
Chapter 4
Classical and Weak Solutions,
Relative Energy

The concept of weak (distributional) solution for general systems of conserva-
tion/balance laws was introduced in Sect. 1.1.1 and discussed in Chaps. 2, 3. Here,
we revisit the topic in detail for the Euler and Navier–Stokes systems. In the former
case, we show the class is possibly not closed with respect to the available weak
topologies induced by a priori bounds; whence extension of this concept to a larger
class of objects is of interest. A similar problem for the Navier–Stokes system ismore
subtle. Although, as we have seen in Chap. 3, the set of weak solutions is closed for
certain models, the necessary estimates may not be easily available at the level of a
numerical scheme. This is the main reason why to extend the class of weak solutions
to some models of viscous fluids as well.

Given a time interval (0,T ) and a spatial domain � ⊂ Rd , we say that a solution
is classical if it is continuous in the closed set [0,T ] × �, and if all relevant partial
derivatives exist and are continuous in the open set (0,T ) × �. If the boundary
conditions involve derivatives, then those must be continuously extendable from
(0,T ) × � to (0,T ) × �. Thus this issue is inseparable from thegeometric properties
and, in particular, the smoothness of the boundary ∂�. In particular, if the boundary
conditions involve the outer normal vector, then the latter must exist at any point
of ∂�. The equations as well as the boundary and initial conditions are satisfied
pointwise.

In the literature, the notion of smooth solution and/or smooth domain is frequently
used. Very often, “smooth” in this context does not mean of classC∞ or even analytic
but should be interpreted as “sufficiently smooth” or “as smooth as necessary”. We
try to avoid this a bit dubious and misleading terminology. The term strong solution
will be used in the situation when all required derivatives, expressed in terms of the
theory of distributions, can be interpreted as (locally) integrable functions.

In this chapter, we focus on the relation between weak and strong solutions. In
particular, we introduce the concept of relative energy functional. This quantity is
derived from the total energy E of the system, and, if the latter is a convex function
of the state variables, represents a Bregman distance with respect to the (convex)
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total energy E, see e.g. Sprung [185]. In particular, the relative energy can be used to
measure the distance between a weak and strong solution starting from different (or
identical) initial data. The relative energy vanishes if the data are the same for both
solutions which is the desired weak-strong (WS) property. The relative energy may
be seen as an alternative to the relative entropy functional introduced in the context
of nonlinear conservation laws by Dafermos [59]. The approach based on the relative
entropy requires integrability of the (total) energy flux. Therefore the method based
on relative energy rather than entropy works efficiently in the context of weak and
even more general dissipative solutions for the Euler and Navier–Stokes system, for
which the available a priori bounds are not strong enough to render the total energy
flux integrable.

Convexity of the total energy with respect to a suitable set of state variables plays
a crucial role here that is intimately related to the property of thermodynamic stability
of the fluid system. The interpretation of the notion of thermodynamic stability can be
twofold: (1) certainmaterial constants as compressibility and specific heat at constant
volume are nonnegative, (2) equilibrium states are (linearly) stable, cf. Bechtel etal.
[14].We provide a unified approach identifying the relative energy with the Bregman
distance associated to total energy.

4.1 Weak and Strong Solutions to the Euler System

The Euler system has been introduced in Chap. 2. As we have seen, there are several
possible choices of basic field variables and, accordingly, the formulation of the field
equations:

• Standard (orprimitive) variables. Themass density�, the (absolute) temperature
ϑ , the velocity u.

• Conservative variables. The mass density �, the (total) energy E, the momentum
m.

• Conservative-entropy variables. The mass density �, the (total) entropy S, the
momentum m.

Of course, there are other (infinitely many) possibilities how to choose the set of
independent field variables.

Recall that

m = �u, E = 1

2

|m|2
�

+ �e, S = �s,

where the internal energy e, the pressure p, and the entropy s satisfy Gibbs equation

ϑDs = De + pD

(
1

�

)
. (4.1)
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In (4.1), the symbol D denotes a differential (gradient) with respect to either [�, ϑ],
[�, S] or any other choice of the independent parameters.

The field equations written in the standard variables read:

∂t� + divx(�u) = 0 in (0,T ) × �; (4.2)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�, ϑ) = 0 in (0,T ) × �; (4.3)

∂t

(
1

2
�|u|2 + �e(�, ϑ)

)
+ divx

[(
1

2
�|u|2 + �e(�, ϑ) + p(�, ϑ)

)
u
]

= 0 in (0, T ) × �.

(4.4)
Furthermore we consider the impermeability boundary conditions

u · n|∂� = 0, (4.5)

or, alternatively, the periodic boundary conditions � = T
d .

In some real world applications, for instance inmeteorology, it is more convenient
to express the pressure p = p(�, s) as a function of the density and the entropy and
to rewrite the Euler system in the form

∂t� + divx(�u) = 0 in (0,T ) × �; (4.6)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�, s) = 0 in (0,T ) × �; (4.7)

∂ts + ∇xs · u = 0 in (0,T ) × �. (4.8)

The entropy s satisfies the transport equation (4.8) and it is easy to see that

∂tZ(s) + ∇xZ(s) · u = 0 in (0,T ) × � (4.9)

as soon Z is a continuously differentiable function. In particular, if Z ′ > 0, we may
replace s by Z and write p = p(�,Z) obtaining a new problem in terms of [�,u,Z].
The limit case Z → const gives rise to the isentropic (barotropic) Euler system with
p = p(�),

∂t� + divx(�u) = 0 in (0,T ) × �; (4.10)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�) = 0 in (0,T ) × �. (4.11)

Although the systems (4.2)–(4.4) and (4.6)–(4.9) are completely equivalent in the
framework of classical solutions, for which � > 0, ϑ > 0, they give rise to quali-
tatively different weak formulations of the Euler system. We will discuss this issue
later in this chapter.
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4.1.1 Classical Solutions to the Euler System

In this section, we suppose that � ⊂ Rd is a bounded domain with a boundary of
class C1. In particular, the outer normal vector exists at any point x ∈ ∂�.

Definition 4.1 (CLASSICAL SOLUTION TO THE EULER SYSTEM) We say that
a trio [�, ϑ,u] is a classical solution of the Euler system (4.2)–(4.4), with the imper-
meability boundary condition (4.5), if

� ∈ C([0,T ] × �) ∩ C1((0,T ) × �) ∩ W 1,∞((0,T ) × �),

ϑ ∈ C([0,T ] × �) ∩ C1((0,T ) × �) ∩ W 1,∞((0,T ) × �),

u ∈ C([0,T ] × �;Rd ) ∩ C1((0,T ) × �;Rd ) ∩ W 1,∞((0,T ) × �;Rd );

0 < � ≤ �(t, x), 0 < ϑ ≤ ϑ(t, x) for any t ∈ [0,T ], x ∈ �,

u(t, x) · n(x) = 0 for any t ∈ [0,T ], x ∈ ∂�;

and the equations (4.2)–(4.4) hold.

Remark 4.1 Here we have tacitly assumed that both p = p(�, ϑ) and e = e(�, ϑ)

are continuously differentiable for � and ϑ bounded below away from zero.

Remark 4.2 (Strong solutions) We speak about strong solutions if [�, ϑ,u] are
required to be only (globally) Lipschitz continuous.

Remark 4.3 (Periodic boundary conditions, Lipschitz domain) The above definition
can bemodified in an obvious way to accommodate the periodic boundary conditions
� = T

d , where, of course the issue of boundary regularity is irrelevant. We recall
that Td can be viewed as a smooth manifold over Rd without boundary.

The requirement of the existence of the outer normal vector at any boundary point
of � is rather restrictive. Recall that Lipschitz domains admit an normal vector for
a.a. boundary point x ∈ �, where the latter is endowed with the standard (d − 1)-
Hausdorff measure. The above definition extends to this case in a direct manner. The
impermeability or zero normal trace condition (4.5) can be also reformulated in a
weak form

∫
�

u(t, ·) · ∇xφ dx +
∫
�

φdivxu(t, ·) dx = 0 for any φ ∈ C1
c (R

d ), t ∈ [0,T ].

(4.12)

Obviously, any classical solution of the Euler system written in the form (4.2)–
(4.4) is also a classical solution of the entropy formulation (4.6)–(4.8) as long as the
thermodynamic functions are interrelated through Gibbs’ equation (4.1).

As we observed in Sect. 2.1.2, classical solutions develop shock singularities in
a finite time for a fairly general class of initial data. They obviously violate the
existence condition (E) postulated in the introductory section of this part. Their
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application in the numerical analysis is therefore limited to the regime, where their
life span exceeds the time desired for prediction. A relevant example is the Euler
system in the low Mach number regime, considered often in meteorology, where
the fluid velocity is largely dominated by the speed of sound and the occurrence of
shocks is not expected. Still we are very far from a rigorous proof of such a statement,
in particular in the physically relevant 3D-case.

