

2b. To see that, consider bag B and notice
that the smallest job in it has a size at most 1

2b. When this job was assigned to
its bag, B was the bag with smallest size, and this size was at least 1

2b since we
allocate jobs in LPT-order. Hence, the size of a smallest bag is w ≥ 1

2b ≥ 1
2T ,

where the second inequality is true as all bags larger than b can be placed.
We use this inequality to give a lower bound on the total remaining capacity

on the m machines when the second-stage algorithm fails to place the (k + 1)-
st bag. The (m − k) bags that were not placed have a combined volume of at
least V� = (m − k − 1)w + T ≥ (m − k + 1)T

2 . The bags that were placed
have a combined volume of at least Vp = kT . The remaining capacity is then at
least C = (2 − 1

m)V� + (1 − 1
m)Vp, and we have

C =
(

2 − 1
m

)
V� +

(
1 − 1

m

)
Vp ≥

(
2 − 1

m

)
(m − k + 1)

T

2
+

(
1 − 1

m

)
kT

≥ (m − k + 1)T − (m − k + 1)
T

2m
+ kT − 1

m
kT ≥ mT + T − m + k + 1

2m
T

≥ mT .

Thus, there is a machine with remaining capacity T which contradicts the
assumption that the bag of size T does not fit. ��

4 Speed-Robust Scheduling with Equal-Size Jobs

In this section we consider instances where all jobs are of equal size, i.e., bricks, as
this case seems to capture the complexity of the general problem. This intuition
stems from the fact that all known lower bounds already hold for this type of
instances (see [20] and Lemma 10).

By a scaling argument, we may assume that all jobs have unit processing time.
Before focusing on a specific speed setting, we show that in both settings we can

294 F. Eberle et al.

use any algorithm for infinitesimal jobs with proper scaling to obtain a robustness
which is degraded by a factor decreasing with n

m =: λ. Assume λ > 1, as other-
wise the problem is trivial. We define the algorithm SandForBricks that builds
on the optimal algorithm for infinitesimal jobs, Sand∗, which is Sand for general
speeds (Sect. 2.1) or Sand01 for speeds in {0, 1} (Sect. 2.2). Let a1, . . . , am be
the bag sizes constructed by Sand∗ scaled such that a total processing volume
of n can be assigned, that is,

∑m
i=1 ai = n. For unit-size jobs, we define bag sizes

as a′
i =

(
1 + 1

λ

) · ai and assign the jobs greedily to the bags.

Lemma 8. For n jobs with unit processing times and m machines, SandFor-
Bricks for speed-robust scheduling is

(
1 + 1

λ

) · ρ(m)-robust, where λ = n
m

and ρ(m) is the robustness factor for Sand∗ for m machines.

4.1 General Speeds

For bricks, i.e., unit-size jobs, we beat the factor 2 − 1
m (Theorem 4) for speed-

robust scheduling and give a 1.8-robust algorithm. For m = 2 and m = 3, we
give algorithms with best possible robustness factors 4

3 and 3
2 , respectively.

Theorem 4 shows that LPT has a robustness factor of 2 − 1
m . We show that

a slightly different algorithm, BuildOdd, has a robustness that increases with
the ratio between the number of jobs and the number of machines. BuildOdd
builds bags of three possible sizes: for q ∈ N such that λ = n

m ∈ [2q−1, 2q+1], the
bags sizes are 2q −1, 2q and 2q +1. In a manner similar to the proof of Theorem
4, we can prove BuildOdd is (2 − 1

q+1)-robust. The worst case happens when a
bag of size 2q + 1 is scheduled on a machine of speed q + 1.

Lemma 9. For n unit-size jobs, m machines and q ∈ N with λ ∈ [2q−1, 2q+1],
BuildOdd is (2 − 1

q+1)-robust for speed-robust scheduling.

The robustness guarantees in Lemmas 8 and 9 are decreasing and increasing,
respectively, in λ. By carefully choosing between BuildOdd and SandFor-
Bricks, depending on the input, we obtain an improved algorithm for bricks.
For λ < 8, we execute BuildOdd, which yields a robustness factor of at most 1.8
by Lemma 9, as q ≤ 4 for λ < 8. Otherwise, when λ ≥ 8, we run SandFor-
Bricks with a guarantee of 9

8 · e
e−1 ≈ 1.78 by Lemma 8.

Theorem 5. There is an algorithm for speed-robust scheduling with unit-size
jobs that has a robustness factor of at most 1.8 for any m ≥ 1.

We give a general lower bound on the best achievable robustness factor.

Lemma 10. For every m ≥ 3, no algorithm for speed-robust scheduling can
have a robustness factor smaller than 3

2 , even restricted to unit-size jobs.

For special cases with few machines, we give best possible algorithms.

Lemma 11. An optimal algorithm for speed-robust scheduling for unit-size jobs
has robustness factor 4

3 on m = 2 machines and 3
2 on m = 3 machines, and

larger than ρ̄(6) > 3
2 for m = 6.

Speed-Robust Scheduling 295

4.2 Speeds in {0, 1}
When considering speeds in {0, 1}, bricks (unit-size jobs) are of particular inter-
est as the currently best known lower bound for rocks (arbitrary jobs) is 4

3 and
uses only bricks [20]. We present an algorithm with a matching upper bound.

Theorem 6. There exists a 4
3 -robust algorithm for speed-robust scheduling

with {0, 1}-speeds and unit-size jobs.

In the proof, we handle different cases depending on m and �λ� by carefully
tailored methods. Note that �λ� is equal to the optimal makespan on m machines.

When �λ� ≥ 11, we use SandForBricks and obtain a robustness factor of
at most 4

3 by Lemma 9. The proof uses a volume argument to show that jobs
fit into the scaled optimal bag sizes for infinitesimal jobs, even after rounding
bag sizes down to the nearest integer. When �λ� ∈ {9, 10}, this method is too
crude. We refine it to show that for m ≥ 40 it is still possible to scale bag sizes
from SandID and round them to integral sizes such that all jobs can be placed.
The analysis exploits an amortized bound on the loss due to rounding over
consecutive bags. For the case that �λ� ≤ 8 and m ≥ 50, we use a constructive
approach and give a strategy that utilizes at most four different bag sizes. The
remaining cases, �λ� ≤ 10 and m ≤ 50, can be verified by enumerating over all
possible instances and using an integer linear program to verify that there is a
solution of bag sizes that is 4

3 -robust.

References

1. Albers, S., Hellwig, M.: Online makespan minimization with parallel schedules.
Algorithmica 78(2), 492–520 (2017). https://doi.org/10.1007/s00453-016-0172-5

2. Albers, S., Schmidt, G.: Scheduling with unexpected machine breakdowns.
Discret. Appl. Math. 110(2–3), 85–99 (2001). https://doi.org/10.1016/s0166-
218x(00)00266-3

3. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Sched. 1(1), 55–66 (1998). https://doi.org/10.1002/
(sici)1099-1425(199806)1:1〈55::aid-jos2〉3.0.co;2-j

4. Baruah, S.K., et al.: Scheduling real-time mixed-criticality jobs. IEEE Trans. Com-
put. 61(8), 1140–1152 (2012). https://doi.org/10.1109/tc.2011.142

5. Chen, L., Megow, N., Rischke, R., Stougie, L.: Stochastic and robust schedul-
ing in the cloud. In: APPROX-RANDOM. LIPIcs, vol. 40, pp. 175–186. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.org/10.4230/
LIPIcs.APPROX-RANDOM.2015.175

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492

7. Diedrich, F., Jansen, K., Schwarz, U.M., Trystram, D.: A survey on approximation
algorithms for scheduling with machine unavailability. In: Lerner, J., Wagner, D.,
Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515,
pp. 50–64. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02094-
0 3

https://doi.org/10.1007/s00453-016-0172-5
https://doi.org/10.1016/s0166-218x(00)00266-3
https://doi.org/10.1016/s0166-218x(00)00266-3
https://doi.org/10.1002/(sici)1099-1425(199806)1:1<55::aid-jos2>3.0.co;2-j
https://doi.org/10.1002/(sici)1099-1425(199806)1:1<55::aid-jos2>3.0.co;2-j
https://doi.org/10.1109/tc.2011.142
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.175
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.175
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/978-3-642-02094-0_3
https://doi.org/10.1007/978-3-642-02094-0_3

296 F. Eberle et al.

8. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: An adversarial model for schedul-
ing with testing. Algorithmica 82(12), 3630–3675 (2020). https://doi.org/10.1007/
s00453-020-00742-2

9. Eberle, F., Hoeksma, R., Megow, N., Nölke, L., Schewior, K., Simon, B.: Speed-
robust scheduling. CoRR (2020). https://arxiv.org/abs/2011.05181

10. Epstein, L., et al.: Universal sequencing on an unreliable machine. SIAM J. Com-
put. 41(3), 565–586 (2012). https://doi.org/10.1137/110844210

11. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966). https://doi.org/10.1002/j.1538-7305.1966.tb01709.x

12. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987).
https://doi.org/10.1145/7531.7535

13. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP
relaxation with a constant number of integral variables. SIAM J. Discrete Math.
24(2), 457–485 (2010). https://doi.org/10.1137/090749451

14. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Springer,
Berlin (1997). https://doi.org/10.1007/978-1-4757-2620-6

15. Levi, R., Magnanti, T.L., Shaposhnik, Y.: Scheduling with testing. Manag. Sci.
65(2), 776–793 (2019). https://doi.org/10.1287/mnsc.2017.2973

16. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying
speed. SIAM J. Discret. Math. 32(3), 1541–1571 (2018). https://doi.org/10.1137/
16m105589x

17. Niño-Mora, J.: Stochastic scheduling. In: Encyclopedia of Optimization, pp. 3818–
3824. Springer (2009). https://doi.org/10.1007/978-0-387-74759-0 665

18. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook of Scheduling.
Chapman and Hall/CRC (2004). https://doi.org/10.1007/978-3-319-99849-7

19. Shmoys, D.B., Sozio, M.: Approximation algorithms for 2-stage stochastic schedul-
ing problems. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol.
4513, pp. 145–157. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72792-7 12

20. Stein, C., Zhong, M.: Scheduling when you do not know the number of machines.
ACM Trans. Algorithms 16(1), 9:1–9:20 (2020). https://doi.org/10.1145/3340320

https://doi.org/10.1007/s00453-020-00742-2
https://doi.org/10.1007/s00453-020-00742-2
https://arxiv.org/abs/2011.05181
https://doi.org/10.1137/110844210
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1145/7531.7535
https://doi.org/10.1137/090749451
https://doi.org/10.1007/978-1-4757-2620-6
https://doi.org/10.1287/mnsc.2017.2973
https://doi.org/10.1137/16m105589x
https://doi.org/10.1137/16m105589x
https://doi.org/10.1007/978-0-387-74759-0_665
https://doi.org/10.1007/978-3-319-99849-7
https://doi.org/10.1007/978-3-540-72792-7_12
https://doi.org/10.1007/978-3-540-72792-7_12
https://doi.org/10.1145/3340320

The Double Exponential Runtime is
Tight for 2-Stage Stochastic ILPs

Klaus Jansen, Kim-Manuel Klein, and Alexandra Lassota(B)

Department of Computer Science, Kiel University, Kiel, Germany
{kj,kmk,ala}@informatik.uni-kiel.de

Abstract. We consider fundamental algorithmic number theoretic
problems and their relation to a class of block structured Integer Linear
Programs (ILPs) called 2-stage stochastic. A 2-stage stochastic ILP is an
integer program of the form min{cTx | Ax = b, � ≤ x ≤ u, x ∈ Z

r+ns}
where the constraint matrix A ∈ Z

nt×r+ns consists of n matrices
Ai ∈ Z

t×r on the vertical line and n matrices Bi ∈ Z
t×s on the diagonal

line aside. First, we show a stronger hardness result for a number theo-
retic problem called Quadratic Congruences where the objective is to
compute a number z ≤ γ satisfying z2 ≡ α mod β for given α, β, γ ∈ Z.
This problem was proven to be NP-hard already in 1978 by Manders and
Adleman. However, this hardness only applies for instances where the
prime factorization of β admits large multiplicities of each prime num-
ber. We circumvent this necessity by proving that the problem remains
NP-hard, even if each primenumber only occurs constantly often.

Then, using this new hardness result for the Quadratic

Congruences problem, we prove a lower bound of 22δ(s+t) |I|O(1) for some
δ > 0 for the running time of any algorithm solving 2-stage stochastic ILPs
assuming the Exponential Time Hypothesis (ETH). Here, |I| is the encod-
ing length of the instance. This result even holds if r, ||b||∞, ||c||∞, ||�||∞
and the largest absolute value Δ in the constraint matrix A are constant.
This shows that the state-of-the-art algorithms are nearly tight. Further,
it proves the suspicion that these ILPs are indeed harder to solve than the
closely related n-fold ILPswhere the contraintmatrix is the transpose of A.

Keywords: 2-stage stochastic ILPs · Quadratic Congruences · Lower
bound · Exponential Time Hypothesis

1 Introduction

One of the most fundamental problems in algorithm theory and optimization is
the Integer Linear Programming problem. Many theoretical and practical
problems can be modeled as integer linear programs (ILPs) and thus they serve as

This work was supported by DFG project JA 612/20-1.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 297–310, 2021.
https://doi.org/10.1007/978-3-030-73879-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_21

298 K. Jansen et al.

a very general but powerful framework for tackling various questions. Formally,
the Integer Linear Programming problem is defined as

min{c�x | Ax = b, � ≤ x ≤ u, x ∈ Z
d2}

for some matrix A ∈ Z
d1×d2 , a right-hand side b ∈ Z

d1 , an objective function c ∈
Z

d2 and some lower and upper bounds �, u ∈ Z
d2 . The goal is to find a solution x

such that the value of the objective function c�x is minimized. In general, this
problem is NP-hard. Thus, it is of great interest to find structures to these ILPs
which make them solvable more efficiently. In this work, we consider 2-stage
stochastic integer linear programs where the constraint matrix admits a specific
block structure. Namely, the constraint matrix A only contains non-zero entries
in the first few columns and block-wise along the diagonal aside. This yields the
following form:

A =

⎛
⎜⎜⎜⎜⎝

A1 B1 0 . . . 0

A2 0 B2
. . .

...
...

...
. 0

An 0 . . . 0 Bn

⎞
⎟⎟⎟⎟⎠

.

Thereby A1, . . . , An ∈ Z
t×r and B1, . . . , Bn ∈ Z

t×s are integer matrices them-
selves. The complete constraint matrix A has size nt × r + ns. Let Δ denote the
largest absolute entry in A.

Such 2-stage stochastic ILPs are a common tool in stochastic programming
and they are often used in practice to model uncertainty of decision making
over time [1,7,17,21]. Due to the applicability a lot of research has been done in
order to solve these (mixed) ILPs efficiently in practice. Since we focus on the
theoretical aspects of 2-stage stochastic ILPs, we only refer the reader to the
surveys [9,20,24] and the references therein regarding the practical methods.

The current state-of-the-art algorithms to solve 2-stage stochastic ILPs
admits a running time of 2(2Δ)r2s+rs2

n log3(n)·|I| where |I| is the binary encoding

length of the input [8] or respectively of n logO(rs)(n)2(2Δ)O(r2+rs)
[5] by a recent

result. The first result improves upon the result in [18] due to Klein where the
dependence on n was quadratic. The dependencies on the block dimensions and
|I| were similar. The first result in that respect was by Hemmecke and Schulz [11]
who provided an algorithm with a running time of f(r, s, t,Δ) ·poly(n) for some
computable function f . However, due to the use of an existential result from
commutative algebra, no explicit bound could be stated for f .

Let us turn our attention to the n-fold ILPs for a moment, which where first
introduced in [22]. These ILPs admit a constraint matrix which is the transpose
of the 2-stage stochastic constraint matrix. Despite being so closely related, n-
fold ILPs can be solved in time near linear in the number of blocks and only
single exponentially in the block-dimensions of AT

i , BT
i [4,16].

Thus, it is an intrinsic questions whether we can solve 2-stage stochastic ILPs
more efficient or – as the latest algorithms suggest – whether 2-stage stochas-
tic ILPs are indeed harder to solve than the closely related n-fold ILPs. We

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs 299

answer this question by showing a double-exponential lower bound in the run-
ning time for any algorithm solving the 2-stage stochastic integer linear
programming (2-stage ILP) problem. Here, the 2-stage ILP problem is the
corresponding decision variant which asks whether the ILP admits a feasible
solution.

To prove this hardness, we reduce from the Quadratic Congruences prob-
lem. This problem asks whether there exists a z ≤ γ such that z2 ≡ α mod β
for some γ, α, β ∈ N. This problem was proven to be NP-hard by Manders and
Adleman [23] already in 1978 by showing a reduction from 3-SAT. This hardness
even persists if the prime factorization of β is given [23]. By this result, Manders
and Adleman prove that it is NP-complete to compute the solutions of diophan-
tine equations of degree 2. However, their reduction yields large parameters. In
detail, the occurrences of each prime factor in the prime factorization of β is
too large to obtain the desired lower bound for the 2-stage ILP problem. The
occurrence of each prime factor is at least linear in the number of variables and
clauses of the underlying 3-SAT problem.

We give a new reduction yielding a stronger statement: The Quadratic
Congruences problem is NP-hard even if the prime factorization of β is given
and each prime factor occurs at most once (except 2 which occurs four times).
Beside being useful to prove the lower bounds for solving the 2-stage stochastic
ILPs, we think this results is of independent interest. We obtain a neat struc-
ture which may be helpful in various related problems or may yield stronger
statements of past results which use the Quadratic Congruences problem.

In order to achieve the desired lower bounds on the running time, we make
use of the Exponential Time Hypothesis (ETH) – a widely believed conjecture
stating that the 3-SAT problem cannot be solved in subexponentially time with
respect to the number of variables:

Conjecture 1 (ETH [12]). The 3-SAT problem cannot be solved in time less
than O(2δ3n3) for some constant δ3 > 0 where n3 is the number of variables in
the instance.

Note that we use the index 3 for all variables of the 3-SAT problem. Using
the ETH, plenty lower bounds for various problems are shown, for an overview
on the techniques and results see e.g. [6]. So far, the best algorithm runs in time
O(20.387n3), i. e., it follows that δ3 ≤ 0.387 [6].

In the following, we also need the Chinese Remainder Theorem (CRT) for
some of the proofs, which states the following:

Proposition 1 (CRT [14]). Let n1, . . . , nk be pairwise co-prime. Further, let
i1, . . . , ik be some integers. Then there exists integers x satisfying x ≡ ij mod nj

for all j. Further, any two solutions x1, x2 are congruent modulo
∏k

j=1 nj.

Summary of Results

– We give a new reduction from the 3-SAT problem to the Quadratic
Congruences problem which proves a stronger NP-hardness result: The

300 K. Jansen et al.

Quadratic Congruences problem remains NP-hard, even if the prime fac-
torization of β is given and each prime number greater than 2 occurs at most
once and the prime number 2 occurs four times. This does not follow from
the original proof. In contrast, the original proof generates each prime factor
at least O(n3 +m3) times, where m3 is the number of clauses in the formula.
Our reduction circumvents this necessity, yet neither introduces noteworthily
more nor larger prime factors. The proof is based on the original one. We
believe this result is of independent interest.

– Based on this new reduction, we show strong NP-hardness for the so-called
Non-Unique Remainder problem. In this algorithmic number theoretic
problem, we are given x1, . . . , xnNR , y1, . . . , ynNR , ζ ∈ N and pairwise coprime
numbers q1, . . . , qnNR . The question is to decide whether there exists a number
z ∈ Z>0 with z ≤ ζ satisfying z mod qi ∈ {xi, yi} for all i ∈ {1, 2, . . . , nNR}
simultaneously. In other words, either the residue xi or yi should be met
for each equation. This problem is a natural generalization of the Chinese
Remainder problem where xi = yi for all i. In that case, however, the prob-
lem can be solved using the Extended Euclidean algorithm. To the best of our
knowledge the Non-Unique Remainder problem has not been considered
in the literature so far.

– Finally, we show that the Non-Unique Remainder problem can be mod-
eled by a 2-stage stochastic ILP. Assuming the ETH, we can then conclude
a doubly exponential lower bound of 22

δ(s+t) |I|O(1) on the running time for
any algorithm solving 2-stage stochastic ILPs. The double exponential lower
bound even holds if r = 1 and Δ, ||b||∞, ||c||∞ ∈ O(1). This proves the suspi-
cion that 2-stage stochastic ILPs are significantly harder to solve than n-fold
ILPs with respect to the dimensions of the block matrices and Δ. Further-
more, it implies that the current state-of-the-art algorithms for solving 2-stage
stochastic ILPs is indeed (nearly) optimal.

Further Related Work. In recent years, there was significant progress in the
development of algorithms for n-fold ILPs and lower bounds on the other
hand. Assume the parameters as of the transpose of the 2-stage stochas-
tic constraint matrix, i. e., the blocks AT

i in the first few rows have dimen-
sion r × t and the blocks BT

i along the diagonal beneath admit a dimen-
sion of s × t. The best known algorithms to solve these ILPs have a running
time of 2O(rs2)(rsΔ)O(r2s+s2)(nt)1+o(1) [4] or respectively a running time of
(rsΔ)r2s+s2

L2(nt)1+o(1) [16] where L denotes the encoding length of the largest
number in the input. The best known lower bound is Δδn-fold(r+s)2 for some
δn-fold > 0 [8].

Despite their similarity, it seems that 2-stage stochastic ILPs are significantly
harder to solve than n-fold ILPs. Yet, no superexponential lower bound for the
running time of any algorithm solving the 2-stage ILP problem was shown.
There is a lower bound for a more general class of ILPs in [8] that contain
2-stage stochastic ILPs showing that the running time is double-exponential
parameterized by the topological height of the treedepth decomposition of the

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs 301

primal or dual graph. However, the topological height of 2-stage stochastic ILPs
is constant and thus no strong lower bound can be derived for this case.

If we relax the necessity of an integral solution, the 2-stage stochastic LP
problem becomes solvable in time 22ΔO(t3)

n log3(n) log(||u− �||∞) log(||c||∞) [2].
For the case of mixed integer linear programs there exists an algorithm solving

2-stage stochastic MILPs in time 2ΔΔtO(t2)

n log3(n) log(||u−�||∞) log(||c||∞) [2].
Both results rely on the fractionality of a solution, whose size is only dependent
on the parameters. This allows us to scale the problem such that it becomes an
ILP (as the solution has to be integral) and thus state-of-the-art algorithms for
2-stage stochastic ILPs can be applied.

There are also studies for a more general case called 4-Block ILPs where the
constraint matrix consists of non-zero entries in the first few columns, the first
few rows and block-wise along the diagonal. This may be seen as the combination
of n-fold and 2-stage stochastic ILPs. Only little is known about them: They are
in XP [10]. Further, a lower and upper bound on the Graver Basis elements
(inclusion-wise minimal kernel elements) of O(nrf(k,Δ)) was shown recently [3]
where r is the number of rows in the submatrix appearing repeatedly in the first
few rows and k denotes the sum of the remaining block dimensions.

Structure of this Chapter. Section 2 presents the stronger hardness result for the
Quadratic Congruences problem we derive by giving a new reduction from
the 3-SAT problem. Then, we show that the Quadratic Congruences prob-
lem can be modeled as a 2-stage stochastic ILP in Sect. 3. To do so, we introduce
a new problem called the Non-Unique Remainder problem as an intermediate
step during the reduction. Finally, in Sect. 4, we bring the reductions together
to prove the desired lower bound. This involves a construction which lowers the
absolute value of Δ at the cost of slightly larger block dimensions.

Due to space restrictions, the correctness proofs including the running time
analysis of the reductions are omitted as well as the proofs of Lemma 1 and
Theorem 2. Instead, we give an idea of the correctness before the corresponding
theorems. For all details, we refer to the full version of this paper [15], available
at http://arxiv.org/abs/2008.12928.

2 Advanced Hardness for Quadratic Congruences

This section proves that every instance of the 3-SAT problem can be trans-
formed into an equivalent instance of the Quadratic Congruences problem
in polynomial time. Recall that the Quadratic Congruences problem asks
whether there exists a number z ≤ γ such that z2 ≡ α mod β holds. This problem
was proven to be NP-hard by Manders and Adleman [23] showing a reduction
from 3-SAT. This hardness even persists when the prime factorization of β is
given [23]. However, we aim for an even stronger statement: The Quadratic
Congruences problem remains NP-hard even if the prime factorization of β is
given and each prime number greater than 2 occurs at most once and the prime

http://arxiv.org/abs/2008.12928

302 K. Jansen et al.

number 2 occurs four times. This does not follow from the original hardness
proof. In contrast, if n3 is the number of variables and m3 the number of clauses
in the 3-SAT formula then β admits a prime factorization with O(n3 + m3)
different prime numbers each with a multiplicity of at least O(n3 + m3). Even
though our new reduction lowers the occurrence of each prime factor greatly, we
neither introduces noteworthily more nor larger prime factors.

While the structure of our proof resembles that of the original one from [23],
adapting it to our needs requires various new observations concerning the
behaviour of the newly generated prime factors and the functions we intro-
duce. The original proof heavily depends on the numbers being high powers
of the prime factors whereas we employ careful combinations of (new) prime
factors. This requires us to introduce other number theoretical results into the
arguments.

In the following, before presenting the reduction and showing its correctness
formally, we want to give an idea of the hardness proof. The reduction may seem
non-intuitive at first as it only shows the final result of equivalent transformations
between various problems until we reach the Quadratic Congruences one.
In the following, we list all these problems in order of their appearance whose
strong NP-hardness is shown implicitly along the way. Afterwards, we give short
ideas of their respective equivalence. Note that not all variables are declared at
this point, but also not necessary to understand the proof sketch.

– (3-SAT) Is there a truth assignment η that satisfies all clauses σk of the
3-SAT formula Φ simultaneously?

– (P2) Are there values yk ∈ {0, 1, 2, 3} and a truth assignment η such that
0 = yk − ∑

xi∈σk
η(xi) − ∑

x̄i∈σk
(1 − η(xi)) + 1 for all k?

– (P3) Are there values αj ∈ {−1,+1} such that
∑ν

j=0 θjαj ≡ τ mod 23 ·
p∗ ∏m′

i=1 pi for some θj and τ specified in dependence on the formula later on
and some prime numbers pi and p∗?

– (P5) Is there an x ∈ Z satisfying:
0 ≤ |x| ≤ H,x ≡ τ mod 23 · p∗ ∏m′

i=1 pi, (H + x)(H − x) ≡ 0 mod K for some
H dependent on the θj and K being a product of prime numbers?

– (P6) Is there an x ∈ Z satisfying:
0 ≤ |x| ≤ H, (τ−x)(τ+x) ≡ 0 mod 24·p∗ ∏m′

i=1 pi, (H+x)(H−x) ≡ 0 mod K?
– (Quadratic Congruences) Is there a number x ≤ H such that (24 · p∗ ·∏m′

i=1 pi + K)x2 ≡ Kτ2 + 24 · p∗ · ∏m′

i=1 piH
2 mod 24 · p∗ · ∏m′

i=1 pi · K?

The 3-SAT problem is transformed to Problem (P2) by using the straight-
forward interpretation of truth values as numbers 0 and 1 and the satisfiability of
a clause as the sum of its literals being larger zero. Introducing slack variables yk

yields the above form.
Multiplying each equation of (P2) with exponentially growing factors and

then forming their sum preserves the equivalence of these systems. Introducing
some modulo consisting of unique prime factors larger than the outcome of
the largest possible sum obviously does not influence the system. Replacing

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs 303

the variables η(xi) and yk by variables αj with domain {−1,+1}, re-arranging
the term and defining parts of the formula as the variables θj and τ yields
Problem (P3).

We then introduce some Problem (P4) to integrate the condition x ≤ H.
The problem asks whether there exists some x ∈ Z such that 0 ≤ |x| ≤ H and
(H + x)(H − x) ≡ 0 mod K holds. By showing that each solution to the system
(P4) is of form

∑ν
j=0 θjαj we can combine (P3) and (P4) yielding (P5).

Using some observations about the form of solutions for the second constraint
of Problem (P5) we can re-formulate it as Problem (P6).

Next, we use the fact that p∗ ∏m′

i=1 pi and K are co-prime per definition and
thus we can combine the second and third equation to one equivalent one. To
do so, we take each left-hand side of the second and third equation and multiply
the modulo of the respective other equation and form their overall sum yielding
24 ·p∗ ·∏m′

i=1 pi(H2 −x2)+K(τ2 −x2) ≡ 0 mod 24 ·p∗ ·∏m′

i=1 pi ·K. Using a little
re-arranging this finally yields the desired Quadratic Congruences problem.

Before we finally present the reduction, we first present a lemma about the
size of the product of prime numbers, which comes in handy in the respective
theorem. Due to space restrictions, the correctness proofs of the following lemma
and theorem are omitted. They can be found in the full version [15].

Lemma 1. Denote by qi the ith prime number. The product of the first k prime
numbers

∏k
i=1 qi is bounded by 22k log(k) for all k ≥ 2.

Theorem 1. The Quadratic Congruences problem is NP-hard even if the
prime factorization of β is given and each prime factor greater than 2 occurs at
most once and the prime factor 2 occurs 4 times.

Proof. Transformation: We show a reduction from the well-known NP-hard
problem 3-SAT where we are given a 3-SAT formula Φ with n3 variables and m3

clauses. First, eliminate duplicate clauses from Φ and those where some variable
xi and its negation x̄i appear together. Call the resulting formula Φ′, the num-
ber of occurring variables n′ and denote by m′ the number of appearing clauses
respectively. Let Σ = (σ1, . . . , σm′) be some enumeration of the clauses. Denote
by p0, . . . , p2m′ the first 2m′ + 1 prime numbers. Compute

τΦ′ = −
m′∑
i=1

i∏
j=1

pj .

Further, compute for each i ∈ 1, 2, . . . , n′:

f+
i =

∑
xi∈σj

j∏
k=1

pk and f−
i =

∑
x̄i∈σj

j∏
k=1

pk.

304 K. Jansen et al.

Set ν = 2m′ +n′. Compute the coefficients cj for all j = 0, 1, . . . , ν as follows:
Set c0 = 0. For j = 1, . . . , 2m′ set

cj = −1
2

j∏
i=1

pi for j = 2k − 1 and cj = −
j∏

i=1

pi for j = 2k.

Compute the remaining ones for j = 1, . . . n′ as c2m′+j = 1/2 · (f+
j − f−

j).

Further, set τ = τΦ′ +
∑ν

j=0 cj +
∑n′

i=1 f−
i .

Denote by q1, . . . , qν2+2ν+1 the first ν2 + 2ν + 1 prime numbers. Let
p0,0, p0,1, . . . , p0,ν , p1,0, . . . , pν,ν be the first (ν +1)2 = ν2+2ν +1 prime numbers
greater than (4(ν + 1)23

∏ν2+2ν+1
i=1 qi)1/((ν2+2ν+1) log(ν2+2ν+1)) and greater than

p2m′ . Define p∗ as the (ν2 + 2ν + 2m′ + 13)th prime number.
Determine the parameters θj for j = 0, 1, . . . , ν as the least θj satisfying:

θj ≡ cj mod 23 · p∗
m′∏
i=1

pi, θj ≡ 0 mod
ν∏

i=0,i �=j

ν∏
k=0

pi,k, θj �≡ 0 mod pj,1.

Set the following parameters:

H =
ν∑

j=0

θj and K =
ν∏

i=0

ν∏
k=0

pi,j .

Finally, set

α = (24 · p∗
m′∏
i=1

pi + K)−1(Kτ2 + 24 · p∗
m′∏
i=1

pi · H2), β = 24p∗
m′∏
i=1

pi · K, γ = H.

where (24 · p∗ ∏m′

i=1 pi + K)−1 is the inverse of (24 · p∗ ∏m′

i=1 pi + K) mod 24 ·
p∗ ∏m′

i=1 pi · K.
��

Now we proved that the Quadratic Congruences problem is NP-hard
even in the restricted case where all prime factors in β only appear at most once
(except 2). Denote by B = bβ1

1 , . . . , b
βnQC
nQC the prime factorization of β where

b1, . . . , bnQC denotes the different prime factors of β and βi the occurrence of
bi. To apply the ETH, we also have to estimate the dimensions of the gener-
ated instance. We only use the first O((n3 + m3)2) prime numbers, thus their
size can be bounded by O((n3 + m3)2 log(n3 + m3)). The numbers α, β, γ are
products of these prime numbers. As the product of the first k prime num-
bers is bounded by 22k log(k), see Lemma 1, we can thus bound these numbers
by 2O((n3+m3)

2 log(n3+m3)). This yields the following theorem, for the full proof
see [15]:

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs 305

Theorem 2. An instance of the 3-SAT problem with n3 variables and m3

clauses is reducible to an instance of the Quadratic Congruences prob-
lem in polynomial time with the properties that α, β, γ ∈ 2O((n3+m3)

2 log(n3+m3)),
nQC ∈ O((n3 + m3)2), maxi{bi} ∈ O((n3 + m3)2 log(n3 + m3)), and each prime
factor in β occurs at most once except the prime factor 2 which occurs four
times.

3 Reduction from the Quadratic Congruences Problem

This sections presents the reduction from the Quadratic Congruences prob-
lem to the 2-stage ILP problem. First, we present a transformation of an
instance of the Quadratic Congruences problem to an instance of the Non-
Unique Remainder problem. This problem was not considered so far and serves
as an intermediate step in this chapter. However, it might be of independent
interest as it generalizes the prominent Chinese Remainder theorem. Secondly,
we show how an instance of the Non-Unique Remainder problem can be
modeled as a 2-stage stochastic ILP.

Recall that in the Non-Unique Remainder problem, we are given num-
bers x1, . . . , xnNR , y1, . . . , ynNR , q1, . . . , qnNR , ζ ∈ N where the qis are pairwise
co-prime. The question is to decide whether there exists a natural number z sat-
isfying z mod qi ∈ {xi, yi} simultaniously for all i ∈ {1, 2, . . . , nNR} and which
is smaller or equal to ζ. In other words, we either should met the residue xi or
yi. Thus, we can re-write the equation as z ≡ xi mod qi or z ≡ yi mod qi for
all i. Indeed, this problem becomes easy if xi = yi for all i, i. e., we know the
remainder we want to satisfy for each equation [25]: First, compute si and ri

with ri ·qi +si ·
∏nNR

j=1,j �=i qj = 1 for all i using the Extended Euclidean algorithm.
Now it holds that si · ∏nNR

j=1,j �=i qj ≡ 1 mod qi as qi and
∏nNR

j=1,j �=i qj are coprime,
and si · ∏nNR

j=1,j �=i qj ≡ 0 mod qj for j �= i. Thus, the smallest solution corre-
sponds to z =

∑nNR
i=1 xi · si · ∏nNR

j=1,j �=i qj due to the Chinese Remainder theorem
[25]. Comparing z to the bound ζ finally yields the answer. Note that if nNR is
constant, we can solve the problem by testing all possible vectors (v1, . . . , vnNR)
with vi ∈ {xi, yi} and then use the procedure explained above.

The idea of the following reduction is that we first split up the equation of
the Quadratic Congruences problem for each prime factor of β yielding nNR

many equations. The equivalence is preserved by that. Then we eliminate the
square by defining the remainders xi and yi in a way that they can only be met
if the number z is a square root itself and satisfies z2 ≡ α mod β. Due to space
restrictions, the correctness proof is omitted and can be found in [15].

Theorem 3. The Quadratic Congruences problem is reducible to the Non-
Unique Remainder problem in polynomial time with the properties that nNR ∈
O(nQC), maxi∈{1,...,nNR}{qi, xi, yi} = O(maxj∈{1,...,nQC}{b

βj

j }, and ζ ∈ O(γ).

Proof. Transformation: Set q1 = bβ1
1 , . . . , qnNR = b

βQC
nQC and ζ = γ where βi

denotes the occurrence of the prime factor bi in the prime factorization of β.

306 K. Jansen et al.

Compute αi ≡ α mod qi. Set x2
i = αi if there exists such an xi ∈ Zqi

. Further,
compute yi = −xi + qi. If there is no such number xi and thus yi, produce a
trivial no-instance.

Instance Size: The numbers we generate in the reduction equal the prime num-
bers of the Quadratic Congruences problem including their occurrence.
Hence, it holds that maxi∈{1,...,nNR}{qi} = O(maxj∈{1,...,nQC}{b

βj

j }. Due to the
modulo, this value also bounds xi and yi. The upper bound on a solution equals
the ones from the instance of the Quadratic Congruences problem, i. e.,
ζ ∈ O(γ), and nNR = nQC holds. ��

Finally, we reduce the Non-Unique Remainder problem to the 2-stage
ILP problem. Note that the considered 2-stage ILP problem is a decision
problem. Thus, we only seek to determine whether there exists a feasible solution.
We neither optimize a solution nor are we interested in the vector itself.

The main idea is that we can re-write each equation z mod qi ∈ {xi, yi} as
the system −z +λ1

i qi +λ2
i xi +λ3

i yi = 0, λ2
i +λ3

i = 1 and λ1
i , λ

2
i , λ

3
i ∈ N. In other

words, z contains arbitrary many often qi and exactly once xi or yi. Finding a
solution thus corresponds to finding the number z and the corresponding values
for the λj

i s. It is easy to see that we have two equations (and lower bounds)
for each z mod qi ∈ {xi, yi}, only one variable z occurring in all equations and
the remaining ones are exclusive for each i. This directly translates to an 2-
stage stochastic ILP, which we present in the following reduction. Due to space
restrictions, the correctness proof is omitted and can be found in [15].

Theorem 4. The Non-Unique Remainder problem is reducible to the 2-
stage ILP problem in polynomial time with the properties that n ∈ O(nNR),
r, s, t, ||c||∞, ||b||∞, ||�||∞ ∈ O(1), ||u||∞ ∈ O(ζ), and Δ ∈ O(maxi{qi}).

Proof. Transformation: Having the instance for the Non-Unique Remainder
problem at hand we construct our ILP as follows with n = nNR:

A · x =

⎛
⎜⎜⎜⎜⎜⎝

−1 q1 x1 y1 0 . . . 0 0 . . . 0
0 0 1 1 0 . . . 0 0 . . . 0
...

...
. .

−1 0 . . . 0 0 . . . 0 qn xn yn

0 0 . . . 0 0 . . . 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

· x = b =

⎛
⎜⎜⎜⎜⎜⎝

0
1
...
0
1

⎞
⎟⎟⎟⎟⎟⎠

.

All variables get a lower bound of 0 and an upper bound of ζ. We can set the
objective function arbitrarily as we are just searching for a feasible solution,
hence we set it to c = (0, 0, . . . , 0)�.

Instance Size: Due to our construction, it holds that t = 2, r = 1, s = 3. The
number n of repeated blocks equals the number nNR of equations in the instance
of the Non-Unique Remainder problem. The largest entry Δ can be bounded
by maxi{qi}. The lower and upper bounds are at most ||u||∞ = O(ζ), ||�||∞ =
O(1). The objective function c is set to zero and is thus of constant size. The
largest value in the right-hand side is ||b||∞ = 1. ��

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs 307

4 Runtime Bounds for 2-Stage Stochastic ILPs Under
ETH

This sections presents the proof that the double exponential running time in
the current state-of-the-art algorithms is nearly tight assuming the Exponential
Time Hypothesis (ETH). To do so, we make use of the reductions above showing
that we can transform an instance of the 3-SAT problem to an instance of the
2-stage ILP problem.

Corollary 1. The 2-stage ILP problem cannot be solved in time less than
2δ

√
n for some δ > 0 assuming ETH.

Proof. Suppose the opposite. That is, there is an algorithm solving the 2-stage
ILP problem in time less than 2δ

√
n. Let an instance of the 3-SAT problem with

n3 variables and m3 clauses be given. Due to the Sparsification lemma, we may
assume that m3 ∈ O(n3) [13]. The Sparsification lemma states that any 3-SAT
formula can be replaced by subexponentially many 3-SAT formulas, each with
a linear number of clauses with respect to the number of variables. The original
formula is satisfiable if at least one of the new formulas is. This yields that if we
cannot decide a 3-SAT problem in subexponential time, we can also not do so
for a 3-SAT problem where m3 ∈ O(n3).

We can reduce such an instance to an instance of the Quadratic Con-
gruences problem in polynomial time regarding n3 such that nQC ∈ O(n2

3),
maxi{bi} ∈ O(n2

3 log(n3)), α, β, γ = 2O(n2
3 log(n3)), see Theorems 1 and 2.

Next, we reduce this instance to an instance of the Non-Unique Remain-
der problem. Using Theorem 3, this yields the parameter sizes nNR ∈ O(n2

3),
maxi∈{1,...,nNR}{qi, xi, yi} = O(n2

3 log(n3)), and finally ζ ∈ 2O(n2
3 log(n3)). Note

that all prime numbers greater than 2 appear at most once in the prime factor-
ization of β and 2 appears 4 times. Thus, the largest qi, which corresponds to
maxi{bβi

i } equals the largest prime number in the Quadratic Congruences
problem: The largest prime number is at least the (ν2 + 2ν + 2m′ + 13) ≥ 13th
prime number by a rough estimation. The 13th prime number is 41 and thus
larger than 24 = 16.

Finally, we reduce that instance to an instance of the 2-stage ILP problem
with parameters r, s, t, ||c||∞, ||b||∞, ||�||∞ ∈ O(1), ||u||∞ ∈ 2O(n2

3 log(n3)), n ∈
O(n2

3), and Δ ∈ O(n2
3 log(n3)), see Theorem 4.

Hence, if there is an algorithm solving the 2-stage ILP problem in time less
than 2δ

√
n this would result in the 3-SAT problem to be solved in time less than

2δ
√

n = 2δ
√

C1n2
3 = 2δ(C2n3)) for some constants C1, C2. Setting δ3 ≤ δ/C2, this

would violate the ETH. ��
To prove our main result, we have to reduce the size of the coefficients in the

constraint matrix. To do so, we encode large coefficients into submatrices only
extending the matrix dimensions slightly. A similar approach is used for example
in [18] to prove a lower bound for the size of inclusion minimal kern-elements of
2-stage stochastic ILPs or in [19] to decrease the value of Δ in the matrices.

308 K. Jansen et al.

Theorem 5. The 2-stage ILP problem cannot be solved in time less than
22

δ(s+t) |I|O(1) for some constant δ > 0, even if r = 1, Δ, ||b||∞, ||c||∞, ||b||∞ ∈
O(1), assuming ETH. Here |I| denotes the encoding length of the total input.

Proof. First, we show that we can reduce the size of Δ to O(1) by altering the
ILP. We do so by encoding large coefficients with base 2, which comes at the
cost of enlarged dimensions of the constraint matrix. Let enc(x) be the encoding
of a number x with base 2. Further, let enci(x) be the ith number of enc(x).
Finally, enc0(x) denotes the last significant number of the encoding. Hence, the
encoding of a number x is enc(x) = enc0(x)enc1(x) . . . enc
log(Δ)�(x) and x can
be reconstructed by x =

∑
log(Δ)�
i=0 enci(x) · 2i. Let a matrix E be defined as

E =

⎛
⎜⎜⎜⎝

2 −1 0 . . . 0
0 2 −1 0 . . . 0
...

.
0 . . . 0 2 −1

⎞
⎟⎟⎟⎠ .

We re-write the constraint matrix as follows: For each coefficient a > 1, we
insert its encoding enc(a) and beneath we place the matrix E (including zero
rows, such that the E matrices of a block do not collide). We have to fix the
dimensions for the first row in the constraint matrix, the columns without great
coefficients and the right-hand side b by filling the matrix at the corresponding
positions with zeros. The independent blocks consisting of enc(a) and the matrix
E beneath correctly encodes the number a > 1, i. e., it preserves the solution
space: Let xa be the number in the solution corresponding to the column with
entry a of the original instance. The solution for the altered column (i. e., the
sub-matrix) is (xa · 20, xa · 21, . . . , xa · 2
log(Δ)�). The additional factor of 2 for
each subsequent entry is due to the diagonal of E. It is easy to see that a · xa =∑
log(Δ)�

i=0 enci(a) · xa · 2i as we can extract xa on the right-hand side and solely
the encoding of a remains. Thus, the solutions of the original matrix and the
altered one transfer to each other.

Regarding the dimensions, each coefficient a > 1 is replaced by a
(O(log(Δ)) × O(log(Δ))) matrix. Thus, the dimension expands to t′ = t ·
O(log(Δ)) = O(log(Δ)), s′ = s · O(log(Δ)) = O(log(Δ)), while r and n stay
the same. Regarding the bounds, the lower bound for all new variables is also
zero. For the upper bounds, we allow an additional factor of 2i for the ith value of
the encoding. Thus, ||u′||∞ = 2
log(Δ)�||u||∞. We get that the largest coefficient
is bounded by Δ′ = O(1). The right-hand side b enlarges to b′ with O(n log(Δ))
entries.

Theorem 1 shows a transformation of an instance of the 3-SAT prob-
lem with n3 variables and m3 clauses to a 2-stage stochastic ILP with
parameters r, s, t, ||c||∞, ||b||∞, ||�||∞ ∈ O(1), ||u||∞ ∈ 2O(n2

3 log(n3)), n ∈
O(n2

3), and Δ ∈ O(n2
3 log(n3)). Further, as explained above, we can trans-

form this ILP to an equivalent one where Δ′ = O(1), t′ = O(log(Δ)) =
O(log(n2

3 log(n3))) = O(log(n3)), s′ = O(log(Δ)) = O(log(n2
3 log(n3))) =

O(log(n3)), b′ ∈ Z
O(n2

3 log(n3)), and finally ||u′||∞ = 2
log(Δ)�||u||∞ =

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs 309

2
log(n2
3 log(n3))�2O(n2

3 log(n3)) = 2O(n2
3 log(n3)), while r and n stay the same.

The encoding length |I| is then given by |I| = (nt′(r + ns′)) log(Δ′) + (r +
ns′) log(||�||∞) + (r + ns′) log(||u′||∞) + nt′ log(||b′||∞) + (r + ns′) log(||c||∞) =
2O(n2

3).
Hence, if there is an algorithm solving the 2-stage ILP problem in time

less than 22
δ(s+t) |I|O(1) this would result in the 3-SAT problem to be solved in

time less than 22
δ(s+t) |I|O(1) = 22

δ(C1 log(n3)+C2 log(n3))
2n

O(1)
3 = 22

δC3 log(n3)
2n

O(1)
3 =

2n
δ·C3
3 2n

O(1)
3 = 2n

δ·C4
3 for some constants C1, C2, C3, C4. Setting δ = δ′/C4, we

get 2n
δC4
3 = 2nδ′

3 . As it holds for sufficient large x and ε < 1 that xε < εx, it
follows that 2nδ′

3 < 2δ′n3 . This violates the ETH. Note that this result even holds
if r = 1, Δ, ||c||∞, ||b||∞, ||�||∞ ∈ O(1) as constructed by our reductions. ��

References

1. Albareda-Sambola, M., van der Vlerk, M.H., Fernández, E.: Exact solutions to a
class of stochastic generalized assignment problems. Eur. J. Oper. Res. 173(2),
465–487 (2006)

2. Brand, C., Koutecký, M., Ordyniak, S.: Parameterized algorithms for MILPs with
small treedepth. CoRR, abs/1912.03501 (2019)

3. Chen, L., Koutecký, M., Xu, L., Shi, W.: New bounds on augmenting steps of
block-structured integer programs. In ESA, vol. 173 of LIPIcs, pp. 33:1–33:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

4. Cslovjecsek, J., Eisenbrand, F., Hunkenschröder, C., Weismantel, R., Rohwedder,
L.: Block-structured integer and linear programming in strongly polynomial and
near linear time. CoRR, abs/2002.07745v2 (2020)

5. Cslovjecsek, J., Eisenbrand, F., Pilipczuk, M., Venzin, M., Weismantel, R.: Efficient
sequential and parallel algorithms for multistage stochastic integer programming
using proximity. CoRR, abs/2012.11742 (2020)

6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

7. Dempster, M.A.H., Fisher, M.L., Jansen, L., Lageweg, B.J., Lenstra, J.K., Kan,
A.H.G.R.: Analysis of heuristics for stochastic programming: results for hierarchical
scheduling problems. Math. Oper. Res. 8(4), 525–537 (1983)

8. Eisenbrand, F., Hunkenschröder, C., Klein, K.-M., Koutecký, M., Levin, A., Onn,
S.: An algorithmic theory of integer programming. CoRR, abs/1904.01361 (2019)

9. Gavenčak, T., Koutecký, M., Knop, D.: Integer programming in parameterized
complexity: five miniatures. Discrete Optim., 100596 (2020)

10. Hemmecke, R., Köppe, M., Weismantel, R.: A polynomial-time algorithm for opti-
mizing over N -Fold 4-block decomposable integer programs. In: Eisenbrand, F.,
Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 219–229. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-13036-6 17

11. Hemmecke, R., Schultz, R.: Decomposition of test sets in stochastic integer pro-
gramming. Math. Program. 94(2–3), 323–341 (2003)

12. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

13. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-13036-6_17

310 K. Jansen et al.

14. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. GTM,
vol. 84. Springer, New York (1990). https://doi.org/10.1007/978-1-4757-2103-4

15. Jansen, K., Klein, K.-M., Lassota, A.: The double exponential runtime is tight for
2-stage stochastic ILPs (2020). http://arxiv.org/abs/2008.12928arXiv:2008.12928

16. Jansen, K., Lassota, A., Rohwedder, L.: Near-linear time algorithm for n-fold ILPs
via color coding. In: ICALP, vol. 132 of LIPIcs, pp. 75:1–75:13 (2019)

17. Kall, P., Wallace, S.W.: Stochastic Programming. Springer (1994). https://doi.
org/10.1007/978-3-642-88272-2.pdf

18. Klein, K.-M.: About the complexity of two-stage stochastic IPs. In: Bienstock, D.,
Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 252–265. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45771-6 20

19. Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer
linear programming with few constraints. In: STACS, vol. 126 of LIPIcs, pp. 44:1–
44:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

20. Küçükyavuz, S., Sen, S.: An introduction to two-stage stochastic mixed-integer
programming. In: Leading Developments from INFORMS Communities, pp. 1–27.
INFORMS (2017)

21. Laporte, G., Louveaux, F.V., Mercure, H.: A priori optimization of the probabilistic
traveling salesman problem. Oper. Res. 42(3), 543–549 (1994)

22. De Loera, J.A., Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer program-
ming. Discret. Optim. 5(2), 231–241 (2008)

23. Manders, K.L., Adleman, L.M.: NP-complete decision problems for binary quadrat-
ics. J. Comput. Syst. Sci. 16(2), 168–184 (1978)

24. Schultz, R., Stougie, L., Van Der Vlerk, M.H.: Two-stage stochastic integer pro-
gramming: a survey. Stat. Neerl. 50(3), 404–416 (1996)

25. Wagon, S.: Mathematica in action. Springer Science and Business Media (1999)

https://doi.org/10.1007/978-1-4757-2103-4
http://arxiv.org/abs/2008.12928
https://doi.org/10.1007/978-3-642-88272-2.pdf
https://doi.org/10.1007/978-3-642-88272-2.pdf
https://doi.org/10.1007/978-3-030-45771-6_20

Fast Quantum Subroutines
for the Simplex Method

Giacomo Nannicini(B)

IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
nannicini@us.ibm.com

Abstract. We propose quantum subroutines for the simplex method
that avoid classical computation of the basis inverse. For an m × n con-
straint matrix with at most dc nonzero elements per column, at most d
nonzero elements per column or row of the basis, basis condition num-
ber κ, and optimality tolerance ε, we show that pricing can be per-
formed in Õ(1

ε
κd

√
n(dcn + dm)) time, where the Õ notation hides poly-

logarithmic factors. If the ratio n/m is larger than a certain thresh-
old, the running time of the quantum subroutine can be reduced to
Õ(1

ε
κd1.5

√
dcn

√
m). The steepest edge pivoting rule also admits a quan-

tum implementation, increasing the running time by a factor κ2. Classi-
cally, pricing requires O(d0.7

c m1.9 +m2+o(1) +dcn) time in the worst case
using the fastest known algorithm for sparse matrix multiplication, and
O(d0.7

c m1.9 + m2+o(1) + m2n) with steepest edge. Furthermore, we show
that the ratio test can be performed in Õ(t

δ
κd2m1.5) time, where t, δ

determine a feasibility tolerance; classically, this requires O(m2) time
in the worst case. For well-conditioned sparse problems the quantum
subroutines scale better in m and n, and may therefore have a worst-
case asymptotic advantage. An important feature of our paper is that
this asymptotic speedup does not depend on the data being available
in some “quantum form”: the input of our quantum subroutines is the
natural classical description of the problem, and the output is the index
of the variables that should leave or enter the basis.

1 Introduction

The simplex method is one of the most impactful algorithms of the past century;
to this day, it is widely used in a variety of applications. This paper studies some
opportunities for quantum computers to accelerate the simplex method.

The use of quantum computers for optimization is a central research question
that has attracted a significant amount of attention. Thanks to a quadratic
speedup for unstructured search problems and [19] exponential speedups in the
solution of linear systems [10,20], it seems natural to try to translate those
speedups into faster optimization algorithms, since linear systems appear as a
building block in many optimization procedures. However, few results in this
direction are known. A possible reason for the paucity of results is the difficulty
encountered when applying a quantum algorithm to a problem whose data is
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 311–325, 2021.
https://doi.org/10.1007/978-3-030-73879-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_22

312 G. Nannicini

classically described, and a classical description of the solution is required. We
provide a simple example to illustrate this difficulty.

Suppose we want to solve the linear system Ax = b, where A is an m × m
invertible matrix with at most d nonzero elements per column or row. Using
the fastest known quantum linear systems algorithm [10], the gate complexity of
this operation is Õ(dκ max{TA, Tb}), where TA, Tb indicate the gate complexity
necessary to describe A, b, and κ is the condition number of A. (We measure
the running time for quantum subroutines as the number of basic gates, as is
standard in the literature). Notice that m does not appear in the running time,
as the dependence is polylogarithmic. We need Õ(dm) gates to implement TA

for sparse A in the gate model, as will be discussed in the following; and Õ(m)
gates are necessary to implement Tb. This is natural since A has O(dm) nonzero
elements and b has O(m) nonzero elements. To extract the solution x = A−1b
with precision δ we can use the fast tomography algorithm of [21], yielding a total
running time Õ(1

δ2 κd2m2). This is slower than a classical LU decomposition of
A, which runs in time O(d0.7m1.9 + m2+o(1)) [28]. Thus, naive application of
quantum linear system algorithms (QLSAs) does not give any advantage.

Despite the aforementioned difficulties, a few fast quantum optimization algo-
rithms exist—not necessarily based on QLSAs; examples are the SDP algorithms
of [3,6,21] and the LP algorithm of [2]. We provide a more detailed literature
review in Sect. 2. Existing quantum optimization algorithms have one of these
two assumptions: (i) that having quantum input/output is acceptable, ignoring
the cost of a classical translation, or (ii) that qRAM, a form of quantum storage
whose physical realizability is unclear, is available. qRAM allows data prepara-
tion subroutines that are exponentially faster than what would be required under
the standard gate model. Both assumptions have the merit of leading to inter-
esting algorithmic developments, but it is still an open question to find practical
situations in which they are satisfied, particularly in the context of traditional
optimization applications. We remark that the assumptions can be dropped and
the algorithms can be implemented in the standard gate model, but the running
time increases significantly. In this paper we propose quantum subroutines that
may yield asymptotic speedup even without these two assumptions.

Our Results. For brevity, from now on we assume that the reader is familiar with
standard linear optimization terminology; we refer to [4] for a comprehensive
treatment of LPs. The simplex method aims to solve min c�x, s.t.: Ax = b, x ≥ 0,
where A ∈ Rm×n with at most dc nonzero elements per column. It keeps a basis,
i.e., a set of linearly independent columns of A, and repeatedly moves to a
different basis that defines a solution with better objective function value. As
is common in the literature, we use the term “basis” to refer to both the set
of columns, and the corresponding submatrix of A, depending on context. We
denote by B the set of basic columns, N the set of nonbasic columns, with
corresponding submatrices AB , AN . The maximum number of nonzero elements
in any column or row of the basis submatrix is denoted d. The basis change
(called a pivot) is performed by determining a new column that should enter the
basis, and removing one column from the current basis. Assessing which columns

Fast Quantum Subroutines for the Simplex Method 313

can enter the basis is called pricing, and it is asymptotically the most expensive
step: it requires computing the basis inverse and looping over all the columns
in the worst case, for a total of O(d0.7

c m1.9 + m2+o(1) + dcn) operations using
the matrix multiplication algorithm of [28]. If the basis inverse is known, i.e.,
updated from a previous iteration, the worst-case running time is O(m2 + dcn).
With the steepest edge pivoting rule, that can achieve better performance on
real-world problems by reducing the number of required iterations [15], the term
dcn in the two running time expressions above increases to m2n.1

In the following, we denote by TLS(L,R, ε) the running time of a QLSA on
the linear system Lx = r with precision ε, where r is any column of R. We use
this notation since we frequently use a QLSA on a superposition of r.h.s. vectors,
and the cost of the oracle that prepares the r.h.s. must account for the ability
to prepare such superposition.

We show that we can apply Grover search to choose an entering column,
so that the running time scales as O(

√
n) rather than O(n). To apply Grover

search we need a quantum oracle that determines if a column is eligible to enter
the basis, i.e., if it has negative reduced cost. We propose a construction for
this oracle using a QLSA, several gadgets to make state amplitudes interfere
in a certain way, and amplitude estimation [7]. The construction avoids clas-
sical computation of the basis inverse. The overall running time of the oracle
is Õ(1ε TLS(AB , AN , ε

2)), where ε is the precision for the reduced costs (i.e., the
optimality tolerance). Using the QLSA of [10], in the circuit model and with-
out taking advantage of the structure of A besides sparsity, this gives a total
running time of Õ(1ε κd

√
n(dcn + dm)). If the ratio n/m is large, we can find

a better tradeoff between the Grover speedup and the data preparation sub-
routines, and improve the running time of the quantum pricing algorithm to
Õ(1ε κd1.5

√
dcn

√
m). We can also apply the steepest edge pivoting rule increas-

ing the running time by a factor κ2. We summarize this below.

Theorem 1. There exist quantum subroutines to identify if a basis is
optimal, or determine a column with negative reduced cost, with running
time Õ(1ε

√
nTLS(AB , AN , ε

2)). In the gate model without qRAM, this is
Õ(1ε κd

√
n(dcn + dm)), which can be reduced to Õ(1ε κd1.5

√
dcn

√
m) if the ratio

n/m is larger than 2 d
dc
. If qRAM to store A is available, the running time is

Õ(1ε κ
√

mn). With the steepest edge pivoting rule, the running time of the sub-
routine to determine a column entering the basis increases by a factor κ2.

The regime with large n/m includes many natural LP formulations; e.g., the
LP relaxations of cutting stock problems, vehicle routing problems, or any other
formulation that is generally solved by column generation [24]. The running
time of the quantum subroutines depends explicitly on the condition number
of the basis and the precision of reduced costs ε is fixed, while with classical
Gaussian elimination κ is not explicit, but the ε obtained would depend on
1 In practical implementations of the simplex method, steepest edge is typically used

only for dual simplex algorithms, due to its high computational cost; an approximate
variant, with more efficient updates, is used in primal simplex instead.

314 G. Nannicini

it. If A is structured, the quantum running time can decrease significantly: for
example, if A differs from the assignment problem constraint matrix only for
a polylogarithmic number of elements, then its description in the sparse oracle
access model used in this paper requires time Õ(1), rather than Õ(dcn). Our
running time analysis assumes that the matrix is sparse but the sparsity pattern
is unstructured.

If pricing is performed via our quantum subroutine, we obtain the index of
a column that has negative reduced cost with arbitrarily high probability. To
determine which column should leave the basis, we have to perform the ratio
test. Using techniques similar to those used for the pricing step, we can identify
the column that leaves the basis in time Õ(t

δ κd2m1.5), where δ and t are precision
parameters of this step. In particular, t determines how well we approximate the
minimum of the ratio test performed by the classical algorithm (i.e., the relative
error is 2t+1

2t−1 −1; there is also an absolute error controlled by t because attaining
a purely relative error bound would require infinite precision). Classically, the
ratio test requires time O(m2) in the worst case, because the basis inverse could
be dense even if the basis is sparse. We summarize this result below.

Theorem 2. There exists a quantum subroutine to identify if a nonbasic column
proves unboundedness of the LP in time Õ(

√
m
δ TLS(AB , AB , δ)). There also exists

a quantum subroutine to perform the ratio test in time Õ(t
√

m
δ TLS(AB , AB , δ)),

returning an approximate minimizer of the ratio test with relative error 2t+1
2t−1 −1

and absolute error proportional to 2
2t−1 . In the gate model without qRAM, the

running times are respectively Õ(1δ κd2m1.5) and Õ(t
δ κd2m1.5). If qRAM to store

A and b is available, the running times are respectively Õ(1δ κm) and Õ(t
δ κm).

It is known that for most practical LPs the maximum number of nonzeroes
in a column is essentially constant; for example, on the entire benchmark set
MIPLIB2010, less than 1% of the columns have more than 200 nonzeroes. The
number of nonzeroes per row of the basis is also small: on MIPLIB2010, looking
at the optimal bases of the LP relaxations, less than 0.01% of the rows have
more than 50 nonzeroes. As m,n increase, so typically does the sparsity. For
the two largest problems in the benchmark set MIPLIB2017, with m,n ≈ 107,
99.998% of the columns have less than 30 nonzero elements. Hence, we expect
many bases to be extremely sparse, and it is interesting to look at the scaling
of the running time under the assumption that the sparsity parameters are at
most polylogarithmic in m and n. In this case, the running time of the oracle
for the reduced costs in the gate model without qRAM is Õ(κ

ε (n + m)), giving
a total running time for pricing of Õ(1ε κ

√
n(n + m)), and the steepest edge

pricing oracle is a factor κ2 slower. For a well-conditioned basis and under the
assumption that d = O(log mn), we obtain running time Õ(1ε

√
n(n + m)) for

the quantum pricing subroutine, which can be reduced to Õ(1ε n
√

m) if the ratio
n/m is large; and running time Õ(t

δ m1.5) for the quantum ratio test subroutine.
With qRAM, the gate complexity decreases further and we achieve essentially
linear scaling (O(

√
mn) for pricing, O(m) for the ratio test, if we only look at

m and n).

Fast Quantum Subroutines for the Simplex Method 315

Summarizing, the quantum subroutines that we propose can be asymp-
totically faster than the best known classical version of them, under the
assumption—generally verified in practice—that the LPs are extremely sparse.
Indeed, while the gate complexity of the quantum subroutines depends on some
optimality and feasibility tolerances in addition to the classical input parameters
(m, n, and the sparsity parameters), these tolerances do not scale with m and
n. For well-conditioned problems, the quantum subroutines have better scaling
in m and n, and this could turn into an asymptotic advantage. To achieve this
potential advantage, we never explicitly compute the basis inverse, and rely on
the quantum computer to indicate which columns should enter and leave the
basis at each iteration. Similar to other papers in the quantum optimization
literature, we use a classical algorithm (the simplex method) and accelerate the
subroutines executed at each iteration of the simplex. However, our asymptotic
speedup (when the condition number is small) does not depend on the avail-
ability of qRAM or of the data in “quantum form”. The key insight to obtain
an asymptotic speedup even with classical input and output is to interpret the
simplex method as a collection of subroutines that output only integers, avoiding
the cost of extracting real vectors from the quantum computer (tomography).
Our algorithms require a polylogarithmic number of fault-tolerant qubits.

We remark that even with sophisticated pivot rules, the number of iterations
of the classical simplex method could be exponential. The quantum version pro-
posed in this paper does not circumvent this issue, and its worst-case running
time is slower than of the fastest quantum algorithm for LPs [2]. However, it
is well established that in practice the simplex method performs much better
than the worst case, in terms of the number of iterations [13,27] as well as the
complexity of a single iteration, see e.g. [11]. The most attractive feature of the
simplex method is its excellent practical performance, and we hope that a quan-
tized version, closely mimicking the classical counterpart while accelerating the
linear algebra, would inherit this trait.

2 Comparison with the Existing Literature

The simplex method has been extensively studied in the operations research and
computer science literature. Its exponential running time in theory [22] contrasts
with its excellent practical performance. This paper proposes a quantization of
the simplex method with the steepest edge pivoting rule, Dantzig’s rule, or a
randomized rule. We are not aware on an upper bound on the expected number
of pivots under these rules. The closest paper is probably [5], see also [13] for a
recent discussion on pivoting.

On the quantum side, to the best of our knowledge all algorithms for LPs
are derived from some classical algorithm. [3,6] are based on the multiplicative
weights update method. [8,21] are based on the interior point method. [2] is based
on a reduction of LPs to two-player zero-sum games and the classical algorithm
of [17]. For these methods the number of iterations is polynomial (or better),
and is taken directly from the classical algorithm; the computational complexity

316 G. Nannicini

Table 1. Summary of quantum algorithms for linear programming.

