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Preface

Many real-world problems involve fluids in motion. The goal of this book is to
propose a new approach to numerical analysis of the underlying nonlinear equations
in the spirit of the celebrated Lax equivalence theorem stated originally by Lax [149]
in the context of linear problems:

stability + consistency ⇔ convergence .

In the framework of numerical analysis, stability means uniform bounds on approx-
imate solutions independent of the level of approximation (the numerical time and
space step), while consistencymeans that the approximate solutions satisfy the target
system of equations modulo a consistency error (truncation error) that vanishes for
vanishing time and space steps of the numerical approximation.

The problem of convergence is quite subtle, in view of the recent results revealing
the existence of oscillations in sequences of approximate solutions, see Chiodaroli
[46], De Lellis and Székelyhidi [62, 81], Fjordholm et al. [105–107]. Accordingly,
the weak convergence, or the convergence in terms of integral averages, seems rele-
vant to describe the asymptotic behavior of approximate solutions at least in the
context of inviscid fluids. As is well known, the weak convergence does not commute
with nonlinear superposition operators which makes the asymptotic analysis rather
delicate. Oscillatory sequences of approximate (numerical) solutions are not only
difficult to capture by the real computational software but present mostly insur-
mountable difficulties even at the theoretical level. The limit objects resulting from
weakly converging sequences do not coincide with distributional solutions of the
target problem unless the latter is regular in which case the convergence must be
strong. In fact, a similar result can be extended even to the larger class of weak
admissible solutions, at least in the context of the Euler system:

the limit is a weak solution of the target problem

⇔ approximate solutions converge strongly,

see [83].

vii
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Nowadays, it is also well understood that the particular form of the equations that
might seem irrelevant for the mathematical theory can be crucial for convergence of
numerical methods. The use of a particular set of equations may lead to successful
results, whereas alternate forms may cause oscillations or even instability.

The approach to nonlinear problems proposed in this monograph is based on the
following fundamental concepts:

• Dissipative and/or measure-valued solution to nonlinear systems of partial
differential equations that can be seen as a natural closure of the solution set with
respect to the weak topology. The dissipative solutions satisfy the underlying set
of differential equations modulo a perturbation related to possible oscillations in
the approximate sequence. This class of solutions is large enough to accommodate
all possible limits of consistent and stable numerical schemes. Measure-valued
refers to the Young measure that is used to describe possible oscillations in the
approximate sequence. Very roughly indeed, the dissipative solutions are numer-
ical functions—expected values (or barycenters) of the associatedYoungmeasure.
In particular, they reflect the observable (and computable) properties of solutions
to a given problem, while the Young measure may sensitively depend on the way
the problem is being approximated.

• Weak–strong uniqueness principle that asserts that a generalized dissipative
or measure-valued solution coincides with a regular solution as long as the latter
exists. This principle is quite useful in the context of problems concerning viscous
fluids, where regular solutions are likely to exist under very mild assumptions on
the initial data and the length of the time interval. It also gives rise to convincing
convergence results in the regime, where the target system is not expected to admit
spurious (weak) solutions.

• K–convergence replacingweakly converging sequences of approximate solutions
by their Cesàro averages that converge strongly to the corresponding asymptotic
limit. The same technique is available also for the associated Young measures
yielding a reliable description of possible oscillations. In such a way, weakly
converging sequences can be visualized via the numerical approximations.

In accordancewith the above general principles, we perform numerical analysis of
the Euler and Navier–Stokes systems describing the time evolution of compressible
inviscid and (linearly) viscous fluids, respectively. The numerical analysis is carried
out in several steps:

• Choosing a numerical scheme that gives rise to a dissipative solution in the
asymptotic limit. Typically, these are the schemes preserving some important
physical properties of the underlying continuous system, such as the positivity
of density and internal energy as well as the second law of thermodynamics.
Such numerical schemes belong to the class of the so-called invariant domain-
preserving methods or structure-preserving methods. Note that it is crucial that
a suitable form of the discrete energy or entropy inequality holds at the level of
numerical approximations. Correspondingly, numerical methods satisfying the
latter inequalities are called energy dissipative or entropy stable methods.
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• Showing stability and consistency of the scheme. Here stability means that there
are suitable uniform bounds that render an approximating sequence precompact at
least in the weak topology. Consistency means that the target system of equations
is satisfied modulo a local truncation error that vanishes in the asymptotic limit.

• Performing the limit for vanishing numerical step obtaining a generalized solution
of the problem. At this stage, we use the weak–strong uniqueness principle to
conclude that either (i) the limit system admits a unique regular solution and the
approximate solutions converge unconditionally (pointwise) to it, or (ii) the limit
is a generalized (dissipative, measure-valued) solution of the target system.

• If the limit is a generalized solution, we employ the K–convergence, i.e., the
convergence in the sense of Cesàro averages, to identify possible oscillations
(Young measure) associated to the sequence of numerical solutions.

As we shall see, at least in the context of inviscid fluids described via the Euler
system, there are basically two ways how the approximate numerical solutions may
approach the target system:

• Either the convergence is strong (pointwise a.a.) and then the limit is a weak
solution of the limit system;

• or the convergence is weak (oscillatory) and then the limit is a generalized
(measure-valued solution) of the limit system.

Both alternatives may occur and must be analyzed in a rather different manner.
Rather surprisingly, the above scenarios are complementary at least in the context of
compressible fluids studied in this book. By complementary, we mean that either the
convergence is strong or the limit cannot be a weak solution of the target problem,
cf. [83].

We should always keep in mind the fundamental difference between the effective
limit of a sequence of approximate (numerical) solutions and the way how this limit
is attained. In particular, the concept of Young measures amply used in the text
below reflects the way how the solution is obtained (oscillations in the approximate
sequence) rather than being an intrinsic property of the limit system. There could be
different ways to attain the same limit (weak or strong) as well as different limits
obtained via similar methods. Identifying a proper limit that would be physically
admissible is one of the most challenging theoretical problems, in particular in light
of the recent ill-posedness results provided by the method of convex integration, see
Buckmaster et al. [34, 35, 38] among others.

The material treated in the book is divided into three major parts:

• Part I [State-of-the-art]
Mathematical theory of the governing equations of fluid dynamics has a long
history and a very active present. In spite of a concerted effort of generations
of excellent mathematicians, the fundamental problems on solvability and well-
posedness of the Navier–Stokes and Euler systems remain open, cf. the survey
by Fefferman [79]. Recently, De Lellis and Székelyhidi launched an ambitious
program to attack these issues in a newway based on themethod of convex integra-
tion, cf. Buckmaster and Vicol [37] and the references cited therein. The resulting
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new discoveries culminated so far in the final proof of Onsager’s conjecture by
Isett [131] and a remarkable nonuniqueness result for the Navier–Stokes system
by Buckmaster and Vicol [38]. The message conveyed to the theory is that we
must be extremely careful concerning a proper choice of the concept of general-
ized solutions in fluid dynamics including the underlying phase space of relevant
observable variables. Our goal was to collect the up-to-date piece of information
concerning the mathematical models of compressible viscous and inviscid fluid
flows. We are well aware that detailed proofs of many of the mathematical state-
ments presented would require a comprehensive preliminary material that goes
beyond the scope of the present book. We therefore content ourselves with stating
the relevant theorems and discussing only the highlights of the underlying ideas.

• Part II [Generalized solutions]
There is a large piece of evidence and also hope that the physically relevant
solutions of the (mathematically) ill-posed problems can be identified as particular
limits of more complex (viscous) models, cf. Chen and Glimm [43]. Adopting
the same philosophy, we identify generalized solutions with asymptotic limits
of consistent approximations. These turn out to fit in a possibly larger class of
generalized dissipative solutions. The dissipative solutions, however, coincide
with the classical solutions if either the classical solution exists or if they enjoy
certain smoothness. We discuss these properties that are fundamental for the
subsequent analysis of concrete numerical schemes.

• Part III [Numerical schemes]
There is a huge literature on efficient numerical methods for simulation of
inviscid or viscous compressible fluids, see, e.g., Dolejší and Feistauer [71],
Eymard, Gallouët, Herbin [78], Feistauer [99], Feistauer, Felcman, Straškraba
[100], Kröner [143], LeVeque [151], Toro [194]. Despite enormous practical
applications of such numerical methods, their convergence and error analysis
remain still open in general.
Applying general convergence results from Part II for consistent (or stable)
approximations, we present the convergence analysis of somewell-chosen numer-
ical methods that are representative approximation schemes for the Euler or
Navier–Stokes systems. Since the Euler system belongs to the class of hyperbolic
conservation laws, we approximate them by the finite volume methods that natu-
rally inherit the conservation property at discrete level. For the Navier–Stokes
equations, we apply an upwind finite volume, a mixed finite volume – finite
element of Karper [140] as well as a staggered finite difference (MAC) method.
Assuming only that numerical solutions remain in a gas nondegenerate region,
which reflects some boundedness of the discrete densities and temperatures, we
present a detailed consistency and stability analysis of the corresponding numer-
ical methods. Consequently, their weak convergence to generalized dissipative
solutions follows. A recently developed concept of K–convergence, cf. [90, 91]
allows us to show the strong convergence of the Cesàro averages to a generalized
dissipative solution. In the case that a strong solution of the underlying compress-
ible fluid equations exists, we show the strong convergence of the numerical
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methods. Moreover, if the limit of numerical solutions of the Euler system is a
weak solution, then the convergence is strong.

Praha, Czech Republic
Mainz, Germany
Bratislava, Slovakia
Praha, Czech Republic
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Preliminary Material

This chapter contains preliminary material collected for reader’s convenience. It
includes the basic notation as well as mathematical tools. We tacitly suppose the
reader to be familiarwith thismaterial, and, accordingly,wewill refer to it throughout
the whole book without further specification.

Continuous and Semicontinuous Functions

If not otherwise specified, all vector spaces are real. The symbol Rd denotes the
standard d-dimensional Euclidean space, the norm on Rd being | · |. The norm on a
general (infinite-dimensional) normed linear space X is denoted ‖ · ‖X . The duality
pairing between a vector space X and its dual X∗ is denoted as < ·; · >X∗;X , or
simply < ·; · > in case the underlying spaces are clearly identified. If X is a Hilbert
space, the symbol < ·; · > denotes the scalar product in X. The symbol span{M}
denotes the space of all finite linear combinations of vectors contained inM.

Continuous Functions

The symbol C(Q) denotes the set of continuous functions defined on a topolog-
ical space Q. More generally, the symbol C(Q; X) denotes the space of continuous
functions on Q ranging in another topological space X. If X is a Banach space, we
introduce a norm

‖g‖C(Q;X) = sup
y∈Q

‖g(y)‖X .

If X is a Polish space, meaning a complete, separable, metrizable topological space
with a metric d, we define a metric

dC(Q;X)[ f, g] = sup
y∈Q

d[ f (y); g(y)].

xv
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We say that a function f is bounded if

sup
y∈Q

d[ f (y); a] < ∞ for some a ∈ X.

The symbol BC(Q; X) denotes the set of all bounded continuous functions on Q
ranging in a Polish space X.

The symbol Cweak(Q; X) denotes the space of functions on Q ranging in a
Banach space X, continuous with respect to the weak topology. More specifically,
g ∈ Cweak(Q; X) if the mapping y �→ ‖g(y)‖X is bounded and

y �→< f ; g(y) >X∗;X

is continuous on Q for any linear form f belonging to the dual space X∗. Similarly,
we define Cweak−(∗)(Q; X∗) if X∗ is a dual to a Banach space X. The two concepts
coincide if X is reflexive.

If X is reflexive and separable, the weak topology is metrizable on bounded sets
of X by the metric

dXweak [ f, g] =
∞∑

n=1

1

2n
|〈 f − g; en〉|

1 + |〈 f − g; en〉| ,

where {en}∞n=1 is a dense set on a unit sphere of X. Thus, if Q is compact and B ⊂ X
is bounded, we may define a metric on Cweak(Q; B),

dCweak(Q;B)[ f, g] =
∞∑

n=1

1

2n
supy∈Q |〈 f (y) − g(y); en〉|

1 + supy∈Q |〈 f (y) − g(y); en〉|

We say that gn → g in Cweak(Q; X) if

• y �→ ‖gn(y)‖X is bounded uniformly for n → ∞;

• < f ; gn >X∗;X→< f ; g >X∗;X in C(Q) for all f ∈ X∗.

Theorem 1 (Arzelà–Ascoli Theorem) Let Q ⊂ Rm be compact and X a compact
topological metric space endowed with a metric dX . Let { fn}∞n=1 be a sequence of
functions in C(Q; X) that is equi-continuous, meaning, for any ε > 0 there is δ > 0
such that

dX
[
fn(y), fn(z)

]
≤ ε provided |y − z| < δ independently of n = 1, 2, . . . .

Then { fn}∞n=1 is precompact in C(Q; X), that is, there exists a subsequence (not
relabeled) and a function f ∈ C(Q; X) such that
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sup
y∈Q

dX
[
fn(y), f (y)

]
→ 0 as n → ∞.

For the proof see Kelley [141, Chapter 7, Theorem 17].
————————————————————————————————

For g : Q → R we denote the support of g,

supp[g] = closureQ
{
y ∈ Q

∣∣∣ g(y) = 0
}
.

The symbol Cc(Q) denotes the set of functions on Q with compact support. We also
define Cc(Q; Rk) – the space of vector valued functions with all components in Cc.
Obviously C(Q) = Cc(Q) if Q is compact, in which case Cc(Q) is a Banach space.
The topology on Cc(Q) for a general open set is more complicated and we content
ourselves with the definition of convergence in Cc(Q):

gn → g in Cc(Q)

⇔ supp[gn] ⊂ K , K ⊂ Q compact for all n large enough , gn → g ∈ C(K ).

We denote C0(Q) the completion of Cc(Q) with respect to the norm ‖ · ‖C(Q).
The symbol Ck(Q), Q ⊂ Rd , where k is a nonnegative integer, denotes the

space of functions on Q that are restrictions of k-times continuously differentiable
functions on Rd . Ck,ν(Q), ν ∈ (0, 1) is the subspace of Ck(Q) of functions having
their k-th derivatives ν-Hölder continuous in Q. Ck,1(Q) is a subspace of Ck(Q) of
functions whose k-th derivatives are Lipschitz on Q. For a bounded domain Q, the
spaces Ck(Q) and Ck,ν(Q), ν ∈ (0, 1] are Banach spaces with norms

‖u‖Ck (Q) = max|α|≤k
sup
x∈Q

|∂αu(x)|

and

‖u‖Ck,ν (Q) = ‖u‖Ck (Q) + max|α|=k
sup

(x,y)∈Q2, x =y

|∂αu(x) − ∂αu(y)|
|x − y|ν ,

where ∂αu stands for the partial derivative ∂α1
x1 . . . ∂αN

xN u of order |α| =∑N
i=1 αi . The

spaces Ck,ν(Q; Rm) are defined in a similar way. Finally, we set C∞ = ∩∞
k=0C

k .
The symbol Ck

c (Q; Rm), k ∈ {0, 1, . . . ,∞} denotes the vector space of functions
belonging toCk(Q; Rm) and having compact support inQ. If Q ⊂ Rd is an open set,
the symbolD(Q; Rm) will be used alternatively for the space C∞

c (Q; Rm) endowed
with the topology induced by the convergence:

ϕn → ϕ ∈ D(Q)

if
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supp[ϕn] ⊂ K , K ⊂ Q a compact set , ϕn → ϕ in Ck(K ) for any k = 0, 1, . . . .
(1)

We write D(Q) instead of D(Q; R). The dual space D′(Q), Q ⊂ Rm , is the space
of distributions.

The subscript loc refers to spaces of functions having the relevant properties on
any compact subset, e.g.

Cloc(Q) =
{
g : Q → R

∣∣∣ g ∈ C(K ) for any compact K ⊂ Q
}
.

Lower semicontinuous functions
Let Q be a metric space. A function

f : Q → R ∪ {∞}

is lower semicontinuous (l.s.c) if the set f −1(−∞, a] is closed for any a ∈ R.

Theorem 2 (Baire Theorem)
Let Q be a metric space and

f : Q → [0,∞]

be a l.s.c. function.
Then there exists a sequence { fn}∞n=1, fn ∈ C(Q),

0 ≤ fn ≤ f, fn(y) ↗ f (y) for any y ∈ Q.

For the proof, see Baire [7] or Cobzaş et al. [57, Theorem 6.4.1].

————————————————————————————————

Integrable Functions

Let Q be a topological space with the σ -algebra of Borel sets B(Q) and a regular
Borel measure ν. We denote

∫

Q
gdν

the integral of a measurable function g. Integration with respect to the Lebesgue
measure on the Euclidean space will be denoted by the symbol dy, or more specifi-
cally, dx if Q ⊂ Rd , d = 1, 2, 3, and dt if Q = (0, T ). The Lebesgue measure of
a measurable set B ⊂ Rm will be denoted
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|B| ≡
∫

Rm

1B(y)dy.

For a function v = v(t, x), we denote

[∫

	

v(t, x) dx

]t=τ2

t=τ1

=
∫

	

v(τ2, x) dx −
∫

	

v(τ1, x) dx,

together with the spatial convolution

(u ∗ v)(x) =
∫

Q
u(x − y)v(y) dy for Q = T

d or Rd .

The Lebesgue spaces L p(Q; X) are spaces of (Bochner) measurable functions v
ranging in a Banach space X such that the norm

‖v‖p
L p(Q;X) =

∫

Q
‖v‖p

X dy is finite , 1 ≤ p < ∞.

Similarly, v ∈ L∞(Q; X) if v is (Bochner) measurable and

‖v‖L∞(Q;X) = ess sup
y∈Q

‖v(y)‖X < ∞.

The symbol L p
loc(Q; X) denotes the vector space of locally L p-integrable functions,

meaning

v ∈ L p
loc(Q; X) if v ∈ L p(K ; X) for any compact set K in Q .

We write L p(Q) for L p(Q; R).
Let f ∈ L1

loc(Q), where Q is an open set. A Lebesgue point a ∈ Q of f in Q is
characterized by the property

lim
r→0+

1

|B(a, r)|
∫

B(a,r)
f (x) dx = f (a). (2)

For f ∈ L1(Q) the set of all Lebesgue points is of full measure, meaning its comple-
ment in Q is of zero Lebesgue measure. A similar statement holds for vector valued
functions f ∈ L1(Q; X), where X is a Banach space (see Brezis [33]). If f ∈ C(Q),
then identity (2) holds for all points a in Q.

Theorem 3 (Linear functionals on L p(Q; X))
Let Q ⊂ Rm be ameasurable set,X a Banach space that is reflexive and separable,

1 ≤ p < ∞.
Then any continuous linear form ξ ∈ [L p(Q; X)]∗ admits a unique representation

wξ ∈ L p′
(Q; X∗),
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< ξ ; v >L p′ (Q,X∗);L p(Q;X)=
∫

Q
< wξ(y); v(y) >X∗;X dy for all v ∈ L p(Q; X),

where

1

p
+ 1

p′ = 1.

Moreover the norm on the dual space is given as

‖ξ‖[L p(Q;X)]∗ = ‖wξ‖L p′ (Q;X∗).

Accordingly, the spaces L p(Q; X) are reflexive for 1 < p < ∞ as soon as X is
reflexive and separable.

For the proof, see Gajewski, Gröger, Zacharias [109, Chapter IV, Theorem 1.14,
Remark 1.9].

————————————————————————————————

Identifying ξ with wξ , we write

[L p(Q; Rk)]∗ = L p′
(Q; Rk), ‖ξ‖[L p(Q;Rk )]∗ = ‖ξ‖L p′ (Q;Rk ), 1 ≤ p < ∞.

If the Banach space X in Theorem 3 is merely separable, we have

[L p(Q; X)]∗ = L p′
weak−(∗)(Q; X∗) for 1 ≤ p < ∞,

where

L p′
weak−(∗)(Q; X∗)

≡
{
ξ : Q → X∗

∣∣∣ y ∈ Q �→< ξ(y); v >X∗;X measurable for any fixed v ∈ X,

y �→ ‖ξ(y)‖X∗ ∈ L p′
(Q)
}

(see Edwards [72], Pedregal [177, Chapter 6, Theorem 6.14]). For simplicity we omit
the subscript weak-(∗) in what follows if no confusion appears.

In what follows we present some fundamental inequalities that will be often
applied. First, Hölder’s inequality reads

‖uv‖Lr (Q) ≤ ‖u‖L p(Q)‖v‖Lq (Q),
1

r
= 1

p
+ 1

q
, 1 ≤ p, q, r ≤ ∞

for any u ∈ L p(Q), v ∈ Lq(Q), Q ⊂ Rm (see Adams [3, Chapter 2]).
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Interpolation inequality for L p-spaces reads

‖v‖Lr (Q) ≤ ‖v‖λ
L p(Q)‖v‖(1−λ)

Lq (Q),
1

r
= λ

p
+ 1 − λ

q
, 1 ≤ p < r < q ≤ ∞, λ ∈ (0, 1)

for any v ∈ L p(Q) ∩ Lq(Q), Q ⊂ Rm (see Adams [3, Chapter 2]).
Jensen’s inequality reads



(∫

Q
v dy

)
≤
∫

Q
(v) dy

whenever is convex on the range of v and Q ⊂ Rm , |Q| = 1, see e.g. Ziemer [200,
Chapter 1, Section 1.5].

If

F : Rm → (−∞,∞]

is a convex l.s.c. function, its conjugate F∗ is defined as

F∗(w) = sup
v∈Rn

(v · w − F(v)).

Accordingly, we have Fenchel–Young inequality,

v · w ≤ F(v) + F∗(w).

Moreover,

v · w = F(v) + F∗(w) ⇔ w ∈ ∂F(v) ⇔ v ∈ ∂F∗(w),

see e.g. Ekeland and Temam [73].

Lemma 1 (Gronwall’s Lemma)
Let a ∈ L1(0, T ), a ≥ 0, β ∈ L1(0, T ), b0 ∈ R, and

b(τ ) = b0 +
∫ τ

0
β(t) dt

be given. Let r ∈ L∞(0, T ) satisfy

r(τ ) ≤ b(τ ) +
∫ τ

0
a(t)r(t) dt for a.a. τ ∈ [0, T ].

Then

r(τ ) ≤ b0 exp

(∫ τ

0
a(t) dt

)
+
∫ τ

0
β(t) exp

(∫ τ

t
a(s) ds

)
dt
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for a.a. τ ∈ [0, T ].
For the proof, see Carroll [41].

————————————————————————————————

Measures

Duals to the space of continuous functions are the spaces of measures. We start by
the standard representation theorem.

Theorem 4 (Riesz Representation Theorem)
Let Q be a locally compact Hausdorff metric space. Let f be a nonnegative linear

functional defined on the space Cc(Q).
Then there exist a σ -algebra of measurable sets containing all Borel sets and a

unique nonnegative Borel measure ν f such that

〈 f ; g〉 =
∫

Q
g dν f for any g ∈ Cc(Q).

Moreover, the measure ν f enjoys the following properties:

• ν f (K ) < ∞ for any compact K ⊂ Q;

• ν f (E) = sup
{
ν f (K ) | K ⊂ E

}
for any open set E ⊂ Q;

• ν f (V ) = inf
{
ν f (E) | V ⊂ E, E open

}
for any Borel set V ;

• If E is ν f -measurable, ν f (E) = 0, and A ⊂ E , then A is ν f -measurable.

For the proof see Rudin [181, Chapter 2, Theorem 2.14].
————————————————————————————————

For the rest of this section, we suppose that Q is a Polish space. We denote by the
symbol M+(Q) the set of all nonnegative Borel measures on a topological space
Q. The symbol M(Q) denotes the set of all signed Radon measures that can be
identified as the space of all linear forms bounded on Cc(Q). In particular, we may
identify

[C(Q)]∗ = M(Q) if Q is compact.

If Q is merely locally compact, we define the space of finite measures M f (Q) as a
dual space to C0(Q).

Finally, we introduce the space of vector valued measuresM(Q; E), where E is
an m-dimensional space as
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M(Q; E) =
{
[ν1, . . . , νm]

∣∣∣ νi ∈ M(Q), i = 1, . . . ,m
}
.

The symbol M+(Q; Rd×d
sym ) denotes the set of positive semidefinite matrix valued

measures,

M+(Q; Rd×d
sym ) =

{
ν ∈ M+(Q; Rd×d

sym )

∣∣∣
∫

Q
φ(ξ ⊗ ξ) : dν ≥ 0 for any ξ ∈ Rd , φ ∈ Cc(Q), φ ≥ 0

}
.

A measure ν ∈ M+(Q) is called probability measure if ν(Q) = 1. The symbol
P(Q) denotes the (convex) set of all Borel probability measures on Q. We say that
a family {να}α>0 of probability measures on Q is (uniformly) tight if for any ε > 0,
there exists a compact K ⊂ Q such that

να(K ) > 1 − ε for all α.

The set P(Q) can be equipped with the narrow topology. We say that

νn → ν narrowly in P(Q) ⇔
∫

S
f dνn →

∫

S
f dν for any f ∈ BC(Q).

For a general sequence {νn}∞n=1 ⊂ M(Q), we say that

νn → ν weakly-(*) in M(Q) ⇔
∫

S
f dνn →

∫

S
f dν for any f ∈ Cc(Q).

Theorem 5 (Prokhorov Theorem)
Let Q be a Polish space.
Then a family of probability measures {να}α>0 on S is tight if and only if its

closure is sequentially compact in the space of probability measures endowed with
the topology of narrow convergence.

For the proof see Prokhorov [180].

————————————————————————————————

Let ν ∈ P(�n
i=1Qi ) be a probability measure. We denote

�iν ∈ P(Qi ), �iν(E) = ν(Q1 × . . . Qi−1 × E × Qi+1 · · · × Qn), i = 1, . . . , n

the projection of the measure ν. The measure �i is called marginal of ν.
Let d denote the metric on the Polish space Q. We say that a measure ν ∈ P(Q)

admits a finite p-th moment if
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∫

Q
d(q0, y)

pdν(y) < ∞ for some q0 ∈ Q.

There are several concepts of distance (metric) on the set of probability measures:

• Lévy–Prokhorov distance:

dP [μ; ν]
= inf

{
ε > 0

∣∣∣ μ(A) ≤ ν(Uε(A)) + ε, ν(A) ≤ μ(Uε(A)) + ε, A ∈ B(Q)
}
,

where Uε(A) denotes the ε-neighborhood of a set A and B(Q) the Borel sets of a
set Q.

• weak-(*) distance:

dw−(∗)[μ; ν] =
∞∑

n=1

2−n

∣∣∣∣
∫

Q
φndμ −

∫

Q
φndν

∣∣∣∣,

if Q is locally compact, where {φn}∞n=1 is a dense set on the unit sphere in C0(Q).
• Wasserstein p-distance:

dWp [μ, ν] = inf
λ∈P(Q×Q),μ=�1λ,ν=�2λ

∫

Q×Q
d(x, y)p dλ(x, y). (3)

Narrow convergence and convergence in the Lévy–Prokhorov distance are
equivalent on a Polish space, see Villani [198, Chapter 6].

We report a duality formula for dW1 .

Lemma 2 (Duality formula)
Let μ, ν be probability measures on a Polish space Q with finite first moments.
Then

dW1 [μ, ν] = sup
φ,‖∇xφ‖L∞(Q)≤1

(∫

Q
φdμ −

∫

Q
φdν

)
.

For the proof, see Villani [198, Theorem 5.10 and Remark 6.5].

————————————————————————————————

Theorem 6 (Convergence in the Wasserstein distance)
Let {νn}∞n=1 be a sequence of probability measures on a Polish spaceQwithmetric

d. In addition, let νn possess finite p-th moment, p ≥ 1.
Then the following is equivalent:

• dWp [νn, ν] → 0 for a certain ν ∈ P(Q) with finite p − th moment;
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• νn → ν narrowly and
∫

Q
d(q0, y)

pdνn →
∫

Q
d(q0, y)

pdν for some q0 ∈ Q;

•
∫

Q
g(y)dνn →

∫

Q
g(y)dν for any g ∈ C(Q) such that

g(y)
<∼(1 + d(q0; y)p) for some q0 ∈ Q.

For the proof, see Villani [198, Theorem 6.9].

————————————————————————————————

Finally we recall the fundamental theorem concerning parametrized (Young)
measures.

Let Q ⊂ Rm be a domain. We say that  is a Caratheodory function on Q × Rk

if

⎧
⎨

⎩

for a. a. x ∈ Q, the function λ �→ (x, λ) is continuous on Rk;

for all λ ∈ Rk, the function x �→ (x, λ) is measurable on Q.

⎫
⎬

⎭ (4)

We say that {νx }x∈Q is a family of parametrized measures if νx is a probability
measure for a.a. x ∈ Q, and if

⎧
⎨

⎩

the function x → ∫
Rk φ(λ) dνx (λ) ≡< νx , φ > is measurable on Q

for all φ : Rk → R, φ ∈ C(Rk) ∩ L∞(Rk).

⎫
⎬

⎭ (5)

Theorem 7 (Fundamental theorem of the theory of parametrized (Young)
measures)

Let Q ⊂ Rm be a domain. Let {vn}∞n=1, vn : Q ⊂ Rm → Rk be a sequence of
measurable functions such that

∫

Q
|vn|dy ≤ c

uniformly for n → ∞.
Then there exist a subsequence (not relabeled) and a parametrized family {νy}y∈Q

of probability measures on Rk depending measurably on y ∈ Q with the following
property:

For any Caratheodory function  = (y, z), y ∈ Q, z ∈ Rk such that
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(·, vn) →  weakly in L1(Q),

we have

(y) =
∫

Rk

(y, z) dνy(z) for a.a. y ∈ Q.

For the proof, see Pedregal [177, Chapter 6, Theorem 6.2].

————————————————————————————————

Sobolev Spaces

A domain 	 ⊂ Rd is of class C if for each point x ∈ ∂	, there exist r > 0 and a
mapping γ : Rd−1 → R belonging to a function classC such that – upon rotating
and relabeling the coordinate axes if necessary – we have

	 ∩ B(x; r) = {y | γ (y′) < yd} ∩ B(x, r)

∂	 ∩ B(x; r) = {y | γ (y′) = yd} ∩ B(x, r)

⎫
⎬

⎭, where y′ = (y1, . . . , yd−1),

where B(x, r) denotes the ball centered at x of radius r. In particular, 	 is called
Lipschitz domain if γ is Lipschitz.