4.1.2 Weak (Distributional) Solutions to the Barotropic
Euler System

We revisit our discussion concerning weak (distributional) solutions starting with the
barotropic Euler system (4.10), (4.11), where the theory is quite simple, elegant, and
self-contained. Formally, the definition is obtained viamultiplying the field equations
(4.10), (4.11) on a suitable test function and declaring the resulting identity to be a
proper definition of the weak solution. Following these lines, we obtain, exactly as
in Sect. 2.1.3,

⎡
⎣∫

�

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�∂tϕ + �u · ∇xϕ

]
dx dt (4.13)

for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0,T ] × �);

⎡
⎣∫

�

�u · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ + p(�)divxϕ

]
dx dt

(4.14)
for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0,T ] × �;Rd ), ϕ · n|∂� = 0.

Given the recent state of the art discussed in Chap. 2, such a definition complies
with the existence principle (E) as well as with the compatibility principle (C).
Specifically, the weak solutions satisfying “only” (4.13), (4.14) exist globally in
time for any (continuous) initial data, cf. [1]. However, the problem is desperately
ill-posed even in the class of smooth initial data (the reader may consult the literature
collected in Sect. 2.4). In particular, the weak-strong uniqueness principle (WS) is
violated unless suitable admissibility conditions are imposed. To identify the class
of suitable admissible solutions, we append (4.13), (4.14) by the energy inequality

⎡
⎣∫

�

(
1

2
�|u|2 + P(�)

)
dx

⎤
⎦

t=τ

t=0

≤ 0 (4.15)
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for any 0 ≤ τ ≤ T , where P is the pressure potential satisfying

P′(�)� − P(�) = p(�).

It is easy to check the P is uniquely determined by p modulo a linear function of �.
On the other hand, as the boundary is impermeable, the total mass

M =
∫
�

�(t, x) dx

is a constant of motion; whence (4.15) remains unchanged for any affine perturbation
of P.

Boundedness of the total energy/mass in terms of the initial data is basically
the only available source of a priori (stability) estimates for the Euler system. The
weak point of the formulation (4.13)–(4.15) in terms of the standard variables is that
the velocity u is not controlled by the energy on the (hypothetical) vacuum region
where � = 0. It is therefore more convenient to consider the conservative variables
[�,m = �u] which give rise to the concept of weak solution for the barotropic Euler
system introduced in Definition 2.5 that we now reproduce for convenience:

Definition 4.2 (WEAK SOLUTION OF BAROTROPIC EULER SYSTEM) A pair
[�,m] is an admissible weak solution of the barotropic Euler system (4.10), (4.11)
with the impermeability boundary condition (4.5) in (0,T ) × � if the following
holds:

• (weak continuity) the quantities �, m belong to the class

� ∈ Cweak([0,T ];Lγ (�)), � ≥ 0 a.a. in (0,T ) × �

m ∈ Cweak([0,T ];L 2γ
γ+1 (�;Rd ))

(4.16)

for some γ > 1;
• (equation of continuity) the integral identity

⎡
⎣∫

�

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�∂tϕ + m · ∇xϕ

]
dx dt (4.17)

holds for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1([0,T ] × �);
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• (momentum equation) the integral identity

⎡
⎣∫

�

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
m · ∂tϕ +

(
1�>0

m ⊗ m
�

)
: ∇xϕ + p(�)divxϕ

]
dx dt

(4.18)

holds for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1([0,T ] × �;Rd ),
ϕ · n|∂� = 0;

• (energy inequality) the integral inequality

⎡
⎣∫

�

(
1

2

|m|2
�

+ P(�)

)
ψ dx

⎤
⎦

t=τ

t=0

≤
τ∫

0

∫
�

(
1

2

|m|2
�

+ P(�)

)
∂tψ dx dt (4.19)

holds for any test function ψ ∈ C1[0,T ], ψ ≥ 0.

Remark 4.4 (Initial data) In the above, we have assumed

�(0, ·) = �0, m(0, ·) = m0,

where �0, m0 are the initial data, with the initial energy

∫
�

[
1

2

|m0|2
�0

+ P(�0)

]
dx < ∞.

Here, the kinetic energy 1
2

|m|2
�

is interpreted as a convex l.s.c. function via formula
(2.60).

Keeping in mind the canonical example of the isentropic pressure p(�) = a�γ ,
we suppose

p ∈ C1[0,∞) ∩ C2(0,∞), p(0) = 0, p′(�) > 0 for � > 0,

0 < lim inf
�→∞

p′(�)

�γ−1
≤ lim sup

�→∞
p′(�)

�γ−1
< ∞ (4.20)

for some γ > 1. Seeing that

P′′(�) = p′(�)

�
for � > 0



86 4 Classical and Weak Solutions, Relative Energy

we easily deduce that the pressure potential P is a strictly convex function of �, and

|p(�)| <∼
(
c + P(�)

)
for a suitable c > 0. (4.21)

This means that all nonlinearities appearing in the momentum equation (4.19) are
controlled in the L1 norm by the total energy. More precisely, we have the following
result.

Proposition 4.1 (Uniform stability estimates for barotropic Euler system) Let
� ⊂ Rd be a bounded domain. Let the pressure p = p(�) satisfy (4.20) with γ > 1.
Suppose that [�,m] is an admissible weak solution of the Euler system in the sense
of Definition 4.2, with the initial data [�0,m0] such that

∫
�

[
1

2

|m0|2
�0

+ P(�0)

]
dx = E0 < ∞. (4.22)

Then

sup
t∈[0,T ]

∥∥∥∥1�>0
m ⊗ m

�
(t, ·)

∥∥∥∥
L1(�;Rd×d )

≤ c(E0),

sup
t∈[0,T ]

‖�(t, ·)‖Lγ (�) ≤ c(E0), sup
t∈[0,T ]

‖p(�)(t, ·)‖L1(�) ≤ c(E0),

sup
t∈[0,T ]

‖m(t, ·)‖
L

2γ
γ+1 (�;Rd )

≤ c(E0).

(4.23)

Remark 4.5 Recall that the total energy is defined as a convex function of [�,m]
via (2.60). In particular, hypothesis (4.22) entails nonnegativity of the initial density
as well as a compatibility condition of the initial momentum on the vacuum zone,

�0 ≥ 0, and �0 = 0 ⇒ m0 = 0 a.a. in �.

Proof Taking ψ ≡ 1 in the energy inequality (4.19) we obtain

∫
�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx ≤ E0 for any τ ∈ [0,T ]. (4.24)

Note that the above inequality is indeed valid for any τ ∈ [0,T ] as the energy is
convex and both � and m are weakly continuous as functions of the time.

In view of the hypothesis (4.20), the bound (4.24) gives rise to all estimates
claimed in (4.23). Indeed to see the last bound in (4.23) write

m = 1�>0
m√
�

√
�;
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whence, by Hölder’s inequality,

‖m‖
L

2γ
γ+1 (�;Rd )

≤
∥∥∥∥1�>0

m√
�

∥∥∥∥
L2(�;Rd )

‖√�‖L2γ (�) ≤ c(E0).

As pointed out in Remark 4.5, boundedness of the kinetic energy given by (2.60)
implies that m = 0 a.a. on the vacuum set {� = 0}. �

Proposition 4.1 may be seen as the first step towards the stability property (S). The
set of allweak solutions emanating fromabounded set of initial data remains bounded
uniformly in time. This definitely implies stability in suitableLp-topologies, however,
oscillations and/or concentrations may still appear and the set of weak solutions in
the sense of Definition 4.2 is not likely to be closed (sequentially stable). We discuss
this issue in detail in the concluding part of this chapter.

4.1.3 Relative Energy for the Barotropic Euler System

Relative energy is a simple but extremely useful tool in the analysis of nonlinear
systems. It may be seen as a variant of the concept of Bregman distance (divergence)
known in convex analysis, where the underlying convex potential is the total energy.
Closely related is the concept of relative entropy frequently used in the analysis of
conservation laws. For technical reasons that become evident in the forthcoming
part of this chapter, relative energy seems better adapted to the rather poor stability
bounds available for the Euler system. The possibility to compute effectively the
time evolution of the relative energy on the sole basis of the weak formulation of
the Euler system is the key ingredient of the proof of weak-strong uniqueness (WS)
property. The relative energy for the barotropic Euler system is formally defined as

E
(
�,m

∣∣∣̃�, ũ
)

= 1

2

( |m|2
�

− 2m · ũ + �|̃u|2
)

+ P(�) − P′(̃�)(� − �̃) − P(̃�).