Algorithm Iteration cost # Iterations qRAM size Comments

Multiplicative

weights update [1]

Õ

(
(
√

m +
√

n Rr
ε

)d
(

Rr
ε

)2
)

O(R2 log n

ε2
) Õ

((
Rr
ε

)2
)

Outputs dual solution

and (quantum) primal

solution; R, r depend on

n, m in general

Interior point [21] Õ(κ2 n2.5

ξ2
) O(

√
n log n

ε
) Õ(mn) κ comes from

intermediate matrices

Game-theoretical [2] Õ

(√
d

(
Rr
ε

)1.5
)

Õ

((
Rr
ε

)2
)

Õ

((
Rr
ε

)2
)

R, r depend on n, m in

general

This paper Õ(1
ε

κd
√

n(dcn + dm))

or Õ(1
ε

κd1.5√
dcn

√
m),

plus Õ(t
δ

κd2m1.5)

N/A (exp) No qRAM κ comes from

inter-mediate matrices;

outputs only basis

information

This paper Õ(1
ε

κ
√

mn), plus Õ(t
δ

κm) N/A (exp) Õ(dcn + m)

of each iteration is reduced taking advantage of quantum subroutines. A faster
version of the quantum multiplicative weights update method for LPs is given in
[1]. This algorithm has been recently dequantized [9], with similar performance
for low-rank problems.

We summarize key features of several papers in Table 1. The table highlights
the main advantages of our method, in particular the fact that the iteration
running time is a polynomial with very low degree even without qRAM: for all
other methods, each iteration is significantly more expensive, and even more
so if we consider the gate complexity in case qRAM is not available (i.e., the
gate complexity increases by a factor equal to the size of the qRAM). For some
methods, the steep dependence on ε or on the size of primal/dual solutions R, r
could be a limiting factor (classical algorithms used in practice usually depend
polylogarithmically on these quantities). The methods proposed in this paper
suffer from the same weakness as the classical simplex method: giving a sub-
exponential upper bound on the number of iterations is difficult, although this
has not prevented the simplex method from being extremely efficient in practice.

As remarked in the Table 1, the papers using the multiplicative weights
update framework as well as [2] have a running time that depends on a parameter
Rr
ε , which may in turn depend on n,m—see the discussion in [3], as well as the

application to experimental design discussed in [1] to understand the necessary
tradeoffs to obtain a quantum speedup in n and m. Note that ε-optimality of the
reduced cost, as used in the simplex method, is not a global optimality guarantee,
and therefore our ε parameter is not directly comparable to the ε used in the
other algorithms discussed in Table 1. We also remark that in our paper, as well
as in [21], the running time depends on κ of some intermediate matrices: more
specifically, in our paper κ is the condition number of the basis at each iteration
of the simplex method. The optimality condition and the condition number are
discussed in more detail subsequently in this paper. Regarding input and output,
the algorithm presented in this paper has fully classical input, and outputs the
current basis at each iteration; to obtain the (primal) solution, it is necessary to
classically solve a single linear system of size m × m (this is more efficient than
obtaining a solution via a QLSA).

Fast Quantum Subroutines for the Simplex Method 317

3 Overview of the Simplex Method

The simplex method solves the linear optimization problem: min c�x, s.t.:Ax =
b, x ≥ 0, where A ∈ Rm×n, c ∈ Rn, b ∈ Rm. A basis is a subset of m linearly
independent columns of A. Given a basis B, assume that it is an ordered set and
let B(j) be the j-th element of the set. The set N := {1, . . . , n} \ B is called the
set of nonbasic variables. We denote by AB the square invertible submatrix of
A corresponding to columns in B, and AN the remaining submatrix. The term
“basis” may refer to B or AB , depending on context. The simplex method can
be described compactly as follows; see, e.g., [4] for a more detailed treatment.

– Start with any basic feasible solution. (This is w.l.o.g. because it is always
possible to find one.) Let B be the current basis, N the nonbasic variables,
x = A−1

B b the current solution.
– Repeat the following steps:

1. Compute the reduced costs for the nonbasic variables c̄�
N = c�

N −
c�
BA−1

B AN . This step is called pricing. If c̄N ≥ 0 the basis is optimal:
the algorithm terminates. Otherwise, choose k : c̄k < 0. Column k is the
pivot column.

2. Compute u = A−1
B Ak. If u ≤ 0, the optimal cost is unbounded from

below: the algorithm terminates.
3. If some component of u is positive, compute (this step is called ratio test):

r∗ := min
j=1,...,m:uj>0

xB(j)

uj
. (1)

4. Let � be such that r∗ = xB(�)

u�
. Row � is the pivot row. Form a new basis

replacing B(�) with k. This step is called a pivot. Update x = A−1
B b.

To perform the pricing step, we compute an LU factorization of the basis AB ;
this requires time O(d0.7

c m1.9 + m2+o(1)) using fast sparse matrix multiplication
techniques [28]. (In practice, the traditional O(m3) Gaussian elimination is used
instead, but the factorization is not computed from scratch at every iteration.)
Then, we can compute the vector c�

BA−1
B and finally perform the O(n) calcu-

lations c�
k − c�

BA−1
B Ak for all k ∈ N ; this requires an additional O(dcn) time,

bringing the total time to O(d0.7
c m1.9 + m2+o(1) + dcn). To perform the ratio

test, we need the vector u = A−1
B Ak, which takes time O(m2) assuming the

LU factorization of AB is available from pricing. As remarked earlier, A−1
B may

not be dense if AB is sparse; furthermore, the vectors c�
BA−1

B and A−1
B b can be

updated from previous iterations exploiting the factorization update, so all these
step could take significantly less time in practice. Finally, since the calculations
are performed with finite precision, we use an optimality tolerance ε and the
optimality criterion becomes c̄N ≥ −ε.

It is well known that the performance of the simplex method in practice
depends on the pivoting rule. One of the simplest rules is Dantzig’s rule, which
chooses k = arg minh c̄h. Modern implementations of the simplex method typi-
cally rely on more sophisticated pivoting rules. Among these, the steepest edge

318 G. Nannicini

pivoting rule has been shown to lead to a significant reduction in the number of
iterations [15]. The steepest edge column selection rule is: k = arg minh

c̄h

‖A−1
B Ah‖ .

This computation requires knowledge of the norms ‖A−1
B Ah‖. [15] shows how to

update these norms in time O(m2n) (dual simplex updates are slightly cheaper,
but in this paper we focus on the primal simplex).

4 Quantum Implementation: Overview

Before giving an overview of our methodology, we introduce some notation and
useful results from the literature. The state of a quantum computer with q qubits
is a unit vector in (C2)⊗q = C2q

; we denote the standard basis vectors by |j〉,
where j ∈ {0, 1}q (e.g., when q = 2, |01〉 denotes the standard basis vector
(0, 1, 0, 0)�). A quantum state is therefore of the form |ψ〉 =

∑
j∈{0,1}q αj |j〉,∑

j∈{0,1}q |αj |2 = 1. The final state is obtained by applying a unitary matrix
U ∈ C2q×2q

to the initial state |0q〉, where 0q denotes the q-digit all-zero binary
string. An introduction to quantum computing for non-specialists is given in
[25], and a comprehensive reference is [26]. ‖ · ‖ denotes the spectral norm for
matrices, �2-norm for vectors. Given matrices C,D (including vectors or scalars),
(C,D) denotes the matrix obtained stacking C on top of D. Given v ∈ R2q

, we
denote |v〉 :=

∑2q−1
j=0

vj

‖v‖ |j〉 its amplitude encoding.
This paper uses quantum algorithms for linear systems introduced in [10]. For

the system ABx = b with integer entries, the input to the algorithm is encoded
by two unitaries PAB

and Pb which are queried as oracles; for lack of space, we
refer to [10] for details. We define the following symbols: dc, maximum number
of nonzero entries in any column of A; dr, maximum number of nonzero entries
in any row of AB ; d := max{dc, dr}, sparsity of AB ; κ, ratio of largest to smallest
nonzero singular value of AB (we assume that an upper bound on κ is known).

Theorem 3 (Thm. 5 in [10]). Let AB be symmetric and ‖AB‖ = 1. Given
PAB

, Pb, and ε > 0, there exists a quantum algorithm that produces the state
|x̃〉 with ‖|A−1

B b〉 − |x̃〉‖ ≤ ε using Õ(dκ) queries to PAB
and Pb, with additional

gate complexity Õ(dκ).

The restriction on AB symmetric can be relaxed by symmetrizing the sys-
tem, see [20]. Our running time analysis already takes all symmetrization
costs into account, but we skip details for brevity. Throughout this paper,
Õ is used to suppress polylogarithmic factors in the input parameters, i.e.,
Õ(f(x)) = O(f(x)poly(log n, log m, log 1

ε , log κ, log d, log(max entry(A)))).
We now give an overview of our algorithms. As stated in the introduction,

a naive application of a QLSA (with explicit classical input and output) in the
context of the simplex method is slower than a full classical iteration of the
method. To gain an edge, we observe that an iteration of the simplex method
can be reduced to a sequence of subroutines that have integer output. Indeed, the
simplex method does not require explicit knowledge of the full solution vector
A−1

B b associated with a basis, or of the full simplex tableau A−1
B AN , provided

Fast Quantum Subroutines for the Simplex Method 319

that we are able to: (i) identify if the current basis is optimal or unbounded;
(ii) identify a pivot, i.e., the index of a column with negative reduced cost that
enters the basis, and the index of a column leaving the basis. While subroutines
to perform these tasks require access to A−1

B b and/or A−1
B AN , we show that

we can get an asymptotic speedup by never computing a classical description
of A−1

B , A−1
B b or A−1

B AN . This is because extracting amplitude-encoded vectors
from a quantum computer (a process called tomography) is much more expensive
than obtaining integer or binary outputs, as these can be encoded directly as
basis states and read from a single measurement with high probability if the
amplitudes are set correctly.

Our first objective is to implement a quantum oracle that determines if a
column has negative reduced cost. Using the QLSA of Theorem 3, with straight-
forward data preparation we can construct an oracle that, given a column index
k, outputs |A−1

B Ak〉 in some register. We still need to get around three obstacles:
(i) the output of the QLSA is a renormalization of the solution, rather than the
(unscaled) vector A−1

B Ak; (ii) we want to compute ck −c�
BA−1

B Ak, while so far we
only have access to |A−1

B Ak〉; (iii) we need the output to be a binary yes/no con-
dition (i.e., not encoded in an amplitude) so that Grover search can be applied
to it, and we are not allowed to perform measurements. We overcome the first
two obstacles by: extending and properly scaling the linear system so that ck is
suitably encoded in the QLSA output; and using the inverse of the unitary that
maps |0	log m+1
〉 to |(−cB , 1)〉 to encode ck − c�

BA−1
B Ak in the amplitude of one

of the basis states. To determine the sign of such amplitude, we rely on inter-
ference to create a basis state with amplitude α such that |α| ≥ 1

2 if and only
if ck − c�

BA−1
B Ak ≥ 0. At this point, we can apply amplitude estimation [7] to

determine the magnitude of α up to accuracy ε. This requires O(1/ε) iterations
of the amplitude estimation algorithm. We therefore obtain a unitary operation
that overcomes the three obstacles. A similar scheme can be used to determine
if the basis is optimal, i.e., no column with negative reduced cost exists.

Some further complications merit discussion. The first one concerns the opti-
mality tolerance: classically, this is typically c̄N ≥ −ε for some given ε. Note
that an absolute optimality tolerance is not invariant to rescaling of c. In the
quantum subroutines, checking c̄k < −ε for a column k may be too expensive if
the norm of ‖(A−1

B Ak, ck)‖ is too large, because the quantum state normalization
would force us to increase the precision of amplitude estimation. We therefore
use the inequality c̄k ≥ −ε‖(A−1

B Ak, ck)‖ as optimality criterion, showing that
O(1ε) rounds of amplitude estimation suffice. Our approach can be interpreted
as a relative optimality criterion for the reduced costs: small ‖A−1

B Ak‖ implies
a small denominator in (1) and potentially a large change in the basic feasible
solution, so it is reasonable to require c̄k close to zero for optimality. (Although
optimality of the reduced costs does not guarantee a global optimality gap, it
is the criterion used in every practical implementation of the simplex method.)
Since we never explicitly compute the basis inverse, we do not have classical
access to ‖(A−1

B Ak, ck)‖. To alleviate this issue, we show that there exists an
efficient quantum subroutine to compute the root mean square of ‖A−1

B Ak‖ over

320 G. Nannicini

all k, or of ‖A−1
B Ak‖ for the specific k entering the basis, providing a charac-

terization of the optimality tolerance used in the pricing step. It is important
to remark that while the optimality tolerance is relative to a norm, which in
turn depends on the problem data, the discussion in Sect. 1 indicates that due
to sparsity, in practice we do not expect these norms to grow with m and n (or
at least, no more than polylogarithmically). To implement Dantzig’s pivoting
rule and determine the smallest reduced cost, as opposed to a random column
with negative reduced cost, the running time is the same as stated above, using
quantum minimum finding [14]. To implement the steepest edge pivoting rule
the running time increases by a factor κ2: this is due to the cost of estimating the
norms ‖A−1

B Ak‖, which requires κ2

ε rounds of amplitude amplification to attain
accuracy ε. Note that steepest edge is more expensive also in the classical case,
increasing the running time expression by an additive term m2n.

The second complication concerns the condition number of the basis: the
running time of the quantum routines explicitly depends on it, but this is not the
case for the classical algorithms based on an LU decomposition of AB (although
precision may be affected). We remark that the dependence of QLSAs cannot
be improved to κ1−δ for δ > 0 unless BQP = PSPACE [20]. We do not take
any specific steps to improve the worst-case condition number of the basis (e.g.,
[12]), but we note that similar issues affect the classical simplex method: even
if the running time does not depend on κ, when κ grows large the algorithm
may fail because the computation of primal solutions or pivots becomes too
imprecise. Many approaches have been proposed to prevent this from happening
in practice, e.g., modifications of the pivoting rule to select pivot elements that
are not too small, such as the two-pass Harris ratio test (a description of which
can be found in [16]). This ratio test can be quantized without increasing the
asymptotic running time; the description of the corresponding algorithm is left
for the full version of this paper.

With the above construction we have a quantum subroutine that determines
the index of a column with negative reduced cost, if one exists. Such a column can
enter the basis. To perform a basis update we still need to determine the column
leaving the basis: this is our second objective. For this step we need knowledge of
A−1

B Ak. Classically, this is straightforward because the basis inverse is available,
since it is necessary to compute reduced costs anyway. With the above quantum
subroutines the basis inverse is not known, and in fact part of the benefit of
the quantum subroutines comes from always working with the original, sparse
basis, rather than its possibly dense inverse. Thus, we describe another quantum
algorithm that uses a QLSA as a subroutine, and identifies the element of the
basis that is an approximate minimizer of the ratio test (1). Special care must be
taken in this step, because attaining the minimum of the ratio test is necessary
to ensure that the basic solution after the pivot is feasible (i.e., satisfies the non
negativity constraints x ≥ 0). However, in the quantum setting we are working
with continuous amplitudes, and determining if an amplitude is zero is impossible
due to finite precision. Our approach to give rigorous guarantees for this step
involves the use of two feasibility tolerances: a tolerance δ, that determines which

Fast Quantum Subroutines for the Simplex Method 321

Algorithm 1. SimplexIteration(A,B, c, ε, δ, t).
1: Input: Matrix A, basis B, cost vector c, precision parameters ε, δ, t.
2: Output: Flag “optimal”, “unbounded”, or a pair (k, �) where k is a nonbasic

variable with negative reduced cost, � is the basic variable that should leave the
basis if k enters.

3: Normalize c so that ‖cB‖ = 1. Normalize A so that ‖AB‖ ≤ 1.
4: Apply IsOptimal(A, B, ε) to determine if the current basis is optimal. If so, return

“optimal”.
5: Apply FindColumn(A, B, ε) to determine a column with negative reduced cost.

Let k be the column index returned by the algorithm.
6: Apply IsUnbounded(AB , Ak, δ) to determine if the problem is unbounded. If so,

return “unbounded”.
7: Apply FindRow(AB , Ak, b, δ, t) to determine the index � of the row that minimizes

the ratio test (1). Update the basis B ← (B \ {B(�)}) ∪ {k}.

components of A−1
B Ak will be involved in the ratio test (due to the condition

uj > 0 in (1)); and a precision multiplier t, that determines the approximation
guarantee for the minimization in (1). In particular, our algorithm returns an
approximate minimizer that attains a relative error of 2t+1

2t−1 −1, plus an absolute
error proportional to 2

2t−1 . We remark that since the minimum of the ratio test
could be zero, giving a purely relative error bound seems impossible in finite
precision. A similar quantum algorithm can be used to determine if column k
proves unboundedness of the LP. Note that because of the inexactness of the
ratio test, we could pivot to slightly infeasible solutions; recovery strategies are
left for the full version of this paper.

5 Technical Discussion

A high-level overview of the algorithm is given in Algorithm 1. Due to space
restrictions, we discuss only a few technical aspects; a detailed description of
the quantum subroutines and proof of their correctness will be given in the full
version of this paper (a preprint is available on arXiv). All data normalization
is performed on line 3 of SimplexIteration(A,B, c, ε, δ, t). Using the power
method [23] to find the leading singular value up to accuracy ε′, the entire
normalization can be performed in time O(1

ε′ md log m). This is asymptotically
negligible compared to the rest of the algorithm.

The oracles PAB
and Pb can be implemented in time Õ(dm) and Õ(m),

respectively; the construction of PAB
is straightforward and amounts to a lookup

table to identify indices of nonzero elements and their values (similar to classical
data structures for sparse vectors), the construction of Pb can be done in a
manner similar to [18], exploiting sparsity.

To determine, modulo the global phase factor, the sign of an amplitude α
(i.e., a coefficient in the quantum state; we encode reduced costs in specific
amplitudes) we use two subroutines called SignEstNFN and SignEstNFP.
These subroutines rely on interference to create an amplitude 1

2 (1 + α), so that

322 G. Nannicini

amplitude estimation allows us to distinguish, by comparing to the threshold
value 1

2 , if α > 0 or α < 0. In reality, since amplitude estimation is not per-
fect, the analysis is more convoluted than the simple above explanation. The
acronyms “NFN” an “NFP” stand for “no false negatives” and “no false posi-
tives”, respectively, based on an interpretation of these subroutines as classifiers
that need to assign a 0–1 label to the input. Since the quantum phase estimation,
on which they are based, is a continuous transformation, a routine that has “no
false negatives”, i.e., with high probability it returns 1 if the input data’s true
class is 1 (in our case, this means that a given amplitude is ≥ −ε), may have
false positives: it may also return 1 with too large probability for some input
that belongs to class 0 (i.e., the given amplitude is < −ε). The probability of
these undesirable events decreases as we get away from the threshold −ε.

The construction of reduced costs is relatively straightforward, using the
approach described in Sect. 4. It yields the following result.

Theorem 4. There exists a quantum subroutine (FindColumn) that returns a
column k ∈ N with reduced cost c̄k < −ε‖(A−1

B Ak, ck

‖cB‖)‖, with expected number

of iterations O(
√

n). The total gate complexity of the algorithm is Õ(κd
√

n
ε (dcn+

dm)). The steepest edge column selection can be implemented increasing the cost
by a factor κ2.

We remark that Theorem 4 concerns the case in which at least one column
eligible to enter the basis (i.e., with negative reduced cost) exists. Following
Algorithm 1, SimplexIteration, the subroutine FindColumn is executed only
if IsOptimal returns false. The subroutine IsOptimal can be constructed in
almost the same way as FindColumn, using the counting version of Grover
search to determine if there is any index k for which column Ak has negative
reduced cost. The gate complexity of IsOptimal is asymptotically the same
as in Theorem 4. All our subroutines succeed with constant probability, that
can be boosted to the desired level with polylogarithmic overhead; details on
possible failures, and how to recover from them, are left for the full version of this
paper. We note that when IsOptimal returns 1, the current basis B is optimal
but we do not have a classical description of the solution vector. To obtain
a full description of the solution vector, the fastest approach is to classically
solve the system ABx = b for the (known) optimal basis, which requires time
O(d0.7

c m1.9 + m2+o(1)).
If we apply the quantum search algorithm over all columns, to find a column

with negative reduced cost, we need to perform O(
√

n) iterations, but the unitary
to prepare the data for the QLSA requires time that scales as Õ(dcn). In some
cases it may be advantageous to split the set of columns into multiple sets, and
apply the search algorithm to each set individually. Carrying out this analysis
shows that if n

m ≥ 2 d
dc

, the running time expression in Theorem 4 can be reduced
to Õ(1ε κd1.5

√
dcn

√
m). (Steepest edge pivot selection is a factor κ2 slower.)

After identifying a column to leave the basis, we must determine if the prob-
lem is unbounded, or perform the ratio test.

Fast Quantum Subroutines for the Simplex Method 323

Theorem 5. There exists a quantum subroutine (IsUnbounded) such that,
with bounded probability, if the subroutine returns 1 then (A−1

B Ak)i < δ‖A−1
B Ak‖

for all i = 1, . . . , m, with total gate complexity Õ(
√

m
δ (κd2m)).

If IsUnbounded returns 1, we have a proof that the LP is unbounded from
below, up to the given tolerance. Otherwise, we have to perform the ratio test.

Theorem 6. There exists a quantum subroutine (FindRow) that, with bounded
probability, returns � such that:

(A−1
B Ak)�

(A−1
B b)�

≤ 2
2t − 1

‖A−1
B b‖

‖A−1
B Ak‖ +

2t + 1
2t − 1

min
h:(A−1

B Ak)h>δ‖A−1
B Ak‖

(A−1
B b)h

(A−1
B Ak)h

,

with total gate complexity Õ(t
δ

√
m(κd2m)).

Notice that the ratio test is performed approximately, i.e., the solution found
after pivoting might be infeasible, but the total error in the ratio test (and
hence the maximum infeasibility after pivoting) is controlled by the parameter t
in Theorem 6. For example, for t = 1000 the index � returned is within ≈ 0.1%
of the true minimum of the ratio test. This may lead to small infeasibilities, but
we can recover from them by first using a subroutine to determine feasibility of
the current basis, and then switching to Phase 1 of the simplex method in case
the current basis is infeasible. This approach always succeeds, if the precision of
the calculations is sufficient.

We conclude by detailing the acceleration that can be obtained with
quantum-accessible storage. This is significant, and in this case the quantum
subroutines achieve essentially linear scaling.

Proposition 1. If the matrix AB and the columns of AN are stored in
qRAM (of size Õ(dcn)), the running time of FindColumn and IsOptimal
is Õ(1ε (κ

√
mn)), whereas the running time of FindRow and IsUnbounded is

Õ(t
δ κm). The cost of preparing the data structures before the first iteration of

Algorithm 1 is Õ(dcn); the time to update the data structures after the basis
changes is Õ(m).

Acknowledgment. We are grateful to Sergey Bravyi, Sanjeeb Dash, Santanu Dey,
Yuri Faenza, Krzysztof Onak, Ted Yoder, and to anonymous referees for useful dis-
cussions and/or comments on an early version of this manuscript. The author is par-
tially supported by the IBM Research Frontiers Institute, Army Research Office grant
W911NF-20-1-0014, and AFRL grant FA8750-C-18–0098.

References

1. van Apeldoorn, J., Gilyén, A.: Improvements in quantum SDP-solving with appli-
cations. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th
International Colloquium on Automata, Languages, and Programming (ICALP
2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 132, pp.
99:1–99:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2019)

324 G. Nannicini

2. van Apeldoorn, J., Gilyén, A.: Quantum algorithms for zero-sum games. arXiv
preprint arXiv:1904.03180 (2019)

3. van Apeldoorn, J., Gilyén, A., Gribling, S., de Wolf, R.: Quantum SDP-solvers:
better upper and lower bounds. In: 2017 IEEE 58th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 403–414. IEEE (2017)

4. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scien-
tific, Belmont (1997)

5. Borgwardt, K.H.: The average number of pivot steps required by the simplex-
method is polynomial. Zeitschrift für Oper. Res. 26(1), 157–177 (1982)

6. Brandao, F.G., Svore, K.M.: Quantum speed-ups for solving semidefinite programs.
In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 415–426. IEEE (2017)

7. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

8. Casares, P.A.M., Martin-Delgado, M.A.: A quantum interior-point predictor–
corrector algorithm for linear programming. J. Phys. A Math. Theor. 53(44),
445305 (2020)

9. Chia, N.H., Li, T., Lin, H.H., Wang, C.: Quantum-inspired sublinear algorithm for
solving low-rank semidefinite programming. In: 45th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2020)

10. Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear
equations with exponentially improved dependence on precision. SIAM J. Comput.
46(6), 1920–1950 (2017)

11. Chvátal, V.: Linear programming. Freeman, W. H (1983)
12. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system

algorithm. Phys. Rev. Lett. 110(25), 250504 (2013)
13. Dadush, D., Huiberts, S.: A friendly smoothed analysis of the simplex method. In:

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting, pp. 390–403. ACM (2018)

14. Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum. arXiv preprint
quant-ph/9607014 (1996)

15. Forrest, J.J., Goldfarb, D.: Steepest-edge simplex algorithms for linear program-
ming. Math. Program. 57(1–3), 341–374 (1992)

16. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: A practical anti-cycling
procedure for linearly constrained optimization. Math. Program. 45(1), 437–474
(1989)

17. Grigoriadis, M.D., Khachiyan, L.G.: A sublinear-time randomized approximation
algorithm for matrix games. Oper. Res. Lett. 18(2), 53–58 (1995)

18. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently
integrable probability distributions. arXiv preprint quant-ph/0208112 (2002)

19. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219. ACM (1996)

20. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103(15), 150502 (2009)

21. Kerenidis, I., Prakash, A.: A quantum interior point method for LPs and SDPs.
arXiv preprint arXiv:1808.09266 (2018)

22. Klee, V., Minty, G.J.: How good is the simplex algorithm. Inequalities 3(3), 159–
175 (1972)

http://arxiv.org/abs/1904.03180
http://arxiv.org/abs/1808.09266

Fast Quantum Subroutines for the Simplex Method 325

23. Kuczyński, J., Woźniakowski, H.: Estimating the largest eigenvalue by the power
and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl. 13(4),
1094–1122 (1992)

24. Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Oper. Res.
53(6), 1007–1023 (2005)

25. Nannicini, G.: An introduction to quantum computing, without the physics. arXiv
preprint arXiv:1708.03684 (2017)

26. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2002)

27. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. J. ACM (JACM) 51(3), 385–463 (2004)

28. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Trans. Algorithms
(TALG) 1(1), 2–13 (2005)

http://arxiv.org/abs/1708.03684

Maximum Weight Disjoint Paths in
Outerplanar Graphs via Single-Tree Cut

Approximators

Guyslain Naves1, Bruce Shepherd2(B), and Henry Xia2

1 Aix-Marseille University, LIS CNRS UMR 7020, Marseille, France
guyslain.naves@univ-amu.fr

2 University of British Columbia, Vancouver, Canada
fbrucesh@cs.ubc.ca, h.xia@alumni.ubc.ca

Abstract. Since 1997 there has been a steady stream of advances for the
maximum disjoint paths problem. Achieving tractable results has usu-
ally required focusing on relaxations such as: (i) to allow some bounded
edge congestion in solutions, (ii) to only consider the unit weight (cardi-
nality) setting, (iii) to only require fractional routability of the selected
demands (the all-or-nothing flow setting). For the general form (no con-
gestion, general weights, integral routing) of edge-disjoint paths (edp)
even the case of unit capacity trees which are stars generalizes the max-
imum matching problem for which Edmonds provided an exact algo-
rithm. For general capacitated trees, Garg, Vazirani, Yannakakis showed
the problem is APX-Hard and Chekuri, Mydlarz, Shepherd provided a
4-approximation. This is essentially the only setting where a constant
approximation is known for the general form of edp. We extend their
result by giving a constant-factor approximation algorithm for general-
form edp in outerplanar graphs. A key component for the algorithm is to
find a single-tree O(1) cut approximator for outerplanar graphs. Previ-
ously O(1) cut approximators were only known via distributions on trees
and these were based implicitly on the results of Gupta, Newman, Rabi-
novich and Sinclair for distance tree embeddings combined with results
of Anderson and Feige.

1 Introduction

The past two decades have seen numerous advances to the approximability of the
maximum disjoint paths problem (edp) since the seminal paper [17]. An instance
of edp consists of a (directed or undirected) “supply” graph G = (V,E) and a
collection of k requests (aka demands). Each request consists of a pair of nodes
si, ti ∈ V . These are sometimes viewed as a demand graph H = (V (G), {siti :
i ∈ [k]}). A subset S of the requests is called routable if there exist edge-disjoint
paths {Pi : i ∈ S} such that Pi has endpoints si, ti for each i. We may also be

Aix-Marseille University—Work partially supported by ANR project DISTANCIA
(ANR-17-CE40-0015).

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 326–339, 2021.
https://doi.org/10.1007/978-3-030-73879-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_23

Maximum Weight EDP in Outerplanar Graphs 327

given a profit wi associated with each request and the goal is to find a routable
subset S which maximizes w(S) =

∑
i∈S wi. The cardinality version is where we

have unit weights wi ≡ 1.
For directed graphs it is known [20] that there is no O(n0.5−ε) approxima-

tion, for any ε > 0 under the assumption P �= NP . Subsequently, research shifted
to undirected graphs and two relaxed models. First, in the all-or-nothing flow
model (anf) the notion of routability is relaxed. A subset S is called routable
if there is a feasible (fractional) multiflow which satisfies each request in S. In
[6] a polylogarithmic approximation is given for anf. Second, in the congestion
model [24] one is allowed to increase the capacity of each edge in G by some
constant factor. Two streams of results ensued. For general graphs, a polylog-
arithmic approximation is ultimately provided [5,10,11] with edge congestion
2. For planar graphs, a constant factor approximation is given [4,31] with edge
congestion 2. There is also an f(g)-factor approximation for bounded genus g
graphs with congestion 3.

As far as we know, the only congestion 1 results known for either maximum
anf or edp are as follows; all of these apply only to the cardinality version.
In [23], a constant factor approximation is given for anf in planar graphs and
for treewidth k graphs there is an f(k)-approximation for edp [9]. More recent
results include a constant-factor approximation in the fully planar case where
G+H is planar [16,22]. In the weighted regime, there is a factor 4 approximation
for edp in capacitated trees [8]. We remark that this problem for unit capacity
“stars” already generalizes the maximum weight matching problem in general
graphs. Moreover, inapproximability bounds for edp in planar graphs are almost
polynomial [12]. This lends interest to how far one can push beyond trees. Our
main contribution to the theory of maximum throughput flows is the following
result which is the first generalization of the (weighted) edp result for trees [8],
modulo a larger implicit constant of 224.

Theorem 1. There is a polynomial-time 224 approximation algorithm for the
maximum weight anf and edp problems for capacitated outerplanar graphs.

It is natural to try to prove this is by reducing the problem in outerplanar
graphs to trees and then use [8]. A promising approach is to use results of [18] –
an O(1) distance tree embedding for outerplanar graphs – and a transfer theorem
[3,29] which proves a general equivalence between distance and capacity embed-
dings. Combined, these results imply that there is a probabilistic embedding
into trees which approximates cut capacity in outerplanar graphs with constant
congestion. One could then try to mimic the success of using low-distortion (dis-
tance) tree embeddings to approximate minimum cost network design problems.
There is an issue with this approach however. Suppose we have a distribution
on trees Ti which approximates cut capacity in expectation. We then apply a
known edp algorithm which outputs a subset of requests Si which are routable
in each Ti. While the tree embedding guarantees that the convex combination
of Si’s satisfies the cut condition in G, it may be that no single Si obeys the cut
condition, even approximately. Moreover, this is also a problem for anf. This

328 G. Naves et al.

problem persists even if we ensure that each Ti is dominated (or dominating) by
G. For instance, if capacity in each Ti is upper bounded by capacity in G, then
in expectation the Ti’s will cover at least some constant fraction of G. There is
no guarantee, however, that any of the Si’s would as well.

We overcome these issues by computing a single tree which approximates
the cut capacity in G – see Theorem 3. Our algorithmic proof is heavily inspired
by work of Gupta [19] which gives a method for eliminating Steiner nodes in
probabilistic (distance) tree embeddings for general graphs.

It turns out that having a single-tree is not enough for us and we need
additional technical properties to apply the algorithm from [8]. First, our single
tree T should have integer capacities and be non-expansive, i.e., û(δT (S)) ≤
u(δG(S)) (where û/u are the edge capacities in T/G and δ is used to denote
the edges in the cut induced by S). To see why it is useful that T is an under-
estimator of G’s cut capacity, consider the classical grid example of [17]. They
give an instance with a set of

√
n requests which satisfy the cut condition in

2 · G, but for which one can only route a single request in the capacity of G.
If our tree is an under-estimator, then we can ultimately obtain a “large”

weight subset of requests satisfying the cut condition in G itself. However, even
this is not generally sufficient for (integral) routability. For a multiflow instance
G/H one normally also requires that G + H is Eulerian, even for easy instances
such as when G is a 4-cycle. The final ingredient we use is that our single tree T
is actually a subtree of G which allows us to invoke the following result – see
Sect. 3.1.

Theorem 2. Let G be an outerplanar graph with integer edge capacities u(e).
Let H denote a demand graph such that G + H = (V (G), E(G) ∪ E(H)) is
outerplanar. If G,H satisfies the cut condition, then H is routable in G, and an
integral routing can be found in polynomial-time.

The key point here is that we can avoid the usual parity condition needed, such
as in [15,26,32]. We are not presently aware of the above result’s existence in
the literature.

1.1 A Single-Subtree Cut Sparsifier and Related Results

Our main cut approximation theorem is the following which may be of indepen-
dent interest.

Theorem 3. There is a polynomial-time algorithm that, for any connected out-
erplanar graph G = (V,E) with integer edge capacities u(e) > 0, finds a subtree
T of G with integer edge weights û(e) ≥ 0 such that

1
14

u(δG(X)) ≤ û(δT (X)) ≤ u(δG(X)) for each proper subset X ⊆ V

We discuss some connections of this result to prior work on sparsifiers and
metric embeddings. Celebrated work of Räcke [28] shows the existence of a

Maximum Weight EDP in Outerplanar Graphs 329

single capacitated tree T (not a subtree) which behaves as a flow sparsifier
for a given graph G. In particular, routability of demands on T implies frac-
tional routability in G with edge congestion polylog(n); this bound was further
improved to O(log2 n log log n) [21]. Such single-tree results were also instrumen-
tal in an application to maximum throughput flows: a polylogarithmic approxi-
mation for the maximum all-or-nothing flow problem in general graphs [7]. Even
more directly to Theorem 3 is work on cut sparsifiers; in [30] it is shown that
there is a single tree (again, not subtree) which approximates cut capacity in a
general graph G within a factor of O(log1.5 log log n). As far as we know, our
result is the only global-constant factor single-tree cut approximator for a family
of graphs.

Räcke improved the bound for flow sparsification to an optimal congestion of
O(log n) [29]. Rather than a single tree, this work requires a convex combination
of (general) trees to simulate the capacity in G. His work also revealed a beautiful
equivalence between the existence of good (low-congestion) distributions over
trees for capacities, and the existence of good (low-distortion) distributions over
trees for distances [3]. This transfer theorem states very roughly that for a graph
G the following are equivalent for a given ρ ≥ 1. (1) For any edge lengths
�(e) > 0, there is a (distance) embedding of G into a distribution of trees which
has stretch at most ρ. (2) For any edge capacities u(e) > 0, there is a (capacity)
embedding of G into a distribution of trees which has congestion at most ρ.
This work has been applied in other related contexts such as flow sparsifiers for
proper subsets of terminals [14].

The transfer theorem uses a very general setting where there are a collection
of valid maps. A map M sends an edge of G to an abstract “path” M(e) ⊆ E(G).
The maps may be refined for the application of interest. In the so-called spanning
tree setting, each M is associated with a subtree TM of G (the setting most
relevant to Theorem 3). M(e) is then the unique path which joins the endpoints
of e in TM . For an edge e, its stretch under M is (

∑
e′∈M(e) �(e′))/�(e). In the

context of distance tree embeddings this model has been studied in [1,2,13]. In
capacity settings, the congestion of an edge under M is (

∑
e′:e∈M(e′) c(e′))/c(e).

One can view this as simulating the capacity of G using the tree’s edges with
bounded congestion. The following result shows that we cannot guarantee a
single subtree with O(1) congestion even for outerplanar graphs. This appears
in the long version [25] and the example was found independently by Anastasios
Sidiropoulos [33].

Theorem 4. There is an infinite family O of outerplanar graphs such that for
every G ∈ O and every spanning tree T of G:

max
X

u(δG(X))
u(δT (X))

= Ω(log |V (G)|),

where the max is taken over fundamental cuts of T .

This suggests that the single-subtree result Theorem 3 is a bit lucky and
critically requires the use of tree capacities different from u. Of course a sin-
gle tree is sometimes unnecessarily restrictive. For instance, outerplanar graphs

330 G. Naves et al.

also have an O(1)-congestion embedding using a distribution of subtrees by the
transfer theorem (although we are not aware of one explicitly given in the lit-
erature). This follows implicitly due to existence of an O(1)-stretch embedding
into subtrees [18].

Finally we remark that despite the connections between distance and capac-
ity tree embeddings, Theorem 3 stands in contrast to the situation for distance
embeddings. Every embedding of the n point cycle into subtrees suffers distor-
tion Ω(n), and indeed this also holds for embedding into arbitrary (using Steiner
nodes etc.) trees [27].

2 Single Spanning Tree Cut Approximator in Outerplanar
Graphs

In this section we first show the existence of a single-tree which is an O(1) cut
approximator for an outerplanar graph G. Subsequently we show that there is
such a tree with two additional properties. First, its capacity on every cut is at
most the capacity in G, and second, all of its weights are integral. These addi-
tional properties (integrality and conservativeness) are needed in our application
to edp. The formal statement we prove is as follows.

Theorem 3. There is a polynomial-time algorithm that, for any connected out-
erplanar graph G = (V,E) with integer edge capacities u(e) > 0, finds a subtree
T of G with integer edge weights û(e) ≥ 0 such that

1
14

u(δG(X)) ≤ û(δT (X)) ≤ u(δG(X)) for each proper subset X ⊆ V

In Sect. 2.1, we show how to view capacity approximators in G as (con-
strained) distance tree approximators in the planar dual graph. From then on,
we look for distance approximators in the dual which correspond to trees in G.
In Sect. 2.2 we prove there exists a single-subtree cut approximator. In the long
version of the paper [25] we show how to make this conservative while maintain-
ing integrality of the capacities on the tree. This is essential for our application
to disjoint paths.

2.1 Converting Flow-Sparsifiers in Outerplanar Graphs to
Distance-Sparsifiers in Trees

Let G = (V,E) be an outerplanar graph with capacities u : E → R
+. Without

loss of generality, we can assume that G is 2-node connected, so the boundary
of the outer face of G is a cycle that contains each node exactly once. Let G∗ be
the dual of G; we assign weights to the dual edges in G∗ equal to the capacities
on the corresponding edges in G. Let Gz be the graph obtained by adding an
apex node z to G which is connected to each node of G, that is V (Gz) = V ∪{z}
and E(Gz) = E ∪ {(z, v) : v ∈ V }. We may embed z into the outer face of G, so
Gz is planar. Let G∗

z denote the planar dual of Gz.

Maximum Weight EDP in Outerplanar Graphs 331

z

G

T ∗

δ(z)

Fig. 1. The solid edges form the outerplanar graph G, and the dotted edges are the
edges incident to the apex node z in Gz. The dashed edges form the dual tree T ∗.

Note that δ(z) = {(z, v) : v ∈ V } are the edges of a spanning tree of Gz, so
E(Gz)∗ \ δ(z)∗ are the edges of a spanning tree T ∗ of G∗

z. Each non-leaf node of
T ∗ corresponds to an inner face of G, and each leaf of T ∗ corresponds to a face
of Gz whose boundary contains the apex node z. Also note that we obtain G∗ if
we combine all the leaves of T ∗ into a single node (which would correspond to
the outer face of G). We will call T ∗ the dual tree of the outerplanar graph G
(Fig. 1).

Let a central cut of G be a cut δ(S) such that both of its shores S and
V \ S induced connected subgraphs of G. Hence, the shores of a central cut are
subpaths of the outer cycle, so the dual of δ(S) is a leaf-to-leaf path in T ∗. Since
the edges of any cut in a connected graph is a disjoint union of central cuts, it
suffices to only consider central cuts.

We want to find a strictly embedded cut-sparsifier T = (V, F, u∗) of G (i.e. a
spanning tree T of G with edges weights u∗) such that for any nonempty X � V ,
we have

αu(δG(X)) ≤ u∗(δT (X)) ≤ βu(δG(X)). (1)

In the above inequality, we can replace u∗(δT (X)) with u∗(δG(X)) if we set
u∗(e) = 0 for each edge e /∈ E(T). In the dual tree (of G), δG(X)∗ is a leaf-to-
leaf path for any central cut δ(X), so inequality (1) is equivalent to

αu(P) ≤ u∗(P) ≤ βu(P) (2)

for any leaf-to-leaf path P in T ∗.
Finally, we give a sufficient property on the weights u∗ assigned to the edges

such that all edges of positive weight are in the spanning tree of G. Recall that
the dual of the edges not in the spanning tree of G would form a spanning tree
of G∗. Since we assign weight 0 to edges not in the spanning tree of G, it is
sufficient for the 0 weight edges to form a spanning subgraph of G∗. Since G∗

332 G. Naves et al.

is obtained by combining the leaves of T ∗ into a single node, it suffices for each
node v ∈ V (T ∗) to have a 0 weight path from v to a leaf of T ∗.

2.2 An Algorithm to Build a Distance-Sparsifier of a Tree

In this section, we present an algorithm to obtain a distance-sparsifier of a tree.
In particular, this allows us to obtain a cut-approximator of an outerplanar graph
from a distance-sparsifier of its dual tree.

Let T = (V,E, u) be a weighted tree where u : E → R
+ is the length function

on T . Let L ⊂ V be the leaves of T . We assign non-negative weights u∗ to the
edges of T . Let d be the shortest path metric induced by the original weights u,
and let d∗ be the shortest path metric induced by the new weights u∗. We want
the following two conditions to hold:

1. there exists a 0 weight path from each v ∈ V to a leaf of L.
2. for any two leaves x, y ∈ L, we have

1
4
d(x, y) ≤ d∗(x, y) ≤ 2d(x, y). (3)

We define u∗ recursively as follows. If |L| ≤ 1, we are done by setting u∗ = 0
on every edge. If every node is in L, we are done by setting u = u∗.

Let r ∈ T \ L be a non-leaf node, and consider T to be rooted at r. For
v ∈ V , let T (v) denote the subtree rooted at v, and let h(v) denote the height of v,
defined by h(v) = min{d(v, x) : x ∈ L∩T (v)}. Now, let r1, . . . , rk be the points in
T that are at distance exactly h(r)/2 from r. Without loss of generality, suppose
that each ri is a node (otherwise we can subdivide the edge to get a node), and
order the ri’s by increasing h(ri), that is h(ri−1) ≤ h(ri) for each i = 2, . . . , k.
Furthermore, suppose that we have already assigned weights to the edges in
each subtree T (ri) using this algorithm recursively with Li = L ∩ V (T (ri)), so
it remains to assign weights to the edges not in any of these subtrees. We assign
a weight of h(ri) to the first edge on the path from ri to r for each i = 2, . . . , k,
and weight 0 to all other edges (Fig. 2). In particular, all edges on the path from
r1 to r receive weight 0.

The algorithm terminates on components with at most one vertex in L. Let
w ∈ L be a leaf closest to r, d(r, w) = h(r), and let l be the length of the edge
incident to w. As the length of the longest path from the root to w is halved at
each recursive step, w will be isolated after at most log2

h(r)
l recursive steps.

Since we assign 0 weight to edges on the r1r path, Condition 1 is satisfied for
all nodes above the ri’s in the tree by construction. It remains to prove Condition
2. We use the following upper and lower bounds. For each leaf x ∈ L,

d∗(x, r) ≤ 2d(x, r) − h(r), (4)
d∗(x, r) ≥ d(x, r) − h(r). (5)

We prove the upper bound in (4) by induction. We are done if T only has 0
weight edges, and the cases that cause the algorithm to terminate will only have

Maximum Weight EDP in Outerplanar Graphs 333

r1

r2 r3

r

h(r)
2

h(r2) h(r3)

0

0

T (r1)

T (r2)

T (r3)

Fig. 2. The algorithm assigns weights to the edges above r1, . . . , rk, and is run recur-
sively on the subtrees T (r1), . . . , T (rk).

0 weight edges. For the induction, we consider two separate cases depending on
whether x ∈ T (r1).

Case 1: x ∈ T (r1).

d∗(x, r) = d∗(x, r1) + d∗(r1, r) (r1 is between x and r)
= d∗(x, r1) (by definition of u∗)
≤ 2d(x, r1) − h(r1) (by induction)
= 2d(x, r) − 2d(r, r1) − h(r1) (r1 is between x and r)

= 2d(x, r) − 3
2
h(r) (h(r1) = h(r)/2 by definition of r1)

≤ 2d(x, r) − h(r)

Case 2: x ∈ T (ri) for some i �= 1.

d∗(x, r) = d∗(x, ri) + d∗(ri, r) (ri is between x and r)
= d∗(x, ri) + h(ri) (by definition of u∗)
≤ 2d(x, ri) − h(ri) + h(ri) (by induction)
= 2d(x, r) − 2d(ri, r) (ri is between x and r)
= 2d(x, r) − h(r) (d(ri, r) = h(r)/2 by definition of ri)

This proves inequality (4).
We prove the lower bound in (5) similarly.

334 G. Naves et al.

Case 1: x ∈ T (r1).

d∗(x, r) = d∗(x, r1) + d∗(r1, r) (r1 is between x and r)
= d∗(x, r1) (by definition of u∗)
≥ d(x, r1) − h(r1) (by induction)
= d(x, r) − d(r, r1) − h(r1) (r1 is between x and r)
= d(x, r) − h(r) (by definition of r1)

Case 2: x ∈ T (ri) for some i �= 1.

d∗(x, r) = d∗(x, ri) + d∗(ri, r) (ri is between x and r)
= d∗(x, ri) + h(ri) (by definition of u∗)
≥ d(x, ri) − h(ri) + h(ri) (by induction)
= d(x, r) − d(ri, r) (ri is between x and r)
= d(x, r) − h(r)/2 (d(ri, r) = h(r)/2 by definition of ri)
≥ d(x, r) − h(r)

This proves inequality (5).
Finally, we prove property 2, that is inequality (3), by induction. Let x, y ∈ L

be two leaves of T . Suppose that x ∈ T (ri) and y ∈ T (rj). By induction, we may
assume that i �= j, so without loss of generality, suppose that i < j.

We prove the upper bound.

d∗(x, y) = d∗(x, ri) + d∗(ri, rj) + d∗(rj , y)

≤ 2d(x, ri) − h(ri) + 2d(y, rj) − h(rj) + d∗(ri, rj) (by (4))

≤ 2d(x, ri) − h(ri) + 2d(y, rj) − h(rj) + h(ri) + h(rj) (by definition of u∗)

= 2d(x, ri) + 2d(y, rj)

≤ 2d(x, y)

We prove the lower bound.

d(x, y) = d(x, ri) + d(ri, rj) + d(rj , y)

≤ d(x, ri) + d(rj , y) + h(ri) + h(rj)

(because d(r, ri) = h(r)/2 ≤ h(ri) for all i ∈ [k])

≤ 2d(x, ri) + 2d(rj , y) (by definition of h)

≤ 2d∗(x, ri) + 2h(ri) + 2d∗(y, rj) + 2h(rj) (by (5))

= 2d∗(x, y) − 2d∗(ri, rj) + 2h(ri) + 2h(rj).

Now we finish the proof of the lower bound by considering two cases.
Case 1: i = 1, that is x is in the first subtree.

d(x, y) ≤ 2d∗(x, y) − 2d∗(r1, rj) + 2h(r1) + 2h(rj)
= 2d∗(x, y) − 2h(rj) + 2h(r1) + 2h(rj) (by definition of u∗)
≤ 2d∗(x, y) + 2h(r1)
≤ 4d∗(x, y)

Maximum Weight EDP in Outerplanar Graphs 335

Case 2: i > 1, that is neither x nor y is in the first subtree.

d(x, y) ≤ 2d∗(x, y) − 2d∗(ri, rj) + 2h(ri) + 2h(rj)
= 2d∗(x, y) − 2h(ri) − 2h(rj) + 2h(ri) + 2h(rj) (by definition of u∗)
= 2d∗(x, y)

This completes the proof of property 2.

3 Maximum Weight Disjoint Paths

In this section we prove our main result for edp, Theorem 1.

3.1 Required Elements

We first prove the following result which establishes conditions for when the cut
condition implies routability.

Theorem 2. Let G be an outerplanar graph with integer edge capacities u(e).
Let H denote a demand graph such that G + H = (V (G), E(G) ∪ E(H)) is
outerplanar. If G,H satisfies the cut condition, then H is routable in G, and an
integral routing can be found in polynomial-time.

The novelty in this statement is that we do not require the Eulerian condition
on G + H. This condition is needed in virtually all classical results for edge-
disjoint paths. In fact, even when G is a 4-cycle and H consists of a matching of
size 2, the cut condition need not be sufficient to guarantee routability. The main
exception is the case when G is a tree and a trivial greedy algorithm suffices to
route H. We prove the theorem by giving a simple (but not so simple) algorithm
to compute a routing.

To prove this theorem, we need the following 2-node reduction lemma which
is generally known.

Lemma 1. Let G be a graph and let H be a collection of demands that satis-
fies the cut condition. Let G1, . . . , Gk be the blocks of G (the 2-node connected
components and the cut edges (aka bridges) of G). Let Hi be the collection of
nontrivial (i.e., non-loop) demands after contracting each edge e ∈ E(G)\E(Gi).
Then each Gi,Hi satisfies the cut condition. Furthermore, if G (or G + H) was
outerplanar (or planar), then each Gi (resp. Gi + Hi) is outerplanar (resp. pla-
nar). Moreover, if each Hi is routable in Gi, then H is routable in G (Fig. 3).

Proof. Consider the edge contractions to be done on G + H to obtain Gi + Hi.
Then, any cut in Gi + Hi was also a cut in G + H. Since G,H satisfies the cut
condition, then Gi,Hi must also satisfy the cut condition. Furthermore, edge
contraction preserves planarity and outerplanarity.

For each st ∈ H and each Gi, the reduction process produces a request siti in
Gi. If this is not a loop, then si, ti lie in different components of G after deleting
the edges of Gi. In this case, we say that st spawns siti. Let J be the set of edges
spawned by a demand st. It is easy to see that the edges of J form an st path.
Hence if each Hi is routable in Gi, we have that H is routable in G.

336 G. Naves et al.

G1

G2

G3

G4

G5

G4

G5

G3
G2

G1

Fig. 3. The new demand edges that replace a demand edge whose terminals belong in
different blocks. Solid edges represent edges of G and dashed edges represent demand
edges.

Proof (Proof of Theorem 2).
Without loss of generality, we may assume that the edges of G (resp. H) have

unit capacity (resp. demand). Otherwise, we may place u(e) (resp. d(e)) parallel
copies of such an edge e. In the algorithmic proof, we may also assume that G is
2-node connected. Otherwise, we may apply Lemma 1 and consider each 2-node
connected component of G separately. When working with 2-node connected G,
the boundary of its outer face is a simple cycle. So we label the nodes v1, . . . , vn

by the order they appear on this cycle.

Fig. 4. The solid edges form the outerplanar graph G. The dashed edges are the demand
edges. The thick dashed edge is a valid edge to route because there are no terminals
vk with i < k < j.

If there are no demand edges, then we are done. Otherwise, since G + H is
outerplanar, without loss of generality there exists i < j such that vivj ∈ E(H)

Maximum Weight EDP in Outerplanar Graphs 337

and no vk is a terminal for i < k < j (Fig. 4). Consider the outer face path P =
vi, vi+1, . . . , vj . We show that the cut condition is still satisfied after removing
both the path P and the demand vivj . This represents routing the demand vivj

along the path P .
Consider a central cut δG(X). Suppose that vi and vj are on opposite sides

of the cut. Then, we decrease both δG(X) and δH(X) by 1, so the cut condition
holds. Suppose that vi, vj /∈ X, that is vi and vj are on the same side of the cut.
Then, either X ⊂ V (P) \ {vi, vj} or X ∩ V (P) = ∅. We are done if X ∩ V (P) =
∅ because δG(X) ∩ E(P) = 0. Otherwise, X ⊂ V (P) \ {vi, vj} contains no
terminals, so we cannot violate the cut condition.

We also need the following result from [8].

Theorem 5. Let T be a tree with integer edge capacities u(e). Let H denote a
demand graph such that each fundamental cut of H induced by an edge e ∈ T
contains at most ku(e) edges of H. We may then partition H into at most 4k
edges sets H1, . . . , H4k such that each Hi is routable in T .

3.2 Proof of the Main Theorem

Theorem 1. There is a polynomial-time 224 approximation algorithm for the
maximum weight anf and edp problems for capacitated outerplanar graphs.

Proof. We first run the algorithms to produce an integer-capacitated tree T, û
which is an 14 cut approximator for G. In addition T is a subtree and it is a
conservative approximator for each cut in G. First, we prove that the maximum
weight routable in T is not too much smaller than for G (in either the edp or anf
model). To see this let S be an optimal solution in G, whose value is opt(G).
Clearly S satisfies the cut condition in G and hence by Theorem 3 it satisfies,
up to a factor of 14, the cut condition in T, û. Thus by Theorem5 there are 56
sets such that S = ∪56

i=1Si and each Si is routable in T . Hence one of the sets Si

accrues at least 1
56

th the profit from opt(G).
Now we use the factor 4 approximation [8] to solve the maximum edp=anf

problem for T, û. Let S be a subset of requests which are routable in T and have
weight at least 1

4 opt(T) ≥ 1
224 opt(G). Since T is a subtree of G we have

that G+T is outerplanar. Since T, û is an under-estimator of cuts in G, we have
that the edges of T (viewed as requests) satisfies the cut condition in G. Hence
by Theorem 2 we may route these single edge requests in G. Hence since S can
route in T , we have that S can also route in G, completing the proof.

4 Conclusions

The technique of finding a single-tree constant-factor cut approximator (for a
global constant) appears to hit a limit at outerplanar graphs. It would be interest-
ing to find a graph parameter k which ensures a single-tree O(f(k)) cut approx-
imator.

338 G. Naves et al.

The authors thank Nick Harvey for his valuable feedback on this article. We
also thank the conference reviewers for their helpful remarks. The authors Shep-
herd and Xia are grateful for support from the Natural Sciences and Engineering
Research Council of Canada.

References

1. Abraham, I., Bartal, Y., Neiman, O.: Nearly tight low stretch spanning trees. In:
FOCS, pp. 781–790 (2008)

2. Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its appli-
cation to the k-server problem. SIAM J. Comput. 24(1), 78–100 (1995)

3. Andersen, R., Feige, U.: Interchanging distance and capacity in probabilistic map-
pings. arXiv preprint arXiv:0907.3631 (2009)

4. Chekuri, C., Khanna, S., Shepherd, F.B.: Edge-disjoint paths in planar graphs with
constant congestion. SIAM J. Comput. 39, 281–301 (2009)

5. Chekuri, C., Ene, A.: Poly-logarithmic approximation for maximum node disjoint
paths with constant congestion. In: Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 326–341. SIAM (2013)

6. Chekuri, C., Khanna, S., Bruce Shepherd, F.: The all-or-nothing multicommodity
flow problem. In: Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, STOC 2004, pp. 156–165. ACM, New York (2004)

7. Chekuri, C., Khanna, S., Shepherd, F.B.: The all-or-nothing multicommodity flow
problem. SIAM J. Comput. 42(4), 1467–1493 (2013)

8. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree
and packing integer programs. ACM Trans. Algorithms (TALG) 3(3), 27-es (2007)

9. Chekuri, C., Naves, G., Shepherd, F.B.: Maximum edge-disjoint paths in k -sums of
graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013. LNCS, vol. 7965, pp. 328–339. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39206-1 28

10. Chuzhoy, J., Li, S.: A polylogarithimic approximation algorithm for edge-disjoint
paths with congestion 2. arXiv preprint arXiv:1208.1272 (2012)

11. Chuzhoy, J., Li, S.: A polylogarithimic approximation algorithm for edge-disjoint
paths with congestion 2. In: Proceedings of IEEE FOCS (2012)

12. Chuzhoy, J., Kim, D.H.K., Nimavat, R.: New hardness results for routing on dis-
joint paths. In: Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pp. 86–99 (2017)

13. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-stretch spanning trees.
SIAM J. Comput. 38(2), 608–628 (2008)

14. Englert, M., Gupta, A., Krauthgamer, R., Racke, H., Talgam-Cohen, I., Talwar,
K.: Vertex sparsifiers: new results from old techniques. SIAM J. Comput. 43(4),
1239–1262 (2014)

15. Frank, A.: Edge-disjoint paths in planar graphs. J. Comb. Theor. Ser. B 39(2),
164–178 (1985)

16. Garg, N., Kumar, N., Sebő, A.: Integer plane multiflow maximisation: flow-cut gap
and one-quarter-approximation. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020.
LNCS, vol. 12125, pp. 144–157. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45771-6 12

17. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

http://arxiv.org/abs/0907.3631
https://doi.org/10.1007/978-3-642-39206-1_28
https://doi.org/10.1007/978-3-642-39206-1_28
http://arxiv.org/abs/1208.1272
https://doi.org/10.1007/978-3-030-45771-6_12
https://doi.org/10.1007/978-3-030-45771-6_12

Maximum Weight EDP in Outerplanar Graphs 339

18. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and �1-embeddings
of graphs. Combinatorica 24(2), 233–269 (2004)

19. Gupta, A.: Steiner points in tree metrics don’t (really) help. SODA 1, 220–227
(2001)

20. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and
related problems. J. Comput. Syst. Sci. 67(3), 473–496 (2003)

21. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to
minimize congestion. In: Proceedings of the 15th Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 34–43 (2003)

22. Huang, C.-C., Mari, M., Mathieu, C., Schewior, K., Vygen, J.: An approximation
algorithm for fully planar edge-disjoint paths. arXiv preprint arXiv:2001.01715
(2020)

23. Kawarabayashi, K., Kobayashi, Y.: All-or-nothing multicommodity flow problem
with bounded fractionality in planar graphs. SIAM J. Comput. 47(4), 1483–1504
(2018)

24. Kleinberg, J., Tardos, E.: Approximations for the disjoint paths problem in high-
diameter planar networks. J. Comput. Syst. Sci. 57(1), 61–73 (1998)

25. Naves, G., Shepherd, B., Xia, H.: Maximum weight disjoint paths in outerplanar
graphs via single-tree cut approximators. arXiv preprint arXiv:2007.10537 (2020)

26. Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Comb.
Theor. Ser. B 31(1), 75–81 (1981)

27. Rabinovich, Y., Raz, R.: Lower bounds on the distortion of embedding finite metric
spaces in graphs. Discrete Comput. Geom 19(1), 79–94 (1998)

28. Räcke, H.: Minimizing congestion in general networks. In: Proceedings of IEEE
FOCS, pp. 43–52 (2002)

29. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in
networks. In: STOC, pp. 255–264 (2008)

30. Räcke, H., Shah, C.: Improved guarantees for tree cut sparsifiers. In: Schulz, A.S.,
Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 774–785. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44777-2 64

31. Séguin-Charbonneau, L., Shepherd, F.B.: Maximum edge-disjoint paths in planar
graphs with congestion 2. Math. Program., 1–23 (2020). https://doi.org/10.1007/
s10107-020-01513-1

32. Seymour, P.D.: Matroids and multicommodity flows. Eur. J. Comb. 2(3), 257–290
(1981)

33. Sidiropoulos, A.: Private communication (2014)

http://arxiv.org/abs/2001.01715
http://arxiv.org/abs/2007.10537
https://doi.org/10.1007/978-3-662-44777-2_64
https://doi.org/10.1007/s10107-020-01513-1
https://doi.org/10.1007/s10107-020-01513-1

A Tight Approximation Algorithm
for the Cluster Vertex Deletion Problem

Manuel Aprile1(B), Matthew Drescher2, Samuel Fiorini2, and Tony Huynh3

1 Dipartimento di Matematica, Università degli Studi di Padova, Padua, Italy
2 Département de Mathématique, Université libre de Bruxelles, Brussels, Belgium

sfiorini@ulb.ac.be
3 School of Mathematics, Monash University, Melbourne, Australia

Abstract. We give the first 2-approximation algorithm for the cluster
vertex deletion problem. This is tight, since approximating the problem
within any constant factor smaller than 2 is UGC-hard. Our algorithm
combines the previous approaches, based on the local ratio technique
and the management of true twins, with a novel construction of a “good”
cost function on the vertices at distance at most 2 from any vertex of
the input graph.

As an additional contribution, we also study cluster vertex dele-
tion from the polyhedral perspective, where we prove almost matching
upper and lower bounds on how well linear programming relaxations can
approximate the problem.

Keywords: Approximation algorithm · Cluster vertex deletion ·
Linear programming relaxation · Sherali-Adams hierarchy

1 Introduction

A cluster graph is a graph that is a disjoint union of complete graphs.
Let G be any graph. A set X ⊆ V (G) is called a hitting set if G − X is a

cluster graph. Given a graph G and (vertex) cost function c : V (G) → Q�0,
the cluster vertex deletion problem (Cluster-VD) asks to find a hitting set
X whose cost c(X) :=

∑
v∈X c(v) is minimum. We denote by OPT(G, c) the

minimum cost of a hitting set.
If G and H are two graphs, we say that G contains H if some induced

subgraph of G is isomorphic to H. Otherwise, G is said to be H-free. Denoting
by Pk the path on k vertices, we easily see that a graph is a cluster graph if and
only if it is P3-free. Hence, X ⊆ V (G) is a hitting set if and only if X contains
a vertex from each induced P3.

Cluster-VD has applications in graph modeled data clustering in which an
unknown set of samples may be contaminated. An optimal solution for Cluster-

VD can recover a clustered data model, retaining as much of the original data as

This project was supported by ERC Consolidator Grant 615640-ForEFront. Moreover,
the paper was also supported by the Belgian FNRS through grant T008720F-35293308-
BD-OCP, and by the Australian Research Council.
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 340–353, 2021.
https://doi.org/10.1007/978-3-030-73879-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_24

A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem 341

possible [15]. Vertex deletion problems such as Cluster-VD, where one seeks to
locate vertices whose removal leaves a graph with desirable properties, often arise
when measuring robustness and attack tolerance of real-life networks [1,2,16].

From what precedes, Cluster-VD is a hitting set problem in a 3-uniform
hypergraph, and as such has a “textbook” 3-approximation algorithm. Moreover,
the problem has an approximation-preserving reduction from Vertex Cover,
hence obtaining a (2 − ε)-approximation algorithm for some ε > 0 would con-
tradict either the Unique Games Conjecture or P �= NP.

The first non-trivial approximation algorithm for Cluster-VD was a 5/2-
approximation due to You, Wang and Cao [24]. Shortly afterward, Fiorini,
Joret and Schaudt gave a 7/3-approximation [9], and subsequently a 9/4-
approximation [10].

1.1 Our Contribution

In this paper, we close the gap between 2 and 9/4 = 2.25 and prove the following
tight result.

Theorem 1. Cluster-VD has a 2-approximation algorithm.

All previous approximation algorithms for Cluster-VD are based on the
local ratio technique. See the survey of Bar-Yehuda, Bendel, Freund, and Rawitz
[13] for background on this standard algorithmic technique. Our algorithm is no
exception, see Algorithm1 below. However, it significantly differs from previous
algorithms in its crucial step, namely, Step 14. In fact, almost all our efforts in
this paper focus on that particular step of the algorithm, see Theorem 2 below.

Let H be an induced subgraph of G, and let cH : V (H) → Q�0. The weighted
graph (H, cH) is said to be α-good in G (for some factor α � 1) if cH is not
identically 0 and cH(X∩V (H)) � α·OPT(H, cH) holds for every (inclusionwise)
minimal hitting set X of G. We overload terminology and say that an induced
subgraph H is α-good in G if there exists a cost function cH such that (H, cH)
is α-good in G. We stress that the local cost function cH is defined obliviously
of the global cost function c : V (G) → Q�0.

We will use two methods to establish α-goodness of induced subgraphs. We
say that (H, cH) is strongly α-good if cH is not identically 0 and cH(V (H)) �
α ·OPT(H, cH). Clearly, if (H, cH) is strongly α-good then (H, cH) is α-good in
G for every graph G which contains H. We say that H itself is strongly α-good
if (H, cH) is strongly α-good for some cost function cH .

If we cannot find a strongly α-good induced subgraph of G, we will find an
induced subgraph H that has a special vertex v0 whose neighborhood N(v0)
is entirely contained in H, and a cost function cH : V (H) → Z�0 such that
cH(v) � 1 for all vertices v in the closed neighborhood N [v0] and cH(V (H)) �
α ·OPT(H, cH) + 1. Since no minimal hitting set X can contain all the vertices
of N [v0], cH(X ∩ V (H)) � cH(V (H)) − 1 � α · OPT(H, cH) and so (H, cH) is
α-good in G. We say that (H, cH) (sometimes simply H) is centrally α-good (in
G) with respect to v0. Moreover, we call v0 the root vertex.