If A ⊂ � ≡ ∂	 ∩ B(x; r), γ is Lipschitz and f : A → R, then one can define
the surface integral

∫

A
f dSx ≡

∫

γ (A)

f (y′, γ (y′))

√√√√1 +
d−1∑

i=1

(
∂γ

∂yi

)2

dy′,

where γ : Rd → Rd , γ (y′, yN ) = (y′, yN − γ (y′)), whenever the (Lebesgue)
integral on the right-hand side exists. If f = 1A, then SN−1(A) = ∫

A dSx is the
surfacemeasure on ∂	 ofA that can be identifiedwith the (d−1)-Hausdorff measure
on ∂	 of A (cf. Evans and Gariepy [77, Chapter 4.2]EVGA). In the general case of
A ⊂ ∂	, one can define

∫
A f dSx using a covering B = {B(xi ; r)}Mi=1, xi ∈ ∂	, M

finite, of ∂	 by balls of radii r and subordinated partition of unity F = {ϕi }Mi=1, and
set

∫

A
f dSx =

M∑

i=1

∫

�i

ϕi f dSx , �i = ∂	 ∩ B(xi ; r),

see Nečas [167, Section I.2] or Kufner, Fučík, John [145, Section 6.3].
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A Lipschitz domain 	 admits the outer normal vector n(x) for a.a. x ∈ ∂	. Here
a.a. refers to the surface measure on ∂	.

A differential operator ∂α of order |α| can be identified with a distribution

〈∂αv;ϕ〉D′(	);D(	) = (−1)|α|
∫

	

v∂αϕ dy

for any locally integrable function v.
The Sobolev spaces Wk,p(	; Rm), 1 ≤ p ≤ ∞, k a positive integer, are the

spaces of functions having all distributional derivatives up to order k in L p(	; Rm).
The norm in Wk,p(	; Rm) is defined as

‖v‖Wk,p(	;Rm ) =
{(∑m

i=1

∑
|α|≤k ‖∂αvi‖p

L p(	)

)1/p
if 1 ≤ p < ∞

max1≤i≤m, |α|≤k{‖∂αvi‖L∞(	)} if p = ∞

}
,

where the symbol ∂α stands for any partial derivative of order |α|.
The following are basic and well-known properties of Sobolev functions, see e.g.

Adams [3] or Ziemer [200].

• If 	 ⊂ Rd is a bounded domain with boundary of class Ck−1,1, then there exists
a continuous linear operator E which maps Wk,p(	) to Wk,p(Rd); it is called
extension operator,

E(v)|	 = v for any v ∈ Wk,p(	).

For 1 < p < ∞ the extension operator exists even for the boundary of class C0,1.
• If 	 ⊂ Rd is a bounded domain with boundary of class Ck−1,1, and 1 ≤ p < ∞,

then Wk,p(	) is separable and the space Ck(	) is its dense subspace.
• If f : R → R is a Lipschitz function and v ∈ W 1,p(	), then f ◦ v ∈ W 1,p(	)

and

∂x j [ f ◦ v](x) = f ′(v(x))∂x j v(x) for a.a. x ∈ 	,

see Ziemer [200, Section 2.1].
• The space W 1,∞(	), where 	 is a bounded domain, is isometrically isomorphic

to the space C0,1(	) of Lipschitz functions on 	.

The symbolWk,p
0 (	; Rm) denotes the completion of C∞

c (	; Rm) with respect to
the norm ‖·‖Wk,p(	;Rm ).We identifyW 0,p(	; Rm) = W 0,p

0 (	; Rm)with L p(	; Rm).

Theorem 8 (Dual Sobolev spaces)
Let 	 ⊂ Rd be a domain, and let 1 ≤ p < ∞. Then the dual space [Wk,p

0 (	)]∗
is a proper subspace of the space of distributions D′(	). Moreover, any linear form
f ∈ [Wk,p

0 (	)]∗ admits a representation
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〈 f ; v〉[Wk,p
0 (	)]∗;Wk,p

0 (	)
=
∑

|α|≤k

∫

	

(−1)|α|wα ∂αv dx,

where wα ∈ L p′
(	),

1

p
+ 1

p′ = 1. (6)

The norm of f in the dual space is given as

‖ f ‖[Wk,p
0 (	)]∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
{(∑

|α|≤k ‖wα‖p′

L p′ (	)

)1/p′ ∣∣∣wα satisfy (6)
}

for 1 < p < ∞;

inf
{
max|α|≤k{‖wα‖L∞(	)}

∣∣∣wα satisfy (6)
}

if p = 1.

The infimum is attained in both cases.

For the proof, see Adams [3, Theorem 3.8], Mazya [162, Section 1.1.14].
————————————————————————————————

The dual space to the Sobolev space Wk,p
0 (	) is denoted as W−k,p′

(	).

Theorem 9 (Rellich–Kondrachov Embedding Theorem)
Let 	 ⊂ Rd be a bounded Lipschitz domain.

(i) Then, if kp < d and p ≥ 1, the space Wk,p(	) is continuously embedded in
Lq(	) for any

1 ≤ q ≤ p∗ = dp

d − kp
.

Moreover, the embedding is compact if k > 0 and q < p∗.
(ii) If kp = d, the space Wk,p(	) is compactly embedded in Lq(	) for any

q ∈ [1,∞).
(iii) If kp > d thenWk,p(	) is continuously embedded in Ck−[d/p]−1,ν(	), where

[ · ] denotes the integer part and

ν =
{

[ dp ] + 1 − d
p if d

p is not an integer,

arbitrary positive number in (0, 1) if d
p is an integer.

Moreover, the embedding is compact if 0 < ν < [ dp ] + 1 − d
p .

See Ziemer [200, Theorem 2.5.1, Remark 2.5.2].
————————————————————————————————
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The symbol ↪→denotes continuous embedding, ↪→↪→ indicates compact embedding.
The following result may be seen as a direct consequence of Theorem 9.

Theorem 10 (Embedding Theorem for Dual Sobolev Spaces)
Let 	 ⊂ Rd be a bounded domain. Let k > 0 and q < ∞ satisfy

q >
p∗

p∗ − 1
, where p∗ = dp

d − kp
if kp < d,

q > 1 for kp = d,

or

q ≥ 1 if kp > d.

Then the space Lq(	) is compactly embedded into the space W−k,p′
(	), 1/p +

1/p′ = 1.

The Sobolev–Slobodeckii spaces Wk+β,p(	), 1 ≤ p < ∞, 0 < β < 1, k =
0, 1, . . ., where 	 is a domain in RL , are Banach spaces of functions with finite
norm

Wk+β,p(	) =
⎛

⎝‖v‖p
Wk,p(	)

+
∑

|α|=k

∫

	

∫

	

|∂αv(y) − ∂αv(z)|p
|y − z|L+βp

dy dz

⎞

⎠

1
p

,

see e.g. Nečas [167, Section 2.3.8].
Let	 ⊂ Rd be a bounded Lipschitz domain. Referring to the notation introduced

at the beginning of this section, we say that f ∈ Wk+β,p(∂	) if (ϕ f ) ◦ (I′, γ ) ∈
Wk+β,p(Rd−1) for any � = ∂	 ∩ B with B belonging to the covering B of ∂	 and
ϕ the corresponding term in the partition of unity F containingM components. The
spaceWk+β,p(∂	) is a Banach space endowedwith an equivalent norm ‖·‖Wk+β,p(∂	),
where

‖v‖p
Wk+β,p(∂	)

=
M∑

i=1

‖(vϕi ) ◦ (I′, γ )‖p
Wk+β,p(Rd−1)

.

In the above formulas (I′, γ ) : Rd−1 → Rd maps y′ to (y′, γ (y′)). For more details
see e.g. Nečas [167, Section 3.8].

If	 ⊂ Rd is a bounded Lipschitz domain, the Sobolev–Slobodeckii spaces admit
similar embeddings as classical Sobolev spaces. The embeddings

Wk+β,p(	) ↪→ Lq(	) and Wk+β,p(	) ↪→ Cs(	)
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are compact provided (k + β)p < d, 1 ≤ q <
dp

d−(k+β)p , and s = 0, 1, . . . , k,
(k − s + β)p > d, respectively. The former embedding remains continuous (but not
compact) at the border case q = dp

d−(k+β)p .

Theorem 11 (Trace Theorem, Gauss–Green formula)
Let 	 ⊂ Rd be a bounded Lipschitz domain.
Then there exists a linear operator γ0 with the following properties:

[γ0(v)](x) = v(x) for x ∈ ∂	 provided v ∈ C∞(	),

‖γ0(v)‖
W 1− 1

p ,p
(∂	)

≤ c‖v‖W 1,p(	) for all v ∈ W 1,p(	),

ker[γ0] = W 1,p
0 (	)

provided 1 < p < ∞.
Conversely, there exists a continuous linear operator

� : W 1− 1
p ,p

(∂	) → W 1,p(	)

such that

γ0(�(v)) = v for all v ∈ W 1− 1
p ,p

(∂	)

provided 1 < p < ∞.
In addition, the following formula holds:

∫

	

∂xi uv dx +
∫

	

u∂xi v dx =
∫

∂	

γ0(u)γ0(v)ni dSx , i = 1, . . . , d,

for any u ∈ W 1,p(	), v ∈ W 1,p′
(	), where n is the outer normal vector to the

boundary ∂	.

For the proof, see Nečas [167, Theorems 5.5, 5.7].

————————————————————————————————

Fine Properties of Functions

Here we collect further results on fine properties of functions used in the book.

Poincaré inequality
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Theorem 12 (Poincaré inequality)
Let 1 ≤ p < ∞, and let 	 ⊂ Rd be a bounded Lipschitz domain. Then the

following holds:

(i) For any A ⊂ ∂	 with the nonzero surface measure there exists a positive
constant c = c(p, d, A,	) such that

‖v‖L p(	) ≤ c

(
‖∇v‖L p(	;Rd ) +

∫

A
|v| dSx

)
for any v ∈ W 1,p(	).

(ii) There exists a positive constant c = c(p,	) such that

∥∥∥v − 1

|	|
∫

	

v dx
∥∥∥
L p(	)

≤ c‖∇v‖L p(	;Rd ) for any v ∈ W 1,p(	).

This is a particular case of a more general result of Ziemer [200, Chapter 4,
Theorem 4.5.1].

Functions of bounded variation

The symbol BV (Q) denotes the space of functions in L1(Q) with distributional
derivatives belonging to the space of measures M(Q). Functions belonging to
BV ([0, T ]) possess well-defined right and left-hand limits and as such can be defined
at any t ∈ [0, 1].

We define the space BV ([0, T ]; X) of functions of bounded variation from a real
interval [0, T ] into a metric space X endowed with a metric d,

VX [v] = sup
0≤t0<...<tm≤T

m∑

i=1

d(v(ti ); v(ti−1)).

Theorem 13 (Helly’s Theorem)
Let {vn}∞n=1 ⊂ BV ([0, T ]; X) be sequence ranging in a complete metric space X

that is bounded,

sup
n≥1

VX [vn] < ∞

and pointwise precompact,

∞⋃

n=1

vn(t) is precompact in X for any t ∈ [0, T ].

Then, up to a subsequence,
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vn(t) → v(t) for any t ∈ [0, T ], where v ∈ BV ([0, T ]; X),

VX [v] ≤ sup
n≥1

VX [vn].

For the proof, see Fleischer and Porter [108, Theorem 2.3].

Div–Curl Lemma
The celebrated Div–Curl Lemma of L. Tartar [193] (see also Murat [166]) is one

of the most efficient tools in the analysis of problems with lack of compactness.

Lemma 3 Let Q ⊂ RN be an open set. Assume

Un → U weakly in L p(Q; Rd),

V n → V weakly in Lq(Q; Rd),

where

1

p
+ 1

q
= 1

r
< 1.

In addition, let

div Un ≡ ∇ · Un,

curl V n ≡ (∇V n − ∇TV n)

⎫
⎬

⎭ be precompact in

{
W−1,s(Q),

W−1,s(Q, Rd×d),

for a certain s > 1.
Then

Un · V n → U · V weakly in Lr (Q).

For the proof, see [98, Lemma 11.11].

————————————————————————————————

Weak compactness in the space of integrable functions
Since L1 is neither reflexive nor dual of a Banach space, the uniformly bounded

sequences in L1 are in general not weakly relatively compact in L1. On the other
hand, the property of weak compactness is equivalent to the property of sequential
weak compactness.

Theorem 14 (Weak L1-compactness)
Let U ⊂ L1(Q), where Q ⊂ Rm is a bounded measurable set.
Then the following statements are equivalent:
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(i) any sequence {vn}∞n=1 ⊂ U contains a subsequence weakly converging in
L1(Q);

(ii) (Dunford–Pettis Criterion) for any ε > 0 there exists k > 0 such that

∫

{|v|≥k}
|v(y)| dy ≤ ε for all v ∈ U;

(iii) (equi-integrability) for any ε > 0 there exists δ > 0 such for all v ∈ U
∫

M
|v(y)| dy < ε

for any measurable set M ⊂ Q such that

|M | < δ;

(iv) (De la Vallé–Poussin Criterion) there exists a nonnegative function  ∈
C([0,∞)),

lim
z→∞

(z)

z
= ∞,

such that

sup
v∈U

∫

Q
(|v(y)|) dy ≤ c.

For the proof, see Ekeland and Temam [73, Chapter 8, Theorem 1.3], Pedregal
[177, Lemma 6.4].

————————————————————————————————

Lemma 4 (Biting Lemma)
Let {vn}∞n=1 ⊂ L1(Q) be a sequence of measurable functions, where Q ⊂ Rm is

a bounded measurable set, such that

∫

Q
|vn(y)| d y ≤ c uniformly for n = 1, 2, . . . .

Then there exists a function v ∈ L1(Q), a subsequence {vnk }∞k=1 of {vn}∞n=1, and
nonincreasing sequence of measurable sets {E�}∞�=1, |E�| → 0 such that

vnk → v weakly in L1(Q\E�) as k → ∞

for any fixed �.



xxxiv Preliminary Material

The proof can be found in Ball and Murat [9].

————————————————————————————————

Finally, we record a technical lemma concerning solvability of nonlinear problems.

Theorem 15 (A fixed point Theorem)
Let M and N be positive integers. Let C1 > ε > 0 and C2 > 0 be real numbers.

Let

V = {(r, u) ∈ RM × RN , ri > 0, i = 1, . . . , M},
W = {(r, u) ∈ RM × RN , ε < ri < C1, i = 1, . . . , M and |u| ≤ C2}.

Let F be a continuous mapping V × [0, 1] to RM × RN and satisfying:

1. If f ∈ V satisfies F( f, ζ ) = 0 for all ζ ∈ [0, 1] then f ∈ W ;
2. The equation F( f, 0) = 0 is a linear system with respect to f and admits a

solution inW.

Then there exists f ∈ W such that F( f, 1) = 0.

For the proof, see Gallouët, Maltese , Novotný [115, Theorem A.1].

————————————————————————————————

Space Discretization

Having introduced analytical tools we proceed with a preliminary material on
discretization methods. We assume that the reader is familiar with the basic theory
of finite element and finite volume methods for partial differential equations. A
good source of information are the monographs Ciarlet [55], Boffi, Brezzi, Fortin
[23], Dolejší, Feistauer [71], Eymard, Gallouët, Herbin [78], Feistauer, Felcman,
Straškraba [100], Kröner [143], LeVeque [151], Toro [194]. To fix the notation we
start by describing the computational mesh and the corresponding discrete spaces.

Let 	h ⊂ Rd , d = 2, 3, denote a computational domain, where h ∈ (0, h0)
for some h0 < 1, is a discretization parameter. In general 	h denotes a polygonal
approximation of the physical domain 	 and may change with h. In most cases
considered in this monograph, we consider 	h = 	. In particular,

	 = T
d , T

d = �d
i=1[ai , bi ]|{ai ,bi }

in the case of space periodic boundary conditions, whereTd is the so-called flat torus.
The questions arising from the approximation of 	 by a sequence of 	h , h → 0 are
discussed in Chapter 13. If not otherwise stated, we therefore drop the subscript h
and identify 	h with 	.
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Unstructured mesh

In practical computations one can use different types of discretizations of 	. We
start by describing a general unstructured mesh.

A computational mesh Th for 	 is a set of compact polygons or polyhedrons, if
d = 2 or d = 3, respectively, such that

	 =
⋃

K∈Th

K .

HereK is called an element of a computational mesh Th . The boundary of an element
K is the union of its faces or edges. The set of all faces of an element K is denoted
by E(K ).

• The set of all faces is denoted by E , Eext = E ∩∂	 and Eint = E\∂	 stand for the
set of all exterior and interior faces, respectively. If periodic boundary conditions
are applied, i.e. 	 = T

d , then Eint = E and Eext = ∅.
• Each face σ is associated with a normal vector nσ , which we typically denote

simply by n. The normal vector pointing outward of K is denoted by nσK , σ ∈
E(K ).

• hK stands for the diameter of an element K, and h for the (maximal) mesh size,
h = max

K∈Th

hK .

Definition 1 (UNSTRUCTURED MESH)
We speak about unstructured mesh Th if:
• Two elements are either disjoint, or their intersection is formed by a common

face, or their intersection is a common vertex. For two neighbors K , L ∈ Th we
denote σ = K |L for σ ∈ E(K ) ∩ E(L).

• Th is regular and quasi-uniform, cf. [55,78], meaning that there exist positive real
numbers θ0 and c0 which are independent of h such that

inf
K∈Th

ξK

hK
≥ θ0 and c0h ≤ hK . (7)

Here ξK stands for the diameter of the largest ball included in K.
• Let |K| and |σ | denote the d- and (d − 1)-dimensional Lebesgue measure of an

element K and a face σ, respectively. Then

|K | ≈ hd , |σ | ≈ hd−1 for any K ∈ Th, σ ∈ E .

• There is a family of control points {xK }K∈Th , such that for any σ = K |L the
direction vector −−→xK xL is perpendicular to σ . We denote dσ = |xK − xL |.
Now we introduce a dual grid over a primary mesh Th .
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Fig. 1 Dual cell Dσ = DσK ∪ Dσ L for 2D unstructured mesh

Definition 2 (DUAL GRID OF AN UNSTRUCTURED MESH)
For any σ = K |L ∈ Eint , a dual cell Dσ is defined as Dσ ≡ DσK ∪Dσ L , where DσK

(resp. Dσ L ) is a closed area determined by the control point xK (resp. xL ) with the
common vertices of K and L, see Figure 1 for a two-dimensional illustration. Note
that Dσ = DσK if σ ∈ Eext ∩ E(K ). The dual grid of an unstructured meshDh is the
union of all dual cells.

If Th consists of rectangles or cuboids we speak about a structured mesh.

Structured mesh

Definition 3 (STRUCTURED MESH)
In addition to the properties of a general mesh given in Definition 1 a structured
mesh satisfies the following conditions:

• Any σ ∈ E is orthogonal to one of the basis vectors of the Cartesian coordinates
ei , i ∈ {1, . . . , d}. We denote by Ei , i = 1, . . . , d the set of all faces that are
orthogonal to the unit vector ei and set Ei (K ) = E(K ) ∩ Ei .

• We write σ = −−→
K |L if xL = xK + hiei for any σ ∈ Ei . Similarly, we write

K = −−−→[σσ ′] for σ, σ ′ ∈ Ei (K ) if xσ ′ = xσ + hiei .
• For any σ = K |L ∈ Ei , i ∈ 1, . . . , d we have dσ = hi . It is obvious that

|K | = hi |σ | for any σ ∈ Ei (K ).

Analogously to the above we will define a dual grid over a primary structured
mesh.

Definition 4 (DUAL GRID OF A STRUCTURED MESH)
For any σ = K |L ∈ Eint we define a dual cell Dσ ≡ DσK ∪ Dσ L , where DσK

(resp. Dσ L ) is half of an element K (resp. L) adjacent to σ , see Figure 2 for a
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Fig. 2 Dual cell Dσ = DσK ∪ Dσ L for 2D structured mesh

two-dimensional example. Note that Dσ = DσK if σ ∈ Eext ∩ E(K ). We set
Di,h = {Dσ }σ∈Ei to be the d dual grids of a structured mesh corresponding to faces
perpendicular to ei , i = 1, . . . , d.

Discrete function spaces
We continue with introducing discrete function spaces. Let f be a function defined
on the computational domain 	 with a mesh Th , f smooth on each element K ∈ Th .
For each σ ∈ Eint we define outward/inward traces in the following way

f out = lim
δ→0+ f (x + δnσ ), f in = lim

δ→0+ f (x − δnσ ), x ∈ σ, σ ∈ Eint . (8)

We simply write f for f in if no confusion arises. For any face σ ∈ Eext , f out has to
be prescribed. One possible choice is to simply set f out = f in indicating the no-flux
boundary condition. As we will see later in fluid dynamic models that are studied in
this monograph it is more suitable to adjusted f out according to the specific choice of
boundary conditions. For any face σ ∈ E the following notation is used for a discrete
jump and an average, respectively,

[[ f ]] = f out − f in, {{ f }} = f out + f in

2
. (9)

Let Pn(K ) denote a set of polynomials of degree at most n on an element K. We
introduce the function spaces of piecewise constant functions

Qh = {φh ∈ L1(	) | φh |K = φK ∈ P0(K ) for all K ∈ Th
}
, (10a)

W (i)
h = {φh ∈ L1(	) | φh |Dσ

= φDσ
∈ P0(Dσ ) for all Dσ ∈ Di,h

}
, (10b)

i = 1, . . . , d.
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Further, for unstructured mesh consisting of triangles or tetrahedrons, we intro-
duce the space of nonconforming piecewise linear functions, the so-calledCrouzeix–
Raviart finite element space

Vh =
{
φh ∈ L2(	)

∣∣∣ φh |K ∈ P1(K ) for all K ∈ Th,
∫

σ

[[φh]] dSx = 0 for σ ∈ Eint
}
. (10c)

For homogeneous Dirichlet boundary conditions we set

V0,h =
{
φh ∈ Vh

∣∣∣
∫

σ

φh dSx = 0 for σ ∈ Eext
}
. (10d)

The standard projectionoperators associated to these spaces are defined as follows:

�Q : L1(	) → Qh, �Qφ =
∑

K∈Th

1K
|K |

∫

K
φ dx, (11a)

�
(i)
W : L1(	) → W (i)

h , �
(i)
W φ =

∑

σ∈Ei

1Dσ

|σ |
∫

σ

φ dSx , i = 1, . . . , d, (11b)

�V : W 1,1(	) → Vh,

∫

σ

�Vφ dSx =
∫

σ

φ dSx for any σ ∈ E . (11c)

where 1K and 1Dσ
are characteristic functions

1K (x) =
{
1 if x ∈ K ,

0 if x /∈ K ,
1Dσ

(x) =
{
1 if x ∈ Dσ ,

0 if x /∈ Dσ .
(12)

Let φh = (
φ1,h, . . . , φd,h

)
be a vector valued function, then by φh ∈ Qh (resp. V h

and V 0,h) we mean φi,h ∈ Qh (resp. Vh and V0,h) for all i ∈ {1, . . . , d}. Accord-
ingly, we extend the projection operators �Q and �V to vector valued functions
componentwisely, i.e.

�Qφ = (�Qφ1, . . . , �Qφd), �Vφ = (�Vφ1, . . . ,�Vφd).

Further, we define φh ∈ W h ≡ W (1)
h × . . . × W (d)

h such that φi,h ∈ W (i)
h for all

i = 1, . . . , d. The corresponding projection operator for the space W h reads

�W : L1(	; Rd) → W h, �Wφ =
(
�

(1)
W φ1, . . . ,�

(d)
W φd

)
. (13)
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We shall frequently write φ ≡ �Qφ and unify the notation for the mean value for a
generic vector valued function φh ∈ Qh ∪ V h ∪ W h at an interface σ ∈ E :

〈
φh

〉
σ

=

⎧
⎪⎨

⎪⎩

1
|σ |
∫
σ

φh dSx , for φh ∈ V h,{{
φh

}}
σ
, for φh ∈ Qh,

φh |σ , for φh ∈ W h .

(14)

Discrete difference operators
Difference operators on an unstructured mesh. For piecewise linear functions
fh ∈ Vh , gh ∈ V h it is natural to define discrete gradient and divergence as follows

∇h fh ≡ ∇x fh and divh gh ≡ divx gh on any K ∈ Th .

For piecewise constant functions there are several ways to define discrete difference
operators. For φh ∈ Qh and φh = (φ1,h, . . . , φd,h)

T ∈ Qh we define discrete
gradient, discrete divergence and discrete Laplace operators by

∇hφh =
∑

K∈Th

(∇hφh)K1K , (∇hφh)K =
∑

σ∈E(K )

|σ |
|K | 〈φh〉σnσK ,

∇Dφh =
∑

σ∈E
(∇Dφh)σ1Dσ

, (∇Dφh)σ = [[φh]]

dσ

n,

divhφh =
∑

K∈Th

(
divhφh

)
K
1K ,

(
divhφh

)
K

=
∑

σ∈E(K )

|σ |
|K |
〈
φh

〉
σ

· nσK ,

�hφh =
∑

K∈Th

(�hφh)K1K , (�hφh)K =
∑

σ∈E(K )

|σ |
|K |

[[φh]]

dσ

. (15)

Note that for σ ∈ Eext the value φout or φout
h is adjusted according to the numerical

boundary conditions. For vector valued functions, the operators ∇h,∇D,�h work
componentwisely, i.e.,

∇hφh = (∇hφ1,h, . . . ,∇hφd,h
)
, ∇Dφh = (∇Dφ1,h, . . . ,∇Dφd,h

)
,

�hφh = (�hφ1,h, . . . ,�hφd,h
)
.

Difference operators on a structured mesh. In case of a regular structured grid,
it is convenient to introduce discrete difference operators in each direction of the
coordinates. For rh ∈ Qh and qh = (q1,h, . . . , qd,h)

T ∈ W h we define

ðDi rh =
∑

σ∈Ei

1Dσ

(
ðDi rh

)
σ
,
(
ðDi rh

)
σ

= rh |L − rh |K
h
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for all σ = −−→
K |L ∈ Ei and

ð
(i)
T qi,h =

∑

K∈Th

(
ð

(i)
T qi,h

)

K
1K ,

(
ð

(i)
T qi,h

)

K
= qi,h |σ ′ − qi,h |σ

h

for all K = −−−→[σσ ′], and σ, σ ′ ∈ Ei .
With the above notations, we further define a discrete Laplace operator

�hrh =
d∑

i=1

�
(i)
h rh, �

(i)
h rh = ð

(i)
T (ðDi rh), i = 1, . . . , d.

and the following discrete gradient on the dual grid and discrete divergence on the
primary grid

∇Drh = (ðD1rh, . . . ,ðDd rh
)
, divT qh =

d∑

i=1

ð
(i)
T qi,h . (16)

It is easy to observe for rh ∈ Qh, f h ∈ Qh that

ð
(i)
T

(
�

(i)
W rh

)
= �Q[ðDi rh],

∇hrh = �Q[∇Drh] =
(
ð

(1)
T �

(1)
W rh, . . . ,ð

(d)

T �
(d)
W rh

)
,

�hrh = divT (∇Drh),

divh f h =
d∑

i=1

ð
(i)
T
{{

fi,h
}} = divT

(
�W f h

)
,

(ðDi rh)σ ei = (∇Drh)σ for σ ∈ Ei , i = 1, . . . , d.

(17)

Lemma 5 For any φ ∈ W 1,1(	; Rd) it holds

∫

K
divT �Wφ dx =

∫

K
divxφ dx for any K ∈ Th . (18)

Proof From the definition of divT , we know that

∫

K
divT �Wφ dx =

d∑

i=1

∑

σ∈Ei (K )

|σ |�(i)
W φiei · nσK

=
d∑

i=1

∑

σ∈Ei (K )

∫

σ

φiei · nσKdSx =
∑

σ∈E(K )

∫

σ

φ · nσKdSx =
∫

K
divxφ dx .

————————————————————————————————
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Interpolation errors

For simplicity, hereafterwedenote by‖·‖L p the norm in‖·‖L p(	), analogous notations
hold for other spaces. We will also write

a
<∼b if a ≤ cb,

where c is a positive constant independent of the discretization parameter h.
Next we list some basic interpolation inequalities, see, for instance, [56,78,115].

For φ ∈ C1(	), h ∈ (0, h0), h0 < 1, we have

∣∣[[�Qφ
]]∣∣<∼h‖φ‖C1 ,

∣∣φ(x) − {{�Qφ
}}∣∣<∼h‖φ‖C1 , for any x ∈ σ ∈ Eint ,

∥∥φ − �Qφ
∥∥
L p

<∼h‖φ‖C1 ,
∥∥�Qφ − {{�Qφ

}}∥∥
L p

<∼h‖φ‖C1 .
(19)

If additionally φ ∈ C2(	), φ ∈ C2(	; Rd), then we have for all 1 ≤ p ≤ ∞
∥∥∇xφ − ∇D�Qφ

∥∥
L p

<∼h‖φ‖C2 ,
∥∥∇xφ − ∇h

(
�Qφ

)∥∥
L p

<∼h‖φ‖C2 ,
∥∥divxφ − divh(�Qφ)

∥∥
L p

<∼h‖φ‖C2 ,
∥∥∇D�Qφ

∥∥
L p

<∼‖φ‖C1 ,
∥∥�h�Qφ

∥∥
L∞

<∼‖φ‖C2 .

(20)

For the Crouzeix–Raviart finite elements the following interpolation inequalities
hold, see [58]. Let φ ∈ C1(	) then we have for all 1 ≤ p ≤ ∞

∣∣[[�Q�Vφ
]]∣∣<∼h‖φ‖C1 , for any x ∈ σ ∈ Eint ,

∥∥φ − �Q�Vφ
∥∥
L p

<∼h‖φ‖C1 ,
∥∥φ − 〈�Vφ〉σ

∥∥
L p

<∼h‖φ‖C1 .
(21)

Let φ ∈ C2(	), fh ∈ Vh then

‖φ − �Vφ‖L p + h‖∇xφ − ∇h�Vφ‖L p
<∼h2‖φ‖C2 , 1 ≤ p ≤ ∞,

‖ fh − 〈 fh〉‖L2(K )

<∼h‖∇h fh‖L2(K ), for any K ∈ Th . (22)



xlii Preliminary Material

Fundamental Discrete Inequalities

We present further important inequalities that will be used later in the analysis of
numerical methods. Firstly, it is easy to check that for any fh, gh ∈ Qh the discrete
product rule

[[ fhgh]] = {{ fh}}[[gh]] + [[ fh]]{{gh}} = ( fh)
out[[gh]] + [[ fh]](gh)

in (23)

and the algebraic identity

{{ fhgh}} − {{ fh}} {{gh}} = 1

4
[[ fh]][[gh]] (24)

hold. A direct application of the product rule (23) implies the identity

[[
rh f h

]] · [[ f h
]]− 1

2
[[rh]]

[[| f h |2
]] = {{rh}}|

[[
f h
]]|2 (25)

for rh ∈ Qh, f h ∈ Qh .