(4.25)
Here [�,m] represents an admissible weak solution of the barotropic Euler system,
while �̃, ũ play a role of “test” functions. The first expression is rather awkward and
should be interpreted as follows: As the energy of the weak solution [�,m] is finite,
we have

1

2

(
|m|2
�

− 2m · ũ + �|̃u|2
)

= 1

2
1�>0

(
|m|2
�

− 2m · ũ + �|̃u|2
)

= 1�>0
1

2
�|u − ũ|2,

(4.26)
where we have set u = m

�
on the set where � > 0. Thus if P is convex, meaning

p′ ≥ 0, and [�,m] represent an admissible weak solution, then E(�,m|̃�, ũ) ≥ 0 a.a.
in (0,T ) × �.
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Denoting

E(�,m) = 1

2

|m|2
�

+ P(�)

we can be interpret the relative energy as the Bregman distance

E
(
�,m

∣∣∣̃�, ũ
)

= B
ξ
E

(
�,m

∣∣∣̃�, m̃
)

= E(�,m) − ξ · (� − �̃,m − m̃) − E(̃�, m̃),

m̃ = �̃ũ, ξ ∈ ∂E(̃�, m̃),

associated to the convex potential E = E[�,m], see e.g. Sprung [185]. Bregman
distance is not symmetric, therefore not a proper metric. However, the following
holds:

E
(
�,m

∣∣∣̃�, ũ
)

≥ 0 and E
(
�,m

∣∣∣̃�, ũ
)

= 0 ⇔ � = �̃, m = �̃ũ.

Remark 4.6 Strictly speaking, the relative energy should be written entirely in con-
servative variables,

E
(
�,m

∣∣∣̃�, m̃
)

= 1

2

( |m|2
�

− 2m · m̃
�̃

+ �

�̃2
|m̃|2

)
+ P(�) − P′(̃�)(� − �̃) − P(̃�),

which is consistent with its interpretation as Bregman distance. Considering the test
functions in the standard variables, however, is more suitable in the applications,
notably in the proof of weak-strong uniqueness.

Our goal is to compute

⎡
⎣∫

�

E
(
�,m

∣∣∣̃�, ũ
)

dx

⎤
⎦
t=τ

t=0

=
⎡
⎣∫

�

[
1

2

|m|2
�

+ P(�)

]
dx

⎤
⎦
t=τ

t=0

−
⎡
⎣∫

�

m · ũ dx

⎤
⎦
t=τ

t=0

+
⎡
⎣∫

�

�

(
1

2
|̃u|2 − P′(̃�)

)
dx

⎤
⎦
t=τ

t=0

+
⎡
⎣∫

�

p(̃�) dx

⎤
⎦
t=τ

t=0

.

Remarkably, all integrals on the right-hand side can be evaluated by means of the
weak formulation as soon as ϕ = (

1
2 |̃u|2 − P′(̃�)

)
can be taken as a test function

in (4.17), and ϕ = ũ as a test function in (4.18). To this end, we impose an extra
hypothesis

ũ ∈ C1([0,T ] × �;Rd ), ũ · n|∂� = 0, �̃ ∈ C1([0,T ] × �), �̃ > 0 in [0,T ] × �.

(4.27)
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Accordingly, we have

⎡
⎣∫

�

[
1

2

|m|2
�

+ P(�)

]
dx

⎤
⎦

t=τ

t=0

≤ 0, (4.28)

⎡
⎣∫

�

m · ũ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
m · ∂t ũ +

(
1�>0

m ⊗ m
�

)
: ∇xũ + p(�)divxũ

]
dx dt,

(4.29)
and

⎡
⎣∫

�

�

(
1

2
|̃u|2 − P′(̃�)

)
dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�ũ · ∂t ũ + m · ũ · ∇xũ

]
dx dt

−
τ∫

0

∫
�

[
�P′′(̃�)∂t �̃ + P′′(̃�)m · ∇x�̃

]
dx dt

=
τ∫

0

∫
�

[
�ũ · ∂t ũ + 1�>0

m
�

· �ũ · ∇xũ
]

dx dt

−
τ∫

0

∫
�

[
�P′′(̃�)∂t �̃ + P′′(̃�)m · ∇x�̃

]
dx dt.

Regrouping several termsweobtain, after a straightforwardmanipulation, the relative
energy inequality for the barotropic Euler system,

[ ∫
�

E
(
�,m

∣∣∣̃�, ũ
)

dx
]t=τ

t=0
≤ −

τ∫
0

∫
�

1�>0�∇xũ ·
(
m
�

− ũ
)

·
(
m
�

− ũ
)

dx dt

−
τ∫

0

∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divxũ dx dt

+
τ∫

0

∫
�

1

�̃
(�ũ − m) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇xp(̃�)

]
dx dt

+
τ∫

0

∫
�

[(
1 − �

�̃

)
p′(̃�) + 1

�̃
ũ · (m − �ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt.

(4.30)
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Now, it is clear how the weak-strong uniqueness property (WS) can be deduced
from (4.30). On condition that the problem admits a strong solution �̃, �̃ > 0, and
m̃ = �̃ũ belonging to the class (4.27), the quantities �̃, ũ can be used as test functions
in (4.30). As �̃ and ũ represent a strong solution, the last two integrals vanish while
the first two can be “absorbed” by the left-hand side via a Gronwall type argument.
We postpone the proof to the end of this section. In Chap. 5 we actually show a more
general result.

Going back to Definition 4.1, we observe that the class of strong solutions is
slightly larger than (4.27). It is therefore desirable to extend validity of the relative
energy inequality (4.30) to a larger class of functions. Given the rather limited avail-
able integrability of the weak solutions, the optimal result in this direction is to allow
�̃ and ũ to be only Lipschitz continuous. We need the following auxiliary result.

Lemma 4.1 Let � ⊂ Rd be a bounded domain of class C2. Suppose that

�̃ ∈ W 1,∞((0,T ) × �), inf
t∈(0,T ),x∈�

�̃(t, x) > 0,

ũ ∈ W 1,∞((0,T ) × �;Rd ), ũ · n|∂� = 0.

Then there exist sequences

{�n}∞n=1, �n ∈ C1([0,T ] × �), inf
x∈�

�n(x) > 0 uniformly for n = 1, 2, . . . ,

{un}∞n=1, un ∈ C1([0,T ] × �;Rd ), un · n|∂� = 0 for all n = 1, 2, . . .

such that
�n → �̃ in W 1,p((0,T ) × �) for any 1 ≤ p < ∞

and weakly-(*) in W 1,∞((0,T ) × �);
un → ũ in W 1,p((0,T ) × �;Rd ) for any 1 ≤ p < ∞,

and weakly-(*) in W 1,∞((0,T ) × �;Rd ).

Moreover,
‖∇x�n‖L∞((0,T )×�;Rd ) ≤ c

(
�; ‖∇x�̃‖L∞((0,T )×�;Rd )

)
,

‖∇xun‖L∞((0,T )×�;Rd×d ) ≤ c
(
�; ‖∇xũ‖L∞((0,T )×�;Rd×d )

) (4.31)

uniformly for n → ∞.

Proof Step 1:

As �̃ and ũ are globally Lipschitz on [0,T ] × �, they can be extended to the whole
space Rd+1 in such a way that

�̃ ∈ W 1,∞(Rd+1), ũ ∈ W 1,∞(Rd+1;Rd ).
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Using the standard regularization procedure, we may construct a sequence �n ∈
C∞(Rd+1) such that

‖�n‖W 1,∞(K) ≤ c(K) uniformly for n → ∞

�n → �̃ in C(K), ∂t�n → ∂t �̃, ∇x�n → ∇x�̃ a.a. in K

for any compact K ⊂ Rd , which completes the proof for �̃. As a matter of fact, this
procedure can carried over on arbitrary bounded domain as the extension theorem
holds.

Step 2:

Obviously, the same treatment can be applied to ũ, however, we have to preserve the
property of zero normal trace for the approximate sequence. First, we observe that
regularization in time can be done in the same way as above. To simplify the proof,
we shall therefore suppose that ũ = ũ(x) is a function of x only.

As the boundary is of class C2, there is an open neighborhood U of ∂� such that
the distance function

d(x) = dist[x, ∂�] is of class C2(U).

Next, write

ũ = v + w, where v ∈ W 1,∞ ∩ Cc(�;Rd ), w ∈ W 1,∞ ∩ Cc(� ∩ U;Rd ).

The function v can be approximated in the same way as in Step 1.
Finally, we write w as

w = [w · ∇xd ]∇xd − ∇xd × (∇xd × w).

Note that ∇xd is a unit vector of class C1(U;Rd ),

∇xd(x) = −n(x) for x ∈ ∂�. (4.32)

Thus applying the approximation procedure of Step 1 to w, we obtain a sequence
{wn}∞n=1 of class C

1,

∇xd × (∇xd × wn) → ∇xd × (∇xd × w) in W 1,p(�;Rd ) for any 1 ≤ p < ∞,

and weakly-(*) in W 1,∞(�;Rd ).

Obviously, ∇xd × (∇xd × wn) · n|∂� = 0 for any n = 1, 2, . . . .
As the normal component of w vanishes on ∂�, we have

wN = (w · ∇xd) in W 1,∞
0 (U ∩ �).
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Consequently, there is a sequence of smooth functions WN
n ∈ C∞

c (U ∩ �) such that

wN
n → WN in W 1,p

0 (U ∩ �) and weakly-(*) inW 1,∞
0 (U ∩ �)

We therefore conclude

wN
n ∇xd → [w · ∇xd ]∇xd in W 1,p

0 (U ∩ �;Rd ) and weakly-(*) inW 1,∞
0 (U ∩ �;Rd ).