342 M. Aprile et al.

Algorithm 1. Cluster-VD-apx(G, c)
Input: (G, c) a weighted graph
Output: X a minimal hitting set of G
1: if G is a cluster graph then
2: X ← ∅

3: else if there exists u ∈ V (G) with c(u) = 0 then
4: G′ ← G − u
5: c′(v) ← c(v) for v ∈ V (G′)
6: X ′ ← Cluster-VD-apx(G′, c′)
7: X ← X ′ if X ′ is a hitting set of G; X ← X ′ ∪ {u} otherwise
8: else if there exist true twins u, u′ ∈ V (G) then
9: G′ ← G − u′

10: c′(u) ← c(u) + c(u′); c′(v) ← c(v) for v ∈ V (G′ − u)
11: X ′ ← Cluster-VD-apx(G′, c′)
12: X ← X ′ if X ′ does not contain u; X ← X ′ ∪ {u′} otherwise
13: else
14: find a weighted induced subgraph (H, cH) that is 2-good in G
15: λ∗ ← max{λ | ∀v ∈ V (H) : c(v) − λcH(v) � 0}
16: G′ ← G
17: c′(v) ← c(v) − λ∗cH(v) for v ∈ V (H); c′(v) ← c(v) for v ∈ V (G) \ V (H)
18: X ← Cluster-VD-apx(G′, c′)
19: end if
20: return X

In order to illustrate these ideas, consider the following two examples (see
Fig. 1). First, let H be a C4 (that is, a 4-cycle) contained in G and 1H

denote the unit cost function on V (H). Then (H,1H) is strongly 2-good, since∑
v∈V (H) 1H(v) = 4 = 2OPT(H,1H). Second, let H be a P3 contained in G,

starting at a vertex v0 that has degree-1 in G. Then (H,1H) is centrally 2-good
with respect to v0, but it is not strongly 2-good.

Each time we find a 2-good weighted induced subgraph in G, the local ratio
technique allows us to recurse on an induced subgraph G′ of G in which at least
one vertex of H is deleted from G. For example, the 2-good induced subgraphs
mentioned above allow us to reduce to input graphs G that are C4-free and have
minimum degree at least 2.

1 1

11
11 1

Fig. 1. (C4,1C4) on the left is strongly 2-good. (P3,1P3), on the right, is centrally
2-good in G with respect to the gray vertex, which has degree 1 in G.

A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem 343

In order to facilitate the search for α-good induced subgraphs, it greatly
helps to assume that G is twin-free. That is, G has no two distinct vertices u, u′

such that uu′ ∈ E(G) and for all v ∈ V (G − u − u′), uv ∈ E(G) if and only if
u′v ∈ E(G). Equivalently, u and u′ are such that N [u] = N [u′]. Two such vertices
u, u′ are called true twins. As in [9,10], our algorithm reduces G whenever it has
a pair of true twins u, u′ (see Steps 8–12). The idea is simply to add the cost of
u′ to that of u and delete u′.

The crux of our algorithm, Step 14, relies on the following structural result.
Below, we denote by N�i[v] (resp. Ni(v)) the set of vertices at distance at most
(resp. equal to) i from vertex v (we omit the subscript if i = 1).

Theorem 2. Let G be a twin-free graph, let v0 be any vertex of G, and let H be
the subgraph of G induced by N�2[v0]. There exists a cost function cH : V (H) →
Z�0 such that (H, cH) is either strongly 2-good, or centrally 2-good in G with
respect to v0. Moreover, cH can be constructed in polynomial time.

We also study Cluster-VD from the polyhedral point of view. In particular
we investigate how well linear programming (LP) relaxations can approximate
the optimal value of Cluster-VD.

Letting P3(G) denote the collection of all vertex sets {u, v, w} that induce a
P3 in G, we define P (G) := {x ∈ [0, 1]V (G) | ∀{u, v, w} ∈ P3(G) : xu+xv+xw �
1}. We let SAr(G) denote the relaxation obtained from P (G) by applying r
rounds of the Sherali-Adams hierarchy [20]. If a cost function c : V (G) → Q�0

is provided, we let SAr(G, c) := min{∑
v∈V (G) c(v)xv | x ∈ SAr(G)} denote the

optimum value of the corresponding linear programming relaxation.
It is not hard to see that the straightforward LP relaxation P (G) has worst

case integrality gap equal to 3 (by worst case, we mean that we take the supre-
mum over all graphs G). Indeed, for a random n-vertex graph, OPT(G,1G) =
n − O(log2 n) with high probability, while LP(G,1G) � n/3. We show that
the worst case integrality gap drops from 3 to 2.5 after applying one round of
Sherali-Adams.

Theorem 3. For every graph G, the integrality gap of SA1(G) is at most 5/2.
Moreover, for every ε > 0 there is some instance (G, c) of Cluster-VD such
that OPT(G, c) � (5/2 − ε)SA1(G, c).

By relying on Theorem2, we further show that the integrality gap decreases
to 2 + ε after applying poly(1/ε) rounds.

Theorem 4. For every fixed ε > 0, performing r = poly(1/ε) rounds of the
Sherali-Adams hierarchy produces an LP relaxation of Cluster-VD whose inte-
grality gap is at most 2 + ε. That is, OPT(G, c) � (2 + ε)SAr(G, c) for all
weighted graphs (G, c).

On the negative side, applying known results on Vertex Cover [5], we show
that no polynomial-size LP relaxation of Cluster-VD can have integrality gap
at most 2 − ε for some ε > 0. This result is unconditional: it does not rely on P
�= NP nor the Unique Games Conjecture. We refer the reader to the full version
of our paper [4] for precise definitions and for the proofs of Theorems 3 and 4.

344 M. Aprile et al.

1.2 Comparison to Previous Works

We now revisit all previous approximation algorithms for Cluster-VD [9,10,
24]. The presentation given here slightly departs from [9,24], and explains in a
unified manner what is the bottleneck in each of the algorithms.

Fix k ∈ {3, 4, 5}, and let α := (2k − 1)/(k − 1). Notice that α = 5/2 if k = 3,
α = 7/3 if k = 4 and α = 9/4 if k = 5. In [10, Lemma 3], it is shown that if
a twin-free graph G contains a k-clique, then one can find an induced subgraph
H containing the k-clique and a cost function cH such that (H, cH) is strongly
α-good.

Therefore, in order to derive an α-approximation for Cluster-VD, one may
assume without loss of generality that the input graph G is twin-free and has
no k-clique. Let v0 be a maximum degree vertex in G, and let H denote the
subgraph of G induced by N�2[v0]. In [10], it is shown by a tedious case analysis
that one can construct a cost function cH such that (H, cH) is 2-good in G, using
the fact that G has no k-clique.

In this paper we show that the latter assumption is not needed: one can always
construct a cost function cH that makes (H, cH) 2-good in G, provided that G is
twin-free, see Theorem 2. This result allows us to avoid laborious case-checking,
and single-handedly closes the approximability status of Cluster-VD.

1.3 Other Related Works

Cluster-VD has also been widely studied from the perspective of fixed parame-
ter tractability. Given a graph G and parameter k as input, the task is to decide
if G has a hitting set X of size at most k. A 2knO(1)-time algorithm for this
problem was given by Hüffner, Komusiewicz, Moser, and Niedermeier [15]. This
was subsequently improved to a 1.911knO(1)-time algorithm by Boral, Cygan,
Kociumaka, and Pilipczuk [7], and a 1.811knO(1)-time algorithm by Tsur [23].
By the general framework of Fomin, Gaspers, Lokshtanov, and Saurabh [11],
these parametrized algorithms can be transformed into exponential algorithms
which compute the size of a minimum hitting set for G exactly, the fastest of
which runs in time O(1.488n).

For polyhedral results, [14] gives some facet-defining inequalities of a polytope
that is affinely equivalent to the Cluster-VD polytope, as well as complete
linear descriptions for special classes of graphs.

Another related problem is the feedback vertex set problem in tournaments
(FVST). Given a tournament T with costs on the vertices, the task is to find
a minimum cost set of vertices X such that T − X does not contain a directed
cycle.

For unit costs, note that Cluster-VD is equivalent to the problem of delet-
ing as few elements as possible from a symmetric relation to obtain a transitive
relation, while FVST is equivalent to the problem of deleting as few elements
as possible from an antisymmetric and complete relation to obtain a transitive
relation.

A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem 345

In a tournament, hitting all directed cycles is equivalent to hitting all directed
triangles, so FVST is also a hitting set problem in a 3-uniform hypergraph.
Moreover, FVST is also UCG-hard to approximate to a constant factor smaller
than 2. Cai, Deng, and Zang [8] gave a 5/2-approximation algorithm for FVST,
which was later improved to a 7/3-approximation algorithm by Mnich, Williams,
and Végh [19]. Lokshtanov, Misra, Mukherjee, Panolan, Philip, and Saurabh [18]
recently gave a randomized 2-approximation algorithm, but no deterministic
(polynomial-time) 2-approximation algorithm is known. For FVST, one round
of the Sherali-Adams hierarchy actually provides a 7/3-approximation [3]. This
is in contrast with Theorem 3.

Among other related covering and packing problems, Fomin, Le, Lokshtanov,
Saurabh, Thomassé, and Zehavi [12] studied both Cluster-VD and FVST from
the kernelization perspective. They proved that the unweighted versions of both
problems admit subquadratic kernels: O(k

5
3) for Cluster-VD and O(k

3
2) for

FVST.

1.4 Overview of the Proof

We give a sketch of the proof of Theorem 2. Recall that H = G[N�2[v0]]. If the
subgraph induced by N(v0) contains a hole (that is, an induced cycle of length at
least 4), then H contains a wheel, which makes H strongly 2-good, see Lemma 1.
If the subgraph induced by N(v0) contains an induced 2P3 (that is, two disjoint
and anticomplete copies of P3), then H is strongly 2-good, see Lemma 2. This
allows us to reduce to the case where the subgraph induced by N(v0) is chordal
and 2P3-free.

Lemma5 then gives a direct construction of a cost function cH which certifies
that (H, cH) is centrally 2-good, provided that the subgraph induced by N [v0]
is twin-free. This is the crucial step of the proof. It serves as the base case of
the induction. Here, we use a slick observation due to Lokshtanov [17]: since
the subgraph induced by N(v0) is chordal and 2P3-free, it has a hitting set
that is a clique. In a previous version, our proof of Theorem2 was slightly more
complicated.

We show inductively that we can reduce to the case where the subgraph
induced by N [v0] is twin-free. The idea is to delete vertices from H to obtain
a smaller graph H ′, while preserving certain properties, and then compute a
suitable cost function cH for H, given a suitable cost function cH′ for H ′. We
delete vertices at distance 2 from v0. When this creates true twins in H, we
delete one vertex from each pair of true twins. At the end, we obtain a twin-free
induced subgraph of H[N [v0]], which corresponds to our base case.

We devote Sect. 2 to the main technical ingredients of the proof, and in
Sect. 2.4 we prove Theorem 2. Due to space constraints we omit some proofs
and details, for which we refer to the full version of our paper [4]. In particular,
[4] contains the proof that Theorem 2 implies Theorem 1, which can be proven
similarly as in [10, Proof of Theorem 1], as well as a complexity analysis of
Algorithm1.

346 M. Aprile et al.

2 Finding 2-good Induced Subgraphs

The goal of this section is to prove Theorem 2. Our proof is by induction on
the number of vertices in H = G[N≤2[v0]]. First, we quickly show that we can
assume that the subgraph induced by N(v0) is chordal and 2P3-free. Using this,
we prove the theorem in the particular case where the subgraph induced by
N [v0] is twin-free. Finally, we prove the theorem in the general case by showing
how to deal with true twins.

2.1 Restricting to Chordal, 2P3-free Neighborhoods

As pointed out earlier in the introduction, 4-cycles are strongly 2-good. This
implies that wheels of order 5 are strongly 2-good (putting a zero cost on the
apex). Recall that a wheel is a graph obtained from a cycle by adding an apex
vertex (called the center). We now show that all wheels of order at least 5 are
strongly 2-good. This allows our algorithm to restrict to input graphs such that
the subgraph induced on each neighborhood is chordal. In a similar way, we show
that we can further restrict such neighborhoods to be 2P3-free.

Lemma 1. Let H := Wk be a wheel on k � 5 vertices and center v0, let
cH(v0) := k − 5 and cH(v) := 1 for v ∈ V (H − v0). Then (H, cH) is strongly
2-good.

Proof. Notice that OPT(H, cH) � k−3 since a hitting set either contains v0 and
at least 2 more vertices, or does not contain v0 but contains k −3 other vertices.
Hence,

∑
v∈V (H) cH(v) = k − 5 + k − 1 = 2(k − 3) � 2OPT(H, cH). �	

Lemma 2. Let H be the graph obtained from 2P3 by adding a universal vertex
v0. Let cH(v0) := 2 and cH(v) := 1 for v ∈ V (H − v0). Then (H, cH) is strongly
2-good.

Proof. It is easy to check that OPT(H, cH) � 4. Thus,
∑

v∈V (H) cH(v) = 8 �
2OPT(H, cH). �	

2.2 The Twin-Free Case

Throughout this section, we assume that H is a twin-free graph with a universal
vertex v0 such that H − v0 is chordal and 2P3-free. Our goal is to construct a
cost function cH that certifies that H is centrally 2-good.

It turns out to be easier to define the cost function on V (H − v0) = N(v0)
first, and then adjust the cost of v0. This is the purpose of the next lemma. Below,
ω(G, c) denotes the maximum weight of a clique in weighted graph (G, c).

A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem 347

Lemma 3. Let H be a graph with a universal vertex v0 and H ′ := H − v0. Let
cH′ : V (H ′) → Z�1 be a cost function such that

(i) cH′(V (H ′)) � 2ω(H ′, cH′) and
(ii) OPT(H ′, cH′) � ω(H ′, cH′) − 1.

Then we can extend cH′ to a function cH : V (H) → Z�1 such that cH(V (H)) �
2OPT(H, cH)+1. In other words, (H, cH) is centrally 2-good with respect to v0.

Proof. Notice that OPT(H, cH) = min(cH(v0) + OPT(H ′, cH′), cH′(V (H ′)) −
ω(H ′, cH′)), since if X is hitting set of H that does not contain v0, then H − X
is a clique.

Now, choose cH(v0) ∈ Z�1 such that

max(1, cH′ (V (H′))− 2OPT(H′, cH′)− 1) � cH(v0) � cH′ (V (H′))− 2ω(H′, cH′) + 1. (1)

It is easy to check that such cH(v0) exists because the lower bound in (1) is at
most the upper bound, thanks to conditions (i) and (ii).

This choice satisfies cH(V (H)) � 2OPT(H, cH) + 1 since it holds both in
case OPT(H, cH) = cH(v0) +OPT(H ′, cH′) by the upper bound on cH′(V (H ′))
given by (1), and in case OPT(H, cH) = cH′(V (H ′)) − ω(H ′, cH′) by the upper
bound on cH(v0) given by (1). �	

We abuse notation and regard a clique X of a graph as both a set of vertices
and a subgraph. We call a hitting set X of a graph G a hitting clique if X is also
a clique.

Lemma 4. Every chordal, 2P3-free graph contains a hitting clique.

Proof. Let G be a chordal, 2P3-free graph. Since G is chordal, G admits a clique
tree T [6]. In T , the vertices are the maximal cliques of G and, for every two
maximal cliques K, K ′, the intersection K∩K ′ is contained in every clique of the
K–K ′ path in T . For an edge e := KK ′ of T , Let T1 and T2 be the components
of T − e and G1 and G2 be the subgraphs of G induced by the union of all the
cliques in T1 and T2, respectively. It is easy to see that deleting K ∩K ′ separates
G1 from G2 in G. Now, since G is 2P3-free, at least one of G′

1 := G1 − (K ∩ K ′)
or G′

2 := G2 − (K ∩K ′) is a cluster graph. If both G′
1 and G′

2 are cluster graphs,
we are done since K ∩ K ′ is the desired hitting clique. Otherwise, if G′

i is not
a cluster graph, then we can orient e towards Ti. Applying this argument on
each edge, we define an orientation of T , which must have a sink K0. But then
removing K0 from G leaves a cluster graph, and we are done. Since the clique
tree of a chordal graph can be constructed in polynomial time [6], the hitting
clique can be found in polynomial time. �	

We are ready to prove the base case for Theorem2.

Lemma 5. Let H be a twin-free graph with universal vertex v0 such that H −v0
is chordal and 2P3-free. There exists a cost function cH such that (H, cH) is
centrally 2-good with respect to v0. Moreover, cH can be found in time polynomial
in the size of H.

348 M. Aprile et al.

v0

H H − v0

v

Sv

Fig. 2. Here H is twin-free and the blue vertices form a hitting clique K0 for H − v0,
which is chordal and 2P3-free. For v ∈ K0, the set Sv defined as in the proof of
Lemma 5 consists of the unique maximal independent set containing v. We obtain
cH = (6, 1, 1, 1, 1, 3, 3, 3), which is easily seen to be centrally 2-good with respect to v0.

Proof. By Lemma4, some maximal clique of H − v0, say K0, is a hitting set.
We claim that there is a family of stable sets S = {Sv | v ∈ K0} of H − v0

satisfying the following properties:

(P1) every vertex of H − v0 is contained in some Sv;
(P2) for each v ∈ K0, Sv contains v and at least one other vertex;
(P3) for every two distinct vertices v, v′ ∈ K0, H[Sv ∪ Sv′] contains a P3.

Before proving the claim, we prove that it implies the lemma, making use
of Lemma 3. Consider the cost function cH′ :=

∑
v∈K0

χSv on the vertices of
H ′ := H − v0 defined by giving to each vertex u a cost equal to the number
of stable sets Sv that contain u (see Fig. 2). Let us show that cH′ satisfies the
conditions of Lemma 3 and can therefore be extended to a cost function cH on
V (H) such that (H, cH) is centrally 2-good with respect to v0.

First, by (P1), we have cH′(u) ∈ Z�1 for all u ∈ V (H ′). Second, condition
(i) of Lemma3 follows from (P2) since each stable set Sv contributes at least
two units to cH′(V (H ′)) and at most one unit to ω(H ′, cH′). Third, (P3) implies
that every hitting set of H ′ meets every stable set Sv, except possibly one.
Hence, OPT(H ′, cH′) � |K0| − 1. Also, every clique of H ′ meets every stable set
Sv in at most one vertex, implying that ω(H ′, cH′) � |K0|, and equality holds
since cH′(K0) = |K0|. Putting the last two observations together, we see that
OPT(H ′, cH′) � |K0| − 1 = ω(H ′, cH′) − 1 and hence condition (ii) of Lemma3
holds.

Now, we prove that our claim holds. Let K1, . . . ,Kt denote the clusters (max-
imal cliques) of cluster graph H − v0 − K0. For i ∈ [t], consider the submatrix
Ai of the adjacency matrix A(H) with rows indexed by the vertices of K0 and
columns indexed by the vertices of Ki.

Notice that Ai contains neither
(
1 0
0 1

)

nor
(
0 1
1 0

)

as a submatrix, as this

would give a C4 contained in H − v0, contradicting the chordality of H − v0.
Hence, after permuting its rows and columns if necessary, Ai can be assumed to
be staircase-shaped. That is, every row of Ai is nonincreasing and every column
nondecreasing. Notice also that Ai does not have two equal columns, since these
would correspond to two vertices of Ki that are true twins.

A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem 349

For each Ki that is not complete to v ∈ K0, define ϕi(v) as the vertex u ∈ Ki

whose corresponding column in Ai is the first containing a 0 in row v. Now, for
each v, let Sv be the set including v, and ϕi(v), for each Ki that is not complete
to v.

Because K is maximal, no vertex u ∈ Ki is complete to K0. Since no two
columns of Ai are identical, we must have u = ϕi(v) for some v ∈ K0. This
proves (P1).

Notice that v ∈ Sv by construction and that |Sv| � 2 since otherwise, v
would be universal in H and thus a true twin of v0. Hence, (P2) holds.

Finally, consider any two distinct vertices v, v′ ∈ K0. Since v, v′ are not true
twins, the edge vv′ must be in a P3 contained in H − v0. Assume, without loss
of generality, that there is a vertex u ∈ Ki adjacent to v and not to v′ for some
i ∈ [t]. Then {v, v′, ϕi(v′)} induces a P3 contained in H[Sv ∪ Sv′], proving (P3).
This concludes the proof of the claim.

We remark that the cost function cH can be computed in polynomial time.
We first obtain efficiently the collection S, hence the restriction of cH to H ′, and
then just let cH(v0) := cH′(V (H ′))− 2ω(H ′, cH′) + 1 = cH′(V (H ′))− 2|K0|+1.
This sets cH(v0) to its upper bound in (1), see the proof of Lemma 3. �	

2.3 Handling True Twins in G[N [v0]]

We now deal with the general case where G[N [v0]] contains true twins. We start
with an extra bit of terminology relative to true twins. Let G be a twin-free
graph, and v0 ∈ V (G). Suppose that u, u′ are true twins in G[N [v0]]. Since G is
twin-free, there exists a vertex v that is adjacent to exactly one of u, u′. We say
that v is a distinguisher for the edge uu′ (or for the pair {u, u′}). Notice that
either uu′v or u′uv is an induced P3. Notice also that v is at distance 2 from v0.

Now, consider a graph H with a special vertex v0 ∈ V (H) (the root vertex)
such that

(H1) every vertex is at distance at most 2 from v0, and
(H2) every pair of vertices that are true twins in H[N [v0]] has a distinguisher.

Let v be any vertex that is at distance 2 from v0. Consider the equivalence
relation ≡ on N [v0] with u ≡ u′ whenever u = u′ or u, u′ are true twins in H −v.
Observe that the equivalence classes of ≡ are of size at most 2 since, if u, u′, u′′

are distinct vertices with u ≡ u′ ≡ u′′, then v cannot distinguish every edge of
the triangle on u, u′ and u′′. Hence, two of these vertices are true twins in H,
which contradicts (H2).

From what precedes, the edges contained in N [v0] that do not have a distin-
guisher in H − v form a matching M := {u1u

′
1, . . . , uku

′
k} (possibly, k = 0). Let

H ′ denote the graph obtained from H by deleting v and exactly one endpoint
from each edge of M . Notice that the resulting subgraph is the same, up to
isomorphism, no matter which endpoint is chosen.

The lemma below states how we can obtain a cost function cH that certifies
that H is centrally 2-good from a cost function cH′ that certifies that H ′ is

350 M. Aprile et al.

centrally 2-good. It is inspired by [10, Lemma 3]. We defer the proof to [4]. See
Fig. 3 for an example.

Lemma 6. Let H be any graph satisfying (H1) and (H2) for some v0 ∈ V (H).
Let v ∈ N2(v0). Let M := {u1u

′
1, . . . , uku

′
k} be the matching formed by the edges

in N [v0] whose unique distinguisher is v, where u′
i �= v0 for all i (we allow

the case k = 0). Let H ′ := H − u′
1 − · · · − u′

k − v. Given a cost function cH′

on V (H ′), define a cost function cH on V (H) by letting cH(u′
i) := cH′(ui) for

i ∈ [k], cH(v) :=
∑k

i=1 cH′(ui) =
∑k

i=1 cH(u′
i), and cH(u) := cH′(u) otherwise.

First, H ′ satisfies (H1) and (H2). Second, if (H ′, cH′) is centrally 2-good, then
(H, cH) is centrally 2-good.

v

v0 H H − v H

Fig. 3. H − v violates (H2), and contains two pairs of true twins, indicated by the red
edges. Lemma 6 applies. We see that H ′ is a P3, for which Lemma 5 gives cH′ = 1H′ .
In (H, cH), all vertices get a unit cost except v, which gets a cost of 2, since there are 2
pairs of true twins in H − v. Thus we obtain cH = (1, 2, 1, 1, 1, 1). (Color figure online)

2.4 Putting Things Together

We are ready to prove Theorem2.

Proof (of Theorem 2). We can decide in polynomial time (see for instance [22])
if H[N(v0)] is chordal, and if not, output a hole of H[N(v0)]. If the latter holds,
we are done by Lemma 1. If the former holds, we can decide in polynomial time
(see [21], and the proof of Lemma 4) whether H contains a 2P3. If it does, we
are done by Lemma 2.

From now on, assume that the subgraph induced by N(v0) is chordal and
2P3-free. This is done without loss of generality. Notice that hypotheses (H1)
and (H2) from Sect. 2.3 hold for H. This is obvious for (H1). To see why (H2)
holds, remember that G is twin-free. Hence, every edge uu′ contained in N [v0]
must have a distinguisher in G, which is in N�2[v0]. (In fact, notice that if u and
u′ are true twins in H[N [v0]] then the distinguisher is necessarily in N2(v0).)

We repeatedly apply Lemma 6 in order to delete each vertex of N2(v0) one
after the other and reduce to the case where H is a twin-free graph for which v0
is universal. We can then apply Lemma 5. The whole process takes polynomial
time. �	

A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem 351

3 Conclusion

In this paper we provide a tight approximation algorithm for the cluster vertex
deletion problem (Cluster-VD). Our main contribution is the efficient con-
struction of a local cost function on the vertices at distance at most 2 from any
vertex v0 such that every minimal hitting set of the input graph has local cost
at most twice the local optimum. If the subgraph induced by N(v0) (the first
neighborhood of v0) contains a hole, or a 2P3, then this turns out to be straight-
forward. The most interesting case arises when the local subgraph H is twin-free,
has radius 1, and moreover H[N(v0)] = H − v0 is chordal and 2P3-free. Such
graphs are very structured, which we crucially exploit.

Lemma3 allows us to define the local cost function on the vertices distinct
from v0 and then later adjust the cost of v0. We point out that condition (ii) basi-
cally says that the local cost function should define a hyperplane that “almost”
separates the hitting set polytope and the clique polytope of the chordal, 2P3-free
graph H − v0. This was a key intuition which led us to the proof of Theorem 2.
If these polytopes were disjoint, this would be easy. But actually this is not the
case since they have a common vertex (as we show, H − v0 has a hitting clique).

One natural question arising from our approach of Cluster-VD in gen-
eral graphs is the following: is the problem polynomial-time solvable on chordal
graphs? What about chordal, 2P3-free graphs? We propose this last question as
our first open question.

Our second contribution is to study the Cluster-VD problem from the
polyhedral point of view, in particular with respect to the tightness of the
Sherali-Adams hierarchy. Our results on Sherali-Adams fail to match the 2-
approximation factor of our algorithm (by epsilon), and we suspect this is not
by chance. We believe that, already for certain classes of triangle-free graphs,
the LP relaxation given by a bounded number of rounds of the Sherali-Adams
hierarchy has an integrality gap strictly larger than 2. Settling this is our second
open question.

Acknowledgements. We are grateful to Daniel Lokshtanov for suggesting Lemma4,
which allowed us to simplify our algorithm and its proof.

References

1. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378–382 (2000)

2. Aprile, M., Castro, N., Ferreira, G., Piccini, J., Robledo, F., Romero, P.: Graph
fragmentation problem: analysis and synthesis. Int. Trans. Oper. Res. 26(1), 41–53
(2019)

3. Aprile, M., Drescher, M., Fiorini, S., Huynh, T.: A simple 7/3-approximation algo-
rithm for feedback vertex set in tournaments. arXiv preprint arXiv:2008.08779
(2020)

4. Aprile, M., Drescher, M., Fiorini, S., Huynh, T.: A tight approximation algorithm
for the cluster vertex deletion problem. arXiv preprint arXiv:2007.08057 (2020)

http://arxiv.org/abs/2008.08779
http://arxiv.org/abs/2007.08057

352 M. Aprile et al.

5. Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No small linear program approx-
imates vertex cover within a factor 2− ε. Math. Oper. Res. 44(1), 147–172 (2019)

6. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In:
George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix
Computation. The IMA Volumes in Mathematics and its Applications, vol. 56.
Springer, New York (1993). https://doi.org/10.1007/978-1-4613-8369-7_1

7. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm
for cluster vertex deletion. Theor. Comput. Syst. 58(2), 357–376 (2016)

8. Cai, M.-C., Deng, X., Zang, W.: An approximation algorithm for feedback vertex
sets in tournaments. SIAM J. Comput. 30(6), 1993–2007 (2001)

9. Fiorini, S., Joret, G., Schaudt, O.: Improved approximation algorithms for hit-
ting 3-vertex paths. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS,
vol. 9682, pp. 238–249. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33461-5_20

10. Fiorini, S., Joret, G., Schaudt, O.: Improved approximation algorithms for hitting
3-vertex paths. Math. Program. 182(1–2, Ser. A), 355–367 (2020)

11. Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via mono-
tone local search. J. ACM 66(2), 23 (2019)

12. Fomin, F.V., Le, T., Lokshtanov, D., Saurabh, S., Thomassé, S., Zehavi, M.: Sub-
quadratic kernels for implicit 3-hitting set and 3-set packing problems. ACM Trans.
Algorithms 15(1), 13:1–13:44 (2019)

13. Freund, A., Bar-Yehuda, R., Bendel, K.: Local ratio: a unified framework for
approximation algorithms. ACM Comput. Surv. 36, 422–463 (2005)

14. Hosseinian, S., Butenko, S.: Polyhedral properties of the induced cluster subgraphs.
arXiv preprint arXiv:1904.12025 (2019)

15. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theor. Comput. Syst. 47(1), 196–217 (2010)

16. Jahanpour, E., Chen, X.: Analysis of complex network performance and heuristic
node removal strategies. Commun. Nonlinear Sci. Numer. Simul. 18(12), 3458–3468
(2013)

17. Lokshtanov, D.: Personal communication
18. Lokshtanov, D., Misra, P., Mukherjee, J., Panolan, F., Philip, G., Saurabh, S.:

2-approximating feedback vertex set in tournaments. In: Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1010–1018. SIAM
(2020)

19. Mnich, M., Williams, V.V., Végh, L.A.: A 7/3-approximation for feedback ver-
tex sets in tournaments. In: Sankowski, P., Zaroliagis, C.D. (eds.) 24th Annual
European Symposium on Algorithms, ESA 2016. LIPICS, Aarhus, Denmark, 22–
24 August 2016, vol. 57, pp. 67:1–67:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2016)

20. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete
Math. 3(3), 411–430 (1990)

21. Tarjan, R.E.: Decomposition by clique separators. Discret. Math. 55(2), 221–232
(1985)

https://doi.org/10.1007/978-1-4613-8369-7_1
https://doi.org/10.1007/978-3-319-33461-5_20
https://doi.org/10.1007/978-3-319-33461-5_20
http://arxiv.org/abs/1904.12025

A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem 353

22. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984)

23. Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. CoRR,
abs/1901.07609 (2019)

24. You, J., Wang, J., Cao, Y.: Approximate association via dissociation. Discret. Appl.
Math. 219, 202–209 (2017)

Fixed Parameter Approximation Scheme
for Min-Max k-Cut

Karthekeyan Chandrasekaran and Weihang Wang(B)

University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
{karthe,weihang3}@illinois.edu

Abstract. We consider the graph k-partitioning problem under the
min-max objective, termed as Minmax k-cut. The input here is a graph
G = (V, E) with non-negative edge weights w : E → R+ and an integer
k ≥ 2 and the goal is to partition the vertices into k non-empty parts
V1, . . . , Vk so as to minimize maxk

i=1 w(δ(Vi)). Although minimizing the
sum objective

∑k
i=1 w(δ(Vi)), termed as Minsum k-cut, has been stud-

ied extensively in the literature, very little is known about minimizing
the max objective. We initiate the study of Minmax k-cut by showing
that it is NP-hard and W[1]-hard when parameterized by k, and design
a parameterized approximation scheme when parameterized by k. The
main ingredient of our parameterized approximation scheme is an exact

algorithm forMinmax k-cut that runs in time (λk)O(k2)nO(1), where λ is
the value of the optimum and n is the number of vertices. Our algorithmic
technique builds on the technique of Lokshtanov, Saurabh, and Suria-
narayanan (FOCS, 2020) who showed a similar result for Minsum k-cut.
Our algorithmic techniques are more general and can be used to obtain
parameterized approximation schemes for minimizing �p-norm measures
of k-partitioning for every p ≥ 1.

Keywords: k-cut · Min-max objective · Parameterized approximation
scheme

1 Introduction

Graph partitioning problems are fundamental for their intrinsic theoretical value
as well as applications in clustering. In this work, we consider graph partitioning
under the minmax objective. The input here is a graph G = (V,E) with non-
negative edge weights w : E → R+ along with an integer k ≥ 2 and the goal is to
partition the vertices of G into k non-empty parts V1, . . . , Vk so as to minimize
maxk

i=1 w(δ(Vi)); here, δ(Vi) is the set of edges which have exactly one end-vertex
in Vi and w(δ(Vi)) :=

∑
e∈δ(Vi)

w(e) is the total weight of edges in δ(Vi). We refer
to this problem as Minmax k-cut.

Motivations. Minmax objective for optimization problems has an extensive lit-
erature in approximation algorithms. It is relevant in scenarios where the goal is

Supported in part by NSF grants CCF-1814613 and CCF-1907937.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 354–367, 2021.
https://doi.org/10.1007/978-3-030-73879-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_25

Fixed Parameter Approximation Scheme for Min-Max K-Cut 355

to achieve fairness/balance—e.g., load balancing in multiprocessor scheduling,
discrepancy minimization, min-degree spanning tree, etc. In the context of graph
cuts and partitioning, recent works (e.g., see [1,7,19]) have proposed and studied
alternative minmax objectives that are different from Minmax k-cut.

The complexity of Minmax k-cut was also raised as an open problem by
Lawler [22]. Given a partition V1, . . . , Vk of the vertex set of an input graph, one
can measure the quality of the partition in various natural ways. Two natural
measures are (i) the max objective given by maxk

i=1 w(δ(Vi)) and (ii) the sum
objective given by

∑k
i=1 w(δ(Vi)). We will discuss other �p-norm measures later.

Once a measure is defined, a corresponding optimization problem involves finding
a partition that minimizes the measure. We will denote the optimization problem
where the goal is to minimize the sum objective as Minsum k-cut.

Minsum k-cut and Prior Works. The objectives in Minmax k-cut and
Minsum k-cut for k = 2 coincide owing to the symmetric nature of the graph
cut function (i.e., w(δ(S)) = w(δ(V \S)) for all S ⊆ V) but the objectives differ
for k ≥ 3. Minsum k-cut has been studied extensively in the algorithms com-
munity leading to fundamental graph structural results. We briefly recall the
literature on Minsum k-cut.

Goldschmidt and Hochbaum [13,14] showed that Minsum k-cut is NP-hard
when k is part of input by a reduction from CLIQUE and designed the first
polynomial time algorithm for fixed k. Their algorithm runs in time nO(k2),
where n is the number of vertices in the input graph. Subsequently, Karger
and Stein [20] gave a random contraction based algorithm that runs in time
Õ(n2k−2). Thorup [30] gave a tree-packing based deterministic algorithm that
runs in time Õ(n2k). The last couple of years has seen renewed interests in
Minsum k-cut with exciting progress [8,10,15–18,23,25]. Very recently, Gupta,
Harris, Lee, and Li [15,18] have shown that the Karger-Stein algorithm in fact
runs in Õ(nk) time; n(1−o(1))k seems to be a lower bound on the run-time of
any algorithm [23]. The hardness result of Goldschmidt and Hochbaum as well
as their algorithm inspired Saran and Vazirani [27] to consider Minsum k-cut
when k is part of input from the perspective of approximation. They showed
the first polynomial-time 2-approximation for Minsum k-cut. Alternative 2-
approximations have also been designed subsequently [26,31]. For k being a part
of the input, Manurangsi [25] showed that there does not exist a polynomial-
time (2−ε)-approximation for any constant ε > 0 under the Small Set Expansion
Hypothesis.

Minsum k-cut has also been investigated from the perspective of fixed-
parameter algorithms. It is known that Minsum k-cut when parameterized by
k is W[1]-hard and does not admit a f(k)no(1)-time algorithm for any func-
tion f(k) [9,12]. Motivated by this hardness result and Manurangsi’s (2 − ε)-
inapproximability result, Gupta, Lee, and Li [16] raised the question of whether
there exists a parameterized approximation algorithm for Minsum k-cut when
parameterized by k, i.e., can one obtain a (2 − ε)-approximation in time
f(k)nO(1) for some constant ε > 0? As a proof of concept, they designed
a 1.9997-approximation algorithm that runs in time 2O(k6)nO(1) [16] and a

356 K. Chandrasekaran and W. Wang

(1 + ε)-approximation algorithm that runs in time (k/ε)O(k)nk+O(1) [17]. Subse-
quently, Kawarabayashi and Lin [21] designed a (5/3 + ε)-approximation algo-
rithm that runs in time 2O(k2 log k)nO(1). This line of work culminated in a param-
eterized approximation scheme when parameterized by k—Lokshtanov, Saurabh,
and Surianarayanan [24] designed a (1 + ε)-approximation algorithm that runs
in time (k/ε)O(k)nO(1). We emphasize that, from the perspective of algorithm
design, a parameterized approximation scheme is more powerful than a param-
eterized approximation algorithm.

Fixed-terminal Variants. A natural approach to solve both Minmax k-cut and
Minsum k-cut is to solve their fixed-terminal variants: The input here is a graph
G = (V,E) with non-negative edge weights w : E → R+ along with k terminals
v1, . . . , vk ∈ V and the goal is to partition the vertices into k parts V1, . . . , Vk

such that vi ∈ Vi for every i ∈ [k] so as to minimize the measure of interest for
the partition. The fixed-terminal variant of Minsum k-cut, popularly known as
Multiway cut, is NP-hard for k ≥ 3 [11] and has a rich literature. It admits a
1.2965 approximation [28] and does not admit a (1.20016− ε)-approximation for
any constant ε > 0 under the unique games conjecture [4]. The fixed-terminal
variant of Minmax k-cut, known as Minmax Multiway cut, is NP-hard for
k ≥ 4 [29] and admits an O(

√
log n log k)-approximation [2]. Although fixed-

terminal variants are natural approaches to solve global cut problems (similar
to using min {s, t}-cut to solve global min-cut), they have two limitations: (1)
they are not helpful when k is part of input and (2) even for fixed k, they do
not give the best algorithms (e.g., even for k = 3, Multiway cut is NP-hard
while Minsum k-cut is solvable in polynomial time as discussed above).

Minmax k-cut vs Minsum k-cut. There is a fundamental structural dif-
ference between Minmax k-cut and Minsum k-cut. Optimal solutions to
Minsum k-cut satisfy a nice property: assuming that the input graph is con-
nected, every part in an optimal partition for Minsum k-cut induces a connected
subgraph. Hence, Minsum k-cut is also phrased as the problem of finding a min-
imum weight subset of edges to remove so that the resulting graph contains at
least k connected components. However, this nice property does not hold for
Minmax k-cut as illustrated by the example in Fig. 1.

Minmax k-cut for Fixed k. For fixed k, there is an easy approach to solve
Minmax k-cut based on the following observation: For a given instance, an opti-
mum solution to Minmax k-cut is a k-approximate optimum to Minsum k-cut.
The randomized algorithm of Karger and Stein implies that the number of k-
approximate solutions to Minsum k-cut is nO(k2) and they can all be enumer-
ated in polynomial time [15,18,20] (also see [8]). These two facts immediately
imply that Minmax k-cut can be solved in nO(k2) time. We recall that the
graph cut function is symmetric and submodular.1 In an upcoming work, Chan-
drasekaran and Chekuri [5] show that the more general problem of min-max

1 A function f : 2V → R is symmetric if f(S) = f(V \ S) for all S ⊆ V and is
submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B).

Fixed Parameter Approximation Scheme for Min-Max K-Cut 357

Fig. 1. An example where the unique optimum partition for Minmax k-cut for k = 5
induces a disconnected part. The edge weights are as shown. The unique optimum
partition for Minmax 5-cut is ({u1, u2}, {v1}, {v2}, {v3}, {v4}).

symmetric submodular k-partition2 is also solvable in time nO(k2)T , where n is
the size of the ground set and T is the time to evaluate the input submodular
function on a given set.

1.1 Results

In this work, we focus on Minmax k-cut when k is part of input. We first show
that Minmax k-cut is strongly NP-hard. Our reduction also implies that it is
W[1]-hard when parameterized by k, i.e., there does not exist a f(k)nO(1)-time
algorithm for any function f(k).

Theorem 1. Minmax k-cut is strongly NP-hard and W[1]-hard when param-
eterized by k.

Our hardness reduction also implies that Minmax k-cut does not admit
an algorithm that runs in time no(k) assuming the exponential time hypothesis.
Given the hardness result, it is natural to consider approximations and fixed-
parameter tractability. Using the known 2-approximation for Minsum k-cut and
the observation that the optimum value of Minsum k-cut is at most k times
the optimum value of Minmax k-cut, it is easy to get a (2k)-approximation for
Minmax k-cut. An interesting open question is whether we can improve the
approximability.

The hardness results also raise the question of whether Minmax k-cut
admits a parameterized approximation algorithm when parameterized by k or,
going a step further, does it admit a parameterized approximation scheme when
parameterized by k? We resolve this question affirmatively by designing a param-
eterized approximation scheme. Let G = (V,E) be a graph with non-negative
edge weights w : E → R+. We write G to denote the unit-weight version of

2 In the min-max symmetric submodular k-partition problem, the input is a symmetric
submodular function f : 2V → R given by an evaluation oracle, and the goal is to
partition the ground set V into k non-empty parts V1, . . . , Vk so as to minimize
maxk

i=1 f(Vi).

358 K. Chandrasekaran and W. Wang

the graph (i.e., the unweighted graph) and Gw to denote the graph with edge
weights w. We emphasize that the unweighted graph could have parallel edges.
For a partition (V1, . . . , Vk) of V , we define

costGw
(V1, . . . , Vk) := max {w(δ(Vi)) : i ∈ [k]} .

We will denote the minimum cost of a k-partition in Gw by OPT(Gw, k). The
following is our algorithmic result showing that Minmax k-cut admits a param-
eterized approximation scheme when parameterized by k.

Theorem 2. There exists a randomized algorithm that takes as input an
instance of Minmax k-cut, namely an n-vertex graph G = (V,E) with edge
weights w : E → R≥0 and an integer k ≥ 2, along with an ε ∈ (0, 1), and runs in
time (k/ε)O(k2)nO(1) log(maxe∈E w(e)) to return a partition P of the vertices of
G with k non-empty parts such that costGw

(P) ≤ (1 + ε)OPT(Gw, k) with high
probability.

We note that log(maxe∈E w(e)) is polynomial in the size of the input. The-
orem 2 can be viewed as the counterpart of the parameterized approximation
scheme for Minsum k-cut due to Lokshtanov, Saurabh, and Surianarayanan
[24] but for Minmax k-cut. The central component of our parameterized-
approximation scheme given in Theorem 2 is the following result which shows
a fixed-parameter algorithm for Minmax k-cut in unweighted graphs when
parameterized by k and the solution size.

Theorem 3. There exists a deterministic algorithm that takes as input an
unweighted instance of Minmax k-cut, namely an n-vertex graph G =
(V,E) and an integer k ≥ 2, along with an integer λ, and runs in time
(kλ)O(k2)nO(1) to determine if there exists a k-partition (V1, . . . , Vk) of V such
that costG(V1, . . . , Vk) ≤ λ and if so, then finds an optimum.

We emphasize that the algorithm in Theorem 3 is deterministic while the algo-
rithm in Theorem 2 is randomized.

1.2 Outline of Techniques

Our NP-hardness and W[1]-hardness results for Minmax k-cut are based on a
reduction from the clique problem. Our reduction is an adaptation of Downey
et al.’s reduction [12] from the clique problem to Minsum k-cut.

Our randomized algorithm for Theorem 2 essentially reduces the input
weighted instance of Minmax k-cut to an instance where Theorem 3 can be
applied: we reduce the instance to an unweighted instance with optimum value
O((k/ε3)) log n, i.e., the optimum value is logarithmic in the number of vertices.
Moreover, the reduction runs in time 2O(k)(n/ε)O(1) log OPT(Gw, k). Applying
Theorem 3 to the reduced instance yields a run-time of

((
k2

ε3

)

log n

)O(k2)

nO(1) =
(

k

ε

)O(k2)

(log n)O(k2)nO(1)

=
(

k

ε

)O(k2)

(kO(k2) + n)nO(1) =
(

k

ε

)O(k2)

nO(1).

Fixed Parameter Approximation Scheme for Min-Max K-Cut 359

Hence, the total run-time is (k/ε)O(k2)nO(1) log OPT(Gw, k) (including the
reduction time), thereby proving Theorem 2.

We now briefly describe the reduction to an unweighted instance with loga-
rithmic optimum: (i) Firstly, we do a standard knapsack PTAS-style rounding
procedure to convert the instance to an unweighted instance with a (1+ε)-factor
loss. (ii) Secondly, we delete cuts with small value to ensure that all connected
components in the graph have large min-cut value, i.e., have min-cut value at
least εOPT/k—this deletion procedure can remove at most εOPT edges and
hence, a (1 + ε)-approximate solution in the resulting graph gives a (1 + O(ε))-
approximate solution in the original graph. (iii) Finally, we do a random sam-
pling of edges with probability q := Θ(k log n/(ε3OPT)). This gives a subgraph
that preserves all cut values within a (1 ± ε)-factor when scaled by q with high
probability [3]. The preservation of all cut values also implies that the optimum
value to Minmax k-cut is also preserved within a (1 ± ε)-factor. The scaling
factor of q allows us to conclude that the optimum in the subsampled graph is
O((k/ε3)) log n. We note that this three step reduction recipe follows the ideas
of [24] who designed a parameterized approximation scheme for Minsum k-cut.
Our contribution to the reduction is simply showing that their reduction ideas
also apply to Minmax k-cut.

The main contribution of our work is in proving Theorem 3, i.e., giving a
fixed-parameter algorithm for Minmax k-cut when parameterized by k and the
solution size. We discuss this now. At a high-level, we exploit the tools developed
by [24] who designed a dynamic program based fixed-parameter algorithm for
Minsum k-cut when parameterized by k and the solution size. Our algorithm
for Minmax k-cut is also based on a dynamic program. However, since we are
interested in the minmax objective, the subproblems in our dynamic program are
completely different from that of [24]. We begin with the observation that an opti-
mum solution to Minmax k-cut is a k-approximate optimum to Minsum k-cut.
This observation and the tree packing approach for Minsum k-cut due to [8]
allows us to obtain, in polynomial time, a spanning tree T of the input graph
such that the number of edges of the tree crossing a Minmax k-cut optimum
partition is O(k2). We will call a partition Π with O(k2) edges of the tree T
crossing Π to be a T -feasible partition. Next, we use the tools of [24] to generate,
in polynomial time, a suitable tree decomposition of the input graph—let us call
this a good tree decomposition. The central intuition underlying our algorithm
is to use the spanning tree T to guide a dynamic program on the good tree
decomposition.

As mentioned before, our dynamic program is different from that of [24].
We now sketch the sub-problems in our dynamic program. For simplicity, we
assume that we have a value λ ≥ OPT(G, k). We call a partition P of a set
S to be a k-subpartition if P has at most k non-empty parts. The adhesion of
a tree node t in the tree decomposition, denoted At, is the intersection of the
bag corresponding to t with that of its parent (the adhesion of the root node
of the tree decomposition is the empty set). The good tree decomposition that
we generate has low adhesion, i.e., the adhesion size is O(λk) for every tree

360 K. Chandrasekaran and W. Wang

node. In order to define our sub-problems for a tree node t, we consider the
set FAt of all possible k-subpartitions of the adhesion At and which can be
extended to a T -feasible partition of the entire vertex set. A simple counting
argument shows that |FAt | = (λk)O(k2). Now consider a Boolean function ft :
FAt × {0, 1, . . . , λ}k × {

0, 1, . . . , 2k2
} → {0, 1}. We note that the domain of

the function is small, i.e., the domain has size (λk)O(k2). Let (PAt
, x̄, d) denote

an argument/input to the function. The function aims to determine if there
exists a k-subpartition P of the union of the bags descending from t in the tree
decomposition (call this set of vertices to be Vt) so that (i) the restriction of the
partition P to At is exactly PAt

(ii) the number of edges crossing the i’th part
of P in the subgraph G[Vt] is exactly xi for all i ∈ [k], and (iii) the number of
tree edges crossing the partition P whose both endpoints are in Vt is at most
d. It is easy to see that if we can compute such a function fr for the root node
r of the tree decomposition, then it can be used to find the optimum value of
Minmax k-cut, namely OPT(G, k).

However, we are unable to solve the sub-problem (i.e., compute such a func-
tion ft) based on the sub-problem values of the children of t. On the one hand,
given an arbitrary optimal partition Ω to Minmax k-cut, restricting Ω to Vt

yields a partition P that satisfies (i) (ii), and (iii) above for some choice of PAt
,

x̄, and d. On the other hand, a partition P of Vt satisfying (i) (ii), and (iii) for
some choice of PAt

, x̄, and d does not necessarily extend to an optimal partition
of V . Therefore, identifying all inputs (PAt

, x̄, d) for which there exists a parti-
tion satisfying (i) (ii), and (iii) is not necessary for our purpose. Instead, for a
fixed optimal partition Ω, it suffices if our ft function evaluates to 1 on inputs
(PAt

, x̄, d) for which (i) (ii), and (iii) are satisfied by the partition obtained by
restricting Ω to Vt.

To identify partitions of Vt that potentially extend to Ω, for tree node t with
bag χ(t), we construct a family D of nice decompositions such that D is small-
sized (i.e., with |D| = (λk)O(k2)nO(1)). A nice decomposition is a triple of the
form (O,Pχ(t),Qχ(t)) satisfying certain properties (which are slightly different
from the properties used in [24]). Here, O is a subset of χ(t) and Pχ(t),Qχ(t) are
partitions of χ(t), where Qχ(t) refines Pχ(t). The constructed family D is such
that at least one of the Qχ(t) partitions in D is a refinement of a restriction of Ω to
χ(t). By induction hypothesis, we know that ft′(PAt′ , x̄

′, d′) = 1 for all children
t′ of t and all inputs (PAt′ , x̄

′, d′) for which the restriction of Ω to Vt′ satisfies
(i) (ii), and (iii). In order to set ft(PAt

, x̄, d) = 1 for all inputs (PAt
, x̄, d) for

which the restriction of Ω to Vt satisfies (i) (ii), and (iii), it suffices to consider
all inputs (PAt

, x̄, d) for which there exists a partition P of Vt satisfying (i)
(ii), and (iii) such that (a) the restriction of P to χ(t) coarsens Qχ(t) for some
Qχ(t) in D and (b) for all children t′ of t, the restriction of P to χ(t′) gives
a partition satisfying (i) (ii), and (iii) for some input (PAt′ , x̄

′, d′). Therefore,
the family D of nice decompositions and the ft′ values for all children t′ of t
together suffice to identify all inputs (PAt

, x̄, d) that correspond to a restriction
of Ω to Vt satisfying (i) (ii), and (iii). To expedite this process, for each nice
decomposition (O,Pχ(t),Qχ(t)), we use the set O and the partition Pχ(t) to limit

Fixed Parameter Approximation Scheme for Min-Max K-Cut 361

the number of coarsenings of Qχ(t) to be considered. During this process, every
time ft(PAt

, x̄, d) is set to 1 for some input (PAt
, x̄, d), we can only guarantee that

there is an actual partition of Vt satisfying (i) (ii), and (iii) (but that partition
is not necessarily the restriction of Ω to Vt). However, if the restriction of Ω to
Vt indeed satisfies (i) (ii), and (iii) for some input (PAt

, x̄, d), then the process
will indeed set ft(PAt

, x̄, d) to 1.
To formalize our tolerance of this one-sided error in the dynamic program,

we define the notion of f -correctness and f -soundness for the function ft (see
Definition 6 and Proposition 1). We show that this weaker goal of computing
an f -correct and f -sound function ft based on f -correct and f -sound functions
ft′ for all children t′ of t can be achieved in time (λk)O(k2)nO(1) (see Lemma 4).
Since the domain of the function is of size (λk)O(k2) and the tree decomposition
is polynomial in the size of the input, the total number of sub-problems that we
solve in the dynamic program is (λk)O(k2)nO(1), thus proving Theorem 3.

One of our main contributions beyond the techniques of [24] is the introduc-
tion of the clean notions of f -correctness and f -soundness in the sub-problems of
the dynamic program and combining them to address the minmax objective. An
advantage of our dynamic program (in contrast to that of [24]) is that it is also
applicable for alternative norm-based measures of k-partitions: here, the goal is
to find a k-partition of the vertex set of the given edge-weighted graph so as
to minimize (

∑k
i=1 w(δ(Vi))p)1/p—we call this as Min �p-norm k-cut. We note

that Minmax k-cut is exactly Min �∞-norm k-cut while Minsum k-cut is
exactly Min �1-norm k-cut. Our dynamic program can also be used to obtain
the counterpart of Theorem 3 for Min �p-norm k-cut for every p ≥ 1. This
result in conjunction with the reduction to unweighted instances (which can be
shown to hold for Min �p-norm k-cut) also leads to a parameterized approxi-
mation scheme for Min �p-norm k-cut for every p ≥ 1.

Organization. We set up the tools to prove Theorem 3 in Sect. 2. We sketch a
proof of Theorem 3 in Sect. 3. We refer the reader to the full version of this work
[6] for all missing proofs (including Theorems 1 and 2). We conclude with a few
open questions in Sect. 4.

2 Tools for the Fixed-Parameter Algorithm

Let G = (V,E) be a graph. Throughout this work, we consider a partition to be
an ordered tuple of non-empty subsets. An ordered tuple of subsets (S1, . . . , Sk),
where Si ⊆ V for all i ∈ [k], is a k-subpartition of V if S1 ∪ . . . ∪ Sk = V and
Si ∩ Sj = ∅ for every pair of distinct i, j ∈ [k]. We emphasize the distinction
between partitions and k-subpartitions—in a partition, all parts are required to
be non-empty but the number of parts can be fewer than k while a k-subpartition
allows for empty parts but the number of parts is exactly k.

For a subgraph H ⊆ G, a subset X ⊆ V , and a partition/k-subpartition P
of X, we use δH(P) to denote the set of edges in E(H) whose end-vertices are
in different parts of P. For a subgraph H of G and a subset S ⊆ V (H), we use

362 K. Chandrasekaran and W. Wang

δH(S) to denote the set of edges in H with exactly one end-vertex in S. We will
denote the set of (exclusive) neighbors of a subset S of vertices in the graph G
by NG(S). We need the notion of a tree decomposition.

Definition 1. Let G = (V,E) be a graph. A pair (τ, χ), where τ is a tree and
χ : V (τ) → 2V is a mapping of the nodes of the tree to subsets of vertices of the
graph, is a tree decomposition of G if the following conditions hold:

(i) ∪t∈V (τ)χ(t) = V ,
(ii) for every edge e = uv ∈ E, there exists some t ∈ V (τ) such that u, v ∈ χ(t),

and
(iii) for every v ∈ V , the set of nodes {t ∈ V (τ) : v ∈ χ(t)} induces a connected

subtree of τ .

For each t ∈ V (τ), we call χ(t) to be a bag of the tree decomposition.

We now describe certain notations that will be helpful while working with the
tree decomposition. Let (τ, χ) be the tree decomposition of the graph G = (V,E).
We root τ at an arbitrary node r ∈ V (τ). For a tree node t ∈ V (τ)\{r}, there
is a unique edge between t and its parent. Removing this edge disconnects τ
into two subtrees τ1 and τ2, and we say that the set At := χ(τ1) ∩ χ(τ2) is the
adhesion associated with t. For the root node r, we define Ar := ∅. For a tree
node t ∈ V (τ), we denote the subgraph induced by all vertices in bags descending
from t as Gt (here, the node t is considered to be a descendant of itself). We
need the notions of compactness and edge-unbreakability.

Definition 2. A tree decomposition (τ, χ) of a graph G is compact if for every
tree node t ∈ V (τ), the set of vertices V (Gt)\At induces a connected subgraph
in G and NG(V (Gt)\At) = At.

Definition 3. Let G = (V,E) be a graph and let S ⊆ V . The subset S is
(a, b)-edge-unbreakable if for every nonempty proper subset S′ of V satisfying
|E[S′, V \S′]| ≤ b, we have that either |S ∩ S′| ≤ a or |S\S′| ≤ a.

Informally, a subset S is (a, b)-edge-unbreakable if every non-trivial 2-partition
of G[S] either has large cut value or one side of the partition is small in size.
With these definitions, we have the following result from [24].

Lemma 1. [24] There exists a polynomial time algorithm that takes a graph
G = (V,E), an integer k ≥ 2, and an integer λ as input and returns a compact
tree decomposition (τ, χ) of G such that

(i) each adhesion has size at most λk, and
(ii) for every tree node t ∈ V (τ), the bag χ(t) is ((λk+1)5, λk)-edge-unbreakable.

Next, we need the notion of α-respecting partitions.

Definition 4. Let G = (V,E) be a graph and G′ be a subgraph of G. A partition
P of V α-respects G′ if |δG′(P)| ≤ α.

Fixed Parameter Approximation Scheme for Min-Max K-Cut 363

The following lemma shows that we can efficiently find a spanning tree T of
a given graph such that there exists an optimum k-partition that 2k2-respects
T . It follows from Lemma 7 of [8] and the observation that an optimum solution
to Minmax k-cut is a k-approximate optimum to Minsum k-cut.

Lemma 2. [8] There exists a polynomial time algorithm that takes a graph G
as input and returns a spanning tree T of G such that there exists an optimum
min-max k-partition Π that (2k2)-respects T .

The next definition allows us to handle partitions of subsets that are crossed
by a spanning tree at most 2k2 times. For S ⊆ U and a partition/k-subpartition
P of U , a partition/k-subpartition P ′ of S is a restriction of P to S if for every
u, v ∈ S, u and v are in the same part of P ′ if and only if they are in the same
part of P.

Definition 5. Let G = (V,E) be a graph, T be a spanning tree of G, and X ⊆ V .
A partition P of X is T -feasible if there exists a partition P ′ of V such that

(i) The restriction of P ′ to X is P, and
(ii) P ′ (2k2)-respects T .

Moreover, a k-subpartition P ′ of X is T -feasible if the partition obtained from
P ′ by discarding the empty parts of P ′ is T -feasible.

3 Fixed-Parameter Algorithm Parameterized by k and
Solution Size

In this section we prove Theorem 3. Let (G = (V,E), k) be the input instance of
Minmax k-cut with n vertices. The input graph G could possibly have parallel
edges. We assume that G is connected. Let OPT = OPT(G, k) (i.e., OPT is the
optimum objective value of Minmax k-cut on input G) and let λ be the input
such that λ ≥ OPT. We will design a dynamic programming algorithm that runs
in time (λk)O(k2)nO(1) to compute OPT.

Given the input, we first use Lemma 1 to obtain a tree decomposition (τ, χ)
of G satisfying the conditions of the lemma. Since the algorithm in the lemma
runs in polynomial time, the size of the tree decomposition (τ, χ) is polynomial
in the input size. Next, we use Lemma 2 to obtain a spanning tree T such that
there exists an optimum min-max k-partition Ω = (Ω1, . . . , Ωk) of V that (2k2)-
respects T , and moreover T is a subgraph of G. We fix the tree decomposition
(τ, χ), the spanning tree T , and the optimum solution Ω with these choices in the
rest of this section. We note that Ωi �= ∅ for all i ∈ [k] and maxi∈[k] |δG(Ωi)| =
OPT. We emphasize that the choice of Ω is fixed only for the purposes of the
correctness of the algorithm and is not known to the algorithm explicitly.

Our algorithm is based on dynamic program (DP). We now state the sub-
problems in our dynamic program (DP), bound the number of subproblems in
the DP, and prove Theorem 3. For a tree node t ∈ V (τ), let FAt be the collec-
tion of partitions of the adhesion At that are (i) T -feasible and (ii) have at most

364 K. Chandrasekaran and W. Wang

k parts. We emphasize that elements of FAt
are of the form PAt

= (P̃1, . . . , P̃k′)
for some k′ ∈ {0, 1, . . . , k}, where P̃i �= ∅ for all i ∈ [k′]. The following lemma
bounds the size of FAt , which in turn, will be helpful in bounding the number
of subproblems to be solved in our dynamic program.

Lemma 3. For every tree node t ∈ V (τ), we have |FAt | = (λk)O(k2). Moreover,
the collection FAt can be enumerated in (λk)O(k2) time.

The proof of the lemma appears in the full version [6]. The following definition
will be useful in identifying the subproblems of the DP.

Definition 6. Let t ∈ V (τ) be a tree node, and ft : FAt × {0, 1, . . . , λ}k ×
{0, 1, . . . , 2k2} → {0, 1} be a Boolean function.

1. (Correctness) The function ft is f -correct if we have ft(PAt
, x̄, d) = 1 for

all PAt
= (P̃1, . . . , P̃k′) ∈ FAt , x̄ ∈ {0, 1, . . . , λ}k, and d ∈ {0, 1, . . . , 2k2}

for which there exists a k-subpartition P = (P ′
1, . . . , P

′
k) of V (Gt) satisfying

the following conditions:
(i) P ′

i ∩ At = P̃i for all i ∈ [k′],
(ii) |δGt

(P ′
i)| = xi for all i ∈ [k],

(iii) |δT (P)| ≤ d, and
(iv) P is a restriction of Ω to V (Gt).
A k-subpartition of V (Gt) satisfying the above four conditions is said to
witness f-correctness of ft(PAt

, x̄, d).
2. (Soundness) The function ft is f -sound if for all PAt

= (P̃1, . . . , P̃k′) ∈
FAt , x̄ ∈ {0, 1, . . . , λ}k and d ∈ {0, 1, . . . , 2k2}, we have ft(PAt

, x̄, d) = 1
only if there exists a k-subpartition P = (P ′

1, . . . , P
′
k) of V (Gt) satisfying

conditions (i) (ii) and (iii) above. A k-subpartition of V (Gt) satisfying (i)
(ii) and (iii) is said to witness f-soundness of ft(PAt

, x̄, d).

We emphasize the distinction between correctness and soundness: correctness
relies on all four conditions while soundness relies only on three conditions. We
crucially need distinct correctness and soundness definitions in our sub-problems
in order for Bellman’s principle of optimality to hold.

The next proposition shows that an f -correct and f -sound function for the
root node of the tree decomposition can be used to recover the optimum value.
Its proof appears in the full version [6].

Proposition 1. If we have a function fr : FAr × {0, 1, . . . , λ}k ×
{0, 1, . . . , 2k2} → {0, 1} that is both f-correct and f-sound, where r is the root
of the tree decomposition τ , then

OPT = min
{

max
i∈[k]

{xi} : fr(P∅, x̄, 2k2) = 1, x̄ ∈ [λ]k
}

,

where P∅ is the 0-tuple that denotes the trivial partition of Ar = ∅.
By Proposition 1, it suffices to compute an f -correct and f -sound function

fr, where r is the root of the tree decomposition τ . The next technical lemma
allows us to compute this in a bottom-up fashion on the tree decomposition.

Fixed Parameter Approximation Scheme for Min-Max K-Cut 365

Lemma 4. There exists an algorithm that takes as input (τ, χ), a tree node t ∈
V (τ), Boolean functions ft′ : FAt′ × {0, 1, . . . , λ}k × {0, 1, . . . , 2k2} → {0, 1} for
every child t′ of t that are f-correct and f-sound, and runs in time (λk)O(k2)nO(1)

to return a function ft : FAt × {0, 1, . . . , λ}k × {0, 1, . . . , 2k2} → {0, 1} that is
f-correct and f-sound.

The proof of Lemma 4 is the most technical part of our contribution. Its
proof appears in the full version [6]. We now complete the proof of Theorem 3
using Lemma 4 and Proposition 1.

Proof (Proof of Theorem 3). In order to compute a function fr : FAr ×
{0, 1, . . . , λ}k × {0, 1, . . . , 2k2} → {0, 1} that is both f -correct and f -sound, we
can apply Lemma 4 on each tree node t ∈ V (τ) in a bottom up fashion starting
from leaf nodes of the tree decomposition. Therefore, using Lemmas 3 and 4, the
total run time to compute fr is

(λk)O(k2)nO(1) · |V (τ)| = (λk)O(k2)nO(1) · poly(n, λ, k) = (λk)O(k2)nO(1).

Using Proposition 1, we can compute OPT from the function fr. Consequently,
the total time to compute OPT is (λk)O(k2)nO(1). �

4 Conclusion

Our work adds to the exciting recent collection of works aimed at improving
the algorithmic understanding of alternative objectives in graph partitioning
[1,7,19]. We addressed the graph k-partitioning problem under the minmax
objective. Our algorithmic ideas generalize in a natural manner to also lead
to a parameterized approximation scheme for Min �p-norm k-cut for every
p ≥ 1.

Based on prior works in approximation literature for minmax and minsum
objectives, it is a commonly held belief that the minmax objective is harder
to approximate than the minsum objective. Our results suggest that for the
graph k-partitioning problem, the complexity/approximability of the two objec-
tives are perhaps the same. A relevant question towards understanding if the
two objectives exhibit a complexity/approximability gap is the following: When
k is part of input, is Minmax k-cut constant-approximable? We recall that
when k is part of input, Minsum k-cut does not admit a (2 − ε)-approximation
for any constant ε > 0 under the Small Set Expansion Hypothesis [25] and
admits a 2-approximation [27]. The 2-approximation for Minsum k-cut is based
on solving the same problem in the Gomory-Hu tree of the given graph. We
are aware of examples where this approach for Minmax k-cut only leads to
a Θ(n)-approximation, where n is the number of vertices in the input graph
(see full version [6]). The best approximation factor that we know currently for
Minmax k-cut is 2k (see Sect. 1.1). A reasonable stepping stone would be to
show that Minmax k-cut is APX-hard.