Inverse estimates and trace inequality. Let p > q ≥ 1. Then the following inverse
estimates hold

‖ fh‖Wr,p(K )

<∼h
−r+d

(
1
p − 1

q

)

‖ fh‖Lq (K ), fh ∈ Pm(K ), r = 0, 1, m = 1, 2, . . . ,

‖ fh‖L p(	)

<∼h
d
(

1
p − 1

q

)

‖ fh‖Lq (	), fh ∈ Qh or fh ∈ Vh, (26)

see, e.g., [55], and the trace inequality

‖ f ‖L p(∂K )

<∼h− 1
p
(‖ f ‖L p(K ) + h‖∇x f ‖L p(K )

)
, 1≤ p ≤ ∞ for any f ∈ C1(K ),

(27)

hold, see [39,111]. From the latter we readily deduce that

‖rh‖L p(∂K )

<∼h− 1
p ‖rh‖L p(K ), 1 ≤ p ≤ ∞ for any rh ∈ Pm(K ),m = 0, 1, . . . .

(28)

Let us now introduce the following W 1,p-seminorm for Qh

‖rh‖W 1,p(Qh) ≡
⎛

⎝
∑

σ∈Eint

∫

σ

|[[rh]]|p
dσ

dSx

⎞

⎠
1/p

for any rh ∈ Qh, 1 ≤ p < ∞.

For p = 2 we use for simplicity the notation H 1 for W 1,2-seminorm. Hereby, it is
worthwhile to mention the following result on the estimate of H 1-seminorms
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‖ fh‖H 1(Qh)

<∼‖∇h fh‖L2 for any fh ∈ Vh, (29)

see [111, Lemma 2.2]. Note that the left hand side is well-defined also for fh ∈ Vh .

Moreover, if [[rh]] = 0 for all σ ∈ Eext then

‖rh‖H 1(Qh) = ‖∇Drh‖L2 for any rh ∈ Qh .

Sobolev–Poincaré inequalities. We first recall a discrete version of Poincaré’s
inequality for any fh ∈ Vh

‖ fh − fh‖L2(K ) ≡ ∥∥ fh − �Q fh
∥∥
L2(K )

<∼h‖∇h fh‖L2(K ), (30)

see [176].

Theorem 16 (Discrete Sobolev–Poincaré inequalities)

Let q ∈ R satisfying 1 ≤ q ≤ 6 for d = 3, 1 ≤ q < ∞ for d = 2. Then the
following discrete versions of the Sobolev–Poincaré inequalities hold for fh ∈ Vh

‖ fh‖Lq (	)

<∼‖ fh‖L1(	) + ‖∇h fh‖L2(	) (31)

‖ fh − 〈 fh〉	‖Lq (	)

<∼‖∇h fh‖L2(	), (32)

where

〈 fh〉	 ≡ 1

|	|
∫

	

fh dx .

If the mesh satisfies additionally the following regularity constraint:
there exists α > 0 such that

dist (xK , σ ) ≥ αdσ for any K ∈ Th, σ ∈ E(K ), (33)

then we have analogous discrete Sobolev–Poincaré inequalities for rh ∈ Qh

‖rh‖Lq (	)

<∼‖rh‖L2(	) + ‖rh‖H 1(Qh) (34)

‖rh − 〈rh〉	‖Lq (	)

<∼‖rh‖H 1(Qh), (35)

and the discrete Poincaré inequality

‖rh − 〈rh〉	‖L p(	)

<∼‖rh‖W 1,p(Qh), 1 ≤ p < ∞. (36)
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For the proof of the first inequality, see [42, Lemma6.1], inequalities (32), (34) and
(35) can be found in [148, Theorem 3.3] or [39, Theorem 7]. The discrete Poincaré
inequality (36) for functions from Qh has been proved in [22, Theorem 5].

————————————————————————————————

Theorem 17 (Generalized discrete Sobolev–Poincaré inequality)
Let the hypothesis (33) hold and let rh ≥ 0 be such that

0 < cM ≤
∫

	

rh dx and
∫

	

rγ

h dx ≤ cE

where cM and cE are positive constants and γ > 1.
Then there is c = c(cM , cE , γ ) independent of h such that

‖ fh‖Lq (	) ≤ c

(
‖ fh‖H 1(Qh)

+
∫

	

rh | fh | dx
)

≤ c‖ fh‖H 1(Qh)
+ c

√
cM

(∫

	

rh| fh |2 dx

)1/2 (37)

for any fh ∈ Qh and 1 ≤ q ≤ 6 for d = 3, 1 ≤ q < ∞ for d = 2.

Proof Step 1
By virtue of (35) we get

‖ fh‖Lq (	) ≤ ‖ fh − 〈 fh〉	‖Lq (	) + ‖〈 fh〉	‖Lq (	)

<∼‖ fh‖H 1(Qh)
+ |〈 fh〉	|

<∼‖ fh‖H 1(Qh)
+ 1

cM

∫

	

rh|〈 fh〉	| dx
<∼‖ fh‖H 1(Qh)

+ 1

cM

∫

	

rh| fh | dx + 1

cM

∫

	

rh | fh − 〈 fh〉	| dx .

Finally, by Hölder’s inequality,

∫

	

rh| fh − 〈 fh〉	| dx ≤ ‖rh‖Lq′
(	)‖ fh − 〈 fh〉	‖Lq (	)

<∼cE‖ fh‖H 1(Qh)
.

This gives a desired result for d = 2 or

γ ≥ 6

5
if d = 3. (38)

Step 2
To get rid of (38) we repeat the previous arguments with rh replaced by the cut-off

function

Tk(rh) ≡ min{rh; k}.
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Obviously,

cM ≤
∫

	

rh dx =
∫

	

Tk(rh) dx +
∫

	

(rh − Tk(rh)) dx

≤
∫

	

Tk(rh) dx + 2
∫

rh≥k
rh dx ≤

∫

	

Tk(rh) dx + 2k1−γ

∫

	

rγ

h dx

≤
∫

	

Tk(rh) dx + 2k1−γ cE .

Now, let us choose k such that

2k1−γ cE ≤ cM
2

.

Finally, we repeat the arguments of Step 1 for rh ≡ Tk(rh), cM ≡ cM
2 and cE ≡ |	|k 6

5 .

The second inequality in (37) follows from Hölder’s inequality.
————————————————————————————————

Remark 1 Refining the arguments of Step 2 of the above proof we observe that the
result remains true if rh ≥ 0 belongs to an equi-integrable set in L1(	) and

0 < cM ≤
∫

	

rh dx .

Integration by parts. Next, we show the integration by parts formulas satisfied by
the discrete differential operators defined for piecewise constant functions.

Lemma 6 For any rh ∈ Qh, f h ∈ Qh there holds

∫

Eint

({{rh}}
[[

f h
]]+ {{ f h

}}
[[rh]]

) · n dSx = 0. (39)

Here and hereafter we use a simplified notation
∫
Eint

dSx for
∑

σ∈Eint

∫
σ
dSx .

————————————————————————————————

It is worth to mention that due to the identity
∫
∂K nσKdSx = 0, we have

∫

∂K
{{rh}}nσKdSx = 1

2

∫

∂K
[[rh]]nσKdSx . (40)

Lemma 7 (Discrete integration by parts)
Let rh, φh ∈ Qh, f h, gh ∈ Qh , qh ∈ W h and i ∈ {1, . . . , d}.
Then the following hold
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∫

	

∇hrh · f h dx = −
∫

	

rhdivh f h dx

if one of the following conditions holds for all σ ∈ Eext
[[rh]] = 0 = [[ f h

]] · n or [[rh]] = 0 = {{ f h
}} · n

or {{rh}} = 0 = [[ f h
]] · n or {{rh}} = 0 = {{ f h

}} · n, (41)

∫

	

�hrh φh dx = −
∫

	

∇Drh · ∇Dφh dx

if [[rh]] = 0 or {{φh}} = 0 = [[φh]] for all σ ∈ Eext , (42)

∫

	

qi,hðDi rh dx = −
∫

	

rhð
(i)
T qi,h dx

if qi,h
∣∣∣
σ

= 0 for all σ ∈ Eext , (43)

−
∫

	

qh · ∇Drh dx =
∫

	

rhdivT qh dx

if qh

∣∣∣
σ
· n = 0 for all σ ∈ Eext . (44)

The above equalities hold also for 	 = T
d and

∫

Td

∇hdivh gh · f h dx = −
∫

Td

divh gh divh f h dx . (45)

Proof We shall prove only the first equality as the rest are analogous. First, applying
(39) and (40) and the assumption [[rh]] = 0 = [[ f h

]] · n on σ ∈ Eext we obtain
∫

	

∇hrh · f h dx =
∑

K∈Th

f K ·
∫

∂K
{{rh}}nσKdSx

=
∑

K∈Th

f K ·
∫

∂K

[[rh]]

2
nσKdSx

=
∫

Eint

{{
f h
}} · ([[rh]]n)dSx + 1

2

∫

Eext

f inh · ([[rh]]n)dSx

= −
∫

Eint

[[
f h
]] · ({{rh}}n)dSx + 1

2

∫

Eext

[[
f h
]] · (r inh n)dSx

= −
∑

K∈Th

rK

∫

∂K

[[
f h
]]

2
· nσK dSx

= −
∑

K∈Th

rK

∫

∂K

{{
f h
}} · nσK dSx

= −
∫

	

rh divh f h dx .



Preliminary Material xlvii

Next, we can apply the assumption {{rh}} = 0 = {{ f h
}} · n on σ ∈ Eext and obtain

analogously

∫

	

∇hrh · f h dx =
∑

K∈Th

f K ·
∫

∂K
{{rh}}nσKdSx

= −
∫

Eint

[[
f h
]] · n{{rh}}dSx +

∫

Eext

{{rh}} f inh · n dSx

=
∫

Eint

{{
f h
}} · n[[rh]]dSx −

∫

Eext

r inh
{{

f h
}} · n dSx

= −
∑

K∈Th

rK

∫

∂K

{{
f h
}} · nσK dSx

= −
∫

	

rh divh f h dx .

Further, assuming
{{

f h
}} · n = 0 = [[rh]] on the exterior faces we derive

∫

	

rh divh f h dx =
∑

K∈Th

rK

∫

∂K

{{
f h
}} · nσK dSx

= −
∫

Eint

{{
f h
}} · n[[rh]]dSx +

∫

Eext

r inh
{{

f h
}} · n dSx

= −
∫

Eint

{{
f h
}} · n[[rh]]dSx − 1

2

∫

Eext

f inh · n [[rh]] dSx

= −
∑

K∈Th

f K ·
∫

∂K

[[rh]]

2
nσKdSx = −

∑

K∈Th

f K ·
∫

∂K
{{rh}}nσKdSx

= −
∫

	

∇hrh · f h dx .

The proof of (39) for the last case of
[[

f h
]] · n = 0 = {{rh}} on the exterior faces

is analogous.
————————————————————————————————

Time Discretization

We discretize the time interval [0, T ] by an equidistant time grid with a time step
�t > 0 and denote

f k(x) = f (t k, x) for all x ∈ 	, t k = k �t for k = 0, 1, . . . , NT .
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In literature one canfindnumerous efficientODEsolvers in order to solve numerically
a system of differential equations. Here we confine ourself to the first order implicit
discretization in time, i.e. we apply the backward Euler method to approximate the
time derivative

d

d t
f (tk, x) ≈ Dt f

k(x) ≡ f k(x) − f k−1(x)

�t
, k = 1, 2, . . . , NT , x ∈ 	. (46)

We set f 0(x) to be a prescribed initial condition

f 0(x) = f0(x) ≡ f (0, x), x ∈ 	.

We also introduce a piecewise constant interpolation f� of discrete values f k

f�(t, ·) = f 0 for t < �t,& f�(t, ·) = f k for t ∈ [k�t, (k + 1)�t), k = 1, 2, . . . , NT .

(47)

For a discrete function in space and time we will use the notation f kh , k =
1, 2, . . . , NT . For its piecewise constant interpolation in time we use a simplified
notation fh instead of more precise, but lengthy f�,h . The discrete calculus and
properties introduced above for the space discretization directly apply also for the
time discretization. In particular, the following result on the local truncation error
will be frequently used.

Lemma 8 (Consistency error of the discrete time derivative)
Let rh ∈ Qh and mh ∈ Qh . Then for any ϕ ∈ C2

c ([0, T ) × 	), ϕ ∈ C2
c ([0, T ) ×

	; Rd) there hold

∫ T

0

∫

	

(
Dtrh(t)�Qϕ(t) + rh(t)∂tϕ(t)

)
dx dt +

∫

	

r0hϕ(0) dx

<∼�t‖ϕ‖C2‖rh‖L1L1 + �t‖ϕ‖C1

∥∥r0h
∥∥
L1 ,

(48a)

∫ T

0

∫

	

(Dtrh(t)�Vϕ(t) + rh(t)∂tϕ(t)) dx dt +
∫

	

r0hϕ(0) dx

<∼(�t + h)‖ϕ‖C2‖rh‖L1L1 + (�t + h)‖ϕ‖C1

∥∥r0h
∥∥
L1 ,

(48b)

∫ T

0

∫

	

(
Dtmh · �Wϕ + mh · ∂tϕ

)
dx dt +

∫

	

m0
h · ϕ(0) dx

<∼�t (‖mh‖L1L1‖ϕ‖C2 + ∥∥m0
h

∥∥
L1‖ϕ‖C1).

(48c)

Proof By direct calculation we derive

∫ T

0

∫

	

Dtrh(t)�Qϕ(t) dx dt =
∫ T

0

∫

	

rh(t) − rh(t − �t)

�t
ϕ(t) dx dt
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= 1

�t

∫ T

0

∫

	

rh(t)ϕ(t) dx dt − 1

�t

∫ T−�t

−�t

∫

	

rh(t)ϕ(t + �t) dx dt

= −
∫ T

0

∫

	

rh(t)Dtϕ(t) dx dt + 1

�t

∫ T

T−�t

∫

	

rh(t)ϕ(t + �t) dx dt

− 1

�t

∫ 0

−�t

∫

	

rh(t)ϕ(t + �t) dx dt

= −
∫ T

0

∫

	

rh(t)Dtϕ(t) dx dt − 1

�t

∫ �t

0

∫

	

r0hϕ(t) dx dt

= −
∫ T

0

∫

	

rh(t)∂tϕ(t) dx dt −
∫

	

r0hϕ(0) dx + I,

where thanks to Hölder’s inequality and Taylor’s theorem the term I is estimated by

I =
∫ T

0

∫

	

rh(t)(∂tϕ(t) − Dtϕ(t)) dx dt +
∫

	

r0h
1

�t

∫ �t

0
(ϕ(0) − ϕ(t)) dt dx

<∼�t‖ϕ‖C2‖rh‖L1L1 + �t‖ϕ‖C1

∥∥r0h
∥∥
L1 ,

which implies (48a). Analogously, we have

∫ T

0

∫

	

Dtrh(t)�Vϕ(t) dx dt =

= −
∫ T

0

∫

	

rh(t)Dt�Vϕ(t) dx dt − 1

�t

∫ �t

0

∫

	

r0h�Vϕ(t) dx dt

= −
∫ T

0

∫

	

rh(t)∂tϕ(t) dx dt −
∫

	

r0hϕ(0) dx + I,

where by Hölder’s inequality, Taylor’s theorem, and the interpolation estimate (22)
we deduce

I =
∫ T

0

∫

	

rh(t)(∂tϕ(t) − Dt�Vϕ(t)) dx dt

+
∫

	

r0h
�t

∫ �t

0
(ϕ(0) − �Vϕ(t)) dt dx

=
∫ T

0

∫

	

rh(t)(∂tϕ(t) − Dtϕ(t)) dx dt

+
∫ T

0

∫

	

rh(t)Dt
(
ϕ(t) − �Vϕ(t)

)
dx dt

+
∫

	

r0h
1

�t

∫ �t

0
(ϕ(0) − ϕ(t)) dt dx +

∫

	

r0h
1

�t

∫ �t

0
(ϕ(t) − �Vϕ(t)) dt dx

<∼(�t + h2)‖ϕ‖C2‖rh‖L1L1 + (�t + h2)‖ϕ‖C2

∥∥r0h
∥∥
L1 ,



l Preliminary Material

which completes the proof of (48b). Finally, the proof of (48c) is analogous and we
omit it here.

————————————————————————————————

In numerical analysis of PDEs one can often derive inequalities for discrete quan-
tities { f k}k≥0 valid at each time level k. A desired uniform estimate is then typically
obtained by means of the discrete counterpart of Gronwall’s lemma.

Lemma 9 (Discrete Gronwall’s Lemma)
Let �t, B, ak, bk, ck, wk be nonnegative numbers for integers k ≥ 1, and let the

inequality

am + �t
m∑

k=1

bk ≤ B + �t
m∑

k=1

akwk + �t
m∑

k=1

ck for m ≥ 1

hold. If �twk < 1 for all k = 1, . . . ,m, then

am + �t
m∑

k=1

bk ≤ exp

{
�t

m∑

k=1

wk

1 − �twk

}(
B + �t

m∑

k=1

ck
)

for m ≥ 1.

See [128, Lemma 5.1].

————————————————————————————————
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Part I
Mathematics of Compressible Fluid Flow:

The State-of-the-Art

The main objective of this introductory part is to review the key ingredients of the
existingmathematical theory of compressible fluid flows.As customary in continuum
mechanics, we write the basic physical principles in terms of conservation/balance
laws reflecting the basic physical principles: the conservation/balance of mass, linear
momentum, and energy. We introduce their weak formulation written as integral
identities rather than systems of partial differential equations. As we shall see below,
the weak formulation suits perfectly modern numerical methods based on the finite
volume and finite element methods.

Having introduced the preliminary material, we focus on the Euler system
describing themotion of a compressible inviscid fluid.We consider both the complete
(full) system including the thermal effects and its barotropic simplification, where
the pressure of the fluid depends solely on its mass density. In particular, we show
how singularities emerge spontaneously in smooth solutions in a finite lap of time.
Accordingly, we introduce the concept of weak (distributional) solution to continue
the process after blowup. The property of thermodynamic stability that is crucial in
the theory of dissipative solutions is also discussed.

The viscous fluids in this monograph are Newtonian, meaning the viscous tress
is given by the standard Newton rheological law as a linear function of the velocity
gradient. The time evolution is therefore governed by the Navier–Stokes(–Fourier)
system. Unlike its inviscid (Euler) counterpart, the Navier–Stokes system admits
global-in-time smooth solutions at least if the initial data are close to equilibrium
and under conservative boundary conditions. Although there is no explicit example
of finite time blow up, the existence of global-in-time strong solutions to the Navier–
Stokes system is still an outstanding open problem. To overcome this difficulty,
we content ourselves with suitable weak (distributional) solutions existing globally
in time for any physically relevant data. Finally, we review some recent results
on conditional regularity of weak solutions that are of great interest in numerical
analysis, in particular when combined with the weak–strong uniqueness principle.

Many results are stated without proofs. The interested reader may consult the
comprehensive reference material indicated in the concluding sections appended to
each individual chapter.



Chapter 1
Equations Governing Fluids in Motion

Physics distinguishes four basic forms of matter: Solids, liquids, gases, and plasmas.
The last three fall in the category of fluids.

A fluid is any body whose parts yield to any force impressed on it, and by yielding,
are easily moved among themselves.

Isaac Newton, Principia Book II, 1687
There are several ways how to describe the fluid motion in the language of mathe-
matics:

1. Molecular dynamics captures the fluid in its most elementary form: as a large
sample of moving (rigid) particles—atoms or molecules. The equations of motion
are written according to Newton’s laws for each individual particle, where mutual
collisions are taken account. The resulting problem consists of a large number of
ordinary differential equation that are completely time reversible.

2. Kinetic theory replaces individual trajectories by averagedquantities. The state of
the fluid is described by the density of particles having the same velocity at a given
time and spatial positions. The resulting problem involves theBoltzmann equation
that includes a collision operator. Accordingly, the problem is irreversible with
respect to time.

3. Continuum mechanics is a phenomenological theory based on observable
macroscopic variables—fields, whereas the time evolution is described in terms of
balance laws. These are systemof partial differential equations reflecting the basic
physical principles: The conservation of mass, linear momentum, and energy.

4. Turbulence theory describes the fluids in the borderline regimes of continuum
mechanics. There is no universally accepted theory of turbulence nowadays. The
models consist of further averaging and/or augmenting the systems of equations
provided by the existing models in continuum fluid mechanics.

This monograph develops the mathematical theory of fluids in the framework of
continuum mechanics. A fluid in motion is described in terms of numerical values of
observable macroscopic quantities—fields—depending on the time t and the spatial

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
E. Feireisl et al., Numerical Analysis of Compressible Fluid Flows, MS&A 20,
https://doi.org/10.1007/978-3-030-73788-7_1
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4 1 Equations Governing Fluids in Motion

position x. We systematically use the Eulerian description, where the spatial coordi-
nate frame is attached to the physical domain � ⊂ Rd , d = 1, 2, 3 occupied by the
fluid. The reference initial time is set to be t0 = 0, whereas the reference time inter-
val is t ∈ (0,T ) with T ≤ ∞. For obvious reasons, the final time T < ∞ is finite
in numerical implementations. We focus on bounded spatial domains � avoiding
problems with the far field behavior delicate to approximate in numerics. Accord-
ingly, suitable boundary conditions must be imposed. To avoid technicalities related
to the presence of the kinematic boundary, we often consider the spatially periodic
boundary conditions, for which the spatial domain can be identified with the flat
torus

� = T
d , T

d = �d
i=1[ai, bi]|{ai,bi}.

The specific length of the intervals [ai, bi] is usually irrelevant and may be conve-
niently normalized. In what follows, we shall use the same symbol Td to denote any
spatially periodic domain. From the topological point of view, the flat torus Td is a
compact manifold without boundary.

1.1 Balance Laws

The cornerstone of the mathematical theory is the system of equations governing
the time evolution of the fluid. They are mathematical statements of the fundamental
principles of physics expressed in terms of balance laws. The time evolution of a
macroscopic quantityD is described by means of its volume density d = d(t, x), the
flux F = F(t, x), and the source term s = s(t, x). Given a time interval [t1, t2] and a
volume element B ⊂ �, the associated balance law can be written the form:

⎡
⎣

∫

B

d(t, x) dx

⎤
⎦

t=t2

t=t1

= −
t2∫

t1

∫

∂B

F(t, x) · n(x) dSx dt +
t2∫

t1

∫

B

s(t, x) dx dt, (1.1)

where n denotes the outer normal vector to ∂B. The balance law (1.1) says that the
time change of the total amount of the quantity D contained in the volume B is
proportional to the amount flowing in/out through the boundary ∂B and the amount
furnished by the source term s. If s = 0, the relation (1.1) represents a conservation
law. Equation (1.1) holds for any choice of t1 ≤ t2 and any B ⊂ �. It is worth noting
that a balance law written in its primitive form (1.1) requires very low regularity of
the fields in question: (i) (local) integrability of d , F, and s; (ii) the existence of the
normal trace of the field [d , F] ∈ Rd+1 on the boundary of any space-time cylinder
(t1, t2) × B.
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1.1.1 Strong Versus Weak Formulation

The balance law (1.1) can be written in a more concise form as a partial differential
equation on condition that all quantities involved are smooth enough. Indeed dividing
(1.1) on (t2 − t1) and performing the limit t2 → t1 we easily obtain

d

dt

∫

B

d(t, x) dx +
∫

∂B

F(t, x) · n(x) dSx =
∫

B

s(t, x) dx

for any t. Next, by Gauss–Green theorem,

∫

∂B

F(t, x) · n(x) dSx =
∫

B

divxF(t, x) dx;

whence ∫

B

[∂td(t, x) + divxF(t, x)] dx =
∫

B

s(t, x) dx.

As B ⊂ � is arbitrary, we conclude that

∂td + divxF = s, (1.2)

which is the differential (strong) form of the balance law (1.1).
The weak form of (1.1) is deduced from a simple observation that (1.1) can be

interpreted as

lim
δ↘0

∞∫

0

∫

Rd

[
d(t, x)∂tϕδ(t, x) + F(t, x) · ∇xϕδ(t, x)

]
dx dt

+
∞∫

0

∫

Rd

s(t, x)ϕδ(t, x) dx dt = 0,

where
ϕδ ∈ C1

c ((t1, t2) × B), 0 ≤ ϕδ ≤ 1, ϕδ(t, x) = 1

whenever
t1 + δ < t < t2 − δ, x ∈ B, dist[x, ∂B] > δ.

Here we have tacitly assumed that B ⊂ � is a domain with regular boundary. This
motivates the following weak formulation of the balance law (1.1) in (0,T ) × �:
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T∫

0

∫

�

[
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

]
dx dt = −

T∫

0

∫

�

s(t, x)ϕ(t, x) dx dt

(1.3)
for any ϕ ∈ C1

c ((0,T ) × �). The function ϕ is usually called test function. Note
that (1.3) is nothing other than (1.2), where the derivatives are interpreted in the
sense of distributions. Obviously, any strong solution of (1.2) satisfies (1.3), and any
weak solution of (1.3) with continuously differentiable d and F satisfies (1.2). This
property is called compatibility of the weak formulation (1.3) with the equation (1.2).

Although it is customary and also more concise to formulate problems in fluid
dynamics in terms of differential equations as (1.2), it is the weak formulation (1.3)
that is definitely closer to the primitive form of the balance law (1.1). There is a priori
no reason for the fields d , F, s to be continuous or even differentiable functions of t
and x. As a matter of fact, the numerical approximations studied in this monograph
are much closer to the weak formulation (1.3) than to its differential form (1.2).

1.1.2 Initial and Boundary Conditions

In many problems, the initial state of the quantity d(0, ·) is known and considered as
a given datum (parameter) of the problem. For d ∈ C([0,T ) × �) we simply write

d(0, ·) = d0, where d0 ∈ C(�) is the given profile. (1.4)

Relation (1.4) is called initial condition.
The quantities appearing in the weak formulation of a balance law may be less

regular therefore the meaning of their pointwise values must be clarified. The initial
condition (1.4) can be easily incorporated in the weak formulation (1.3),

T∫

0

∫

�

[
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

]
dx dt

= −
∫

�

d0(x)ϕ(0, x) dx −
T∫

0

∫

�

s(t, x)ϕ(t, x) dx dt

(1.5)

by extending the class of admissible test functions to ϕ ∈ C1
c ([0,T ) × �).

As amatter of fact, any field d satisfying theweak formulation (1.3) enjoys certain
continuity with respect to the time variable. To see this consider ϕ(t, x) = ψ(t)φ(x)
as a test function in (1.3)
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−
T∫

0

∂tψ(t)

⎡
⎣

∫

�

d(t, x)φ(x) dx

⎤
⎦ dt

=
T∫

0

ψ(t)

⎡
⎣

∫

�

s(t, x)φ(x) + F(t, x) · ∇xφ(x) dx

⎤
⎦ dt

(1.6)

for any ψ ∈ C1
c (0,T ) and any φ ∈ C1

c (�). In addition, suppose that

d ∈ L∞(0,T ;L1(�)), F ∈ L1((0,T ) × �;Rd ), s ∈ L1((0,T ) × �).

Relation (1.6) can be interpreted in terms of distributional derivatives as

d

dt

⎡
⎣t 	→

∫

�

d(t, x)φ(x) dx

⎤
⎦ = G(t) in D′(0,T ), where G ∈ L1(0,T ).

In other words, the function of the time variable
[
t 	→ ∫

�
d(t, x)φ(x), dx

]
is bounded

absolutely continuous in [0,T ] for any φ ∈ C1
c (�). This can be rephrased as follows:

Any time t ∈ [0,T ) is a rightLebesgue point and any time t ∈ (0,T ] is a left Lebesgue
point of

[
t 	→ ∫

�
d(t, x)φ(x), dx

]
; moreover, for any t ∈ (0,T ) the value at right

and left Lebesgue points of
[
t 	→ ∫

�
d(t, x)φ(x), dx

]
coincide for any φ ∈ C1

c (�).
Finally, as C1

c (�) is dense in C0(�), we can extend the previous statement to any
φ ∈ C0(�). Indeed let φ ∈ C0(�) and φn ∈ C1

c (�) such that φn → φ ∈ C0(�). We
have

∫

�

d(t, x)φ(x) dx =
∫

�

d(t, x)φn(x) dx +
∫

�

d(t, x)(φ(x) − φn(x)) dx,

where
∣∣∣∣∣∣

∫

�

d(t, x)(φ(x) − φn(x)) dx

∣∣∣∣∣∣
≤ sup

t∈[0,T ]
‖d(t, ·)‖L1(�)‖φn − φ‖Cc(�) → 0 as n → ∞

uniformly for t ∈ [0,T ].
Let us summarize the previous discussion in the following statement.

Proposition 1.1 (Weak continuity in time) Let � ⊂ Rd be a domain. Let

d ∈ L∞(0,T ;L1(�)), F ∈ L1((0,T ) × �;Rd ), s ∈ L1((0,T ) × �)

satisfy the balance law (1.3).



8 1 Equations Governing Fluids in Motion

Then d ∈ C([0,T ];M(�)), meaning any time t ∈ (0,T ) is a Lebesgue point of
the function ⎡

⎣t 	→
∫

�

d(t, x)φ(x) dx

⎤
⎦ for any φ ∈ Cc(�),

and
⎡
⎣t 	→

∫

�

d(t, x)φ(x) dx

⎤
⎦ ∈ C[0,T ],

∣∣∣∣∣∣

∫

�

d(t, x)φ(x) dx

∣∣∣∣∣∣
<∼ ‖φ‖Cc(�)

uniformly for t ∈ (0,T ).

Remark 1.1 The mapping t 	→ d(t, ·) ranges in a bounded ball of the space of finite
Radon measures M(�) that can be seen as the dual of the separable Banach space
C0(�). Consequently, t 	→ d(t, ·) may be viewed as continuous with respect to the
metrics induced by the weak-(*) topology on bounded balls inM(�).

The implementation of boundary conditions can be done in a similar way. For-
mally, we may prescribe the normal component of the flux F on ∂�:

F · n|∂� = Fb. (1.7)

This can be incorporated in (1.5) as

T∫

0

∫

�

[
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

]
dx dt

= −
∫

�

d0(x)ϕ(0, x) dx +
T∫

0

∫

∂�

Fb(t, x)ϕ(t, x) dSx dt

−
T∫

0

∫

�

s(t, x)ϕ(t, x) dx dt

(1.8)

for any ϕ ∈ C1
c ([0,T ) × �). Finally, in view of Proposition 1.1, we may anticipate

the time continuity of d and write (1.8) in a concise form:
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τ∫

0

∫

�

[
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

]
dx dt

=
⎡
⎣

∫

�

d(t, x)ϕ(t, x) dx

⎤
⎦

t=τ

t=0

+
τ∫

0

∫

∂�

Fb(t, x)ϕ(t, x) dSx dt

−
τ∫

0

∫

�

s(t, x)ϕ(t, x) dx dt

(1.9)

for any 0 ≤ τ ≤ T , and any ϕ ∈ C1
c ([0,T ] × �). Note that

C1
c ([0,T ] × �) = C1([0,T ] × �)

if � is unbounded. Equation (1.9) represents the standard form of balance law used
in this book.