�

4.1.3.1 Relative Energy Inequality

In view of Lemma 4.1, we may summarize the previous discussion in the following
statement.

Theorem 4.1 (Relative energy inequality for barotropic Euler system) Let
� ⊂ Rd , d = 2, 3, be a bounded domain of class C2. Let �, m be an admissi-
ble weak solution of the barotropic Euler system (4.10), (4.11) in (0,T ) × �, with
the impermeability boundary condition (4.5), in the sense of Definition 4.1, where
p ∈ C1[0,∞) ∩ C2(0,∞).

Let �̃, ũ be (test) functions belonging to the class

�̃ ∈ W 1,∞((0,T ) × �), inf
(t,x)∈(0,T )×�

�̃(t, x) > 0,

ũ ∈ W 1,∞((0,T ) × �;Rd ), ũ · n|∂� = 0.
(4.33)

Then the relative energy inequality

[ ∫
�

E
(
�,m

∣∣∣̃�, ũ
)

dx
]t=τ

t=0
≤ −

τ∫
0

∫
�

1�>0�∇xũ ·
(
m
�

− ũ
)

·
(
m
�

− ũ
)

dx dt

−
τ∫

0

∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divxũ dx dt

+
τ∫

0

∫
�

1

�̃
(�ũ − m) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇xp(̃�)

]
dx dt

+
τ∫

0

∫
�

[(
1 − �

�̃

)
p′(̃�) + 1

�̃
ũ · (m − �ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt.

(4.34)
holds for any 0 ≤ τ ≤ T .

Remark 4.7 The previous result can be extended to unbounded domains, and, obvi-
ously, to the case of periodic boundary conditions � = T

d .
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Remark 4.8 As amatter of fact, the total energy need not be a nonincreasing function
as required in (4.19). For the relative energy inequality to hold, it is enough that

∫
�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx ≤

∫
�

[
1

2

|m0|2
�0

+ P(�0)

]
dx

for any 0 ≤ τ ≤ T .

4.1.3.2 Weak-Strong Uniqueness

The weak-strong uniqueness property (WS) is a straightforward corollary of the
relative energy inequality established inTheorem4.1.As amatter of fact,we establish
a more general result later in Chap. 5.

Theorem 4.2 (Weak-strong uniqueness) Let � ⊂ Rd , d = 2, 3, be a bounded
domain of class C2. Let �, m be an admissible weak solution of the barotropic
Euler system (4.10), (4.11) in (0,T ) × �, with the impermeability boundary condi-
tion (4.5), in the sense ofDefinition 4.2. Let the pressure p satisfy the growth condition
(4.20). Let �̃, ũ be a strong solution of the same problem belonging to the class

�̃ ∈ W 1,∞((0,T ) × �), inf
(t,x)∈(0,T )×�

�̃(t, x) > 0,

ũ ∈ W 1,∞((0,T ) × �;Rd ), ũ · n|∂� = 0,

and such that
�(0, ·) = �̃(0, ·), m(0, ·) = �̃(0, ·)̃u(0, ·).

Then
� = �̃, m = �̃ũ in (0,T ) × �.

Proof The proof is an easy application of the relative energy inequality (4.34) in
combination with the standard Gronwall type argument. Indeed plugging the strong
solution in (4.34) we have only to observe that

∣∣∣
∫
�

1�>0�∇xũ ·
(
m
�

− ũ
)

·
(
m
�

− ũ
)

dx
∣∣∣

+
∣∣∣∣∣∣
∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divxũ dx

∣∣∣∣∣∣
<∼ c (‖∇xũ‖L∞ , ‖̃�‖L∞)

∫
�

E
(
�,m

∣∣∣̃�, ũ
)

dx.

(4.35)
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As the pressure satisfies (4.20), the pressure potential P is strictly convex; whence

|p(�) − p′(̃�)(� − �̃) − p(̃�)| ≤ c (min �̃,max �̃)
(
P(�) − P′(̃�)(� − �̃) − P(̃�)

)
(4.36)

whenever

� ∈
[
1

2
min

(0,T )×�
�̃, 2 max

(0,T )×�
�̃

]
.

Next, by the same token,

inf
0≤�≤ 1

2 min(0,T )×� �̃

(
P(�) − P′(̃�)(� − �̃) − P(̃�)

)
> 0

and, by virtue of (4.21), the inequality (4.36) holds also in the regime � ≥ 2
max(0,T )×� �̃. Clearly (4.36) implies (4.35). �

Remark 4.9 (Domain regularity) The assumption on regularity of the spatial domain
� may seem rather restrictive, in particular in numerical applications, where the
underlying domain is typically a polygon. Note, however, that existence of a smooth
solution requires similar restrictions. Fortunately, the problem is irrelevant in the
case of periodic boundary conditions.

4.1.3.3 Relative Energy—Summary

With future applications of the method in mind, we conclude by collecting the prin-
cipal steps of the proof of the weak-strong (WS) uniqueness principle:

• Conservative state variables. Identify a suitable set conservative state variables,
the time evolution of which can be expressed in terms of the weak formulation.
These quantities enjoy certain kind of continuity in the time variable.

• Convex energy. Express the total energy as a convex function of these state vari-
ables.

• Relative energy. Relative energy is the (integrated) Bregman distance associated
to the energy between a weak solutions and suitable test functions. Its time evo-
lution can be identified by means of the energy balance and the weak formulation
of the field equations. The energy balance is indispensable at this stage; whence
only admissible weak solutions are eligible.

• Weak-strong uniqueness principle. Use the strong solution as a test function in
the relative energy inequality.
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4.1.4 Weak (Distributional) Solutions to the Complete Euler
System

The weak solutions to the complete Euler system have been introduced in Sect.
2.1.3. Unfortunately, however, the bounds provided by the energy balance Eq. (4.4),
are not strong enough to control the energy flux

(
1

2
�|u|2 + �e

)
u + pu

in the space of integrable functions. This is a serious obstacle when dealing with
sequences of approximate solutions since the limit in the energy equation is prob-
lematic. From this point of view, it seemsmore convenient toworkwith entropy rather
than the energy balance. Indeed the renormalized entropy equation (4.9), written in
the form

∂t (�Z(s)) + divx (�Z(s)u) = 0, (4.37)

requires only � andm = �u to be integrable as soon as Z is a bounded function. We
can therefore consider the system consisting of the equation of continuity (4.6), the
momentum equation (4.7), and the entropy balance (4.37). Similarly to the barotropic
case, the system can be appended by the total energy inequality

d

dt

∫
�

[
1

2
�|u|2 + �e

]
dx ≤ 0, with e = e(�, s),

as an admissibility condition. This approach is frequently used in meteorological
models that describe fluids in the low Mach number regime, where occurrence of
shockwaves or other singularities is not expected; whence all formulations are equiv-
alent.

In order to accommodate more general regimes of fluid motion, in particular those
when the entropy is not conserved, we propose the following problem as a basis for
the weak formulation

∂t� + divxm = 0, (4.38)

∂tm + divx

(
m ⊗ m

�

)
+ ∇xp = 0, (4.39)

∂t(�Z(s)) + divx (Z(s)m) ≥ 0, Z ′(s) ≥ 0, (4.40)

together with the admissibility condition

d

dt

∫
�

[
1

2

|m|2
�

+ �e

]
dx ≤ 0, (4.41)
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where p = p(�, s), e = e(�, s) are determined by appropriate EOS. Of course, the
energy balance (4.41) is conditioned by the impermeability of the boundary

m · n|∂� = 0. (4.42)

The resulting system may be seen underdetermined as we have replaced the
entropy equation (4.37) by inequality (4.40). Moreover, the total energy is no longer
conserved which is at odds with the First law of thermodynamics encoded in the
complete Euler system. However, as we shall see below, the compatibility property
(C) as well as the weak-strong uniqueness principle (WS) remain in force.

The exact definition of generalized weak solution to the complete Euler system
presented below can be seen as the first attempt of relaxation of the concept of
“standard” weak solution. We formulate the problems in terms of �,m, and s for def-
initeness. Of course, other settings are possible and the modification of the definition
is straightforward.