366 K. Chandrasekaran and W. Wang

References

1. Ahmadi, S., Khuller, S., Saha, B.: Min-max correlation clustering via multicut. In:
Integer Programming and Combinatorial Optimization, pp. 13–26. IPCO (2019)

2. Bansal, N., et al.: Min-max graph partitioning and small set expansion. SIAM J.
Comput. 43(2), 872–904 (2014)

3. Benczúr, A., Karger, D.: Randomized approximation schemes for cuts and flows in
capacitated graphs. SIAM J. Comput. 44(2), 290–319 (2015)

4. Bérczi, K., Chandrasekaran, K., Király, T., Madan, V.: Improving the Integrality
Gap for Multiway Cut. Mathematical Programming (2020)

5. Chandrasekaran, K., Chekuri, C.: Min-max partitioning of hypergraphs and sym-
metric submodular functions. In: Proceedings of the 32nd ACM-SIAM Symposium
on Discrete Algorithms (to appear). SODA (2021)

6. Chandrasekaran, K., Wang, W.: Fixed Parameter Approximation Scheme for Min-
max k-cut. arXiv: https://arxiv.org/abs/2011.03454 (2020)

7. Charikar, M., Gupta, N., Schwartz, R.: Local guarantees in graph cuts and clus-
tering. In: Integer Programming and Combinatorial Optimization, pp. 136–147.
IPCO (2017)

8. Chekuri, C., Quanrud, K., Xu, C.: LP relaxation and tree packing for minimum
k-cuts. In: 2nd Symposium on Simplicity in Algorithms, pp. 7:1–7:18. SOSA (2019)

9. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

10. Cygan, M., et al.: Randomized contractions meet lean decompositions. arXiv:
https://arxiv.org/abs/1810.06864 (2018)

11. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The
complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

12. Downey, R., Estivill-Castro, V., Fellows, M., Prieto, E., Rosamund, F.: Cutting
up is hard to do: the parameterised complexity of k-cut and related problems.
Electron. Notes Theor. Comput. Sci. 78, 209–222 (2003)

13. Goldschmidt, O., Hochbaum, D.: Polynomial algorithm for the k-cut problem. In:
Proceedings of the 29th Annual Symposium on Foundations of Computer Science,
pp. 444–451. FOCS (1988)

14. Goldschmidt, O., Hochbaum, D.: A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res. 19(1), 24–37 (1994)

15. Gupta, A., Harris, D., Lee, E., Li, J.: Optimal Bounds for the k-cut Problem.
arXiv: https://arxiv.org/abs/2005.08301 (2020)

16. Gupta, A., Lee, E., Li, J.: An FPT algorithm beating 2-approximation for k-Cut.
In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 2821–2837. SODA (2018)

17. Gupta, A., Lee, E., Li, J.: Faster exact and approximate algorithms for k-cut. In:
Proceedings of the 59th IEEE Annual Symposium on Foundations of Computer
Science, pp. 113–123. FOCS (2018)

18. Gupta, A., Lee, E., Li, J.: The karger-stein algorithm is optimal for k-cut. In: Pro-
ceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 473–484. STOC (2020)

19. Kalhan, S., Makarychev, K., Zhou, T.: Correlation clustering with local objectives.
Adv. Neural Inform. Process. Syst. 32, 9346–9355 (2019)

20. Karger, D., Stein, C.: A new approach to the minimum cut problem. J. ACM
43(4), 601–640 (1996)

https://arxiv.org/abs/2011.03454
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://arxiv.org/abs/1810.06864
https://arxiv.org/abs/2005.08301

Fixed Parameter Approximation Scheme for Min-Max K-Cut 367

21. Kawarabayashi, K.i., Lin, B.: A nearly 5/3-approximation FPT Algorithm for Min-
k-Cut. In: Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms,
pp. 990–999. SODA (2020)

22. Lawler, E.: Cutsets and partitions of hypergraphs. Networks 3, 275–285 (1973)
23. Li, J.: Faster minimum k-cut of a simple graph. In: Proceedings of the 60th Annual

Symposium on Foundations of Computer Science, pp. 1056–1077. FOCS (2019)
24. Lokshtanov, D., Saurabh, S., Surianarayanan, V.: A parameterized approximation

scheme for min k-Cut. In: Proceedings of the 61st IEEE Annual Symposium on
Foundations of Computer Science (to appear). FOCS (2020)

25. Manurangsi, P.: Inapproximability of maximum biclique problems, minimum k-Cut
and densest at-least-k-Subgraph from the small set expansion hypothesis. Algo-
rithms 11(1), 10 (2018)

26. Ravi, R., Sinha, A.: Approximating k-cuts using network strength as a lagrangean
relaxation. Eur. J. Oper. Res. 186(1), 77–90 (2008)

27. Saran, H., Vazirani, V.: Finding k cuts within twice the optimal. SIAM J. Comput.
24(1), 101–108 (1995)

28. Sharma, A., Vondrák, J.: Multiway cut, pairwise realizable distributions, and
descending thresholds. In: Proceedings of the Forty-Sixth Annual ACM Sympo-
sium on Theory of Computing, pp. 724–733. STOC (2014)

29. Svitkina, Z., Tardos, É.: Min-max multiway cut. In: Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, pp. 207–218.
APPROX (2004)

30. Thorup, M.: Minimum k-way cuts via deterministic greedy tree packing. In: Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 159–
166. STOC (2008)

31. Zhao, L., Nagamochi, H., Ibaraki, T.: Greedy splitting algorithms for approximat-
ing multiway partition problems. Math. Program. 102(1), 167–183 (2005)

Computational Aspects of Relaxation
Complexity

Gennadiy Averkov1 , Christopher Hojny2 , and Matthias Schymura1(B)

1 BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany
{averkov,schymura}@b-tu.de

2 TU Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
c.hojny@tue.nl

Abstract. The relaxation complexity rc(X) of the set of integer
points X contained in a polyhedron is the smallest number of facets of
any polyhedron P such that the integer points in P coincide with X. It is
an important tool to investigate the existence of compact linear descrip-
tions of X. In this article, we derive tight and computable upper bounds
on rcQ(X), a variant of rc(X) in which the polyhedra P are required
to be rational, and we show that rc(X) can be computed in polynomial
time if X is 2-dimensional. We also present an explicit formula for rc(X)
of a specific class of sets X and present numerical experiments on the
distribution of rc(X) in dimension 2.

Keywords: Integer programming formulation · Relaxation complexity

1 Introduction

A successful approach for solving discrete optimization problems is based on inte-
ger programming techniques. To this end (i) a suitable encoding X ⊆ Z

d of the
discrete problem’s solutions together with an objective c ∈ R

d has to be selected,
and (ii) a linear system Ax ≤ b, Cx = f defining a polyhedron P ⊆ R

d has to be
found such that P ∩ Z

d = X. In the following, we refer to such a polyhedron P
as a relaxation of X. Then, the discrete problem can be tackled by solving the
integer program max{cᵀx : Ax ≤ b, Cx = f, x ∈ Z

d}, which can be solved, e.g.,
by branch-and-bound or branch-and-cut techniques (see Schrijver [16]).

To solve these integer programs efficiently, the focus in Step (ii) was mostly
on identifying facet defining inequalities of the integer hull of P . Such inequality
systems, however, are typically exponentially large and one may wonder about
the minimum number of facets of any relaxation of X, which allows to compare
different encodings X of the discrete problem. Kaibel and Weltge [11] called this
quantity the relaxation complexity of X, denoted rc(X), and showed that cer-
tain encodings of, e.g., the traveling salesman problem or connected subgraphs,
have exponentially large relaxation complexity. They also introduced the quan-
tity rcQ(X), which is the smallest number of facets of a rational relaxation of X,
and posed the question whether rc(X) = rcQ(X) holds in general. Recently, this
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 368–382, 2021.
https://doi.org/10.1007/978-3-030-73879-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_26&domain=pdf
http://orcid.org/0000-0003-2245-9958
http://orcid.org/0000-0002-5324-8996
http://orcid.org/0000-0001-5156-7953
https://doi.org/10.1007/978-3-030-73879-2_26

Computational Aspects of Relaxation Complexity 369

was answered affirmatively for d ≤ 4, see [1]. The same authors also showed
that rc(X) is computable if d ≤ 3 using an algorithm with potentially superex-
ponential worst case running time. Computability for d ≥ 4 and explicit formulas
for rc(X) for specific sets X, however, are still open problems.

In this article, we follow the line of research started in [1] and derive a tight
upper bound on rcQ(X) for arbitrary dimensions, which is based on a robusti-
fication of rcQ(X) against numerical errors (Sect. 2). We also point out when
this upper bound can be used to compute rcQ(X) exactly. In Sect. 3 we focus
on dimension d = 2 and show that there is a polynomial time algorithm to
compute rc(X) in this case. Sect. 4 derives an explicit formula for the relax-
ation complexity for integer points in rectangular boxes. We conclude the article
in Sect. 5 with a discussion of numerical experiments that are based on the
first practically applicable implementation to compute rc(X) in cases where this
quantity is known to have a finite certificate.

Notation and Terminology. For a set X ⊆ R
d, we denote by conv(X) its con-

vex hull and by aff(X) its affine hull. The boundary and interior of X are
denoted by bd(X) and int(X), respectively. A set X ⊆ Z

d is called lattice-
convex if conv(X) ∩ Z

d = X. The dimension of a set X is the dimension of its
affine hull, and we say that a full-dimensional set X ⊆ Z

d is in convex posi-
tion if X ⊆ bd(conv(X)). If X ⊆ Z

2 is 2-dimensional and in convex position,
we can define a cyclic order of X by starting a closed walk on bd(conv(X))
and labeling the points of X in the order visited during the walk. For two
sets X,Y ⊆ R

d, X + Y = {x + y : x ∈ X, y ∈ Y } is their Minkowski sum.
We define [n] := {1, . . . , n}, [n]0 = {0, 1, . . . , n}, and ei to be the i-th standard
unit vector in R

d.
A crucial concept in [1] is that of observers. For X ⊆ Z

d with conv(X)∩Z
d =

X, an observer is a point z ∈ Z
d\X such that conv(X∪{z})∩Z

d = X∪{z}. The
set of all observers of X is denoted by Obs(X). The relevance of the observers for
finding rc(X) comes from the fact that any linear system Ax ≤ b separating X
and Obs(X) also separates X and Z

d \X, see [1]. This motivates, for X,Y ⊆ Z
d,

to introduce rc(X,Y) (resp. rcQ(X,Y)) as the smallest number of inequalities in
a (rational) system Ax ≤ b separating X and Y \ X.

Related Literature. Kaibel and Weltge [11] introduced the notion of relaxation
complexity and derived a concept for deriving lower bounds on rc(X). Com-
putability of rc(X), for d = 2, has been shown by Weltge [19] who also derived a
lower bound on rc(X) only depending on the dimension of X. In [1], this lower
bound has been improved and computability also for d = 3 has been established.
The interplay between the number of inequalities in a relaxation and the size
of their coefficients has been investigated in [8]; see also [9] for a lower bound
on the relative size of coefficients in a relaxation. For X ⊆ {0, 1}d, Jeroslow [10]
derived an upper bound on rc(X, {0, 1}d), which is an important subject in the
area of social choice, see, e.g., Hammer et al. [7] and Taylor and Zwicker [17].

370 G. Averkov et al.

2 Computable Bounds on the Relaxation Complexity

Let X ⊆ Z
d be finite and lattice-convex. In contrast to the lower bound on rc(X)

provided by Kaibel and Weltge [11], to the best of our knowledge no systematic
way for deriving algorithmically computable lower and upper bounds on rc(X)
and rcQ(X) has been discussed so far. With the aim of making progress on
this problem, we introduce a robustification of rc(X) by enforcing that a relax-
ation is not allowed to support conv(X). To make this precise, for ε > 0,
let Xε := X + B1

ε , where B1
ε = {0,±εe1, . . . ,±εed} is the discrete �1-ball with

radius ε. By construction, we clearly have X ⊆ int(conv(Xε)).

Definition 1. Let X ⊆ Z
d be finite, full-dimensional and lattice-convex, and

let ε > 0. A polyhedron Q ⊆ R
d is called an ε-relaxation of X if Xε ⊆ Q and

Z
d \ int(Q) = Z

d \X. The ε-relaxation complexity rcε(X) is the smallest number
of facets of an ε-relaxation of X.

Alternatively speaking, an ε-relaxation of X is a polyhedron Q with int(Q)∩
Z

d = X, and for which the minimum of ‖x−z‖1, over any x /∈ int(Q) and z ∈ X,
is at least ε. Further, in complete analogy to rc(X,Y), we define rcε(X,Y) to
be the smallest number of inequalities necessary to separate Xε and Y \ Xε.
Note also that we defined rcε(X) only for full-dimensional sets X. All results
below generalize to lower-dimensional cases, however, for the ease and brevity
of presentation, we discuss only the full-dimensional case in this article.

Our first observation on the robustification rcε(X) of rc(X) is that it always
admits a finite set Y ε ⊆ Z

d with rcε(X) = rcε(X,Y ε). The existence of such
a finite certificate Y ε is noteworthy, because neither for rc(X) nor rcQ(X) is
it known whether a finite certificate exists. In general, rc(X) = rc(X, Obs(X))
and rcQ(X) = rcQ(X,Obs(X)), but Obs(X) can be infinite for d ≥ 3 (see [19,
Sect. 7.5]).

Lemma 1. Let X ⊆ Z
d be finite, full-dimensional, and lattice-convex and let

ε > 0 be such that X admits an ε-relaxation. Then, there is an explicitly com-
putable finite set Y ε ⊆ Z

d such that rcε(X) = rcε(X,Y ε).

Proof. We show that there exists an explicit constant cd,ε,X > 0 such that every
ε-relaxation Q of X is contained in PX,ε := conv(X)+cd,ε,X ·B2

d, where B2
d ⊆ R

d

is the Euclidean unit ball. Once this is established, Y ε := PX,ε ∩ Z
d serves as

the explicitly computable finite set such that rcε(X) = rcε(X,Y ε).
In order to find PX,ε, we first note that the inradius of conv(B1

ε) equals
δ := ε/

√
d, and so X + δ · B2

d ⊆ conv(Xε). Now, let Q be an arbitrary ε-relaxation
of X and let q ∈ Q be some point therein. As Q weakly separates X from Z

d \X,
the set conv(X ∪ {q}) contains at most |X| + 1 integer points. For v ∈ X, let

Kv,q := conv
(
(v + δ · B2

d) ∪ {q, 2v − q}) and K ′
v,q := conv

(
(v + δ · B2

d) ∪ {q}) .

The set Kv,q is convex and centrally symmetric around the integer point v.
Moreover, K ′

v,q ⊆ Q, so that we would get a contradiction if |K ′
v,d∩Z

d| > |X|+1.
A classical extension of Minkowski’s first fundamental theorem in the geometry

Computational Aspects of Relaxation Complexity 371

of numbers is due to van der Corput [3] who proved that, for every convex body
K ⊆ R

d that is centrally symmetric around an integer point, the inequality
vol(K) ≤ 2d · |K ∩ Z

d| holds. Using this result and noting that Kv,q contains a
double pyramid over a (d − 1)-dimensional Euclidean ball, we have

|K ′
v,d ∩ Z

d| ≥ 1
2 |Kv,d ∩ Z

d| ≥ 1
2d+1 vol(Kv,q)

≥ 1
2d+1 · 2

d‖q − v‖2 vold−1(δ · B2
d−1) = δd−1 κd−1

d 2d
· ‖q − v‖2,

where κd = vol(B2
d) denotes the volume of the Euclidean unit ball. To avoid the

discussed contradiction above, we know that the last term is upper bounded by
|X| + 1, which translates to the inequality

‖q − v‖2 ≤ d 2d · (|X| + 1)
δd−1 κd−1

≤ d(d+1)/2 2d+1

εd−1 κd−1
|X| =: cd,ε,X .

Since q ∈ Q and v ∈ X were arbitrary, this indeed shows that the ε-relaxation Q
of X is contained in conv(X) + cd,ε,X · B2

d = PX,ε, as desired. 	

We will see shortly that rcε(X) is an upper approximation of the relaxation

complexity of X. In order to also give a lower approximation, for t ∈ N, we let
Bt = [−t, t]d ∩ Z

d be the set of integer points with coordinates bounded by t in
absolute value. Now, it is clear that rcε(X) ≥ rcε′(X), for every ε ≥ ε′ > 0, and
likewise that rc(X,Bt) ≤ rc(X,Bt′), for every t ≤ t′. Thus, the parameters

rc�(X) = max
t∈N

rc(X,Bt) and rc0(X) = min
ε>0

rcε(X)

are well-defined. The main advantage of these numbers is that they sandwich
rc(X), and that they are limits of explicitly computable bounds.

Theorem 1. Let X ⊆ Z
d be finite, full-dimensional and lattice-convex.

1. If ε > 0 is rational, then rcε(X) can be computed in finite time.
2. It holds rc�(X) ≤ rc(X) ≤ rcQ(X) = rc0(X).

Proof. Lemma 1 provides us with a finite and explicitly computable set Y ε ⊆ Z
d

such that rcε(X) = rcε(X,Y ε). If ε ∈ Q, then Xε ⊆ Q
d, which means that we ask

to minimally separate the finite rational sets Xε and Y ε \ Xε from one another.
The arguments in [1, Prop. 4.9] show how this can be done via a bounded mixed-
integer program and Claim 1 follows.

For Claim 2, we first observe that for every t ∈ N we clearly have rc(X,Bt) ≤
rc(X), and thus rc�(X) ≤ rc(X) ≤ rcQ(X). We thus need to show that
rcQ(X) = rc0(X). For one inequality, let Q ⊆ R

d be a rational relaxation of X
having rcQ(X) facets and facet description Ax ≤ b. Since Q is a rational poly-
hedron, Q is necessarily bounded (otherwise it would contain infinitely many
integral points). Thus, there exists δ > 0 such that for each y ∈ Z

d \ X there
exists an inequality aᵀx ≤ β in Ax ≤ b with aᵀy ≥ β + δ. Consequently, we can
increase β slightly to get another relaxation Q′ with rcQ(X) facets. This shows

372 G. Averkov et al.

that there exists ε′ > 0 such that Xε′ ⊆ Q′ and Z
d \ int(Q′) = Z

d \ X, i.e., Q′ is
an ε′-relaxation of X, and thus rc0(X) ≤ rcε′(X) ≤ rcQ(X).

For the reverse inequality, we fix an ε > 0 and note that every ε-relaxation
of X is bounded (see the proof of Lemma 1). We may thus perturb any such
ε-relaxation slightly into a rational relaxation of X with equally many facets. As
the result, we get rcQ(X) ≤ rcε(X), for every ε > 0. 	

The main message of Theorem 1 is that, for every rational ε > 0, the number
rcε(X) is an explicitly computable upper bound on rc(X) and rcQ(X), and that
these upper bounds converge to rcQ(X) with ε → 0. However, without further
information we do not know whether the computed value rcε(X) agrees with
rcQ(X). A situation in which we are sure when to stop computing rcε(X) for
decreasing values of ε > 0 is, when we can also compute an eventually matching
lower bound:

Theorem 2. Let X ⊆ Z
d be finite, full-dimensional and lattice-convex. If we

have rc�(X) = rcQ(X), then there is a finite algorithm that computes rc(X).

Proof. Let (εt)t∈N ⊆ Q be a rational strictly decreasing null sequence. Then,
by Theorem 1, Part 2, there exists t′ ∈ N such that rcQ(X) = rcεt

(X) for
every t ≥ t′. If rc�(X) = rcQ(X), there exists t� ∈ N such that rcQ(X) =
rc(X,Bt) for every t ≥ t�. Thus, for t = max{t′, t�}, rc(X,Bt) = rcεt

(X). Since
both quantities can be computed in finite time due to Theorem 1, Part 1 and [1,
Cor. 4.9], the assertion follows. 	

Whether rc(X) and rcQ(X) are computable and whether the equality
rc(X) = rcQ(X) is true has already been asked by Kaibel and Weltge [11]. In
light of the above results, there are two other basic questions intimately related
to these two: Is rc�(X) computable and does rc�(X) = rc(X) hold in general?
We emphasize that the confirmation of rc�(X) = rc(X) and rc(X) = rcQ(X)
would resolve all of the questions above, because these two identities would imply
rc�(X) = rcQ(X) and also the computability of rc(X) in view of Theorem 2.
Our constructions suggest infinite iterative procedures that produce sequences of
integer values converging to rc�(X) and rcQ(X) after finitely many steps. How-
ever, the existence of such procedures per se does not resolve the computability
of rc�(X) or rcQ(X). For computability, one would additionally need to be able
to decide, when the integer sequence achieves the value it finitely converges to.

3 Computational Complexity in Dimension 2

Let X ⊆ Z
d be finite and lattice-convex such that Obs(X) is finite. By the separa-

tion theorems for convex sets, I(X) := {I ⊆ Obs(X) : conv(X) ∩ conv(I) = ∅}
contains all subsets of observers that can be separated from X by a single hyper-
plane. Let Imax(X) be the family of all inclusionwise maximal sets in I(X).

Observation 3. For a finite lattice-convex set X ⊆ Z
d with finitely many

observers, rc(X) is the smallest number k of sets I1, . . . , Ik ∈ Imax(X) such
that Obs(X) =

⋃k
i=1 Ii.

Computational Aspects of Relaxation Complexity 373

In the following, we use this observation to show that the relaxation complexity
of a finite lattice-convex set in Z

2 can be computed in polynomial time. Note
that Weltge [19] has already shown that rc(X) is computable if X ⊆ Z

2. His
algorithm is based on finite so-called guard sets (which are supersets of Obs(X)),
and he showed how a brute-force algorithm can compute rc(X). We complement
this result by providing an algorithm with very low polynomial complexity.

Since Observation 3 is based on observers, a crucial step is to find the
set Obs(X) of observers in the case that X ⊆ Z

2 is two-dimensional. The
main reason why this can be done efficiently is that Obs(X) is the set of
integer points in the boundary of enlarging the lattice polygon P = conv(X)
by lattice-distance one over each of its edges (see Weltge [19, Prop. 7.5.6]).
To make this precise, let P = {x ∈ R

2 : aix1 + bix2 ≤ ci, i ∈ [k]} be a
polyhedron described by k inequalities with the assumption that ai, bi, ci ∈ Z

with ai and bi coprime, for all i ∈ [k]. Then, following Castryck [2] we write
P (−1) :=

{
x ∈ R

2 : aix1 + bix2 ≤ ci + 1, i ∈ [k]
}

and say that P (−1) is obtained
from P by moving out the edges. Note that neither does P (−1) need to be a
lattice polygon again, nor may it have as many edges as P . With this notation
the previous discussion can be formulated as

Obs(X) = bd(P (−1)) ∩ Z
2.

In particular, this means that Obs(X) is in convex position and that we can
efficiently list its elements in counterclockwise order.

Lemma 2. Let V ⊆ Z
2 be a finite 2-dimensional set and let X = conv(V)∩Z

2.
There is an algorithm that determines Obs(X) = {y0, . . . , y�}, with the labeling
in counterclockwise order, and which runs in O(� + k log k + γk) time, where
k = |V | and γ is an upper bound on the binary encoding size of any point in V .

Proof. Let P = conv(V). The algorithm consists of the following four steps:

1. Compute an irredundant inequality description P = {x ∈ R
2 : aix1 + bix2 ≤

ci, i ∈ [k]0}, where ai, bi, ci ∈ Z with ai and bi coprime, and the outer normal
vectors (ai, bi)ᵀ labeled in counterclockwise order.

2. Move out the edges of P and let P (−1) = {x ∈ R
2 : aijx1+bijx2 ≤ cij +1, j ∈

[m]0} be such that all redundancies are removed.
3. Compute the set of vertices {w0, w1, . . . , wm} of P (−1) in counterclockwise

order.
4. For each i ∈ [m]0, compute the integer points on the segment [wi, wi+1], with

the index taken modulo m + 1.

Some detailed comments are in order:
In Step 1, we first use a standard convex hull algorithm in the plane, e.g.,

Graham’s scan (cf. [4, Ch. 8] for details) to compute the vertices {v0, . . . , vr}
of P in counterclockwise order. Since P is a lattice polygon, each of its edges,
say [vj , vj+1], corresponds to an integer vector (η1, η2)ᵀ = vj+1 − vj . Because of
the counterclockwise ordering, (η2,−η1)ᵀ is an outer normal vector to the edge

374 G. Averkov et al.

at hand, and dividing out by the greatest common divisor of η1 and η2 leads to
the desired inequality description. When we use Euclid’s Algorithm in this last
step, we obtain a running time of O(k log k + γr) ⊆ O(k log k + γk).

The only thing to do in Step 2, besides increasing all the right hand sides
by one unit, is to remove the redundancies. One way to do this is to use duality
between convex hulls and intersections of hyperplanes, and again invoke, e.g.,
Graham’s scan. This can be done in time O(k log k).

Step 3 just amounts to an iterative computation of the intersection point wj

of the pair of equations aijx1 + bijx2 = cij + 1 and aij+1x1 + bij+1x2 = cij+1 + 1,
j ∈ [m]0. In this computation we also record the normal vector (aij+1 , bij+1)

ᵀ

that corresponds to the edge with endpoints wj and wj+1. This needs O(k) steps.
For Step 4 we may use Euclid’s Algorithm on the defining data of the edge of

P (−1) that contains wi and wi+1, and determine an affine unimodular transfor-
mation Ai : R2 → R

2 such that Ai[wi, wi+1] = [ωie1, ωi+1e1], for some ωi < ωi+1.
The integer points on the latter segment in increasing order of the first coordinate
are given by

zj =
ωi+1 − ωi� − j

ωi+1 − ωi
ωie1 +

ωi� + j − ωi

ωi+1 − ωi
ωi+1e1, for j ∈ {0, . . . , �ωi+1�−ωi�}.

Using the inverse transformation A−1
i then leads to the correctly ordered list of

integer points on the segment [wi, wi+1]. For a given edge of P (−1) these steps
can be performed in time proportional to the number of integer points that it
contains, leading to a total running time of O(� + γk) for this step.

Conclusively, we saw that the outlined algorithm terminates with the cor-
rectly computed list of observers after O(� + k log k + γk) iterations. 	

Based on this result, we can show that rc(X) can be computed efficiently.

Theorem 4. Let V ⊆ Z
2 be a finite 2-dimensional set, let X = conv(V) ∩ Z

2,
and Y = Obs(X). Then, the relaxation complexity rc(X) can be computed in
time O(|V | · log|V | + |V | · |Y | · log|Y | + γ · |V |), where γ is an upper bound on
the binary encoding size of any point in V .

Proof. Assume that the set of observers Obs(X) is given in counterclockwise
order y0, . . . , y�. Then, for each I ∈ Imax(X), there exist r, s ∈ [�]0 such that I =
{yr, yr+1, . . . , yr+s}, where indices are modulo �+1. That is, the sets in Imax(X)
form “discrete intervals” of observers, see Fig. 1. In particular, Imax(X) contains
at most � + 1 intervals.

Because of Observation 3, we can determine rc(X) by finding the smallest
number of intervals in Imax(X) that is sufficient to cover Obs(X). This problem
can be solved in O(� log �) time using the minimum circle-covering algorithm by
Lee and Lee [12]. Thus, the assertion follows if the observers and the intervals
in Imax(X) can be computed in O(|V | · log|V | + |V | · |Y | · log|Y | + γ · |V |) time.

The list of observers Obs(X) in counterclockwise order can be found in
O(|Y |+|V |·log|V |+γ ·|V |) time by Lemma 2. To find the sets I ∈ Imax(X), note
that we can use binary search on yr+s to find a maximum interval {yr, . . . , yr+s}

Computational Aspects of Relaxation Complexity 375

Fig. 1. A lattice polygon conv(X) and its observers (left), Imax(X) (center), and a
minimum interval covering (right).

such that conv({yr, yr+s}) ∩ conv(V) = ∅. In each of the O(log|Y |) steps of the
binary search, we have to check whether the line segment conv({yr, yr+s}) inter-
sects one of the O(|V |) edges of conv(V). Thus, a single set I can be computed
in O(|V | · log|Y |) time. Combining these running times concludes the proof. 	

Remark 1. One can show that the number |Y | of observers of X in which means
that the presented algorithm Theorem 4 can be of order Θ(2γ), which means
that the presented algorithm is not polynomial in the input size. However, if the
points in V are encoded in unary, then the algorithm is indeed polynomial.

A question related to computing the relaxation complexity in the plane has
been studied by Edelsbrunner and Preparata [5]: Given two finite sets X,Y ⊆ R

2,
they describe an algorithm to find a convex polygon Q ⊆ R

2 with the minimal
possible number of edges such that X ⊆ Q and int(Q)∩Y = ∅, or to decide that
no such polygon exists. That is, if we apply their algorithm to a lattice-convex
set X and its observers Y , we can find a polygon that weakly separates X and Y .
Their algorithm runs in O(|X ∪ Y | · log|X ∪ Y |) time.

The computational problem of strictly separating two finite point sets in any
dimension by a given number of hyperplanes has been the focus of Megiddo’s
work [14]. He introduces the k-separation problem as the decision problem on
whether finite sets X,Y ⊆ Z

d can be separated by k hyperplanes. The case
k = 1 reduces to the linear separation problem and can be solved by linear
programming in polynomial time. Megiddo [14] proves the following for k ≥ 2:

(a) If d is arbitrary, but k is fixed, then the k-separation problem is NP-
complete. This even holds for k = 2.

(b) If d = 2, but k is arbitrary, then the k-separation problem is NP-complete.
(c) If both d and k are fixed, then the k-separation problem is solvable in poly-

nomial time.

With regard to computing the relaxation complexity, comparing Theorem 4 with
Part (b) shows that (at least in the plane) deciding rc(X) ≤ k is a computation-
ally easier problem than the general k-separation problem. Part (c) is applicable
to computing rc(X) in polynomial time via a binary search whenever X ⊆ Z

d

has finitely many observers whose cardinality is polynomially bounded as a func-
tion of |X|. Relevant families of lattice-convex sets X with this property have

376 G. Averkov et al.

been identified in [1, Thm. 4.4 & Thm. 4.5]: First, if X ⊆ Z
d contains a repre-

sentative of every residue class in (Z/2Z)d, then Obs(X) ⊆ 2X − X, and thus
|Obs(X)| ∈ O(|X|2). Second, if conv(X) contains an interior integer point, then
|Obs(X)| ≤ cd · |X|, with cd a constant only depending on the dimension d.

However, since in dimensions d ≥ 3 not every lattice-convex set has finitely
many observers, the following question might have an affirmative answer:

Question 1. For d ≥ 3 fixed, is it NP-hard to compute rcQ(X) ?

4 Discrete Rectangular Boxes

The exact value of rc(X), or any of its variants, is known only for very few
classes of lattice-convex sets X ⊆ Z

d: For the discrete 0/1-cube it was shown
by Weltge [19, Thm. 8.1.3] that it always admits a simplex relaxation, that is,
rc({0, 1}d) = d+1. The conjectured value rc(Δd) = d+1 for the discrete standard
simplex Δd = {0, e1, . . . , ed} could only be affirmed for dimensions d ≤ 4 so far
(see [1, Cor. 3.8]). Jeroslow [10, Thm. 7] showed that, for every 1 ≤ k ≤ 2d−1

there is a k-element subset Xk of {0, 1}d such that rc(Xk, {0, 1}d) = k. Further,
for k = 2d−1 one can choose X2d−1 = Xeven =

{
x ∈ {0, 1}d :

∑d
i=1 xi is even

}
,

however the value rc(Xeven) is not known. Besides some very specific examples
that were needed to establish computability of rc(X) for 3-dimensional lattice-
convex sets X ⊆ Z

3 (see [1, Sect. 6]), we are not aware of any further classes of
examples for which the relaxation complexity is known exactly.

In this section, we provide a full characterization of the relaxation complexity
of an additional parameterized class of lattice-convex sets and thus add to the
short list of exact results given above. To this end, we call a set {a, . . . , b} with
a, b ∈ Z and a ≤ b a discrete segment of length b − a, and we call the Cartesian
product of finitely many discrete segments a discrete rectangular box. These
examples contain a representative of every residue class in (Z/2Z)d, so that the
relaxation complexity agrees with the rational relaxation complexity in view
of [1, Thm. 1.4].

The most basic example of a discrete rectangular box is the discrete unit
cube {0, 1}d, with rc({0, 1}d) = d + 1 as shown by Weltge [19, Thm. 8.1.3]. It
turns out that Weltge’s (rational) relaxation with d+1 facets can be generalized
to the case that one segment of the cube is allowed to have arbitrary length.

Lemma 3. For b ∈ N, let Xb := {0, 1}�×{0, 1, . . . , b} ⊆ Z
�+1. Then, the simplex

P :=

{

x ∈ R
�+1 : xk ≤ 1 +

�+1∑

i=k+1

(b + 1)−ixi, for k ∈ [�],

x�+1 ≤ b and x1 +
�+1∑

i=2

(b + 1)−ixi ≥ 0

}

is a relaxation of Xb. In particular, rc(Xb) ≤ � + 2.

Computational Aspects of Relaxation Complexity 377

Proof. The proof is just an adjustment of Weltge’s arguments in [19, Lem. 7.2.1].
We need to show that Xb = P ∩ Z

�+1. The inclusion Xb ⊆ P ∩ Z
�+1 is quickly

checked, so we give the details for the reverse inclusion.
Let x ∈ P ∩ Z

�+1. First, we show that xi ≤ 1, for all i ∈ [�]. To this end, let
k ∈ [�] be the largest index for which xk > 1. Then, the first defining inequalities
of P together with basic facts about geometric series give

1 < xk ≤ 1 +
�+1∑

i=k+1

(b + 1)−ixi ≤
�∑

i=k+1

(b + 1)−i +
b

(b + 1)�+1

< 1 +
1
b

+
b − 1

(b + 1)�+1
< 1 +

1
b

+
b − 1

b
= 2,

in contradiction to xk ∈ Z.
Second, we show that x1 is non-negative. Indeed, by the last defining inequal-

ity of P , the just established fact that xi ≤ 1, for i ∈ [�], and x�+1 ≤ b, we have

x1 ≥ −
�+1∑

i=2

(b + 1)−ixi ≥ −
�∑

i=2

(b + 1)−i − b

(b + 1)�+1
> −1.

It remains to show that xi ≥ 0, for every i ∈ {2, . . . , � + 1}. To this end, let
j ∈ {2, . . . , � + 1} be the smallest index such that xj ≤ −1. We first show that
xi = 0, for every i < j: Let k < j be the largest index with xk > 0, which means
that xk = 1. Then, by the first defining inequalities of P , we have

1 = xk ≤ 1 +
�+1∑

i=k+1

(b + 1)−ixi = 1 + (b + 1)−jxj +
�+1∑

i=j+1

(b + 1)−ixi

≤ 1 − (b + 1)−j +
�∑

i=j+1

(b + 1)−i +
b

(b + 1)�+1
< 1.

The last inequality follows from the closed form expression for geometric sums
and basic algebraic manipulations.

Now, knowing that xi = 0, for every i < j, we use the last defining inequality
of P and get

0 ≤ x1 +
�+1∑

i=2

(b + 1)−ixi = (b + 1)−jxj +
�+1∑

i=j+1

(b + 1)−ixi

≤ −(b + 1)−j +
�∑

i=j+1

(b + 1)−i +
b

(b + 1)�+1
< 0.

This contradiction finishes the proof. 	

This simplicial relaxation of Xb quickly leads to an upper bound on the

relaxation complexity of general discrete rectangular boxes. To see that these

378 G. Averkov et al.

upper bounds are tight, we employ a concept that was introduced by Kaibel and
Weltge [11] to establish their exponential lower bound for the traveling salesman
polytope. Let X ⊆ Z

d be lattice-convex. A set H ⊆ (aff(X) ∩Z
d) \ X is called a

hiding set for X if, for all distinct x, y ∈ H, we have conv({x, y})∩conv(X) �= ∅.
Then, no valid inequality for X can separate x and y simultaneously, show-
ing rc(X) ≥ |H|, for every hiding set H.

Theorem 5 (Box theorem). For integers k > 0 and � ≥ 0, let S1, . . . , Sk

be discrete segments, each having length at least 2, and let T1, . . . , T� be discrete
segments of length 1. Consider the discrete box X = S1 × . . .×Sk ×T1 × . . .×T�

in Z
k+�. Then, rc(X) = 2k + �.

Proof. Without loss of generality let Si = {ai, . . . , bi} be such that ai < 0 and
bi > 0, and let Tj = {0, 1}, for all 1 ≤ j ≤ �. We form a 2k + � element set H by
attaching to each Si two points (ai − 1)ei and (bi + 1)ei in Z

k+�, and to each Tj

the point 2ek+j in Z
k+�. It is straightforward to check that H is a hiding set

of X. Indeed, by construction the midpoint of any two p, q ∈ H with p �= q
belongs to conv(X). This shows rc(X) ≥ 2k + �.

To prove the upper bound rc(X) ≤ 2k + � it suffices to verify the case k = 1.
Indeed, if k > 0, a relaxation Q′ of Sk × T1 × . . . × T� with 2 + � facets gives rise
to the relaxation conv(S1 × . . . × Sk−1) × Q′ of X with 2k + � facets. The case
k = 1 is however exactly the content of Lemma 3. 	

5 Numerical Experiments

In the previous sections, we discussed several ways to find upper bounds on
or the exact value of the relaxation complexity. Moreover, we have seen that
a lower bound is given by a maximum cardinality hiding set. Although the
general question on the computability of rc(X) is not settled, we know that
rc(X) = rc(X,Obs(X)) can be computed if the set Obs(X) of observers is finite
(see [1, Thm. 5.1]).

In the sequel, we describe the first practically applicable implementation of
this computation and discuss several experiments that we conducted. As we men-
tioned in the beginning of Sect. 4, the exact value of the relaxation complexity
is known only in very few particular cases. With this in mind we compiled a
database of exact values for lattice polygons with a bounded number of inte-
rior integer points, and also investigated the quality of the hiding set bound in
dimension 2. Besides these 2-dimensional instances, we also looked at a few more
specific computations in higher dimensions.

Implementation Details. Let X be a finite lattice-convex set. Our implementation
essentially consists of one method for computing rc(X) and another method to
compute a maximum hiding set for X. We did not use the algorithm discussed
in Sect. 3 to compute rc(X) in dimension 2. Instead we implemented a variation
of [1, Alg. 1] to find Obs(X) and used the mixed-integer programming model
suggested in [1] to compute rc(X, Obs(X)) = rc(X). The reason is that we aimed
for a method that works in arbitrary dimension.

Computational Aspects of Relaxation Complexity 379

We tested our implementation not only for the 2-dimensional instances, which
we discuss in more detail below, but also for discrete rectangular boxes and for
the set of integer points in the standard crosspolytope. Using the basic mixed-
integer program from [1], it is already in dimension 4 computationally challenging
to compute the relaxation complexity of such examples. For this reason, we
enhanced the mixed-integer program by additional cutting planes. The idea of
the basic model is to introduce k ≥ rc(X) inequalities and, for each y ∈ Obs(X),
binary variables syi, i ∈ [k], that indicate whether inequality i separates the
point y from X. The task is then to minimize the number of indices i ∈ [k] for
which syi = 1 holds for at least one y ∈ Obs(X).

To enhance this formulation, we can add additional cutting planes to the
model that are based on the idea of hiding sets. If y, z ∈ Obs(X) are distinct
endpoints of a segment that contains a point of conv(X), then y and z cannot be
separated by the same inequality, i.e., syi +szi ≤ 1 is a valid cut for every i ∈ [k].
Adding these cuts and handling symmetries in the definition of the k inequalities,
drastically reduced the running time.

To be able to report on the quality of the hiding set bound rc(X) ≥ |H|, we
need to be able to compute a maximum size hiding set of X. To this end, we
first observe that we can restrict the search to within the set of observers of X.

Lemma 4. Let X ⊆ Z
d be finite and lattice-convex, let H be a hiding set for X,

and assume that there exists an h ∈ H \ Obs(X). Then, for every y ∈ Obs(X) ∩
conv({h} ∪ X), the set H \ {h} ∪ {y} is a hiding set for X as well.

In particular, there is a maximum size hiding set contained in Obs(X).

Proof. For a point z /∈ conv(X), we let Cz := z +
{∑

x∈X λx(x − z) : λx ≥ 0
}

be the smallest convex cone with apex z that contains X. Further, the set Uz :=
Cz \ conv({z} ∪ X) contains all points w /∈ conv(X) such that conv({z, w}) ∩
conv(X) �= ∅. By the choice of y, we have conv({y} ∪ X) ⊆ conv({h} ∪ X), and
in particular Uh ⊆ Uy. This shows that indeed H ′ := H \ {h} ∪ {y} is a hiding
set for X, and since conv({y, h}) ∩ conv(X) = ∅, we also have |H ′| = |H|. 	

With this in mind, we define an auxiliary graph G(X) = (V (X), E(X))
with node set V (X) = Obs(X), and where two distinct nodes x and y are
adjacent if and only if conv({x, y}) ∩ conv(X) = ∅. Then, there is a one-to-
one correspondence between hiding sets consisting of observers and stable sets
in G(X). To find a maximum stable set in G(X), we solved the binary program
max{∑x∈V (X) zx : zx + zy ≤ 1, ∀ {x, y} ∈ E(X), z ∈ {0, 1}V (X)}.

We have implemented the aforementioned methods in Python 3.7.8, using
SageMath 9.1 [18] to implement [1, Alg. 1] and to construct the graph G(X). All
mixed-integer programs were solved using SCIP 7.0.0 [6], which has been called
via its Python interface [13]. Note that SCIP is not an exact solver and thus the
results reported below are only correct up to numerical tolerances.

Numerical Results. For our experiments in dimension 2, we used the repre-
sentatives of all lattice polygons P with at least one and at most 12 interior
integer points provided by Castryck [2]. In our first experiment, we compared

380 G. Averkov et al.

Table 1. Distribution of deviation of maximum hiding set sizes from relaxation com-
plexity in percent.

Number of facets
Size max. Hiding set 3 4 5 6 7 8 9 10

rc 100.00 45.19 36.70 45.79 55.09 52.71 45.90 100.00
rc - 1 – 54.81 63.30 54.21 44.91 47.29 54.10 –

Table 2. Distribution of relaxation complexities compared to number of facets in
percent.

Number of facets
Relaxation complexity 3 4 5 6 7 8 9 10

3 100.00 5.20 3.89 3.40 3.71 2.61 1.64 –
4 – 94.80 66.92 54.79 51.32 42.17 40.98 100.00
5 – – 29.19 40.39 43.49 54.16 55.74 –
6 – – – 1.42 1.48 1.06 1.64 –

the exact value of the relaxation complexity with the hiding set lower bound.
Table 1 shows the deviation of these two values parameterized by the num-
ber of edges of P . We can see that the hiding set bound deviates by at most
one. For k ∈ {4, 6, 7, 8, 9}, the hiding set bound is distributed relatively equally
between rc(X) and rc(X) − 1. Thus, if H(X) is the hiding set bound for X,
one may wonder whether the inequalities rc(X) ≥ H(X) ≥ rc(X) − 1 hold for
every X ⊆ Z

2.
The second experiment compares the relaxation complexity with the number

of edges of P , see Table 2. Although P can be rather complex with up to 10
edges (where 10 is realized by a single instance), the relaxation complexity is at
most six, where for the majority of all tested instances the relaxation complex-
ity is either four or five. Moreover, there exist polygons with up to nine edges
that admit simplicial relaxations. Thus, already in dimension 2, the difference
between the number of facets and the relaxation complexity can be very large.
In high dimensions this phenomenon does not come as a surprise, since there
are knapsack polytopes whose integer hull has super-polynomially many facets
(cf. Pokutta and Van Vyve [15, Cor. 3.8]).

Our third set of experiments concerned discrete rectangular boxes and the
discrete crosspolytope ♦d = {0,±e1, . . . ,±ed}. We managed to computationally
determine the relaxation complexity of at most 4-dimensional discrete rectan-
gular boxes with various length of the involved discrete segments. It was these
experiments that actually led us to guess and eventually prove the exact values
provided in Theorem 5. Weltge [19, Prop. 7.2.2] proved that rc(♦d) ≤ 2d, for all
d ≥ 4 and wondered whether this bound is best possible. The 2d bound is already
quite surprising, as the crosspolytope has 2d facets. Using our efficient implemen-

Computational Aspects of Relaxation Complexity 381

tation for rc(X) described above, we obtained simplex relaxations of ♦d, for the
dimensions d = 3, 4, 5. This of course raises the question whether rc(♦d) = d + 1
holds for every dimension d ≥ 3.

References

1. Averkov, G., Schymura, M.: Complexity of linear relaxations in integer program-
ming. Mathematical Programming (2021). https://doi.org/10.1007/s10107-021-
01623-4, (online first)

2. Castryck, W.: Moving out the edges of a lattice polygon. Discrete Comput. Geom.
47(3), 496–518 (2012)

3. van der Corput, J.G.: Verallgemeinerung einer Mordellschen Beweismethode in der
Geometrie der Zahlen II. Acta Arith. 2, 145–146 (1936)

4. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Monographs in Theoret-
ical Computer Science, vol. 10. Springer-Verlag, Berlin Heidelberg (1987). https://
doi.org/10.1007/978-3-642-61568-9

5. Edelsbrunner, H., Preparata, F.P.: Minimum polygonal separation. Inform. Com-
put. 77, 218–232 (1988)

6. Gamrath, G., et al.: The SCIP Optimization Suite 7.0. Technical report, Optimiza-
tion Online, March 2020. http://www.optimization-online.org/DB_HTML/2020/
03/7705.html

7. Hammer, P.L., Ibaraki, T., Peled, U.N.: Threshold numbers and threshold comple-
tions. In: Studies on Graphs and Discrete Programming (Brussels, 1979), Annals
of Discrete Mathematics, vol. 11, pp. 125–145. North-Holland, Amsterdam-New
York (1981)

8. Hojny, C.: Polynomial size IP formulations of knapsack may require exponentially
large coefficients. Oper. Res. Lett. 48(5), 612–618 (2020)

9. Hojny, C.: Strong IP formulations need large coefficients. Discrete Optim. 39,
100624 (2021). https://doi.org/10.1016/j.disopt.2021.100624

10. Jeroslow, R.G.: On defining sets of vertices of the hypercube by linear inequalities.
Discrete Math. 11, 119–124 (1975)

11. Kaibel, V., Weltge, S.: Lower bounds on the sizes of integer programs without
additional variables. Math. Program. 154(1–2, Ser. B), 407–425 (2015)

12. Lee, C., Lee, D.: On a circle-cover minimization problem. Inf. Process. Lett. 18(2),
109–115 (1984)

13. Maher, S., Miltenberger, M., Pedroso, J.P., Rehfeldt, D., Schwarz, R., Serrano, F.:
PySCIPOpt: mathematical programming in Python with the SCIP optimization
suite. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016.
LNCS, vol. 9725, pp. 301–307. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-42432-3_37

14. Megiddo, N.: On the complexity of polyhedral separability. Discrete Comput.
Geom. 3, 325–337 (1988)

15. Pokutta, S., Van Vyve, M.: A note on the extension complexity of the knapsack
polytope. Oper. Res. Lett. 41(4), 347–350 (2013)

16. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series
in Discrete Mathematics, A Wiley-Interscience Publication, John Wiley & Sons
Ltd, Chichester (1986)

17. Taylor, A.D., Zwicker, W.S.: Simple Games: Desirability Relations, Trading, Pseu-
doweightings. Princeton University Press, Princeton (1999)

https://doi.org/10.1007/s10107-021-01623-4
https://doi.org/10.1007/s10107-021-01623-4
https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1007/978-3-642-61568-9
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://doi.org/10.1016/j.disopt.2021.100624
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/978-3-319-42432-3_37

382 G. Averkov et al.

18. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.1) (2020). https://www.sagemath.org

19. Weltge, S.: Sizes of Linear Descriptions in Combinatorial Optimization. Ph.D.
thesis, Otto-von-Guericke-Universität Magdeburg (2015). http://dx.doi.org/10.
25673/4350

https://www.sagemath.org
http://dx.doi.org/10.25673/4350
http://dx.doi.org/10.25673/4350

Complexity of Branch-and-Bound and
Cutting Planes in Mixed-Integer

Optimization - II

Amitabh Basu1(B) , Michele Conforti2 , Marco Di Summa2 ,
and Hongyi Jiang1

1 Johns Hopkins University, Baltimore, USA
{basu.amitabh,hjiang32}@jhu.edu

2 Università degli Studi Padova, Padua, Italy
{conforti,disumma}@math.unipd.it

Abstract. We study the complexity of cutting planes and branching
schemes from a theoretical point of view. We give some rigorous under-
pinnings to the empirically observed phenomenon that combining cutting
planes and branching into a branch-and-cut framework can be orders of
magnitude more efficient than employing these tools on their own. In
particular, we give general conditions under which a cutting plane strat-
egy and a branching scheme give a provably exponential advantage in
efficiency when combined into branch-and-cut. The efficiency of these
algorithms is evaluated using two concrete measures: number of itera-
tions and sparsity of constraints used in the intermediate linear/convex
programs. To the best of our knowledge, our results are the first math-
ematically rigorous demonstration of the superiority of branch-and-cut
over pure cutting planes and pure branch-and-bound.

Keywords: Integer programming · Cutting planes · Branching
schemes · Proof complexity

1 Introduction

In this paper, we consider the following mixed-integer optimization problem:

sup 〈c, x〉
s.t. x ∈ C ∩ (Zn × R

d) (1)

where C is a closed, convex set in R
n+d.

State of the art algorithms for integer optimization are based on two ideas
that are at the origin of mixed-integer programming and have been constantly
refined: cutting planes and branch-and-bound. Decades of theoretical and exper-
imental research into both these techniques is at the heart of the outstanding

Supported by ONR Grant N000141812096, NSF Grant CCF2006587, AFOSR Grant
FA95502010341, and SID 2019 from University of Padova.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 383–398, 2021.
https://doi.org/10.1007/978-3-030-73879-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_27&domain=pdf
http://orcid.org/0000-0002-1070-2626
http://orcid.org/0000-0002-6267-6941
http://orcid.org/0000-0001-7223-0380
http://orcid.org/0000-0001-9840-078X
https://doi.org/10.1007/978-3-030-73879-2_27

384 A. Basu et al.

success of integer programming solvers. Nevertheless, we feel that there is lot
of scope for widening and deepening our understanding of these tools. We have
recently started building foundations for a rigorous, quantitative theory for ana-
lyzing the strengths and weaknesses of cutting planes and branching [3]. We
continue this project in the current manuscript.

In particular, we provide a theoretical framework to explain an empirically
observed phenomenon: algorithms that make a combined use of both cutting
planes and branching techniques are more efficient (sometimes by orders of mag-
nitude), compared to their stand alone use in algorithms. Not only is a theoretical
understanding of this phenomenon lacking, a deeper understanding of the inter-
action of these methods is considered to be important by both practitioners and
theoreticians in the mixed-integer optimization community. To quote an influen-
tial computational survey [35] “... it seems that a tighter coordination of the two
most fundamental ingredients of the solvers, branching and cutting, can lead to
strong improvements.”

The main computational burden in any cutting plane or branch-and-bound
or branch-and-cut algorithm is the solution of the intermediate convex relax-
ations. Thus, there are two important aspects to deciding how efficient such an
algorithm is: 1) How many linear programs (LPs) or convex optimization prob-
lems are solved? 2) How computationally challenging are these convex problems?
The first aspect has been widely studied using the concepts of proof size and
rank; see [6,10–12,16,19–21,25,45] for a small sample of previous work. Formal-
izing the second aspect is somewhat tricky and we will focus on a very specific
aspect: the sparsity of the constraints describing the linear program. The collec-
tive wisdom of the optimization community says that sparsity of constraints is
a highly important aspect in the efficiency of linear programming [5,26,44,48].
Additionally, most mixed-integer optimization solvers use sparsity as a criterion
for cutting plane selection; see [22–24] for an innovative line of research. Com-
pared to cutting planes, sparsity considerations have not been as prominent in
the choice of branching schemes. This is primarily because for variable disjunc-
tions sparsity is not an issue, and there is relatively less work on more general
branching schemes; see [1,17,18,33,36–40]. In our analysis, we are careful about
the sparsity of the disjunctions as well – see Definition 3 below.

1.1 Framework for Mathematical Analysis

We now present the formal details of our approach. A cutting plane for the
feasible region of (1) is a halfspace H = {x ∈ R

n+d : 〈a, x〉 ≤ δ} such that
C ∩ (Zn × R

d) ⊆ H. The most useful cutting planes are those that are not
valid for C, i.e., C �⊆ H. There are several procedures used in practice for
generating cutting planes, all of which can be formalized by the general notion
of a cutting plane paradigm. A cutting plane paradigm is a function CP that
takes as input any closed, convex set C and outputs a (possibly infinite) family
CP(C) of cutting planes valid for C ∩ (Zn × R

d). Two well-studied examples
of cutting plane paradigms are the Chvátal-Gomory cutting plane paradigm [46,
Chapter 23] and the split cut paradigm [14, Chapter 5]. We will assume that all
cutting planes are rational in this paper.

Complexity of Branch-and-Bound and Cutting Planes 385

State-of-the-art solvers embed cutting planes into a systematic enumeration
scheme called branch-and-bound. The central notion is that of a disjunction,
which is a union of polyhedra D = Q1 ∪ . . . ∪ Qk such that Z

n × R
d ⊆ D,

i.e., the polyhedra together cover all of Zn × R
d. One typically uses a (possibly

infinite) family of disjunctions for potential deployment in algorithms. A well-
known example is the family of split disjunctions that are of the form Dπ,π0 :=
{x ∈ R

n+d : 〈π, x〉 ≤ π0}∪{x ∈ R
n+d : 〈π, x〉 ≥ π0+1}, where π ∈ Z

n×{0}d and
π0 ∈ Z. When the first n coordinates of π correspond to a standard unit vector,
we get variable disjunctions, i.e., disjunctions of the form {x : xi ≤ π0} ∪ {x :
xi ≥ π0 + 1}, for i = 1, . . . , n.

A family of disjunctions D can also form the basis of a cutting plane
paradigm. Given any disjunction D, any halfspace H such that C ∩ D ⊆ H
is a cutting plane, since C ∩ (Zn × R

d) ⊆ C ∩ D by definition of a disjunction.
The corresponding cutting plane paradigm CP(C), called disjunctive cuts based
on D, is the family of all such cutting planes derived from disjunctions in D. A
well-known example is the family of lift-and-project cuts derived from variable
disjunctions.

In the following we assume that all convex optimization problems that need
to be solved have an optimal solution or are infeasible.

Definition 1. A branch-and-cut algorithm based on a family D of disjunctions
and a cutting plane paradigm CP maintains a list L of convex subsets of the
initial set C which are guaranteed to contain the optimal point, and a lower
bound LB that stores the objective value of the best feasible solution found so far
(with LB = −∞ if no feasible solution has been found). At every iteration, the
algorithm selects one of these subsets N ∈ L and solves the convex optimization
problem sup{〈c, x〉 : x ∈ N} to obtain xN . If the objective value is less than or
equal to LB, then this set N is discarded from the list L. Else, if xN satisfies the
integrality constraints, LB is updated with the value of xN and N is discarded
from the list. Otherwise, the algorithm makes a decision whether to branch or to
cut. In the former case, a disjunction D = (Q1 ∪ . . . ∪ Qk) ∈ D is chosen such
that xN �∈ D and the list is updated L := L\{N}∪{Q1 ∩N, . . . , Qk ∩N}. If the
decision is to cut, then the algorithm selects a cutting plane H ∈ CP(P) such
that xN �∈ H, and updates the relaxation N by adding the cut H, i.e., updates
L := L \ {N} ∪ {N ∩ H}.

Motivated by the above, we will refer to a family D of disjunctions also as a
branching scheme. In a branch-and-cut algorithm, if one always chooses to add a
cutting plane and never uses a disjunction to branch, then it is said to be a (pure)
cutting plane algorithm and if one does not use any cutting planes ever, then it is
called a (pure) branch-and-bound algorithm. We note here that in practice, when
a decision to cut is made, several cutting planes are usually added as opposed to
just one single cutting plane like in Definition 1. In our mathematical framework,
allowing only a single cut makes for a seamless generalization from pure cutting
plane algorithms, and also makes quantitative analysis easier.

386 A. Basu et al.

Definition 2. The execution of any branch-and-cut algorithm on a mixed-
integer optimization instance can be represented by a tree. Every convex relax-
ation N processed by the algorithm is denoted by a node in the tree. If the optimal
value for N is not better than the current lower bound, or is integral, N is a leaf.
Otherwise, in the case of a branching, its children are Q1 ∩ N, . . . , Qk ∩ N , and
in the case of a cutting plane, there is a single child representing N ∩H (we use
the same notation as in Definition 1). This tree is called the branch-and-cut tree
(branch-and-bound tree, if no cutting planes are used). If no branching is done,
this tree (which is really a path) is called a cutting plane proof. The size of the
tree or proof is the total number of nodes.

Proof Versus Algorithm. Although we use the word “algorithm” in Definition 1,
it is technically a non-deterministic algorithm, or equivalently, a proof schema or
proof system for optimality [2] (leaving aside the question of finite termination
for now). This is because no indication is given on how the important decisions
are made: Which set N to process from L? Branch or cut? Which disjunction or
cutting plane to use? Nevertheless, the proof system is very useful for obtaining
information theoretic lower bounds on the efficiency of any deterministic branch-
and-cut algorithm. Moreover, one can prove the validity of any upper bound on
the objective, i.e., the validity of 〈c, x〉 ≤ γ by exhibiting a branch-and-cut
tree where this inequality is valid for all the leaves. If γ is the optimal value,
this is a proof of optimality, but one may often be interested in the branch-and-
cut/branch-and-bound/cutting plane proof complexity of other valid inequalities
as well. The connections between integer programming and proof complexity has
a long history; see [7,8,13,15,27–29,31,34,41–43], to cite a few. Our results can
be interpreted in the language of proof complexity as well.

Recall that we quantify the complexity of any branch-and-bound/cutting
plane/branch-and-cut algorithm using two aspects: the number of LP relaxations
processed and the sparsity of the constraints defining the LPs. The number of
LP relaxations processed is given precisely by the number of nodes in the corre-
sponding tree (Definition 2). Sparsity is formalized in the following definitions.

Definition 3. Let 1 ≤ s ≤ n + d be a natural number that we call the sparsity
parameter. Then the pair (CP, s) will denote the restriction of the paradigm
CP that only reports the sub-family of cutting planes that can be represented
by inequalities with at most s non-zero coefficients; the notation (CP, s)(C) will
be used to denote this sub-family for any particular convex set C. Similarly,
(D, s) will denote the sub-family of the family of disjunctions D such that each
polyhedron in the disjunction has an inequality description where every inequality
has at most s non-zero coefficients.

1.2 Our Results

Sparsity Versus Size. Our first set of results considers the trade-off between
the sparsity parameter s and the number of LPs processed, i.e., the size of the
tree. There are several avenues to explore in this direction. For example, one

Complexity of Branch-and-Bound and Cutting Planes 387

could compare pure branch-and-bound algorithms based on (D, s1) and (D, s2),
i.e., fix a particular disjunction family D and consider the effect of sparsity on
the branch-and-bound tree sizes. One could also look at two different families
of disjunctions D1 and D2 and look at their relative tree sizes as one turns the
knob on the sparsity parameter. Similar questions could be asked about cutting
plane paradigms (CP1, s1) and (CP2, s2) for interesting paradigms CP1, CP2.
Even more interestingly, one could compare pure branch-and-bound and pure
cutting plane algorithms against each other.

We first focus on pure branch-and-bound algorithms based on the family
S of split disjunctions. A very well-known example of pure integer instances
(i.e., d = 0) due to Jeroslow [32] shows that if the sparsity of the splits used is
restricted to be 1, i.e., one uses only variable disjunctions, then the branch-and-
bound algorithm will generate an exponential (in the dimension n) sized tree. On
the other hand, if one allows fully dense splits, i.e., sparsity is n, then there is a
tree with just 3 nodes (one root, and two leaves) that solves the problem. We ask
what happens in Jeroslow’s example if one uses split disjunctions with sparsity
s > 1. Our first result shows that unless the sparsity parameter s = Ω(n), one
cannot get constant size trees, and if the sparsity parameter s = O(1), then the
tree is of exponential size.

Theorem 1. Let H be the halfspace defined by inequality 2
∑n

i=1 xi ≤ n, where
n is an odd number. Consider the instances of (1) with d = 0, the objective∑n

i=1 xi and C = H ∩ [0, 1]n. The optimum is
⌊

n
2

⌋
, and any branch-and-bound

proof with sparsity s ≤ ⌊
n
2

⌋
that certifies

∑n
i=1 xi ≤ ⌊

n
2

⌋
has size at least Ω(2

n
2s).

The bounds in Theorem 1 give a constant lower bound when s = Ω(n). We
establish another lower bound which does better in this regime.

Theorem 2. Let H be the halfspace defined by inequality 2
∑n

i=1 xi ≤ n, where n
is an odd number. Consider the instances of (1) with d = 0, the objective

∑n
i=1 xi

and C = H ∩ [0, 1]n. The optimum is
⌊

n
2

⌋
, and any branch-and-bound proof with

sparsity s ≤ ⌊
n
2

⌋
that certifies

∑n
i=1 xi ≤ ⌊

n
2

⌋
has size at least Ω

(√
n(n−s)

s

)

.

Next we consider the relative strength of cutting planes and branch-and-
bound. Our previous work has studied conditions under which one method can
dominate the other, depending on which cutting plane paradigm and branching
scheme one chooses [3]. For this paper, the following result from [3] is rele-
vant: for every convex 0/1 pure integer instance, any branch-and-bound proof
based on variable disjunctions can be “simulated” by a lift-and-project cut-
ting plane proof without increasing the size of the proof (versions of this result
for linear 0/1 programming were known earlier; see [19,20]). Moreover, in [3]
we constructed a family of stable set instances where lift-and-project cuts give
exponentially shorter proofs than branch-and-bound. This is interesting because
lift-and-project cuts are disjunctive cuts based on the same family of variable
disjunctions, so it is not a priori clear that they have an advantage. These results
were obtained with no regard for sparsity. We now show that once we also track
the sparsity parameter, this advantage can disappear.

388 A. Basu et al.

Theorem 3. Let H be the halfspace defined by inequality 2
∑n

i=1 xi ≤ n, where n

is an odd number. Consider the intances of (1) with d = 0, the objective
∑�n

2
i=1 xi

and C = H ∩ [0, 1]n. The optimum is
⌊

n
2

⌋
, and there is a branch-and-bound

algorithm based on variable disjunctions, i.e., the family of split disjunctions

with sparsity 1, that certifies
∑�n

2
i=1 xi ≤ ⌊

n
2

⌋
in O(n) steps. However, any cutting

plane for C with sparsity s ≤ ⌊
n
2

⌋
is trivial, i.e., valid for [0, 1]n, no matter what

cutting plane paradigm is used to derive it.

Superiority of Branch-and-Cut. We next consider the question of when com-
bining branching and cutting planes is provably advantageous. For this question,
we leave aside the complications arising due to sparsity considerations and focus
only on the size of proofs. The following discussion and results can be extended to
handle the issue of sparsity as well, but we leave it out of this extended abstract.

Given a cutting plane paradigm CP, and a branching scheme D, are there
families of instances where branch-and-cut based on CP and D does provably
better than pure cutting planes based on CP alone and pure branch-and-bound
based on D alone? If a cutting plane paradigm CP and a branching scheme D are
such that either for every instance, CP gives cutting plane proofs of size at most
a polynomial factor larger than the shortest branch-and-bound proofs with D, or
vice versa, for every instance D gives proofs of size at most polynomially larger
than the shortest cutting plane proofs based on CP, then combining them into
branch-and-cut is likely to give no substantial improvement since one method can
always do the job of the other, up to polynomial factors. As mentioned above,
prior work [3] had shown that disjunctive cuts based on variable disjunctions
(with no restriction on sparsity) dominate branch-and-bound based on variable
disjunctions for 0/1 instances, and as a consequence branch-and-cut based on
these paradigms is dominated by pure cutting planes. In this paper, we show that
the situation completely reverses if one considers a broader family of disjunctions;
in particular, the family of disjunctions must be rich enough to contain all split
disjunctions.

Theorem 4. Let C ⊆ R
n be a closed, convex set. Let k ∈ N be a fixed natural

number and let D be any family of disjunctions that contains all split disjunc-
tions, such that all disjunctions in D have at most k terms in the disjunction.
If a valid inequality 〈c, x〉 ≤ δ for C ∩ Z

n has a cutting plane proof of size L
using disjunctive cuts based on D, then there exists a branch-and-bound proof
of size at most (k + 1)L based on D. Moreover, there is a family of instances
where branch-and-bound based on split disjunctions solves the problem in O(1)
time whereas there is a polynomial lower bound on split cut proofs.

The above discussion and theorem motivate the following definition which
formalizes the situation where no method dominates the other. To make things
precise, we assume that there is a well-defined way to assign a concrete size
to any instance of (1); see [30] for a discussion on how to make this formal.
Additionally, when we speak of an instance, we allow the possibility of proving

Complexity of Branch-and-Bound and Cutting Planes 389

the validity of any inequality valid for C ∩ (Zn × R
d), not necessarily related

to an upper bound on the objective value. Thus, an instance is a tuple (C, c, γ)
such that 〈c, x〉 ≤ γ for all x ∈ C ∩ (Zn × R

d).

Definition 4. A cutting plane paradigm CP and a branching scheme D are
complementary if there is a family of instances where CP gives polynomial (in the
size of the instances) size proofs and the shortest branch-and-bound proof based
on D is exponential (in the size of the instances), and there is another family of
instances where D gives polynomial size proofs while CP gives exponential size
proofs.