Remark 1.2 (Vanishing normal trace) Using similar argument, we may define the
normal trace of a differentiable function on ∂�, where the latter may not be regular.
In particular, we will often use test functions ϕ satisfying

ϕ · n|∂� = 0. (1.10)

This property can be restated by means of Gauss–Green theorem as

T∫

0

∫

�

ϕ · ∇xw dx dt +
T∫

0

∫

�

wdivxϕ dx dt = 0 (1.11)

for anyw ∈ C1
c ((0,T ) × Rd ). In contrast with (1.10), formula (1.11) does not require

any regularity of the boundary and of the normal vector field n.

1.2 Fundamental Balance Laws in Fluid Mechanics

In obtaining the basic equations of fluid dynamics, the following strategy is applied:

• Choose the basic physical principles as conservation of mass, linear momentum,
and energy.

• Identify the fields that will play the role of (unknown) phase variables as the
density, the velocity/momentum, the temperature, the energy, the entropy etc. as
the case may be.

• Write down the corresponding balance/conservation laws, together with the asso-
ciated initial and boundary conditions.
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As already pointed out we will use the Eulerian reference system, where the
spatial reference frame is attached to the physical domain � ⊂ Rd , d = 1, 2, 3. The
macroscopic motion of the fluid is described via the (bulk) velocity field u = u(t, x).
The trajectories of hypothetical fluid particles—the so-called streamlines—are deter-
mined by a system of ordinary differential equations

d

dt
X(t, x0) = u (t, X(t, x0)) , X(0, x0) = x0 ∈ �.

Accordingly, in the Eulerian description, the flux associated to any physical quantity
d transported by the fluid must contain a convective component Fc = du.

We focus on mechanically closed fluid systems, where the velocity is tangential
to the boundary of the physical domain

u · n|∂� = 0, (1.12)

where n stands for the outer normal vector to ∂�. The boundary condition (1.12)
reflects the impermeability of the boundary of the physical domain �.

Alternatively, we consider the space periodic boundary conditions, meaning the
underlying physical domain is identified with the flat torus

T
d = �d

i=1[ai, bi]|{ai,bi}
with the period length (bi − ai) > 0 in the i-the direction. Although physically irrele-
vant, the case� = T

d is often used to approximate the problems where the influence
of the physical boundary can be neglected.

Of course, more complicated boundary conditions occur in numerous real world
applications. In particular, the velocity as well as other relevant quantities may be
prescribed on the physical boundary, together with far field conditions characterizing
the behavior of the system for |x| → ∞ on unbounded domains. Even the imper-
meability condition (1.12) sufficient to determine the boundary behavior of perfect
(inviscid) fluids must be accompanied by other relevant conditions if the viscous
forces are taken into account.

1.2.1 Mass Conservation

The distribution of mass in a compressible fluid is given by the mass density 
 =

(t, x). The physical principle of mass conservation is encoded in the equation of
continuity

∂t
 + divx(
u) = 0. (1.13)
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Applying (1.9), we obtain a weak formulation of (1.13) taking the impermeability
boundary condition (1.12) into account

⎡
⎣

∫

�


(t, x)ϕ(t, x) dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

�

[

(t, x)∂tϕ(t, x) + 
(t, x)u(t, x) · ∇xϕ(t, x)

]
dx dt

(1.14)

for any ϕ ∈ C1
c ([0,T ] × �). Note that (1.14) remains unchanged if � is replaced by

the flat torus Td .
If � ⊂ Rd is a bounded domain, or � = T

d , relation (1.14) yields the physical
principle of the total mass conservation

⎡
⎣

∫

�


(t, x) dx

⎤
⎦

t=τ

t=0

= 0

by considering ϕ ≡ 1. Similar argument on an unbounded domain is more delicate
and requires certain decay of the density for |x| → ∞.

Obviously, a physically relevant density must be positive or at least nonnegative
if vacuum is allowed. Formally, we can compute the time evolution of the density
along streamlines,

d

dt

(t, X(t; x0)) = ∂t
(t, X(t; x0)) + ∇x
(t, X(t; x0)) · u(t, X(t, X(t, x0))

= −divxu(t, X(t, X(t, x0))
(t, X(t; x0)),

obtaining


(0, x0)

τ∫

0

exp
(−‖divxu(t, ·)‖L∞(�)

)
dt ≤ 
(τ, X(τ, x0))

≤ 
(0, x0)

τ∫

0

exp
(‖divxu(t, ·)‖L∞(�)

)
dt.

(1.15)

Relation (1.15) indicates that the pointwise values of the density are controllable in
terms of the initial data as long as

T∫

0

‖divxu(t, ·)‖L∞(�) dt < ∞. (1.16)
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Condition (1.16) definitely holds in the class of smooth (Lipschitz) solutions, while
its satisfaction by less regular weak solutions has been so far a largely open problem.
Even if the bound (1.16) is not available, relation (1.15) implies that the density
remains nonnegative as soon as it is nonnegative at the initial time.

Apparently, the meaning of a velocity field in the vacuum region {
 = 0} is dubi-
ous. It is more convenient to introduce the momentum m = 
u that vanishes as soon
as 
 = 0. Accordingly, the equation of continuity (1.13) reads

∂t
 + divxm = 0, (1.17)

or, in the weak form,

⎡
⎣

∫

�


(t, x)ϕ(t, x) dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

�

[

(t, x)∂tϕ(t, x) + m(t, x) · ∇xϕ(t, x)

]
dx dt

for any ϕ ∈ C1
c ([0,T ] × �). Sometimes, we may even write 1
>0m instead of m to

emphasize that the momentum m vanishes as soon as 
 = 0. Unlike (1.13), however,
the equation (1.17) does not provide any explicit information about positivity of 


even if both 
 and m are smooth.

1.2.2 Momentum Equation – Newton’s Second Law

Introducing the momentum m ≡ 
u we write the physical principle of balance of
linear momentum—Newton’s Second law—in the form

∂tm + divx

(
m ⊗ m




)
= divxT + 
f

or, in terms of the velocity,

∂t(
u) + divx(
u ⊗ u) = divxT + 
f .

(1.18)

The tensor T represents the Cauchy stress , while f is a volume force acting on the
fluid. We adopt the common mathematical definition of fluid as a continuum, for
which T obeys the Stokes’ law

T = S − pI, (1.19)

where S is the viscous stress tensor and p a scalar field called pressure . Accordingly,
(1.18) reads

∂t(
u) + divx(
u ⊗ u) + ∇xp = divxS + 
f , (1.20)
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or, in the weak form,

τ∫

0

∫

�

[

u(t, x) · ∂tϕ + (
u ⊗ u)(t, x) : ∇xϕ(t, x) + p(t, x)divxϕ(t, x)

]
dx dt

=
⎡
⎣

∫

�


u(t, x) · ϕ(t, x) dx

⎤
⎦

t=τ

t=0

+
τ∫

0

∫

�

S(t, x) : ∇xϕ dx dt

−
τ∫

0

∫

�


f · ϕ dx dt

(1.21)
for any 0 ≤ τ ≤ T , and any ϕ ∈ C1

c ([0,T ] × �;Rd ). For perfect (inviscid) fluid
flows satisfying the impermeability boundary condition (1.12), the class of admissible
test functions can be extended to

ϕ ∈ C1
c ([0,T ] × �;Rd ), ϕ · n|∂� = 0. (1.22)

If S = 0 the weak formulation (1.21), (1.22) is compatible with the complete slip
boundary condition

[S · n] × n|∂� = 0. (1.23)

In other words, the tangential component of the normal viscous stress [S · n] vanishes
on the boundary.

Finally, we can rewrite (1.21) in terms of the momentum,

τ∫

0

∫

�

[
m(t, x) · ∂tϕ + 1
>0

m ⊗ m



(t, x) : ∇xϕ(t, x) + p(t, x)divxϕ(t, x)
]
dx dt

=
⎡
⎣

∫

�

m(t, x) · ϕ(t, x) dx

⎤
⎦

t=τ

t=0

+
τ∫

0

∫

�

S(t, x) : ∇xϕ dx dt

−
τ∫

0

∫

�


f · ϕ dx dt

(1.24)
for any 0 ≤ τ ≤ T , and any ϕ ∈ C1

c ([0,T ] × �;Rd ), ϕ · n|∂� = 0. Although con-
dition (1.22) requires formally the existence of the outer normal vector to ∂�, it can
be also interpreted in the weak sense specified in Remark 1.2.
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1.2.3 The First Law of Thermodynamics – Energy
Conservation

The First law of thermodynamics, with the associated concept of total energy, is
a cornerstone of the mathematical theory developed in this book. Computing the
scalar product of the momentum equation (1.20) with the velocity u we obtain, after
a straightforward manipulation,

∂t

(
1

2

|u|2

)
+ divx

[(
1

2

|u|2 + p

)
u
]

− divx (S · u) = −S : ∇xu + pdivxu + 
f · u.

(1.25)

The quantity

ekin = 1

2

|u|2, or, in terms of the momentum, ekin = 1

2

|m|2



represents the kinetic energy of the fluid. Accordingly, equation (1.25) is a form of
mechanical energy balance. It is worth noting that the kinetic energy is a convex
function of the variables [
, m]. More precisely, it is convenient to define

ekin(
, m) =
⎧⎨
⎩

1
2

|m|2



for 
 > 0,
0 if 
 = 0, m = 0,
∞ otherwise.

(1.26)

for any [
, m] ∈ Rd+1. A straightforward computation yields

∂2ekin(
, m)

∂
2
= |m|2


3
,

∂2ekin(
, m)

∂
∂mi
= −mi


2
,

∂2ekin(
, m)

∂2mi
= 1



, i = 1, . . . , d .

In particular ekin = ekin(
, m) : Rd+1 → [0,∞] is a convex l.s.c. function. We point
out that ekin is not strictly convex as it is linear on the lines [
, m] = [r, br], r > 0.

Even if the driving force f vanishes, the right hand side of the kinetic energy
balance (1.25) still contains a nonconservative source term

pdivxu − S : ∇xu.

As the First law of thermodynamics requires the total energy to be a conserved
quantity, the latter must contain another component—the internal energy

eint = 
e,
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together with the associated balance law

∂t(
e) + divx(
eu) + divxq = S : ∇xu − pdivxu, (1.27)

where q is a diffusive internal energy flux. Similarly to the impermeability condition
(1.12), and the complete slip boundary condition (1.23), we suppose the domain �

is energetically (thermally) insulated, meaning

q · n|∂� = 0. (1.28)

Summing up (1.25), (1.27) we obtain the desired total energy balance

∂t

(
1

2

|u|2 + 
e

)
+ divx

[(
1

2

|u|2 + 
e

)
u + pu

]
+ divx (q − S · u) = 
f · u.

(1.29)
In accordance with the boundary conditions (1.23), (1.28), the weak form of (1.29)
reads

τ∫

0

∫

�

[(
1

2

|u|2 + 
e

)
∂tϕ +

(
1

2

|u|2 + 
e + p

)
u · ∇xϕ

]
dx dt

=
⎡
⎣

∫

�

(
1

2

|u|2 + 
e

)
ϕ dx

⎤
⎦

t=τ

t=0

−
τ∫

0

∫

�

(
q − S · u

)
· ∇xϕ dx dt

−
τ∫

0

∫

�


f · uϕ dx dt

(1.30)

for any 0 ≤ τ ≤ T , and any ϕ ∈ C1
c ([0,T ] × �). If � is bounded, the choice ϕ ≡ 1

in (1.30) gives rise to the total energy balance

⎡
⎣

∫

�

(
1

2

|u|2 + 
e

)
dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

�


f · u dx dt. (1.31)

We point out that validity of (1.30), (1.31) is conditioned by the impermeability of
the boundary (1.12) and the energy insulation (1.23), (1.28). In other words, the fluid
system is both mechanically and thermally closed.
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Similarly to (1.24), the energy balance (1.30) may be written in terms of the
momentum

τ∫

0

∫

�

[(
1

2

|m|2



+ 
e

)
∂tϕ + 1
>0

(
1

2

|m|2



+ 
e + p

)
m



· ∇xϕ

]
dx dt

=
⎡
⎣

∫

�

(
1

2

|m|2



+ 
e

)
ϕ dx

⎤
⎦

t=τ

t=0

−
τ∫

0

∫

�

(
q − S · 1
>0

m



)
· ∇xϕ dx dt

−
τ∫

0

∫

�

f · mϕ dx dt

(1.32)
for any 0 ≤ τ ≤ T , and any ϕ ∈ C1

c ([0,T ] × �). Here, the kinetic energy is defined
via (1.26). In particular, boundedness of the total energy implies


 ≥ 0 a.a. ∈ (0,T ) × �, and 
(t, x) = 0 ⇒ m(t, x) = 0 for a.a. (t, x) ∈ (0,T ) × �.

The internal energy emay be viewed as a new unknown state variable closely related
to another physical quantity—the temperature. The relation of the pressure p and the
internal energy e to the (absolute) temperature ϑ is discussed in Sect. 1.3 below.

1.2.4 Basic System of Equations of Continuum Fluid
Dynamics

Summing up (1.13), (1.20), (1.25), we obtain the basic system of equations of con-
tinuum fluid dynamics:

• Mass conservation – equation of continuity

∂t
 + divx(
u) = 0,

or

∂t
 + divxm = 0;
(1.33)

• Momentum balance – Newton’s Second law

∂t(
u) + divx(
u ⊗ u) + ∇xp = divxS + 
f ,

or

∂tm + divx

(
m ⊗ m




)
+ ∇xp = divxS + 
f ;

(1.34)
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• Energy conservation – The First law of thermodynamics

∂t

(
1

2

|u|2 + 
e

)
+ divx

[(
1

2

|u|2 + 
e

)
u + pu

]
+ divx (q − S · u) = 
f · u,

or

∂t

(
1

2

|m|2



+ 
e

)
+ divx

[(
1

2

|m|2



+ 
e

)
m



+ p
m



]
+ divx

(
q − S · m




)
= f · m.

(1.35)

We have also introduced conservative boundary conditions:

• Impermeability
u · n|∂� = 0, or m · n|∂� = 0; (1.36)

• Complete slip
[S · n] × n|∂� = 0; (1.37)

• Thermal insulation
q · n|∂� = 0. (1.38)

The system (1.33)–(1.35) is apparently not closed—there are more unknowns
than equations. To close it, we need constitutive relations between specific fields.

1.3 Constitutive Relations

Thematerial properties of a specific fluid are characterized by constitutive equations.
The relation between the thermodynamic variables: the density 
, the pressure p, the
internal energy e, and the absolute temperature ϑ is characterized through equation
of state (EOS). Caloric equation of state relates the mechanical force represented by
the pressure to the internal energy. Thermal equation of state is a relation between
the internal energy and the temperature. Strictly speaking, these concepts refer to
fluids in the state of thermodynamic equilibrium, while we use them to describe
fluids in motion tacitly assuming the processes reestablishing the equilibrium state
much faster than the observable macroscopic motion.

The well known caloric EOS in gas dynamics reads

p = (γ − 1)
e, γ > 1, (1.39)

where γ is termed the adiabatic coefficient. The equation of state (1.39) is incomplete
as it does not provide any information about the relation of the internal energy to
the temperature ϑ . Introducing the total energy E, Eq. (1.39) can be rewritten in the
form
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p = 1

γ − 1

(
E − 1

2

|m|2



)
.

We consider more general forms of EOS in Chap. 2.

1.3.1 The Second Law of Thermodynamics – Entropy

With (1.39) at hand, we return to the internal energy balance (1.27) deducing

1

γ − 1


(
∂t log(e) + ∇x log(e) · u

)
+ 1

γ − 1
divx

(q
e

)

= 1

(γ − 1)e

(
S : ∇xu − q · ∇xe

e

)
− 
divxu.

Moreover, it follows from the equation of continuity (1.1) that

∂t (
 log(
)) + divx(
 log(
)u) + 
divxu = 0.

Summing up the two equations we obtain

∂t(
s(
, e)) + divx (
s(
, e)u) + 1

γ − 1
divx

(q
e

)

= 1

(γ − 1)e

(
S : ∇xu − q · ∇xe

e

)
,

(1.40)

which can be interpreted as a balance law for a new thermodynamic quantity

s(
, e) = log
(
e

1
γ−1

)
− log(
)

called entropy. In accordance with the Second law of thermodynamics, the source
term in (1.40) that represents the entropy production rate must be nonnegative,

1

(γ − 1)e

(
S : ∇xu − q · ∇xe

e

)
≥ 0, (1.41)

for any physically admissible process.
Finally, we may normalize (1.40) by introducing the absolute temperature ϑ via

a thermal EOS

(γ − 1)e = ϑ or e = cvϑ, cv = 1

γ − 1
, (1.42)

where cv is the specific heat at constant volume. Thus (1.40) takes the form
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∂t(
s(
, ϑ)) + divx (
s(
, ϑ)u) + divx
( q
ϑ

)
= 1

ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
(1.43)

with
s(
, ϑ) = log

(
ϑ

1
γ−1

)
− log(
). (1.44)

The mass density 
 and the absolute temperature ϑ are termed standard ther-
modynamic variables and represent the intensive properties of the fluid—they are
independent of the amount of the fluid matter. A general EOS that can be expressed
in terms of 
 and ϑ and is compatible with the Second law of thermodynamics must
obey Maxwell’s equation

∂e(
, ϑ)

∂

= 1


2

(
p − ϑ

∂p(
, ϑ)

∂ϑ

)
. (1.45)

Maxwell’s equation in turn can be seen as a particular case of the general Gibbs’
relation

ϑDs = De + pD

(
1




)
. (1.46)

Both (1.45) and (1.46) will be further discussed in Chap. 2.

1.3.2 Diffusion Transport Coefficients

The constitutive relations for the viscous stress S and the internal energy flux q that
reflect the irreversibility of the fluid evolution must be in agreement with the Second
law of thermodynamics. This means that the entropy production rate

1

ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
≥ 0

must be nonnegative for any physically admissible process. Consequently,

S : ∇xu ≥ 0, −q · ∇xϑ ≥ 0, (1.47)

in particular, S must depend on ∇xu and q on ∇xϑ .

1.3.2.1 Heat Conduction – Fourier’s Law

The simplest possible choice of q leads to Fourier’s law

q = −κ∇xϑ,
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where κ ≥ 0 is the heat conductivity coefficient. In this case, the internal/thermal
energy balance (1.27) takes the form

cv
[
∂t(
ϑ) + divx(
ϑu)

]
− divx(κ∇xϑ) = S : ∇xu − 
ϑdivxu. (1.48)

It is worth noting that the Eq. (1.48), similarly to (1.15), can be used for a rigor-
ous proof of positivity of the absolute temperature. Indeed equation (1.48) can be
rewritten in the form

cv∂tϑ + cvu · ∇xϑ − 1



divx(κ∇xϑ) ≥ −ϑdivxu,

for which the standard parabolic comparison principle yields

ϑ(τ, x) ≥ inf
�

ϑ(0, ·) exp
⎛
⎝− 1

cv

τ∫

0

‖divxu(t, ·)‖L∞(�) dt

⎞
⎠

1.3.2.2 Viscous Stress – Dissipation Function

As S is symmetric, we can write

S : ∇xu = S : Du, where Du ≡ 1

2

(∇xu + ∇T
x u

)
.

We adopt a generic hypothesis that S depends on the symmetric velocity gradient
Du. The simplest possible form is linear dependence that can be written as Newton’s
rheological law:

S = 2μ

(
Du − 1

d
trace[Du]I

)
+ λtrace[Du]I = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI,

(1.49)
where μ ≥ 0, λ ≥ 0 are the shear and bulk viscosity coefficients, respectively.

In general, we assume that S and Du are interrelated “implicitly” through

S : Du = F(Du) + F∗(S), (1.50)

where we have introduced the dissipation function F ,

F : Rd×d
sym → [0,∞] is a convex lower semicontinuous function, F(0) = 0,

and
F∗ : Rd×d

sym → [0,∞] its conjugate.



1.3 Constitutive Relations 21

Note that we have identified the finite dimensional Hilbert space Rd×d
sym with its dual

via the standard Riesz isometry. In view of Fenchel–Young inequality, relation (1.50)
yields

S ∈ ∂F(Du) ⇔ Du ∈ ∂F∗(S), (1.51)

where ∂ denotes the subdifferential. As we shall see below, the abstract formulation
via (1.51) is quite convenient and gives rise to an elegant weak formulation of the
problem.

1.3.3 Boundary Conditions for Diffusion Fluxes

As already stated in (1.28), the total internal energy flux through the boundary van-
ishes. In the present context, this gives rise to

q · n|∂� = −κ∇xϑ · n|∂� = 0. (1.52)

For the velocity and viscous stress we recall the impermeability and complete slip
conditions

u · n|∂� = 0, (S · n) × n|∂� = 0. (1.53)

Alternatively for viscous fluids, we may consider the no-slip boundary conditions
for the velocity field

u|∂� = 0 ⇔ u · n|∂� = u × n|∂� = 0. (1.54)

If this is the case, then viscous component of the energy flux S · u · n vanishes on
∂� and no other boundary condition is needed. Moreover, if (1.54) holds, the class
of test functions in the momentum equation (1.21) must be restricted to

ϕ ∈ C1
c ([0,T ] × �;Rd ),

meaning ϕ has compact support in �. In contrast with (1.21), the satisfaction of the
no-slip boundary condition in the context of weak solutions is enforced by means
of higher regularity of u belonging to a function space of Sobolev type where the
boundary traces are well defined.
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1.4 Equivalent Formulation of the Total Energy Balance
in the Context of Smooth Solutions

We conclude this chapter by recalling several possibilities how to express the total
energy balance (1.35). In the context of strong formulation, they are completely
equivalent and their particular form makes little importance. However, their use in
the weak form and/or numerical implementations may lead to substantial differences
discussed in the forthcoming chapters below. Adopting the EOS (1.39), (1.42), we
record the following alternative formulations of the First law of thermodynamics:

• Total energy balance

∂t

(
1

2

|u|2 + 
e

)
+ divx

[(
1

2

|u|2 + 
e

)
u + pu

]
+ divx (q − S · u) = 
f · u;

(1.55)
• Internal/thermal energy balance

cv
[
∂t(
ϑ) + divx(
ϑu)

]
− divx(κ∇xϑ) = S : ∇xu − 
ϑdivxu; (1.56)

• Entropy balance

∂t(
s(
, ϑ)) + divx (
s(
, ϑ)u) − divx

(
κ∇xϑ

ϑ

)
= 1

ϑ

(
S : ∇xu + κ|∇xϑ |2

ϑ

)
.

(1.57)

We point out again that the above equations are equivalent in the context of smooth
solutions. In the weak formulation, however, different formulation enforce different
aspects of the fluid motion and a judicious choice of the relevant field equation is
needed. In the case of perfect (inviscid) fluids, where S = q = 0, it is only the total
energy balance (1.55) that seems to be relevant for a weak formulation as the other
equations contain gradient of the velocity that is not a priori bounded in anyLebesgue
space. However, the lack of a priori bounds on the convective term in (1.55) forces
us to use a weak formulation based on the integrated form of (1.55), combined with
the entropy inequality :

d

dt

∫

�

[
1

2

|u|2 + 
e

]
dx =

∫

�


f · u dx, ∂t(
s(
, ϑ)) + divx (
s(
, ϑ)u) ≥ 0.

(1.58)
We claim that (1.58), in combination with the equation of continuity (1.33) and

the momentum balance (1.34), still gives rise to any of the equations (1.55)–(1.57)
(with S = q = 0) as soon as all quantities in question are smooth enough and the
velocity field satisfies the impermeability condition (1.12). Indeed we first deduce
from the estimate (1.15) that 
 remains bounded and strictly positive as long as it is
bounded and strictly positive at the initial time. Thus the second equation in (1.58),
together with the equation of continuity (1.33), give rise to



1.4 Equivalent Formulation of the Total Energy … 23

∂ts + u · ∇xs ≥ 0. (1.59)

In particular,
d

dt
s (t, X(t, x0)) ≥ 0 for any x0 ∈ �,

where {X(t, x0)}t≥0 are the streamlines introduced inSect. 1.2. Seeing that the density
is bounded above and below away from zero and s is given by the constitutive relation
(1.44) we obtain a lower bound for the temperature ϑ in terms of the initial data.
Consequently, the entropy inequality (1.59) divided on ϑ yields the internal energy
balance

∂t(
e) + divx(
eu) ≥ −
ϑdivxu,

cf. (1.42). This relation added to the kinetic energy equation (1.25) gives rise to the
total energy balance

∂t

(
1

2

|u|2 + 
e

)
+ divx

[(
1

2

|u|2 + 
e + p

)
u
]

≥ 
f · u.

Finally, as u · n|∂� = 0, integration by parts yields

d

dt

∫

�

[
1

2

|u|2 + 
e

]
dx ≥ 0

∫

�


f · u dx.

However, this is compatible with (1.58) only if the inequality in the entropy balance
is replaced by equality. As a result, we deduce all the equivalent forms (1.55)–(1.57)
of the energy equation (with S = 0, q = 0).

1.5 Conclusion, Bibliographical Remarks

The introduction of the basic equations of continuum fluid dynamics in this chapter
has been quite brief and far from complete. We focused on the models including
viscous as well as inviscid general compressible fluids with a particular choice of
boundary conditions. The interested reader may consult the monograph by Chorin
and Marsden [53] for a detailed introduction to mathematical fluid mechanics. More
information can be found in Batchelor [13] or Lamb [147]. A nice introduction to the
problems related to various EOS is themonograph by Eliezer, Ghatak, andHora [74].

A more detailed exposition of the weak formulation of conservation laws in fluid
dynamics can be found in [98,Chap. 1]. The problemof normal traces for general vec-
tor fields with measure divergence is treated by Chen, Torres, and Ziemer [44], [45].



Chapter 2
Inviscid Fluids: Euler System

TheEuler system represents an iconic model of a perfect fluid, for which the viscous
stress S as well as the heat flux q vanish. The relevant system of field equations reads:

• Mass conservation or equation of continuity

∂t� + divx(�u) = 0. (2.1)

• Newton’s Second law or momentum conservation

∂t(�u) + divx(�u ⊗ u) + ∇xp = 0. (2.2)

• First law of thermodynamics or energy conservation

∂t

(
1

2
�|u|2 + �e

)
+ divx

[(
1

2
�|u|2 + �e + p

)
u
]

= 0. (2.3)

Wehavedeliberately omitted the actionof any external force for the sakeof simplicity.
The Second law of thermodynamics is enforced by the entropy balance (inequality)

∂t(�s) + divx(�su) = (≥)0. (2.4)

The entropy is conserved, meaning there is equality sign in (2.4), as long as the
motion is smooth. The inequality becomes relevant as soon as singularities appear.
As we show below, the appearance of singularities (shock waves) is an inevitable
phenomenon for the Euler system.

Apparently, the system (2.1)–(2.3) contains more unknowns than equations and
constitutive equations must be imposed reflecting the material properties of the fluid.
Introducing the absolute temperature ϑ we postulate Gibbs’ equation interrelating
the pressure p, the internal energy e, and the entropy s:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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ϑDs = De + D

(
1

�

)
p. (2.5)

Still there is a lot of freedom how to choose the fundamental state variables to
describe the fluid in motion. At this stage, we point out that a judicious choice of
state variables is absolutely crucial for success/failure of many numerical methods
as well as their analysis.

In contrast with Chap. 1, where we have considered a very specific relation
between the thermodynamic functions given by the EOS (1.39), Gibbs’ equation
(2.5) is fairly general including a vast class of possible EOS that are compatible
with the Second law of thermodynamics. Indeed, if (2.5) holds and all quantities in
question are smooth, the entropy Eq. (2.4) follows directly from the Eqs. (2.1)–(2.3).
To see this, we first rewrite the energy balance (2.3) in terms of the internal energy

�∂te + �u · ∇xe = −pdivxu,

cf. (1.56). Dividing on ϑ we obtain

�
1

ϑ
∂te + �u

1

ϑ
· ∇xe = − p

ϑ
divxu.

Finally, we compute from (2.1)

∂t� + u · ∇x� = −�divxu;

whence

�
1

ϑ
∂te + �u

1

ϑ
· ∇xe = �

p

ϑ�2
(∂t� + u · ∇x�) .

In view of Gibbs’ relation (2.5) we get

ϑ∂ts = ∂te − p

�2
∂t�, ϑ∇xs = ∇xe − p

�2
∇x�

and the entropy balance (2.4) follows.

2.1 Euler System in Standard Variables

The Euler system so far has been considered in terms of standard variables:

the mass density � = �(t, x),

the (absolute) temperature ϑ = ϑ(t, x),

the (bulk) velocity field u = u(t, x).
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Such a choice of reference quantities is probably most popular because these fields
are also directly observable andmeasurable in practical experiments. Note, however,
that neither the temperature nor the velocity are correctly defined on the vacuum
zones, where the density � vanishes. To circumvent these difficulties, the mathe-
matical theory sometimes prefers other choices of reference quantities, such as the
conservative or conservative–entropy variables discussed later in this chapter.

If the underlying physical domain is bounded, which is relevant in most numerical
experiments, the system of Eqs. (2.1)–(2.3) should be supplemented with suitable
boundary conditions. For the sake of simplicity, we focus on the impermeability
condition

u · n|∂� = 0, (2.6)

keeping in mind that many real world application my involve general in/out flow
boundary conditions. In the case of unbounded physical space, the far field conditions
should be prescribed, here in the form

� → �∞, u → u∞ as |x| → ∞. (2.7)

Note however that unbounded domains must be replaced by finite—bounded ones—
in numerical experiments. Alternatively, we may prescribe the spatially periodic
conditions reducing the spatial domain to a flat torus,

� = �d
i=1[ai, bi]|{ai,bi} ≡ T

d .

As already pointed out, such a choice eliminates all issues connected with the pres-
ence of physical boundary and may be seen as a convenient approximation of prob-
lems on “large” domains, where the boundary effect is negligible at least in a finite
time lap.

As already observed in Sect. 1.4, the total energy balance may be replaced by the
entropy balance

∂t(�s(�, ϑ)) + divx(�s(�, ϑ)u) = 0 (2.8)

as long as all quantities are smooth—continuously differentiable. In view of the
equation of continuity (2.1), the entropy balance can be rewritten as a pure transport
equation

∂ts(�, ϑ) + u · ∇xs(�, ϑ) = 0.