Definition 4.3 (GENERALIZED WEAK SOLUTION TO COMPLETE EULER SYS-
TEM) A trio [�,m, s] is called generalized weak solution of the complete Euler sys-
tem (4.2)–(4.4) with the impermeability boundary condition (4.5) in (0,T ) × � if
the following holds:

• (weak continuity) the quantities �, m belong to the class

� ∈ Cweak([0,T ];Lγ (�)), � ≥ 0 a.a. in (0,T ) × �,

m ∈ Cweak([0,T ];L 2γ
γ+1 (�;Rd )),

�Z(s) = SZ
1 + SZ

2 , where SZ
1 ∈ Cweak([0,T ];Lγ (�)),

τ �→
∫
�

SZ
2 (τ, ·)φ dx nondecreasing for any φ ∈ C1(�), φ ≥ 0,

(4.43)

for some γ > 1, and for any Z ∈ C1(R), Z ′ ≥ 0, Z concave, Z(s) ≤ Z for any s;
• (constitutive equations) the pressure p = p(�, s) and the internal energy e =
e(�, s) are determined by a given EOS,

p ∈ L1((0,T ) × �), �e ∈ L1((0,T ) × �);

• (equation of continuity) the integral identity

⎡
⎣∫

�

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�∂tϕ + m · ∇xϕ

]
dx dt (4.44)

holds for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1([0,T ] × �);
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• (momentum equation) the integral identity

⎡
⎣∫

�

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
m · ∂tϕ +

(
1�>0

m ⊗ m
�

)
: ∇xϕ + pdivxϕ

]
dx dt

(4.45)
holds for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1([0,T ] × �;Rd ), ϕ ·
n|∂� = 0;

• (entropy inequality) the integral inequality

⎡
⎣∫

�

�Z(s)ϕ dx

⎤
⎦

t=τ+

t=0

≥
τ∫

0

∫
�

[
�Z(s)∂tϕ + Z(s)m · ∇xϕ

]
dx dt (4.46)

holds for any 0 ≤ τ < T , any test function ϕ ∈ C1([0,T ] × �), ϕ ≥ 0, and any
Z ∈ C1(R), Z ′ ≥ 0, Z concave, Z(s) ≤ Z for any s;

• (energy inequality) the integral inequality

⎡
⎣∫

�

(
1

2

|m|2
�

+ �e

)
dx

⎤
⎦

t=τ

t=0

≤ 0 (4.47)

holds for a.a. 0 < τ < T .

Remark 4.10 The upper bound τ+ in (4.46) can be replaced by τ− for any 0 <

τ ≤ T . Note that, in view of (4.43) the one sided limits
∫
�

�Z(s)ϕ(τ±) dx exist for

any test function ϕ ∈ C1([0,T ] × �).

We are ready to show the compatibility property (C).

Proposition 4.2 (Compatibility) Suppose that � ⊂ Rd , d = 2, 3 is a bounded
domain with C2 boundary. Let [�,m, s] be an admissible weak solution of the Euler
system in the sense of Definition 4.3. Let ϑ = ϑ(�, s) be given by the (implicit)
constitutive relation s(�, ϑ) = s. Suppose that

ess inf
(0,T )×�

� > 0, ess inf
(0,T )×�

ϑ > 0

and that �, u = m
�
, ϑ belong to the regularity class of classical solutions specified

in Definition 4.1.
Then [�, ϑ,u] is a classical solution in the sense of Definition 4.1.

Remark 4.11 Given � > 0 and s = s(�, ϑ), the temperature is uniquely determined
by the value of the entropy s.
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Proof As � > 0 we may introduce the velocity u as well as the temperature ϑ (cf.
Remark 4.11). Now it is standard to observe that the equation of continuity as well
as the momentum equation are satisfied in the classical way:

∂t� + divx(�u) = 0, (4.48)

∂t(�u) + divx(�u ⊗ u) + ∇xp = 0. (4.49)

Next, integrating (4.44) by parts and using (4.48), we obtain

T∫
0

∫
∂�

ϕ�u · n dSx dt = 0

for any ϕ ∈ C1
c ((0,T ) × �). This yields

u · n|∂� = 0. (4.50)

Multiplying (4.49) on u and using (4.48) we derive the kinetic energy balance

∂t

(
1

2
�|u|2

)
+ divx

(
1

2
�|u|2u

)
+ divx(pu) = pdivxu. (4.51)

Furthermore, by virtue of (4.48) and Gibbs’ equation (4.1),

1

�
∂t� + 1

�
u∇x� = −divxu, ϑ

∂s

∂�
= ∂e

∂�
− p

�2
;

whence

pdivxu = − p

�
∂t� − p

�
u∇x� = �ϑ

∂s

∂�
∂t� − �

∂e

∂�
∂t� + �ϑ

∂s

∂�
u · ∇x� − �

∂e

∂�
u · ∇x�.

(4.52)

Finally, we deduce from the equation of continuity (4.48) and the entropy inequal-
ity (4.46) that

�ϑ

(
∂s

∂�
∂t� + ∂s

∂ϑ
∂tϑ

)
+ �ϑu ·

(
∂s

∂�
∇x� + ∂s

∂ϑ
∇xϑ

)
= �ϑ∂ts + �ϑu · ∇xs ≥ 0.

(4.53)
Combining (4.51)–(4.53) we may infer that

∂t

(
1

2
�|u|2 + �e

)
+ divx

(
1

2
�|u|2u + �eu

)
+ divx(pu) ≥ 0.
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This inequality, integrated over� and the comparedwith the energy inequality (4.47),
yields the total energy balance (4.4). Of course, this step requires the impermeability
boundary condition (4.50). �

4.1.5 Lower Bound on the Entropy

As shown in Proposition 2.1, an interesting consequence of the renormalized entropy
inequality is a version of minimum principle for the entropy. The result transfer
directly to the present setting.

Theorem 4.3 (Minimum entropy principle) Let [�,m, s] be a generalized weak
solution to the complete Euler system in (0,T ) × � in the sense of Definition 4.3.
Suppose that

�Z(s)(0, ·) = �0Z(s0), where
∫
�

�0 dx > 0, s0(x) ≥ s for a.a. x ∈ �.

Then

s(t, x) ≥ s a.a. in the set
{
(t, x) ∈ (0,T ) × �

∣∣∣�(t, x) > 0
}

.

4.1.6 Relative Energy for the Complete Euler System

Using the general principles introduced in Sect. 4.1.3, we identify the relative energy
for the complete Euler system. We emphasize once more that the quantity we obtain
is indeed a relative energy and not entropy. We give several definitions in terms of the
standard, conservative, and entropy-conservative variables. We will finally identify
the entropy-conservative variables as the only choice of phase variables that renders
the total energy convex and agrees with all general principles stated at the end of
Sect. 4.1.3. The key property to besides Gibbs’ relation to be satisfied by the equation
of state is the hypothesis of thermodynamic stability formulated in the standard
variables as follows

∂p(�, ϑ)

∂�
> 0,

∂e(�, ϑ)

∂ϑ
> 0. (4.54)

The physical meaning of the former condition is positive compressibility, while
the latter expresses positivity of the specific heat at constant volume of the fluid in
question.
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4.1.6.1 Relative Energy in the Standard Variables

For given ϑ̃ > 0, we introduce the ballistic energy functional,

Hϑ̃ (�, ϑ) = �
(
e(�, ϑ) − ϑ̃s(�, ϑ)

)
.

Expressed in terms of the standard variables, the relative energy reads

E
(
�, ϑ,m

∣∣∣̃�, ϑ̃, ũ
)

= 1

2
�

∣∣∣∣m� − ũ

∣∣∣∣
2

+ Hϑ̃ (�, ϑ) − ∂Hϑ̃ (̃�, ϑ̃)

∂�
(� − �̃) − Hϑ̃ (̃�, ϑ̃).

(4.55)
Furthermore, we write

Hϑ̃ (�, ϑ) − ∂Hϑ̃ (̃�, ϑ̃)

∂�
(� − �̃) − Hϑ̃ (̃�, ϑ̃)

= Hϑ̃ (�, ϑ) − Hϑ̃ (�, ϑ̃) + Hϑ̃ (�, ϑ̃) − ∂Hϑ̃ (̃�, ϑ̃)

∂�
(� − �̃) − Hϑ̃ (̃�, ϑ̃).

As e and s are interrelated throughGibbs’ equation (2.5), a direct manipulation yields

∂Hϑ̃ (�, ϑ)

∂ϑ
= �

ϑ
(ϑ − ϑ̃)

∂e(�, ϑ)

∂ϑ

and
∂2Hϑ̃ (�, ϑ̃)

∂�2
= 1

�

∂p(�, ϑ̃)

∂�
.

Consequently,
ϑ �→ Hϑ̃ (�, ϑ) − Hϑ̃ (�, ϑ̃) + Hϑ̃ (�, ϑ̃)

is a nonnegative function attaining strict minimum at ϑ = ϑ̃ for any fixed �, and

� �→ Hϑ̃ (�, ϑ̃) − ∂Hϑ̃ (̃�, ϑ̃)

∂�
(� − �̃) − Hϑ̃ (̃�, ϑ̃) is strictly convex.