We wish to formalize the intuition that branch-and-cut is expected to be
exponentially better than branch-and-bound or cutting planes alone for comple-
mentary pairs of branching schemes and cutting plane paradigms. But we need
to make some mild assumptions about the branching schemes and cutting plane
paradigms. All known branching schemes and cutting plane methods from the
literature satisfy these conditions.

Definition 5. A branching scheme is said to be regular if no disjunction
involves a continuous variable, i.e., each polyhedron in the disjunction is
described using inequalities that involve only the integer constrained variables.

A branching scheme D is said to be embedding closed if disjunctions from
higher dimensions can be applied to lower dimensions. More formally, let n1, n2,
d1, d2 ∈ N. If D ∈ D is a disjunction in R

n1 × R
d1 × R

n2 × R
d2 with respect to

Z
n1 × R

d1 × Z
n2 × R

d2 , then the disjunction D ∩ (Rn1 × R
d1 × {0}n2 × {0}d2),

interpreted as a set in R
n1 × R

d1 , is also in D for the space R
n1 × R

d1 with
respect to Z

n1 ×R
d1 (note that D ∩ (Rn1 ×R

d1 × {0}n2 × {0}d2), interpreted as
a set in R

n1 ×R
d1 , is certainly a disjunction with respect to Z

n1 ×R
d1 ; we want

D to be closed with respect to such restrictions).
A cutting plane paradigm CP is said to be regular if it has the following

property, which says that adding “dummy variables” to the formulation of the
instance should not change the power of the paradigm. Formally, let C ⊆ R

n×R
d

be any closed, convex set and let C ′ = {(x, t) ∈ R
n ×R

d ×R : x ∈ C, t = 〈f, x〉}
for some f ∈ R

n. Then if a cutting plane 〈a, x〉 ≤ b is derived by CP applied to C,
i.e., this inequality is in CP(C), then it should also be in CP(C ′), and conversely,
if 〈a, x〉 + μt ≤ b is in CP(C ′), then the equivalent inequality 〈a + μf, x〉 ≤ b
should be in CP(C).

A cutting plane paradigm CP is said to be embedding closed if cutting planes
from higher dimensions can be applied to lower dimensions. More formally, let
n1, n2, d1, d2 ∈ N. Let C ⊆ R

n1 ×R
d1 be any closed, convex set. If the inequality

〈c1, x1〉+ 〈a1, y1〉+ 〈c2, x2〉+ 〈a2, y2〉 ≤ γ is a cutting plane for C ×{0}n2 ×{0}d2

with respect to Z
n1 × R

d1 × Z
n2 × R

d2 that can be derived by applying CP to
C × {0}n2 × {0}d2 , then the cutting plane 〈c1, x1〉 + 〈a1, y1〉 ≤ γ that is valid for
C ∩ (Zn1 × R

d1) should also belong to CP(C).
A cutting plane paradigm CP is said to be inclusion closed, if for any two

closed convex sets C ⊆ C ′, we have CP(C ′) ⊆ CP(C). In other words, any
cutting plane derived for C ′ can also be derived for a subset C.

390 A. Basu et al.

Theorem 5. Let D be a regular, embedding closed branching scheme and let CP
be a regular, embedding closed, and inclusion closed cutting plane paradigm such
that D includes all variable disjunctions and CP and D form a complementary
pair. Then there exists a family of instances of (1) which have polynomial size
branch-and-cut proofs, whereas any branch-and-bound proof based on D and any
cutting plane proof based on CP is of exponential size.

Example 1. As a concrete example of a complementary pair that satisfies the
other conditions of Theorem 5, consider CP to be the Chvátal-Gomory paradigm
and D to be the family of variable disjunctions. From their definitions, they are
both regular and D is embedding closed. The Chvátal-Gomory paradigm is also
embedding closed and inclusion closed. For the Jeroslow instances from Theo-
rem 1, the single Chvátal-Gomory cut

∑n
i=1 xi ≤ �n

2 � proves optimality, whereas
variable disjunctions produce a tree of size 2� n

2 �. On the other hand, consider
the set T , where T = conv{(0, 0), (1, 0), (12 , h)} and the valid inequality x2 ≤ 0
for T ∩ Z

2. Any Chvátal-Gomory paradigm based proof has size exponential in
the size of the input, i.e., every proof has length at least Ω(h) [46]. On the other
hand, a single disjunction on the variable x1 solves the problem.

In [3], we also studied examples of disjunction families D such that disjunctive
cuts based on D are complementary to branching schemes based on D.

Example 1 shows that the classical Chvátal-Gomory cuts and variable
branching are complementary and thus give rise to a superior branch-and-cut
routine when combined by Theorem 5. As discussed above, for 0/1 problems,
lift-and-project cuts and variable branching do not form a complementary pair,
and neither do split cuts and split disjunctions by Theorem 4. It would be nice
to establish the converse of Theorem 5: if there is a family where branch-and-
cut is exponentially superior, then the cutting plane paradigm and branching
scheme are complementary. In Theorem 6 below, we prove a partial converse
along these lines in the pure integer case. This partial converse requires the dis-
junction family to include all split disjunctions. It would be more satisfactory to
establish similar results without this assumption. More generally, it remains an
open question if our definition of complementarity is an exact characterization
of when branch-and-cut is superior.

Theorem 6. Let D be a branching scheme that includes all split disjunctions
and let CP be any cutting plane paradigm. Suppose that for every pure integer
instance and any cutting plane proof based on CP for this instance, there is a
branch-and-bound proof based on D of size at most a polynomial factor (in the
size of the instance) larger. Then for any branch-and-cut proof based on D and
CP for a pure integer instance, there exists a pure branch-and-bound proof based
on D that has size at most polynomially larger than the branch-and-cut proof.

The high level message that we extract from our results is the formalization of
the following simple intuition. For branch-and-cut to be superior to pure cutting
planes or pure branch-and-bound, one needs the cutting planes and branching
scheme to do “sufficiently different” things. For example, if they are both based

Complexity of Branch-and-Bound and Cutting Planes 391

on the same family of disjunctions (such as lift-and-project cuts and variable
branching, or the setting of Theorem 4), then we may not get any improvements
with branch-and-cut. The definition of a complementary pair attempts to make
the notion of “sufficiently different” formal and Theorem 5 derives the concrete
superior performance of branch-and-cut from this formalization.

2 Proofs

We present the proofs of Theorems 1, 2, 5 and 6 in the subsections below.
The proofs of Theorems 3 and 4 are excluded from this extended abstract. All
missing proofs from this extended abstract can be found in the full version of
the paper [4].

2.1 Proof of Theorem 1

Definition 6. Consider the instances in Theorem 1, and the branch-and-bound
tree T produced by split disjunctions to solve it. Assume node N of T contains at
least one integer point in {0, 1}n, and D1,D2, . . . , Dr are the split disjunctions
used to derive N from the root of T . For 1 ≤ j ≤ r, Dj is a true split disjunction
of N if both of the two halfspaces of Dj have a nonempty intersection with
the integer hull of the corresponding parent node, i.e. the parent node’s integer
hull is split into two nonempty parts by Dj. Otherwise, it is called a false split
disjunction of N . We define the generation variable set of N as the index set
I ⊆ {1, 2, . . . , n} such that it consists of all the indices of the variables involved
in the true split disjunctions of N . The generation set of the root node is empty.

The proof of the following lemma is excluded from this extended abstract.

Lemma 1. Consider the instances in Theorem 1, and the branch-and-bound tree
T produced by split disjunctions with sparsity parameter s <

⌊
n
2

⌋
to solve it. For

any node N of T with at least one feasible integer point v = (v1, v2, . . . , vn) ∈
{0, 1}n, let P , PI and I denote the relaxation, the integer hull and the generation
variable set corresponding to N . Define V := {(x1, x2, . . . , xn) ∈ {0, 1}n : xi =
vi for i ∈ I,

∑n
j=1 xi =

⌊
n
2

⌋}.
If |I| ≤ ⌊

n
2

⌋ − s, then we have:

(i) V �= ∅ and V ⊆ PI ∩ {0, 1}n;
(ii) the objective LP value of N is n

2 .

Proof (Proof of Theorem 1). For a node N of the branch-and-bound tree contain-
ing at least one integer point, if it is derived by exactly m true split disjunctions,
then we say it is a node of generation m. By Lemma 1, if m ≤ 1

s

⌊
n
2

⌋ − 1, then a
node N of generation m has LP objective value n

2 , and in the subtree rooted at
N there must exist at least two descendants from generation m + 1, since the leaf
nodes must have LP values less than or equal to �n

2 �. Therefore, there are at least
2m nodes of generation m when m ≤ 1

s

⌊
n
2

⌋ − 1. This finishes the proof. ��

392 A. Basu et al.

2.2 Proof of Theorem 2

The following lemma follows from an application of Sperner’s theorem [47].

Lemma 2. Let w1, . . . , wk ∈ Z \ {0} and W ∈ Z. Then the number of 0/1
solutions to

∑k
j=1 wjxj = W is at most

(
k

�k/2�
)
.

Proof (Proof of Theorem 2). We consider the instance from Theorem 2. For any
split disjunction D := {x : 〈a, x〉 ≤ b}∪{x : 〈a, x〉 ≥ b+1}, we define V (D) to be
the set of all the optimal LP vertices (of the original polytope) that lie strictly in
the corresponding split set {x : b ≤ 〈a, x〉 ≤ b+1}. Let the support of a be given
by T ⊆ {1, . . . , n} with t := |T | ≤ s ≤ �n/2�. Since a ∈ Z

n and b ∈ Z, V (D) is
precisely the subset of the optimal LP vertices x̂ such that 〈a, x̂〉 = b + 1

2 . Fix
some � ∈ T and consider those optimal LP vertices x̂ ∈ V (D) where x̂� = 1

2 . This
means that

∑
j∈T\{�} aj x̂j = b + 1

2 − a�

2 . Let ri be the number of 0/1 solutions
to

∑
j∈T\{�} aj x̂j = b + 1

2 − a�

2 with exactly i coordinates set to 1. Then the
number of vertices from V (D) with the �-th coordinate equal to 1

2 is

t−1∑

i=0

ri

(
n − t

�n/2� − i

)

≤
(

t−1∑

i=0

ri

)(
n − t

�n/2� − �t/2�
)

.

since
(

n−t
�n/2�−i

) ≤ (
n−t

�n/2�−�t/2�
)

for all i ∈ {0, . . . , t − 1}. Using Lemma 2,
∑t−1

i=0 ri ≤ (
t−1

�t/2�
)

and we obtain the upper bound
(

t−1
�t/2�

)(
n−t

�n/2�−�t/2�
)

on the
number of vertices from V (D) with the �-th coordinate equal to 1

2 . Therefore,
|V (D)| ≤ t

(
t−1

�t/2�
)(

n−t
�n/2�−�t/2�

)
=: p(t). Since n is odd, we have

p(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t!(n − t)!
(t/2)!(t/2 − 1)!((n − t − 1)/2)!((n − t + 1)/2)!

if t is even,

t!(n − t)!
((t − 1)/2)!((t − 1)/2)!((n − t)/2)!((n − t)/2)!

if t is odd.

A direct calculation then shows that

p(t + 1)
p(t)

=

⎧
⎨

⎩

(t + 1)(n − t + 1)
t(n − t)

if t is even,

1 if t is odd.

Let h be the largest even number not exceeding s. Since p(1) =
(

n−1
�n/2�

)
, we

obtain, for every t ∈ {1, . . . , s},

p(t) ≤ p(s) =
(n − 1

�n/2�
) ∏

1≤q≤s
q even

q + 1

q
· n − q + 1

n − q
=

(n − 1

�n/2�
)

· (h+ 1)!!

h!!
· (n − 1)!!

(n − 2)!!
· (n − h − 2)!!

(n − h − 1)!!
,

where m!! denotes the product of all integers from 1 up to m of the same parity
as m. Using the fact that, for every even positive integer �,

√
π�

2
<

�!!
(� − 1)!!

<

√
π(� + 1)

2

Complexity of Branch-and-Bound and Cutting Planes 393

(see, e.g., [9,49]), we have (for h ≥ 1, i.e., s ≥ 2)

p(t) ≤
(

n − 1
�n/2�

)

· (h + 1)(h − 1)!!
h!!

· (n − 1)!!
(n − 2)!!

· (n − h − 2)!!
(n − h − 1)!!

≤
(

n − 1
�n/2�

)

(h + 1)

√
2

πh
· πn

2
· 2
π(n − h − 1)

=
(

n − 1
�n/2�

)√
2n(h + 1)2

πh(n − h − 1)

=
(

n − 1
�n/2�

)

O

(√
ns

n − s

)

.

Thus, this is an upper bound on |V (D)|. Since the total number of optimal
LP vertices of the instance is n

(
n−1

�n/2�
)
, we obtain the following lower bound of

on the size of a branch-and-bound proof:
n(n−1

�n/2�)
|V (D)| = Ω

(√
n(n−s)

s

)

. ��

2.3 Proofs of Theorems 5 And 6

Lemmas 3–5 below are straightforward consequences of the definitions, and the
proofs are omitted from this extended abstract.

Lemma 3. Let C ⊆ C ′ be two closed, convex sets. Let D be any branching
scheme and let CP be an inclusion closed cutting plane paradigm. If there is
a branch-and-bound proof with respect to C ′ based on D for the validity of an
inequality 〈c, x〉 ≤ γ, then there is a branch-and-bound proof with respect to C
based on D for the validity of 〈c, x〉 ≤ γ of the same size. The same holds for
cutting plane proofs based on CP.

Lemma 4. Let D and CP be both embedding closed and let C ⊆ R
n1 ×R

d1 be a
closed, convex set. Let 〈c, x〉 ≤ γ be a valid inequality for C∩(Zn1 ×R

d1). If there
is a branch-and-bound proof with respect to C ×{0}n2 ×{0}d2 based on D for the
validity of 〈c, x〉 ≤ γ interpreted as a valid inequality in R

n1 ×R
d1 ×R

n2 ×R
d2 for

(C ×{0}n2 ×{0}d2)∩ (Zn1 ×R
d1 ×Z

n2 ×R
d2), then there is a branch-and-bound

proof with respect to C based on D for the validity of 〈c, x〉 ≤ γ of the same size.
The same holds for cutting plane proofs based on CP.

Lemma 5. Let C ⊆ R
n+d be a polytope and let 〈c, x〉 ≤ γ be a valid inequality

for C ∩ (Zn × R
d). Let X := {(x, t) ∈ R

n+d × R : x ∈ C, t = 〈c, x〉}. Then, for
any regular branching scheme D or a regular cutting plane paradigm CP, any
proof of validity of 〈c, x〉 ≤ γ with respect to C ∩ (Zn × R

d) can be changed into
a proof of validity of t ≤ γ with respect to X ∩ (Zn ×R

d ×R) with no change in
length, and vice versa.

Proof (Proof of Theorem 5). Let {Pk ⊆ R
nk × R

dk : k ∈ N} be a family of
closed, convex sets, and {(ck, γk) ∈ R

nk ×R
dk ×R : k ∈ N} be a family of tuples

394 A. Basu et al.

such that 〈ck, x〉 ≤ γk is valid for Pk ∩ (Znk × R
dk), and CP has polynomial

size proofs for this family of instances, whereas D has exponential size proofs.
Similarly, let {P ′

k ⊆ R
n′

k × R
d′

k : k ∈ N} be a family of closed, convex sets, and
{(c′

k, γ′
k) ∈ R

n′
k × R

d′
k × R : k ∈ N} be a family of tuples such that 〈c′

k, x〉 ≤ γ′
k

is valid for P ′
k ∩ (Zn′

k × R
d′

k), and D has polynomial size proofs for this family
of instances, whereas CP has exponential size proofs.

Below, we are going to combine these two families into a single family of
instances on which branch-and-cut gives polynomial size proofs, and pure cutting
plane or pure branch-and-bound proofs are of exponential size. For this, the
growth rates of sizes of instances in the two families need to be polynomially
comparable. Otherwise, this can create issues, e.g., polynomial size proofs as
measured by the sizes of the first family may become exponential size when
compared with the sizes in the second family. It is not hard to show that given
any two families of instances whose sizes are not bounded, there exist infinite
subfamilies of the two families such that the growth rates of the two subfamilies
are polynomially comparable. Since the polynomial or exponential behaviour of
the proof sizes were defined with respect to the sizes of the instances, passing
to infinite subfamilies maintains this behaviour. For details, please see the full
version of this paper [4]. From now on, we will assume the two families (Pk, ck, γk)
and (P ′

k, c′
k, γ′

k) are polynomially comparable in size (by passing to subfamilies
if necessary).

We first embed Pk and P ′
k into a common ambient space for each k ∈ N. This

is done by defining n̄k = max{nk, n′
k}, d̄k = max{dk, d′

k}, and embedding both
Pk and P ′

k into the space R
n̄k ×R

d̄k by defining Qk := Pk ×{0}n̄k−nk ×{0}d̄k−dk

and Q′
k := P ′

k × {0}n̄k−n′
k × {0}d̄k−d′

k . By Lemma 4, D has an exponential
lower bound on sizes of proofs for the inequality 〈ck, x〉 ≤ γk, interpreted as
an inequality in R

n̄k × R
d̄k , valid for Qk ∩ (Zn̄k × R

d̄k). By Lemma 4, CP has
an exponential lower bound on sizes of proofs for the inequality 〈c′

k, x〉 ≤ γ′
k,

interpreted as an inequality in R
n̄k × R

d̄k , valid for Q′
k ∩ (Zn̄k × R

d̄k).
We now make the objective vector common for both families of instances.

Define Xk := {(x, t) ∈ R
n̄k ×R

d̄k ×R : x ∈ Qk, t = 〈ck, x〉} and X ′
k := {(x, t) ∈

R
n̄k ×R

d̄k ×R : x ∈ Q′
k, t = 〈c′

k, x〉}. By Lemma 5, the inequality t ≤ γk has an
exponential lower bound on sizes of proofs based on D for Xk and the inequality
t ≤ γ′

k has an exponential lower bound on sizes of proofs based on CP for X ′
k.

We next embed these families as faces of the same closed convex set. Define
Zk ⊆ R

n̄k × R
d̄k × R × R, for every k ∈ N, as the convex hull of Xk × {0} and

X ′
k × {0}.

The key point to note is that these constructions combine two families whose
sizes are polynomially comparable and therefore the new family that is created
has sizes that are polynomially comparable to the original two families.

We let (x, t, y) denote points in the new space R
n̄k × R

d̄k × R × R, i.e., y
denotes the last coordinate. Consider the family of inequalities t − γk(1 − y) −
γ′

ky ≤ 0 for every k ∈ N. Note that this inequality reduces to t ≤ γk when
y = 0 and it reduces to t ≤ γ′

k when y = 1. Thus, the inequality is valid for
Zk ∩ (Zn̄k × R

d̄k × R × Z), i.e., when we constrain y to be an integer variable.

Complexity of Branch-and-Bound and Cutting Planes 395

Since Xk ×{0} ⊆ Zk, by Lemma 3, proofs of t− γk(1− y)− γ′
ky ≤ 0 based on D

have an exponential lower bound on their size. Similarly, since X ′
k × {0} ⊆ Zk,

by Lemma 3, proofs of t − γk(1 − y)− γ′
ky ≤ 0 based on CP have an exponential

lower bound on their size.
However, for branch-and-cut based on CP and D, we can first branch on the

variable y (recall from the hypothesis that D allows branching on any integer
variable). Since CP has a polynomial proof for Pk and (ck, γk) and therefore for
the valid inequality t ≤ γk for Xk × {0}, we can process the y = 0 branch in
polynomial time with cutting planes. Similarly, D has a polynomial proof for P ′

k

and (c′
k, γ′

k) and therefore for the valid inequality t ≤ γ′
k for X ′

k × {0}, we can
process the y = 1 branch also in polynomial time. Thus, branch-and-cut runs in
polynomial time overall for this family of instances. ��
Proof (Proof of Theorem 6). Recall that we restrict ourselves to the pure integer
case, i.e., d = 0. Consider any branch-and-cut proof for some instance. If no
cutting planes are used in the proof, this is a pure branch-and-bound proof and
we are done. Otherwise, let N be a node of the proof tree where a cutting plane
〈a, x〉 ≤ γ is used. Since we assume all cutting planes are rational, we may assume
a ∈ Z

n and γ ∈ Z. Thus, N ′ = N ∩{x : 〈a, x〉 ≥ γ +1} is integer infeasible. Since
〈a, x〉 ≤ γ is in CP(N), by our assumption, there must be a branch-and-bound
proof of polynomial size based on D for the validity of 〈a, x〉 ≤ γ with respect
to N . Since N ′ ⊆ N , by Lemma 3, there must be a branch-and-bound proof for
the validity of 〈a, x〉 ≤ γ with respect to N ′, thus proving the infeasibility of N ′.
In the branch-and-cut proof, one can replace the child of N by first applying
the disjunction {x : 〈a, x〉 ≤ γ} ∪ {x : 〈a, x〉 ≥ γ + 1} on N , and then on
N ′, applying the above branch-and-bound proof of infeasibility. We now have a
branch-and-cut proof for the original instance with one less cutting plane node.
We can repeat this for all nodes where a cutting plane is added and convert the
entire branch-and-cut tree into a pure branch-and-bound tree with at most a
polynomial blow up in size. ��

References

1. Aardal, K., Bixby, R.E., Hurkens, C.A., Lenstra, A.K., Smeltink, J.W.: Market
split and basis reduction: towards a solution of the cornuéjols-dawande instances.
INFORMS J. Comput. 12(3), 192–202 (2000)

2. Arora, S., Barak, B.: Computational Complexity: a Modern Approach. Cambridge
University Press, Cambridge (2009)

3. Basu, A., Conforti, M., Di Summa, M., Jiang, H.: Complexity of cutting plane
and branch-and-bound algorithms for mixed-integer optimization (2020). https://
arxiv.org/abs/2003.05023

4. Basu, A., Conforti, M., Di Summa, M., Jiang, H.: Complexity of cutting plane and
branch-and-bound algorithms for mixed-integer optimization – II (2020). https://
arxiv.org/abs/2011.05474

5. Bixby, R.E.: Solving real-world linear programs: a decade and more of progress.
Oper. Res. 50(1), 3–15 (2002)

https://arxiv.org/abs/2003.05023
https://arxiv.org/abs/2003.05023
https://arxiv.org/abs/2011.05474
https://arxiv.org/abs/2011.05474

396 A. Basu et al.

6. Bockmayr, A., Eisenbrand, F., Hartmann, M., Schulz, A.S.: On the Chvátal rank
of polytopes in the 0/1 cube. Discrete Appl. Math. 98(1–2), 21–27 (1999)

7. Bonet, M., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small
coefficients. J. Symbolic Logic 62(3), 708–728 (1997)

8. Buss, S.R., Clote, P.: Cutting planes, connectivity, and threshold logic. Arch. Math.
Logic 35(1), 33–62 (1996)

9. Chen, C.P., Qi, F.: Completely monotonic function associated with the gamma
functions and proof of Wallis’ inequality. Tamkang J. Math. 36(4), 303–307 (2005)

10. Chvátal, V.: Hard knapsack problems. Oper. Res. 28(6), 1402–1411 (1980)
11. Chvátal, V.: Cutting-plane proofs and the stability number of a graph, Report

Number 84326-OR. Universität Bonn, Bonn, Institut für Ökonometrie und Oper-
ations Research (1984)

12. Chvátal, V., Cook, W.J., Hartmann, M.: On cutting-plane proofs in combinatorial
optimization. Linear Algebra Appl. 114, 455–499 (1989)

13. Clote, P.: Cutting planes and constant depth Frege proofs. In: Proceedings of the
Seventh Annual IEEE Symposium on Logic in Computer Science, pp. 296–307
(1992)

14. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer programming models. Integer
Programming. GTM, vol. 271, pp. 45–84. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11008-0 2

15. Cook, W.J., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discrete Appl. Math. 18(1), 25–38 (1987)

16. Cook, W.J., Dash, S.: On the matrix-cut rank of polyhedra. Math. Oper. Res.
26(1), 19–30 (2001)

17. Cornuéjols, G., Liberti, L., Nannicini, G.: Improved strategies for branching on
general disjunctions. Math. Program. 130(2), 225–247 (2011)

18. Dadush, D., Tiwari, S.: On the complexity of branching proofs. arXiv preprint
arXiv:2006.04124 (2020)

19. Dash, S.: An exponential lower bound on the length of some classes of branch-and-
cut proofs. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp.
145–160. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47867-1 11

20. Dash, S.: Exponential lower bounds on the lengths of some classes of branch-and-
cut proofs. Math. Oper. Res. 30(3), 678–700 (2005)

21. Dash, S.: On the complexity of cutting-plane proofs using split cuts. Oper. Res.
Lett. 38(2), 109–114 (2010)

22. Dey, S.S., Iroume, A., Molinaro, M.: Some lower bounds on sparse outer approxi-
mations of polytopes. Oper. Res. Lett. 43(3), 323–328 (2015)

23. Dey, S.S., Molinaro, M., Wang, Q.: Approximating polyhedra with sparse inequal-
ities. Math. Program. 154(1–2), 329–352 (2015)

24. Dey, S.S., Molinaro, M., Wang, Q.: Analysis of sparse cutting planes for sparse
MILPs with applications to stochastic MILPs. Math. Oper. Res. 43(1), 304–332
(2018)

25. Eisenbrand, F., Schulz, A.S.: Bounds on the Chvátal rank of polytopes in the
0/1-cube. Combinatorica 23(2), 245–261 (2003)

26. Eldersveld, S.K., Saunders, M.A.: A block-LU update for large-scale linear pro-
gramming. SIAM J. Matrix Anal. Appl. 13(1), 191–201 (1992)

27. Goerdt, A.: Cutting plane versus Frege proof systems. In: Börger, E., Kleine
Büning, H., Richter, M.M., Schönfeld, W. (eds.) CSL 1990. LNCS, vol. 533, pp.
174–194. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54487-9 59

https://doi.org/10.1007/978-3-319-11008-0_2
https://doi.org/10.1007/978-3-319-11008-0_2
http://arxiv.org/abs/2006.04124
https://doi.org/10.1007/3-540-47867-1_11
https://doi.org/10.1007/3-540-54487-9_59

Complexity of Branch-and-Bound and Cutting Planes 397

28. Goerdt, A.: The cutting plane proof system with bounded degree of falsity.
In: Börger, E., Jäger, G., Kleine Büning, H., Richter, M.M. (eds.) CSL 1991.
LNCS, vol. 626, pp. 119–133. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0023762

29. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 419–430. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45841-7 34

30. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, Algorithms and Combinatorics: Study and Research Texts, vol. 2.
Springer-Verlag, Berlin (1988). https://doi.org/10.1007/978-3-642-78240-4

31. Impagliazzo, R., Pitassi, T., Urquhart, A.: Upper and lower bounds for tree-like
cutting planes proofs. In: Proceedings Ninth Annual IEEE Symposium on Logic
in Computer Science, pp. 220–228. IEEE (1994)

32. Jeroslow, R.G.: Trivial integer programs unsolvable by branch-and-bound. Math.
Program. 6(1), 105–109 (1974). https://doi.org/10.1007/BF01580225, https://doi.
org/10.1007/BF01580225

33. Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Math. Pro-
gram. 128(1–2), 403–436 (2011)

34. Kraj́ıček, J.: Discretely ordered modules as a first-order extension of the cutting
planes proof system. J. Symbolic Logic 63(4), 1582–1596 (1998)

35. Lodi, A.: Mixed integer programming computation. In: Jünger, M., Liebling, T.M.,
Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey,
L.A. (eds.) 50 Years of Integer Programming 1958-2008, pp. 619–645. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0 16

36. Mahajan, A., Ralphs, T.K.: Experiments with branching using general disjunc-
tions. In: Operations Research and Cyber-Infrastructure, pp. 101–118. Springer
(2009). https://doi.org/10.1007/978-0-387-88843-9 6

37. Mahmoud, H., Chinneck, J.W.: Achieving MILP feasibility quickly using general
disjunctions. Comput. Oper. Res. 40(8), 2094–2102 (2013)

38. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Constraint orbital branching.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
225–239. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-
4 16

39. Owen, J.H., Mehrotra, S.: Experimental results on using general disjunctions
in branch-and-bound for general-integer linear programs. Comput. Optim. Appl.
20(2), 159–170 (2001)

40. Pataki, G., Tural, M., Wong, E.B.: Basis reduction and the complexity of branch-
and-bound. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1254–1261. SIAM (2010)

41. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic 62(3), 981–998 (1997)

42. Pudlák, P.: On the complexity of the propositional calculus. London Mathematical
Society Lecture Note Series, pp. 197–218 (1999)

43. Razborov, A.A.: On the width of semialgebraic proofs and algorithms. Math. Oper.
Res. 42(4), 1106–1134 (2017)

44. Reid, J.K.: A sparsity-exploiting variant of the Bartels-Golub decomposition for
linear programming bases. Math. Program. 24(1), 55–69 (1982). https://doi.org/
10.1007/BF01585094

45. Rothvoß, T., Sanitá, L.: 0/1 polytopes with quadratic Chvátal rank. In: Goemans,
M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 349–361. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36694-9 30

https://doi.org/10.1007/BFb0023762
https://doi.org/10.1007/BFb0023762
https://doi.org/10.1007/3-540-45841-7_34
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/BF01580225
https://doi.org/10.1007/BF01580225
https://doi.org/10.1007/BF01580225
https://doi.org/10.1007/978-3-540-68279-0_16
https://doi.org/10.1007/978-0-387-88843-9_6
https://doi.org/10.1007/978-3-540-68891-4_16
https://doi.org/10.1007/978-3-540-68891-4_16
https://doi.org/10.1007/BF01585094
https://doi.org/10.1007/BF01585094
https://doi.org/10.1007/978-3-642-36694-9_30

398 A. Basu et al.

46. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons,
New York (1986)

47. Sperner, E.: Ein satz über untermengen einer endlichen menge. Math. Z. 27(1),
544–548 (1928)

48. Venderbei, R.J.: https://vanderbei.princeton.edu/tex/talks/IDA CCR/
SparsityMatters.pdf (2017)

49. Watson, G.N.: A note on gamma functions. Edinburgh Math. Notes 42, 7–9 (1959)

https://vanderbei.princeton.edu/tex/talks/IDA_CCR/SparsityMatters.pdf
https://vanderbei.princeton.edu/tex/talks/IDA_CCR/SparsityMatters.pdf

Face Dimensions of General-Purpose
Cutting Planes for Mixed-Integer Linear

Programs

Matthias Walter(B)

Department of Applied Mathematics, University of Twente,
Enschede, The Netherlands

m.walter@utwente.nl

Abstract. Cutting planes are a key ingredient to successfully solve
mixed-integer linear programs. For specific problems, their strength is
often theoretically assessed by showing that they are facet-defining for
the corresponding mixed-integer hull. In this paper we experimentally
investigate the dimensions of faces induced by general-purpose cutting
planes generated by a state-of-the-art solver. Therefore, we relate the
dimension of each cutting plane to its impact in a branch-and-bound
algorithm.

1 Introduction

We consider the mixed-integer program

max cᵀx (1a)
s.t. Ax ≤ b (1b)

xi ∈ Z ∀i ∈ I (1c)

for a matrix A ∈ R
m×n, vectors c ∈ R

n and b ∈ R
m and a subset I ⊆ {1, 2, . . . , n}

of integer variables. Let P := conv{x ∈ R
n : x satisfies (1b) and (1c)} denote the

corresponding mixed-integer hull. A cutting plane for (1) is an inequality aᵀx ≤ β
that is valid for P (and possibly invalid for some point computed during branch-
and-cut). Such a valid inequality induces the face F := {x ∈ P : aᵀx = β} of P .
For more background on polyhedra we refer to [12].

To tackle specific problems, one often tries to find facet-defining inequalities,
which are inequalities whose induced face F satisfies dim(F) = dim(P) − 1.
This is justified by the fact that any system Cx ≤ d with P = {x : Cx ≤ d}
has to contain an inequality that induces F . Since the dimension of a face can
vary between −1 (no x ∈ P satisfies aᵀx = β) and dim(P) (all x ∈ P satisfy
aᵀx = β), the following hypothesis is a reasonable generalization of facetness as
a strength indicator.

Hypothesis 1. The practical strength of an inequality correlates with the
dimension of its induced face.
c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 399–412, 2021.
https://doi.org/10.1007/978-3-030-73879-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_28

400 M. Walter

There is no unified notion of the practical strength of an inequality, but we will
later define one that is related to its impact in a branch-and-bound algorithm.
The main goal of this paper is to computationally test this hypothesis for general-
purpose cutting planes used in MIP solvers.

Outline. In Sect. 2 we present the algorithm we used to compute dimensions.
Sect. 3 is dedicated to the score we used to assess a cutting plane’s impact, and
in Sect. 4 we present our findings, in particular regarding Hypothesis 1.

2 Computing the Dimension of a Face

This section is concerned about how to effectively compute the dimension of P
or of one of its faces F induced by some valid inequality aᵀx ≤ β. In our experi-
ments we will consider instances with several hundreds variables, and hence the
enumeration of all vertices of P or F is typically impossible. Instead, we use an
oracle-based approach. An optimization oracle for P is a black-box subroutine
that can solve any linear program over the polyhedron P , i.e., for any given
w ∈ R

n it can solve
max wᵀx s.t. x ∈ P. (2)

In case (2) is feasible and bounded, the oracle shall return an optimal solution,
and in case it is feasible and unbounded, it shall return an unbounded direction.
Note that for such an oracle we neither require all vertices of P nor all valid
(irredundant) inequalities. Indeed, we can use any MIP solver and apply it to
problem (1) with c := w. We now discuss how one can compute dim(P) by
only accessing an optimization oracle for P . The basic algorithm is known (see
Lemma 6.5.3 in [4]), but we provide a slightly improved version that requires at
most 2n oracle queries (in contrast to the bound of 3n for the cited one). In
fact, one can prove that there is no oracle-based algorithm that always requires
less than 2n [13].

To keep the presentation simple we assume that P is bounded, although
our implementation can handle unbounded polyhedra as well. The algorithm
maintains a set X ⊆ P of affinely independent points and a system Dx = e of
valid equations, where D has full row-rank r. Hence, dim(X) ≤ dim(P) ≤ n − r
holds throughout and the algorithm works by either increasing dim(X) or r in
every iteration. The details are provided in Algorithm 1.

Proposition 1. For an optimization oracle for a non-empty polytope P ⊆ R
n,

Algorithm 1 requires 2n oracle queries to compute a set X ⊆ P with |X| =
dim(P) + 1 and a system Dx = e of n − dim(P) equations satisfying

aff(P) = aff(X) = {x ∈ R
n : Dx = e}.

Proof. Since every point x ∈ X was computed by the optimization oracle, we
have X ⊆ P . Moreover, Dx = e is valid for P since for each equation dᵀx = γ,
min{dᵀx : x ∈ P} = γ = max{dᵀx : x ∈ P} holds. We now prove by induction

Face Dimensions of General-Purpose Cutting Planes 401

on the number of iterations that in every iteration of the algorithm, the points
x ∈ X are affinely independent and that the rows of D are linearly independent.

Initially, this invariant holds because X = ∅ and D has no rows. Whenever
an equation dᵀx = dᵀx+ is added to Dx = e in step 7, the vector d is linearly
independent to the rows of D (see step 3). If in step 10, X is initialized with a
single point, it is clearly affinely independent. Similarly, the two points in step 14
also form an affinely independent set since dᵀx+ > dᵀx− implies x+ �= x−.
Suppose X is augmented by x̄ := x+ in step 19 or by x̄ := x− in step 22. Note
that by the choice of d in step 3, dᵀx = γ holds for all x ∈ X. Due to dᵀx̄ �= γ,
X ∪ {x̄} remains affinely independent.

After the first iteration, we have |X| + | rows(D)| = 2, and in every further
iteration, this quantity increases by 1. Hence, the algorithm requires n iterations,
each of which performs 2 oracle queries. The result follows. 	

Algorithm 1: Affine hull of a polytope via optimization oracle
Input: Optimization oracle for a polytope ∅ �= P ⊆ R

n.
Output: Affine basis X of aff(P), non-redundant system Dx = e with

aff(P) = {x ∈ R
n : Dx = e}.

1 Initialize X := ∅ and Dx = e empty.
2 while |X| + 1 < n − | rows(D)| do
3 Compute a direction vector d := aff(X)⊥ \ span(rows(D)).
4 Query the oracle to maximize dᵀx over x ∈ P and let

x+ := arg max{dᵀx : x ∈ P}.
5 Query the oracle to maximize −dᵀx over x ∈ P and let

x− := arg min{dᵀx : x ∈ P}.
6 if dᵀx+ = dᵀx− then
7 Add equation dᵀx = dᵀx+ to system Dx = e.
8 if X = ∅ then
9 set X := {x+}.

10 end
11 end
12 else if X = ∅ then
13 set X := {x+, x−}.
14 end
15 else
16 Let γ := dᵀx for some x ∈ X.
17 if dᵀx+ �= γ then
18 set X := X ∪ {x+}.
19 end
20 else
21 set X := X ∪ {x−}.
22 end
23 end
24 end
25 return (X,Dx = e).

402 M. Walter

Implementation Details. We now describe some details of the implementation
within the software framework IPO [14]. In the description of Algorithm 1 we
did not specify step 3 precisely. While one may enforce the requirement d /∈
span(rows(D)) via d ∈ rows(D)⊥, it turned out that this is numerically less
stable than first computing a basis of aff(X)⊥ and selecting a basis element d
that is not in the span of D’s rows. Moreover, we can take d’s sparsity and other
numerical properties into account. Sparsity can speed-up the overall computation
since very sparse objective vectors are sometimes easier to optimize for a MIP
solver. In theory, for all x ∈ X, the products dᵀx have the same value. However,
due to floating-point arithmetic the computed values may differ. It turned out
that preferring directions d for which the range of these products is small helps
to avoid numerical difficulties.

In our application we compute the dimension of P and of several of its faces.
We can exploit this by caching all points x ∈ P returned by an optimization
oracle in a set X̄. Then, for each face F induced by an inequality aᵀx ≤ β we
can then compute the set X̄F := {x ∈ X̄ : aᵀx = β}. Before querying the oracle
we can then check the set X̄F for a point with sufficiently large objective value,
which saves two calls to the MIP solvers.

Let D̄x = ē be the equation system returned by Algorithm 1 for P . Now, for
a face F induced by inequality aᵀx ≤ β we can initialize Dx = e in the algorithm
by D̄x = ē. Moreover, if aᵀx = β is not implied by Dx = e we add this equation
to Dx = e as well.

Since the algorithm is implemented in floating-point arithmetic, errors can
occur which may lead to wrong dimension results. We checked the results using
an exact arithmetic implementation of Algorithm 1 for easier instances (with
less than 200 variables). For these, the computed dimension varied by at most
2 from the true dimension. We conclude that the relative dimension errors are
sufficiently small.

In a first implementation, our code frequently reported dimension −1, and it
turned out that often the right-hand side was only slightly larger than needed to
make the inequality supporting. Thus, for each inequality aᵀx ≤ β, normalized
to ||a||2 = 1, we computed βtrue := max{aᵀx : x ∈ P} by a single oracle query.
Whenever we observed β < βtrue − 10−4, we considered the cut aᵀx ≤ β as
invalid (indicated by the symbol �). If β > βtrue +10−4, we declare the cut to be
non-supporting. Otherwise, we replace β by βtrue before running Algorithm 1.

3 Measuring the Strength of a Single Inequality

In this section we introduce our cut impact measure for indicating, for a given
cutting plane aᵀx ≤ β, how useful its addition in the context of branch-and-cut
is. The main goal of solving an LP at a branch-and-bound node is to determine
a dual bound of the current subproblem. If this bound is at most the value of the
best feasible solution known so far, then the subproblem can be discarded. Thus,
we consider the value of such a bound (after adding a certain cut) in relation to
the problem’s optimum z� := max{cᵀx : Ax ≤ b, xi ∈ Z ∀i ∈ I} and the value
zLP := max{cᵀx : Ax ≤ b} of the LP relaxation.

Face Dimensions of General-Purpose Cutting Planes 403

Our first approach was to just evaluate the dual bound obtained from the LP
relaxation Ax ≤ b augmented by aᵀx ≤ β. However, adding a single inequality
often does not cut off the optimal face of the LP relaxation, which means that
the bound does not change. In a second attempt we tried to evaluate the dual
bound of the LP relaxation augmented by a random selection of k cutting planes.
However, the variance of the resulting cut impact measure was very large even
after averaging over 10.000 such selections.

As a consequence, we discarded cut impact measures based on the combined
impact of several cutting planes. Instead we carried out the following steps for
given cutting planes aᵀ

1x ≤ β1, aᵀ
2x ≤ β2, . . . , aᵀ

kx ≤ βk:

1. Compute the optimum z� and optimum solution x� ∈ P .
2. Compute zLP.
3. For i = 0, 1, 2, . . . , k, solve

max cᵀx s.t. Ax ≤ b, xj ∈ Z ∀j ∈ I and aᵀ
i x ≤ βi if i ≥ 1

with x� as an initial incumbent, with presolve, cutting planes and heuristics
disabled and where a time limit of 60 s is enforced.

4. Let N denote the minimum number of branch-and-bound nodes used in any
these k + 1 runs.

5. For i = 0, 1, . . . , k, let zi be the dual bound obtained in run i when stopping
after N branch-and-bound nodes. For i ≥ 1, the closed gap of cut i is defined
as (zi − zLP)/(z� − zLP). For i = 0, this yields the closed gap without cuts.

Remarks. The closed gap is essentially the dual bound, normalized such that
a value of 0 means no bound improvement over the root LP bound without
cuts and a value of 1 means that the instance was solved to optimality. The
effective limit of N branch-and-bound nodes was introduced such that all runs
reach this limit. This circumvents the question of how to compare runs in which
the problem was solved to optimality with those that could not solve it. For
all runs, presolve and domain propagation were disabled due to our focus on
the branch-and-bound algorithm itself. To avoid interaction with heuristics, the
latter were disabled, but an optimal solution x� was provided.

We are aware that it is debatable how meaningful this cut measure is with
respect to the actual importance of a single inequality in a practical setting.
However, we think that it is highly nontrivial to design a cut measure that is
meaningful, robust and computable with reasonable effort. Therefore, we see
our proposed measure as one contribution and hope that further research leads
to the development of more measures, which in turn can lead to more reliable
statements.

4 Computational Study

In order to test Hypothesis 1 we considered the 65 instances from the
MIPLIB 3 [10]. We did not use the more recent MIPLIB 2017 [11] because

404 M. Walter

we had to restrict ourselves to problems with a decent number of variables. For
each of them we computed the dimension of the mixed-integer hull P , imposing
a time limit of 10 min1. Moreover, we ran the state-of-the-art solver SCIP [3] and
collected all cutting planes generated in the root node, including those that were
discarded by SCIP’s cut selection routine2. For each of the cuts we computed
the dimension of its induced face (see Sect. 2) as well as the closed gap after
processing N (as defined in Sect. 3) branch-and-bound nodes.

While for instances air03, air05, nw04, no cuts were generated by SCIP, our
implementation of Algorithm 1 ran into numerical difficulties during the compu-
tation of dim(P) for set1ch. Moreover, dim(P) could not be computed within
10 min for instances air04, arki001, cap6000, dano3mip, danoint, dsbmip,
fast0507, gesa2 0, gesa3 0, l152lav, mas74, misc06, mitre, mkc, mod010,
mod011, pk1, pp08aCUTS, pp08a, qnet1, rentacar, rout and swath.

We evaluated the remaining 37 instances, whose characteristic data is shown
in Table 1. We distinguish how many cuts SCIP found by which cut separation
method, in particular to investigate whether certain separation routines tend to
generate cuts with low- or high-dimensional faces.

We verified some of the invalid cutting planes manually, i.e., checked that
these cuts are generated by SCIP and that there exists a feasible solution that is
indeed cut off. The most likely reason for their occurrence is that SCIP performed
dual reductions although we disabled them via corresponding parameters3.

Since the results on face dimensions and cut strength turned out to be
very instance-specific, we created one plot per instance. We omit the ones for
p2756 (too many failures, see Table 1), blend2 (only 7 cuts analyzed), enigma
(dim(P) = 3 is very small), and for markshare1, markshare2 and noswot (all
cuts were ineffective). Moreover, we present several plots in the Appendix A
since these are similar to those of other instances.

The plots show the dimension of the cuts (horizontal axis, rounded to 19
groups) together with their closed gap (vertical axis, 14 groups) according to
Sect. 3. Each circle corresponds to a nonempty set of cuts, where the segments
depict the respective cut classes (see Table 1) and their color depicts the number
k of cuts, where the largest occurring number L is specified in the caption. The
colors are red (0.9L < k ≤ L), orange (0.7L < k ≤ 0.9L), yellow (0.5L <
k ≤ 0.7L), green (0.3L < k ≤ 0.5L), turquoise (0.1L < k ≤ 0.3L) and blue
(1 ≤ k < 0.1L). For instance, the circle for fixnet6 containing a red and a
turquoise segment subsumes cutting planes with face dimensions between 730
and 777, and closed gap of approximately 0.45. As the legend next to the plot
indicates, this circle represents k ∈ [109, 121] c-MIR cuts and k′ ∈ [13, 36] multi-
commodity flow cuts. The dashed horizontal line indicates the closed gap without
cuts (see Sect. 3).

1 All experiments were carried out on a single core of an Intel Core i3 CPU running
at 2.10GHz with 8 GB RAM.

2 We disabled presolve, domain propagation, dual reductions, symmetry, and restarts.
3 We set misc/allowweakdualreds and misc/allowstrongdualreds to false.

Face Dimensions of General-Purpose Cutting Planes 405

Table 1. Characteristics of the relevant 37 instances with number of successfully ana-
lyzed cuts, failures (numerical problems 0/0, timeouts �, invalid cuts �), dimension
of the mixed-integer hull, and number N of branch-and-bound nodes (see Sect. 3).

– Lifted extended weight inequalities [9,15,16] – Complemented Mixed-Integer
Rounding (c-MIR) inequalities [8,16] – {0, 1/2}-Chvátal-Gomory inequalities [2,6]

– Strengthened Chvátal-Gomory inequalities [7] – Lifted flow-cover inequalities [5]
– Multi-commodity flow inequalities [1]

Instance Cuts Analyzed by class Failed Dim. B& B

total 0/0 � � of P nodes

bell3a 25 25 121 53075

bell5 53 36 1 11 5 97 7815

blend2 8 7 1 245 597

dcmulti 172 137 14 21 467 773

egout 125 97 1 24 3 41 1

enigma 82 59 1 17 5 3 1

fiber 533 127 139 7 4 9 207 33 6 1 946 23395

fixnet6 772 612 83 42 35 779 53900

flugpl 42 42 9 1753

gen 28 17 8 3 540 21

gesa2 470 16 419 2 6 27 1176 21114

gesa3 259 194 2 6 15 38 4 1104 729

gt2 143 92 3 39 8 1 188 1

harp2 1028 659 210 9 4 112 5 28 1 1300 13748

khb05250 122 78 5 39 1229 425

lseu 125 35 85 2 3 89 3495

markshare1 107 104 3 50 318260

markshare2 84 79 3 2 60 286347

mas76 225 204 1 20 151 211381

misc03 634 3 283 33 311 4 116 13

misc07 808 286 34 440 36 12 204 22839

mod008 441 119 272 3 47 319 1158

modglob 268 186 3 1 78 327 112516

noswot 164 151 11 2 120 160344

p0033 94 14 40 10 30 27 127

p0201 263 12 152 14 78 7 139 2

p0282 904 368 441 6 15 1 4 69 282 57

p0548 577 159 213 10 16 62 117 520 921

p2756 1000 82 96 22 48 55 26 671 2716 15149

qiu 63 51 2 10 709 10406

qnet1 162 95 10 47 6 4 1233 5

rgn 278 168 65 45 160 1691

seymour 6246 656 53 5528 9 0 1255 9

stein27 886 517 9 360 27 3673

stein45 1613 1221 10 382 45 45371

vpm1 281 129 32 117 3 288 27881

vpm2 353 251 1 30 63 8 286 172271

406 M. Walter

0 194 389 583 778
0.4

0.5

0.6

fixnet6: L = 121 cuts

Segment colors for fixnet6:

between 1 and 12 cuts
between 13 and 36 cuts
between 37 and 60 cuts
between 61 and 84 cuts
between 85 and 108 cuts
between 109 and 121 cuts

0 28 57 86 115
0

0.5

1

misc03: L = 103 cuts

0 46 93 140 187
0.6

0.7

0.8

0.9

1

gt2: L = 48 cuts

The first three plots already highlight that the results are very heterogeneous:
while the faces of the strongest cuts in fixnet6 have a high dimension, the
strongest ones for misc03 are not even supporting. Even when considering non-
supporting cuts as outliers, the dimension does not indicate practical strength,
as the plot for gt2 shows. A quick look at the other plots lets us conclude that
Hypothesis 1 is false—at least for the strength measure from Sect. 3.

0 324 649 974 1299

0.4

0.5

0.6

harp2: L = 186 cuts
0 79 159 238 318

0.4

0.6

0.8

mod008: L = 19 cuts

The dashed line for harp2 shows that adding a single cut does not necessarily
help in branch-and-bound, which may be due to side-effects such as different
branching decisions. For some instances, such as mod008, the cuts’ face dimen-
sions are well distributed. In contrast to this, some instances exhibit only very
few distinct dimension values, e.g., only non-supporting cuts for qiu. Interest-

Face Dimensions of General-Purpose Cutting Planes 407

ingly, the 6246 cuts for seymour induce only empty faces as well as faces with
dimensions between 1218 and 1254. This can partially be explained via the cut
classes. On the one hand, all generated strengthened Chvátal-Gomory cuts are
non-supporting. On the other hand, some of the c-MIR cuts and {0, 1/2}-cuts
are non-supporting while others induce faces of very high dimension.

0 177 354 531 708

0.6

0.7

0.8

qiu: L = 10 cuts

0 313 627 940 1254

0.06

0.08

0.10

0.12

seymour: L = 2703 cuts

In general we do not see an indication that cuts from certain classes induce
higher dimensional faces than others. At first glance, such a pattern is apparent
for misc07 (at dimensions 130–160), however one has to keep in mind that these
blue segments constitute a minority of the cuts. In line with that, the majority
of the cuts for fiber is concentrated around dimension 900 with a closed gap
similar to that without cuts.

Despite the heterogeneity of the results, one observation is common to many
instances: the distribution of the face dimensions is biased towards −1 and high-
dimensions, i.e., not many cuts inducing low dimensional faces are generated.

0 50 101 152 203

0.6

0.8

1

misc07: L = 114 cuts

0 236 472 708 945

0.7

0.8

0.9

fiber: L = 39 cuts

A corresponding histogram is depicted in Fig. 1. We conjecture that the high
dimensions occur because lifting and strengthening techniques for cutting planes
are quite evolved.

408 M. Walter

∅
[0
%
,5
%
)

[5
%
,1
0%

)
[1
0%

,1
5%

)
[1
5%

,2
0%

)
[2
0%

,2
5%

)
[2
5%

,3
0%

)
[3
0%

,3
5%

)
[3
5%

,4
0%

)
[4
0%

,4
5%

)
[4
5%

,5
0%

)
[5
0%

,5
5%

)
[5
5%

,6
0%

)
[6
0%

,6
5%

)
[6
5%

,7
0%

)
[7
0%

,7
5%

)
[7
5%

,8
0%

)
[8
0%

,8
5%

)
[8
5%

,9
0%

)
[9
0%

,9
5%

)

[9
5%

,1
00
%
)

10
0% ∞

10

20

30

40

Relative dimension

Fr
eq
ue

nc
y
[%

]

Fig. 1. Distribution of relative dimensions over the 37 instances from Table 1 except
for p2756 (avoiding a bias due to many failures dimension computations). A cut of
dimension k in an instance having � cuts and with dim(P) = d contributes 1/(36�) to
its bar. For k = −1 (resp. k = d), this is ∅ (resp. ∞), and it is k/(d − 1) otherwise.

The first bar in Fig. 1 indicates that for an instance chosen uniformly at
random among the ones we considered and then a randomly chosen cut for this
instance, this cut is non-supporting with probability greater than 35 %. This is
remarkably high and thus we conclude this paper by proposing to investigate
means to (heuristically) test for such a situation, with the goal of strengthening
a non-supporting cutting plane by a reduction of its right-hand side.

Acknowledgments. We thank R. Hoeksma and M. Uetz as well as the SCIP devel-
opment team, in particular A. Gleixner, C. Hojny and M. Pfetsch for valuable sug-
gestions on the computational experiments and their presentation. Finally, we thank
three anonymous referees for raising interesting discussion points, especially regarding
Sect. 3.

A Additional Plots

Here we provide additional instance-specific plots. This underlines the conclu-
sions drawn in Sect. 4 and allows inspection of results for instances with certain
characteristics (see Table 1).

Face Dimensions of General-Purpose Cutting Planes 409

410 M. Walter

Face Dimensions of General-Purpose Cutting Planes 411

412 M. Walter

References

1. Achterberg, T., Raack, C.: The MCF-separator: detecting and exploiting multi-
commodity flow structures in MIPs. Math. Program. Comput. 2(2), 125–165 (2010)

2. Caprara, A., Fischetti, M.: {0, 1/2}-Chvátal-Gomory cuts. Math. Program. 74(3),
221–235 (1996)

3. Gamrath, G., et al.: The SCIP Optimization Suite 7.0. Technical report, Optimiza-
tion Online, March 2020

4. Martin, G., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimizations. Springer-Verlag (1993)

5. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted flow cover inequalities for
mixed 0–1 integer programs. Math. Program. 85(3), 439–467 (1999)

6. Koster, A.M.C.A., Zymolka, A., Kutschka, M.: Algorithms to separate {0, 1
2}-

Chvátal-Gomory cuts. Algorithmica 55(2), 375–391 (2009)
7. Letchford, A.N., Lodi, A.: Strengthening Chvátal-Gomory cuts and Gomory frac-

tional cuts. Oper. Res. Lett. 30(2), 74–82 (2002)
8. Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to solve

MIPs. Oper. Res. 49(3), 363–371 (2001)
9. Martin, A.: Integer programs with block structure (1999)

10. Mczeal, C.M., Savelsbergh, M.W.P., Bixby, R.E.: An updated mixed integer pro-
gramming library: MIPLIB 3.0. Optima, 58, 12–15 (1998)

11. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library. Math. Program. Comput. (2020). https://doi.org/10.1007/
s12532-020-00194-3

12. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons Inc,
New York, NY, USA (1986)

13. Walter, M.: Investigating Polyhedra by Oracles and Analyzing Simple Extensions
of Polytopes. PhD thesis, Otto-von-Guericke-Universität Magdeburg (2016)

14. Walter, M.: IPO - Investigating Polyhedra by Oracles (2016). Software available
at: bitbucket.org/matthias-walter/ipo/

15. Weismantel, R.: On the 0/1 knapsack polytope. Math. Program. 77(3), 49–68
(1997)

16. Wolter, K.: Implementation of Cutting Plane Separators for Mixed Integer Pro-
grams. Master’s thesis, Technische Universität Berlin (2006)

https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3

Proximity Bounds for Random Integer
Programs

Marcel Celaya1(B) and Martin Henk2

1 ETH Zurich Institute for Operations Research Department
of Mathematics Rämistrasse, 101 8092 Zurich, Switzerland

marcel.celaya@ifor.math.ethz.ch
2 Technische Universität Berlin Institut für Mathematik,

Sekr. MA4-1 Straße des 17 Juni 136, 10623 Berlin, Germany
henk@math.tu-berlin.de

Abstract. We study proximity bounds within a natural model of ran-
dom integer programs of the type max c�x : Ax = b, x ∈ Z≥0, where
A ∈ Z

m×n is of rank m, b ∈ Z
m and c ∈ Z

n. In particular, we seek
bounds for proximity in terms of the parameter Δ(A), which is the square
root of the determinant of the Gram matrix AA� of A. We prove that,
up to constants depending on n and m, the proximity is “generally”
bounded by Δ(A)1/(n−m), which is significantly better than the best
deterministic bounds which are, again up to dimension constants, linear
in Δ(A).

1 Introduction

Given an linear program of the form

max c�x : Ax = b (1)
x ≥ 0,

where A is a full-row-rank m × n integral matrix, b ∈ Z
m, and c ∈ Z

n, the
proximity problem seeks to understand how far away an optimal vertex x∗ of
the feasible region can be to a nearby feasible integer solution z∗. Typically it is
further required that z∗ is itself optimal; we do not impose this requirement in
this manuscript. Assuming the feasible region has at least one such integral point,
bounds for proximity are typically given in terms of the largest possible absolute
value Δm(A) of any m × m subdeterminant of A. Note that this parameter is

within a factor of
(

n
m

)
of Δ (A) :=

√
det(AA�). This is a well-studied problem

which goes back to the classic Cook et al. result [4] bounding the proximity of
the dual of (1). See, for instance, the recent works of Eisenbrand and Weismantel
[5] and of Aliev, Henk, and Oertel [1] and the references therein.

The first author was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy—The Berlin Mathematics
Research Center MATH+(EXC-2046/1, project ID: 390685689).

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 413–426, 2021.
https://doi.org/10.1007/978-3-030-73879-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_29

414 M. Celaya and M. Henk

In this manuscript, we would like to understand the worst-possible proxim-
ity, which we denote by dist(A), over all choices of b and c, when the matrix A
is chosen randomly. The model of randomness we consider is the following: we
choose the matrix A up to left-multiplication by unimodular matrices, and we
choose A uniformly at random subject to the condition that the greatest com-
mon divisor of the maximal minors of A is 1, and that Δ(A) is at most some
sufficiently large (with respect to m and n) integer T . This is a natural model
to study from a geometric point of view, since Δ(A) is the determinant of the
lattice of integer points in the kernel of A. This is also the model considered by
Aliev and Henk in [2], in their investigation of diagonal Frobenius numbers.

Our main result concerns not dist(A) but rather a related random variable
we denote by dist∗(A). This is an asymptotic version of dist(A) that further
imposes some mild restrictions on b. Our main result is that it satisfies the
following Markov-type inequality:

P
(
dist∗(A) > tΔ(A)1/(n−m)

)
� t−2/3. (2)

Here � means less than, up to constants which only depend on n and m. In
particular, this shows that proximity generally depends only on Δ1/(n−m) in our
random setting, for “almost all” choices of b in a certain precise sense. This
is significantly better than the linear dependency on Δm in the deterministic
case, that is known to be tight [1, Theorem 1]. A similar result, with a slightly
different random model, was obtained in [1] the so-called knapsack scenario,
where m = 1. We also mention recent work of Oertel, Paat, and Weismantel in
[8], which considers a random model that allows b to vary but keeps A fixed.

The proof of this result combines ideas of [2] and [1] using facts from the
geometry of numbers, some results of Schmidt from [9] on random sublattices
of Z

n of fixed dimension, and computations of the measure of certain distin-
guished regions of the real Grassmannian Gr(d, n) of d-dimensional subspaces of
R

n, where d = n − m. The idea is two-fold. First, we use the results of Schmidt
to relate the discrete measure in our model to the continuous O(n)-invariant
probability measure ν of Gr(d, n), where O(n) here denotes the group of orthog-
onal n × n real matrices. We show that there are essentially two distinct “bad”
regions of Gr(d, n), both parameterized by t, in which dist∗(A) could be large,
but whose measure with respect to ν gets smaller as t gets larger.

We remark that the exponent of −2/3 is mainly an artifact of the proof, and
we expect that it can be further improved. The problem of finding an inequal-
ity analogous to (2) for dist(A) is more challenging and remains open, as the
polyhedral combinatorics of (1) may interfere with our analysis.

2 Main Result and Notation

2.1 Notation

Throughout this manuscript we assume fixed positive integers d,m, n such that
n = m+d. For a subset σ ⊆ [n] and x ∈ R

n, we let xσ denote the vector obtained

Proximity Bounds for Random Integer Programs 415

by orthogonally projecting x onto the coordinates indexed by σ. Similarly, if A
is a matrix, then we denote by Aσ the submatrix of A whose columns are those
indexed by σ. In particular, if k ∈ [n] then Ak denotes the corresponding column
of A. If Aσ is an invertible square matrix we say σ is a basis of A. We denote
the complement of σ by σ̄ := [n]\σ. Given a d-dimensional subspace L ⊆ R

n, the
m-dimensional orthogonal complement of L is denoted by L⊥. If Λ ⊂ R

n, let ΛR

denote the linear subspace of Rn spanned by Λ. We say σ ⊆ [n] is a coordinate
basis of Λ or ΛR if the coordinate projection map

ΛR → R
σ

x �→ xσ

is an isomorphism. This is equivalent to saying that σ is a basis of A for any
full-row-rank matrix A such that ker(A) = ΛR,

2.2 Definition of dist(A)

Let A ∈ Z
m×n be a full-row-rank matrix. For a basis σ of A, we define the

semigroup

Sσ (A) :=
{
x ≥ 0 : xσ = A−1

σ Ag, xσ̄ = 0, g ∈ Z
n
}

. (3)

For a vector b ∈ Z
m, we define the polyhedron

P(A, b) := {x ∈ R
n : Ax = b, x ≥ 0} .

The idea behind these definitions is that if x∗ ∈ Sσ (A), then b := Ax∗ is an
integral vector, and P(A, b) is a nonempty polyhedron containing x∗ as a vertex.
Now given a basis σ of A and x∗ ∈ Sσ (A), we define the distance

dist (A, σ,x∗) := inf
z∗∈Zn∩P(A ,b)

‖x∗ − z∗‖2 .

where b := Ax∗. We then define the worst-case distance over all choices of bases
σ of A and elements x∗ ∈ Sσ (A) as

dist (A) := sup
σ

sup
x∗

dist (A, σ,x∗) . (4)

This definition has the disadvantage that it is stated in terms of the matrix A.
Since we may replace Ax = b with UAx = Ub for any m × m integral matrix
U , it is not so clear from this formulation how to define our random model.
This motivates an alternative, more geometric definition of dist(A) which we
now state.

2.3 Definition of dist(Λ)

Suppose instead we start with a d-dimensional sublattice Λ of Zn. Suppose σ is
a coordinate basis of Λ. Then we may define the semigroup

Sσ (Λ) := {x ≥ 0 : x ∈ ΛR + g, xσ̄ = 0, g ∈ Z
n} . (5)

416 M. Celaya and M. Henk

For x∗ ∈ Sσ (Λ), define the distance

dist (Λ, σ,x∗) := sup
g∈(ΛR+x∗)∩Zn

inf
z∗∈(Λ+g)∩R

n
�0

‖x∗ − z∗‖2 . (6)

The extra sup accounts for the fact that, if Λ is not primitive, then there are
multiple ways to embed Λ into ΛR + x∗ as an integral translate of Λ. Finally,
define the worst case distance

dist (Λ) := sup
σ

sup
x∗

dist (Λ, σ,x∗) , (7)

where the supremum is taken over all coordinate bases of Λ and elements x∗ ∈
Sσ (Λ).

We now explain the relationship between definitions (4) and (7). First note
that if A is any integral matrix such that ΛR = ker(A), then the two definitions
(3) and (5) of Sσ (A) and Sσ (Λ) coincide. Moreover, if Λ is a primitive lattice,
that is, if Λ = ΛR ∩ Z

n, then we have

dist (Λ, σ,x∗) = dist (A, σ,x∗)

and therefore
dist (Λ) = dist (A) .

Definition (7) also makes sense when Λ is non-primitive, however, and it is
immediate from the definitions that in general,

dist (Λ) ≥ dist (ΛR ∩ Z
n) .

The key advantage of definition (7) is that there are only finitely many d-
dimensional sublattices of Zn whose determinant is at most some fixed positive
integer T . Thus, we may consider the uniform distribution over these bounded-
determinant lattices.

2.4 An Asymptotic Version of dist(Λ)

We next consider a modification of dist (Λ). Choose any full-row-rank matrix A
such that ker(A) = ΛR, the particular choice of A is not important. Let Bn

2 ⊂ R
n

denote the n-dimensional Euclidean ball of radius 1. Define the vector w ∈ R
n

as follows: for each i ∈ [n], set

wi :=
√

1 − A�
i (AA�)−1Ai. (8)

This vector w measures, for each i ∈ [n], the largest possible value of xi for any
x ∈ Bn

2 ∩ ΛR. Denote by μ := μ (Λ,Bn
2) the covering radius of Bn

2 with respect
to Λ. That is,

μ := inf {t > 0 : Λ + tBn
2 contains ΛR} .

If σ is a basis of A then define the following subsemigroup of Sσ (Λ):

S∗
σ (Λ) :=

{
x ∈ Sσ (Λ) : xσ ≥ μwσ + A−1

σ Aσ̄wσ̄

}
.

Proximity Bounds for Random Integer Programs 417

The next proposition shows that if we further restrict x∗ so that it can only
lie in S∗

σ (Λ), then we can guarantee that P(A, b) contains an integral point
reasonably close to x∗. We prove it in Sect. 5.

Proposition 1. For a basis σ of A and x∗ ∈ S∗
σ (Λ), let b = Ax∗. Then P(A, b)

contains a translate of the scaled ball μ · (Bn
2 ∩ ΛR), which in turn contains an

integral vector.

Now set
dist∗ (Λ) := sup

σ
sup
x∗

dist (Λ, σ,x∗) , (9)

where the supremum is taken over all bases σ of A and elements x∗ of the
semigroup S∗

σ (Λ).