Multiplying the resulting equation on Z ′(s), where Z is a continuously differentiable
function, we obtain a renormalized version of the entropy balance

∂Z(s) + u · ∇xZ(s) = 0,

or
∂t(�Z(s)) + divx (�Z(s)u) = 0. (2.9)
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Anticipating the inequality in (2.9) we restrict the class of test functions Z to

Z ∈ C1(R), Z ′(s) ≥ 0 for any s ∈ R, (2.10)

and replace (2.4) by
∂t(�Z(s)) + divx(�Z(s)u) ≥ 0 (2.11)

for any Z as in (2.10). Inequality (2.11) will play the role of admissibility criterion
in the context of weak solutions to the Euler system. Unfortunately, as we shall see
in Theorem 2.1 below, the Euler system is ill posed in the class of weak solutions
even if (2.11) is satisfied.

2.1.1 Local Existence of Smooth Solutions

Consider the Euler system (2.1)–(2.3) in a bounded domain � ⊂ Rd , d = 1, 2, 3,
with the impermeability condition (2.6), and the initial data

�(0, ·) = �0, ϑ(0, ·) = ϑ0, u(0, ·) = u0. (2.12)

It turns out that for smooth initial data satisfying certain compatibility conditions, the
initial-boundary value problem for the Euler system is well-posed locally in time. As
we have observed, the total energy balance (2.3) is equivalent to the entropy equation
(2.8), so it may be convenient to solve the system (2.1), (2.2), with (2.8) replacing
(2.3).

The relevant short time existence result can be stated in the Sobolev framework
of spaces Wk,2(�), k = 1, 2, 3. In addition to Gibbs’ relation (2.5), we impose the
thermodynamic stability condition written in the standard variables:

∂p(�, ϑ)

∂�
> 0,

∂e(�, ϑ)

∂ϑ
> 0 for all �, ϑ > 0. (2.13)

We report the following result proved by Schochet [182, Theorem 1]:

Theorem 2.1 (Short time existence for complete Euler system) Suppose that

• the thermodynamic functions p = p(�, ϑ), e = e(�, ϑ), s = s(�, ϑ) are three times
continuously differentiable for � > 0, ϑ > 0 and satisfy (2.5), (2.13);

• � ⊂ R3 is a bounded domain with C∞-boundary;
• the initial data belong to the class

�0, ϑ0 ∈ W 3,2(�), u0 ∈ W 3,2(�;R3), �0 > 0, ϑ0 > 0 in �;

• the compatibility conditions
∂k
t u0 · n|∂� = 0

hold for k = 0, 1, 2.
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Then there exists T > 0 such that the Euler system (2.1), (2.2), (2.8), with the
boundary condition (2.12), and the initial data [�0, ϑ0,u0] admits a classical solution
in (0,T ) × �,

�(t, ·), ϑ(t, ·) > 0 in � for t ∈ [0,T ).

Remark 2.1 By classical solution we mean that all functions �, ϑ , and u are con-
tinuously differentiable up to the boundary and the equations hold pointwise in
(0,T ) × �. As a matter of fact, the solutions are constructed in the Sobolev classes

3⋂
k=0

C3−k([0,T ];Wk,2(�)),

and the desired regularity follows from the Sobolev embedding W 2,2(�) ↪→ C(�),
� ⊂ R3.

Remark 2.2 The same result holds for � ⊂ Rd , d = 2, 3, where one can replace
W 3,2 by W 2,2 if d = 1. The hypothesis of C∞-boundary can be relaxed depending
on the desired regularity of solutions. However, certain regularity of the boundary is
needed given the required properties of Sobolev functions.

Remark 2.3 The compatibility conditions are computed by plugging the data in the
momentum Eq. (2.2). The same result holds with the periodic boundary conditions.
In that case, the compatibility conditions are irrelevant.

Remark 2.4 As pointed out several times, the entropy balance (2.8) is equivalent to
the total energy balance (2.3) in the framework of smooth solutions.

The proof of Theorem 2.1 is based on deriving sufficiently strong a priori bounds.
It is nowadayswell understoodbut still rather lengthy and technical.Our feeling is that
a detailed reproduction of the proof would go beyond the scope of this monograph.
We therefore omit the proof here referring the interested reader to Schochet [182].

2.1.2 Finite Time Blowup

The maximal existence time of the strong solutions to the Euler system is unfortu-
nately finite for a fairly general class of initial data. Strong solutions develop singu-
larities in the form of discontinuous shock waves in a finite time lap. To illuminate
this phenomenon, consider the Euler system in one space dimension in the entropy
formulation:

∂t� + ∂x(�u) = 0,

∂t(�u) + ∂x(�u
2) + ∂x(�ϑ) = 0,

∂ts + ∂xsu = 0,

(2.14)
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where
s(�, ϑ) = cv log(ϑ) − log(�).

Furthermore, we focus on the isentropic case setting s(�, ϑ) = s, with a constant s.
Accordingly, problem (2.14) reduces to the isentropic Euler system

∂t� + ∂x(�u) = 0,

∂t(�u) + ∂x(�u
2) + a∂x�

γ = 0
(2.15)

with

a = exp

(
s

cv

)
> 0,

cf. also Sect. 2.3 below.
Next, we rewrite (2.15) in the form of the so-called P-system. To this end, we

introduce the Lagrange mass coordinates transform

[t, x] �→
⎡
⎣t, y = y(t, x) =

x∫
−∞

�(t, z) dz

⎤
⎦ .

The system (2.15) written in terms of the new independent variables [t, y] reads

∂tV − ∂yw = 0,

∂tw + a∂yV
−γ = 0,

(2.16)

where V = �−1 is the specific volume and

w

⎛
⎝t,

x∫
−∞

�(t, z) dz

⎞
⎠ = u(t, x)

is the Lagrangian velocity. The system (2.16) may be recast in a more general form
as the P-system

∂tV − ∂yw = 0,

∂tw − ∂yP(V ) = 0,
(2.17)

where P′(V ) > 0. Note that all of the above formulations are equivalent as soon as
all quantities are smooth and the density strictly positive.

Next we show that solutions of (2.17) may develop singularities in a finite time.
To this end, we first write

√
P′(V )∂tV − √

P′(V )∂yw = 0,

∂tw − √
P′(V )

√
P′(V )∂yV = 0.
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Introducing

Z(V ) =
V∫

0

√
P′(z) dz (2.18)

we obtain
∂tZ − A(Z)∂yw = 0,

∂tw − A(Z)∂yZ = 0
(2.19)

with
A(Z) = √

P′(V (Z)), where V = V (Z) is determined by 2.18.

Problem (2.19) admits special solutions Z = ±w. For Z = −w we obtain

∂tZ + A(Z)∂yZ = 0,

or, for U = A(Z),
∂tU +U∂yU = 0. (2.20)

Now, it is easy to find initial data for which the corresponding solution of (2.20)
blows up. Indeed as long as the solution U of (1.25) emanating from the initial data

U (0, y) = U0(y), y ∈ R

remains smooth, it satisfies

U (t, y + tU0(y)) = U0(y),

which can be checked by differentiating this relation with respect to t. Thus if there
exist y1 < y2 such that

U0(y1) > U0(y2),

then we obtain

U (τ, z) = U0(y1) > U0(y2) = U (τ, z) for z = y1 + τU0(y1) = y2 + τU0(y2),

if
τ = y2 − y1

U0(y1) −U0(y2)
> 0.

This shows that the solutionU develops singularity, specifically becomes discontin-
uous, at latest at the time τ .

The type of singularity we have just described is called shock wave in gas dynam-
ics. Solutions remain boundedbut experience discontinuities, in particular, the deriva-
tives required for the system of equations to be satisfied do not exist in the classical
sense. We point out that in the preceding example
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• the singularity appeared in the finite time depending only on geometrical properties
of the initial data;

• the initial data could be chosen smooth and even small in suitable sense.

Similar examples can be constructed in higher space dimension. Thus if we still
prefer to retain the Euler system as a suitable mathematical model to explain phe-
nomena in fluid dynamics, we have to enlarge the class of solutions to the weak ones
introduced in Sect. 1.1.1 or even to more general objects discussed in Chap. 4.

2.1.3 Weak Solutions

Following the general strategy delineated in Sect. 1.1.1 we introduce the concept of
weak solution to the Euler system.We start by writing the weak formulation in terms
of the standard variables: the density �, the temperature ϑ , and the velocity u, later
we consider alternative forms.

Definition 2.1 (WEAK SOLUTION TO COMPLETE EULER SYSTEM)
The trio [�, ϑ,u] is weak (distributional) solution of the Euler system (2.1)–(2.3)
in (0,T ) × �, with the impermeability boundary condition (2.6) and the initial data
[�0, ϑ0,u0] if the following is satisfied:

• (measurability) the quantities � = �(t, x), ϑ = ϑ(t, x), u = u(t, x) are measur-
able functions defined for (t, x) ∈ (0,T ) × �,

�(t, x) ≥ 0, ϑ(t, x) > 0 for a.a. (t, x) ∈ (0,T ) × �; (2.21)

• (equation of continuity) the integral identity

T∫
0

∫
�

[
�∂tϕ + �u · ∇xϕ

]
dx dt = −

∫
�

�0ϕ(0, ·) dx (2.22)

holds for any test function ϕ ∈ C1
c ([0,T ) × �);

• (momentum equation) the integral identity

T∫
0

∫
�

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ + p(�, ϑ)divxϕ

]
dx dt

= −
∫
�

�0u0 · ϕ(0, ·) dx
(2.23)

holds for any test function ϕ ∈ C1
c ([0,T ) × �;Rd ), ϕ · n|∂� = 0;
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• (energy conservation) the integral identity

T∫
0

∫
�

(
1

2
�|u|2 + �e(�, ϑ)

)
∂tϕ dx dt

+
T∫

0

∫
�

(
1

2
�|u|2 + �e(�, ϑ) + p(�, ϑ)

)
u · ∇xϕ dx dt

= −
∫
�

(
1

2
�0|u0|2 + �0e(�0, ϑ0)

)
ϕ(0, ·) dx

(2.24)

holds for any test function ϕ ∈ C1
c ([0,T ) × �).

Remark 2.5 (Regularity) In Definition 2.1, we have tacitly assumed that all integrals
are finite, meaning all densities and fluxes are at least integrable in (0,T ) × �.
Regularity of the spatial domain � has not been explicitly specified. The hypothesis
ϕ ∈ C1(�) is understood in the sense that ϕ = ϕ̃|�, where ϕ̃ ∈ C1(Rd ). Similarly,
the condition φ · n|� requires the existence of the outer normal vector n at least in a
suitable generalized sense. Alternatively, we may say the φ · n|∂� = 0 if

∫
�

φ · ∇xψ dx +
∫
�

ψdivxφ dx = 0 for any ψ ∈ C1(�).

Similar convention will be adapted in the future.

Remark 2.6 (Periodic boundary conditions) Definition 2.1 can be easily adapted to
the spatially periodic boundary conditions, meaning � = T

d . Indeed, it is enough to
set � = T

d = � and omit the stipulation φ · n|∂� = 0 in (2.23).

Considering a specific form of the test functions ϕ(t, x) = ψ(t)φ(x), ϕ(t, x) =
ψ(t)φ(x) in the integral identities (2.22)–(2.24) we observe that the integral averages

t �→
∫
�

�(t, x)φ(x) dx, t �→
∫
�

(�u)(t, x) · φ(x) dx,

t �→
∫
�

(
1

2
�|u|2 + �e(�, ϑ)

)
(t, x)φ(x) dx

(2.25)

are continuous functions of the time t ∈ [0,T ]. Accordingly, the integral identities
in Definition 2.1 can be equivalently stated in the form

τ∫
0

∫
�

[
�∂tϕ + �u · ∇xϕ

]
dx dt =

⎡
⎣∫

�

�ϕ dx

⎤
⎦

t=τ

t=0

(2.26)
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for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0,T ] × �);

τ∫
0

∫
�

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ + p(�, ϑ)divxϕ

]
dx dt =

⎡
⎣∫

�

�u · ϕ dx

⎤
⎦

t=τ

t=0
(2.27)

for any 0 ≤ τ ≤ T , and anyϕ ∈ C1
c ([0,T ) × �;Rd ), ϕ · n|∂� = 0; and

τ∫
0

∫
�

(
1

2
�|u|2 + �e(�, ϑ)

)
∂tϕ dx dt

+
τ∫

0

∫
�

(
1

2
�|u|2 + �e(�, ϑ) + p(�, ϑ)

)
u · ∇xϕ dx dt

=
⎡
⎣∫

�

(
1

2
�|u|2 + �e(�, ϑ)

)
ϕ dx

⎤
⎦

t=τ

t=0

(2.28)

for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0,T ] × �).
Continuity of the integral averages stated in (2.25) can be extended to a larger

class of test functions provided certain uniform bounds are available. Suppose, for
instance,

� ∈ L∞(0,T ;Lγ (�)) for some γ > 1. (2.29)

First observe that (2.26) implies that for any t ∈ [0,T ] the quantity
∫
�

�(t, x)φ(x) dx, φ ∈ C∞
c (�)

is well defined, and, in accordance with (2.29),

∣∣∣∣∣∣
∫
�

�(t, x)φ(x) dx

∣∣∣∣∣∣ ≤ c‖φ‖Lγ ′
(�)

uniformly for any t ∈ [0,T ]. As the smooth compactly supported functions are dense
in Lγ ′

(�) that is a reflexive Banach space, we can identify the instantaneous values

�(t, ·) ∈ Lγ (�), ‖�(t, ·)‖Lγ (�) ≤ c

uniformly for any t ∈ [0,T ]. Now, given φ ∈ Lγ ′
(�), 1

γ
+ 1

γ ′ = 1, we may find a
sequence φn ∈ C∞

c (�) such that

φn → φ in Lγ ′
(�) as n → ∞.
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Writing

t �→
⎡
⎣∫

�

�(t, x)φ(x) dx =
∫
�

�(t, x)φn(x) dx +
∫
�

�(t, x)(φ(x) − φn(x)) dx

⎤
⎦

we observe that
⎡
⎣t �→

∫
�

�(t, x)φn(x) dx

⎤
⎦ →

⎡
⎣t �→

∫
�

�(t, x)φ(x) dx

⎤
⎦ uniformly in t ∈ [0,T ].

In particular,

t �→
∫
�

�(t, x)φ(x) dx ∈ C[0,T ] for any φ ∈ Lγ ′
(�). (2.30)

If (2.30) holds, we shall write

� ∈ Cweak([0,T ];Lγ (�)).

Of course, similar treatment can be applied to the momentum m = �u and the
energy 1

2�|u|2 + �e(�, ϑ) as soon as uniform bounds are available in a Lebesgue
space Lp, with p > 1.

Remark 2.7 (Instantaneous value) Certain ambiguity appears in (2.25) as the weak
solution [�, ϑ,u] is a priori only an integrable quantity defined for a.a. (t, x) ∈
(0,T ) × �. Strictly speaking, the solutions should be modified on a set of Lebesgue
measure zero to get the continuous representatives in (2.25). This set might be dif-
ferent for different test functions φ and a natural question arises if this can be done
simultaneously for all φ’s. To avoid this apparent difficulty, we may consider a reg-
ularization in terms of time averages

�ε(t, x) = θε ∗ �(·, x) ≡
T∫

0

θε(s)�(t − s, x) ds,

where θε is a family of regularizing kernels supported in the interval (−ε, ε), with
a similar definition for the other quantities in (2.26). It turns out that the integral
averages

t �→
∫
�

�ε(t, x)φ(x) dx, φ ∈ C∞
c (�),

are well defined for t ∈ (ε,T − ε), and, on the one hand,
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• converge in Cloc(0,T ) to a continuous function �φ for any φ ∈ C∞
c (�),

and, on the other hand,
• converge to

∫
�

�(t, ·)φ dx for a.a. t ∈ (0,T ) for any φ ∈ C∞
c (�)

for ε → 0. Consequently, we can identify the instantaneous value of the density
�(t, ·) as the distribution,

〈�(t, ·);φ〉 = �φ(t) for φ ∈ C∞
c (�)

for any t ∈ (0,T ). As pointed out, similar treatment can be applied to other weakly
continuous quantities.

Note carefully that the weakly-in-time continuous quantities are typically the
conservative variables: the density �, the momentum m = �u, and the total energy
E = 1

2�|u|2 + �e, namely those for which the distributional time derivative can be
explicitly computed using only theweak formulation. On the other hand, the standard
variables ϑ and u do not in general enjoy this property. This is one of the reasons
why the conservative variables are used in the numerical methods based on the
implicit/explicit time discretization of the problem.

2.1.4 Admissible Weak Solutions

As is well known, see e.g. Smoller [184], the weak solutions introduced in
Definition 2.1 are not uniquely determined by the (initial) data. To save the game,
several admissibility criteria have been proposed to render the problem well-posed.
A natural idea is to include the Second law of thermodynamics enforced through
the entropy balance equation (inequality) (2.11). Note that, unlike in the case when
the solutions are smooth, the entropy balance (2.11) does not follow from the weak
formulation (2.22)–(2.24).

Definition 2.2 (ADMISSIBLE WEAK SOLUTION TO COMPLETE EULER SYS-
TEM)
We say that a weak solution [�, ϑ,u] of the Euler system in the sense of Definition 2.1
is admissible if, in addition to (2.22)–(2.24), the entropy inequality

T∫
0

∫
�

[
�s(�, ϑ)∂tϕ + �s(�, ϑ)u · ∇xϕ

]
dx dt ≤ −

∫
�

�0s(�0, ϑ0)ϕ(0, ·) dx

(2.31)
holds for any test function ϕ ∈ C1

c ([0,T ) × �), ϕ ≥ 0.
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Similarly to (2.9), we may consider the renormalized version of (2.31), namely

T∫
0

∫
�

[
�Z(s(�, ϑ))∂tϕ + �Z(s(�, ϑ))u · ∇xϕ

]
dx dt

≤ −
∫
�

�0Z(s(�0, ϑ0))ϕ(0, ·) dx
(2.32)

for ϕ ∈ C1
c ([0,T ) × �), ϕ ≥ 0, where Z is a nondecreasing function.

In view of the inequality sign in (2.31) the integral averages

t �→
∫
�

�s(�, ϑ)(t, x)φ(x) dx, φ ∈ C∞
c (�), φ ≥ 0

are in general not continuous as functions of the time t. Fortunately, the function

t �→
⎡
⎣∫

�

�s(�, ϑ)(t, x)φ(x) dx −
t∫

0

⎛
⎝∫

�

�s(�, ϑ)u(s, x) · ∇xφ(x) dx

⎞
⎠ ds

⎤
⎦

turns out to be nondecreasing in t ∈ (0,T ). As the second component

t �→
t∫

0

⎛
⎝∫

�

�s(�, ϑ)u(s, x) · ∇xφ(x) dx

⎞
⎠ ds

is obviously continuous, we deduce that the one-sided limits

∫
�

�s(�, ϑ)(τ±, x)φ(x) dx = lim
t→±τ

∫
�

�s(�, ϑ)(t, x)φ(x) dx

exist for any 0 < τ < T , and any φ ∈ C∞
c (�), φ ≥ 0. Similarly, we identify

∫
�

�s(�, ϑ)(0+, x)φ(x) dx = lim
t→0+

∫
�

�s(�, ϑ)(t, x)φ(x) dx,

and
∫
�

�s(�, ϑ)(T−, x)φ(x) dx = lim
t→T−

∫
�

�s(�, ϑ)(t, x)φ(x) dx.

The previous relations can be easily extended to general (sign-changing) functions,
writing φ = φ+ − φ− and apply the previous result to φ+ and φ−, respectively.
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Consequently, similarly to Remark 2.7, we may infer that the one sided instanta-
neous values

�s(�, ϑ)(τ±, ·), 0 < τ < T , �s(�, ϑ)(0+, ·), and �s(�, ϑ)(T−, ·)

are well defined at least as distributions in �. Supposing, in addition,

�s(�, ϑ) ∈ L∞(0,T ;L1(�)),

we may deduce

�s(�, ϑ)(τ±, ·) ∈ M(�), 0 < τ < T , �s(�, ϑ)(0+, ·) ∈ M(�),

and �s(�, ϑ)(T−, ·) ∈ M(�).
(2.33)

This follows from the fact thatM(�) can be identified with the dual of C(�), where
the latter is a separable Banach space.

The renormalized entropy inequality (2.32) represents a useful tool in the analysis
of weak solutions to the Euler system. In particular, it implies the minimum entropy
principle stated below.

Proposition 2.1 (Minimum entropy principle)
Let � ≥ 0, s, u,

�, s ∈ L∞(0,T ;L1(�)), �u ∈ L∞(0,T ;L1(�;Rd ))

satisfy the renormalized entropy inequality (2.32) for any bounded nondecreasing
function Z. Suppose that

s0(x) ≥ s for a.a. x ∈
{
x ∈ �

∣∣∣ �0(x) > 0
}

.

Then
s(τ, x) ≥ s for a.a. x ∈

{
x ∈ �

∣∣∣ �(τ, x) > 0
}

for a.a. τ ∈ (0,T ).

Proof Using the same arguments as for the entropy, we may deduce from the renor-
malized entropy inequality (2.32) that the one sided limits

lim
t→±τ

∫
�

�(t, x)Z(s(t, x)) dx

exist for any τ ∈ (0,T ).
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Next, we consider a spatially homogeneous test function ϕ = ψ(t) in (2.32)
obtaining

T∫
0

∫
�

∂tψ(t)�Z(s) dx dt ≤ −
∫
�

�0Z(s0)ψ(0) dx.

Approximating the function 1[0,τ ) by a suitable sequence ψδ ≥ 0, ψδ(0) = 0, we
deduce ∫

�

�Z(s)(τ−, x) dx ≥
∫
�

�0Z(s0) dx for any τ ∈ (0,T ).

Finally, we consider

Zn(s) =
{
0 if s ≥ s,
n(s − s) if s < s.

In accordance with our hypotheses we get

∫
�

�Zn(s)(τ−, x) dx ≥ 0 for any τ ∈ (0,T ),

and, letting n → ∞, we obtain the desired conclusion.

Besides the entropy inequality (2.31), the minimum entropy principle is consid-
ered to be one of the fundamental properties of physically relevant weak solutions
to the Euler system. Unfortunately, as we shall see in the following section, the
Euler system in several dimensions is still ill posed even if the renormalized entropy
balance (2.32) is imposed.

2.1.5 Ill-Posedness in the Class of Weak Solutions

The Euler system remains ill-posed even in the class of admissible weak solutions,
at least in the physically relevant higher space dimensions d = 2, 3. Uniqueness
of solutions can be restored only under more restrictive conditions that are satis-
fied only for certain specific initial data. We report the following negative result
that can be proved by the method of convex integration, see [89, Theorem 2.6] or
[47, Theorem 2.2].

Theorem 2.2 (Ill-posedness for complete Euler system) Let � ⊂ Rd , d = 2, 3
be a bounded domain. Suppose that the initial data �0, ϑ0 are piecewise constant.
Specifically,

� = ∪i∈I�i, �i a domain for each i, |∂�i| = 0, �i ∩ �j = ∅ for i �= j,



40 2 Inviscid Fluids: Euler System

where I is at most countable set, and

�0|�i = �0,i, ϑ0|�i = ϑ0,i,

where �i , ϑi are constants,

0 < � ≤ �0,i ≤ �, 0 < ϑ ≤ ϑ0,i ≤ ϑ for all i ∈ I .

Then there exists u0 ∈ L∞(�;Rd ) such that the Euler system (2.1)–(2.3) with the
impermeability condition (2.5), and the initial data

�(0, ·) = �0, ϑ(0, ·) = ϑ0, u(0, ·) = u0

admits infinitely many admissible weak solutions in (0,T ) × � in the sense of
Definition 2.2. The solutions belong to the class

� ≤ �(t, x) ≤ �, ϑ ≤ ϑ(t, x) ≤ ϑ a.a. in (0,T ) × �,

u ∈ L∞((0,T ) × �;Rd ).

Moreover, the entropy balance (2.31) is satisfied as equality and the solutions are in
fact isentropic, meaning

the entropy density �s(�, ϑ)(t, ·) is independent of the time t ∈ [0,T ].

Remark 2.8 As a matter of fact, for given �0, ϑ0 there is an unbounded set of the
initial velocities u0 such that the conclusion of Theorem 2.2 holds.

Remark 2.9 The result does not require any structural properties to be imposed on
p, e, and s. We only need these quantities to be continuous functions of [�, ϑ] on the
set [�, �] × [ϑ, ϑ].
Remark 2.10 The same result can be shown if the impermeability of the boundary
is replaced by the periodic boundary conditions � = T

d .

A complete proof of Theorem 2.2 is lengthy and requires the complicated appara-
tus of convex integration developed in the context of fluid dynamics in the pioneering
work of De Lellis and Székelyhidi [62]. The interested reader can find a detailed
treatment of the problem in the aforementioned references [89, Theorem 2.6] [47,
Theorem 2.2].
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2.2 Euler System in Conservative Variables

In the context of weak solutions and also in numerous numerical experiments, it is
more convenient to rewrite the Euler system in terms of conservative variables:

the mass density � = �(t, x),

the momentum m = (�u)(t, x),

the total energy, E =
(
1

2
�|u|2 + �e

)
(t, x).

As we have observed in Sect. 2.1.3, these are exactly the quantities that possess well
defined instantaneous values and are at least weakly continuous in the time variable
as soon as suitable estimates on integrability of the associated fluxes are available.

The Euler system in the conservative variables reads:

∂t� + divxm = 0, (2.34)

∂tm + divx

(
m ⊗ m

�

)
+ ∇xp = 0, (2.35)

∂tE + divx

[
(E + p)

m
�

]
= 0. (2.36)

Apparently, there are certain difficulties connected with the new formulation:

(i) The equation of continuity, written in terms of momentum, does not provide
any direct way how to show positivity of the mass density, not even for smooth
solutions.

(ii) The density, that may in principal vanish at certain parts of the physical domain,
appears in the denominator of the convective term in (2.35).

(iii) There is a rather awkward state equation relating E and e, namely

�e = E − 1

2

|m|2
�

where the right-hand side is a priori not a positive quantity as expected for e.
As we shall see bellow, the entropy balance will play a crucial role to rectify
these issues.

2.2.1 The Second Law of Thermodynamics – Entropy

In the remaining part of this section we suppose the pressure and the internal energy
are interrelated through the caloric EOS introduced in Chap. 1:
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p = (γ − 1)�e, γ > 1, (2.37)

giving rise to

p = p(�,m,E) = (γ − 1)

(
E − 1

2

|m|2
�

)
. (2.38)

Note carefully that p = p(�,m,E) is a concave function of the conservative variables.
The polytropic EOS (2.37) is incomplete in the sense that formally closes the Euler
system (2.34)–(2.36) but does not provide any piece of information concerning the
temperature and entropy.

To fill the gap, wewrite the specific entropy s = s(�, e) as a function of the density
and the internal energy. In view of Gibbs’ relation (2.5),

∂s

∂e
(�, e) = 1

ϑ
,

∂s

∂�
(�, e) = − p

ϑ�2
= −(γ − 1)

e

ϑ�
= −(γ − 1)

e

�

∂s

∂e
(�, e).

(2.39)
The first relation can serve as a definition of the absolute temperature ϑ , while the
second relation in (2.39) may be seen as a first order equation for s = s(�, e) that
can be integrated yielding

s(�, e) = S
(

(γ − 1)e

�γ−1

)
= S

(
p

�γ

)
(2.40)

for a certain function S. Combining (2.37), (2.39), (2.40), and the required positivity
of the absolute temperature, we get

S ′ > 0.

Thus going back to (2.38) we obtain a formula for s being a function of the conser-
vative variables

s(�,m,E) = S
(

γ − 1

�γ

(
E − 1

2

|m|2
�

))
. (2.41)

In accordance with (2.11), the entropy is transported (increases) along the flow.
In particular, choosing the initial data in such a way that the pressure (the absolute
temperature) is positive,

E0 − 1

2

|m0|2
�0

> 0,

we deduce the same property at any positive time

E(t, ·) − 1

2

|m(t, ·)|2
�(t, ·) > 0, t > 0,

which is the minimum entropy principle stated in Proposition 2.1.
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2.2.2 Weak Solutions

Rewriting Definition 2.1 in terms of the conservative variables [�,m,E], we obtain
an alternative weak formulation of the Euler system.

Definition 2.3 (WEAK FORMULATION IN CONSERVATIVE VARIABLES)
Let the initial data [�0,m0,E0] be given satisfying

�0 ≥ 0, E0 − 1

2

|m0|2
�0

> 0 a.a. in �.

A trio [�,m,E] is a weak solution of the Euler system (2.34)–(2.36), with the imper-
meability boundary conditions (2.6) in (0,T ) × � if the following holds:

• (measurability) the quantities � = �(t, x),m = m(t, x), E = E(t, x) are measur-
able functions defined for (t, x) ∈ (0,T ) × �,

�(t, x) ≥ 0, E(t, x) − 1

2

|m|2
�

(t, x) > 0 for a.a. (t, x) ∈ (0,T ) × �; (2.42)

• (equation of continuity) the integral identity

T∫
0

∫
�

[
�∂tϕ + m · ∇xϕ

]
dx dt = −

∫
�

�0ϕ(0, ·) dx (2.43)

holds for any test function ϕ ∈ C1
c ([0,T ) × �);

• (momentum equation) the integral identity

T∫
0

∫
�

[
m · ∂tϕ +

(
1�>0

m ⊗ m
�

)
: ∇xϕ + p(�,m,E)divxϕ

]
dx dt

= −
∫
�

m0 · ϕ(0, ·) dx with p(�,m,E) = (γ − 1)

(
E − 1

2

|m|2
�

)
,

(2.44)

holds for any test function ϕ ∈ C1
c ([0,T ) × �;Rd ), ϕ · n|∂� = 0;

• (energy conservation) the integral identity

T∫
0

∫
�

[
E∂tϕ + 1�>0

(
E + p(�,m,E)

)m
�

· ∇xϕ

]
dx dt = −

∫
�

E0ϕ(0, ·) dx

(2.45)
holds for any test function ϕ ∈ C1

c ([0,T ) × �).

A weak solution is called admissible if the entropy balance
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T∫
0

∫
�

[
�s(�,m,E)∂tϕ + s(�,m,E)m · ∇xϕ

]
dx dt

≤ −
∫
�

�0s(�0,m0,E0)ϕ(0, ·) dx
(2.46)

holds for any test function ϕ ∈ C1
c ([0,T ) × �), ϕ ≥ 0, where the entropy s is given

by formula (2.41).

Remark 2.11 (Kinetic energy) The kinetic energy 1
2

|m|2
�

is defined as a function of
[�,m] in the following way:

|m|2
�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|m|2
�

if � > 0,

0 if m = 0, � ≥ 0,

∞ otherwise.