In particular,

E
(
�, ϑ,m

∣∣∣̃�, ϑ̃, ũ
)

= 0 only if � = �̃, ϑ = ϑ̃, m = �̃ũ

whenever �̃ > 0. Thus, similarly to its counterpart introduced in Sect. 4.1.3 for the
barotropic Euler system, the relative energy represents a “distance” between [�, ϑ,m]
and [̃�, ϑ̃, �̃ũ]. Note, however, that the relative energy is definitely not convex with
respect to the standard variables [�, ϑ,m].
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4.1.6.2 Relative Energy in the Conservative Variables

Now, we pass to the conservative variables. Note that formula (4.55) is rather awk-
ward, containing the derivatives of the ballistic energy. Seeing that

�̃
∂(e − ϑ̃s)(̃�, ϑ̃)

∂�
= p(̃�, ϑ̃)

�̃

we may rewrite the relative energy in the form

E
(
�, ϑ,m

∣∣∣̃�, ϑ̃, ũ
)

=
(
1

2

|m|2
�

+ �e(�, ϑ)

)
−

(
1

2
�̃|̃u|2 + �̃e(̃�, ϑ̃)

)

+ 1

2
�̃|̃u|2 − m · ũ + 1

2
�|̃u|2 − ϑ̃

(
�s(�, ϑ) − �̃s(̃�, ϑ̃)

)

−
(
e(̃�, ϑ̃) − ϑ̃s(̃�, ϑ̃) + p(̃�, ϑ̃)

�̃

)
(� − �̃).

(4.56)
Next, we recall the definition of the conservative variables,

�,m,E = 1

2

|m|2
�

+ �e.

Writing p = p(�, e), s = s(�, e) we may use Gibbs’ equation (2.5) to compute

∂s

∂e
(�, e) = 1

ϑ
,

∂s

∂�
(�, e) = − p

ϑ�2
. (4.57)

Let

S = S(�,m,E) = �s

(
�,

1

�

(
E − 1

2

|m|2
�

))

be the total entropy. With help of (4.57) we compute

∂S(�,m,E)

∂�
= s − p

ϑ�
− E

ϑ�
+ 1

ϑ

|m|2
�2

= 1

ϑ

(
ϑs − p

�
− e + 1

2

|m|2
�2

)
,

∇mS(�,m,E) = − 1

�ϑ
m,

∂S(�,m,E)

∂E
= 1

ϑ
.

Setting

Ẽ = 1

2
�̃|̃u|2 + �̃e(̃�, ϑ̃), m̃ = �̃ũ,



102 4 Classical and Weak Solutions, Relative Energy

we rewrite the relative energy in the conservative variables

E
(
�,m,E

∣∣∣̃�, ϑ̃, ũ
)

= E − ϑ̃S(�,m,E) − m · ũ + 1

2
�|̃u|2 + p(̃�, ϑ̃)

−
(
e(̃�, ϑ̃) − ϑ̃s(̃�, ϑ̃) + p(̃�, ϑ̃)

�̃

)
�

= −ϑ̃
[
S(�,m,E) − S (̃�, m̃, Ẽ)

− ∂S (̃�, m̃, Ẽ)

∂�
(� − �̃) − ∇mS (̃�, m̃, Ẽ) · (m − m̃) − ∂S (̃�, m̃, Ẽ)

∂E
(E − Ẽ)

]
.

(4.58)
Identity (4.58) reveals the intimate relation between the relative energy and relative

entropy that differ by a multiplicative factor ϑ̃ . It also shows that the thermodynamic
stability hypothesis (4.54) may be expressed in term of concavity of the total entropy
S with respect to the conservative variables [�,m,E].

4.1.6.3 Relative Energy in the Conservative-Entropy Variables

The relative energy, expressed in terms of the conservative-entropy variables—the
density �, the momentumm, and the total entropy S = �s—fits in the general frame-
work introduced in the preceding section and may be seen as the Bregman distance
associated to the total energy. Indeed returning to (4.58) we obtain

E
(
�,m, S

∣∣∣̃�, ϑ̃, ũ
)

= E − ϑ̃S − m · ũ + 1

2
�|̃u|2 + p(̃�, ϑ̃) −

(
e(̃�, ϑ̃) − ϑ̃s(̃�, ϑ̃) + p(̃�, ϑ̃)

�̃

)
�

= 1

2
�

∣∣∣∣m� − ũ

∣∣∣∣
2

+ �e(�, S) −
(
e(̃�, ϑ̃) − ϑ̃s(̃�, ϑ̃) + p(̃�, ϑ̃)

�̃

)
(� − �̃)

− ϑ̃(S − S̃) − �̃e(̃�, ϑ̃),

where we have denoted S̃ = �̃s(̃�, ϑ̃).
Using Gibbs’ relation (2.5) we check easily that

∂ (�e(�, S))

∂�
= e(�, S) − ϑ

S

�
+ p(�, S)

�
,

and
∂ (�e(�, S))

∂S
= ϑ(�, S).
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Consequently, we may infer that

E
(
�,m, S

∣∣∣̃�, ũ, S̃
)

= 1

2
�

∣∣∣∣m� − ũ

∣∣∣∣
2

+ �e(�, S) − ∂(̃�e(̃�, S̃))

∂�
(� − �̃)

− ∂(̃�e(̃�, S̃))

∂S
(̃�, S̃)(S − S̃) − �̃e(̃�, S̃),

(4.59)

where we have replaced ϑ̃ by S̃. We may infer that, similarly to the barotropic case,
the relative energy expressed in terms of the conservative-entropy variables is the
Bregman distance associated to the total energy

E(�,m, S) = 1

2

|m|2
�

+ �e(�, S).

Of course, to see that the relative energy is Bregman distance, we have to rewrite it
in terms of the conservative-entropy variables [̃�, m̃, S̃].

4.1.6.4 Thermodynamic Stability

A direct comparison of (4.55), (4.58), and (4.59) reveals equivalent formulation of
the hypothesis of thermodynamic stability, namely:

• Standard variables.

p(�, ϑ)

∂�
> 0 (positive compressibility),

e(�, ϑ)

∂ϑ
> 0 (positive specific heat at constant volume)

• Conservative variables.

(�,m,E) �→ S(�,m,E) concave

• Conservative-entropy variables.

(�,m, S) �→ E(�,m, S) ≡ 1

2

|m|2
�

+ �e(�, S) convex
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4.1.7 Relative Energy Inequality for the Complete Euler
System

Finally, we derive a relative energy inequality for the complete Euler system. Simi-
larly to Theorem 4.1, we use only the weak formulation of the problem specified in
Definition 4.3. We start by rewriting (4.56) in the form

E
(
�,m, s

∣∣∣̃�, ϑ̃, ũ
)

=
[
1

2

|m|2
�

+ �e(�, s)

]
− ϑ̃�

[
s − s̃(̃�, ϑ̃)

]
− m · ũ + 1

2
�|̃u|2

+ p(̃�, ϑ̃) −
(
ẽ(̃�, ϑ̃) + p̃(̃�, ϑ̃)

�̃

)
�.

Aswe have seen above, there are several choices of phase variables, all of them being
essentially equivalent. Here we have opted for [�,m, s] for the weak solutions, while
the test functions [̃�, ϑ̃, ũ] correspond to the standard variables. Note that the above
formula formally coincides with its isentropic (barotropic) counterpart (4.25), with
s = const, and

p = p(�), �e = P(�), P′(�)� − P(�) = p(�).

Wehave deliberately used the different symbols p and p̃, e and ẽ, s and s̃ to distinguish
between the thermodynamic functions related to theweak solution expressed in terms
of � and s and those written in terms of the standard variables �̃ and ϑ̃ .

Pursuing step by step the arguments of Sect 4.1.3, we may calculate the time
increments ⎡

⎣∫
�

E
(
�, s,m

∣∣∣̃�, ϑ̃, ũ
)

(t, ·) dx
⎤
⎦

t=τ

t=0

in terms of the weak formulation (4.44)–(4.46) as long as the quantities [̃�, ϑ̃, ũ]
are sufficiently regular to be used as test functions. Similarly to (4.27) we therefore
require

ũ ∈ C1([0,T ] × �;Rd ), ũ · n|∂� = 0,

�̃, ϑ̃ ∈ C1([0,T ] × �), �̃ > 0, ϑ̃ > 0 in [0,T ] × �.
(4.60)

In virtue of (4.47),

⎡
⎣∫

�

[
1

2

|m|2
�

+ �e

]
dx

⎤
⎦

t=τ

t=0

≤ 0
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for a.a. τ ∈ (0,T ). Next, considering ũ as a test function in the momentum equation
(4.45), we obtain

⎡
⎣∫

�

m · ũ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
m · ∂t ũ +

(
1�>0

m ⊗ m
�

)
: ∇xũ + pdivxũ

]
dx dt.

Similarly, it follows from the weak formulation of the equation of continuity (4.44)
that

⎡
⎣∫

�

�

(
1

2
|̃u|2 − ẽ(̃�, ϑ̃) − p̃(̃�, ϑ̃)

�̃

)
dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�ũ · ∂t ũ + 1�>0

m
�

· �ũ · ∇xũ
]

dx dt

−
τ∫

0

∫
�

[
�∂t

(
ẽ(̃�, ϑ̃) + p̃(̃�, ϑ̃)

�̃

)
+ m · ∇x

(
ẽ(̃�, ϑ̃) + p̃(̃�, ϑ̃)

�̃

)]
dx dt.