2.5 Main Result

We are now ready to state the main theorem.

Theorem 1. For T � 1, let Λ be a sublattice of Zn of dimension d and deter-
minant at most T , chosen uniformly at random. Then for all t > 1,

P
(
dist∗ (Λ) > t (Δ (Λ))1/d

)
� t−2/3.

What we would like to do is translate this statement into a statement about
integer programs, and in particular derive inequality (2). For this we use a known
result on the ratio between primitive sublattices and all sublattices with a fixed
determinant upper bound, a consequence of Theorems 1 and 2 in [9]:

Lemma 1. Suppose there are exactly N(d, n, T) d-dimensional sublattices of Zn

with determinant at most T , of which exactly P (d, n, T) are primitive. Then

lim
T→∞

P (d, n, T)
N(d, n, T)

=
1

ζ(d + 1) · · · ζ(n)
,

where ζ(·) denotes the Riemann zeta function.

Recall from the introduction our probability model. We start with a suffi-
ciently large integer T relative to m and n, and consider the set of all m × n
integral matrices A such that the greatest common divisor of all maximal minors
of A equals 1, and that Δ (A) ≤ T . The group of m × m unimodular matrices
acts on this set of matrices by mulitplication on the left, and there are finitely
many orbits of this action. We consider the uniform distribution on these orbits.
We define

dist∗ (A) := dist∗ (ker (A) ∩ Z
n) .

Note that this definition depends not on A but only on the orbit of A. The
greatest common divisor condition ensures that Δ (A) equals the determinant
of the lattice ker (A) ∩ Z

n. We derive the next corollary by combining Theorem
1, Lemma 1, and the simple conditional probability inequality P(E | F) ≤
P(E)/P(F), where E is the event that dist∗ (Λ) > t (Δ (Λ))1/d and F is the
event that Λ is primitive.

418 M. Celaya and M. Henk

Corollary 1. For T � 1, choose A randomly as above, with determinant at
most T . Then for all t > 1,

P
(
dist∗ (A) > t (Δ (A))1/d

)
� t−2/3.

We remark that the question of deriving the constants in this bound remains
unexplored.

3 A Theorem of Schmidt

In this section we state a result that is fundamental to the proof, which follows
from the results of Schmidt in [9]. We continue with our assumption that d =
n − m. Let Gr (d, n) denote the set of d-dimensional subspaces of R

n. Let ν
denote the unique O(n)-invariant probability measure on the real Grassmannian
Gr (d, n).

Definition 1 ([9, p. 40]). A subset ξ ⊂ Gr (d, n) is Jordan measurable if for
all ε > 0 there exists continuous functions f1 ≤ 1ξ ≤ f2 such that

∫
(f2 − f1) dν < ε.

Here 1ξ denotes the indicator function of ξ.

In the next definition, λi (Λ) denotes the ith successive minimum of the d-
dimensional Euclidean ball of radius 1 with respect to the lattice Λ.

Definition 2. Let a = (a1, . . . , ad) ∈ R
d, with each ai ≥ 1. Let T be a posi-

tive integer, and let ξ ⊂ Gr (d, n). Then we define G (a, ξ, T) to be the set of
sublattices Λ of Zn of dimension d with determinant at most T , such that

λi+1 (Λ)
λi (Λ)

≥ aifor alli = 1, 2, . . . , d − 1,

and ΛR ∈ ξ.

The result of Schmidt that we intend to use is a combination of Theorems 3
and 5 in [9]:

Theorem 2. Assuming ξ ⊂ Gr (d, n) is Jordan measurable, we have

|G (a, ξ, T)|
(

d−1∏

i=1

a
−i(d−i)
i

)

ν (ξ) Tn,

where f g means f � g and g � f .

Let G(d, n, T) denote the set of all sublattices of Z
n of dimension d with

determinant at most T . Let P = Pd,n,T denote the uniform probability distri-
bution over G(d, n, T).

Proximity Bounds for Random Integer Programs 419

Corollary 2. For t > 1, we have

P
(

max
i∈[d−1]

{
λi+1 (Λ)
λi (Λ)

}
≥ t

)
� (d − 1) t−(d−1).

Proof. Following Aliev and Henk in [2], let

δi(t) :=
(
1, . . . , 1, t

i
, 1, . . . , 1

)�
∈ R

d.

Applying the union bound to Theorem 2, this probability is at most

d−1∑

i=1

|G (δi(t),Gr (d, n) , T)|
|G (δi(1),Gr (d, n) , T)| �

d−1∑

i=1

t−i(d−i) ≤ (d − 1) t−(d−1).

4 Typical Cramer’s Rule Ratios

We see in the next section that the proximity can be bounded from above by
an expression involving the largest absolute value of the entries of A−1

σ Aσ̄, as σ
ranges over all bases of A, and A is chosen randomly. Hence, we would like to
show that that the largest absolute value of any entry of the matrix A−1

σ Aσ̄ is
typically not too large, where for our purposes the subspace L := kerA is chosen
uniformly at random from Gr (d, n). Note that the matrix A−1

σ Aσ̄ depends only
on L and σ. We remark that the entries of the matrix A−1

σ Aσ̄ are explicitly
computed using Cramer’s rule: for i ∈ σ and j /∈ σ, we have

(
A−1

σ Aj

)
i
=

det (Aσ−i+j)
det (Aσ)

.

As before, we let ν : G → [0, 1] denote the O(n)-invariant probability measure
on Gr (d, n). The precise statement we show is the following: Fix σ ⊆ [n], i ∈ σ,
j ∈ [n] \σ. Then, as a function of a parameter s > 1, we have

ν
(
ker (A) : Aσ is nonsingular,

∣
∣(A−1

σ Aj

)
i

∣
∣ > s

)
=

2
πs

+ O (
s−3

)
. (10)

The proof proceeds in the three subsections below. First, we get a handle
on ν by relating it to another probability distribution, namely the Gaussian
distribution γ on the matrix space R

m×n, where the entries are i.i.d. normally
distributed with mean 0 and variance 1. This is done via the kernel map, which
is introduced in Subsect. 4.1 and related to γ in Subsect. 4.2. Equation 10 is
then derived in Subsect. 4.3.

4.1 The Real Grassmannian

For a general introduction to matrix groups and Grassmannians, we refer the
reader to [3]. There is a right action of the orthogonal group O(n) on Gr (d, n)
defined as follows: if ker (A) ∈ Gr (d, n), where A ∈ R

m×n, then

(ker (A)) · U = ker (AU) . (11)

420 M. Celaya and M. Henk

This is well-defined, since if ker (A) = ker
(
A′) for some A′ ∈ R

m×n, then
A = DA′ for some invertible m × m matrix D, and hence

ker (AU) = ker
(
DA′U

)
= ker

(
A′U

)
.

Let Stm×n := {A ∈ R
m×n : rank(A) = m}. Call this the Stiefel manifold.

Again, there is a right action of O(n) on Stm×n which in this case is simply right
multiplication:

A · U = AU .

The only thing to check here is that AU indeed lies in Stm×n, but this is indeed
the case since

AU (AU)� = AUU�A� = AA�,

thus A and AU have the same Gram matrix AA�, and an m × n matrix has
full-row-rank if and only if its Gram matrix does.

The kernel map gives rise to a surjective map

ker : Stm×n → Gr (d, n)
A �→ ker (A)

Thus, we see from (11) that the following statement holds:

Proposition 2. The map ker : Stm×n → Gr (d, n) is equivariant with respect
to the right actions of O(n) on Stm×n and Gr (d, n); that is, (ker (A)) · U =
ker (A · U).

4.2 Probability Spaces

Consider the probability space (Rm×n,B(Rm×n), γ) where B(Rm×n) is the
Borel σ-algebra, and the measure γ is defined so that each A ∈ R

m×n has
iid N(0, 1) entries. In other words, γ is the standard Gaussian probability mea-
sure on the mn-dimensional real vector space R

m×n with mean zero and iden-
tity covariance matrix. By restricting to Stm×n, we get the probability space(
Stm×n,B(Stm×n), γ

)
. We can do this because R

m×n\Stm×n is an algebraic
hypersurface in R

m×n, and therefore has measure zero with respect to γ. Let
B := B(Stm×n).

The Grassmannian Gr (d, n) is endowed with the topology where E ⊆
Gr (d, n) is open iff ker−1(E) is open in Stm×n. Let G denote the associated
Borel σ-algebra. The measure ν on Gr (d, n) is characterized as follows:

Proposition 3 ([7, Corollary 3.1.3]). The measure ν is the unique measure
on Gr (d, n) satisfying

ν (E · U) = ν (E) for all E ∈ G and U ∈ O(n) (12)
ν (Gr (d, n)) = 1.

Proximity Bounds for Random Integer Programs 421

The map ker : Stm×n → Gr (d, n) thus defines a map of probability spaces:

ker :
(
Stm×n,B, γ

) → (Gr (d, n) ,G , ν) .

Proposition 4. The measure ν is the pushforward measure of γ under this map.
That is, ν(E) = γ(ker−1(E)) for each E ∈ G .

Proof. We establish the conditions of (12). By surjectivity, and the fact that γ
is a probability measure, we have

γ(ker−1(Gr (d, n))) = γ
(
Stm×n

)
= 1.

It therefore remains to show γ(ker−1(E ·U)) = γ(ker−1(E)) for each E ∈ G and
U ∈ O(n). By Proposition 2, we have

ker−1(E · U) = ker−1(E) · U . (13)

Now, Rm×n has the inner product 〈A,B〉 = trace
(
AB�

)
. With respect to this

inner product we may consider the subgroup O (m × n) of GL (Rm×n) which is
given by

O (m × n) :=
{
ϕ ∈ GL

(
R

m×n
)

: 〈ϕ (A) , ϕ (B)〉 = 〈A,B〉} .

Observe that, for a fixed U ∈ O (n), the linear map ϕU ∈ GL (Rm×n) given by

ϕU (A) = AU (14)

lies in O (m × n), since

〈ϕ (A) , ϕ (B)〉 = trace
(
AU (BU)�

)
= trace

(
AB�

)
= 〈A,B〉 .

Now the probability measure γ on R
m×n is defined so that the coordinates Ai,j of

a randomly chosen A ∈ R
m×n are iid N(0, 1) normally distributed. In particular

this measure is invariant under isometry, in that for all K ∈ B (Rm×n) and
ϕ ∈ O (m × n) , we have

γ (ϕ (K)) = γ (K) . (15)

The same is therefore true for the restricted probability measure γ on Stm×n. It
follows that if U ∈ O(n) and E ∈ G , then, using (13), (14), and (15), we have

γ
(
ker−1(E · U)

)
= γ

(
ker−1(E) · U

)
= γ

(
ϕU

(
ker−1(E)

))
= γ

(
ker−1(E)

)
.

4.3 Cramer’s Rule Ratios

Let σ ⊂ [n] of size m, and define

Stm×n
σ :=

{
A ∈ Stm×n : Aσ is nonsingular

}
.

Gr (d, n)σ := {ker (A) ∈ Gr (d, n) : Aσ is nonsingular} .

Note that γ
(
Stm×n

σ

)
= ν (Gr (d, n)σ) = 1. Also define, for s > 1, i ∈ σ, and

j /∈ σ,
ξσ,i,j (s) :=

{
ker (A) ∈ Gr (d, n)σ :

∣
∣(A−1

σ Aj

)
i

∣
∣ > s

}
.

422 M. Celaya and M. Henk

Proposition 5. For s > 1 and σ, i, j as above, we have

ν (ξσ,i,j (s)) =
2
πs

+ O (
s−3

)
.

Proof. Let A be a random element of Stm×n
σ , and let H denote the (random)

hyperplane spanned by the columns of Aσ\{i}, and let denote the line perpen-
dicular to H. Let u� denote the unit normal vector to H whose first nonzero
coordinate is positive. Thus,

 = Ru� = {λu� : λ ∈ R} .

Let α ∈ {−1,+1} denote the sign of the first nonzero entry of e�
i A−1

σ . Then we
can write

u�
� =

αe�
i A−1

σ∥
∥e�

i A−1
σ

∥
∥
2

,

since for all k ∈ σ\ {i} we have

αe�
i A−1

σ Ak = αe�
i A−1

σ Aσek = 0,

and αe�
i A−1

σ has first nonzero component positive by definition of α.
Now let k be any element of [n] outside of σ\ {i}. Since u� depends only on

Aσ\{i}, and the entries of A are mutually independent, we have that u� and
Ak are independent random vectors. Now, for any fixed unit vector v ∈ S

n−1,
as Ak has N(0, 1) iid entries, then the dot product v�Ak also has distribution
N(0, 1). Thus, for any fixed t ∈ R, the random variable

γ
(
u�

� Ak ≤ t |
)

(i.e. the conditional probability in terms of the σ-algebra generated by) is in
fact constant. Evaluating at the line = Re1, for example, this constant is given
by

γ (A1,k ≤ t) .

This shows that the random quantity u�
� Ak has distribution N(0, 1). We have

(
A−1

σ Aj

)
i
=

e�
i A−1

σ Aj

e�
i A−1

σ Ai

=
u�

� Aj

u�
� Ai

.

The independence of u�
� Ai and u�

� Aj imply that
(
A−1

σ Aj

)
i

has the Cauchy
distribution, that is, the ratio of two iid N(0, 1) random variables. In particular,
the cdf of

(
A−1

σ Aj

)
i
is given by

γ
((

A−1
σ Aj

)
i
≤ t

)
=

1
π

arctan(t) +
1
2
.

See [6, p. 50] for more on the Cauchy distribution. Using the series expansion

arctan (t) =
π

2
− 1

t
+

1
3t3

− 1
5t5

+ · · · ,

Proximity Bounds for Random Integer Programs 423

we get

γ
((

A−1
σ Aj

)
i
≤ t

)
= 1 −

(
1
πt

− 1
3πt3

+
1

5πt5
− · · ·

)
.

Hence, using Proposition 4 and the fact s > 1, we conclude

ν (ξσ,i,j (s)) = γ
(∣∣(A−1

σ Aj

)
i

∣
∣ > s

)

= 2 · γ
((

A−1
σ Aj

)
i
> s

)

= 2
(
1 − γ

((
A−1

σ Aj

)
i
≤ s

))

= 2
(

1
πs

− 1
3πs3

+
1

5πs5
− · · ·

)

=
2
πs

+ O (
s−3

)
.

5 Proof of Main Result

In this final section we prove the main result of this paper, Theorem 1.

Definition 3. Define the constant

ω̃d :=
ω
1/d
d

d
,

where ωd denotes the volume of the d-dimensional Euclidean ball of radius 1.
This constant ω̃d is of the order d−3/2.

Definition 4. Assume ΛR = ker (A). Given positive real numbers s and u, we
say Λ is (σ, s, u)-controlled if σ is a basis of A and:

1. The largest entry of A−1
σ Aσ̄ is at most s, and

2. The successive minima ratios of Λ are not too large: we have

λi+1 (Λ)
λi (Λ)

< (ω̃du)2/(d−1)

for all i = 1, 2, . . . , d − 1.

Lemma 2 ([2, Proof of Lemma 5.2]). Suppose that

λi+1 (Λ)
λi (Λ)

< (ω̃du)2/(d−1)

for all i = 1, 2, . . . , d − 1. Then

μ < u (Δ (Λ))1/d
.

Lemma 3. If σ is a basis of A and Λ is (σ, s, u)-controlled, then for all x∗ ∈
Sσ (Λ) we have

dist (Λ, σ,x∗) ≤ 2n3/2su (Δ (Λ))1/d
.

424 M. Celaya and M. Henk

Proof. Let b = Ax∗, let B = Bn
2 ∩ ΛR, and let μ denote the covering radius of

B with respect to Λ. Define the vector v ∈ R
n so that:

vj = μwj for all j ∈ σ̄

Av = b.

We show that the scaled, translated ball μB + v is contained in P(A, b). Since
B ⊆ ΛR, we have that each x ∈ μB + v satisfies Ax = b. For each j ∈ [n], let
x(j) be the unique point in μB + v such that x

(j)
j is minimized. If j ∈ σ̄, then

x
(j)
j = μ(−wj) + vj = μ(−wj) + μwj = 0.

If j ∈ σ, then since x∗ ∈ Sσ (Λ) we have

x
(j)
j = μ(−wj) + vj

= μ(−wj) +
(
A−1

σ b − A−1
σ Aσ̄wσ̄

)
j

≥ μ(−wj) + μwj

= 0.

This concludes the proof that μB + v ⊆ P(A, b).
Let g ∈ (ΛR + x∗) ∩ Z

n. Since μ is the covering radius of B with respect to
Λ, there exists z∗ ∈ (Λ + g) ∩ (μB + v) such that

‖x∗ − z∗‖2 ≤ ‖x∗ − v‖2 + ‖v − z∗‖2 ≤ μ ‖w̃‖2 + μ. (16)

where we define w̃ := (v − x∗)/μ. That is, w̃ satisfies

Aw̃ = 0

w̃ = wj for all j ∈ σ̄.

Observe that
w̃σ = −A−1

σ Aσ̄w̃σ̄.

Using the fact w ∈ [0, 1]n, we therefore have

‖w̃‖22 = ‖w̃σ‖22 + ‖w̃σ̄‖22
=

∥
∥A−1

σ Aσ̄w̃σ̄

∥
∥2

2
+ ‖w̃σ̄‖22

≤ m
∥
∥A−1

σ Aσ̄

∥
∥2

∞ ‖w̃σ̄‖21 + ‖w̃σ̄‖22
≤ (

ms2 + 1
)
d2.

Thus we conclude

‖x∗ − z∗‖2 ≤ μ (‖w̃‖2 + 1)

≤ uΔ1/d
(√

(ms2 + 1) d2 + 1
)

≤ 2n3/2suΔ1/d.

Proximity Bounds for Random Integer Programs 425

Proof (Proof of Theorem 1). Let Λ be a uniformly chosen lattice from G (d, n, T).
Let t > 1, and let s := t2/3/(2n3/2) and u := t1/3, so that t = 2n3/2su as in
Lemma 3. We have

P
(
dist (Λ) > t (Δ (Λ))1/d

)

≤
∑

σ

P
(
σ basis of A,dist (Λ, σ,x∗) > t (Δ (Λ))1/d for some x∗ ∈ Sσ (Λ)

)

≤
∑

σ

P (σ basis of A, Λ is not(σ, s, u)-controlled)

where the sums are over all subsets σ ⊆ [n] of size m. It therefore suffices to
show, for each such σ,

P (σ basis of A, Λ is not (σ, s, u)-controlled) � t−2/3.

By definition, this probability is at most

P
(

max
i∈[d−1]

{
λi+1 (Λ)
λi (Λ)

}
≥ (ω̃du)2/(d−1)

)
+

∑

i∈σ
j /∈σ

P
(
σ basis of A,

(
A−1

σ Aj

)
i
≥ s

)
.

(17)
By Theorem 2, we have

P
(
σ basis of A,

(
A−1

σ Aj

)
i
≥ s

)
=

|G (1, ξσ,i,j (s) , T)|
|G (1,Gr (d, n) , T)| ν (ξσ,i,j (s)) .

Hence, applying Corollary 2 and Proposition 5, for T sufficiently large, we may
estimate up to constants the quantity (17) by

u−2 + s−1 � t−2/3.

Acknowledgements. The authors wish to thank the anonymous referees for their
helpful comments and suggestions.

References

1. Aliev, I., Henk, M., Oertel, T.: Distances to lattice points in knapsack polyhedra.
Math. Program, 182(1–2, Ser. A), 175–198 (2020)

2. Aliev, I., Henk, M.: Feasibility of integer knapsacks. SIAM J. Optim. 20(6), 2978–
2993 (2010)

3. Baker, A.: Matrix Groups: An Introduction to Lie Group Theory. Springer Under-
graduate Mathematics Series. Springer, London (2003)

4. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in integer
linear programming. Math. Programm. 34(3), 251–264 (1986)

5. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer
programming using the Steinitz lemma. ACM Trans. Algorithms 16(1), 1–14 (2019)

6. Feller, V., Feller, W.: An Introduction to Probability Theory and Its Applications,
vol. 1. A Wiley publication in mathematical statistics, Wiley (1968)

426 M. Celaya and M. Henk

7. Krantz, S.G., Parks, H.R.: Geometric Integration Theory. Cornerstones, Birkhäuser
Boston (2008)

8. Oertel, T., Paat, J., Weismantel, R.: The distributions of functions related to para-
metric integer optimization. SIAM J. Appl. Algebra Geometry 4(3), 422–440 (2020)

9. Schmidt, W.M.: The distribution of sublattices of Zm. Monatshefte für Mathematik,
125(1), 37–81 (1998)

On the Integrality Gap of Binary Integer
Programs with Gaussian Data

Sander Borst, Daniel Dadush, Sophie Huiberts(B), and Samarth Tiwari

Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{sander.borst,dadush,s.huiberts,samarth.tiwari}@cwi.nl

Abstract. For a binary integer program (IP) max cTx, Ax ≤ b, x ∈
{0, 1}n, where A ∈ R

m×n and c ∈ R
n have independent Gaussian entries

and the right-hand side b ∈ R
m satisfies that its negative coordinates

have �2 norm at most n/10, we prove that the gap between the value
of the linear programming relaxation and the IP is upper bounded by
poly(m)(log n)2/n with probability at least 1 − 1/n7 − 2−poly(m). Our
results give a Gaussian analogue of the classical integrality gap result of
Dyer and Frieze (Math. of O.R., 1989) in the case of random packing IPs.
In constrast to the packing case, our integrality gap depends only poly-
nomially on m instead of exponentially. By recent breakthrough work of
Dey, Dubey and Molinaro (SODA, 2021), the bound on the integrality
gap immediately implies that branch and bound requires npoly(m) time on
random Gaussian IPs with good probability, which is polynomial when
the number of constraints m is fixed.

Keywords: Integer programming · Integrality gap · Branch and bound

1 Introduction

Consider the following linear program with n variables and m constraints

valLP = max
x

val(x) = cTx

s.t. Ax ≤ b (Primal LP)
x ∈ [0, 1]n

Let valIP be the value of the same optimization problem with the additional
restriction that x is integral, i.e., x ∈ {0, 1}n. We denote the integrality gap as
IPGAP := valLP − valIP. The integrality gap of integer linear programs forms an

S. Borst, D. Dadush and S. Tiwari—This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement QIP–805241).
D. Dadush and S. Huiberts—This work was done while the author was participating
in a program at the Simons Institute for the Theory of Computing.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 427–442, 2021.
https://doi.org/10.1007/978-3-030-73879-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_30&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_30

428 S. Borst et al.

important measure for the complexity of solving said problem in a number of
works on the average-case complexity of integer programming [1,3–5,7,11].

So far, probabilistic analyses of the integrality gap have focussed on 0–1
packing IPs and the generalized assignment problem. In particular, the entries
of A ∈ R

m×n, b ∈ R
m, c ∈ R

n in these problems are all non-negative, and the
entries of b were assumed to scale linearly with n.

In this paper, we analyze the integrality gap of (Primal LP) under the
assumption that the entries of A and c are all independent Gaussian N (0, 1)
distributed, and that the negative part of b is small: ‖b−‖2 ≤ n/10.

We prove that, with high probability, the integrality gap IPGAP is small, i.e.,
(Primal LP) admits a solution x ∈ {0, 1}n with value close to the optimum.

Theorem 1. There exists an absolute constant C ≥ 1, such that, for m ≥ 1, n ≥
Cm, b ∈ R

m with ‖b−‖2 ≤ n/10, if (Primal LP) is sampled with independent
N (0, 1) entries in c and A, we have that

Pr
(
IPGAP ≥ 1015 · t · m2.5(m + log n)2

n

)
≤ 4 ·

(
1 − 1

25

)t

+ n−7,

for all 1 ≤ t ≤ n
Cm2.5(m+log n)2 .

In the previous probabilistic analyses by [4,5,11], it is assumed that bi =
βin for fixed β1, . . . , βm ∈ (0, 1/2) and the entries of (A, c) are independently
distributed uniformly in the interval [0, 1]. Those works prove a similar bound as
above, except that in their results the dependence on m is exponential instead
of polynomial. Namely, they require n ≥ 2O(m) and the integrality gap scales
like 2O(m) log2 n/n. Furthermore, the integrality gap in [5] also had a O(1/βm)
dependence, where β := mini∈[m] βi, whereas the integrality gap in Theorem 1
does not depend on the “shape” of b (other than requiring ‖b−‖2 ≤ n/10). Due
a recent breakthrough [3], the integrality gap above also implies that branch and
bound applied to the above IP produces a branching tree of size at most npoly(m)

with good probability.
In the rest of the introduction, we begin with an overview of the main tech-

niques we use to prove Theorem 1, describing the similarities and differences with
the analysis of Dyer and Frieze [5], and highlight several open problems. We con-
tinue by explaining the relation between the integrality gap and the complexity
of branch and bound (Subsect. 1.2 below), and conclude with a discussion of
related work.

1.1 Techniques

Our proof strategy follows along similar lines to that of Dyer and Frieze [5],
which we now describe. In their strategy, one first solves an auxiliary LP
max cTx,Ax ≤ b − ε1m, for ε > 0 small, to get its optimal solution x∗, which is
both feasible and nearly optimal for the starting LP (proved by a simple scaling
argument), together with its optimal dual solution u∗ ≥ 0 (see Subsect. 2.2 for

On the Integrality Gap of Binary Integer Programs with Gaussian Data 429

the formulation of the dual). From here, they round down the fractional compo-
nents of x∗ to get a feasible IP solution x′ := �x∗�. We note that the feasibility
of x′ depends crucially on the packing structure of the LPs they work with, i.e.,
that A has non-negative entries (which does not hold in the Gaussian setting).
Lastly, they construct a nearly optimal integer solution x′′, by carefully choosing
a subset of coordinates T ⊂ {i ∈ [n] : x′

i = 0} of size O(poly(m) log n), where
they flip the coordinates of x′ in T from 0 to 1 to get x′′. The coordinates of
T are chosen accordingly the following criteria. Firstly, the coordinates should
be very cheap to flip, which is measured by the absolute value of their reduced
costs. Namely, they enforce that |ci − AT

·,iu
∗| = O(log n/n), ∀i ∈ T . Secondly, T

is chosen to make the excess slack ‖A(x∗ − x′′)‖∞ = 1/poly(n), i.e., negligible.
We note that guaranteeing the existence of T is highly non-trivial. Crucial to the
analysis is that after conditioning on the exact value of x∗ and u∗, the columns

of W :=
[
cT

A

]
∈ R

(m+1)×n (the objective extended constraint matrix), indexed

by N0 := {i ∈ [n] : x∗
i = 0}, are independently distributed subject to having

negative reduced cost, i.e., subject to ci −AT
·,iu

∗ < 0 for i ∈ N0 (see Lemma 5). It
is the large amount of left-over randomness in these columns that allowed Dyer
and Frieze to show the existence of the subset T via a discrepancy argument
(more on this below). Finally, given a suitable T , a simple sensitivity analysis is
used to show the bound on the gap between cTx′′ and the (Primal LP) value.
This analysis uses the basic formula for the optimality gap between primal and
dual solutions (see (Gap Formula) in Subsect. 2.2), and relies upon bounds on
the size of the reduced costs of the flipped variables, the total excess slack and
the norm of the dual optimal solution u∗.

As a first difference with the above strategy, we are able to work directly
with the optimal solution x∗ of the original LP without having to replace b by
b′ := b − ε1m. The necessity of working with this more conservative feasible
region in [5] is that flipping 0 coordinates of x′ to 1 can only decrease b − Ax′.
In particular, if the coordinates of b−Ax′ ≥ 0 are too small, it becomes difficult
to find a set T that doesn’t force x′′ to be infeasible. By working with b′ instead
of b, they can insure that b − Ax′ ≥ ε1m, which avoids this problem. In the
Gaussian setting, it turns out that we have equal power to both increase and
decrease the slack of b − Ax′, due to the fact that the Gaussian distribution is
symmetric about 0. We are in fact able to simultaneously fix both the feasibility
and optimality error of x′, which gives us more flexibility. In particular, we will
be able to use randomized rounding when we move from x∗ to x′, which will
allow us to start with a smaller initial slack error than is achievable by simply
rounding x∗ down.

Our main quantitative improvement – the reduction from an exponential to
a polynomial dependence in m – arises from two main sources. The first source
of improvement is a substantially improved version of a discrepancy lemma of
Dyer and Frieze [5, Lemma 3.4]. This lemma posits that for any large enough set
of “suitably random” columns in R

m and any not too big target vector t ∈ R
m,

then with non-negligible probability there exists a set containing half the columns

430 S. Borst et al.

whose sum is very close to t. This is the main lemma used to show the existence
of the subset T , chosen from a suitably filtered subset of the columns of A in N0,
used to reduce the excess slack. The non-negligible probability in their lemma
was of order 2−O(m), which implied that one had to try 2O(m) disjoint subsets of
the filtered columns before having a constant probability of success of finding a
suitable T . In our improved variant of the discrepancy lemma, given in Lemma8,
we show that by sub-selecting a 1/(2

√
m)-fraction of the columns instead of 1/2-

fraction, we can increase the success probability to constant, with the caveat of
requiring a slightly larger set of initial columns.

The second source of improvement is the use of a much milder filtering step
mentioned above. In both the uniform and Gaussian case, the subset T is cho-
sen from a subset of N0 associated with columns of A having reduced costs of
absolute value at most some parameter Δ > 0. The probability of finding a
suitable T increases as Δ grows larger, since we have more columns to choose
from, and the target integrality gap scales linearly with Δ, as the columns we
choose from become more expensive as Δ grows. Depending on the distribution
of c and A, the reduced cost filtering induces non-trivial correlations between the
entries of the corresponding columns of A, which makes it difficult to use them
within the context of the discrepancy lemma. To deal with this problem in the
uniform setting, Dyer and Frieze filtered much more aggressively, by additionally
restricting to columns of A lying in a sub-cube [α, β]m, where α = Ω(log3 n/n)
and β := mini∈[m] βi as above. By doing the reduced cost filtering more care-
fully, this allowed them to ensure that the distribution of the filtered columns
in A is in fact uniform in [α, β]m, thereby removing the unwanted correlations.
With this aggressive filtering, the columns in N0 only pass the filtering step
with probability O(βmΔ), which is the source of the (1/β)m dependence in their
integrality gap. In the Gaussian context, we show how to work directly with the
columns of A with only reduced cost filtering, which increases the success proba-
bility of the filtering test to Θ(Δ). While the entries of the filtered columns of A
do indeed correlate, using the rotational symmetry of the Gaussian distribution,
we show that after applying a suitable rotation R, the coordinates of filtered
columns of RA are all independent. This allows us to apply the discrepancy
lemma in a “rotated space”, thereby completely avoiding the correlation issues
in the uniform setting.

As already mentioned, we are also able to substantially relax the rigid require-
ments on the right hand side b and to remove any stringent “shape-dependence”
of the integrality gap on b. Specifically, for bi = βin, βi ∈ (0, 1/2), ∀i ∈ [m], the
shape parameter β := mini∈m βi, is used to both lower bound |N0| by roughly
Ω((1 − 2β)n), the number of zeros in x∗, as well as upper bound the �1 norm
of the optimal dual solution u∗ by O(1/β) (this a main reason for the choice of
the [α, β]m sub-cube above). These bounds are both crucial for determining the
existence of T . In the Gaussian setting, we are able to establish |N0| = Ω(n) and
‖u∗‖2 = O(1), using only that ‖b−‖2 ≤ n/10. Due to the different nature of the
distributions we work with, our arguments to establish these bounds are com-
pletely different from those used by Dyer and Frieze. Firstly, the lower bound on

On the Integrality Gap of Binary Integer Programs with Gaussian Data 431

|N0|, which is strongly based on the packing structure of the IP in [5], is replaced
by a sub-optimality argument. Namely, we show that the objective value of any
LP basic solution with too few zero coordinates must be sub-optimal, using
the concentration properties of the Gaussian distribution. The upper bound on
the �1 norm of u∗ in [5] is deterministic and based on packing structure; namely,
that the objective value of a (Primal LP) of packing-type is at most

∑n
i=1 ci ≤ n

(since ci ∈ [0, 1],∀i ∈ [m]). In the Gaussian setting, we prove our bound on the
norm of u∗ by first establishing simple upper and lower bounds on the dual
objective function, which hold with overwhelming probability, and optimizing
over these simple approximations (see Lemma 4).

We note that we expect the techniques we develop here to yield improvements
to the analysis of random packing IPs as well. The main technical difficulty at
present is showing that a milder filtering step (e.g., just based on the reduced
costs) is also sufficient in the packing case. This in essence reduces to under-
standing whether Lemma8 can be generalized to handle random columns whose
entries are allowed to have non-trivial correlations. Another possible approach to
obtain improvements, in particular with respect to further relaxing the restric-
tions on b, is to try and flip both 0s to 1 and 1s to 0 in the rounding of x′ to
x′′. The columns of W associated with the one coordinates of x∗ are no longer
independent however. A final open question is whether these techniques can be
extended to handle discrete distributions on A and c.

1.2 Relation to Branch and Bound

In a recent breakthrough work, Dey, Dubey and Molinaro [3] proved that,
if the entries of A, c are independently distributed in [0, 1] and for all 0 <
α min{30m, log n

a2
one has

Pr
(
IPGAP ≥ αa1

log2 n

n

)
≤ 4 · 2−αa2 +

1
n

for some a1, a2 > 0, then with probability at least 1 − 2
n − 4 · 2−αa2 , a branch-

and-bound algorithm that branches on variables, always selecting the node with
the largest LP value, will produce a tree of size at most

nO(ma1 log a1+αa1 log m)

for all α ≤ min{30m, log n
a2

}. The values of a1 and a2, they get from [5].
In fact, their analysis goes through for the entries of A and c independently

Gaussian N (0, 1) distributed as well with minor modifications. Specifically, one

needs to condition on the columns of
[
cT

A

]
having bounded norm, after which the

final net argument needs to be slightly adapted. The details of this adaptation
are give in the full version.

Taking a1 = 2 · 1015m4.5, a2 = 1/30 and α = 30 · min{m, log n}, this result
together with Theorem 1, proves that branch and bound can find the best integer

432 S. Borst et al.

solution to (Primal LP) with a branching tree of size npoly(m) with probability
1 − 6

n − 4 · 2−m. Here, the fact that Theorem 1 depends only polynomially on
m results in a much better upper bound than the exponential dependence on m
from [5].

1.3 Related Work

The worst-case complexity of solving max{cTx : Ax = b, x ≥ 0, x ∈ Z
n} scales

as nO(n) times a polynomial factor in the bit complexity of the problem. This is
a classical result due to Lenstra [10] and Kannan [9].

If we restrict to IPs with integer data, a dynamic programming algorithm can
solve max{cTx : Ax = b, x ≥ 0, x ∈ Z

n} in time O(
√

mΔ)2m log(‖b‖∞)+O(nm),
where Δ is the largest absolute value of entries in the input matrix A [6,8,12].
Integer programs of the form max{cTx : Ax = b, 0 ≤ x ≤ u, x ∈ Z

n} can
similarly be solved in time

n · O(m)(m+1)2 · O(Δ)m·(m+1) log2(m · Δ),

which was proved in [6]. Note that integer programs of the form max{cTx : Ax ≤
b, x ∈ {0, 1}n} can be rewritten in this latter form by adding m slack variables.

In terms of random inputs, we mention the work of Röglin and Vöcking [13].
They prove that a class of IPs satisfying some minor conditions has polynomial
smoothed complexity if and only if that class admits a pseudopolynomial time
algorithm. An algorithm has polynomial smoothed complexity if its running
time is polynomial with high probability when its input has been perturbed by
adding random noise, where the polynomial may depend on the magnitude ϕ−1

of the noise as well as the dimensions n,m of the problem. An algorithm runs
in pseudopolynomial time if the running time is polynomial when the numbers
are written in unary, i.e., when the input data consists of integers of absolute
value at most Δ and the running time is bounded by a polynomial p(n,m,Δ). In
particular, they prove that solving the randomly perturbed problem requires only
polynomially many calls to the pseudopolynomial time algorithm with numbers
of size (nmϕ)O(1) and considering only the first O(log(nmϕ)) bits of each of the
perturbed entries.

If, for the sake of comparison, we choose b ∈ R
m in (Primal LP) from a

N (0, 1) Gaussian distribution independently of c and A, then the result of [13]
proves that, with high probability, it is sufficient to solve polynomially many
problems with integer entries of size (nm)O(1). Since Δ = (nm)O(m) in this
setting (by Hadamard’s inequality), the result of [6] tells us that this problem
can be solved in time (nm)O(m3).

1.4 Organization

In Sect. 2, we give preliminaries on probability theory, linear programming and
integer rounding. In Sect. 3, we prove properties of the LP optimal solution x∗,

On the Integrality Gap of Binary Integer Programs with Gaussian Data 433

and in Sect. 4 we look at the distribution of the columns of
[
cT

A

]
corresponding

to indices i ∈ [n] with x∗
i = 0. Then in Sect. 5, we prove Theorem 1, using a

discrepancy result that we prove in the full version of this paper [2]. All other
proofs can be found in the full version as well.

2 Preliminaries

2.1 Basic Notation

We denote the reals and non-negative reals by R,R+ respectively, and the inte-
gers and positive integers by Z,N respectively. For k ≥ 1 an integer, we let
[k] := {1, . . . , k}. For s ∈ R, we let s+ := max{s, 0} and s− := min{s, 0}
denote the positive and negative part of s. We extend this to a vector x ∈ R

n

by letting x+(−) correspond to applying the positive (negative) part operator
coordinate-wise. We let ‖x‖2 =

√∑n
i=1 x2

i and ‖x‖1 =
∑n

i=1 |xi| denote the
�2 and �1 norm respectively. We use log x to denote the base e natural loga-
rithm. We use 0m, 1m ∈ R

m to denote the all zeros and all ones vector respec-
tively, and e1, . . . , em ∈ R

m denote the standard coordinate basis. We write
R

m
+ := [0,∞)m. For a random variable X ∈ R, we let E[X] denote its expecta-

tion and Var[X] := E[X2] − E[X]2 denote its variance.

2.2 The Dual Program, Gap Formula and the Optimal Solutions

A convenient formulation of the dual of (Primal LP) is given by

min val�(u) := bTu +
n∑

i=1

(c − ATu)+i (Dual LP)

s.t. u ≥ 0.

To keep the notation concise, we will often use the identity ‖(c − Atu)+‖1 =∑n
i=1(c − ATu)+i .
For any primal solution x and dual solution u to the above pair of programs,

we have the following standard formula for the primal-dual gap:

val�(u) − val(x) := bTu +
n∑

i=1

(c − ATu)+i − cTx (Gap Formula)

= (b − Ax)Tu +

(
n∑

i=1

xi(ATu − c)+i + (1 − xi)(c − ATu)+i

)
.

Throughout the rest of the paper, we let x∗ and u∗ denote primal and dual opti-
mal basic feasible solutions for (Primal LP) and (Dual LP) respectively, which
we note are unique with probability 1. We use the notation

W :=
[
cT

A

]
∈ R

(m+1)×n, (1)

434 S. Borst et al.

to denote the objective extended constraint matrix. We will frequently make use
of the sets Nb := {i ∈ [n] : x∗

i = b}, b ∈ {0, 1}, the 0 and 1 coordinates of x∗,
and S := {i ∈ [n] : x∗

i ∈ (0, 1)}, the fractional coordinates of x∗. We will also use
the fact that |S| ≤ m, which follows since x∗ is a basic solution to (Primal LP)
and A has m rows.

2.3 Gaussian and Sub-Gaussian Random Variables

The standard, mean zero and variance 1, Gaussian N (0, 1) has density function
ϕ(x) := 1√

2π
e−x2/2. A standard Gaussian vector in R

d, denoted N (0, Id), has

probability density
∏d

i=1 ϕ(xi) = 1√
2π

d e−‖x‖2/2 for x ∈ R
d. A random variable

Y ∈ R is σ-sub-Gaussian if for all λ ∈ R, we have

E[eλY] ≤ eσ2λ2/2. (2)

A standard normal random variable X ∼ N (0, 1) is 1-sub-Gaussian. If variables
Y1, . . . , Yk ∈ R are independent and respectively σi-sub-Gaussian, i ∈ [k], then∑k

i=1 Yi is
√∑k

i=1 σ2
i -sub-Gaussian.

For a σ-sub-Gaussian random variable Y ∈ R we have the following standard
tailbound:

max{Pr[Y ≤ −σs],Pr[Y ≥ σs]} ≤ e− s2
2 , s ≥ 0. (3)

For X ∼ N (0, Id), we will use the following higher dimensional analogue:

Pr[‖X‖2 ≥ s
√

d] ≤ e− d
2 (s

2−2 log s−1) ≤ e− d
2 (s−1)2 , s ≥ 1. (4)

We will use this bound to show that the columns of A corresponding to the frac-
tional coordinates in the (almost surely unique) optimal solution x∗ are bounded.

Lemma 1. Letting S := {i ∈ [n] : x∗
i ∈ (0, 1)}, we have that

Pr[∃i ∈ S : ‖A·,i‖2 ≥ (4
√

log(n) +
√

m)] ≤ n−7.

2.4 A Local Limit Theorem

Before we can state the discrepancy lemma, we introduce the concept of Gaussian
convergence.

Definition 1. Suppose X1,X2, . . . is a sequence of i.i.d copies of a random vari-
able X with density f . X is said to be (γ, k)-Gaussian convergent if the density

fn of
n∑

i=1

Xi/
√

n satisfies:

|fn(x) − ϕ(x)| ≤ γ

n
∀x ∈ R, n ≥ k,

where ϕ := 1√
2π

e−x2/2 is the Gaussian probability density function.

On the Integrality Gap of Binary Integer Programs with Gaussian Data 435

The above definition quantifies the speed of convergence in the context of
the central limit theorem. The rounding strategy used to obtain the main result
utilizes random variables that are the weighted sum of a uniform and an inde-
pendent normal variable. Crucially, the given convergence estimate will hold for
these random variables:

Lemma 2. Let U be uniform on [−√
3,

√
3] and let Z ∼ N (0, 1). Then there

exists a universal constant k0 ≥ 1 such that ∀ε ∈ [0, 1], the random variable√
εU +

√
1 − εZ is (1/10, k0)-Gaussian convergent and has maximum density at

most 1.

2.5 Rounding to Binary Solutions

In the proof of Theorem1, we will take our optimal solution x∗ and round it
to an integer solution x′, by changing the fractional coordinates. Note that as
x∗ is a basic solution, it has at most m fractional coordinates. One could round
to a integral solution by setting all of them to 0, i.e., x′ = �x∗�. If we assume
that the Euclidean norm of every column of A is bounded by C, then we have
‖A(x∗ − x′)‖2 ≤ mC, since x∗ has at most m fractional variables. However,
by using randomized rounding we can make this bound smaller, as stated in the
next lemma. We use this to obtain smaller polynomial dependence in Theorem1.

Lemma 3. Consider an m × n matrix A with ‖A·,i‖2 ≤ C for all i ∈ [m] and
y ∈ [0, 1]n. Let S = {i ∈ [n] : yi ∈ (0, 1)}. There exists a vector y′ ∈ {0, 1}n with
‖A(y − y′)‖2 ≤ C

√|S|/2 and y′
i = yi for all i /∈ S.

3 Properties of the Optimal Solutions

The following lemma is the main result of this section, which gives principal
properties we will need of the optimal primal and dual LP solutions. Namely, we
prove an upper bound on the norm of the optimal dual solution u∗ and a lower
bound on the number of zero coordinates of the optimal primal solution x∗.

Lemma 4. Given δ :=
√
2π
n ‖b−‖2 ∈ [0, 1/2), ε ∈ (0, 1/5), let x∗, u∗ denote

the optimal primal and dual LP solutions, and let α := 1√
2π

√(
1−3ε
1−ε

)2

− δ2

and choose β ∈ [1/2, 1] with H(β) = α2

4 . Then, with probability at least 1 −
2

(
1 + 2

ε

)m+1
e− ε2n

8π − e− α2n
4 , the following holds:

1. cTx∗ ≥ αn.
2. ‖u∗‖2 ≤ 1+ε

1−3ε−(1−ε)δ .
3. |{i ∈ [n] : x∗

i = 0}| ≥ (1 − β)n − m.

436 S. Borst et al.

4 Properties of the 0 Columns

For Y := (c, a1, . . . , am) ∼ N (0, Im+1) and u ∈ R
m
+ , let Y u denote the random

variable Y conditioned the event c − ∑m
i=1 uiai ≤ 0. We will crucially use the

following lemma directly adapted from Dyer and Frieze [5, Lemma 2.1], which
shows that the columns of W associated with the 0 coordinates of x∗ are inde-
pendent subject to having negative reduced cost.

Recall that Nb = {i ∈ [n] : x∗
i = b}, that S = {i ∈ [n] : x∗

i ∈ (0, 1)} and that

W :=
[
cT

A

]
∈ R

(m+1)×n is the objective extended constraint matrix.

Lemma 5. Let N ′
0 ⊆ [n]. Conditioning on N0 = N ′

0, the submatrix W·,[n]\N ′
0

uniquely determines x∗ and u∗ almost surely. If we further condition on the exact
value of W·,[n]\N ′

0
, assuming x∗ and u∗ are uniquely defined, then any column

W·,i with i ∈ N ′
0 is distributed according to Y u∗

and independent of W·,[n]\{i}.

To make the distribution of the columns A·,i easier to analyze we rotate
them.

Lemma 6. Let R be a rotation that sends the vector u to the vector ‖u‖2em.
Suppose (c, a) ∼ Y u. Define a′ := Ra. Then (c,Ra) ∼ (c′, a′), where (c′, a′) is
the value of (c̄′, ā′) ∼ N (0, Im+1) conditioned on ‖u‖2ā′

m − c̄′ ≥ 0.

We will slightly change the distribution of the (c′, a′
m) above using rejection

sampling, as stated in the next lemma. This will make it easier to apply the
discrepancy result of Lemma 8, which is used to round x∗ to an integer solution
of nearby value. In what follows, we denote the probability density function of a
random variable X by fX . In the following lemma, we use unif(0, ν) to denote
the uniform distribution on the interval [0, ν], for ν ≥ 0.

Lemma 7. For any ω ≥ 0, ν > 0, let X,Y ∼ N (0, 1) be independent random
variables and let Z = ωY − X. Let X ′, Y ′, Z ′ be these variables conditioned on
Z ≥ 0. We apply rejection sampling on (X ′, Y ′, Z ′) with acceptance probability

Pr[accept|Z ′ = z] =
2ϕ(ν/

√
1 + ω2)1z∈[0,ν]

2ϕ(z/
√

1 + ω2)
.

Let X ′′, Y ′′, Z ′′ be the variables X ′, Y ′, Z ′ conditioned on acceptance. Then:

1. Pr[accept] = 2νϕ(ν/
√

1 + ω2)/
√

1 + ω2.
2. Y ′′ ∼ W + V where W ∼ N (0, 1

1+ω2), V ∼ unif(0, νω
1+ω2) and W,V are

independent.

5 Proof of Theorem1

Recall that S = {i ∈ [n] : x∗
i ∈ (0, 1)} and N0 = {i ∈ [n] : x∗

i = 0}. To prove
Theorem 1, we will assume that the following three conditions hold:

On the Integrality Gap of Binary Integer Programs with Gaussian Data 437

1. ‖A·,i‖2 ≤ 4
√

log(n) +
√

m, ∀i ∈ S.
2. ‖u∗‖ ≤ 3.
3. |N0| ≥ n/500.

Using Lemmas 1 and 4 we can show that these events hold with probability
1 − n−Ω(1). Now we take our optimal basic solution x∗ and round it to an
integral vector x′ using Lemma 3. Then we can generate a new solution x′′ from
x′ by flipping the values at indices T ⊆ N0 to one. In Lemma 9 we show that
with high probability there is such a set T , such that x′′ is a feasible solution to
our primal problem and that val(x∗) − val(x′′) is small.

We do this by looking at t disjoint subsets of N0 with small reduced costs.
Then we show for each of these sets that with constant probability it contains
a subset T such that for x′′ obtained from T , x′′ is feasible and all constraints
that are tight for x∗ are close to being tight for x′′. This argument relies on the
following improved discrepancy lemma.

Lemma 8. For k,m ∈ N, let a = �2√
m� and θ > 0 satisfy

(
2θ√
2πk

)m (
ak
k

)
= 1.

Let Y1, . . . , Yak ∈ R
m be i.i.d. random vectors whose coordinates are independent

random variables. For k0 ∈ N, γ ≥ 0,M > 0, assume that Y1,i, i ∈ [m], is (γ, k0)-
Gaussian convergent and admits a probability density gi : R → R+ satisfying
maxx∈R gi(x) ≤ M . Then, if

k ≥ max{(4
√

m + 2)k0, 144m
3
2 (log M + 3), 150 000(γ + 1)m

7
4 },

then for any vector A ∈ R
m with ‖A‖2 ≤ √

k the following holds:

Pr

⎡
⎣∃K ⊂ [ak] : |K| = k, ‖(

∑
j∈K

Yj) − A‖∞ ≤ θ

⎤
⎦ ≥ 1

25
. (5)

If a suitable T exists, then using the gap formula we show that val(x∗) −
val(x′′) is small. Because the t sets independent the probability of failure
decreases exponentially with t. Hence, we can make the probability of failure
arbitrarily small by increasing t. We know val(x∗) = valLP and because x′′ ∈
{0, 1}n we have valIP ≥ val(x′′), so IPGAP = valLP − valIP ≤ val(x∗) − val(x′′),
which is small with high probability.

Lemma 9. If n ≥ exp(k0) for k0 from Lemma2 and conditions 1, 2 and 3 above
hold, then

Pr
[
IPGAP > 1015t · m2.5(log n + m)2

n
.

]
≤ 2 ·

(
1 − 1

25

)t

(6)

for 1 ≤ t ≤ n
20 000

√
mk2 , where k := �165 000m(log(n) + m)�.

438 S. Borst et al.

Proof. It suffices to condition on N0 and W·,[n]\N0 , subject to the conditions 1–3.
Now let R be a rotation that sends the vector u∗ to the vector ‖u∗‖2em. Define:

Δ := 10 000
√

mk/n,

Bi := RA·,i, for i ∈ N0,

Zt := {i ∈ N0 : ‖u∗‖2(Bi)m − ci ∈ [0, tΔ]}, for 1 ≤ t ≤ 1
2Δk

.

We consider a (possibly infeasible) integral solution x′ to the LP, generated by
rounding the fractional coordinates from x∗. By Lemma 3 we can find such a
solution with ‖A(x∗ −x′)‖2 ≤ (4

√
log n+

√
m)

√|S|/2 ≤ (4
√

log n+
√

m)
√

m/2.
We will select a subset T ⊆ Zt of size |T | = k of coordinates to flip from 0 to
1 to obtain x′′ ∈ {0, 1}n from x′, so x′′ := x′ +

∑
i∈T ei. By complementary

slackness, we know for i ∈ [n] that x∗
i (A

Tu∗ − c)+i = (1 − x∗
i)(c − ATu∗)+ = 0

and that x∗
i /∈ {0, 1} implies (c−ATu∗)i = 0, and for j ∈ [m] that u∗

j > 0 implies
bj = (Ax∗)j . This observation allows us to prove the following key bound for the
integrality gap of (Primal LP)

val(x∗) − val(x′′) = val�(u∗) − val(x′′)

= (b − Ax′′)Tu∗

+

(
n∑

i=1

x′′
i (ATu∗ − c)+i + (1 − x′′

i)(c − ATu∗)+i

)
(by Gap Formula)

= (x∗ − x′′)TATu∗ +
∑
i∈T

(ATu∗ − c)i (by complementary slackness)

≤ √
m‖u∗‖2 ‖A(x′′ − x∗)‖∞ + tΔk (since T ⊆ Zt).

Condition 2 tells us that ‖u∗‖2 ≤ 3, and by definition we have

tΔk ≤ 27226 · 1010t · m2.5(log(n) + m)2

n
,

so the rest of this proof is dedicated to showing the existence of a set T ⊆ Zt

such that ‖A(x′′ − x∗)‖∞ ≤ O(1/n) and Ax′′ ≤ b.
By applying Lemma 5, we see that {(ci, A·,i)}i∈N0 are independent vectors,

distributed as N (0, Im+1) conditioned on ci − AT
·,iu

∗ ≤ 0. This implies that
the vectors {(ci, Bi)}i∈N0 , are also independent. By Lemma 6, it follows that
(ci, Bi) ∼ N (0, Im+1) | ‖u∗‖2(Bi)m − ci ≥ 0. Note that the coordinates of Bi are
therefore independent and (Bi)j ∼ N (0, 1) for j ∈ [m − 1].

To simplify the upcoming calculations, we apply rejection sampling as spec-
ified in Lemma7 with ν = Δt on (ci, (Bi)m), for each i ∈ N0. Let Z ′

t ⊆ N0

denote the indices which are accepted by the rejection sampling procedure. By
the guarantees of Lemma 7, we have that Z ′

t ⊆ Zt and

Pr[i ∈ Z ′
t | i ∈ N0] =

2Δtϕ(Δt/
√

1 + ‖u∗‖22)√
1 + ‖u∗‖22

≥ 2Δtϕ(1/2)√
10

≥ Δt/5.

On the Integrality Gap of Binary Integer Programs with Gaussian Data 439

Furthermore, for i ∈ Z ′
t we know that (Bi)m is distributed as a sum of indepen-

dent N(0, 1
1+‖u∗‖2

2
) and unif(0, tΔ) random variables, and thus (Bi)m has mean

and variance

μt := E[(Bi)m|i ∈ Z ′
t] = Δt/2,

σ2
t := Var[(Bi)m|i ∈ Z ′

t] =
1

1 + ‖u∗‖22
+

1
12

(‖u∗‖2Δt

1 + ‖u∗‖22

)2

∈ [1/10, 2].

Now define Σ(t) to be the diagonal matrix with Σ
(t)
j,j = 1, j ∈ [m − 1], and

Σ
(t)
m,m = σt. Conditional on i ∈ Z ′

t, define B
(t)
i as the random variable

B
(t)
i := (Σ(t))−1(Bi − μtem) | i ∈ Z ′

t.

This ensures that all coordinates of B(t) are independent, mean zero and have
variance one.

We have assumed that |N0| ≥ n/500 and we know Pr[i ∈ Z ′
t|i ∈ N0] ≥ Δt/5.

Now, using the Chernoff bound we find that:

Pr[|Z ′
t| < 2t

√
mk] ≤ Pr

[
|Z ′

t| <
1
5
tΔ|N0|/2

]

≤ exp
(

−1
8

· 1
5
tΔ|N0|

)

≤
(

1 − 1
25

)t

. (7)

Now we define:

θ :=

√
2πk

2

(�2√
mk�
k

)−1/m

, d := A(x∗ − x′).

θ′ := 2
√

mθ. d′ := d − 1mθ′.

Observe that

θ =

√
2πk

2

(�2√
mk�
k

)−1/m

≤
√

2πk

2
(
2
√

m
)−k/m ≤ 1

32m2n
.

So θ′ ≤ 1/8.
If |Z ′

t| ≥ �2√
m�kt, then we can take t disjoint subsets Z

(1)
t , . . . Z

(k)
t of Z ′

t

of size �2√
m�k. Conditioning on this event, we wish to apply Lemma8 to each

set {B
(t)
i }

i∈Z
(l)
t

, l ∈ [t], to help us find a candidate rounding of x′ to a “good”
integer solution x′′.

440 S. Borst et al.

Now we check that all conditions of Lemma 8 are satisfied. By definition we
have

(
2θ√
2πk

)m (
ak
k

)
= 1, and we can bound

∥∥∥(Σ(t))−1(Rd′ − emkμt)
∥∥∥
2

≤ max(1, 1/σt)(‖Rd‖2 + θ′ + kμt)

≤
√

10(‖RA(x∗ − x′)‖2 + θ′ + kΔt/2)

≤
√

10
(√

m(4
√

log n +
√

m)/2 +
1
8

+
1
4

)

≤ 4
√

10m(log n + m) ≤
√

k.

We now show that the conditions of Lemma 8 for M = 1,γ = 1/10, and k0
specified below, are satisfied by {B

(t)
i }

i∈Z
(l)
t

, ∀l ∈ [t].

First, we observe that the B
(t)
i are distributed as (B(t)

i)m ∼ √
εV +

√
1 − εU

for ε = 1
(1+‖u∗‖2

2)σ
2
t
, where U is uniform on [−√

3,
√

3] and V ∼ N (0, 1). By

Lemma 2, (B(t)
i)m is (1/10, k0)-Gaussian convergent for some k0 and has max-

imum density at most 1. Recalling that the coordinates of B
(t)
i , i ∈ Z ′

t, are
independent and (B(t)

i)j ∼ N (0, 1), ∀j ∈ [m − 1], we see that B
(t)
i has inde-

pendent (1/10, k0)-Gaussian convergent entries of maximum density at most 1.
Lastly, we note that

k = 165 000m(log(n) + m) ≥ 165 000(m2 + k0m)

≥ max{(4
√

m + 2)k0, 144m
3
2 (log 1 + 3), 150 000(γ + 1)m

7
4 }

as needed to apply Lemma 8, using that n ≥ exp(k0).
Therefore, applying Lemma8, for each l ∈ [t], with probability at least 1 −

1/25, there exists a set Tl ⊆ Z
(l)
t of size k such that:

∥∥∥∥∥
∑
i∈Tl

B
(t)
i − (Σ(t))−1(Rd′ − emkμt)

∥∥∥∥∥
∞

≤ θ. (8)

Call the event that (8) is valid for any of the t sets Et. Because the success
probabilities for each of the t sets are independent, we get:

Pr[¬Et | |Z ′
t| ≥ �2√

m�tk] ≤
(

1 − 1
25

)t

.

On the Integrality Gap of Binary Integer Programs with Gaussian Data 441

Combining this with Eq. (7), we see that Pr[¬Et] ≤ 2 · (1 − 1
25)t. If Et occurs,

we choose T ⊆ Z ′
t, |T | = k, satisfying (8). Then,

∥∥∥∥∥
∑
i∈T

A·,i − d′
∥∥∥∥∥

∞
≤

∥∥∥∥∥
∑
i∈T

A·,i − d′
∥∥∥∥∥
2

=

∥∥∥∥∥
∑
i∈T

B·,i − Rd′
∥∥∥∥∥
2

=

∥∥∥∥∥
∑
i∈T

(Σ(t))B(t)
·,i + kμtem − Rd′

∥∥∥∥∥
2

≤ max(1, σt)
√

m

∥∥∥∥∥
∑
i∈T

B
(t)
·,i − (Σ(t))−1(Rd′ − emkμt)

∥∥∥∥∥
∞

≤ 2
√

mθ = θ′.

Now we will show that when Et occurs, x′′ is feasible and ‖A(x′′ − x∗)‖∞ =
O(1/n). First we check feasibility:

m∑
i=1

x′′
i aji = (Ax′)j +

∑
i∈T

aji ≤ (Ax′)j + d′
j + θ′

= (Ax′)j + (A(x∗ − x′))j = (Ax∗)j ≤ bj .

Hence the solution is feasible for our LP. We also have

‖A(x′′ − x∗)‖∞ = ‖Ax′′ − Ax′ − d‖∞

= ‖
∑
i∈T

A·,i − d′‖∞ ≤ ‖
∑
i∈T

A·,i − d‖∞ + θ′ ≤ 2θ′.

Now we can finalize our initial computation:

val(x∗) − val(x′′) ≤ √
m‖u∗‖2 ‖A(x′′ − x∗)‖∞ + tΔk

≤ 6
√

mθ′ + 10 000 ·
√

m · t · k2

n

≤ 12
32mn

+ 27226 · 1010t · m2.5(log n + m)2

n

≤ 1015t · m2.5(log n + m)2

n
.

��

References

1. Beier, R., Vöcking, B.: Probabilistic analysis of knapsack core algorithms. In:
Munro, J.I. (ed.) Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, 11–14 Jan
2004, pp. 468–477. SIAM (2004)

2. Borst, S., Dadush, D., Huiberts, S., Tiwari, S.: On the Integrality Gap of Binary
Integer Programs with Gaussian Data. arXiv:2012.08346 [cs, math] (Dec 2020)

http://arxiv.org/abs/2012.08346

442 S. Borst et al.

3. Dey, S.S., Dubey, Y., Molinaro, M.: Branch-and-bound solves random binary IPs
in polytime. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 579–591. Society for Industrial and Applied Mathematics (Jan
2021). https://doi.org/10.1137/1.9781611976465.35

4. Dyer, M., Frieze, A.: Probabilistic analysis of the generalised assignment problem.
Math. Program. 55(1–3), 169–181 (1992). https://doi.org/10.1007/bf01581197

5. Dyer, M., Frieze, A.: Probabilistic analysis of the multidimensional knapsack prob-
lem. Math. OR 14(1), 162–176 (1989). https://doi.org/10.1287/moor.14.1.162

6. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for inte-
ger programming using the Steinitz lemma. ACM Trans. Algorithms 16(1), 1–14
(2020). https://doi.org/10.1145/3340322

7. Goldberg, A., Marchetti-Spaccamela, A.: On finding the exact solution of a zero-
one knapsack problem. In: Proceedings of the Sixteenth Annual ACM Symposium
on Theory of Computing - STOC 1984. ACM Press (1984). https://doi.org/10.
1145/800057.808701

8. Jansen, K., Rohwedder, L.: Integer programming (2019). https://doi.org/10.1002/
9781119454816.ch10

9. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
OR 12(3), 415–440 (1987). https://doi.org/10.1287/moor.12.3.415

10. Lenstra, H.: Integer programming with a fixed number of variables. Math. OR
8(4), 538–548 (1983). https://doi.org/10.1287/moor.8.4.538

11. Lueker, G.S.: On the average difference between the solutions to linear and integer
knapsack problems. In: Applied Probability-Computer Science: The Interface, vol.
1, pp. 489–504. Birkhäuser, Boston (1982). https://doi.org/10.1007/978-1-4612-
5791-2

12. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981). https://doi.org/10.1145/322276.322287

13. Röglin, H., Vöcking, B.: Smoothed analysis of integer programming. Math. Pro-
gram. 110(1), 21–56 (2007). https://doi.org/10.1007/s10107-006-0055-7

https://doi.org/10.1137/1.9781611976465.35
https://doi.org/10.1007/bf01581197
https://doi.org/10.1287/moor.14.1.162
https://doi.org/10.1145/3340322
https://doi.org/10.1145/800057.808701
https://doi.org/10.1145/800057.808701
https://doi.org/10.1002/9781119454816.ch10
https://doi.org/10.1002/9781119454816.ch10
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1007/978-1-4612-5791-2
https://doi.org/10.1007/978-1-4612-5791-2
https://doi.org/10.1145/322276.322287
https://doi.org/10.1007/s10107-006-0055-7

Linear Regression with Mismatched Data:
A Provably Optimal Local Search

Algorithm

Rahul Mazumder(B) and Haoyue Wang

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{rahulmaz,haoyuew}@mit.edu

Abstract. Linear regression is a fundamental modeling tool in statis-
tics and related fields. In this paper, we study an important variant of
linear regression in which the predictor-response pairs are partially mis-
matched. We use an optimization formulation to simultaneously learn
the underlying regression coefficients and the permutation correspond-
ing to the mismatches. The combinatorial structure of the problem leads
to computational challenges, and we are unaware of any algorithm for
this problem with both theoretical guarantees and appealing computa-
tional performance. To this end, in this paper, we propose and study
a simple greedy local search algorithm. We prove that under a suitable
scaling of the number of mismatched pairs compared to the number of
samples and features, and certain assumptions on the covariates; our
local search algorithm converges to the global optimal solution with a
linear convergence rate under the noiseless setting.

Keywords: Linear regression · Mismatched data · Local search
method · Learning permutations

1 Introduction

Linear regression and its extensions are among the most useful models in statis-
tics and related fields. In the classical and most common setting, we are given n
samples with features xi ∈ R

d and response yi ∈ R, where i denotes the sample
indices. We assume that the features and responses are perfectly matched i.e.,
xi and yi correspond to the same record or sample. An interesting twist to this
problem—also the focus of this paper—is when the feature-response pairs are
partially mismatched due to errors in the data merging process [6,7,10]. Here,
we consider a mismatched linear model with responses y = [y1, ..., yn] ∈ R

n and
covariates X = [x1, ..., xn]� ∈ R

n×d satisfying

P ∗y = Xβ∗ + ε (1.1)

Supported by grants from the Office of Naval Research: ONR-N000141812298 (YIP)
and National Science Foundation: NSF-IIS-1718258.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 443–457, 2021.
https://doi.org/10.1007/978-3-030-73879-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_31&domain=pdf
http://orcid.org/0000-0003-1384-9743
http://orcid.org/0000-0002-5191-8044
https://doi.org/10.1007/978-3-030-73879-2_31

444 R. Mazumder and H. Wang

where β∗ ∈ R
d are the regression coefficients, ε = [ε1, ..., εn]� ∈ R

n is the
noise term, and P ∗ ∈ R

n×n is an unknown permutation matrix. We consider
the setting where n > d and X has full rank; and seek to estimate both β∗

and P ∗ based on the n observations {(yi, xi)}n
1 . The main computational diffi-

culty arises in learning the unknown permutation. Linear regression with mis-
matched/permuted data (model (1.1)) has a long history in statistics dating
back to 1960s [6].