(2.47)

Accordingly, the kinetic energy defined through (2.47) is a convex, lower semicon-
tinuous function of [�,m] ∈ R2,

Dom

[ |m|2
�

]
=

{
[�,m]

∣∣∣ � > 0
}

∪ {[0, 0]}.

The second condition in (2.42) reflects the physical principle of positivity of the
absolute temperature. As we have seen in the preceding section, it can be recovered
from the minimum entropy principle even at the level of weak solutions.

2.2.3 Thermodynamic Stability

Let us recall the thermodynamic stability condition introduced in (2.13), namely

∂p(�, ϑ)

∂�
> 0,

∂e(�, ϑ)

∂ϑ
> 0. (2.48)

In terms of the conservative variables, the same condition corresponds to the
concavity of the total entropy

S(�,m,E) = �s(�,m,E) = �S
(

γ − 1

�γ

(
E − 1

2

|m|2
�

))

with respect to the variables [�,m,E].
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Firstwe claim that concavity of S follows from the following structural restrictions
imposed on S

S ′(Z) > 0, (γ − 1)S ′(Z) + γS ′′(Z)Z < 0 for all Z > 0. (2.49)

To this end, we first observe that it is enough to establish concavity of the function

S = S(�, p) = �S
(

p

�γ

)
with respect to the variables [�, p].

Next, we compute

∂S(�, p)

∂�
= S

(
p

�γ

)
− γS ′

(
p

�γ

)
p

�γ
,

∂S(�, p)

∂p
= 1

�γ−1
S ′

(
p

�γ

)
,

and

∂2S(�, p)

∂�2
= −γS ′

(
p

�γ

)
p

�γ+1
+ γ 2S ′

(
p

�γ

)
p

�γ+1
+ γ 2S ′′

(
p

�γ

)
p2

�2γ+1
,

∂2S(�, p)

∂p2
= 1

�2γ−1
S ′′

(
p

�γ

)
,

∂2S(�, p)

∂�∂p
= 1 − γ

�γ
S ′

(
p

�γ

)
− γS ′′

(
p

�γ

)
p

�2γ
.

It follows from the hypothesis (2.49) that

∂2S(�, p)

∂�2
≤ 0,

∂2S(�, p)

∂p2
≤ 0.

Finally, we compute the determinant of the Hessian of the function S = S(�, p):

det
[
∇2

�,pS(�, p)
]

= 1

�2γ

(
γS ′′(Z)

[
(γ − 1)S ′(Z)Z + γS ′′(Z)Z2

]
−

[
(1 − γ )S ′(Z) − γS ′′(Z)Z

]2)

= 1

�2γ

(−γ (γ − 1)S ′′(Z)S ′(Z)Z − (γ − 1)2S ′(Z)2
)

= − (γ − 1)S ′(Z)

�2γ

(
γS ′′(Z)Z + (γ − 1)S ′(Z)

)
.

Thus we may infer that concavity of the function S = S(�, p) in [�, p], and, conse-
quently of S = S(�,m,E) in [�,m,E], follows from (2.49).

Next, we examine the domain of S determined by a lower bound on the quotient
p
�γ , or, in accordance with the relation (2.37), a lower bound on (γ − 1) e

�γ−1 . To
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clarify this issue, it seems more convenient to use the standard variables [�, ϑ]. First
observe that Gibbs’ equation (2.5) yields Maxwell’s equation

∂e(�, ϑ)

∂�
= 1

�2

(
p(�, ϑ) − ϑ

∂p(�, ϑ)

∂ϑ

)
;

whence, in view of the caloric EOS (2.37),

∂e(�, ϑ)

∂�
= γ − 1

�

(
e(�, ϑ) − ϑ

∂e(�, ϑ)

∂ϑ

)
. (2.50)

Relation (2.50) may be viewed as a first order partial differential equations that
can be integrated obtaining e or p, and the entropy s is the specific form:

p(�, ϑ) = (�ϑ)
ϑcv

�
P
( �

ϑcv

)
= P(Y )

Y γ
�γ , s = s(Y ), where Y = �

ϑ
1

γ−1

(2.51)

for certain functions P and s. In addition, using ∂e
∂ϑ

> 0, we may infer

Y �→ P(Y )

Y γ

is a decreasing function of Y . We conclude that

p(�, ϑ)

�γ
↘ p ≥ 0 as ϑ → 0 + for any fixed �, (2.52)

where p is a nonnegative constant independent of �. The natural domain of definition
of S is therefore the interval (p,∞), where, shifting S by an additive constant, we
may assume

lim
Z→p+

S(Z) ∈ {0,−∞}. (2.53)

We finish this part by stating the exact definition of the total entropy S =
�s(�,m,E):

S(�,m,E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�S
(

(γ − 1)
E− 1

2
|m|2

�

�γ

)
if � > 0, E ≥ 1

2
|m|2
�

+ p
γ−1�

γ ,

lim�→0+ �S
(
(γ − 1) E

�γ

)
, if � = 0, m = 0, E > 0,

limE→0+
[
lim�→0+ �S

(
(γ − 1) E

�γ

)]
if � = E = m = 0,

−∞ otherwise.
(2.54)



2.2 Euler System in Conservative Variables 47

As we have observed, the function S = S(�,m,E) defined via (2.54) is concave
upper semicontinuous as soon as S satisfies (2.49) for Z > 0, together with (2.53).

Example The standard example in gas dynamics is the Boyle–Mariotte law:

p = �ϑ, e = cvϑ, cv = 1

γ − 1
, (2.55)

for which

p = 0, S(Z) = 1

γ − 1
log(Z).

2.2.4 Conservative-Entropy Variables

The formulation of the Euler system in terms of the conservative variables [�,m,E]
is rather awkward at the level of constitutive equations. In particular, the pressure
and the internal energy—two thermostatic quantities defined a priori for fluid at
thermodynamic equilibrium—depend on the momentum/velocity field through the
total energyE.Moreover, the energybalanceEq. (2.36) aswell as itsweak counterpart
(2.45) contain the flux

(E + p)
m
�

that is not controllable in terms of available a priori bounds.
In meteorology it is more customary to replace the total energy E by the entropy,

or its rescaled version called potential temperature, and to rewrite the Euler system
in terms of the conservative-entropy variables:

the density � = �(t, x),

the momentum m = m(t, x),

the total entropy S = (�s)(t, x).

Accordingly, the resulting system of equations reads:

∂t� + divxm = 0, (2.56)

∂tm + divx

(
m ⊗ m

�

)
+ ∇xp(�, S) = 0, (2.57)

∂tS + divx

(
S
m
�

)
= 0. (2.58)
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Similarly to (2.9), we may replace (2.58) by its renormalized version

∂tSZ + divx

(
SZ

m
�

)
= 0, (2.59)

where
SZ = �Z ◦ S, Z ′ ≥ 0.

Equation (1.35) may come in handy when dealing with weak solution with low
integrability, where Z can be taken a suitable cut-off function.

The total energy

E = E(�,m, S) = 1

2

|m|2
�

+ �e(�, S)

is now expressed as a sum of the kinetic and internal energy, where the latter is
independent of the momentum. In the remaining part of this section we focus on the
standard example of the perfect gas law

p = (γ − 1)�e, e = cvϑ, cv = 1

γ − 1
, γ > 1.

After a direct manipulation, we observe that the mapping

p(�, S) = (γ − 1)�e(�, S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�γ exp
(

S
cv�

)
if � > 0, S ∈ R,

0 if � = 0, S ≤ 0,

∞ if � = 0, S > 0,

is convex lower semicontinuous on [0,∞) × R. Indeed it is a routine matter to
compute the Hessian matrix:

∂p(�, S)

∂�
= γ �γ−1 exp

(
S

cv�

)
− S

cv
�γ−2 exp

(
S

cv�

)
,

∂p(�, S)

∂S
= 1

cv
�γ−1 exp

(
S

cv�

)
,



2.2 Euler System in Conservative Variables 49

and
∂2p(�, S)

∂�2
=

[
(γ − 1)�2 +

(
(γ − 1)� − S

cv

)2
]

�γ−4 exp

(
S

cv�

)
,

∂2p(�, S)

∂S2
= 1

c2v
�γ−2 exp

(
S

cv�

)
= 1

c2v
�2�γ−4 exp

(
S

cv�

)
,

∂2p(�, S)

∂�∂S
= 1

cv
(γ − 1)�γ−2 exp

(
S

cv�

)
− S

c2v
�γ−3 exp

(
S

cv�

)

=
[
1

cv
(γ − 1)�2 − S

c2v
�

]
�γ−4 exp

(
S

cv�

)
.

Obviously, the Hessian has positive trace, while its determinant reads

�γ−4 exp

(
S

cv�

){
�2

c2v

[
(γ − 1)�2 +

(
(γ − 1)� − S

cv

)2
]

−
(

γ − 1

cv
�2 − S

c2v
�

)2
}

= �γ

c2v
exp

(
S

cv�

)
.

Thus for the kinetic energy

|m|2
�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|m|2
�

if � > 0, m ∈ Rd ,

0 if m = 0,

∞ if � = 0,m �= 0,

(2.60)

which is a convex lower semicontinuous function on [0,∞) × Rd , the total energy

E(�,m, S) = 1

2

|m|2
�

+ �e(�, S)

is also convex lower semicontinuous. Convexity plays an important role in the study
of weak solutions as they are known to be only weakly continuous with respect to
the time variable; whence their composition with a convex function is weakly lower
semicontinuous. In particular, the total energy enjoys this property.

A bit at odds with basic physical principles, the system (2.47), (2.57), (2.58),
(2.59) can be supplemented by the total energy balance (inequality)

d

dt

∫
�

E(t) dx = (≤)0, (2.61)

where we have tacitly assumed the impermeability or spatially periodic boundary
conditions. To avoid the problem of a rather unphysical phenomenon of energy
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dissipation in (2.61), we may return to the original Euler system and reformulate it
in the conservative-entropy variables:

∂t� + divxm = 0, (2.62)

∂tm + divx

(
m ⊗ m

�

)
+ ∇xp(�, S) = 0, (2.63)

∂t

(
1

2

|m|2
�

+ �e(�, S)

)
+ divx

[(
1

2

|m|2
�

+ �e(�, S) + p(�, S)

)
m
�

]
= 0, (2.64)

supplemented with the renormalized entropy balance

∂t

(
�Z

(
S

�

))
+ divx

[
Z

(
S

�

)
m
]

≥ 0 (2.65)

for Z nondecreasing.

Definition 2.4 (WEAK FORMULATION IN CONSERVATIVE-ENTROPY VARIABLES)
Let the initial data [�0,m0, S0] be given satisfying

�0 ≥ 0, E0 = 1

2

|m0|2
�0

+ �0e(�0, S0) < ∞ a.a. in �, S0 = 0 a.a. in {�0 = 0}.

A trio [�,m, S] is a weak solution of the Euler system (2.62)–(2.64) with the imper-
meability boundary conditions (2.6) in (0,T ) × � if the following holds:

• (measurability, compatibility) the quantities � = �(t, x), m = m(t, x),
S = E(t, x) are measurable functions defined for (t, x) ∈ (0,T ) × �,

�(t, x) ≥ 0,

E(t, x) ≡
(
1

2

|m|2
�

+ �e(�, S)

)
(t, x) < ∞ for a.a. (t, x) ∈ (0,T ) × �,

S(t, x) = 0 a.a. (t, x) in {� = 0} ;
(2.66)

• (equation of continuity) the integral identity

T∫
0

∫
�

[
�∂tϕ + m · ∇xϕ

]
dx dt = −

∫
�

�0ϕ(0, ·) dx (2.67)

holds for any test function ϕ ∈ C1
c ([0,T ) × �);
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• (momentum equation) the integral identity

T∫
0

∫
�

[
m · ∂tϕ +

(
1�>0

m ⊗ m
�

)
: ∇xϕ + 1�>0p(�, S)divxϕ

]
dx dt

= −
∫
�

m0 · ϕ(0, ·) dx
(2.68)

holds for any test function ϕ ∈ C1
c ([0,T ) × �;Rd ), ϕ · n|∂� = 0;

• (energy conservation) the integral identity

T∫
0

∫
�

(
1

2

|m|2
�

+ �e(�, S)

)
∂tϕ dx dt

+
T∫

0

∫
�

[
1�>0

(
1

2

|m|2
�

+ �e(�, S) + p(�, S)

)
m
�

]
· ∇xϕ dx dt

= −
∫
�

(
1

2

|m0|2
�0

+ �0e(�0, S0)

)
ϕ(0, ·) dx

(2.69)

holds for any test function ϕ ∈ C1
c ([0,T ) × �).

A weak solution is called admissible if the entropy balance

T∫
0

∫
�

[
�Z

(
S

�

)
∂tϕ +

(
Z

(
S

�

)
m
)

· ∇xϕ

]
dx dt ≤ −

∫
�

�0Z

(
S0
�0

)
ϕ(0, ·) dx

(2.70)
holds for any test function ϕ ∈ C1

c ([0,T ) × �), ϕ ≥ 0, and any Z ∈ C1(R), Z ′ ≥ 0.

Remark 2.12 As the total energy is supposed to be finite for a.a. (t, x) we deduce a
natural compatibility condition

m(t, x) = 0 a.a. in the vacuum set {� = 0}.

A similar condition

S(t, x) = 0 a.a. in the vacuum set {� = 0}.

postulated in (2.66) is merely a convention. Indeed, all other nonlinearities in the
equations are set to be zero on the vacuum set, and, in view of the renormalized
equation (2.70), it is convenient to define
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S(t, x) = lim
δ→0

�(t, x)Z

(
S(t, x)

�(t, x)

)
, Z ∈ BC(R), Zδ(Y ) → Y as δ → 0.

The conservative-entropy variables [�,m, S] are in fact the most convenient for
the analysis of numerical schemes studied in this book.

2.3 Barotropic (Isentropic) Euler System

The isentropic Euler system is formally obtained from the complete system by
requiring the entropy s = s to be constant in (2.8). Consequently, the entropy balance
and the equation of continuity coincide and the complete Euler system (2.1)–(2.3)
reduces to the first two equations. Note that, in accordance with Gibbs’ equation
(2.5), the entropy is an increasing function of the total energy; whence the latter can
be seen as a function of the density � only. In the context of the Boyle–Mariotte law
(2.55), we easily deduce the isentropic pressure-density EOS

p(�) = a�γ , e(�) = a

γ − 1
�γ−1, γ > 1. (2.71)

In general, we say that a compressible fluid is barotropic if the pressure p = p(�)

depends only on the density �. Barotropic models ignore the thermal dissipative
effects in the fluid and reduce the motion to a purely mechanical process. An exam-
ple of a barotropic model was studied in Sect. 2.1.2 to demonstrate the blow up
phenomena (shock waves) in compressible fluid flows.

2.3.1 Energy Balance

The total energy of a barotropic fluid can be expressed in terms of the kinetic energy
and the pressure potential

P(�) satisfying P′(�)� − P(�) = p(�). (2.72)

Indeed multiplying the momentum Eq. (2.2) on u = m
�
we recover the kinetic energy

balance

∂t

( |m|2
�

)
+ divx

( |m|2
�

u
)

+ divx (p(�)u) − p(�)divxu = 0.

Next, we easily check that

∂tP(�) + divx (P(�)u) + p(�)divxu = 0;
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whence

∂t

( |m|2
�

+ P(�)

)
+ divx

[( |m|2
�

+ P(�)

)
u
]

+ divx (p(�)u) = 0. (2.73)

Note that � �→ P(�) is convex as soon as p′(�) ≥ 0; where the latter is nothing other
than a thermodynamic stability condition in the context of barotropic fluids.

2.3.2 Weak Solutions

We introduce the concept of weak solution to the barotropic Euler system.

Definition 2.5 (WEAK FORMULATION OF THE BAROTROPIC EULER SYS-
TEM)
Let the initial data [�0,m0] be given satisfying

�0 ≥ 0,
|m0|2
�0

< ∞ a.a. in �.

A pair [�,m] is a weak solution of the barotropic Euler system with the imperme-
ability boundary conditions (2.6) in (0,T ) × � if the following holds:

• (measurability) the quantities � = �(t, x),m = m(t, x) are measurable functions
defined for (t, x) ∈ (0,T ) × �,

�(t, x) ≥ 0 for a.a. (t, x) ∈ (0,T ) × �; (2.74)

• (equation of continuity) the integral identity

T∫
0

∫
�

[
�∂tϕ + m · ∇xϕ

]
dx dt = −

∫
�

�0ϕ(0, ·) dx (2.75)

holds for any test function ϕ ∈ C1
c ([0,T ) × �);

• (momentum equation) the integral identity

T∫
0

∫
�

[
m · ∂tϕ +

(
1�>0

m ⊗ m
�

)
: ∇xϕ + p(�)divxϕ

]
dx dt

= −
∫
�

m0 · ϕ(0, ·) dx
(2.76)

holds for any test function ϕ ∈ C1
c ([0,T ) × �;Rd ), ϕ · n|∂� = 0.
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A weak solution is called admissible if the energy inequality

T∫
0

∫
�

(
1

2

|m|2
�

+ P(�)

)
∂tψ dx dt ≤ −

∫
�

(
1

2

|m0|2
�0

+ P(�0)

)
ψ(0) dx (2.77)

for any test function ψ ∈ C1
c [0,T ), ψ ≥ 0.

Remark 2.13 The integrated energy inequality (2.77) may be strengthened to its
“differential” form

T∫
0

∫
�

(
1

2

|m|2
�

+ P(�)

)
∂tϕ dx dt

+
T∫

0

∫
�

[(
1

2

|m|2
�

+ P(�) + p(�)

)
m
�

· ∇xϕ

]
dx dt

≤ −
∫
�

(
1

2

|m0|2
�0

+ P(�0)

)
ϕ(0, ·) dx

(2.78)

for any test function ϕ ∈ C1
c ([0,T ) × �), ϕ ≥ 0.

Note that the example of formation of shock waves in Sect. 2.1.2 concerns a
barotropic fluid and thus solutions of the barotropic Euler system may become sin-
gular in a finite time lap independently of smoothness and size of the initial data.
By the same token, Theorem 2.2 on the ill-posedness of the Euler system applies
to the barotropic case as well. Summarizing, we may infer that the barotropic Euler
system shares the essential properties of the complete Euler system. It is locally well
posed in the framework of smooth solutions and globally ill posed in the framework
of admissible weak solutions. The existence of global in time admissible weak solu-
tions for any finite energy initial data is still an open problem in the multidimensional
case.

2.4 Conclusion, Bibliographical Remarks

The motion of an inviscid perfect fluid in the framework of continuum mechanics
is described by the (complete) Euler system (2.1)–(2.3), or, alternatively, by the
simplified isentropic (barotropic) model introduced in Sect. 2.3. The absence of the
regularizing effect of viscosity results in severe mathematical difficulties and render
the initial and/or boundary value problem essentially ill-posed. In accordance with
the recent state-of-the-art, we may summarize the material of this chapter as follows:



2.4 Conclusion, Bibliographical Remarks 55

• Local-in-time well-posedness. The Euler system admits local in time smooth
solutions as soon as the initial data as well as the underlying physical domain
are smooth. The solutions exists on a maximal time interval [0,Tmax), see e.g. the
monographs of Benzoni–Gavage, Serre [18], Dafermos [60],Majda [156], Smoller
[184] among others.

• Development of singularities. Singularities in the form of shock waves develop
in a finite time for a fairly generic class of the initial data. There are standard
examples of this phenomena discussed by Dafermos [60], Smoller [184], for more
recent treatment we refer to Buckmaster et al. [36].

• Effect of physical boundaries. The absence of physical boundaries or its large
distance from the initial data perturbation may extend the life span of classical
solutions considerably due to dispersive phenomena, see Christodoulou and Miao
[54].

• Existence of weak solutions. The admissible weak solutions exist globally in
time for any finite energy initial data if d = 1, see DiPerna [64], Lions, Perthame,
Souganidis, [155]. In the multidimensional case, the weak solutions are known to
exist for any initial data enjoying certain regularity, see De Lellis and Székelyhidi
[62], Chiodaroli et al. [46, 49, 51]. The problem is ill posed in the class of weak
solutions, there are infinitelymany for any initial data. Theymay not be admissible,
however, the entropy and/or energy balance may be violated. Still, there is a vast
class of (nonsmooth) initial data for which the problem is ill posed, see [81].

• Global ill-posedness for smooth initial data. There exist C∞ initial data and
T > 0 such that the barotropic Euler system inRd , d = 2, 3 admits infinitely many
admissible weak solutions in (0,T ), see Chiodaroli et al. [50]. Similar examples
exist for the complete Euler system in the class of Lipschitz initial data, see Mark-
felder [158].

Despite the existence of infinitely many (weak) solutions for rather vast class
of data, it is still not known if a global in time admissible weak solution exists for
given data, at least if d > 1. Convergence of a sequence of approximate solutions,
for instance those resulting from a numerical scheme, to a weak solution remains
an outstanding open problem. What is more, certain numerical experiments suggest
that the limit may not be a weak solution but rather a more complex object that can
be described only in a statistical manner, cf. Fjordholm et al. [103, 104, 107]. This
motivates the introduction of a more general concept of solution discussed in large
in Part II of this monograph.



Chapter 3
Viscous Fluids: Navier–Stokes–(Fourier)
System

Theperfect fluids describedby theEuler system represent amathematical idealization
of the model of motion of real fluids, for which the effect of viscosity and/or heat
conductivity can not be neglected. In particular, inmany real world applicationsmore
complex models must be considered. We adopt the commonmathematical definition
of fluid as a continuum for which the Cauchy stress T is characterized by Stokes’
law,

T = S − pI

where p is the pressure and S is the viscous stress tensor. Leaving apart for a moment
the specific form of S, we may write the field equations in the form:

• Mass conservation or equation of continuity

∂t� + divx(�u) = 0 (3.1)

• Newton’s Second law or momentum conservation

∂t(�u) + divx(�u ⊗ u) + ∇xp = divxS (3.2)

The energy balance of a viscous fluid is usually expressed in terms of the internal
energy e

• Internal energy balance

∂t(�e) + divx(�eu) + divxq = S : ∇xu − pdivxu, (3.3)

where q denotes the internal energy flux. Note that we have deliberately omitted the
influence of both mechanical and thermal sources for the sake of simplicity.

While the pressure p and the internal energy obey basically the same thermody-
namic principles as perfect fluids, in particular Gibbs’ relation (2.5), the specific form

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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of S and q is given by the material properties of a particular real fluid. Newtonian
fluids are characterized by the linear dependence of S on the velocity gradient ∇T

x u
or rather on its symmetric part

Du = 1

2

(∇xu + ∇T
x u

)
, or its traceless component

1

2

(∇xu + ∇T
x u

) − 1

d
divxuI.

If the fluid is isotropic, meaning its material properties are independent of the orien-
tation of the reference frame, the most general form of the viscous stress is

• Newton’s rheological law

S = S(∇xu) = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI, (3.4)

where μ and λ are nonnegative scalars that may depend on � and e as the case may
be. The first deviatoric component of S corresponds to the shear stress while the
second is called bulk stress. Accordingly, μ is called the shear viscosity coefficient
and λ the bulk viscosity coefficient. We speak about a viscous fluid ifμ > 0, λ ≥ 0;
there are fluid models where λ = 0, for example this holds for some gases.

The internal energy flux q is usually intimately related to the diffusive transport
of heat causing temperature changes. We consider q given by

• Fourier’s law
q = q(∇xϑ) = −κ∇xϑ, (3.5)

where ϑ is the absolute temperature and κ the heat conductivity coefficient.
The system of Eqs. (3.1)–(3.3), where S and q are given by (3.4) and (3.5),

respectively, is called the Navier–Stokes–Fourier system.

3.1 Classical Solutions

To fix ideas, we consider the Navier–Stokes–Fourier system on a bounded domain
� ⊂ Rd with an impermeable boundary. In terms of the velocity field u, this amounts
to the boundary condition

u · n|∂� = 0. (3.6)

Similarly, we consider the no-flux conditions for the internal energy,

q · n|∂� = 0. (3.7)

The fluid is therefore both mechanically and thermally isolated. In addition, a second
boundary condition is required in view of the elliptic character of the momentum
equation. We consider either the no-slip condition for the velocity



3.1 Classical Solutions 59

u × n|∂� = 0, which, together with (3.6), yields u|∂� = 0, (3.8)

or the complete slip (Navier) boundary condition

(S · n) × n|∂� = 0. (3.9)

Of course, the space periodic boundary conditions � = T
d can be alternatively used

to avoid the treatment of physical boundary.

3.1.1 Local Existence of Smooth Solutions

The Navier–Stokes–Fourier system is a model of a nondilute fluid, where the density
� is expected to be bounded below away from zero. In particular, this property should
be enforced through the choice of the initial data

�(0, ·) = �0 > 0, m(0, ·) = �0u0, e(0, ·) = e0. (3.10)

In contrast with the Euler system discussed in Chapter 2, there is no explicit example
of solutions to the Navier–Stokes–Fourier system emanating from smooth initial data
and blowing up at a finite time. Although there is no rigorous proof, formation of
shock waves is not expected. Possible singularities, if any, would be related to for-
mation of a “gravitational collapse” when the density becomes infinite, cf. Sect. 3.4.
Still the problem of existence of global in time classical solutions remains largely
open, at least in the physically relevant space dimensions d = 2, 3.

Similarly to the Euler system, the solutions of the Navier–Stokes–Fourier system
with smooth initial data are known to exist locally in time. To formulate the relevant
result, we rewrite the problem in the standard (primitive) variables [�,u, ϑ]:

∂t� + divx(�u) = 0, (3.11)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�, ϑ)

= divx

(
μ

[
∇xu + ∇T

x u − 2

d
divxuI

]
+ λdivxuI

)
,

(3.12)

�cv(�, ϑ)
(
∂tϑ + u · ∇xϑ

)
− divx (κ∇xϑ)

=
(

μ

[
∇xu + ∇T

x u − 2

3
divxuI

]
+ λdivxuI

)
: ∇xu − �

∂p(�, ϑ)

∂ϑ
divxu,

(3.13)
where

cv(�, ϑ) = ∂e(�, ϑ)

∂ϑ
> 0 is the specific heat at constant volume.
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Note that the specific form of the last term in (3.13) follows from Gibbs’ relation
(1.46).

The following result is due to Valli [196, Theorem A and Remark 3.3]. It is stated
for d = 3 and the no-slip boundary condition (3.8), however, extension for d = 2
and other types of boundary conditions is straightforward.

Theorem 3.1 (Local existence of smooth solutions)
Let � ⊂ R3 be a bounded domain of class C2+ν , ν > 0. Let the initial data

�0, ϑ0 ∈ W 3,2(�), u0 ∈ W 3,2(�;R3)

be given such that (�0, ϑ0) belong to a compact subset of an open set U ⊂ (0,∞)2,
and satisfy the compatibility conditions

u0|∂� = 0, ∇xϑ0 · n|∂� = 0,

∇xp(�0, ϑ0)

∣
∣∣
∂�

= divx

(
μ(�0, ϑ0)

[
∇xu0 + ∇T

x u0 − 2

3
divxu0I

]
+ λ(�0, ϑ0)divxu0I

) ∣∣
∣
∂�

.

Suppose that the pressure p = p(�, ϑ), the specific heat at constant volume cv =
cv(�, ϑ), as well as the transport coefficients μ = μ(�, ϑ), λ = λ(�, ϑ), and κ =
κ(�, ϑ) are three-times continuously differentiable in U and satisfy

∂p(�, ϑ)

∂�
> 0, cv(�, ϑ) > 0, μ(�, ϑ) > 0, λ(�, ϑ) ≥ 0, κ(�, ϑ) > 0

for all (�, ϑ) ∈ U .
Then there exists T > 0 such that the Navier–Stokes–Fourier system (3.11)–

(3.13), supplemented with the boundary conditions (3.7), (3.8) admits a classical
solution unique in the class

�, ϑ ∈ C([0,T ];W 3,2(�)) ∩ C1([0,T ];W 2,2(�)),

u ∈ C([0,T ];W 3,2(�;R3)) ∩ C1([0,T ];W 2,2(�;R3)).

Remark 3.1 It can be shown that any solution belonging to the class specified in
Theorem 3.1 possess all the necessary derivatives and is therefore a classical solution
in the open set (0,T ) × �.
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3.1.2 Global Existence of Smooth Solutions

The dissipative mechanism, encoded in the Navier–Stokes–Fourier system, provides
certain stability of equilibrium states that gives rise to the existence of global-in-
time smooth solutions for “small” initial data. The following result is attributed to
Matsumura and Nishida [159, 160], for the accommodation of various boundary
conditions see Valli and Zajaczkowski [197]. To avoid technical problems connected
with the boundary conditions, we state it for the periodic boundary conditions.

Theorem 3.2 (Global existence for small data) Let � = T
d , d = 2, 3. Suppose

there are two positive constants � > 0, ϑ > 0 such that

‖�0 − �‖W 3,2(Td ) + ‖ϑ0 − ϑ‖W 3,2(Td ) + ‖u0‖W 3,2(Td ;Rd ) < ε.

Let the pressure p = p(�, ϑ), the specific heat at constant volume cv = cv(�, ϑ),
as well as the transport coefficients μ = μ(�, ϑ), λ = λ(�, ϑ), and κ = κ(�, ϑ) be
three-times continuously differentiable in some open neighborhood U ⊂ (0,∞)2 of
[�, ϑ] and satisfy

∂p(�, ϑ)

∂�
> 0, cv(�, ϑ) > 0, μ(�, ϑ) > 0, λ(�, ϑ) ≥ 0, κ(�, ϑ) > 0

for all (�, ϑ) ∈ U .
Then there exists ε0 > 0 such that for any 0 ≤ ε < ε0, the Navier–Stokes–Fourier

system (3.11)–(3.13) admits a unique global-in-time solution in the class

�, ϑ ∈ BC([0,∞);W 3,2(Td )) ∩ BC1([0,∞);W 2,2(Td )),

u ∈ BC([0,∞);W 3,2(Td ;Rd )) ∩ BC1([0,∞);W 2,2(Td ;Rd )).

3.2 Weak Solutions, Navier–Stokes System

The problem of the existence of global-in-time solutions to the Navier–Stokes–
Fourier system in the multidimensional setting for arbitrary (large) data remains
open. However, there is a well developed global theory in the framework of weak
(distributional) solutions we are about to discuss now. To explain the main ideas,
we restrict ourselves to the barotropic case, where, similarly to its inviscid counter-
part studied in Sect. 2.3, the thermal effects are neglected. The relevant system of
equations reads:

• Mass conservation or equation of continuity

∂t� + divx(�u) = 0 (3.14)
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• Newton’s Second law or momentum conservation

∂t(�u) + divx(�u ⊗ u) + ∇xp(�) = divxS(∇xu) (3.15)

• Newton’s rheological law

S(∇xu) = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI. (3.16)

The boundary conditions are stated in terms of the velocity. For the sake of sim-
plicity, we focus on the no-slip condition

u|∂� = 0, (3.17)

or, alternatively, the periodic boundary conditions � = T
d .