Finally, we use the entropy inequality (4.46) with ϑ̃ > 0 as test function to deduce

⎡
⎣∫

�

�Z(s)ϑ̃ dx

⎤
⎦

t=τ

t=0

≥
τ∫

0

∫
�

[
�Z(s)∂tϑ̃ + Z(s)m · ∇xϑ̃

]
dx dt

for any Z as in (4.46). Moreover, in view of (4.44),

⎡
⎣∫

�

�ϑ̃ s̃(̃�, ϑ̃) dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

s̃(̃�, ϑ̃)
[
�∂tϑ̃ + m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

ϑ̃
[
�∂t̃ s(̃�, ϑ̃) + m · ∇x̃s(̃�, ϑ̃)

]
dx dt.
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Thus, introducing a modified relative energy

EZ

(
�, s,m

∣∣∣̃�, ϑ̃, ũ
)

=
[
1

2

|m|2
�

+ �e(�, s)

]
− ϑ̃�

[
Z(s) − s̃(̃�, ϑ̃)

]
− m · ũ

+ 1

2
�|̃u|2 + p̃(̃�, ϑ̃) −

(
ẽ(̃�, ϑ̃) + p̃(̃�, ϑ̃)

�̃

)
�,

(4.61)

and summing up the preceding calculations, we arrive at a relative energy inequality
in the form

⎡
⎣∫

�

EZ

(
�, s,m

∣∣∣̃�, ϑ̃, ũ
)

dx

⎤
⎦

t=τ

t=0

≤ −
τ∫

0

∫
�

1�>0
(�ũ − m) ⊗ (�ũ − m)

�
: ∇xũ dx dt

−
τ∫

0

∫
�

[
p(�, s) − p̃(̃�, ϑ̃)

]
divxũ dx dt

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇xũ + 1

�̃
∇x̃p(̃�, ϑ̃)

]
dx dt

−
τ∫

0

∫
�

[
�Z(s)∂tϑ̃ + Z(s)m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
�̃s(̃�, ϑ̃)∂tϑ̃ + s̃(̃�, ϑ̃)m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃
∂t̃p(̃�, ϑ̃) + (̃� − �)

1

�̃
ũ · ∇x̃p(̃�, ϑ̃)

]
dx dt,

(4.62)

where we have used Gibbs’ equation (4.1) to handle the terms p(̃�, ϑ̃), e(̃�, ϑ̃) and
s(̃�, ϑ̃).
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Finally, using Lemma 4.1 we may extend the class of admissible test functions
similarly to Theorem 4.1. We are ready to formulate the relative energy inequality
for the complete Euler system.

Theorem 4.4 (Relative energy inequality for complete Euler system) Let
� ⊂ Rd , d = 2, 3, be a bounded domain of class C2. Let [�,m, s] be an admis-
sible weak solution of the complete Euler system (4.2)–(4.4), with the impermeabil-
ity boundary condition (4.5) in (0,T ) × � in the sense of Definition 4.3. Suppose
that the thermodynamic functions p = p(�, ϑ), e = e(�, ϑ), s = s(�, ϑ) are of class
C2(0,∞)2. Let �̃, ϑ̃ , ũ be (test) functions belonging to the class

�̃, ϑ̃ ∈ W 1,∞((0,T ) × �), inf
(t,x)∈(0,T )×�

�̃(t, x) > 0, inf
(t,x)∈(0,T )×�

ϑ̃(t, x) > 0,

ũ ∈ W 1,∞((0,T ) × �;Rd ), ũ · n|∂� = 0.
(4.63)

Let Z be as in (4.46), and let EZ be the relative energy defined through (4.61).
Then the relative energy inequality

⎡
⎣∫

�

EZ

(
�, s,m

∣∣∣̃�, ϑ̃, ũ
)

dx

⎤
⎦

t=τ

t=0

≤ −
τ∫

0

∫
�

1�>0
(�ũ − m) ⊗ (�ũ − m)

�
: ∇xũ dx dt

−
τ∫

0

∫
�

[
p − p̃

]
divxũ dx dt

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇xũ + 1

�̃
∇x̃p

]
dx dt

−
τ∫

0

∫
�

[
�Z(s)∂tϑ̃ + Z(s)m · ∇xϑ̃

]
dx dt +

τ∫
0

∫
�

[
�̃s∂tϑ̃ + s̃m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃
∂t̃p + (̃� − �)

1

�̃
ũ · ∇x̃p

]
dx dt

(4.64)
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holds for a.a. τ ∈ (0,T ). Here we have denoted p = p(�, s) the pressure related to
the weak solution, while p̃ = p(̃�, ϑ̃), s̃ = s(̃�, ϑ̃) denote thermodynamic functions
written in terms of �̃ and ϑ̃ .

Relation (4.64) simplifies considerably if written in the conservative-entropy vari-
ables [�,m, S], and, accordingly, [̃�, ũ, S̃]. Indeed we first observe that

τ∫
0

∫
�

[
(̃� − �)

1

�̃
∂t̃p + (̃� − �)

1

�̃
ũ · ∇x̃p

]
dx dt

=
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + ũ · ∇x�̃)

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + ũ · ∇xS̃

)]
dx dt

=
τ∫

0

∫
�

[
(� − �̃)

∂p(̃�, S̃)

∂�
divxũ

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + divx (̃�ũ))

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + divx (̃ũS)

)]
dx dt

−
τ∫

0

∫
�

[
(̃� − �)

S̃

�̃

∂p(̃�, S̃)

∂S
divxũ

]
dx dt.

Consequently, the inequality (4.64) can be written as
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⎡
⎣∫

�

EZ

(
�, S,m

∣∣∣̃�, S̃, ũ
)

dx

⎤
⎦

t=τ

t=0

≤ −
τ∫

0

∫
�

1�>0
(�ũ − m) ⊗ (�ũ − m)

�
: ∇xũ dx dt

−
τ∫

0

∫
�

[
p(�, S) − (� − �̃)

∂p(̃�, S̃)

∂�
− (S − S̃)

∂p(̃�, S̃)

∂S
− p(̃�, S̃)

]
divxũ dx dt

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇xũ + 1

�̃
∇x̃p

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + divx (̃�ũ))

]
dx dt

+
∫ τ

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + divx (̃ũS)

)]
dx dt

−
τ∫

0

∫
�

[
�Z

(
S

�

)
∂tϑ̃ + Z

(
S

�

)
m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
�

�̃
S̃

(
∂tϑ̃ + m

�
· ∇xϑ̃

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)
∂p(̃�, S̃)

∂S
divxũ

]
dx dt,

(4.65)
with S̃ = �̃s(̃�, ϑ̃).

Finally, we let Z(s) ↗ s obtaining

τ∫
0

∫
�

[
�Z

(
S

�

)
∂tϑ̃ + Z

(
S

�

)
m · ∇xϑ̃

]
dx dt

→
τ∫

0

∫
�

[
S∂tϑ̃ + S

m
�

· ∇xϑ̃

]
dx dt,

and
EZ

(
�, S,m

∣∣∣ �̃, S̃, ũ
)

→ E
(
�, S,m

∣∣∣ �̃, S̃, ũ
)

.
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Consequently,

−
τ∫

0

∫
�

[
�Z

(
S

�

)
∂tϑ̃ + Z

(
S

�

)
m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
�

�̃
S̃

(
∂tϑ̃ + m

�
· ∇xϑ̃

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)
∂p(̃�, S̃)

∂S
divxũ

]
dx dt

→
τ∫

0

∫
�

[(
�

�̃
S̃ − S

) (
∂tϑ̃ + m

�
· ∇xϑ̃

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)
∂p(̃�, S̃)

∂S
divxũ

]
dx dt,

where, furthermore,

τ∫
0

∫
�

[(
�

�̃
S̃ − S

) (
∂tϑ̃ + m

�
· ∇xϑ̃

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)
∂p(̃�, S̃)

∂S
divxũ

]
dx dt

=
τ∫

0

∫
�

[(
�

�̃
S̃ − S

) (
∂tϑ̃ + ũ · ∇xϑ̃ + ∂p(̃�, S̃)

∂S
divxũ

)]
dx dt

+
τ∫

0

∫
�

(
�

�̃
S̃ − S

)(
m
�

− ũ
)

· ∇xϑ̃ dx dt
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Summing up the previous computation we may rewrite (4.65) in the form

⎡
⎣∫

�

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

dx

⎤
⎦

t=τ

t=0

≤ −
τ∫

0

∫
�

1�>0
(�ũ − m) ⊗ (�ũ − m)

�
: ∇xũ dx dt

−
τ∫

0

∫
�

[
p(�, S) − (� − �̃)

∂p(̃�, S̃)

∂�
− (S − S̃)

∂p(̃�, S̃)

∂S
− p(̃�, S̃)

]
divxũ dx dt

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇xũ + 1

�̃
∇x̃p

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + divx (̃�ũ))

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + divx (̃ũS)

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

) (
∂tϑ̃ + ũ · ∇xϑ̃ + ∂p(̃�, S̃)

∂S
divxũ

)]
dx dt

+
τ∫

0

∫
�

(
�

�̃
S̃ − S

) (
m
�

− ũ
)

· ∇xϑ̃ dx dt.