Recently, this problem has garnered significant attention from the statistics
and machine learning communities. A series of recent works [1–5,7–12,14] have
studied the statistical and computational aspects of this model. To learn the
coefficients β∗ and the matrix P ∗, one can consider the following natural opti-
mization problem:

min
β,P

‖Py − Xβ‖2 s.t. P ∈ Πn (1.2)

where Πn is the set of permutation matrices in R
n×n. Solving problem (1.2)

is difficult as there are combinatorially many choices for P ∈ Πn. Given P , it
is easy to estimate β via least squares. [12] shows that in the noiseless setting
(ε = 0), a solution (P̂ , β̂) of problem (1.2) equals (P ∗, β∗) with probability one
if n ≥ 2d and the entries of X are i.i.d. from a distribution that is absolutely
continuous with respect to the Lebesgue measure. [5,8] studies the recovery of
(P ∗, β∗) under the noisy setting.

It is shown in [8] that Problem (1.2) is NP-hard for d ≥ 2. A polynomial-
time approximation algorithm appears in [5] for a fixed d, though this does not
appear to result in a practical algorithm. Several heuristics have been proposed
for (1.2): Examples include, alternating minimization [4,14], Expectation Max-
imization [1] but they lack theoretical guarantees. [10] uses robust regression
methods to approximate solutions to (1.2) and discuss statistical properties of
the corresponding estimator when the number of mismatched pairs is small.

Problem (1.2) can be formulated as a mixed integer program (MIP) with
O(n2) binary variables. Solving this MIP with off-the-shelf MIP solvers (e.g.,
Gurobi) becomes computationally expensive for even a small value of n (e.g.
n ≈ 50). To our knowledge, there is no computationally practical algorithm that
provably solves the original problem (1.2) under suitable statistical assumptions.
Addressing this gap is the main focus of this paper: We propose and study a
novel greedy local search method for Problem (1.2). Loosely speaking, our algo-
rithm at every step swaps a pair of indices in the permutation in an attempt
to improve the cost function. This algorithm is typically efficient in practice
based on our preliminary numerical experiments. Suppose r denotes the number
of mismatched pairs i.e., the Hamming distance between P ∗ and the identity
matrix In. We establish theoretical guarantees on the convergence of the pro-
posed method, under the assumption that r is small compared to n (we make
this notion precise later), an assumption appearing in [10] (see also references
therein). We consider the noiseless setting (i.e., ε = 0) and establish that under
some assumptions on the problem data, our local search method converges to
an optimal solution of Problem (1.2).

Local Search Method for Mismatched Linear Regression 445

Notation and Preliminaries: For a vector a, we let ‖a‖ denote the Euclidean
norm, ‖a‖∞ the �∞-norm and ‖a‖0 the �0-pseudo-norm (i.e., number of nonzeros)
of a. We let � ·�2 denote the operator norm for matrices. Let {e1, ..., en} be the
natural orthogonal basis of Rn. For an interval [a, b] ⊆ R, we let |[a, b]| = b − a.
For a finite set S, we let #S denote its cardinality. For any permutation matrix
P , let πP be the corresponding permutation of {1, 2,, n}, that is, πP (i) = j
if and only if e�

i P = e�
j if and only if Pij = 1. For two different permutation

matrices P and Q, we define the distance between them as

dist(P,Q) = # {i ∈ [n] : πP (i) �= πQ(i)} . (1.3)

For any permutation matrix P ∈ Πn, we define its support as:

supp(P) := {i ∈ [n] : πP (i) �= i} . (1.4)

For a real symmetric matrix A, let λmax(A) and λmin(A) denote the largest and
smallest eigenvalues of A, respectively.

For two positive scalar sequences {an}, {bn}, we write an = ˜O(bn) or equiv-
alently, an/bn = ˜O(1), if an/bn is bounded by a polynomial (of finite degree) in
log(n). In particular, we view any value that can be bounded by a polynomial
of log(n) as a constant.

2 A Local Search Method

Here we present our local search method for (1.2). For any fixed P ∈ Πn, by min-
imizing the objective function in (1.2) with respect to β, we have an equivalent
formulation

min
P

‖Py − HPy‖2 s.t. P ∈ Πn (2.1)

where H = X(X�X)−1X�. To simplify the notation, denote ˜H := In −H, then
Problem (2.1) is equivalent to

min
P

‖ ˜HPy‖2 s.t. P ∈ Πn . (2.2)

For a given permutation matrix P , define the R-neighbourhood of P as

NR(P) :=
{

Q ∈ Πn : dist(P,Q) ≤ R
}

. (2.3)

It is easy to check that N1(P) = {P}, and for any R ≥ 2, NR(P) has more than
one element. Algorithm 1 introduces our proposed local search method with
search width R, which is an upper bound on the number of mismatched pairs.

446 R. Mazumder and H. Wang

Algorithm 1. Local search method with search width R for Problem (2.2).
Input: Initial permutation P (0) = In. Search width R.
For k = 0, 1, 2,

P (k+1) ∈ argmin
{

‖H̃Py‖2 : P ∈ N2(P
(k)) ∩ NR(In)

}
. (2.4)

If ‖H̃P (k+1)y‖2 = ‖H̃P (k)y‖2, output P (k).

Algorithm 1 uses an explicit constraint on the search width at every step.
When R ≥ n, we perform local search without any constraint on the search width
or neighborhood size. In this paper, we focus on the case where the underlying
P ∗ is close to In, i.e., r 	 n. Under this assumption, it is reasonable to set
R = cr 	 n for some constant c > 1. See Sect. 3 for more details.

Let us examine the per-iteration cost of (2.4). The cardinality of N2(P (k)) is
upper bounded by O(n2). Furthermore, we note that

‖ ˜HPy‖2 = ‖ ˜H(P − P (k))y + ˜HP (k)y‖2
= ‖ ˜H(P − P (k))y‖2 + 2〈(P − P (k))y, ˜HP (k)y〉 + ‖ ˜HP (k)y‖2 . (2.5)

For each P ∈ N2(P (k)), the vector (P − P (k))y has at most two nonzero entries.
So the computation of the first term in (2.5) costs O(1) operations. As we retain
a copy of ˜HP (k)y in memory, computing the second term in (2.5) also costs
O(1) operations. Therefore, computing (2.4) using the procedure outlined above
requires O(n2) operations.

3 Theoretical Guarantees for Local Search

In this section, we present theoretical guarantees for Algorithm 1. Our theory
is based on the assumption that the data X is “well-behaved” (See Assumption
1). In particular, we assume that the projection matrix ˜H satisfies a “restricted
eigenvalue condition” (RE). (We caution the reader that despite nomencla-
ture similarities, our notion of RE is different than what appears in the high-
dimensional statistics literature [13]). To give an example, our RE condition is
satisfied with high probability, when the rows of X are independent draws from
a well-behaved multivariate distribution and when the sample size n is suffi-
ciently large—see Sect. 3.1 for details. Under this RE condition, our analysis
is completely deterministic in nature. The RE assumption on ˜H allows us to
relate the objective function ‖ ˜HP (k)y‖2 to a simple function ‖(P (k) − P ∗)y‖2.
Then our analysis reduces to an analysis of the local structure of Πn in terms
of minimizing ‖(P (k) − P ∗)y‖2.

3.1 A Restricted Eigenvalue (RE) Condition

A main building block of our analysis is a RE property of ˜H. Define

Bm := {w ∈ R
n : ‖w‖0 ≤ m} . (3.1)

Local Search Method for Mismatched Linear Regression 447

We say that ˜H satisfies a RE condition with parameter (δ,m) (denoted by the
shorthand RE(δ,m)) if the following holds true

RE(δ,m) : ‖ ˜Hu‖2 ≥ (1 − δ)‖u‖2 ∀ u ∈ Bm. (3.2)

To provide some intuition on the RE condition, we show (cf Lemma 1) that
this condition is satisfied with high probability when the rows of X are drawn
independently from a mean-zero distribution with finite support and a well-
conditioned covariance matrix.

Lemma 1. (Restricted eigenvalue property) Suppose x1, . . . , xn are i.i.d. zero-
mean random vectors in R

d with covariance matrix Σ ∈ R
d×d. Suppose there

exist constants γ, b, V > 0 such that λmin(Σ) ≥ γ, ‖xi‖ ≤ b and ‖xi‖∞ ≤ V
almost surely. Given any τ > 0, define

δn := 16V 2
(d

nγ
log(2d/τ) +

dm

nγ
log(3n2)

)

.

Suppose n is large enough such that
√

δn ≥ 2/n and
√

3b2 log(2d/τ)/(n � Σ�2)
≤ 1/2. Then with probability at least 1 − 2τ , condition RE(δn,m) holds true.

The proof of this lemma is presented in Appendix 5.1. For simplicity, we state
Lemma 1 for bounded xi’s; though this can be generalized to sub-Gaussian xi’s.

Lemma 1 implies that: given a pre-specified probability level (e.g., 1 − 2τ =
0.99), RE parameters δ,m, and other data parameters d, b, γ,Σ, we can choose
n = ˜O(dm/δ) such that RE(δ,m) holds with high probability. In the following,
while presenting the scaling of (n, d, r) in the guarantees for Algorithm 1, when
we say that data is generated from the setting of Lemma 1, we make the default
assumption that there exist universal constants c̄ > 0 and C̄ > 0 such that the
parameters (γ, V, b,�Σ�2, τ) in Lemma 1 satisfy c̄ ≤ γ, V, b,�Σ�2, τ ≤ C̄.

In Algorithm1, we use a constraint on the search width, i.e., P (k) ∈ NR(In).
Suppose r = dist(P ∗, In) 	 n and we set R = cr for some constant c > 1, then
it holds that dist(P (k), P ∗) ≤ (c + 1)r. This implies P (k)y − P ∗y ∈ B(c+1)r. In
the noiseless setting with ε = 0, we have ˜HP ∗y = 0, and hence ‖ ˜HP (k)y‖2 =
‖ ˜H(P (k)−P ∗)y‖2. Suppose the RE(δn, (c+1)r) condition in (3.2) holds, because
P (k)y − P ∗y ∈ B(c+1)r, we have

(1 − δn)‖(P (k) − P ∗)y‖2 ≤ ‖ ˜HP (k)y‖2 ≤ ‖(P (k) − P ∗)y‖2 (3.3)

where, the second inequality is because � ˜H�2 ≤ 1. In light of (3.3), when δn

is small, the objective function ‖ ˜HP (k)y‖2 can be approximately replaced by a
simpler function ‖(P (k) − P ∗)y‖2. In what follows, we analyze the local search
method on this simple approximation.

3.2 One-Step Decrease

We prove elementary lemmas on the one-step decrease property. Recall that for
a given permutation matrix P , supp(P) = {i ∈ [n] : πP (i) �= i}.

448 R. Mazumder and H. Wang

Lemma 2. Given y ∈ R
n and a permutation matrix P ∈ Πn, there exists a

permutation matrix ˜P ∈ Πn such that dist(P, ˜P) = 2, supp(˜P) ⊆ supp(P) and

‖Py − y‖2 − ‖ ˜Py − y‖2 ≥ (1/2)‖Py − y‖2∞ .

The proof of Lemma 2 is presented in Sect. 5.2. Applying Lemma 2 with y
replaced by P ∗y and P replaced by P (P ∗)−1, we have the following corollary.

Corollary 1. Given y ∈ R
n and P, P ∗ ∈ Πn, there exists a permutation matrix

˜P ∈ Πn such that dist(˜P , P) = 2, supp(˜P (P ∗)−1) ⊆ supp(P (P ∗)−1) and

‖Py − P ∗y‖2 − ‖ ˜Py − P ∗y‖2 ≥ (1/2)‖Py − P ∗y‖2∞ .

Corollary 1 provides a lower bound on the change of the (approximate) objective
value as one moves from permutation P to ˜P , and will be used in the analysis
of the local search algorithm. When Py − P ∗y is sparse, Corollary 1 translates
to a contraction in the �2-norm of Py − P ∗y, as shown below.

Corollary 2. Let y ∈ R
n and P, P ∗ ∈ Πn; and suppose ‖Py − P ∗y‖0 ≤ m. Let

˜P ∈ Πn be the permutation matrix appearing in Corollary 1. Then

‖ ˜Py − P ∗y‖2 ≤ (1 − 1/(2m)) ‖Py − P ∗y‖2 . (3.4)

Proof. Since ‖Py − P ∗y‖0 ≤ m, it holds ‖Py − P ∗y‖2 ≤ m‖Py − P ∗y‖2∞. Using
Corollary 1, we have:

‖Py − P ∗y‖2 − ‖ ˜Py − P ∗y‖2 ≥ (1/2)‖Py − P ∗y‖2∞ ≥ (1/(2m))‖Py − P ∗y‖2 ,

which results in the conclusion (3.4). ��

3.3 Main Results

Here we state and prove the main theorem on the convergence of Algorithm1.
We first state the assumptions used in our proof. Recall that r = dist(P ∗, In).

Assumption 1. (1.)We consider a linear model (1.1) with noise term ε = 0.
(2). There exist constants U > L > 0 such that U ≥ |(P ∗y)i − yi| ≥ L for all

i ∈ supp(P ∗).
(3). In Algorithm1, we set R = 10C1rU

2/L2 + 4 for some constant C1 > 1.
(4). For some δn < 1/(4(r + R)) the condition RE(δn, R + r) holds.

Note that the lower bound in Assumption 1 (2) ensures that any two mis-
matched responses are not too close. Assumption 1 (3) requires that R be set to a
constant multiple of r. This constant can be large (≥ 10U2/L2), and is an artifact
of our proof techniques. Our numerical experience however, suggests that this
constant can be much smaller in practice. Assumption 1 (4) is a restricted eigen-
value condition. This property holds true under the settings stated in Lemma 1
when n ≥ Cdr2 for some constant C > 0.

We first present a technical result used in the proof of Theorem 1.

Local Search Method for Mismatched Linear Regression 449

Lemma 3. Suppose Assumption 1 holds. Let {P (k)}k be the permutation matri-
ces generated by Algorithm1. Suppose ‖P (k)y − P ∗y‖∞ ≥ L for some k ≥ 1. If
for all t ≤ k − 1, at least one of the two conditions holds: (i) t ≤ R/2 − 1; or
(ii) supp(P ∗) ⊆ supp(P (t)), then for all t ≤ k − 1, we have

‖P (t+1)y − P ∗y‖2 − ‖P (t)y − P ∗y‖2 ≤ −L2/5 . (3.5)

We omit the proof of Lemma 3 due to space constraints. Lemma 3 is used for
technical reasons. In our analysis, we make heavy use of the one-step decrease
condition in Corollary 2. Note that if the permutation matrix at the current
iteration, denoted by P (k), is on the boundary i.e. dist(P (k), In) = R, it is not
clear whether the permutation found by Corollary 2 is within the search region
NR(In). Lemma 3 helps address this issue (See the proof of Theorem1 below for
details).

We now state and prove the linear convergence of Algorithm1.

Theorem 1. Suppose Assumption 1 holds with R being an even number. Let
{P (k)} be the permutation matrices generated by Algorithm1. Then

1) For all k ≥ R/2, we have that supp(P ∗) ⊆ supp(P (k)).
2) For any k ≥ 0,

‖ ˜HP (k)y‖2 ≤
(

1 − 1
4(R + r)

)k

‖ ˜HP (0)y‖2 .

Proof. Part 1) We show this result by contradiction. Suppose that there exists
a k ≥ R/2 such that supp(P ∗) �⊆ supp(P (k)). Let T ≥ R/2 be the first iteration
such that supp(P ∗) �⊆ supp(P (T)), i.e.,

supp(P ∗) �⊆ supp(P (T)) and supp(P ∗) ⊆ supp(P (k)) ∀ R/2 ≤ k ≤ T − 1 .

Let i ∈ supp(P ∗) but i /∈ supp(P (T)), then by Assumption 1 (2),

‖P (T)y − P ∗y‖∞ ≥ |e�
i (P (T)y − P ∗y)| = |e�

i (y − P ∗y)| ≥ L.

By Lemma 3, we have ‖P (k+1)y − P ∗y‖2 − ‖P (k)y − P ∗y‖2 ≤ −L2/5 for all
k ≤ T − 1. Summing up these inequalities, we have

‖P (T)y − P ∗y‖2 − ‖P (0)y − P ∗y‖2 ≤ −TL2/5 ≤ −RL2/10 (3.6)

where the last inequality follows from our assumption that T ≥ R/2. From
Assumption 1 (2) and noting that P (0) = In, we have

‖P (0)y − P ∗y‖2 = ‖y − P ∗y‖2 ≤ rU2, (3.7)

where we use that (y − P ∗y) is r-sparse. Using (3.6) and (3.7), we have:

‖P (T)y−P ∗y‖2 ≤ rU2−RL2/10
(a)

≤ rU2−L2

10
10C1rU

2

L2
= (1−C1)U2

(b)
< 0, (3.8)

450 R. Mazumder and H. Wang

where above, the inequality (a) uses R = 10C1rU
2/L2 + 4; and (b) uses C1 > 1.

Note that (3.8) leads to a contradiction, so such an iteration counter T does not
exist; and for all k ≥ R/2, we have supp(P ∗) ⊆ supp(P (k)).

Part 2) By Corollary 2, there exists a permutation matrix ˜P (k) ∈ Πn such that
dist(˜P (k), P (k)) ≤ 2, supp(˜P (k)(P ∗)−1) ⊆ supp(P (k)(P ∗)−1) and

‖ ˜P (k)y − P ∗y‖2 ≤
(

1 − 1
2‖P (k)y − P ∗y‖0

)

‖P (k)y − P ∗y‖2 .

Since ‖P (k)y − P ∗y‖0 ≤ dist(P (k), In) + dist(P ∗, In) ≤ r + R, we have

‖ ˜P (k)y − P ∗y‖2 ≤
(

1 − 1
2(R + r)

)

‖P (k)y − P ∗y‖2. (3.9)

Note that ˜HP ∗y = ˜HXβ∗ = 0 and � ˜H�2 ≤ 1, so we have

‖ ˜H ˜P (k)y‖2 = ‖ ˜H(˜P (k)y − P ∗y)‖2 ≤ ‖ ˜P (k)y − P ∗y‖2 . (3.10)

In the following, we use the shorthand notation ˜R = R+r. Combining (3.9) and
(3.10) we have

‖ ˜H ˜P (k)y‖2 ≤ ‖ ˜P (k)y − P ∗y‖2 ≤ (1 − (2 ˜R)−1)‖P (k)y − P ∗y‖2. (3.11)

By Assumption 1 (4), we have ‖ ˜H(P (k) − P ∗)y‖2 ≥ (1 − δn)‖(P (k) − P ∗)y‖2.
Combining this with (3.11) we have

‖ ˜H ˜P (k)y‖2 ≤ (1 − δn)−1(1 − (2 ˜R)−1)‖ ˜H(P (k) − P ∗)y‖2
= (1 − δn)−1(1 − (2 ˜R)−1)‖ ˜HP (k)y‖2, (3.12)

where the last line uses ˜HP ∗y = 0. Since δn ≤ 1/(4 ˜R), we have

(1 − δn)−1(1 − (2 ˜R)−1) ≤ 1 − (4 ˜R)−1

which when used in (3.12) leads to:

‖ ˜H ˜P (k)y‖2 ≤ (1 − (4 ˜R)−1)‖ ˜HP (k)y‖2. (3.13)

To complete the proof, we will make use of the following claim, the proof of this
claim is presented in Appendix 5.3.

Claim. For any k ≥ 0 it holds ˜P (k) ∈ NR(In) ∩ N2(P (k)). (3.14)

Starting with the definition of P (k+1), we have the following inequalities:

‖ ˜HP (k+1)y‖2 = min
P∈N2(P (k))∩NR(In)

‖ ˜HPy‖2
(a)

≤ ‖ ˜H ˜P (k)y‖2

(b)

≤ (1 − (4 ˜R)−1)‖ ˜HP (k)y‖2,

Local Search Method for Mismatched Linear Regression 451

where, (a) makes use of the above claim ˜P (k) ∈ NR(In)∩N2(P (k)); and (b) uses
inequality (3.13). Therefore, we have:

‖ ˜HP (k+1)y‖2 ≤ (1 − (4 ˜R)−1)‖ ˜HP (k)y‖2,

which leads to the conclusion in part 2. ��
Theorem 1 shows that the sequence of objective values generated by Algorithm1
converges to zero (the optimal objective value of (2.2)) at a linear rate. The
parameter for the linear rate of convergence depends upon r = dist(P ∗, In) and
the search width R. The proof is based on the assumption that the RE condition
holds (Assumption 1 (4)) with some δn ≤ 1/(4(R+ r)). This RE condition holds
under the setting of Lemma 1 when n ≥ Cdr2 for some constant C > 0 (See
Sect. 3.1). The sample-size requirement is more stringent than that needed in
order for the model to be identifiable (n ≥ 2d) [12]. In particular, when n/d =
˜O(1), the number of mismatched pairs r needs to be bounded by a constant.
While our theory appears to suggest that n needs to be quite large to learn P ∗,
numerical evidence presented in Sect. 4 suggests that one can recover P ∗ with a
smaller sample size.

4 Experiments

We numerically study the convergence performance of Algorithm 1. We consider
the noiseless setup P ∗y = Xβ∗ where entries of X ∈ R

n×d are iid N(0, 1); all
coordinates of β∗ ∈ R

d are iid N(0, 1) (β∗ is independent of X). To generate P ∗,
we fix r ≥ 1 and select r coordinates uniformly from {1, . . . , n}, then generate a
uniformly distributed random permutation on these r coordinates1.

We test the performance of Algorithm1 with different combinations of
(d, r, n). We simply set R = n in Algorithm 1. Even though this setting is not
covered by our theory, in practice when r is small, the algorithm converges to
optimality with the number of iterations being bounded by a small constant
multiple of r (e.g., for r = 50, the algorithm converges to optimality within
around 60 iterations). We set the maximum number of iterations as 1000. For
the results presented below, we consider 50 independent trials and present the
averaged results.

Figure 1 presents the results on examples with n = 500, d ∈ {20, 50, 100, 200},
and 40 roughly equispaced values of r ∈ [10, 400]. In Fig. 1 [left panel], we plot
the Hamming distance of the solution P̂ computed by Algorithm 1 and the
underlying permutation P ∗ (i.e. dist(P̂ , P ∗)) versus r. In Fig. 1 [right panel],
we present error in estimating β versus r. More precisely, let β̂ be the solution
of computed by Algorithm1 (i.e. β̂ = (X�X)−1X�P̂ y), then the “beta error”
is defined as ‖β̂ − β∗‖/‖β∗‖. For each choice of (r, d), the point on the line is
the average of 50 independent replications, and the vertical error bar shows the
1 This permutation P ∗ may not satisfy dist(P ∗, In) = r, but dist(P ∗, In) will be close

to r.

452 R. Mazumder and H. Wang

standard deviation of the mean (the error bars are small and hardly visible in
the figures). As shown in Fig. 1, when r is small, the underlying permutation
P ∗ can be exactly recovered, and thus the corresponding beta error is also 0.
As r becomes larger, Algorithm 1 fails to recover P ∗ exactly; and dist(P ∗, P̂)
is close to the maximal possible value 500. In contrast, the estimation error
of β∗ behaves in a continuous way: As the value of r increases, the value of
‖β̂ − β∗‖/‖β∗‖ increases continuously. We also observe that the recovery of P ∗

depends upon the number of covariates d. This is consistent with our analysis
that the performance of our algorithm depends upon both r and d.

Figure 2 presents similar results where we exchange the roles of r and d. It
shows examples with n = 500, r ∈ {20, 50, 100, 200}, and 40 different values of
d ranging from 10 to 400. When d is small, Algorithm 1 is able to recover P ∗

exactly. But when d exceeds a certain threshold, dist(P̂ , P ∗) increases quickly.
The threshold for larger r is smaller. From Fig. 2 [left panel], it is interesting
to note a non-monotone behavior of the Hamming distance as d increases. In
contrast, the beta error increases continuously as d increases (see Fig. 2 [right
panel]).

In terms of the speed of Algorithm 1, we note that for an instance with
n = 500, d = 100 and r = 50, Algorithm 1 outputs the solution within around 60
iterations and 0.25 s on the Julia 1.2.0 platform. The total computational time
scales approximately as O(n2r) when exact recovery is achieved.

Fig. 1. Left: values hamming distance dist(P̂ , P ∗) versus r. Right: values of beta error
‖β̂ − β∗‖/‖β∗‖ versus r.

5 Appendix: Proofs and Technical Results

Lemma 4. Suppose rows x1, ..., xn of the matrix of covariates X are i.i.d. zero-
mean random vectors in R

d with covariance matrix Σ ∈ R
d×d. Suppose ‖xi‖ ≤ b

almost surely. Then for any t > 0, it holds

P

(

�
1
n

X�X − Σ�2 ≥ t � Σ �2

)

≤ 2d exp
(

− nt2 � Σ�2

2b2(1 + t)

)

.

See e.g. Corollary 6.20 of [13] for a proof.

Local Search Method for Mismatched Linear Regression 453

Fig. 2. Left: values of hamming distance dist(P̂ , P ∗) vs r. Right: values of beta error
‖β̂ − β∗‖/‖β∗‖ vs r.

5.1 Proof of Lemma 1

Proof. It suffices to prove that for any u ∈ Bm (cf definition (3.1)),

‖Hu‖2 = ‖X(X�X)−1X�u‖2 ≤ δn‖u‖2 . (5.1)

Take tn :=
√

3b2 log(2d/τ)/(n � Σ�2). When n is large enough, we have tn ≤
1/2, then from Lemma 4 and some simple algebra we have

�
1
n

X�X − Σ�2 ≤ tn � Σ�2 (5.2)

with probability at least 1 − τ . When (5.2) holds, we have

λmin(X�X)/n ≥ (1 − tn)λmin(Σ) ≥ (1 − tn)γ ≥ γ/2

where, we use tn ≤ 1/2. Hence we have λmax((X�X)−1) ≤ 2/(nγ) and

� X(X�X)−1�2 =
√

λmax((X�X)−1) ≤
√

2/(nγ) . (5.3)

Let Bm(1) := {u ∈ Bm : ‖u‖ ≤ 1}, and let u1, ..., uM be an (
√

δn/2)-
net of Bm(1), that is, for any u ∈ Bm(1), there exists some uj such that
‖uj − u‖ ≤ √

δn/2. Since the (
√

δn/2)-covering number of Bm(1) is bounded
by (6/

√
δn)m

(

n
m

)

, we can take

M ≤ (6/
√

δn)m

(

n

m

)

≤ (3n)mnm = (3n2)m

where the second inequality is from our assumption that
√

δn ≥ 2/n. By Hoeffd-
ing inequality, for each fixed j ∈ [M], and for all k ∈ [d], we have

P

(

1√
n

∣

∣e�
k X�uj

∣

∣ > t

)

≤ 2 exp
(

− nt2

2‖uj‖2U2

)

.

454 R. Mazumder and H. Wang

Therefore, for any ρ > 0, with probability at least 1 − ρ, we have
∣

∣e�
k X�uj

∣

∣ /
√

n ≤
√

2 log(2d/ρ)/nV ‖uj‖ ≤ V
√

2 log(2d/ρ)/n ,

where the second inequality is because each uj ∈ Bm(1). As a result,

1√
n

‖X�uj‖ =
(

d
∑

k=1

(|e�
k X�uj |/√

n
)2

)1/2

≤ V
√

2d log(2d/ρ)/n .

Take ρ = τ/M , then by the union bound, with probability at least 1−τ , it holds

‖X�uj‖/
√

n ≤ V
√

2d log(2dM/τ)/n ∀ j ∈ [M] . (5.4)

Combining (5.4) with (5.3), we have that for all j ∈ [M],

‖X(X�X)−1X�uj‖ ≤ � X(X�X)−1 �2 ·‖X�uj‖
≤2V

√

(d/nγ) log(2dM/τ) .
(5.5)

Recall that M ≤ (3n2)m, so we have

2V
√

(d/nγ) log(2dM/τ) ≤ 2V
(d

nγ
log(2d/τ) +

dm

nγ
log(3n2)

)1/2

≤
√

δn

2
.

where the last inequality follows the definition of δn. Using the above bound
in (5.5), we have

‖X(X�X)−1X�uj‖ ≤
√

δn/2.

For any u ∈ Bm(1), there exists some j ∈ [M] such that ‖u − uj‖ ≤ √
δn/2,

hence

‖X(X�X)−1X�u‖ ≤ ‖X(X�X)−1X�uj‖ + ‖X(X�X)−1X�(u − uj)‖
≤

√

δn/2 + ‖u − uj‖2 ≤
√

δn . (5.6)

Since both (5.2) and (5.4) have failure probability of at most τ , we know that
(5.6) holds with probability at least 1 − 2τ . This proves the conclusion for all
u ∈ Bm(1). For a general u ∈ Bm, u/‖u‖ ∈ Bm(1), hence we have

‖Hu‖ = ‖X(X�X)−1X�u‖ ≤
√

δn‖u‖

which is equivalent to what we had set out to prove (5.1). ��

5.2 Proof of Lemma 2

Proof. For any k ∈ [n], let k+ := πP (k). Let i be an index such that

(

yi+ − yi

)2 = ‖Py − y‖2∞ .

Local Search Method for Mismatched Linear Regression 455

Without loss of generality, we can assume yi+ > yi. Denote i0 = i and i1 = i+.
By the structure of a permutation, there exists a cycle that

i0
P−→ i1

P−→ · · · P−→ it
P−→· · · P−→ iS = i0 (5.7)

where q1
P−→ q2 means q2 = πP (q1). By moving from yi to yi+ , the first step in

the cycle (5.7) “upcrosses” the value (yi + yi+)/2. Since the cycle (5.7) returns
to i0 finally, there must exist one step that “downcrosses” the value (yi +yi+)/2.
In other words, there exists j ∈ [n] with (j, j+) �= (i, i+) such that yj+ < yj and
(yi + yi+)/2 ∈ [yj+ , yj]. Define ˜P as follows:

π
˜P (i) = j+, π

˜P (j) = i+, π
˜P (k) = πP (k) ∀k �= i, j .

We immediately know dist(P, ˜P) = 2 and supp(˜P) ⊆ supp(P). Since

yi+ − yi = ‖Py − y‖∞ ≥ yj − yj+ ,

there are 3 cases depending upon the ordering of yi, yi+ , yj , yj+ . We consider
these cases to arrive at the final inequality in Lemma 2.

Case 1: (yj ≥ yi+ ≥ yj+ ≥ yi) In this case, let a = yj − yi+ , b = yi+ − yj+ and
c = yj+ − yi. Then a, b, c ≥ 0, and

‖Py − y‖2 − ‖ ˜Py − y‖2 = (yi − yi+)2 + (yj − yj+)2 − (yi − yj+)2 − (yj − yi+)2

= (b + c)2 + (a + b)2 − a2 − c2

= 2b2 + 2ab + 2bc .

Since (yi + yi+)/2 ∈ [yj+ , yj], we have

b = yi+ − yj+ ≥ yi+ − yi + yi+

2
=

yi+ − yi

2
,

and hence

‖Py − y‖2 − ‖ ˜Py − y‖2 ≥ 2b2 ≥ (yi+ − yi)2

2
=

1
2
‖Py − y‖2∞ .

Case 2: (yi+ ≥ yj ≥ yi ≥ yj+). In this case, let a = yi+ − yj , b = yj − yi and
c = yi − yj+ . Then a, b, c ≥ 0, and

‖Py − y‖2 − ‖ ˜Py − y‖2 = (yi − yi+)2 + (yj − yj+)2 − (yi − yj+)2 − (yj − yi+)2

= (a + b)2 + (b + c)2 − a2 − c2

= 2b2 + 2ab + 2bc .

Since (yi + yi+)/2 ∈ [yj+ , yj], we have

b = yj − yi ≥ yi + yi+

2
− yi =

yi+ − yi

2
,

456 R. Mazumder and H. Wang

and hence

‖Py − y‖2 − ‖ ˜Py − y‖2 ≥ 2b2 ≥ (yi+ − yi)2

2
=

1
2
‖Py − y‖2∞ .

Case 3: (yi+ ≥ yj ≥ yj+ ≥ yi). In this case, let a = yi+ − yj , b = yj − yj+ and
c = yj+ − yi. Then a, b, c ≥ 0, and

‖Py − y‖2 − ‖ ˜Py − y‖2 = (yi − yi+)2 + (yj − yj+)2 − (yi − yj+)2 − (yj − yi+)2

= (a + b + c)2 + b2 − a2 − c2

= 2b2 + 2ab + 2bc + 2ac .

Note that ‖Py−y‖2∞ = (yi−yi+)2 = (a+b+c)2. Because (yi+yi+)/2 ∈ [yj+ , yj],
we know that a ≤ (a + b + c)/2 and c ≤ (a + b + c)/2. So we have

‖Py − y‖2 − ‖ ˜Py − y‖2 ≥ w‖Py − y‖2∞ ,

where

w := min
{2b2 + 2ab + 2bc + 2ac

(a + b + c)2
: a, b, c ≥ 0; a, c ≤ (a + b + c)/2

}

.

This is equivalent to

w = min
{

2b2 + 2ab + 2bc + 2ac : a, b, c ≥ 0; a, c ≤ 1/2; a + b + c = 1
}

= min
{

2b + 2ac : a, b, c ≥ 0; a, c ≤ 1/2; a + b + c = 1
}

= min
{

2(1 − a − c) + 2ac : a, c ≥ 0; a, c ≤ 1/2
}

= min
{

2(1 − a)(1 − c) : a, c ≥ 0; a, c ≤ 1/2
}

= 1/2

��

5.3 Proof of Claim (3.14) in Theorem1

Proof. To prove this claim, we just need to prove that ˜P (k) ∈ NR(In), i.e.
dist(˜P (k), In) ≤ R. If k ≤ R/2 − 1, because dist(P (t+1), P (t)) ≤ 2 for all t ≥ 0
and P (0) = In, we have dist(P (k), In) ≤ 2k ≤ R − 2. Hence

dist(˜P (k), In) ≤ dist(˜P (k), P (k)) + dist(P (k), In) ≤ R .

We consider the case when k ≥ R/2. By Part (1) of Theorem 1, it holds
supp(P ∗) ⊆ supp(P (k)). We will show that supp(˜P (k)) ⊆ supp(P (k)). Equiv-
alently, we just need to show that for any i /∈ supp(P (k)), we have i /∈
supp(˜P (k)). Let i /∈ supp(P (k)), then e�

i P (k) = e�
i . Since supp(P ∗) ⊆ supp(P (k)),

we also have e�
i P ∗ = e�

i . So it holds e�
i P (k)(P ∗)−1 = e�

i or equivalently
i /∈ supp(P (k)(P ∗)−1). Because supp(˜P (k)(P ∗)−1) ⊆ supp(P (k)(P ∗)−1), we
have i /∈ supp(˜P (k)(P ∗)−1), or equivalently e�

i
˜P (k)(P ∗)−1 = e�

i . This implies
e�
i

˜P (k) = e�
i P ∗ = e�

i , or equivalently, i /∈ supp(˜P (k)). ��

Local Search Method for Mismatched Linear Regression 457

References

1. Abid, A., Zou, J.: Stochastic EM for shuffled linear regression. arXiv preprint
arXiv:1804.00681 (2018)

2. Dokmanić, I.: Permutations unlabeled beyond sampling unknown. IEEE Signal
Process. Lett. 26(6), 823–827 (2019)

3. Emiya, V., Bonnefoy, A., Daudet, L., Gribonval, R.: Compressed sensing with
unknown sensor permutation. In: 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 1040–1044. IEEE (2014)

4. Haghighatshoar, S., Caire, G.: Signal recovery from unlabeled samples. IEEE
Trans. Signal Process. 66(5), 1242–1257 (2017)

5. Hsu, D.J., Shi, K., Sun, X.: Linear regression without correspondence. In: Advances
in Neural Information Processing Systems, pp. 1531–1540 (2017)

6. Neter, J., Maynes, E.S., Ramanathan, R.: The effect of mismatching on the mea-
surement of response errors. J. Am. Stat. Assoc. 60(312), 1005–1027 (1965)

7. Pananjady, A., Wainwright, M.J., Courtade, T.A.: Denoising linear models with
permuted data. In: 2017 IEEE International Symposium on Information Theory
(ISIT), pp. 446–450. IEEE (2017)

8. Pananjady, A., Wainwright, M.J., Courtade, T.A.: Linear regression with shuffled
data: statistical and computational limits of permutation recovery. IEEE Trans.
Inf. Theory 64(5), 3286–3300 (2017)

9. Shi, X., Li, X., Cai, T.: Spherical regression under mismatch corruption with appli-
cation to automated knowledge translation. J. Am. Stat. Assoc., 1–12 (2020)

10. Slawski, M., Ben-David, E., Li, P.: Two-stage approach to multivariate linear
regression with sparsely mismatched data. J. Mach. Learn. Res. 21(204), 1–42
(2020)

11. Tsakiris, M.C., Peng, L., Conca, A., Kneip, L., Shi, Y., Choi, H., et al.:
An algebraic-geometric approach to shuffled linear regression. arXiv preprint
arXiv:1810.05440 (2018)

12. Unnikrishnan, J., Haghighatshoar, S., Vetterli, M.: Unlabeled sensing with random
linear measurements. IEEE Trans. Inf. Theory 64(5), 3237–3253 (2018)

13. Wainwright, M.J.: High-Dimensional Statistics: A Non-asymptotic Viewpoint, vol.
48. Cambridge University Press, Cambridge (2019)

14. Wang, G., et al.: Signal amplitude estimation and detection from unlabeled binary
quantized samples. IEEE Trans. Signal Process. 66(16), 4291–4303 (2018)

http://arxiv.org/abs/1804.00681
http://arxiv.org/abs/1810.05440

A New Integer Programming Formulation
of the Graphical Traveling Salesman

Problem

Robert D. Carr1 and Neil Simonetti2(B)

1 Computer Science Department, University of New Mexico,
Albuquerque, NM 87131, USA

bobcarr@unm.edu
2 Business, Computer Science, and Mathematics Department, Bryn Athyn College,

Bryn Athyn, PA 19009-0717, USA
neil.simonetti@brynathyn.edu

Abstract. In the Traveling Salesman Problem (TSP), a salesman wants
to visit a set of cities and return home. There is a cost cij of traveling
from city i to city j, which is the same in either direction for the Sym-
metric TSP. The objective is to visit each city exactly once, minimizing
total travel costs. In the Graphical TSP, a city may be visited more than
once, which may be necessary on a sparse graph. We present a new inte-
ger programming formulation for the Graphical TSP requiring only two
classes of constraints that are either polynomial in number or polyno-
mially separable, while addressing an open question proposed by Denis
Naddef.

Keywords: Linear program · Relaxation · TSP · Traveling Salesman
Problem · GTSP · Graphical Traveling Salesman Problem

1 Introduction

The Traveling Salesman Problem (TSP), is one of the most studied problems
in combinatorial optimization [9,10,13]. In its classic form, a salesman wants to
visit each of a set of cities exactly once and return home while minimizing travel
costs. Costs of traveling between cities are stored in a matrix where entry cij

indicates the cost of traveling from city i to city j. Units may be distance, time,
money, etc.

If the underlying graph for the TSP is sparse, a complete cost matrix can
still be constructed by setting cij equal to the shortest path between city i and
city j for each pair of cities. However, this has the disadvantage of turning a
sparse graph G = (V,E) where the edge set E could be of size O(|V |) into a
complete graph G′ = (V,E′), where the edge set E′ is Ω(|V |2).
R. D. Carr—This material is based upon research supported in part by the U. S. Office
of Naval Research under award number N00014-18-1-2099.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 458–472, 2021.
https://doi.org/10.1007/978-3-030-73879-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_32&domain=pdf
https://doi.org/10.1007/978-3-030-73879-2_32

A New IP Formulation of Graphical TSP 459

Ratliff and Rosenthal [18] were the first to consider a case where the edge
set is not expanded to a complete graph, but left sparse, while soon after, Fleis-
chmann [7] and Cornuéjols, Fonlupt, and Naddef [4] examined this in a more
general case, the latter giving this its name: the Graphical Traveling Salesman
Problem (GTSP). As a consequence, a city may be visited more than once, since
there is no guarantee the underlying graph will be Hamiltonian. While the works
of Fleischmann and Cornuéjols et al. focused on cutting planes and facet-defining
inequalities, this paper will look at a new compact formulation. While the theo-
retical bound for the integrality gap is not improved, our initial computational
results show that in some practial cases, the integrality gap is reduced when
solving a linear programming relaxation of the problem.

2 Basic Formulations

This paper will investigate the symmetric GTSP, where the cost of traveling
between two cities is the same, regardless of direction, which allows the following
notation to be used:

G = (V,E) : The graph G with vertex set V and edge set E.
ce : The cost of using edge e ∈ E, replaces cij .
xe : The variable indicating the use of edge e ∈ E, replaces xij

which is used in most general TSP formulations.
δ(v) : The set of edges incident to vertex v.
δ(S) : The set of edges with exactly one endpoint in vertex set S.
x(F) : The sum of variables xe for all e ∈ F ⊂ E.

If given a formulation on a complete graph Kn, a formulation for a sparse
graph G can be created by simply setting xe = 0 for any edge e in the graph Kn

but not in the graph G.

2.1 Symmetric TSP

The standard formulation for the TSP, attributed to Dantzig, Fulkerson, and
Johnson [5], contains constraints that guarantee the degree of each node in
a solution is exactly two (degree constraints) and constraints that prevent a
solution from being a collection of disconnected subtours (subtour elimination
constraints).

minimize
∑

e∈E

cexe

subject to
∑

e∈δ(v)

xe = 2 ∀v ∈ V

∑

e∈δ(S)

xe ≥ 2 ∀S ⊂ V, S �= ∅
xe ∈ {0, 1} ∀e ∈ E.

When this integer program is relaxed, the integer constraints xe ∈ {0, 1} are
replaced by the boundary constraints 0 ≤ xe ≤ 1.

460 R. D. Carr and N. Simonetti

It should also be noted that while the subtour elimination constraints are
only needed for the cases where 3 ≤ |S| ≤ |V |

2 , there are still exponentially
many of these constraints. Using a similar technique to Martin [15], and Carr
and Lancia [1], these constraints can be replaced by a polynomial number of flow
constraints which ensure the solution is a 2 edge-connected graph.

2.2 Symmetric GTSP

This formulation for the Graphical TSP comes from Cornuéjols, Fonlupt, and
Naddef [4], and differs from the formulation above by allowing the degree of a
node to be any even integer, and by removing any upper bound on the variables.

minimize
∑

e∈E

cexe

subject to
∑

e∈δ(v)

xe is positive and even ∀v ∈ V

∑

e∈δ(S)

xe ≥ 2 ∀S ⊂ V, S �= ∅
xe ≥ 0 ∀e ∈ E.
xe is integer ∀e ∈ E.

When this program is relaxed, the integer constraints at the end are removed,
and the disjunctive constraints that require the degree of each node to be any
positive and even integer are effectively replaced by a lower bound of two on the
degree of each node.

The disjunctive constraints for the formulation above are unusual for two
reasons. Firstly, in most mixed-integer programs, only individual variables are
constrained to be integers, not sums of variables. Secondly, the sum is required
not to be just integer, but an even integer. In terms of a mixed-integer formula-
tion, the second peculiarity could be addressed with:

∑

e∈δ(v)

xe

2 ∈ Z ∀v ∈ V

To our knowledge, no other integer programming formulation for a graph
theory application uses constraints of this kind on non-binary integer variables.
The T-join problem uses binary variables, and its relationship to our problem
will be discussed in the next section.

Addressing the first peculiarity, that integer and mixed-integer programs only
allow integrality of variables, we could set these sums to new variables indexed
on the vertices of the graph, dv.

∑

e∈δ(v)

xe

2 = dv ∀v ∈ V

dv ∈ Z ∀v ∈ V

While this approach works, it feels unsatisfying. The addition of these dv

variables is purely cosmetic. When solving the relaxation, there is nothing pre-
venting us from waiting until a solution is generated before defining the values

A New IP Formulation of Graphical TSP 461

of dv using the sums above. Thus the new variables do not facilitate the addition
of any new constraints, and do nothing to strengthen the LP relaxation in any
way.

When solving the integer program, we can bypass the dv variables by branch-
ing with constraints based on the degree sums. For example, if the solution from
a relaxation creates a graph where node i has odd degree q, we branch with
constraints of the form:

∑

e∈δ(i)

xe ≤ q − 1 and
∑

e∈δ(i)

xe ≥ q + 1

At a conference, Denis Naddef proposed a challenge of finding a set of con-
straints for a mixed-integer formulation of GTSP, where integrality constraints
are limited to only xe ∈ Z [16]. We address the state of this challenge in Sect. 4.

3 New Constraints

Cornuéjols et al. proved that an upper bound of two on each xe is implied if all
the edge costs are positive [4] (and also note that without this additional bound,
graphs with negative weight edges would not have finite optimal solutions). This
fact allows us to dissect the variables xe into two components ye and ze such
that, for each edge e ∈ E:

ye = 1 if edge e is used exactly once, ye = 0 otherwise
ze = 1 if edge e is used exactly twice, ze = 0 otherwise

Note that
xe = ye + 2ze (1)

Additionally, we can add the constraint ye + ze ≤ 1 for each edge e ∈ E,
since using both would imply an edge being used three times in a solution. But
more importantly, we now have a way to enforce even degree without using
disjunctions, since only the ye variables matter in determining if the degree of a
node is odd or even with respect to the xe variables.

3.1 Enforcing Even Degree Without Disjunctions

Since the upper bound on the ye variables is one, the following constraints will
enforce even degree:

∑

e∈F

(1 − ye) +
∑

e∈δ(v)\F

ye ≥ 1 ∀v ∈ V and F ⊂ δ(v) with |F | odd. (2)

This type of constraint was used by Yannakakis et al. [21] and Lancia et al.
[12] when working with the parity polytope, and has appeared in exact formu-
lations of parity constrained problems such as T-joins [19], mentioned below.

462 R. D. Carr and N. Simonetti

Note that for integer values of ye, if the y-degree of a node v is odd, then
when F is the set of edges incident to v indicated by y, the expression in the
left-hand side of the constraint above will be zero. If the y-degree of a node v is
even, then for any set F with |F | odd, the left-hand side must be at least one.

For sparse graphs, this adds O(|V |2Δ−1) constraints, where Δ is the max-
imum degree in G. Typical graphs from roadmaps usually have Δ ≤ 6, while
graphs from highway maps might have Δ ≤ 8. Also note that Euler’s formula
for planar graphs guarantees that |E| ≤ 3|V | − 6, and so the average degree of
a node in a planar graph cannot be more than six.

One can generalize these constraints on the values of ye by using sets of nodes
instead of individual nodes.

∑

e∈F

(1 − ye) +
∑

e∈δ(S)\F

ye ≥ 1 ∀S ⊂ V and F ⊂ δ(S) with |F | odd. (3)

However, we lose the bound on the number of constraints from sparse graphs,
since there may be several nodes in the set S. These constraints are T-join
constraints on the ye variables, where the set T is empty, since we require every
node to have even degree [6]. Therefore, every set of nodes, S, will contain an
even number, namely zero, of nodes from the set of odd degree nodes, T , which
is the empty set.

Unfortunately, in the relaxation of the linear program with these constraints,
odd degree nodes (or sets) can still happen by allowing a path of nodes where,
for each edge e in the path, ye = 0 and ze = 1

2 . See Fig. 1.

ye = 1 and ze = 0
ye = 0 and ze = 1

2

Fig. 1. A path where ye = 0 and ze = 1
2

3.2 Spanning Tree Constraints

One method to discourage this half-z path is to require the edges indicated by y
and z contain a spanning tree. This is different than demanding that x contains a
spanning tree since each unit of ze contributes two units to xe. For our spanning
tree constraint, each ze contributes only one unit toward a spanning tree. This
means that for any node whose y-degree is zero, the z-degree must be at least
one, and in the case where two nodes with y-degree zero are connected using an
edge in the spanning tree, the z-degree of one of those nodes must be at least
two, which effectively prevents this half-z path.

Place constraints on binary variables t such that the edges where te = 1
indicate a tree that spans all nodes of G (the graph must be connected and
contain no cycles). This is done by the well-known partition inequalities that
will be discussed in Sect. 4.

A New IP Formulation of Graphical TSP 463

As with the subtour elimination constraints, Martin describes a compact set
of constraints that ensure t indicates a tree (or a convex combination of trees)
[15]. Then, add the constraint:

te ≤ ye + ze, ∀e ∈ E (4)

Only the connectedness of the graph indicated by te is important, since the
constraint only requires that y + z dominate a spanning tree, so the constraints
that would prevent cycles are unnecessary.

This constraint is valid since any tour that visits every node has within it a
spanning tree that touches each node.

In the case of Fig. 1, we use a partition of three sets to find a violated con-
straint: the six nodes in the outer cycle form one set, and the individual interior
nodes form the other two sets. Define P to be the set of all edges that have end-
points in different sets of the partition. Then the partition constraint demands
that

∑

e∈P

te ≥ 2. But along the three non-zero edges that connect this partition,

ye = 0 and ze = 1
2 , so ye + ze on these edges only adds to 3

2 .

4 A New Mixed IP Formulation

4.1 Proving the Formulation

The tree constraints are sufficient, when combined with constraint (2) and inte-
grality constraints ye ∈ {0, 1}, to find an optimal integer solution value, mak-
ing the subtour elimination constraints unnecessary. The following new mixed
integer programming formulation therefore does not include these optional con-
straints. Note that all GTSP tours will satisfy the constraints in this formulation.
The notation δ(V1, ..., Vk) refers to the set of edges with endpoints in different
vertex sets.

minimize
∑

e∈E
cexe

subject to xe = ye + 2ze ∀e ∈ E (4.1)∑

e∈F
(1 − ye) +

∑

e∈δ(v)\F

ye ≥ 1 ∀v ∈ V and F ⊂ δ(v) with |F | odd (4.2)

∑

e∈δ(V1,...,Vk)

te ≥ k − 1 ∀ partitions V1, ..., Vk of V (4.3)

te ≤ ye + ze ≤ 1 ∀e ∈ E (4.4)
0 ≤ te ≤ 1 ∀e ∈ E (4.5)
0 ≤ ze ≤ 1 ∀e ∈ E (4.6)
ye ∈ {0, 1} ∀e ∈ E (4.7)

Theorem 1. Given a MIP solution (y∗,z∗) to the GTSP formulation above,
then x∗ = y∗ + 2z∗ will indicate an edge set that is an Euler tour, or a convex
combination of Euler tours.

Proof . It should be noted that it is sufficient for the MIP solution to dom-
inate an Euler tour (or a convex combination of them), since if there is some

464 R. D. Carr and N. Simonetti

edge e where x∗
e is larger than necessary by ε units (for some 0 < ε ≤ x∗

e ≤ 2),
one can add edge e twice to a collection of Euler tours with total weight ε

2 .
Let (y∗,z∗) be a feasible solution to the GTSP formulation specified. By

constraints (4.3) and (4.4), we know that y∗ + z∗ dominates a convex combina-
tion of spanning trees, thus we have y∗ + z∗ ≥ ∑

i λiT
i , where each T i is an

edge incidence vector of a spanning tree. Define Ri by Ri
e = 1 if both T i

e = 1
and y∗

e = 0, and Ri
e = 0 otherwise. So Ri becomes the remnant of tree T i when

edges indicated by y∗ are removed. Since y∗ only contains integer values, the
constraint ye + ze ≤ 1 guarantees that ze = 0 whenever ye = 1, and guarantees
ye = 0 whenever ze > 0. This means that for all edges where ye = 0, we have
z∗ ≥ ∑

i λiT
i =

∑
i λiR

i . Since Ri is the result of removing edges from T i

where ye = 1, we are guaranteed that Ri
e = 0 for every i where ye = 1, and thus

z∗ ≥ ∑
i λiR

i over all edges.
Hence, x∗ = y∗ + 2z∗ ≥ y∗ + 2

∑
i λiR

i =
∑

i λi(y∗ + 2Ri), where for each
i, y∗+2Ri is an Euler tour, because constraint (4.2) ensures the graph indicated
by y∗ +2Ri will have even degree at every node, and constraints (4.3) and (4.4)
ensure the graph indicated by y∗ + Ri , and thus y∗ + 2Ri , is connected. 	

Constraints (4.3), commonly referred to as partition inequalities [17] [20],
are exponential in number, but these can also be reduced to a compact set of
constraints using the techniques from Martin [15]. The constraints we used are
below, and require a model using directed edges to regulate flow variables φ.
Assume V = {1, 2, ..., n} and designate city n as the home city.

In our formulation (inspired by Martin), we use directed flow variables φk

that carry one unit of flow from any node with index higher than k to node k
and supported by the values

−→
t ij as edge capacities. From any feasible integral

solution (directed spanning tree), it is not hard to derive such a set of unit flows
by directing the tree from the home node n. For this flow, we can now set flow
going into any node j with j > k to zero in flow problem φk , and flow balancing
constraints among the nodes numbered k + 1 or higher are also unnecessary.
Finally, te =

−→
t ij +

−→
t ji to create variables for the undirected spanning tree.

φk
i,j = 0 ∀j ∈ V, k ∈ V \ {n} with j > k, {i, j} ∈ E

φk
k,i = 0 ∀k ∈ V \ {n}, {i, k} ∈ E

∑

i∈δ(k)

φk
i,k = 1 ∀k ∈ V \ {n}

∑

i∈δ(j)

φk
i,j −

∑

i∈δ(j)

φk
j,i = 0 ∀j ∈ V, k ∈ V \ {n} with j < k

0 ≤ φk
i,j ≤ −→

t ij ∀k ∈ V \ {n}, {i, j} ∈ E

te =
−→
t ij +

−→
t ji ∀e = {i, j} ∈ E

∑

e∈E

te ≤ n − 1

te ≤ ye + ze ∀e ∈ E

A New IP Formulation of Graphical TSP 465

Constraints (4.2) are exponential in Δ, the maximum degree of the graph.
This is not a concern if the graph is sparse, leading to a compact formulation.
If the graph is not sparse, identifying when a constraint from the set (4.2) is
violated, a process called separation, can be done efficiently, even if the solution
is from a relaxation and thus contains fractional values for some ye variables.

Theorem 2. Given a solution to the relaxation of the GTSP formulation above
without constraints (4.2), if a constraint from (4.2) is violated, it can be found
in O(|V |2) time.

Proof . For each node v ∈ V , minimize the left-hand side of constraint (4.2)
over all possible sets F ⊂ δ(v) (|F | even or odd), by placing edges with ye > 1

2
in F and leaving edges with ye < 1

2 for δ(v) \ F . Edges with ye = 1
2 could go in

either set.

– If this minimum is not less than 1, no constraint from (4.2) will be violated
for this node.

– If the minimum is less than 1, and |F | is odd, this is a violated constraint
from (4.2).

– If the minimum is less than 1, and |F | is even, find the edge e where |ye − 1
2 |

is smallest. Then flip the status of the membership of edge e in F . This will
create the minimum left-hand side over all sets F with |F | odd.

For each node, this requires summing or searching items indexed by δ(v) a
constant number of times, and since |δ(v)| < |V | this requires O(|V |2) time. 	

4.2 Addressing the Naddef Challenge

We would have preferred to simply require the values in x to be integer and allow
y and z to hold fractional values, which addresses the challenge that Denis Nad-
def proposed [16]. He wished to know if one could find a simple formulation for
the GTSP that finds optimal solutions by only requiring integrality of the deci-
sion variables x∗, and nothing else. But this cannot be done (for polynomially-
sized or polynomially-separable classes of inequalities unless P = NP), which
can be seen by the following theorem.

Theorem 3. Let G be a 3-regular graph, and let G′ be the result of adding one
vertex to the middle of each edge in G. Consider a solution x∗, where x∗

e = 1
for each edge e ∈ G′. Then x∗ is in the GTSP polytope iff G is Hamiltonian.

Proof . If G is Hamiltonian, let P be the set of edges in a Hamilton cycle of
G, and let P ′ be the set of corresponding edges in the graph G′. Note that in G′

every degree-two node is adjacent to two degree-three nodes, and that the cycle
P ′ reaches every degree-three node in G′. One GTSP tour in G′ can be created
by adding an edge of weight two on exactly one of the two edges adjacent to
each degree-two node in G′ but not used in P ′. The other GTSP tour can be
created by adding an edge of weight two on the edges not chosen by the first

466 R. D. Carr and N. Simonetti

tour. The convex combination of each of these tours with weight 1
2 will create a

solution where x∗
e = 1 for each edge e ∈ G′

Now suppose we have a solution x∗, where x∗
e = 1 for each edge e ∈ G′ and

x∗ is in the GTSP polytope. Express x∗ =
∑

k λkχk as a convex combination
of GTSP tours. Consider any degree-two vertex v in G′. Since v has degree two,
x∗(δ(v)) = 2. Also χk(δ(v)) ≥ 2 must be true for any GTSP tour χk , and so,
by the convex combination, it must be that χk(δ(v)) = 2 for each χk . If the
neighbors of v are nodes i and j, then χk(δ(v)) = 2 implies either χk

i,v = 1 and
χk

j,v = 1, or χk
i,v = 2 and χk

j,v = 0, or χk
i,v = 0 and χk

j,v = 2. The edges of weight
one in χk form disjoint cycles, so pick one such cycle C, and let S1 be the set of
vertices in C. (If there are no edges of weight one in χk , let S1 be a set containing
any single degree three vertex.) Let S2 be the set of degree two vertices v such
that χk

i,v = 2 for some i ∈ S1. Notice that χk(δ(S1 ∪ S2)) = 0, since the degree
of any node, v ∈ S2 is exactly two in χk , and the edge connecting v to S1 has
weight two. χk is a tour and thus must be connected, which is only possible if
S1 ∪ S2 is the entire vertex set of G′, and therefore the cycle C must visit every
degree three node in G′. The corresponding cycle in the graph G would therefore
be a Hamilton cycle. 	

If one knew when the integer solution x∗ were in the GTSP polytope, then
this theorem would imply a polynomial time algorithm to determine if a 3-regular
graph is Hamiltonian, which is an NP -complete problem [8].

The challenge that Naddef proposed never specifically defined what makes
a formulation simple. Certainly having all constraint sets be polynomially-sized
or polynomially-separable (in terms of n, the number of nodes) would qualify as
simple, but there may be other normal sets of constraints that could satisfy the
spirit of Naddef’s challenge. One such example is Naddef’s conjecture that simply
using the three classes of inequalities from his 1985 paper (path, wheelbarrow,
and bicycle inequalities) [4] with integrality constraints only on the variables x,
would be sufficient to formulate the problem. Since it is not known if these three
classes of inequalities can be separated in polynomial time, the theorem above
does not directly address this conjecture.

However, if Naddef’s proposed solution above were sufficient to describe the
GTSP polytope, then the following reasoning will hold: If we are given an arbi-
trary constraint of the form ax ≥ b, it can be recognized in polynomial time
whether or not this constraint belongs to a particular class of inequality (such
as path, wheelbarrow, or bicycle). And it can be recognized whether or not a
potential solution x∗, corresponding to the graph G from the theorem above,
violates this constraint. If that potential solution x∗ were not in the GTSP poly-
tope, then the violated inequality (path, wheelbarrow, or bicycle) would serve
as a polynomially sized verification that the graph G is not Hamiltonian, which
would imply NP = co-NP .

This would apply to any integer programming formulation with a finite num-
ber of inequality classes that contain inequalities that are normal. In this case,
we define normal to mean that the membership of any individual constraint in
a class can be verified in polynomial time.

A New IP Formulation of Graphical TSP 467

This implies Naddef’s challenge cannot be completed successfully using nor-
mal inequalities, unless NP = co-NP . However, our formulation follows its spirit,
as the integer constrained variables in our formulation y have a one-to-one cor-
respondence to the integer constrained variables x in the challenge.

5 Relaxations and Steiner Nodes

5.1 Symmetric GTSP with Steiner Nodes

Cornuéjols et al. also proposed a variant of the GTSP where only a subset of
nodes are visited [4]. As in most road networks, one may travel through many
intersections that are not also destinations when traveling from one place to
another. Cornuéjols et al. referred to these intersection nodes as Steiner nodes.
This creates a formulation on a graph G = (Vd ∪ Vs, E) with Vd ∩ Vs = ∅ where
Vd represents the set of destination nodes and Vs the set of Steiner nodes.

minimize
∑

e∈E

cexe

subject to
∑

e∈δ(v)

xe is positive and even ∀v ∈ Vd

∑

e∈δ(v)

xe is even ∀v ∈ Vs

∑

e∈δ(S)

xe ≥ 2 ∀S ⊂ V where S ∩ Vd �= ∅, �= Vd

xe ≥ 0 ∀e ∈ E.
xe is integer ∀e ∈ E.

Note that only sets that include destination nodes need to have corresponding
cut constraints, and these can be limited to sets where the intersection is |Vd|

2
or smaller. Again, these can be replaced by the flow constraints in the style
proposed by Martin [15]. The constraints used in our computational results are
similar to those in the multi-commodity flow formulation found by Letchford,
Nasiri, and Theis [14]. We were able to reduce the number of variables used by
Letchford, et al. by a factor of 2, by setting many variables to 0, as we did with
the flow variables in the formulation of Sect. 4.1. Assume Vd = {1, 2, ..., d} and
Vs = {d + 1, d + 2, ...n} and designate city d as the home city. We include d − 1
flow problems, where each problem requires that 2 units of flow pass from nodes
S = {k + 1, k + 2, ..., d} to node k using the values of x as edge capacities. (We
use 2 units of flow to prevent any cut separating destination nodes having a
value less than 2 in x.) Since nodes in S are all sources, we can set flow into
these nodes to zero, as well as setting the flow coming out of node k to zero.

fk
i,j = 0 ∀j ∈ Vd, k ∈ Vd \ {d} with j > k, {i, j} ∈ E

fk
k,i = 0 ∀k ∈ Vd \ {d}, {i, k} ∈ E

∑

i∈δ(k)

fk
i,k = 2 ∀k ∈ Vd \ {d}

468 R. D. Carr and N. Simonetti

∑

i∈δ(j)

fk
i,j −

∑

i∈δ(j)

fk
j,i = 0 ∀j ∈ V, k ∈ Vd \ {d} with either j < k or j ∈ Vs

fk
i,j + fk

j,i ≤ xe ∀k ∈ Vd \ {d}, {i, j} = e ∈ E

5.2 Preventing the Half-z Path Without Spanning Trees

While the spanning tree constraints (4) of Sect. 3.2 can prevent half-z paths (see
Fig. 1) when integrality of y is enforced, for the computational results in the next
section, the integrality gaps for many of our instances were better when using the
subtour elimination constraints plus the following, which prevents half-z paths
(with three or more edges) without requiring the integrality of y.

∑

e′∈δ(i)

xe′ +
∑

e′∈δ(j)

xe′ − 2ze ≥ 4 ∀e ∈ E (5)

where i and j are endpoints of edge e.
If ze = 1, this constraint is the subtour elimination constraint for the set

{i, j}. If ze = 0, this is the sum of the degree constraints (lower bound) for
nodes i and j. But in the middle of a path of length three or longer with edges
that have ye = 0 and ze = 1

2 , the left side of this constraint will only add to
three.

It should be noted that this constraint can only be used when both endpoints
of e are destination nodes, since Steiner nodes do not have a lower bound of
degree 2, but could be degree zero.

It should also be noted that if the GTSP instance is composed only of three
paths of length three between two specific nodes (see Fig. 1 from Sect. 3.1) con-
straints (2) from Sect. 3.1 (those that enforce even degree) and (5) (defined
above) will be enough to close the entire integrality gap using an LP relaxation.
If the paths are all four or more edges long, this constraint will not eliminate
the integrality gap, but will help. (See Fig. 2)

Objective value 12 using only constraint (2)

Objective value 13 using both constraints (2) and (5)

Objective value 14 for an integer solution

ye = 1 and ze = 0
ye = 0 and ze = 1

2
ye = 0 and ze = 1

Fig. 2. Solutions from a 3-path configuration of four edges each

A New IP Formulation of Graphical TSP 469

As the paths get longer, the integrality gap slowly grows. The spanning tree
constraints will be useful once the paths reach a length of at least seven. In our
computational experiments, these spanning tree constraints never were useful in
reducing the integrality gap.

5.3 Removing Steiner Nodes

Removing Steiner nodes increases the effectiveness of constraints in (5). A graph
with Steiner nodes G = (Vd ∪ Vs, E) can be transformed into a graph without
Steiner nodes G′ = (Vd, E

′) by doing the following:
For each pair of nodes i, j ∈ Vd, if the shortest path from i to j in G contains

no other nodes in Vd, then add an edge connecting i to j to E′ with a cost equal
to the cost of this shortest path; otherwise, add no edge from i to j to E′.

In all but one of our test problems (see Sect. 6), removing Steiner nodes
resulted in fewer, not more, edges in the original instance. That removing Steiner
nodes often reduces the total edges in a graph was also observed by Corberán,
Letchford, and Sanchis [3].

6 Computational Results

Fig. 3. Map of basic United States highway system

Our search for a reasonable sized data set based on the interstate highways of the
United States led us to a text file uploaded by Sergiy Kolodyazhnyy on GitHub
[11]. After a few errors were corrected and additions made, we had a highway
network with 216 nodes and 358 edges, with a maximum degree node of seven

470 R. D. Carr and N. Simonetti

(Indianapolis). See Fig. 3. Data for this graph and the instances in this section,
may be found at https://ns.faculty.brynathyn.edu/interstate/.