In the context of weak solutions, it is convenient to augment the system by energy
inequality

d

dt

∫

�

E dx +
∫

�

S : ∇xu dx ≤ 0, E ≡ 1

2
�|u|2 + P(�), P′(�)� − P(�) = p(�).

(3.18)

3.2.1 Approximation Scheme

The weak solutions to the Navier–Stokes system can be obtained via a multilevel
approximation scheme that is strongly reminiscent of certain numerical schemes
discussed in Part III of this book. To avoid problems with boundary conditions, we
consider � = T

d .
The equation of continuity is regularized by adding artificial viscosity

∂t� + divx(�u) = ε
x�. (3.19)

Themomentum equation is solved bymeans of a Galerkin approximation. Specif-
ically, we look for a velocity field

u ∈ C([0,T ];Xn),

where Xn is a finite dimensional space spanned by trigonometric polynomials on Td .
Accordingly, we solve
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d

dt

∫

Td

�u · w dx

=
∫

Td

[
�u ⊗ u : ∇xw + p(�)divxw + δ��divxw

]
dx

−
∫

Td

[
S : ∇xw − ε(�u) · 
xw

]
dx

(3.20)

for any w ∈ Xn. Here, we have added an “artificial pressure” to compensate possible
lack of coercivity of p and the artificial viscosity term ε
x(�u) to preserve the energy
balance. Writing

d

dt

∫

Td

�u · w dx =
∫

Td

∂t(�u) · w dx

we are allowed to consider w = u as a test function in (3.20). We have

∫

Td

∂t(�u) · u dx =
∫

Td

[
∂t�|u|2 + �

1

2
∂t|u|2

]
dx.

Next, multiplying (3.19) on b′(�) we recover the renormalized variant

∂tb(�) + divx(b(�)u) +
(
b′(�)� − b(�)

)
divxu = εdivx

(
b′(�)∇x�

) − εb′′(�)|∇x�|2.
(3.21)

Finally, using (3.21), we deduce

∫

Td

�u ⊗ u : ∇xu dx = −
∫

Td

divx(�u)
1

2
|u|2 dx,

∫

Td

p(�)divxu dx = −
∫

Td

∂tP(�) dx − ε

∫

Td

P′′(�)|∇x�|2 dx,

δ

∫

Td

��divxu dx = −δ

∫

Td

∂t�
� dx − εδ

∫

Td

���−2|∇x�|2 dx,
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and

ε

∫

Td

(�u)
xu dx = −ε

∫

Td

�|∇xu|2 dx − ε

∫

Td

∇x� · u · ∇xu dx

= −ε

∫

Td

�|∇xu|2 dx + ε

2

∫

Td


x�|u|2 dx.

Summing up the previous computations, we obtain an approximate version of the
energy balance

d

dt

∫

Td

[
1

2
�|u|2 + P(�) + δ��

]
dx +

∫

Td

S(∇xu) : ∇xu dx

+ ε

∫

Td

[
�|∇xu|2 + P′′(�)|∇x�|2 + δ��−2|∇x�|2

]
dx = 0.

(3.22)

As we shall see in Part III, similar relation can be deduced for suitable numerical
schemes, where the ε-dependent terms represent numerical viscosity.

The energy balance (3.22) gives rise to uniform bounds called stability estimates
in the numerical context. For the isentropic pressure p(�) = a�γ , we obtain

sup
t∈[0,T ]

∥∥�|u|2(t, ·)∥∥L1(Td )
+ sup

t∈[0,T ]
‖�(t, ·)‖Lγ (Td ) ≤ c(data), (3.23)

where c(data) denotes a generic positive constant depending only on the initial data.
In addition, we also have

T∫

0

∫

Td

S(∇xu) : ∇xu dx dt ≤ c(data),

which, together with (3.23) and the generalized version of Korn–Poincaré inequality,
yields cf. a continuous version of the Sobolev–Poincaré inequality, see [97, Theo-
rem 10.17].

‖u‖L2(0,T ;W 1,2(Td ;Rd )) ≤ c(data). (3.24)

There are, of course, other estimates that depend on the approximation parameters ε

and δ.
The bounds (3.23), (3.24) control the quantities �, �u, �u ⊗ u appearing in the

weak formulation of theNavier–Stokes system in a reflexive spaceLq for some q > 1.
Indeed, on one hand, in view of (3.23),

�u ⊗ u is bounded in L∞(0,T ;L1(Td ;Rd×d )). (3.25)
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On the other hand, in view of the embedding relation W 1,2(Td ) ↪→ Lq(Td ), where
q = 6 if d = 3, q < ∞ arbitrary of d = 2, we have

�u ⊗ u is bounded in L1(0,T ;Lr(Td ;Rd×d )) for some r > 1 (3.26)

as long as

γ >
d

2
. (3.27)

Interpolating (3.25), (3.26) we get the desired result.
Note that similar estimates for the pressure cannot be deduced from the energy

estimates. Before we discuss this issue, however, we make a small detour and inspect
shortly an interesting model in fluid mechanics proposed by H. Brenner.

3.2.2 Brenner’s Two-Velocity Fluid Mechanics

There is a striking similarity between the approximation scheme (3.19), (3.20) and
the two velocity hydrodynamics advocated by H. Brenner. Motivated by certain
experiments, Brenner argues that there are two velocities to be considered in fluid
dynamics: the mass velocity um derived from the classical notion of mass transport,
and the volume velocity u associated to the motion of individual fluid particles
(molecules). The relevant field equations now read

∂t� + divx(�um) = 0, (3.28)

∂t(�u) + divx (�u ⊗ um) + ∇xp(�) = divxS(∇xu), (3.29)

with

S(∇xu) = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI. (3.30)

Brenner also suggests a phenomenological relation between the two velocities,

u − um = K∇x log(�). (3.31)

Setting K = ε, the Eq. (3.28) coincides with (3.19), while (3.29) differs from (3.28)
by an additive term εdivx(�∇xu) that produces the extra dissipation in (3.22).
Although Brenner’s model has been subjected to substantial criticism concerning
its physical relevance, it is very close to certain numerical approximations discussed
later in this monograph.
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3.2.3 Pressure Estimates, Compactness

The uniform bounds that can be deduced from the approximate energy balance (3.22)
are not strong enough to render the pressure p(�) integrable in Lq, q > 1. There
are refined estimates to solve this problem, however, they are applicable only after
having performed the limit n → ∞ in the Galerkin approximation of the momentum
Eq. (3.20). Although such a step is relatively easy to carry over in a purely theoretical
existence proof, its adaptation in the context of numerical schemes is quite delicate.
In numerics, we are not allowed to perform successively the limits n → ∞, ε → 0,
and δ → 0 but must invent a way to carry over this process simultaneously. This may
lead to technical difficulties in the analysis and unnecessary extra terms introduced
in the scheme to prevent (hypothetical) oscillations. We discuss this matter later in
this book.

In what follows, we tacitly assume having performed the limit n → ∞ in (3.20)
so that this identity holds for any sufficiently smooth test functions w. Accordingly,
we may rewrite (3.20) as

⎡

⎣
∫

Td

�u · ϕ dx

⎤

⎦

t=τ

t=0

=
τ∫

0

∫

Td

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ + p(�)divxϕ + δ��divxϕ

]
dx dt

−
τ∫

0

∫

Td

[
S(∇xu) : ∇xϕ − ε(�u) · 
xϕ

]
dx dt

(3.32)

for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0,T ];C2(Td ;Rd )). This is nothing other than a
weak formulation of the momentum equation (3.2) modulo the extra ε, δ-dependent
terms.

Very roughly indeed, we can say the pressure estimate are obtained by “comput-
ing” the pressure from (3.32). To this end, we use the quantities

ϕ ≡ ∇x

−1
x

⎡

⎣� − 1

|Td |
∫

Td

� dx

⎤

⎦ ,

where 
−1
x denotes the inverse of the Laplace operator 
x on the space of periodic

functions with zero mean, as test functions in (3.32). First note that
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∫

Td

(
p(�) + δ��

)
divx

⎛

⎝∇x

−1
x

⎡

⎣� − 1

|Td |
∫

Td

� dx

⎤

⎦

⎞

⎠ dx

=
∫

Td

(
p(�)� + δ��+1

)
dx − 1

|Td |

⎛

⎝
∫

Td

� dx

⎞

⎠

⎛

⎝
∫

Td

p(�) dx + δ

∫

Td

�� dx

⎞

⎠ ,

where the second integral on the right-hand side is bounded in terms of the data.
The remaining terms can be handled as follows:

∫

Td

�u · ∂t∇x

−1
x

⎡

⎣� − 1

|Td |
∫

Td

� dx

⎤

⎦ dx =
∫

Td

�u · ∇x

−1
x [∂t�] dx

= −
∫

Td

�u · ∇x

−1
x divx(�u) dx+ε

∫

Td

�u · ∇x� dx,

∫

Td

�u ⊗ u : ∇2
x


−1
x

⎡

⎣� − 1

|Td |
∫

Td

� dx

⎤

⎦ dx =
∫

Td

�u ⊗ u : ∇x

−1
x ∇x[�] dx,

∫

Td

S(∇xu) : ∇2
x


−1
x

⎡

⎣� − 1

|Td |
∫

Td

� dx

⎤

⎦ dx =
∫

Td

S(∇xu) : ∇x

−1
x ∇x[�] dx

=
(
2μ

d − 1

d
+ λ

)∫

Td

�divxu dx,

and

ε

∫

Td

�u · 
x∇x

−1
x

⎡

⎣� − 1

|Td |
∫

Td

� dx

⎤

⎦ dx = ε

∫

Td

�u · ∇x� dx.

Here we have used the fact that the operator ∇x commutes with 
−1
x thanks to the

periodic boundary conditions.
Regrouping several terms in (3.32) we get a remarkable identity
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τ∫

0

∫

Td

�

[
p(�) −

(
2μ

d − 1

d
+ λ

)
divxu

]
dx dt

=
τ∫

0

∫

Td

u ·
(
�u · ∇x


−1
x ∇x[�] − �∇x


−1
x divx[�u]

)
dx dt

+ 1

|Td |

⎛

⎝
∫

Td

� dx

⎞

⎠
τ∫

0

⎛

⎝
∫

Td

p(�) dx + δ

∫

Td

�� dx

⎞

⎠ dt

+
⎡

⎣
∫

Td

�u · 
−1
x [∇x�] dx

⎤

⎦

t=τ

t=0

(3.33)

for any 0 ≤ τ ≤ T . The quantity

p(�) −
(
2μ

d − 1

d
+ λ

)
divxu

is called effective viscous flux and enjoys certain sequential compactness with respect
to weakly converging families {�n,un}∞n=1. The first integral on the right-hand side
contains the bilinear form

�→ w · ∇x

−1
x ∇x · v − v · ∇x


−1
x ∇x · w

= (
w − ∇x


−1
x ∇x · w) · ∇x


−1
x ∇x · v − (

v − ∇x

−1
x ∇x · v) · ∇x


−1
x ∇x · w,

where
divx

(
w − ∇x


−1
x ∇x · w) = divx

(
v − ∇x


−1
x ∇x · v) = 0

curl∇x

−1
x ∇x · v = curl∇x


−1
x ∇x · w = 0.

Thus, in view of the celebrated Div–Curl Lemma, this quantity is weakly compact
Lp × Lq(Td ), 1

p + 1
q < 1. The above observations play a crucial role in the theory

of weak solutions to the compressible Navier–Stokes system. We refer the reader
to the monographs [80, 88], Lions [154], or Novotný and Straškraba [175] for a
self-contained exposition on the existence of weak solutions and related problems.
Here, we content ourselves by claiming that:

• Relation (3.33), together with the already available energy bounds (3.23)–(3.26),
give rise to the desired pressure estimate

T∫

0

∫

Td

�p(�) dx dt ≈
T∫

0

∫

Td

�γ+1 dx dt ≈
T∫

0

∫

Td

p(�)
γ+1
γ dx dt ≤ cD

as long as � > 3.
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• It is possible to perform the limit ε → 0 in a family of approximate solutions to
obtain a weak solution of the Navier–Stokes system with the extra pressure term
δ�� .

As already pointed out, the second step in the delineated process is highly non-
trivial and forms the heart of the mathematical theory proposed by Lions [154].

3.2.4 Global-in-Time Existence

The final step of the existence proof consists in removing the artificial pressure δ�� .
This is rather delicate for the following reason. The desired pointwise convergence of
the sequence of approximate densities {�δ}δ>0 is intimately related to the satisfaction
of the renormalized equation of continuity

∂tb(�) + divx(b(�)u) +
(
b′(�)� − b(�)

)
divxu = 0 (3.34)

for both {�δ}δ>0 and its weak limit �. In view of the bound (3.24) on the velocity
gradient in L2, the DiPerna–Lions theory [68] requires �δ to be bounded at least in the
Lebesgue space L2((0,T ) × T

d ) uniformly for δ → 0. Unfortunately, such a bound
is not available for the pressure-density EOS with γ > d

2 . The way to circumvent
this difficulty is careful analysis of density oscillations performed in [80, Chapters
6,7].

Leaving the interested reader to consult some of themonographs [80, 88] or [174],
we state the main result concerning the existence of global-in-time weak solutions
for the Navier–Stokes system.

Definition 3.1 (WEAK SOLUTION) Let � ⊂ Rd , d = 2, 3 be a bounded Lipschitz
domain. We say that [�,u] is weak solution of the Navier–Stokes system (3.14)–
(3.16) in (0,T ) × �, with the no-slip boundary condition (3.17), if the following is
satisfied:

• (weak continuity, weak differentiability)

� ∈ Cweak([0,T ];Lγ (�)), � ≥ 0,

(�u) ∈ Cweak([0,T ];L 2γ
γ+1 (�;Rd )), u ∈ L2(0,T ;W 1,2

0 (�;Rd ));

• (equation of continuity) the integral identity

⎡

⎣
∫

�

�ϕ dx

⎤

⎦

t=τ

t=0

=
τ∫

0

∫

�

[
�∂tϕ + �u · ∇xϕ

]
dx dt (3.35)

holds for any 0 ≤ τ ≤ T , and any test functions ϕ ∈ C1([0,T ] × �);



70 3 Viscous Fluids: Navier–Stokes–(Fourier) System

• (renormalized equation of continuity) the integral identity

⎡

⎣
∫

�

b(�)ϕ dx

⎤

⎦

t=τ

t=0

=
τ∫

0

∫

�

[
b(�)∂tϕ + b(�)u · ∇xϕ +

(
b(�) − b′(�)�

)
divxu

]
dx dt

(3.36)

holds for any
b ∈ C1[0,∞), b′ ∈ C∞

c [0,∞),

any 0 ≤ τ ≤ T , and any test functions ϕ ∈ C1([0,T ] × �);
• (momentum equation) the integral identity

⎡

⎣
∫

�

�u · ϕ dx

⎤

⎦

t=τ

t=0

=
τ∫

0

∫

�

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ + p(�)divxϕ − S(∇xu) : ∇xϕ

]
dx dt

(3.37)
holds for any 0 ≤ τ ≤ T , and any test functions ϕ ∈ C1

c ([0,T ] × �;Rd );
• (energy inequality) the inequality

⎡

⎣
∫

�

[
1

2
�|u|2 + P(�)

]
(t, ·) dx

⎤

⎦

t=τ

t=0

+
τ∫

0

∫

�

S(∇xu) : ∇xu dx dt ≤ 0 (3.38)

for a.a. 0 ≤ τ ≤ T .

Remark 3.2 The definition can be easily modified to the space periodic bound-
ary conditions replacing simply � by T

d everywhere, and C1
c ([0,T ] × �;Rd ) by

C1([0,T ] × T
d ;Rd ) in (3.37).

Theorem 3.3 (Global-in-time weak solution) Let � ⊂ Rd , d = 2, 3 be a bounded
Lipschitz domain. Suppose that the pressure p belongs to the class

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, a1�
γ−1 − a2 ≤ p′(�) ≤ a3�

γ−1 + a4, a1 > 0,
(3.39)

where

γ >
d

2
. (3.40)
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Let the initial data �(0, ·) = �0, �u(0, ·) = m0 be given such that

�0 ≥ 0, E0 =
∫

�

[
1

2

|m0|2
�0

+ P(�0)

]
dx < ∞.

Then the Navier–Stokes system (3.14)–(3.16), with the no-slip boundary condi-
tions (3.17) admit a weak solution [�,u] in (0,T ) × � for any T > 0 in the sense
of Definition 3.1.

Remark 3.3 (Periodic boundary conditions) The same result can be shown for the
periodic boundary conditions, meaning � = T

d as well as other types of domains.
Regularity of the boundary can be relaxed as well. The reader may consult Sect. 3.4
for other related results.

Remark 3.4 (Navier–Stokes–Fourier system) The existence theory can be extended
to the full Navier–Stokes–Fourier system (3.11)–(3.13). The technical difficulties
arise, however, at the level of a priori bounds. As a result, rather severe but still
physically relevant restrictions must be imposed on the constitutive relations. The
interested reader may consult the monographs [80], and [97].

As a matter of fact Theorem 3.3 was proved in [80, Theorem 7.1] under additional
regularity of the domain �. General (even non-Lipschitz) domains were treated by
Kukučka [146].

3.3 Strong Solutions, Conditional Regularity,
Navier-Stokes System

The local existence result stated in Theorem 3.1 extends in a straightforward manner
to the barotropic problem (3.14), (3.15). Our goal is to discuss suitable conditional
regularity criteria under which the solution remains smooth on a given time interval.

3.3.1 Local Strong Solutions

Probably optimal, with respect to regularity of the data, is the following result of
Cho et al. [52, Proposition 5].

Theorem 3.4 (Local strong solution) Let � ⊂ R3 be a bounded domain of class
C2+ν , let p ∈ C1[0,∞). Suppose the initial data �0, u0 belong to the class

�0 ∈ W 1,q(�) for some q > 3, � ≥ � > 0 in �, u0 ∈ W 1,2
0 (�;R3) ∩ W 2,2(�;R3).
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Then there exists T > 0 such that the Navier–Stokes system (3.14)–(3.16), with
the no-slip condition (3.17) admits a strong solution [�,u], unique in the class

� ∈ C([0,T );W 1,r(�)), r = min{6, q},
u ∈ C([0,T );W 1,2

0 ∩ W 2,2(�;R3)) ∩ L2loc([0,T );W 2,r(�;R3)),

∂t� ∈ C([0,T );Lr(�)), ∂tu ∈ L2loc([0,T );W 1,2(�;R3)).

Remark 3.5 If the initial data enjoy higher regularity and satisfy the relevant compat-
ibility conditions as in Theorem 3.1, then the solution belongs to the same regularity
class as in Theorem 3.1.

3.3.2 Conditional Regularity

Possible blow up of the local smooth solutions cannot occur provided considerable
weaker norms are controlled. This is the heart of the conditional regularity results.
Here, we quote a simple criterion established by Sun et al. [186, Theorem 1.3] that
comes in handy in the subsequent numerical analysis.

Theorem 3.5 (Conditional regularity) In addition to the hypotheses of Theo-
rem 3.4, suppose that p = a�γ , a > 0, γ > 1, and that the bulk viscosity λ vanishes,
λ = 0. Let T > 0 be the maximal time interval on which the strong solution [�,u],
the existence of which is guaranteed by Theorem 3.4, exists.

Then

lim sup
t→T+

(
sup
�

�(t, ·)
)

= ∞. (3.41)

Remark 3.6 The technical condition λ = 0 is not necessary, if (3.41) is replaced by

lim sup
t→T+

[(
sup
�

�(t, ·)
)

+ ‖u(t, ·)‖L∞(�;R3)

]
= ∞ (3.42)

see Sun et al. [187, Remark 6].

Theorem 3.5 is a remarkable result and in combination with the weak-strong
uniqueness principle establish for generalized solutions to the Navier–Stokes system
gives rise to rather strong convergence statement. Namely any bounded sequence of
consistent numerical approximations converges strongly to a smooth solution of the
continuous system. We shall discuss this and similar issues later in Part II.
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3.4 Conclusion, Bibliographical Remarks

The motion of linearly viscous (Newtonian) compressible fluids in the framework of
continuummechanics is described by the Navier–Stokes–Fourier system (3.1)–(3.3)
or by the simplified Navier–Stokes system (3.14)–(3.16). The regularizing effect
of viscosity guarantees the existence of global-in-time smooth solutions provided
the initial data are smooth and sufficiently close to equilibrium. Still global exis-
tence of smooth solutions for arbitrary smooth initial data remains an outstanding
open problem in the multidimensional case. The monodimensional case is quite
well understood, see e.g. the monograph by Antontsev et al. [6] and the references
cited therein. The existence of global-in-time smooth solutions under the additional
assumption that the viscosity coefficientsμ and λ depend on � in a very specific way
was established by Vaigant and Kazhikhov [195] in the two-dimensional physical
domain.

There is a well developed theory of weak solutions described in Sect. 3.2. The
technical assumption γ > d

2 has been relaxed to the case γ ≥ 1, d = 2, by Plotnikov
and Vaigant [179]. For more recent development of the theory, we refer to Bresch and
Desjardins [30, 31] and Bresch and Jabin [32], among others. Despite its unquestion-
able theoretical impact, the theory of weak solutions is difficult to implement in the
numerical analysis which is the main objective of the present monograph. The main
stumbling block we have observed in Sect. 3.2 is a different character of the transport
part of the underlying equations, which is the same as for the hyperbolic Euler sys-
tem, and the viscous stress rending the momentum equation parabolic. The energy
estimates studied in Sect. 3.2.1 are compatible with the standard finite element dis-
cretization while the pressure estimates examined in Sect. 3.2.3 require rather a finite
volume approach. Carrying over the compactness proof in the discrete setting faces
many technical difficulties as well. As a result, we need a mixed finite volume—
finite element numerical scheme to handle the above mentioned difficulties. Such
a scheme was proposed and analyzed by Karper [139, 140] (cf. also Gallouet et
al. [111]), where convergence to a weak solution of the isentropic Navier–Stokes
system was established under a technical assumption γ > 3. Similar approach has
been adapted to the Navier–Stokes–Fourier system in a series of papers [86, 87]. To
mimic the principal steps of the existence theory, the numerical scheme has to be
modified by a number of artificial viscosity terms that may slow down convergence
and provide an incorrect picture of the limit solution.

In the numerical part of this monograph, we frequently anticipate that models of
viscous fluids are likely to possess regular solutions, at least for a “generic” class
of data. We first identify all possible limits of a numerical scheme with a general
object—dissipative solution. This concept goes beyond the standard class of weak
solutions but shares with them a fundamental property: the weak-strong uniqueness
principle. In particular, convergence to a dissipative solution turns out to be equivalent
with (pointwise) convergence to a strong solution as long as the latter exists. If this
is the case, qualitative error estimates can be also derived.



Part II
Generalized Solutions to Equations

and Systems Describing Compressible
Fluids

We develop a unifying framework of generalized solutions applicable to models of
both inviscid (perfect) and viscous fluids. Our primer motivation is to capture all
possible limits arising from various numerical schemes. Being aware of the facts
revealed in Part I, we do not expect to obtain strong stability estimates—uniform
bounds in topologies strong enough to guarantee at least pointwise convergence
of numerical approximations. As we learned above, such bounds are definitely not
expected in the context of inviscid fluids modeled by the Euler system and difficult
to obtain for models of viscous fluids as the Navier–Stokes system. To facilitate
the analysis and capture the largest class of possible limits, we consider the weak
topology on the spaces L p of Lebesgue integrable functions.

As is well known, the weak topology can be perfectly adapted to linear problems
as soon as the derivatives are interpreted in the sense of distributions. This can be
rephrased in terms of the celebrated Lax equivalence principle: Stability (a priori
bounds) and consistency (smallness of the approximation error) for linear problems is
equivalent to convergence. Weak convergence in the L p-sense is essentially nothing
else than convergence in the sense of integral averages. Consequently, there are two
basic stumbling blocks when applying this approach to nonlinear problems:
• Oscillations.

Bounded sequences of functions may get practically out of control developing
rapid oscillations varying in space and time. Consider an a-periodic continuous
function g : R → R,

g(x + a) = g(x) for all x ∈ R,
∫ a
0 g(x)dx = 0,and a sequence

gn(x) = g(nx), n = 1, 2, . . .
Our goal is to describe the limit limn→∞gn . Apparently, the sequence g(nx) does

not converge pointwise, not even a.a. pointwise and not even for a subsequence. To
capture its asymptotic behavior, we have to consider its averaged values,∫

R gn(x)ϕ(x) dx, where ϕ ∈ C∞
c (R).

Introducing the primitive function G,
G(x) = ∫ x

0 g(z) dz
we easily observe thatG is also continuous and periodic. Consequently, by means

of the by-parts-integration formula,
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∫
R gn(x)ϕ(x) dx = ∫

R g(nx)ϕ(x) dx = − 1
n

∫
R G(nx)∂xϕ(x) dx → 0

as n → ∞ for any smooth function ϕ. We say that the sequence {gn}∞n=1converges
weakly to 0, gn ⇀ 0. As a straightforward consequence, we deduce that a sequence

hn(x) = h(nx), where h is a − periodic,
converges weakly to the integral average

∫ a
0 h(x) dx, hn ⇀

∫ a
0 h(x) dx .

Thus, the weak convergence does not, in general, commute with nonlinear
compositions, specifically

gn ⇀ g does not imply H(gn) ⇀ H(g) if H is not linear.
Convex compositions are weakly lower semicontinuous,
gn ⇀ g implies

∫
R H(g)ϕ dx ≤ lim inf

n→∞
∫
R H(gn)ϕ dx for any ϕ ≥ 0

whenever H is convex. This can be easily seen from the subdifferential inequality
H(gn) ≥ H(g) + ∂H(g)(gn − g),
or, if the function is twice continuously differentiable, from he Taylor decompo-

sition
H(gn) = H(g) + H ’(g)(gn − g) + 1

2H”(ξ)(gn − g)2.
The above formula reveals the difference between the weak limit of H(gn) and

H(g) due to the quadratic term. Indeed one can deduce that gn converges strongly
to g only if there exists a strictly convex function H such that H(gn) ⇀ H(g).
Another, more rigorous explanation follows from the fact the convex functions are
characterized by suprema of their affine minorants:

H(z) = sup{h(z) | h affine h(z) ≤ H(z) for any z}.
Consequently
H(gn) ≥ h(gn) ⇀ h(g) for any affine h ≤ H.

Convexity of certain thermodynamic functions, among which the total energy,
will play a significant role in the analysis of convergence of numerical schemes.
• Concentrations.

Consider a sequence
gn(x) = ng(nx), where g ∈ C∞

c (−1, 1), g(−x) = g(x), g ≥
0,

∫
R g(x) dx = 1.

It is easy to check that
gn(x) → 0 as n → ∞ for any x �= 0, in particular gn →

0 a.a. in R;
‖gn‖L1(R) = ∫

R
gn(x) dx = ∫

R
g(x) dx = 1 for any n = 1, 2, . . . .

Next, we observe that gndoes not converge weakly to 0. Indeed
∫
R
gn(x)ϕ(x) dx

=
1/n∫

−1/n
gn(x)ϕ(x) dx ∈

[

min
x∈[−1/n,1/n]

ϕ(x), max
x∈[−1/n,1/n]

ϕ(x)

]

→ ϕ(0)

as soon as ϕ is continuous. As a matter of fact, the limit object cannot be identified
with an integral average of a function, it is ameasure—theDiracmass δ0 concentrated
at 0.

We conclude this introduction by an example ofK–convergence of an oscillatory
sequence. Going back to the first example, we consider an oscillatory sequence

gn(x) = cos(nx), n = 1, 2, . . .
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Next, we introduce the Cesàro averages

g̃N (x) = 1
N

N∑

n=1
gn(x) = 1

N

N∑

n=1
cos(nx) = 1

N

(
1
2
sin((N+ 1

2 )x)
sin( x

2 )
− 1

2

)
,

where the right-hand side tends to 0 as N → ∞ for any x �= 2kπ , k
an integer. Consequently, the Cesàro averages converge to the weak limit of
{gn}∞n=1pointwise a.a. in R. In particular, as g̃N are uniformly bounded, Lebesgue
dominance convergence theorem yields

g̃N → 0 in L p
loc(R) as N → ∞, 1 ≤ p < ∞.

This is a standard example of the statistical Strong Law of Large Numbers. Aver-
aging may convert weakly converging sequences to strongly converging, which may
be used to visualize effectively theweak limits in numerical experiments.We examine
the properties of Cesàro averages of weakly convergent sequences in detail in Part
III.

This part of the monograph is devoted to generalized solutions to the Euler and
Navier–Stokes systems introduced in Part I. We go even beyond the framework of
standard weak (distributional) solutions that are suitable for linear problems but
do not capture the complex behavior of nonlinear terms under weak convergence.
Our approach is highly inspired by the work of DiPerna [65], and DiPerna, Majda
[69], [70], [66] on the measure-valued solutions to the Euler system. Our goal is
to identify a class of generalized solutions large enough to accommodate limits of
suitable numerical schemes but still complying with the following condiciones sine
quibus non:
• (E) Existence. Generalized solutions exist globally in time for any physically
admissible data. In the context of Euler/Navier Stokes system, physically admis-
sible means the density ρ0 should be nonnegative, the absolute temperature ϑ0

strictly positive, the total energy finite, etc.
• (C) Compatibility. Generalized solutions possessing all necessary derivatives
required by the corresponding system of equations are classical solutions—they
satisfy the problem in the classical sense.

• (WS)Weak–stronguniqueness.Ageneralized solution coincideswith the classical
solution originating from the same initial data on the life span of the latter.

• (S) Sequential stability. The class of generalized solutions is closed with respect to
the (weak) topology imposed by the available a priori bounds. Limits of sequences
of generalized solutions are generalized solutions of the same problem.
Note carefully the subtle difference between “compatibility” and “weak–strong

uniqueness” principles. Compatibility asserts that generalized solutions, similarly to
distributional solutions to linear problems, represent a true extension of the concept
of classical solution to the case when differentiability is not available. Weak–strong
uniqueness means stability of strong solutions in the class of generalized solutions.
All generalized solutions coincide with the classical one as long as the latter exists.
The above-mentioned properties are absolutely crucial to carry out our program
concerning numerical treatment of potentially ill-posed problems as theEuler system.