(4.66)
Similarly to Sect. 4.1.3, the relative energy inequality (4.65), or in the form (4.66),

can be used to show the weak-strong uniqueness principle. Indeed the relative energy

E
(
�,m, S

∣∣∣ �̃, ũ, S̃
)

≈ E
(
�,m, S

∣∣∣ �̃, m̃ = �̃ũ, S̃
)

corresponds to the Bregman distance associated to the total energy E(�,m, S) – a
convex function of the conservative-entropy variables [�,m, S]. In comparison with
the barotropic case, the proof of the weak-strong uniqueness is more involved, and
we postpone it to Chap. 5, where a more general class of weak solutions is treated.
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4.2 Weak and Strong Solutions to the Navier–Stokes
System, Relative Energy

The concepts of weak and strong solution to the Navier–Stokes(–Fourier) system
have been introduced and discussed in Sect. 3. Here, we focus on deriving the relative
energy inequality similarly to the Euler system.As amatter of fact, the relative energy
functional remains the same as for the inviscid fluid models.

4.2.1 Relative Energy for the Navier–Stokes System

We restrict ourselves to the barotropic Navier–Stokes system :

∂t� + divx(�u) = 0, (4.67)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�) = divxS. (4.68)

For definiteness, we consider the non-slip boundary condition

u|∂� = 0. (4.69)

As the viscous stress is in many cases a function of the velocity gradient, it is more
convenient towork in the frameof standard variables. The energy balance (inequality)
takes the form

∫
�

[
1

2
�|u|2 + P(�)

]
(τ, ·) dx +

τ∫
0

∫
�

S : ∇xu dx dt ≤
∫
�

[
1

2
�0|u0|2 + P(�0)

]
dx

(4.70)
where �0, u0 are the initial data and P the pressure potential, P′(�)� − P(�) = p(�).
For the moment, we deliberately leave open the specific choice of the rheological
relation for the viscous stress S, keeping in mind only the Second law of thermody-
namics requiring

S : ∇xu ≥ 0.

The relative energy, written in terms of standard variables � and u reads

E
(
�,u

∣∣∣̃�, ũ
)

= 1

2
�|u − ũ|2 + P(�) − P′(̃�)(� − �̃) − P(̃�) (4.71)

cf. (4.25). Note that E is not a convex function of [�,u].
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Theweak solutions to theNavier–Stokes systemwere introduced inDefinition 3.1.
The relative entropy inequality can be now derived mimicking the procedure applied
to the Euler system in Sect. 4.1.3. Indeed the only two steps to be modified are:

(i) the energy inequality (4.28) that should read

⎡
⎣∫

�

[
1

2
�|u|2 + P(�)

]
dx

⎤
⎦

t=τ

t=0

+
τ∫

0

∫
�

S : ∇xu dx dt ≤ 0,

(ii) the relation (4.29) that should be replaced by

⎡
⎣∫

�

�u · ũ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�u · ∂t ũ + (�u ⊗ u) : ∇xũ + p(�)divxũ − S : ∇xũ

]
dx dt,

where
ũ ∈ C1([0,T ] × �;Rd ), ũ|∂� = 0

is a “test function”. Putting together all the remaining integrals exactly as in
Sect. 4.1.3, we deduce the relative energy inequality in the form

[ ∫
�

E
(
�,u

∣∣∣̃�, ũ
)

dx
]t=τ

t=0
+

τ∫
0

∫
�

(S − S̃) : (∇xu − ∇xũ) dx dt

≤ −
τ∫

0

∫
�

�∇xũ · (u − ũ) · (u − ũ) dx dt

−
τ∫

0

∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divxũ dx dt

+
τ∫

0

∫
�

�

�̃
(̃u − u) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇xp(̃�) − divxS̃

]
dx dt

+
τ∫

0

∫
�

[(
1 − �

�̃

)
p′(̃�) + �

�̃
ũ · (u − ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt

+
τ∫

0

∫
�

(
�

�̃
− 1

)
(̃u − u) · divxS̃ dx dt

(4.72)
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for any pair of test functions �̃, ũ in the class

�̃ ∈ C1([0,T ] × �), �̃ > 0, ũ ∈ C1([0,T ] × �;Rd ), ũ|∂� = 0,

and S̃ ∈ C1([0,T ] × �;Rd×d
sym ),

(4.73)

cf. (4.30).

Remark 4.12 The tensor S̃ has been added “artificially” to relative energy inequal-
ity. Of course, we consider S̃ = S̃(∇xũ) in future applications to the weak-strong
uniqueness problem.

In comparison with the relative energy inequality (4.34) for the barotropic Euler
system, the relation (4.72) contains an extra term

τ∫
0

∫
�

(
�

�̃
− 1

)
(̃u − u) · divxS̃ dx dt.

Note carefully that this integral cannot be controlled by the relative energy on the
vacuum zone {� = 0} as

(
�

�̃
− 1

)
(̃u − u) · divxS̃ ≈ (̃u − u) for � → 0.

Although vacuum is not expected to appear spontaneously in viscous fluid flows,
a rigorous proof is not yet available. In order to show the weak-strong uniqueness
principle, the term

τ∫
0

∫
�

(S − S̃) : (∇xu − ∇xũ) dx dt

must be used. Details can be found in Chap. 5, where a large class of generalized
solutions is considered.

4.3 Conclusion, Bibliographical Remarks

We have introduced the concept of weak (distributional) solution and the relative
energy to both the Euler and the Navier–Stokes system. These are objects solving
the problem in the sense of generalized derivatives (distributions); satisfying auto-
matically the compatibility principle (C). If supplemented by a suitable form of the
energy balance, they also satisfy the weak-strong uniqueness principle (WS). These
results are based on the concept of relative energy and the associated relative energy
inequality for the weak solutions. In particular, the relative energy can be interpreted
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as the Bregman distance associated to the total energy of the system, cf. e.g. Sprung
[185]. Results of this type go back to the pioneering paper by Dafermos [59] in the
context of general conservation laws with involutions and are intimately related to
the thermodynamic stability of the fluid system, see e.g. Bechtel et al. [14]. Since
then the method of relative energy/entropy has found numerical applications, in par-
ticular in problems of weak-strong uniqueness for models of viscous and inviscid
fluids, see e.g. Brenier et al. Székelyhidi [26], Germain [117], Gwiazda et al. [126],
Mellet and Vasseur [164], the survey paper of Wiedemann [199], and the references
therein. Here, we have postponed the rigorous proofs to the next chapter, where even
more general class of dissipative solutions will be introduced.

There are two main issues that make analysis of numerical schemes in the frame-
work of weak solutions quite delicate:

• Despite the numerous examples provided by the method of convex integration, see
e.g., Chiodaroli et al. [49, 51], the global-in-time existence of admissible weak
solutions for theEuler system is still an open problem.Although theweak solutions
are known to exist for the Navier–Stokes(–Fourier) system, the existence proof is
rather delicate, limited to severe restrictions imposed on constitutive relations, and
difficult to implement in the proof of convergence of a numerical scheme, unless
the latter is of very special type, cf. Karper [139, 140].

• The set of all weak solutions emanating from given initial data for the Euler system
is not sequentially closed, meaning the property (S) listed in the introduction to
Part II.

To demonstrate that the class of weak solutions to the barotropic Euler system
fails to comply with the stability property (S), we report the following result proved
in [25, Proposition 2.1].

Theorem 4.5 Let� ⊂ Rd , d = 2, 3 be a bounded domain. Let �0 ∈ L∞(�), �0 > 0
be given.

Then there exists a sequence of weak solutions [�n,mn] to the Euler system (4.10),
(4.11) in (0,T ) × �, with the impermeability condition (4.5), such that �n = �n(x)
depends only on the spatial variable, and

�n → �0 weakly-(*) in L
∞(�), mn → 0 weakly-(*) in L∞((0,T ) × �;RN ),

lim inf
n→∞

∫
�

|�n − �0| dx > 0.

Note that the limit �0 is arbitrary, while themomentum limitm ≡ 0. Thus the limit
is a solution of the Euler system only if �0 = � is a (positive) constant. In particular,
a weak limit of a sequence of weak solutions to the barotropic Euler system may not
be a weak solution.
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In the following chapter, we extend the class of weak solutions to more general
objects commonly known as measure-valued or dissipative solutions. We show that
the dissipative solutions comply with all the requirements introduced above. In par-
ticular, they exist globally in time for any physically relevant initial data, they are
compatible with classical solutions, they obey the weak-strong uniqueness principle,
and the solution set associated to given initial data is compact.
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