Instances were created from this map by choosing a subset of cities as desti-
nation nodes, and adding any cities along a shortest path between destinations as
Steiner nodes. Alternate versions of these instances were constructed by remov-
ing the Steiner nodes as indicated in Sect. 5.3. Table 1 gives the basic information
for several instances we used. Table 2 shows the results from running the relax-
ation of the formulation from Cornuéjols et al. [4]. It should be noted that the
solutions found by this relaxation were the same whether Steiner nodes were
removed or not.

Running times on a 2.1 GHz Xeon processor for all of the relaxations were
under 10 s, while the running times to generate the integer solutions never
exceeded five minutes. We wish to point out that the value of the new for-
mulation is not a faster running time, but the reduced integrality gap.

In this section, the integrality gap refers to the difference in objective val-
ues between the program where integer constraints are enforced and the pro-
gram where the integer constraints are relaxed. The percentage is the gap size
expressed as a percentage of the integer solution value. This is different than the
ratio definitions of integrality gap used in most other contexts. (e.g. [2])

When our constraints were added, the spanning tree constraints (4) were not
useful when (2) and (5) were present. In most cases, removing Steiner nodes
did not change the optimal values found by our relaxation. In one case, the
relaxation was better when the Steiner nodes were removed, and in one case,
the relaxation was worse when the Steiner nodes were removed. Table 3 shows
our results, where the last column indicates the percentage that our formulation
closed of the gap left by the formulation of Cornuéjols et al. [4].

0 20 40 60 80 100

0

5

10

15

20

NFLcities

CAPcities

NWcities

dakota3path

AtoJcities

ESTcities NScities

deg3cities

ALLcities
MSAcities

CtoWcities

Size of dot is proportional
to number of destinations

All instances have
Steiner nodes removed

Percent of C-F-N integrality gap closed

P
er
ce
nt

of
x
e
>

0
ed

ge
s
al
so

w
it
h
z e

>
0

Fig. 4. Scatter plot of integrality gap closure and percent of variables with ze > 0

https://ns.faculty.brynathyn.edu/interstate/

A New IP Formulation of Graphical TSP 471

We noticed that in instances where the ze variables were rarely positive, our
relaxation fared no better than that of Cornuéjols et al. But when the number
of edges with values of ze > 0 reached about 10% of the total of edges where
xe > 0, we were able to shave anywhere from 10% to almost 50% of the gap left
behind by Cornuéjols et al. (See Fig. 4)

Table 1. GTSP instances

Name Description Number of Destinations Solution (miles)

dakota3path 3-path configuarion in northern plains 11 2682

NFLcities Cities with National Football League teams 29 11050

NWcities Cities in the Northwest region 43 8119

CAPcities 48 state capitals plus Washington D.C 49 14878

AtoJcities Cities beginning with letters from A to J 101 17931

ESTcities Cities east of the Mississippi River 139 13251

MSAcities Centers of 145 metropolitan statistical areas 145 22720

deg3cities Cities in original graph with degree ≥ 3 171 18737

NScities Cities that Neil Simonetti has visited 174 22127

CtoWcities Cities beginning with letters from C to W 182 24389

ALLcities Entire graph 216 26410

Table 2. Relaxations from Cornuéjols et al. formulation [4]

Name Destinations (Steiner Nodes) Edges (w/o Steiner) Integrality Gap (%)

dakota3path 11 (0) 12 (12) 139 (5.18%)

NFLcities 29 (152) 304 (135) 35 (0.32%)

NWcities 43 (4) 63 (59) 12 (0.15%)

CAPcities 49 (132) 301 (199) 34 (0.23%)

AtoJcities 101 (95) 326 (289) 261.5 (1.45%)

ESTcities 139 (2) 243 (240) 61.4 (0.46%)

MSAcities 145 (63) 348 (317) 143 (0.63%)

deg3cities 171 (16) 321 (305) 70 (0.37%)

NScities 174 (29) 341 (324) 93.5 (0.42%)

CtoWcities 182 (30) 353 (358) 151 (0.62%)

ALLcities 216 (0) 358 (358) 274.8 (1.04%)

Table 3. Relaxations from our additional constraints

Name Integrality Gap with

Steiner Nodes (%)

Integrality Gap w/o

Steiner Nodes (%)

Best % of Gap Closed

from Formulation in [4]

dakota3path – 0 (0%) 100%

NFLcities 35 (0.32%) Same as Steiner 0%

NWcities 8 (0.10%) Same as Steiner 33.3%

CAPcities 34 (0.23%) Same as Steiner 0%

AtoJcities 228.5 (1.45%) Same as Steiner 12.6%

ESTcities 53.9 (0.46%) Same as Steiner 12.2%

MSAcities 114.5 (0.50%) 98.5 (0.43%) 31.1%

deg3cities 70 (0.37%) Same as Steiner 0%

NScities 48.5 (0.22%) Same as Steiner 48.1%

CtoWcities 103 (0.42%) 111.5 (0.46%) 31.8%

ALLcities - 217.8 (0.82%) 20.7%

472 R. D. Carr and N. Simonetti

References

1. Carr, R.D., Lancia, G.: Compact vs. Exponential-size LP relaxations. Oper. Res.
Lett. 30, 57–66 (2002)

2. Carr, R.D., Vempala, S.: On the held-Karp relaxation for the asymmetric and
symmetric traveling salesman problems. Math. Program. 100, 569–587 (2004)

3. Corberán, A., Letchford, A.N., Sanchis, J.M.: A cutting plane algorithm for the
general routing problem. Math. Program. 90, 291–316 (2001)

4. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph
and some related integer Polyhedra. Math. Program. 33, 1–27 (1985)

5. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling salesman
problem. Oper. Res. 2, 393–410 (1954)

6. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman.
Math. Program. 5, 88–124 (1973)

7. Fleischmann, B.: A cutting plane procedure for the traveling salesman problem on
road networks. Eur. J. Oper. Res. 21(3), 307–317 (1985)

8. Garey, M.R., Johnson, D.S., Tarjan, E.: The planar hamiltonian circuit problem is
NP-complete. SIAM J. Comput. 5, 704–714 (1976)

9. Guten, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and its Varia-
tions. Springer, New York (2007) https://doi.org/10.1007/b101971

10. Junger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Ball,
M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Oper-
ations Research and Management Science, vol. 7, Network Models Elsevier, Ams-
terdam (1995)

11. Kolodyazhnyy, S.: Dijkstra Algorithm for Shortest Path. https://github.com/
SergKolo/MSUD-CS2050-SPRING-2016/blob/master/input for dijkstra.txt
(web) Accessed June 2018

12. Lancia, G., Serafini, P.: The parity polytope. Compact Extended Linear Program-
ming Models. EATOR, pp. 113–121. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-63976-5 8

13. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and
scheduling: algorithms and complexity. Handbooks Oper. Res. Manage. Sci. 4(C),
445–522 (1993)

14. Letchford, A.N., Nasiri, S.D., Theis, D.O.: Compact formulations of the Steiner
TSP and related problems. Eur. J. Oper. Res. 228, 83–92 (2013)

15. Martin, R.K.: Using separation algorithms to generate mixed integer model refor-
mulations. Oper. Res. Lett. 10, 119–128 (1991)

16. Naddef, D.: Personal Communication (2019)
17. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. J. London

Math. Soc. 36, 445–450 (1961)
18. Ratliff, H.D., Rosenthal, A.: Order-picking in a rectangular warehouse: a solvable

case of the traveling salesman problem. Oper. Res. 31(3), 507–521 (1983)
19. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer,

Berlin (2003)
20. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J.

London Math. Soc. 36, 221–230 (1961)
21. Yannakakis, M.: Expressing combinatorial optimization problems by Linear Pro-

grams. J. Comput. Syst. Sci. 43, 441–466 (1991)

https://doi.org/10.1007/b101971
https://github.com/SergKolo/MSUD-CS2050-SPRING-2016/blob/master/input_for_dijkstra.txt
https://github.com/SergKolo/MSUD-CS2050-SPRING-2016/blob/master/input_for_dijkstra.txt
https://doi.org/10.1007/978-3-319-63976-5_8
https://doi.org/10.1007/978-3-319-63976-5_8

Implications, Conflicts, and Reductions
for Steiner Trees

Daniel Rehfeldt1,2(B) and Thorsten Koch1,2

1 Chair of Software and Algorithms for Discrete Optimization, TU Berlin,
Straße des 17. Juni 135, 10623 Berlin, Germany

2 Applied Algorithmic Intelligence Methods Department, Zuse Institute Berlin,
Takustraße 7, 14195 Berlin, Germany

{rehfeldt,koch}@zib.de

Abstract. The Steiner tree problem in graphs (SPG) is one of the most
studied problems in combinatorial optimization. In the last decade, there
have been significant advances concerning approximation and complex-
ity of the SPG. However, the state of the art in (practical) exact solution
of the SPG has remained largely unchallenged for almost 20 years.

The following article seeks to once again advance exact SPG solu-
tion. The article is based on a combination of three concepts: Implica-
tions, conflicts, and reductions. As a result, various new SPG techniques
are conceived. Notably, several of the resulting techniques are provably
stronger than well-known methods from the literature, used in exact
SPG algorithms. Finally, by integrating the new methods into a branch-
and-cut algorithm we obtain an exact SPG solver that outperforms the
current state of the art on a large collection of benchmark sets. Further-
more, we can solve several instances for the first time to optimality.

Keywords: Steiner tree problem · Exact solution · Reduction
techniques · Branch-and-cut

1 Introduction

Given an undirected connected graph G = (V,E), edge costs c : E → Q>0 and
a set T ⊆ V of terminals, the Steiner tree problem in graphs (SPG) is to find
a tree S ⊆ G with T ⊆ V (S) that minimizes c(E(S)). The SPG is a classic
NP-hard problem [15], and one of the most studied problems in combinato-
rial optimization. Part of its theoretical appeal might be attributed to the fact
that the SPG generalizes two other classic combinatorial optimization problems:
Shortest paths, and minimum spanning trees. On the practical side, many appli-
cations can be modeled as SPG or closely related problems, see e.g. [4,19].

The SPG has seen numerous theoretical advances in the last 10 years,
bringing forth significant improvements in complexity and approximability. See
e.g. [3,10] for approximation, and [16,34] for complexity results. However, when

Supported by Research Campus Modal, and DFG Cluster of Excellence MATH+.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 473–487, 2021.
https://doi.org/10.1007/978-3-030-73879-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_33&domain=pdf
http://orcid.org/0000-0002-2877-074X
http://orcid.org/0000-0002-1967-0077
https://doi.org/10.1007/978-3-030-73879-2_33

474 D. Rehfeldt and T. Koch

it comes to (practical) exact algorithms, the picture is bleak. After flourishing
in the 1990s and early 2000s, algorithmic advances came to a staggering halt
with the joint PhD theses of Polzin and Vahdati Daneshmand almost 20 years
ago [21,33]. The authors introduced a wealth of new results and algorithms for
SPG, and combined them in an exact solver that drastically outperformed all
previous results from the literature. Their work is also published in a series of
articles [22–26]. However, their solver is not publicly available.

The 11th DIMACS Challenge in 2014, dedicated to Steiner tree problems,
brought renewed interest to the field of exact algorithms. In the wake of the
challenge, several new exact SPG solvers were introduced in the literature, e.g. [8,
9,20]. Overall, the 11th DIMACS Challenge brought notable progress on the
solution of notoriously hard SPG instances that had been designed to defy known
solution techniques, see [18,30]. However, on the vast majority of instances from
the literature, [21,33] stayed out of reach: For many benchmark instances, their
solver is even two orders of magnitude or more faster, and it can furthermore
solve substantially more instances to optimality—including those introduced at
the DIMACS Challenge [27]. In 2018, the 3rd PACE Challenge [2] took place,
dedicated to fixed-parameter tractable algorithms for SPG. Thus, the PACE
Challenge considered mostly instances with a small number of terminals, or with
small tree-width. Still, even for these special problem types, the solver by [21,33]
remained largely unchallenged, see e.g. [13].

The following article aims to once again advance the state of the art in exact
SPG solution.

1.1 Contribution

This article is based on a combination of three concepts: Implications, conflicts,
and reductions. As a result, various new SPG techniques are conceived. The
main contributions are as follows.

– By using a new implication concept, a distance function is conceived that
provably dominates the well-known bottleneck Steiner distance. As a result,
several reduction techniques that are stronger than results from the literature
can be designed.

– We show how to derive conflict information between edges from the above
methods. Further, we introduce a new reduction operation whose main pur-
pose is to introduce additional conflicts. Such conflicts can for example be
used to generate cuts for the IP formulation.

– We introduce a more general version of the powerful so-called extended reduc-
tion techniques. We furthermore enhance this framework by using both the
previously introduced new distance concept, and the conflict information.

– Finally, we integrate the components into a branch-and-cut algorithm. Besides
preprocessing, domain propagation, and cuts, also primal heuristics can be
improved (by using the new implication concept). The practical implemen-
tation is realized as an extension of the branch-and-cut based Steiner tree
solver SCIP-Jack [9].

Implications, Conflicts, and Reductions for Steiner Trees 475

The resulting exact SPG solver outperforms the current state-of-the-art
solver from [21,33] on a wide range of well-established benchmark sets from
the literature. Furthermore, it can solve several instances for the first time to
optimality. Proofs of the new results are given in the extended version of this
article [28].

1.2 Preliminaries and Notation

We write G := (V,E) for an undirected graph, with vertices V and edges E. We
set n := |V | and m := |E|. For S ⊆ G write V (S) and E(S) for its vertices and
edges. For a walk W we write V (W) and E(W) for the set of included vertices
and edges. For U ⊆ V we define δ(U) := {{u, v} ∈ E | u ∈ U, v ∈ V \ U}. We
define the neighborhood of v ∈ V as N(v) := {w ∈ W | {v, w} ∈ δ(v)}. Note
that v /∈ N(v).

Given edge costs c : E �→ Q≥0, the triplet (V,E, c) is referred to as network.
By d(v, w) we denote the cost of a shortest path (with respect to c) between
vertices v, w ∈ V . For any (distance) function d̃ :

(
V
2

) �→ Q≥0, and any U ⊆ V

we define the d̃-distance graph on U as the network

DG(U, d̃) := (U,

(
U

2

)
, c̃), (1)

with c̃({v, w}) := d̃(v, w) for all v, w ∈ U . If d̃ = d, we write DG(U) instead
of DG(U, d). If a given d̃ :

(
V
2

) �→ Q≥0 is symmetric, we occasionally write d̃(e)
instead of d̃(v, w) for an edge e = {v, w}.

2 From Implications to Reductions

Reduction techniques have been a key ingredient in exact SPG solvers, see e.g. [5,
17,23,32]. Among these techniques, the bottleneck Steiner distance introduced
in [7] is arguably the most important one, being the backbone of several powerful
reduction methods.

2.1 The Bottleneck Steiner Distance

Let P be a simple path with at least one edge. The bottleneck length [7] of P is

bl(P) := max
e∈E(P)

c(e). (2)

Let v, w ∈ V . Let P(v, w) be the set of all simple paths between v and w.
The bottleneck distance [7] between v and w is defined as

b(v, w) := inf{bl(P) | P ∈ P(v, w)}, (3)

476 D. Rehfeldt and T. Koch

with the common convention that inf ∅ = ∞. Consider the distance graph D :=
DG(T ∪ {v, w}). Let bD be the bottleneck distance in D. Define the bottleneck
Steiner distance [7] between v and w as

s(v, w) := bD(v, w). (4)

The arguably best known bottleneck Steiner distance reduction method is
based on the following criterion, which allows for edge deletion [7].

Theorem 1. Let e = {v, w} ∈ E. If s(v, w) < c(e), then no minimum Steiner
tree contains e.

2.2 A Stronger Bottleneck Concept

Initially, for an edge e = {v, w} define the restricted bottleneck distance b(e) [23]
as the bottleneck distance between v and w on (V,E \ {e}, c).

The basis of the new bottleneck Steiner distance concept is formed by a
node-weight function that we introduce below. For any v ∈ V \ T and F ⊆ δ(v)
define

p+(v, F) = max
{
0, sup

{
b(e) − c(e) | e ∈ δ(v) ∩ F, e ∩ T
= ∅}}

. (5)

We call p+(v, F) the F-implied profit of v. The following observation motivates
the subsequent usage of the implied profit. Assume that p+(v, {e}) > 0 for an
edge e ∈ δ(v). If a Steiner tree S contains v, but not e, then there is a Steiner
tree S′ with e ∈ E(S′) such that c(E(S′)) + p+(v, {e}) ≤ c(E(S)).

Let v, w ∈ V . Consider a finite walk W = (v1, e1, v2, e2, ..., er, vr) with v1 = v
and vr = w. We say that W is a (v, w)-walk. For any k, l ∈ N with 1 ≤ k ≤
l ≤ r define the subwalk W (k, l) := (vk, ek, vk+1, ek+1, ..., el, vl). W will be called
Steiner walk if V (W) ∩ T ⊆ {v, w} and v, w are contained exactly once in W .
The set of all Steiner walks from v to w will be denoted by WT (v, w). With a
slight abuse of notation we define δW (u) := δ(u) ∩ E(W) for any walk W and
any u ∈ V . Define the implied Steiner cost of a Steiner walk W ∈ WT (v, w) as

c+p (W) :=
∑

e∈E(W)

c(e) −
∑

u∈V (W)\{v,w}
p+ (u, δ(u) \ δW (u)) . (6)

Further, set

P+
W := {u ∈ V (W) | p+

(
u, δ(u) \ δW (u)

)
> 0} ∪ {v, w}. (7)

Define the implied Steiner length of W as

l+p (W) := max{c+p (W (vk, vl)) | 1 ≤ k ≤ l ≤ r, vk, vl ∈ P+
W }. (8)

Define the implied Steiner distance between v and w as

d+p (v, w) := min{l+p (W) | W ∈ WT (v, w)}. (9)

Implications, Conflicts, and Reductions for Steiner Trees 477

1

2

1

1

1.5 1

1

Fig. 1. Segment of a Steiner tree instance. Terminals are drawn as squares. The dashed
edge can be deleted by employing Theorem 2.

Note that d+p (v, w) = d+p (w, v). At last, consider the distance graph D+ :=
DG(T ∪{v, w}, d+p). Let bD+ be the bottleneck distance in D+. Define the implied
bottleneck Steiner distance between v and w as

sp(v, w) := bD+(v, w). (10)

Note that sp(v, w) ≤ s(v, w) and that s(v,w)
sp(v,w) can become arbitrarily large.

Thus, the next result provides a stronger reduction criterion than Theorem 1.

Theorem 2. Let e = {v, w} ∈ E. If sp(v, w) < c(e), then no minimum Steiner
tree contains e.

Figure 1 shows a segment of an SPG instance for which Theorem 2 allows
for the deletion of an edge, but Theorem 1 does not. The implied bottleneck
Steiner distance between the endpoints of the dashed edge is 1—corresponding
to a walk along the four non-terminal vertices. The edge can thus be deleted.
In contrast, the (standard) bottleneck Steiner distance between the endpoints
is 1.5 (corresponding to the edge itself). Unfortunately, already computing the
implied Steiner distance is hard:

Proposition 1. Computing the implied Steiner distance is NP-hard.

Despite this NP-hardness, one can devise heuristics that provide useful upper
bounds on sp, as discussed in the extended version of this article.

2.3 Bottleneck Steiner Reductions Beyond Edge Deletion

This section discusses applications of the implied bottleneck Steiner distance that
allow for additional reduction operations: Edge contraction and node replace-
ment. We start with the former. For an edge e and vertices v, w define be(v, w)
as the bottleneck distance between v and w on (V,E \ {e}, c �E\{e}). With this
definition, we define a generalization of the classic NSV reduction test from [6].

Proposition 2. Let {v, w} ∈ E, and t1, t2 ∈ T with t1
= t2. If

sp(v, t1) + c({v, w}) + sp(w, t2) ≤ b{v,w}(t1, t2), (11)

then there is a minimum Steiner tree S with {v, w} ∈ E(S).

478 D. Rehfeldt and T. Koch

If criterion (11) is satisfied, one can contract edge {v, w} and make the resulting
vertex a terminal. Note that in the original criterion by [6] the standard distance
is used, and no strengthening is achieved when the (standard) bottleneck Steiner
distance is used instead.

This section closes with a new reduction criterion based on the standard
bottleneck Steiner distance. This result also serves to highlight the complications
that arise if one attempts to formulate similar conditions based on the implied
bottleneck Steiner distance.

Proposition 3. Let D := DG(T, d). Let Y be a minimum spanning tree in D.
Write its edges {eY

1 , eY
2 , ..., eY

|T |−1} := E(Y) in non-ascending order with respect
to their weight in D. Let v ∈ V \ T . If for all Δ ⊆ δ(v) with |Δ| ≥ 3 it holds
that:

|Δ|−1∑

i=1

d(eY
i) ≤

∑

e∈Δ

c(e), (12)

then there is at least one minimum Steiner tree S such that |δS(v)| ≤ 2.

If the conditions (12) are satisfied for a vertex v ∈ V \ T , one can pseudo-
eliminate [6] or replace [21] vertex v, i.e., delete v and connect any two vertices
u,w ∈ N(v) by a new edge {u,w} of weight c({v, u}) + c({v, w}).

The SPG depicted in Fig. 2 exemplifies why Proposition 3 cannot be for-
mulated by using the implied bottleneck Steiner distance. The weight of the
minimum spanning tree Y for DG(T, d) is 4, but the weight of a minimum span-
ning tree with respect to sp is 2. Similarly also the BDm reduction technique
from [6] cannot be directly formulated by using the implied bottleneck Steiner
distance.

1
1

1

Fig. 2. SPG instance. Terminals are drawn as squares

3 From Reductions to Conflicts

In this section we use the concept of conflicts between edges. We say that a
set E′ ⊂ E with |E′| ≥ 2 is in conflict if no minimum Steiner tree contains
more than one edge of E′. Recall that we have seen three types of reductions
so far: Edge deletion, edge contraction, and node replacement. For simplicity,
we assume in the following that a reduction is only performed if it retains all
optimal solutions. We say that such a reduction is valid. We start with an SPG
instance I = (G,T, c), and consider a series of subsequent, valid reductions (of
one of the three above types) that are applied to I. In each reduction step
i ≥ 0, the current instance I(i) = (G(i), T (i), c(i)) is transformed to instance
I(i+1) = (G(i+1), T (i+1), c(i+1)). We set I(0) := I.

Implications, Conflicts, and Reductions for Steiner Trees 479

3.1 Node Replacement

In [24] the authors observe that two edges that originate from a common edge
by a series of replacements cannot both be contained in a minimum Steiner tree.
We introduce an edge conflict criterion that is strictly stronger. For a series
of i = 0, 1, ..., k valid reductions, we define sets of replacement ancestors Λ(i) :
E(i) → P({1, ..., k}), and Λ

(i)
FIX ∈ P({1, ..., k}). We set Λ(0)(e) := ∅ for all e ∈ E,

and Λ
(0)
FIX := ∅. Further, we define λ(0) := 0. Consider a reduced instance I(i).

If we contract an edge e ∈ E(i), we set Λ
(i+1)
FIX := Λ

(i)
FIX ∪ Λ(i)(e). If we replace

a vertex v ∈ V (i), we set λ(i+1) := λ(i) + 1. Further, we define for each newly
inserted edge {u,w}, with u,w ∈ N(v):

Λ(i+1)({u,w}) := Λ(i)({v, u}) ∪ Λ(i)({v, w}) ∪ {λ(i)}.

If no node replacement is performed, we set λ(i+1) := λ(i).

Proposition 4. Let I be an SPG and let I(k) be the SPG obtained from per-
forming a series of k valid reductions on I. Further, let e1, e2 ∈ E(k). If
Λ(k)(e1) ∩ Λ(k)(e2)
= ∅, then no minimum Steiner tree S(k) for I(k) contains
both e1 and e2.

Corollary 1. Let I, I(k) as in Proposition 4, and let e ∈ E(k). If Λ(k)(e) ∩
Λ
(k)
FIX
= ∅, then no minimum Steiner tree S(k) for I(k) contains e.

Note that any edge e as in Corollary 1 can be deleted.

3.2 Edge Replacement

This subsection introduces a new replacement operation, whose primary benefit
lies in the conflicts it creates.

Proposition 5. Let e = {v, w} ∈ E with e ∩ T = ∅. Define

D := {Δ ⊆ (δ(v) ∪ δ(w)) \ {e} | Δ ∩ δ(v)
= ∅,Δ ∩ δ(w)
= ∅} .

For any Δ ∈ D let

UΔ := {u ∈ V | {u, v} ∈ Δ ∨ {u,w} ∈ Δ} .

If for all Δ ∈ D with |Δ| ≥ 3 the weight of a minimum spanning tree on
DG(UΔ, s) is smaller than c(Δ), then each minimum Steiner tree S satisfies
|δS(v)| ≤ 2 and |δS(w)| ≤ 2.

If the condition of Proposition 5 is successful, we can perform what we will
call a path replacement of e: We delete e and add for each pair p, q ∈ V with
p ∈ N(v) \ {w}, q ∈ N(w)) \ {v}, p
= q an edge {p, q} with weight c({p, v}) +
c({v, w}) + c({q, w}). The apparent increase in the number of edges by this
operations seems highly disadvantageous. However, due to the increased weight,

480 D. Rehfeldt and T. Koch

the new edges can often be deleted by using the criterion from Theorem 2.
We only perform a path replacement if at most one of the new edges needs
to be inserted. If exactly one new edge remains, we create new replacement
ancestors as follows: Let ê = {p, q} be the newly inserted edge. Initially, set
λ(i+1) := λ(i) and Λ(i+1)(ê) := Λ(i)({p, v})∪Λ(i)({v, w})∪Λ(i)({v, q}). Next, for
each e′ ∈ (δ(v) ∪ δ(w)) \ {e} increment λ(i+1), and add λ(i+1) to Λ(i+1)(ê) and
Λ(i+1)(e′). One can show that Proposition 4 remains valid if path replacement is
added to the list of valid reduction operations. As we will see in the remainder
of this article, conflicts cannot only be used for further reductions, but also for
generating cuts in an IP model.

4 From Steiner Distances and Conflicts to Extended
Reduction Techniques

At the end of the last section we have seen a reduction method that inspects a
number of trees (of depth 3) that extend an edge considered for replacement. This
section continues along this path, based on the reduction concepts introduced so
far. In the following, we introduce new so-called extended reduction algorithms
that (provably) dominate the strongest ones from the literature, due to [24].

4.1 The Framework

For a tree Y in G, let L(Y) ⊆ V (Y) be the set of its leafs. We start with several
definitions from [24]. Let Y ′ be a tree with Y ′ ⊆ Y . The linking set between Y
and Y ′ is the set of all vertices v ∈ V (Y ′) such that there is a path Q ⊆ Y from
v to a leaf of Y with V (Q) ∩ V (Y ′) = {v}. Note that Q can consist of a single
vertex. Y ′ is peripherally contained in Y if the linking set between Y and Y ′ is
L(Y ′). For any P ⊆ V (Y) with |P | > 1 let YP be the union of the (unique) paths
between any v, w ∈ P ∪ V (Y) in Y . Note that YP is a tree, and that YP ⊆ Y
holds. P is called pruning set if it contains the linking set between YP and Y .
Additionally, we will use the following new definition: P is called strict pruning
set if it is equal to the linking set between YP and Y .

Additionally, we define a stronger, and new, inclusion concept. Consider a
tree Y ⊆ G, and a subtree Y ′. Let P be a pruning set for Y ′. We say that Y ′ is
P -peripherally contained in Y if P is a pruning set for Y . Now let P be a strict
pruning set for Y ′. We say that Y ′ is strictly P -peripherally contained in Y if P
is a strict pruning set for Y . One obtains the following important property.

Observation 1. Let Y ⊆ G be a tree, let Y ′ ⊆ Y be a subtree, and let P be
a pruning set for Y ′. If Y ′ is peripherally contained in Y , then Y ′ is also P -
peripherally contained in Y .

Note that an equivalent property holds for strict pruning sets. Given a tree Y and
a set E′ ⊆ E, we write with a slight abuse of notation Y + E′ for the subgraph
with the edge set E(Y) ∪ E′. Algorithm 1 shows a high level description of the

Implications, Conflicts, and Reductions for Steiner Trees 481

extended reduction framework used in this article. The framework is similar to
the one introduced in [24], but more general. A possible input for Algorithm 1 is
an SPG instance together with a single edge. If the algorithm returns true, the
edge can be deleted. Besides ExtensionSets, which is described in Algorithm 2,
the extended reduction framework contains the following subroutines, with SPG
I = (G,T, c), tree Y ⊆ G, and a pruning set P for Y .

– RuledOut(I, Y, P) returns true if Y is shown to not be P -peripherally con-
tained in any minimum Steiner tree. Otherwise, returns false.

– RuledOutStrict(I, Y, P) same as above, but with strict pruning set P .
– StrictPruningSets(I, Y) returns a subset of all strict pruning sets for Y .
– Truncate(I, Y) returns true if no further extensions of Y should be per-

formed; otherwise returns false.
– Promising(I, Y, v) is given additionally a vertex v ∈ L(Y). Returns true if

further extensions of Y from v should be performed; otherwise returns false.

Algorithm 1: Extended-RuledOut

Data: SPG instance I = (G,T, c), tree Y with Y ∩ T ⊆ L(Y)
Result: true if Y is shown to not be peripherally contained in any

minimum Steiner tree; false otherwise
1 foreach P ∈ StrictPruningSets(I, Y) do
2 if RuledOutStrict(I, Y, P) then return true

3 if Truncate(I, Y) then return false
4 foreach v ∈ L(Y) do
5 if v ∈ T or not Promising(I, Y, v) then continue
6 success := true
7 foreach E′ ∈ ExtensionSets(I, Y, v) do
8 if not Extended-RuledOut(I, Y + E′) then
9 success := false

10 break
11 if success then return true

12 return false

In Lines 1–2 of Algorithm 1, we try to peripherally rule-out tree Y . If that is
not possible, we try to recursively extend Y in Lines 4–11. Since (given positive
edge weights) no minimum Steiner tree has a non-terminal leaf, we can extend
from any of the non-terminal leaves of Y . Note that ruling-out all extensions
along one single leaf is sufficient to rule-out Y .

4.2 Reduction Criteria

In this section we introduce several elimination criteria used within RuledOut
and RuledOutStrict. Note that any criterion that is valid for RuledOut is
also valid for RuledOutStrict. We also note that several of the criteria in this
section are similar to results from [21,24], but are all stronger. Throughout this
section we consider a graph G = (V,E) and an SPG instance I = (G,T, c).

482 D. Rehfeldt and T. Koch

Algorithm 2: ExtensionSets
Data: SPG instance I = (G, T, c), tree Y , vertex v ∈ V (Y)
Result: Set Γ ⊆ P(δ(v)) such that for all γ ∈ P(δ(v)) \ Γ , tree Y + γ is not

peripherally contained in any minimum Steiner tree.
1 Q := ∅, R := ∅
2 foreach e := {v, w} ∈ δ(v) \ E(Y) do
3 if RuledOut(I, Y + {e}, L(Y) ∪ {w}) then continue
4 if RuledOutStrict(I, Y + {e}, L(Y) ∪ {w}) then
5 R := R ∪ {e}
6 continue

7 Q := Q ∪ {e}
8 return P(Q) ∪ R

Consider a tree Y ⊆ G, and a pruning set P for Y such that V (YP) ∩ T ⊆
L(YP). For each p ∈ P let Y p ⊂ Y such that V (Y p) is exactly the set of vertices
v ∈ V (YP) that satisfy the following: For any q ∈ P \{p} the (unique) path in Y
from v to q contains p. Note that when removing E(YP) from Y , each non-trivial
connected component equals one Y p. Further, note that p ∈ V (Y p) for all p ∈ P .
Let GY,P = (VY,P , EY,P) be the graph obtained from G = (V,E) by contracting
for each p ∈ P the subtree Y p into p. For any parallel edges, we keep only one
of minimum weight. We identify the contracted vertices V (Y p) with the original
vertex p. Overall, we thus have VY,P ⊆ V . Let cY,P be the edge weights on GY,P

derived from c. Let

TY,P :=
(
T ∩ VY,P

) ∪ {p ∈ P | T ∩ V (Y p)
= ∅}. (13)

Finally, let sY,P be the bottleneck Steiner distance on (GY,P , TY,P , cY,P). The
next theorem generalizes a number of results from the literature. See [11,21] for
similar, but weaker, conditions.

Theorem 3. Let Y ⊆ G be a tree, and let P be a pruning set for Y such
that V (YP) ∩ T ⊆ L(YP). Let IY,P be the SPG on the distance network
DGY,P

(
VY,P , sY,P

)
with terminal set P . If the weight of a minimum Steiner tree

for IY,P is smaller than c(E(YP)), then Y is not P -peripherally contained in any
minimum Steiner tree for I.

If computing (or even approximating) a minimum Steiner tree on
DGY,P

(
VY,P , sY,P

)
is deemed to expensive, one can use the weight of a mini-

mum spanning tree on DGY,P

(
P, sY,P

)
instead.

Next, let Y ⊆ G be a tree with pruning set P , and let v, w ∈ V (Y) and let
Q be the path between v, w in Y . We define a pruned tree bottleneck between
v and w as a subpath Q(a, b) of Q that satisfies |δY (u)| = 2| and u /∈ P for all
u ∈ V (Q(a, b))\{a, b}, V (Q(a, b))∩T ⊆ {a, b}, and maximizes c(V (Q(a, b))). The
weight c(V (Q(a, b))) of such a pruned tree bottleneck is denoted by bY,P (v, w).
Using this definition and the implied bottleneck Steiner distance, we obtain the
following result.

Implications, Conflicts, and Reductions for Steiner Trees 483

Proposition 6. Let Y be a tree, let P be a pruning set for Y , and let v, w ∈
V (Y). If sp(v, w) < bY,P (v, w), then Y is not P -peripherally contained in any
minimum Steiner tree.

In the extended version of this article we also give an reduction criteria based
on reduced costs of an IP formulation, which can only be used for the Ruled-
OutStrict routine. Finally, another important reduction criteria is constituted
by edge conflicts between edges of an enumerated tree.

5 Exact Solution

This section describes the usage of the previous techniques for exact SPG solu-
tion. They have been implemented as an extension of the solver SCIP-Jack [9].

5.1 Branch-and-cut

We enhance several vital components of branch-and-cut algorithms. The most
natural application of reduction methods is within presolving. However, we also
use (limited versions of) them for domain propagation during branch-and-bound,
translating the deletion of edges into variable fixings in the integer program-
ming model. The edge conflicts described in this article can be used for gen-
erating clique cuts [1]. Note that SCIP-Jack also separates the Steiner cuts
from the bidirected cut formulations, as well as the flow-balance constraints
from [17]. Finally, also primal heuristics are improved. First, the stronger reduc-
tion methods enhance primal heuristics that involve the solution of auxiliary
SPG instances, such as from the combination of several Steiner trees. Second,
the implication concept introduced in this article can be used to directly improve
a classic SPG heuristic by [31], as shown in the extended version of this article.

5.2 Computational Results

This section provides computational results for the new solver. In particular,
we compare its performance with the updated results of the solver by [21,33]
published in [27]. The computational experiments were performed on Intel Xeon
CPUs E3-1245 with 3.40 GHz and 32 GB RAM. This machine obtains a score of
488.993589 with the benchmark software of the 11th DIMACS Challenge (with
the same compiler as [27]). Thus, this computer is roughly 1.59 times faster
than the machine used in [27]. We have scaled the run-times reported in the
following accordingly. We use the same LP solver as [27]: CPLEX 12.6 [12]. For
the comparison we use a diverse range of well-established benchmark sets from
the SteinLib [18] and the 11th DIMACS Challenge.

Table 1 provides results of the two solvers for a time limit of two hours. The
second column shows the number of instances in the test-set. Column three
shows the mean time taken by the solver of [21,33], column four shows the mean
time of the new solver. The next column gives the relative speedup of the new

484 D. Rehfeldt and T. Koch

Table 1. Comparison of the new solver and the solver by [21,33].

Test set # Mean time (sh. geo. mean) Maximum time # Solved

P. & V. [s] New [s] Speedup P. & V. [s] New [s] Speedup P. & V. New

E 20 0.3 0.3 1.0 3.4 4.8 0.7 20 20

2R 27 5.0 3.0 1.7 43.9 12.2 3.6 27 27

ALUE 15 1.4 3.2 0.4 14.8 35.3 0.4 15 15

vienna-s 85 7.8 3.9 2.0 623.5 74.0 8.4 85 85

ES10000FST 1 138.0 122.4 1.1 138.0 122.4 1.1 1 1

SP 8 81.0 19.7 4.1 >7200 598.4 >12.0 6 8

GEO-adv 23 158.7 62.7 2.5 6476.5 926.6 7.0 23 23

Cophag14 21 27.7 12.6 2.2 >7200 3300.2 >2.2 20 21

WRP3 63 22.8 18.8 1.2 6073.2 3646.2 1.7 63 63

PUC 50 2458.1 1910.2 1.3 >7200 >7200 1.0 12 14

solver. The next three columns provide the same information for the maximum
run-time, the last two columns give the number of solved instances. For the mean
time we use the well-established shifted geometric mean [1] with a shift of 10.

Overall, the new solver performs better on eight of the ten test-sets. Often
by a significant margin, such as for GEO-adv or SP. Only on ALUE the new
solver performs significantly worse. A possible reason is the existence of small
node-separators on these instances. These separators are heavily exploited by
partitioning methods in [21,33]. However, our solver includes no algorithms yet
to exploit such separators. It should be noted that the same behavior can be
observed for the related test-set ALUT which is not included in Table 1. On
the other hand, there are also several other benchmark sets for which the new
solver is faster, but which are not contained in Table 1, since they are similar
to already included ones (e.g. GEO-org, 1R, WRP3, LIN). We also note that
in [27] specialized settings are used for individual test-sets. In contrast, we run all
test-sets with default settings, although a considerable speed-up (usually more
than 50 percent) could be achieved when using specialized settings.

For most of the test-sets in Table 1, the new solver is around one order of mag-
nitude or more faster than the previous version of SCIP-Jack described in [29],
both with respect to the mean and maximum time. Even if one merely consid-
ers the enhancements described in this article (as compared to methods already
known in the literature), the speed-up is still huge, as shown in the extended
version of this article. In particular, the sp-based methods have a significant
impact, as we demonstrate in the following. To this end, we use three bench-
mark sets from the DIMACS Challenge, and three from the SteinLib. Table 2
shows in the first column the name of the test-set, followed by its number of
instances. The next columns show the percentual average number of nodes and
edges of the instances after the preprocessing without (column three and four),
and with (columns five and six) the sp based methods. The last two columns
reports the percentual relative change between the previous results. It can be
seen that the sp methods allow for a significant additional reduction of the

Implications, Conflicts, and Reductions for Steiner Trees 485

problem size. This behavior is rather remarkable, given the variety of powerful
reduction methods already included in SCIP-Jack. Furthermore, the instances
from the GEO-adv set come already in preprocessed form; by means of the reduc-
tion package from [32]. We note that the overall run-time of the preprocessing
notably decreases when the sp based methods are used.

Table 2. Average remaining nodes and edges after preprocessing.

Test set # Base preprocessing +sp techniques Relative change

Nodes [%] Edges [%] Nodes [%] Edges [%] Nodes [%] Edges [%]

ALUE 15 1.4 1.4 0.8 0.9 –75.0 –55.6

vienna-s 85 8.5 8.1 6.1 5.8 –39.3 –39.6

WRP3 63 49.5 50.6 45.6 45.8 –8.6 –10.4

Copenhag14 21 39.4 37.1 35.4 32.1 –11.3 –15.6

GEO-adv 23 29.1 30.7 26.9 28.2 –8.2 –8.9

ES10000FST 1 47.2 52.1 38.1 42.2 –23.9 –21.1

Finally, we provide results for several large-scale Euclidean Steiner tree prob-
lems. For solving such problems, the bottleneck is usually the full Steiner tree
concatanation [14]. This concatanation can also be solved as an SPG, how-
ever [25]. We report results for Euclidean instances from [14] with 25 thousand
(EST-25k) and 50 thousand (EST-50k) points in the plane. Both test-sets con-
tain 15 instances. For EST-25k the mean and maximum times of the new solver
are 66.2 and 92.4 s—between one and two orders of magnitude faster than those
of the well-known geometric Steiner tree solver GeoSteiner 5.1 [14]. The EST-
50k instances can also be solved quickly, with a mean of 286.1 s. Moreover, 7 of
the 15 instances are solved for the first time to optimality—in at most 390 s. On
the other hand, GeoSteiner cannot solve these instances even after seven days
of computation. Unfortunately, [27] does not report results for these instances.
However, the solver by [20], which won the heuristic SPG category at the 11th
DIMACS Challenge, does not reach the upper bounds from GeoSteiner on
any of the EST-25k and EST-50k instances.

6 Outlook

There are several promising routes for further improvement. First, one could
enhance the newly introduced methods. For example, by using full-backtracking
in the extended reduction methods, by improving the approximation of the
implied bottleneck Steiner distance, or by adapting the latter for replacement
techniques. Second, several powerful methods described in [21,33] could be added
to the new solver, e.g. a stronger IP formulation realized via price-and-cut, or
additional reduction techniques via partitioning.

Unlike the solver by [21,33], the new SCIP-Jack will be made freely available
for academic use—as part of the next SCIP release.

486 D. Rehfeldt and T. Koch

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Uni-
versität Berlin (2007)

2. Bonnet, É., Sikora, F.: The PACE 2018 parameterized algorithms and compu-
tational experiments challenge: the third iteration. In: Paul, C., Pilipczuk, M.
(eds.) 13th International Symposium on Parameterized and Exact Computation
(IPEC 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 115,
pp. 26:1–26:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2019). https://doi.org/10.4230/LIPIcs.IPEC.2018.26

3. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 6 (2013). https://doi.org/10.1145/
2432622.2432628

4. Cheng, X., Du, D.Z.: Steiner trees in industry. In: Du, D.Z., Pardalos, P.M. (eds.)
Handbook of Combinatorial Optimization, vol. 11, pp. 193–216. Springer, Boston
https://doi.org/10.1007/0-387-23830-1 4

5. Duin, C.: Steiner Problems in Graphs. Ph.D. thesis, University of Amsterdam
(1993)

6. Duin, C.W., Volgenant, A.: Reduction tests for the Steiner problem in graphs.
Networks 19(5), 549–567 (1989). https://doi.org/10.1002/net.3230190506

7. Duin, C., Volgenant, A.: An edge elimination test for the Steiner problem in graphs.
Oper. Re. Lett. 8(2), 79–83 (1989). https://doi.org/10.1016/0167-6377(89)90005-
9

8. Fischetti, M., et al.: Thinning out Steiner trees: a node-based model for uniform
edge costs. Math. Program. Comput. 9(2), 203–229 (2016). https://doi.org/10.
1007/s12532-016-0111-0

9. Gamrath, G., Koch, T., Maher, S.J., Rehfeldt, D., Shinano, Y.: SCIP-Jack—a
solver for STP and variants with parallelization extensions. Math. Program. Com-
put. 9(2), 231–296 (2016). https://doi.org/10.1007/s12532-016-0114-x

10. Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality
gaps for Hypergraphic Steiner tree relaxations. In: Proceedings of the Forty-Fourth
Annual ACM Symposium on Theory of Computing, STOC 2012, pp. 1161–1176.
Association for Computing Machinery, New York, NY, USA (2012). https://doi.
org/10.1145/2213977.2214081

11. Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Elsevier Science,
Annals of Discrete Mathematics (1992)

12. IBM: Cplex (2020). https://www.ibm.com/analytics/cplex-optimizer
13. Iwata, Y., Shigemura, T.: Separator-based pruned dynamic programming for

steiner tree. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 1520–1527 (2019). https://doi.org/10.1609/aaai.v33i01.33011520

14. Juhl, D., Warme, D.M., Winter, P., Zachariasen, M.: The GeoSteiner software
package for computing Steiner trees in the plane: an updated computational study.
Math. Program. Comput. 10(4), 487–532 (2018). https://doi.org/10.1007/s12532-
018-0135-8

15. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J.
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

16. Kisfaludi-Bak, S., Nederlof, J., Leeuwen, E.J.V.: Nearly ETH-tight algorithms for
planar Steiner tree with terminals on few faces. ACM Trans. Algorithms (TALG)
16(3), 1–30 (2020). https://doi.org/10.1145/3371389

https://doi.org/10.4230/LIPIcs.IPEC.2018.26
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1007/0-387-23830-1_4
https://doi.org/10.1002/net.3230190506
https://doi.org/10.1016/0167-6377(89)90005-9
https://doi.org/10.1016/0167-6377(89)90005-9
https://doi.org/10.1007/s12532-016-0111-0
https://doi.org/10.1007/s12532-016-0111-0
https://doi.org/10.1007/s12532-016-0114-x
https://doi.org/10.1145/2213977.2214081
https://doi.org/10.1145/2213977.2214081
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1609/aaai.v33i01.33011520
https://doi.org/10.1007/s12532-018-0135-8
https://doi.org/10.1007/s12532-018-0135-8
https://doi.org/10.1145/3371389

Implications, Conflicts, and Reductions for Steiner Trees 487

17. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Net-
works 32, 207–232 (1998). https://doi.org/10.1002/(SICI)1097-0037(199810)32:3
%3C207::AID-NET5%3E3.0.CO;2-O

18. Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on Steiner tree prob-
lems in graphs. In: Du, D.Z., Cheng, X. (eds.) Steiner Trees in Industries, pp.
285–325. Kluwer (2001)

19. Leitner, M., Ljubic, I., Luipersbeck, M., Prossegger, M., Resch, M.: New Real-
world Instances for the Steiner Tree Problem in Graphs. Technical Report, ISOR,
Uni Wien (2014)

20. Pajor, T., Uchoa, E., Werneck, R.F.: A robust and scalable algorithm for the
Steiner problem in graphs. Math. Program. Comput. 10(1), 69–118 (2017). https://
doi.org/10.1007/s12532-017-0123-4

21. Polzin, T.: Algorithms for the Steiner problem in networks. Ph.D. thesis, Saarland
University (2003)

22. Polzin, T., Daneshmand, S.V.: A comparison of Steiner tree relaxations. Discrete
Appl. Math. 112(1–3), 241–261 (2001)

23. Polzin, T., Daneshmand, S.V.: Improved Algorithms for the Steiner Problem in
Networks. Discrete Appl. Math. 112(1–3), 263–300 (2001). https://doi.org/10.
1016/S0166-218X(00)00319-X

24. Polzin, T., Daneshmand, S.V.: Extending reduction techniques for the Steiner tree
problem. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 795–
807. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6 69

25. Polzin, T., Daneshmand, S.V.: On Steiner trees and minimum spanning trees in
hypergraphs. Oper. Res. Lett. 31(1), 12–20 (2003). https://doi.org/10.1016/S0167-
6377(02)00185-2

26. Polzin, T., Daneshmand, S.V.: Practical partitioning-based methods for the Steiner
problem. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 241–
252. Springer, Heidelberg (2006). https://doi.org/10.1007/11764298 22

27. Polzin, T., Vahdati-Daneshmand, S.: The Steiner Tree Challenge: An updated
Study (2014), unpublished manuscript at http://dimacs11.cs.princeton.edu/
downloads.html

28. Rehfeldt, D., Koch, T.: Implications, conflicts, and reductions for Steiner trees.
Technical Report 20–28, ZIB, Takustr. 7, 14195 Berlin (2020)

29. Rehfeldt, D., Shinano, Y., Koch, T.: SCIP-jack: an exact high performance solver
for Steiner tree problems in graphs and related problems. In: Bock, H.G., Jäger, W.,
Kostina, E., Phu, H.X. (eds.) Modeling, Simulation and Optimization of Complex
Processes HPSC 2018. LNCS, pp. 201–223. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-55240-4 10

30. Rosseti, I., de Aragão, M., Ribeiro, C., Uchoa, E., Werneck, R.: New benchmark
instances for the Steiner problem in graphs. In: Extended Abstracts of the 4th
Metaheuristics International Conference (MIC 2001), pp. 557–561. Porto (2001)

31. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem
in graphs. Math. Japonicae 24, 573–577 (1980)

32. Uchoa, E., Poggi de Aragão, M., Ribeiro, C.C.: Preprocessing Steiner problems
from VLSI layout. Networks 40(1), 38–50 (2002). https://doi.org/10.1002/net.
10035

33. Vahdati Daneshmand, S.: Algorithmic approaches to the Steiner problem in net-
works. Ph.D. thesis, Universität Mannheim (2004)

34. Vygen, J.: Faster algorithm for optimum Steiner trees. Inf. Process. Lett. 111(21),
1075–1079 (2011). https://doi.org/10.1016/j.ipl.2011.08.005

https://doi.org/10.1002/(SICI)1097-0037(199810)32:3%3C207::AID-NET5%3E3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0037(199810)32:3%3C207::AID-NET5%3E3.0.CO;2-O
https://doi.org/10.1007/s12532-017-0123-4
https://doi.org/10.1007/s12532-017-0123-4
https://doi.org/10.1016/S0166-218X(00)00319-X
https://doi.org/10.1016/S0166-218X(00)00319-X
https://doi.org/10.1007/3-540-45749-6_69
https://doi.org/10.1016/S0167-6377(02)00185-2
https://doi.org/10.1016/S0167-6377(02)00185-2
https://doi.org/10.1007/11764298_22
http://dimacs11.cs.princeton.edu/downloads.html
http://dimacs11.cs.princeton.edu/downloads.html
https://doi.org/10.1007/978-3-030-55240-4_10
https://doi.org/10.1007/978-3-030-55240-4_10
https://doi.org/10.1002/net.10035
https://doi.org/10.1002/net.10035
https://doi.org/10.1016/j.ipl.2011.08.005

Author Index

Aprile, Manuel 340
Averkov, Gennadiy 368

Basu, Amitabh 383
Bienstock, Daniel 58
Blauth, Jannis 1
Borst, Sander 427
Buchbinder, Niv 15

Carr, Robert D. 458
Celaya, Marcel 413
Chakrabarty, Deeparnab 268
Chandrasekaran, Karthekeyan 354
Chmiela, Antonia 134
Coester, Christian 15
Conforti, Michele 383

Daboul, Siad 30
Dadush, Daniel 427
de Lima, Vinícius L. 178
Del Pia, Alberto 58, 193
Dey, Santanu S. 148
Di Summa, Marco 383
Drescher, Matthew 340

Eberle, Franziska 283
Eifler, Leon 163
El Housni, Omar 252

Faenza, Yuri 89
Fiorini, Samuel 340

Garg, Paritosh 208
Glanzer, Christoph 238
Gleixner, Ambros 163
Goyal, Vineet 252
Graf, Lukas 104
Gu, Xiaoyi 148

Harks, Tobias 104
Held, Stephan 30
Henk, Martin 413
Hildebrand, Robert 58
Hoeksma, Ruben 283

Hojny, Christopher 368
Huiberts, Sophie 427
Huynh, Tony 340

Iori, Manuel 178
Iwamasa, Yuni 119

Jansen, Klaus 297
Jiang, Hongyi 383
Jordan, Linus 208

Klein, Kim-Manuel 297
Koch, Thorsten 473

Lassota, Alexandra 297
Laurent, Monique 43
Linderoth, Jeff 193

Matoya, Kazuki 223
Mazumder, Rahul 443
Megow, Nicole 283
Miyazawa, Flávio K. 178
Muñoz, Gonzalo 134

Nannicini, Giacomo 311
Naor, Joseph (Seffi) 15
Naves, Guyslain 326
Negahbani, Maryam 268
Nölke, Lukas 283

Oki, Taihei 223

Rehfeldt, Daniel 473
Richard, Jean-Philippe P. 148

Schewior, Kevin 283
Schymura, Matthias 368
Serrano, Felipe 134
Shepherd, Bruce 326
Shmoys, David 252
Simon, Bertrand 283
Simonetti, Neil 458
Slot, Lucas 43
Stallknecht, Ingo 238
Svensson, Ola 208

490 Author Index

Tiwari, Samarth 427
Traub, Vera 1

Verschae, José 73
Villagra, Matías 73
von Niederhäusern, Léonard 73
Vygen, Jens 1, 30

Walter, Matthias 399
Wang, Haoyue 443
Wang, Weihang 354
Weismantel, Robert 238

Xia, Henry 326

Zhang, Xuan 89
Zhu, Haoran 193

	Preface
	Conference Organization
	Contents
	Improving the Approximation Ratio for Capacitated Vehicle Routing
	1 Introduction
	1.1 Formal Problem Description
	1.2 Outline
	1.3 Related Work
	1.4 Review of the Classical Algorithms

	2 Difficult Instances
	3 Vehicle Routing with Target Groups
	4 Clustering Algorithm
	5 Weak Fractional Solutions
	6 Solving Vehicle Routing with Target Groups
	References

	Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual
	1 Introduction
	1.1 Related Work and Known Results
	1.2 Our Contribution

	2 Preliminaries
	3 LP Formulations
	3.1 Dual Transformation

	4 The k-Taxi Problem on HSTs
	4.1 Constructing the Dual Solution
	4.2 Finalizing the Analysis for k-Taxi on HSTs

	5 The k-Taxi Problem on Weighted Trees
	References

	Approximating the Discrete Time-Cost Tradeoff Problem with Bounded Depth
	1 Introduction
	2 Results and Outline
	3 The Vertex Cover LP
	4 Rounding Fractional Vertex Covers in d-Partite Hypergraphs
	5 Inapproximability
	6 Reducing Vertex Deletion to Constant Depth
	References

	Sum-of-Squares Hierarchies for Binary Polynomial Optimization
	1 Introduction
	1.1 The Sum-of-Squares Hierarchy on the Boolean Cube
	1.2 A Second Hierarchy of Bounds
	1.3 Asymptotic Analysis for Both Hierarchies
	1.4 Related Work
	1.5 Overview of the Proof

	2 Sketch of Proof
	2.1 The Polynomial Kernel Technique
	2.2 Fourier Analysis on Bn and the Funk-Hecke Formula
	2.3 Optimizing the Choice of the Univariate Polynomial u
	2.4 The Inner Lasserre Hierarchy and Orthogonal Polynomials

	3 Concluding Remarks
	References

	Complexity, Exactness, and Rationality in Polynomial Optimization
	1 Introduction
	2 Existence of Rational Feasible Solutions
	3 NP-Hardness of Determining Existence of Rational Feasible Solutions
	4 Short Certificate of Feasibility: An Almost Feasible Point
	References

	On the Geometry of Symmetry Breaking Inequalities
	1 Introduction
	2 Preliminaries
	3 The Geometric Structure of Fundamental Domains
	4 Generalized Dirichlet Domains
	4.1 The Lex-Max Fundamental Domain

	5 Overrepresentation of Orbit Representatives
	6 Future Work
	References

	Affinely Representable Lattices, Stable Matchings, and Choice Functions
	1 Introduction
	2 The QF-Model
	3 Affine Representability of the Stable Matching Lattice
	4 Algorithms
	5 The Convex Hull of Lattice Elements: Proof of Theorem2
	References

	A Finite Time Combinatorial Algorithm for Instantaneous Dynamic Equilibrium Flows
	1 Introduction
	1.1 Our Contribution and Proof Techniques
	1.2 Related Work

	2 Model and the Extension-Algorithm
	3 Finite IDE-Construction Algorithm
	4 Computational Complexity of IDE
	5 Conclusion
	References

	A Combinatorial Algorithm for Computing the Degree of the Determinant of a Generic Partitioned Polynomial Matrix with 22 Submatrices
	1 Introduction
	2 Matchings, Potentials, and Min-Max Formulas
	2.1 Matching Concepts
	2.2 Minimax Theorems
	2.3 Elimination

	3 Augmenting Path
	3.1 Definition
	3.2 Finding an Augmenting Path

	4 Augmentation
	4.1 Base Case: R= P0 and P0 Is a Path
	4.2 General Case

	References

	On the Implementation and Strengthening of Intersection Cuts for QCQPs
	1 Introduction
	1.1 Literature Review

	2 Maximal Quadratic-Free Sets and Cut Computations
	2.1 Case 1: I0 = 0 and = 0
	2.2 Case 2: I0 = 0 and > 0
	2.3 Case 3: I0 = 0 and < 0
	2.4 Case 4: I0 =0
	2.5 Implied Quadratics in an Extended Space

	3 Strengthening Procedure
	4 Computational Experiments
	5 Final Remarks
	References

	Lifting Convex Inequalities for Bipartite Bilinear Programs
	1 Introduction
	1.1 Generating Strong Cutting Planes Through Lifting
	1.2 Goal of This Paper
	1.3 Main Contributions
	1.4 Notation and Organization of the Paper

	2 Main Results
	2.1 Sufficient Conditions Under Which Seed Inequalities Can Be Lifted
	2.2 A Framework for Sequence-Independent Lifting
	2.3 A Seed Inequality from a ``Minimal Covering Set''
	2.4 Lifting the Bilinear Cover Inequality (4)

	3 Future Directions
	References

	A Computational Status Update for Exact Rational Mixed Integer Programming
	1 Introduction
	2 Numerically Exact Mixed Integer Programming
	3 Extending and Improving an Exact MIP Framework
	4 Computational Study
	References

	New Exact Techniques Applied to a Class of Network Flow Formulations
	1 Introduction
	2 Network Flow Formulations
	3 Column Generation
	4 Variable Fixing Based on Reduced Costs
	5 A Variable-Selection Method Based on Arcs
	5.1 Advantages of Branching Based on Arc Flow Variables
	5.2 Variable-Selection Based on Arcs
	5.3 Examples of Arc Families

	6 A Solution Method for Network Flow Formulations
	7 An Application to the Cutting Stock Problem
	8 Computational Experiments
	9 Conclusions
	References

	Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets
	1 Introduction
	2 A Dominance Relation
	3 Multi-cover Inequalities
	4 Antichain Multi-cover Inequalities
	5 Facet-Inducing MCI
	6 Conclusion
	References

	Semi-streaming Algorithms for Submodular Matroid Intersection
	1 Introduction
	2 Preliminaries
	3 The Local Ratio Technique for Weighted Matroid Intersection
	3.1 Local-Ratio Technique for Weighted Matching
	3.2 Adaptation to Weighted Matroid Intersection
	3.3 Analysis of Algorithm 1

	4 Making the Algorithm Memory Efficient
	5 More Than Two Matroids
	References

	Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection and Parity Problems
	1 Introduction
	2 Pfaffian Pairs and Pfaffian Parities
	2.1 Preliminaries
	2.2 Pfaffian Pairs and Parities

	3 Combinatorial Examples
	3.1 Perfect Matchings of Pfaffian Graphs
	3.2 Shortest Disjoint S-T-U Paths on Undirected Graphs

	4 Algorithms
	4.1 Counting on Unweighted Pfaffian Pairs and Parities
	4.2 Counting on Weighted Pfaffian Parities

	References

	On the Recognition of {a,b,c}-Modular Matrices
	1 Introduction
	1.1 Our Results

	2 Notation and Preliminaries
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	5 Proof of Theorem 3
	References

	On the Power of Static Assignment Policies for Robust Facility Location Problems
	1 Introduction
	1.1 Our Contributions

	2 Warm-Up: Uncapacitated Robust Facility Location
	2.1 Problem Formulation
	2.2 Static Assignment Policy

	3 Soft-Capacitated Robust Facility Location
	3.1 Problem Formulation
	3.2 An O (logk loglogk)-Approximation Algorithm

	4 Conclusion
	References

	Robust k-Center with Two Types of Radii
	1 Introduction
	2 Detailed Description of Our Approach
	2.1 CGK's Approach and Its Shortcomings
	2.2 Our Idea
	2.3 Discussion

	3 Approximating Well-Separated Robust 2-NUkC
	4 The Main Algorithm: Proof of Theorem 1
	References

	Speed-Robust Scheduling
	1 Introduction
	2 Speed-Robust Scheduling with Infinitesimal Jobs
	2.1 General Speeds
	2.2 Speeds in 0,1

	3 Speed-Robust Scheduling with Discrete Jobs
	4 Speed-Robust Scheduling with Equal-Size Jobs
	4.1 General Speeds
	4.2 Speeds in 0,1

	References

	The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs
	1 Introduction
	2 Advanced Hardness for Quadratic Congruences
	3 Reduction from the Quadratic Congruences Problem
	4 Runtime Bounds for 2-Stage Stochastic ILPs Under ETH
	References

	Fast Quantum Subroutines for the Simplex Method
	1 Introduction
	2 Comparison with the Existing Literature
	3 Overview of the Simplex Method
	4 Quantum Implementation: Overview
	5 Technical Discussion
	References

	Maximum Weight Disjoint Paths in Outerplanar Graphs via Single-Tree Cut Approximators
	1 Introduction
	1.1 A Single-Subtree Cut Sparsifier and Related Results

	2 Single Spanning Tree Cut Approximator in Outerplanar Graphs
	2.1 Converting Flow-Sparsifiers in Outerplanar Graphs to Distance-Sparsifiers in Trees
	2.2 An Algorithm to Build a Distance-Sparsifier of a Tree

	3 Maximum Weight Disjoint Paths
	3.1 Required Elements
	3.2 Proof of the Main Theorem

	4 Conclusions
	References

	A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem
	1 Introduction
	1.1 Our Contribution
	1.2 Comparison to Previous Works
	1.3 Other Related Works
	1.4 Overview of the Proof

	2 Finding 2-good Induced Subgraphs
	2.1 Restricting to Chordal, 2P3-free Neighborhoods
	2.2 The Twin-Free Case
	2.3 Handling True Twins in G[N[v0]]
	2.4 Putting Things Together

	3 Conclusion
	References

	Fixed Parameter Approximation Scheme for Min-Max k-Cut
	1 Introduction
	1.1 Results
	1.2 Outline of Techniques

	2 Tools for the Fixed-Parameter Algorithm
	3 Fixed-Parameter Algorithm Parameterized by k and Solution Size
	4 Conclusion
	References

	Computational Aspects of Relaxation Complexity
	1 Introduction
	2 Computable Bounds on the Relaxation Complexity
	3 Computational Complexity in Dimension 2
	4 Discrete Rectangular Boxes
	5 Numerical Experiments
	References

	Complexity of Branch-and-Bound and Cutting Planes in Mixed-Integer Optimization - II
	1 Introduction
	1.1 Framework for Mathematical Analysis
	1.2 Our Results

	2 Proofs
	2.1 Proof of Theorem 1
	2.2 Proof of Theorem 2
	2.3 Proofs of Theorems 5 And 6

	References

	Face Dimensions of General-Purpose Cutting Planes for Mixed-Integer Linear Programs
	1 Introduction
	2 Computing the Dimension of a Face
	3 Measuring the Strength of a Single Inequality
	4 Computational Study
	A Additional Plots
	References

	Proximity Bounds for Random Integer Programs
	1 Introduction
	2 Main Result and Notation
	2.1 Notation
	2.2 Definition of dist(A)
	2.3 Definition of dist()
	2.4 An Asymptotic Version of dist()
	2.5 Main Result

	3 A Theorem of Schmidt
	4 Typical Cramer's Rule Ratios
	4.1 The Real Grassmannian
	4.2 Probability Spaces
	4.3 Cramer's Rule Ratios

	5 Proof of Main Result
	References

	On the Integrality Gap of Binary Integer Programs with Gaussian Data
	1 Introduction
	1.1 Techniques
	1.2 Relation to Branch and Bound
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Basic Notation
	2.2 The Dual Program, Gap Formula and the Optimal Solutions
	2.3 Gaussian and Sub-Gaussian Random Variables
	2.4 A Local Limit Theorem
	2.5 Rounding to Binary Solutions

	3 Properties of the Optimal Solutions
	4 Properties of the 0 Columns
	5 Proof of Theorem1
	References

	Linear Regression with Mismatched Data: A Provably Optimal Local Search Algorithm
	1 Introduction
	2 A Local Search Method
	3 Theoretical Guarantees for Local Search
	3.1 A Restricted Eigenvalue (RE) Condition
	3.2 One-Step Decrease
	3.3 Main Results

	4 Experiments
	5 Appendix: Proofs and Technical Results
	5.1 Proof of Lemma1
	5.2 Proof of Lemma2
	5.3 Proof of Claim (3.14) in Theorem1

	References

	A New Integer Programming Formulation of the Graphical Traveling Salesman Problem
	1 Introduction
	2 Basic Formulations
	2.1 Symmetric TSP
	2.2 Symmetric GTSP

	3 New Constraints
	3.1 Enforcing Even Degree Without Disjunctions
	3.2 Spanning Tree Constraints

	4 A New Mixed IP Formulation
	4.1 Proving the Formulation
	4.2 Addressing the Naddef Challenge

	5 Relaxations and Steiner Nodes
	5.1 Symmetric GTSP with Steiner Nodes
	5.2 Preventing the Half-z Path Without Spanning Trees
	5.3 Removing Steiner Nodes

	6 Computational Results
	References

	Implications, Conflicts, and Reductions for Steiner Trees
	1 Introduction
	1.1 Contribution
	1.2 Preliminaries and Notation

	2 From Implications to Reductions
	2.1 The Bottleneck Steiner Distance
	2.2 A Stronger Bottleneck Concept
	2.3 Bottleneck Steiner Reductions Beyond Edge Deletion

	3 From Reductions to Conflicts
	3.1 Node Replacement
	3.2 Edge Replacement

	4 From Steiner Distances and Conflicts to Extended Reduction Techniques
	4.1 The Framework
	4.2 Reduction Criteria

	5 Exact Solution
	5.1 Branch-and-cut
	5.2 Computational Results

	6 Outlook
	References

	Author Index