Chapter 4
Classical and Weak Solutions,
Relative Energy

The concept of weak (distributional) solution for general systems of conserva-
tion/balance laws was introduced in Sect. 1.1.1 and discussed in Chaps. 2, 3. Here,
we revisit the topic in detail for the Euler and Navier–Stokes systems. In the former
case, we show the class is possibly not closed with respect to the available weak
topologies induced by a priori bounds; whence extension of this concept to a larger
class of objects is of interest. A similar problem for the Navier–Stokes system ismore
subtle. Although, as we have seen in Chap. 3, the set of weak solutions is closed for
certain models, the necessary estimates may not be easily available at the level of a
numerical scheme. This is the main reason why to extend the class of weak solutions
to some models of viscous fluids as well.

Given a time interval (0,T ) and a spatial domain � ⊂ Rd , we say that a solution
is classical if it is continuous in the closed set [0,T ] × �, and if all relevant partial
derivatives exist and are continuous in the open set (0,T ) × �. If the boundary
conditions involve derivatives, then those must be continuously extendable from
(0,T ) × � to (0,T ) × �. Thus this issue is inseparable from thegeometric properties
and, in particular, the smoothness of the boundary ∂�. In particular, if the boundary
conditions involve the outer normal vector, then the latter must exist at any point
of ∂�. The equations as well as the boundary and initial conditions are satisfied
pointwise.

In the literature, the notion of smooth solution and/or smooth domain is frequently
used. Very often, “smooth” in this context does not mean of classC∞ or even analytic
but should be interpreted as “sufficiently smooth” or “as smooth as necessary”. We
try to avoid this a bit dubious and misleading terminology. The term strong solution
will be used in the situation when all required derivatives, expressed in terms of the
theory of distributions, can be interpreted as (locally) integrable functions.

In this chapter, we focus on the relation between weak and strong solutions. In
particular, we introduce the concept of relative energy functional. This quantity is
derived from the total energy E of the system, and, if the latter is a convex function
of the state variables, represents a Bregman distance with respect to the (convex)
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total energy E, see e.g. Sprung [185]. In particular, the relative energy can be used to
measure the distance between a weak and strong solution starting from different (or
identical) initial data. The relative energy vanishes if the data are the same for both
solutions which is the desired weak-strong (WS) property. The relative energy may
be seen as an alternative to the relative entropy functional introduced in the context
of nonlinear conservation laws by Dafermos [59]. The approach based on the relative
entropy requires integrability of the (total) energy flux. Therefore the method based
on relative energy rather than entropy works efficiently in the context of weak and
even more general dissipative solutions for the Euler and Navier–Stokes system, for
which the available a priori bounds are not strong enough to render the total energy
flux integrable.

Convexity of the total energy with respect to a suitable set of state variables plays
a crucial role here that is intimately related to the property of thermodynamic stability
of the fluid system. The interpretation of the notion of thermodynamic stability can be
twofold: (1) certainmaterial constants as compressibility and specific heat at constant
volume are nonnegative, (2) equilibrium states are (linearly) stable, cf. Bechtel etal.
[14].We provide a unified approach identifying the relative energy with the Bregman
distance associated to total energy.

4.1 Weak and Strong Solutions to the Euler System

The Euler system has been introduced in Chap. 2. As we have seen, there are several
possible choices of basic field variables and, accordingly, the formulation of the field
equations:

• Standard (orprimitive) variables. Themass density�, the (absolute) temperature
ϑ , the velocity u.

• Conservative variables. The mass density �, the (total) energy E, the momentum
m.

• Conservative-entropy variables. The mass density �, the (total) entropy S, the
momentum m.

Of course, there are other (infinitely many) possibilities how to choose the set of
independent field variables.

Recall that

m = �u, E = 1

2

|m|2
�

+ �e, S = �s,

where the internal energy e, the pressure p, and the entropy s satisfy Gibbs equation

ϑDs = De + pD

(
1

�

)
. (4.1)
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In (4.1), the symbol D denotes a differential (gradient) with respect to either [�, ϑ],
[�, S] or any other choice of the independent parameters.

The field equations written in the standard variables read:

∂t� + divx(�u) = 0 in (0,T ) × �; (4.2)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�, ϑ) = 0 in (0,T ) × �; (4.3)

∂t

(
1

2
�|u|2 + �e(�, ϑ)

)
+ divx

[(
1

2
�|u|2 + �e(�, ϑ) + p(�, ϑ)

)
u
]

= 0 in (0, T ) × �.

(4.4)
Furthermore we consider the impermeability boundary conditions

u · n|∂� = 0, (4.5)

or, alternatively, the periodic boundary conditions � = T
d .

In some real world applications, for instance inmeteorology, it is more convenient
to express the pressure p = p(�, s) as a function of the density and the entropy and
to rewrite the Euler system in the form

∂t� + divx(�u) = 0 in (0,T ) × �; (4.6)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�, s) = 0 in (0,T ) × �; (4.7)

∂ts + ∇xs · u = 0 in (0,T ) × �. (4.8)

The entropy s satisfies the transport equation (4.8) and it is easy to see that

∂tZ(s) + ∇xZ(s) · u = 0 in (0,T ) × � (4.9)

as soon Z is a continuously differentiable function. In particular, if Z ′ > 0, we may
replace s by Z and write p = p(�,Z) obtaining a new problem in terms of [�,u,Z].
The limit case Z → const gives rise to the isentropic (barotropic) Euler system with
p = p(�),

∂t� + divx(�u) = 0 in (0,T ) × �; (4.10)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�) = 0 in (0,T ) × �. (4.11)

Although the systems (4.2)–(4.4) and (4.6)–(4.9) are completely equivalent in the
framework of classical solutions, for which � > 0, ϑ > 0, they give rise to quali-
tatively different weak formulations of the Euler system. We will discuss this issue
later in this chapter.
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4.1.1 Classical Solutions to the Euler System

In this section, we suppose that � ⊂ Rd is a bounded domain with a boundary of
class C1. In particular, the outer normal vector exists at any point x ∈ ∂�.

Definition 4.1 (CLASSICAL SOLUTION TO THE EULER SYSTEM) We say that
a trio [�, ϑ,u] is a classical solution of the Euler system (4.2)–(4.4), with the imper-
meability boundary condition (4.5), if

� ∈ C([0,T ] × �) ∩ C1((0,T ) × �) ∩ W 1,∞((0,T ) × �),

ϑ ∈ C([0,T ] × �) ∩ C1((0,T ) × �) ∩ W 1,∞((0,T ) × �),

u ∈ C([0,T ] × �;Rd ) ∩ C1((0,T ) × �;Rd ) ∩ W 1,∞((0,T ) × �;Rd );

0 < � ≤ �(t, x), 0 < ϑ ≤ ϑ(t, x) for any t ∈ [0,T ], x ∈ �,

u(t, x) · n(x) = 0 for any t ∈ [0,T ], x ∈ ∂�;

and the equations (4.2)–(4.4) hold.

Remark 4.1 Here we have tacitly assumed that both p = p(�, ϑ) and e = e(�, ϑ)

are continuously differentiable for � and ϑ bounded below away from zero.

Remark 4.2 (Strong solutions) We speak about strong solutions if [�, ϑ,u] are
required to be only (globally) Lipschitz continuous.

Remark 4.3 (Periodic boundary conditions, Lipschitz domain) The above definition
can bemodified in an obvious way to accommodate the periodic boundary conditions
� = T

d , where, of course the issue of boundary regularity is irrelevant. We recall
that Td can be viewed as a smooth manifold over Rd without boundary.

The requirement of the existence of the outer normal vector at any boundary point
of � is rather restrictive. Recall that Lipschitz domains admit an normal vector for
a.a. boundary point x ∈ �, where the latter is endowed with the standard (d − 1)-
Hausdorff measure. The above definition extends to this case in a direct manner. The
impermeability or zero normal trace condition (4.5) can be also reformulated in a
weak form

∫
�

u(t, ·) · ∇xφ dx +
∫
�

φdivxu(t, ·) dx = 0 for any φ ∈ C1
c (R

d ), t ∈ [0,T ].

(4.12)

Obviously, any classical solution of the Euler system written in the form (4.2)–
(4.4) is also a classical solution of the entropy formulation (4.6)–(4.8) as long as the
thermodynamic functions are interrelated through Gibbs’ equation (4.1).

As we observed in Sect. 2.1.2, classical solutions develop shock singularities in
a finite time for a fairly general class of initial data. They obviously violate the
existence condition (E) postulated in the introductory section of this part. Their
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application in the numerical analysis is therefore limited to the regime, where their
life span exceeds the time desired for prediction. A relevant example is the Euler
system in the low Mach number regime, considered often in meteorology, where
the fluid velocity is largely dominated by the speed of sound and the occurrence of
shocks is not expected. Still we are very far from a rigorous proof of such a statement,
in particular in the physically relevant 3D-case.

4.1.2 Weak (Distributional) Solutions to the Barotropic
Euler System

We revisit our discussion concerning weak (distributional) solutions starting with the
barotropic Euler system (4.10), (4.11), where the theory is quite simple, elegant, and
self-contained. Formally, the definition is obtained viamultiplying the field equations
(4.10), (4.11) on a suitable test function and declaring the resulting identity to be a
proper definition of the weak solution. Following these lines, we obtain, exactly as
in Sect. 2.1.3,

⎡
⎣∫

�

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�∂tϕ + �u · ∇xϕ

]
dx dt (4.13)

for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0,T ] × �);

⎡
⎣∫

�

�u · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ + p(�)divxϕ

]
dx dt

(4.14)
for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0,T ] × �;Rd ), ϕ · n|∂� = 0.

Given the recent state of the art discussed in Chap. 2, such a definition complies
with the existence principle (E) as well as with the compatibility principle (C).
Specifically, the weak solutions satisfying “only” (4.13), (4.14) exist globally in
time for any (continuous) initial data, cf. [1]. However, the problem is desperately
ill-posed even in the class of smooth initial data (the reader may consult the literature
collected in Sect. 2.4). In particular, the weak-strong uniqueness principle (WS) is
violated unless suitable admissibility conditions are imposed. To identify the class
of suitable admissible solutions, we append (4.13), (4.14) by the energy inequality

⎡
⎣∫

�

(
1

2
�|u|2 + P(�)

)
dx

⎤
⎦

t=τ

t=0

≤ 0 (4.15)
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for any 0 ≤ τ ≤ T , where P is the pressure potential satisfying

P′(�)� − P(�) = p(�).

It is easy to check the P is uniquely determined by p modulo a linear function of �.
On the other hand, as the boundary is impermeable, the total mass

M =
∫
�

�(t, x) dx

is a constant of motion; whence (4.15) remains unchanged for any affine perturbation
of P.

Boundedness of the total energy/mass in terms of the initial data is basically
the only available source of a priori (stability) estimates for the Euler system. The
weak point of the formulation (4.13)–(4.15) in terms of the standard variables is that
the velocity u is not controlled by the energy on the (hypothetical) vacuum region
where � = 0. It is therefore more convenient to consider the conservative variables
[�,m = �u] which give rise to the concept of weak solution for the barotropic Euler
system introduced in Definition 2.5 that we now reproduce for convenience:

Definition 4.2 (WEAK SOLUTION OF BAROTROPIC EULER SYSTEM) A pair
[�,m] is an admissible weak solution of the barotropic Euler system (4.10), (4.11)
with the impermeability boundary condition (4.5) in (0,T ) × � if the following
holds:

• (weak continuity) the quantities �, m belong to the class

� ∈ Cweak([0,T ];Lγ (�)), � ≥ 0 a.a. in (0,T ) × �

m ∈ Cweak([0,T ];L 2γ
γ+1 (�;Rd ))

(4.16)

for some γ > 1;
• (equation of continuity) the integral identity

⎡
⎣∫

�

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�∂tϕ + m · ∇xϕ

]
dx dt (4.17)

holds for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1([0,T ] × �);
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• (momentum equation) the integral identity

⎡
⎣∫

�

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
m · ∂tϕ +

(
1�>0

m ⊗ m
�

)
: ∇xϕ + p(�)divxϕ

]
dx dt

(4.18)

holds for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1([0,T ] × �;Rd ),
ϕ · n|∂� = 0;

• (energy inequality) the integral inequality

⎡
⎣∫

�

(
1

2

|m|2
�

+ P(�)

)
ψ dx

⎤
⎦

t=τ

t=0

≤
τ∫

0

∫
�

(
1

2

|m|2
�

+ P(�)

)
∂tψ dx dt (4.19)

holds for any test function ψ ∈ C1[0,T ], ψ ≥ 0.

Remark 4.4 (Initial data) In the above, we have assumed

�(0, ·) = �0, m(0, ·) = m0,

where �0, m0 are the initial data, with the initial energy

∫
�

[
1

2

|m0|2
�0

+ P(�0)

]
dx < ∞.

Here, the kinetic energy 1
2

|m|2
�

is interpreted as a convex l.s.c. function via formula
(2.60).

Keeping in mind the canonical example of the isentropic pressure p(�) = a�γ ,
we suppose

p ∈ C1[0,∞) ∩ C2(0,∞), p(0) = 0, p′(�) > 0 for � > 0,

0 < lim inf
�→∞

p′(�)

�γ−1
≤ lim sup

�→∞
p′(�)

�γ−1
< ∞ (4.20)

for some γ > 1. Seeing that

P′′(�) = p′(�)

�
for � > 0
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we easily deduce that the pressure potential P is a strictly convex function of �, and

|p(�)| <∼
(
c + P(�)

)
for a suitable c > 0. (4.21)

This means that all nonlinearities appearing in the momentum equation (4.19) are
controlled in the L1 norm by the total energy. More precisely, we have the following
result.

Proposition 4.1 (Uniform stability estimates for barotropic Euler system) Let
� ⊂ Rd be a bounded domain. Let the pressure p = p(�) satisfy (4.20) with γ > 1.
Suppose that [�,m] is an admissible weak solution of the Euler system in the sense
of Definition 4.2, with the initial data [�0,m0] such that

∫
�

[
1

2

|m0|2
�0

+ P(�0)

]
dx = E0 < ∞. (4.22)

Then

sup
t∈[0,T ]

∥∥∥∥1�>0
m ⊗ m

�
(t, ·)

∥∥∥∥
L1(�;Rd×d )

≤ c(E0),

sup
t∈[0,T ]

‖�(t, ·)‖Lγ (�) ≤ c(E0), sup
t∈[0,T ]

‖p(�)(t, ·)‖L1(�) ≤ c(E0),

sup
t∈[0,T ]

‖m(t, ·)‖
L

2γ
γ+1 (�;Rd )

≤ c(E0).

(4.23)

Remark 4.5 Recall that the total energy is defined as a convex function of [�,m]
via (2.60). In particular, hypothesis (4.22) entails nonnegativity of the initial density
as well as a compatibility condition of the initial momentum on the vacuum zone,

�0 ≥ 0, and �0 = 0 ⇒ m0 = 0 a.a. in �.

Proof Taking ψ ≡ 1 in the energy inequality (4.19) we obtain

∫
�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx ≤ E0 for any τ ∈ [0,T ]. (4.24)

Note that the above inequality is indeed valid for any τ ∈ [0,T ] as the energy is
convex and both � and m are weakly continuous as functions of the time.

In view of the hypothesis (4.20), the bound (4.24) gives rise to all estimates
claimed in (4.23). Indeed to see the last bound in (4.23) write

m = 1�>0
m√
�

√
�;
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whence, by Hölder’s inequality,

‖m‖
L

2γ
γ+1 (�;Rd )

≤
∥∥∥∥1�>0

m√
�

∥∥∥∥
L2(�;Rd )

‖√�‖L2γ (�) ≤ c(E0).

As pointed out in Remark 4.5, boundedness of the kinetic energy given by (2.60)
implies that m = 0 a.a. on the vacuum set {� = 0}. �

Proposition 4.1 may be seen as the first step towards the stability property (S). The
set of allweak solutions emanating fromabounded set of initial data remains bounded
uniformly in time. This definitely implies stability in suitableLp-topologies, however,
oscillations and/or concentrations may still appear and the set of weak solutions in
the sense of Definition 4.2 is not likely to be closed (sequentially stable). We discuss
this issue in detail in the concluding part of this chapter.

4.1.3 Relative Energy for the Barotropic Euler System

Relative energy is a simple but extremely useful tool in the analysis of nonlinear
systems. It may be seen as a variant of the concept of Bregman distance (divergence)
known in convex analysis, where the underlying convex potential is the total energy.
Closely related is the concept of relative entropy frequently used in the analysis of
conservation laws. For technical reasons that become evident in the forthcoming
part of this chapter, relative energy seems better adapted to the rather poor stability
bounds available for the Euler system. The possibility to compute effectively the
time evolution of the relative energy on the sole basis of the weak formulation of
the Euler system is the key ingredient of the proof of weak-strong uniqueness (WS)
property. The relative energy for the barotropic Euler system is formally defined as

E
(
�,m

∣∣∣̃�, ũ
)

= 1

2

( |m|2
�

− 2m · ũ + �|̃u|2
)

+ P(�) − P′(̃�)(� − �̃) − P(̃�).

(4.25)
Here [�,m] represents an admissible weak solution of the barotropic Euler system,
while �̃, ũ play a role of “test” functions. The first expression is rather awkward and
should be interpreted as follows: As the energy of the weak solution [�,m] is finite,
we have

1

2

(
|m|2
�

− 2m · ũ + �|̃u|2
)

= 1

2
1�>0

(
|m|2
�

− 2m · ũ + �|̃u|2
)

= 1�>0
1

2
�|u − ũ|2,

(4.26)
where we have set u = m

�
on the set where � > 0. Thus if P is convex, meaning

p′ ≥ 0, and [�,m] represent an admissible weak solution, then E(�,m|̃�, ũ) ≥ 0 a.a.
in (0,T ) × �.
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Denoting

E(�,m) = 1

2

|m|2
�

+ P(�)

we can be interpret the relative energy as the Bregman distance

E
(
�,m

∣∣∣̃�, ũ
)

= B
ξ
E

(
�,m

∣∣∣̃�, m̃
)

= E(�,m) − ξ · (� − �̃,m − m̃) − E(̃�, m̃),

m̃ = �̃ũ, ξ ∈ ∂E(̃�, m̃),

associated to the convex potential E = E[�,m], see e.g. Sprung [185]. Bregman
distance is not symmetric, therefore not a proper metric. However, the following
holds:

E
(
�,m

∣∣∣̃�, ũ
)

≥ 0 and E
(
�,m

∣∣∣̃�, ũ
)

= 0 ⇔ � = �̃, m = �̃ũ.

Remark 4.6 Strictly speaking, the relative energy should be written entirely in con-
servative variables,

E
(
�,m

∣∣∣̃�, m̃
)

= 1

2

( |m|2
�

− 2m · m̃
�̃

+ �

�̃2
|m̃|2

)
+ P(�) − P′(̃�)(� − �̃) − P(̃�),

which is consistent with its interpretation as Bregman distance. Considering the test
functions in the standard variables, however, is more suitable in the applications,
notably in the proof of weak-strong uniqueness.

Our goal is to compute

⎡
⎣∫

�

E
(
�,m

∣∣∣̃�, ũ
)

dx

⎤
⎦
t=τ

t=0

=
⎡
⎣∫

�

[
1

2

|m|2
�

+ P(�)

]
dx

⎤
⎦
t=τ

t=0

−
⎡
⎣∫

�

m · ũ dx

⎤
⎦
t=τ

t=0

+
⎡
⎣∫

�

�

(
1

2
|̃u|2 − P′(̃�)

)
dx

⎤
⎦
t=τ

t=0

+
⎡
⎣∫

�

p(̃�) dx

⎤
⎦
t=τ

t=0

.

Remarkably, all integrals on the right-hand side can be evaluated by means of the
weak formulation as soon as ϕ = (

1
2 |̃u|2 − P′(̃�)

)
can be taken as a test function

in (4.17), and ϕ = ũ as a test function in (4.18). To this end, we impose an extra
hypothesis

ũ ∈ C1([0,T ] × �;Rd ), ũ · n|∂� = 0, �̃ ∈ C1([0,T ] × �), �̃ > 0 in [0,T ] × �.

(4.27)
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Accordingly, we have

⎡
⎣∫

�

[
1

2

|m|2
�

+ P(�)

]
dx

⎤
⎦

t=τ

t=0

≤ 0, (4.28)

⎡
⎣∫

�

m · ũ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
m · ∂t ũ +

(
1�>0

m ⊗ m
�

)
: ∇xũ + p(�)divxũ

]
dx dt,

(4.29)
and

⎡
⎣∫

�

�

(
1

2
|̃u|2 − P′(̃�)

)
dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�ũ · ∂t ũ + m · ũ · ∇xũ

]
dx dt

−
τ∫

0

∫
�

[
�P′′(̃�)∂t �̃ + P′′(̃�)m · ∇x�̃

]
dx dt

=
τ∫

0

∫
�

[
�ũ · ∂t ũ + 1�>0

m
�

· �ũ · ∇xũ
]

dx dt

−
τ∫

0

∫
�

[
�P′′(̃�)∂t �̃ + P′′(̃�)m · ∇x�̃

]
dx dt.

Regrouping several termsweobtain, after a straightforwardmanipulation, the relative
energy inequality for the barotropic Euler system,

[ ∫
�

E
(
�,m

∣∣∣̃�, ũ
)

dx
]t=τ

t=0
≤ −

τ∫
0

∫
�

1�>0�∇xũ ·
(
m
�

− ũ
)

·
(
m
�

− ũ
)

dx dt

−
τ∫

0

∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divxũ dx dt

+
τ∫

0

∫
�

1

�̃
(�ũ − m) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇xp(̃�)

]
dx dt

+
τ∫

0

∫
�

[(
1 − �

�̃

)
p′(̃�) + 1

�̃
ũ · (m − �ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt.

(4.30)
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Now, it is clear how the weak-strong uniqueness property (WS) can be deduced
from (4.30). On condition that the problem admits a strong solution �̃, �̃ > 0, and
m̃ = �̃ũ belonging to the class (4.27), the quantities �̃, ũ can be used as test functions
in (4.30). As �̃ and ũ represent a strong solution, the last two integrals vanish while
the first two can be “absorbed” by the left-hand side via a Gronwall type argument.
We postpone the proof to the end of this section. In Chap. 5 we actually show a more
general result.

Going back to Definition 4.1, we observe that the class of strong solutions is
slightly larger than (4.27). It is therefore desirable to extend validity of the relative
energy inequality (4.30) to a larger class of functions. Given the rather limited avail-
able integrability of the weak solutions, the optimal result in this direction is to allow
�̃ and ũ to be only Lipschitz continuous. We need the following auxiliary result.

Lemma 4.1 Let � ⊂ Rd be a bounded domain of class C2. Suppose that

�̃ ∈ W 1,∞((0,T ) × �), inf
t∈(0,T ),x∈�

�̃(t, x) > 0,

ũ ∈ W 1,∞((0,T ) × �;Rd ), ũ · n|∂� = 0.

Then there exist sequences

{�n}∞n=1, �n ∈ C1([0,T ] × �), inf
x∈�

�n(x) > 0 uniformly for n = 1, 2, . . . ,

{un}∞n=1, un ∈ C1([0,T ] × �;Rd ), un · n|∂� = 0 for all n = 1, 2, . . .

such that
�n → �̃ in W 1,p((0,T ) × �) for any 1 ≤ p < ∞

and weakly-(*) in W 1,∞((0,T ) × �);
un → ũ in W 1,p((0,T ) × �;Rd ) for any 1 ≤ p < ∞,

and weakly-(*) in W 1,∞((0,T ) × �;Rd ).

Moreover,
‖∇x�n‖L∞((0,T )×�;Rd ) ≤ c

(
�; ‖∇x�̃‖L∞((0,T )×�;Rd )

)
,

‖∇xun‖L∞((0,T )×�;Rd×d ) ≤ c
(
�; ‖∇xũ‖L∞((0,T )×�;Rd×d )

) (4.31)

uniformly for n → ∞.

Proof Step 1:

As �̃ and ũ are globally Lipschitz on [0,T ] × �, they can be extended to the whole
space Rd+1 in such a way that

�̃ ∈ W 1,∞(Rd+1), ũ ∈ W 1,∞(Rd+1;Rd ).
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Using the standard regularization procedure, we may construct a sequence �n ∈
C∞(Rd+1) such that

‖�n‖W 1,∞(K) ≤ c(K) uniformly for n → ∞

�n → �̃ in C(K), ∂t�n → ∂t �̃, ∇x�n → ∇x�̃ a.a. in K

for any compact K ⊂ Rd , which completes the proof for �̃. As a matter of fact, this
procedure can carried over on arbitrary bounded domain as the extension theorem
holds.

Step 2:

Obviously, the same treatment can be applied to ũ, however, we have to preserve the
property of zero normal trace for the approximate sequence. First, we observe that
regularization in time can be done in the same way as above. To simplify the proof,
we shall therefore suppose that ũ = ũ(x) is a function of x only.

As the boundary is of class C2, there is an open neighborhood U of ∂� such that
the distance function

d(x) = dist[x, ∂�] is of class C2(U).

Next, write

ũ = v + w, where v ∈ W 1,∞ ∩ Cc(�;Rd ), w ∈ W 1,∞ ∩ Cc(� ∩ U;Rd ).

The function v can be approximated in the same way as in Step 1.
Finally, we write w as

w = [w · ∇xd ]∇xd − ∇xd × (∇xd × w).

Note that ∇xd is a unit vector of class C1(U;Rd ),

∇xd(x) = −n(x) for x ∈ ∂�. (4.32)

Thus applying the approximation procedure of Step 1 to w, we obtain a sequence
{wn}∞n=1 of class C

1,

∇xd × (∇xd × wn) → ∇xd × (∇xd × w) in W 1,p(�;Rd ) for any 1 ≤ p < ∞,

and weakly-(*) in W 1,∞(�;Rd ).

Obviously, ∇xd × (∇xd × wn) · n|∂� = 0 for any n = 1, 2, . . . .
As the normal component of w vanishes on ∂�, we have

wN = (w · ∇xd) in W 1,∞
0 (U ∩ �).
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Consequently, there is a sequence of smooth functions WN
n ∈ C∞

c (U ∩ �) such that

wN
n → WN in W 1,p

0 (U ∩ �) and weakly-(*) inW 1,∞
0 (U ∩ �)

We therefore conclude

wN
n ∇xd → [w · ∇xd ]∇xd in W 1,p

0 (U ∩ �;Rd ) and weakly-(*) inW 1,∞
0 (U ∩ �;Rd ).

�

4.1.3.1 Relative Energy Inequality

In view of Lemma 4.1, we may summarize the previous discussion in the following
statement.

Theorem 4.1 (Relative energy inequality for barotropic Euler system) Let
� ⊂ Rd , d = 2, 3, be a bounded domain of class C2. Let �, m be an admissi-
ble weak solution of the barotropic Euler system (4.10), (4.11) in (0,T ) × �, with
the impermeability boundary condition (4.5), in the sense of Definition 4.1, where
p ∈ C1[0,∞) ∩ C2(0,∞).

Let �̃, ũ be (test) functions belonging to the class

�̃ ∈ W 1,∞((0,T ) × �), inf
(t,x)∈(0,T )×�

�̃(t, x) > 0,

ũ ∈ W 1,∞((0,T ) × �;Rd ), ũ · n|∂� = 0.
(4.33)

Then the relative energy inequality

[ ∫
�

E
(
�,m

∣∣∣̃�, ũ
)

dx
]t=τ

t=0
≤ −

τ∫
0

∫
�

1�>0�∇xũ ·
(
m
�

− ũ
)

·
(
m
�

− ũ
)

dx dt

−
τ∫

0

∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divxũ dx dt

+
τ∫

0

∫
�

1

�̃
(�ũ − m) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇xp(̃�)

]
dx dt

+
τ∫

0

∫
�

[(
1 − �

�̃

)
p′(̃�) + 1

�̃
ũ · (m − �ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt.

(4.34)
holds for any 0 ≤ τ ≤ T .

Remark 4.7 The previous result can be extended to unbounded domains, and, obvi-
ously, to the case of periodic boundary conditions � = T

d .
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Remark 4.8 As amatter of fact, the total energy need not be a nonincreasing function
as required in (4.19). For the relative energy inequality to hold, it is enough that

∫
�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx ≤

∫
�

[
1

2

|m0|2
�0

+ P(�0)

]
dx

for any 0 ≤ τ ≤ T .

4.1.3.2 Weak-Strong Uniqueness

The weak-strong uniqueness property (WS) is a straightforward corollary of the
relative energy inequality established inTheorem4.1.As amatter of fact,we establish
a more general result later in Chap. 5.

Theorem 4.2 (Weak-strong uniqueness) Let � ⊂ Rd , d = 2, 3, be a bounded
domain of class C2. Let �, m be an admissible weak solution of the barotropic
Euler system (4.10), (4.11) in (0,T ) × �, with the impermeability boundary condi-
tion (4.5), in the sense ofDefinition 4.2. Let the pressure p satisfy the growth condition
(4.20). Let �̃, ũ be a strong solution of the same problem belonging to the class

�̃ ∈ W 1,∞((0,T ) × �), inf
(t,x)∈(0,T )×�

�̃(t, x) > 0,

ũ ∈ W 1,∞((0,T ) × �;Rd ), ũ · n|∂� = 0,

and such that
�(0, ·) = �̃(0, ·), m(0, ·) = �̃(0, ·)̃u(0, ·).

Then
� = �̃, m = �̃ũ in (0,T ) × �.

Proof The proof is an easy application of the relative energy inequality (4.34) in
combination with the standard Gronwall type argument. Indeed plugging the strong
solution in (4.34) we have only to observe that

∣∣∣
∫
�

1�>0�∇xũ ·
(
m
�

− ũ
)

·
(
m
�

− ũ
)

dx
∣∣∣

+
∣∣∣∣∣∣
∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divxũ dx

∣∣∣∣∣∣
<∼ c (‖∇xũ‖L∞ , ‖̃�‖L∞)

∫
�

E
(
�,m

∣∣∣̃�, ũ
)

dx.

(4.35)
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As the pressure satisfies (4.20), the pressure potential P is strictly convex; whence

|p(�) − p′(̃�)(� − �̃) − p(̃�)| ≤ c (min �̃,max �̃)
(
P(�) − P′(̃�)(� − �̃) − P(̃�)

)
(4.36)

whenever

� ∈
[
1

2
min

(0,T )×�
�̃, 2 max

(0,T )×�
�̃

]
.

Next, by the same token,

inf
0≤�≤ 1

2 min(0,T )×� �̃

(
P(�) − P′(̃�)(� − �̃) − P(̃�)

)
> 0

and, by virtue of (4.21), the inequality (4.36) holds also in the regime � ≥ 2
max(0,T )×� �̃. Clearly (4.36) implies (4.35). �

Remark 4.9 (Domain regularity) The assumption on regularity of the spatial domain
� may seem rather restrictive, in particular in numerical applications, where the
underlying domain is typically a polygon. Note, however, that existence of a smooth
solution requires similar restrictions. Fortunately, the problem is irrelevant in the
case of periodic boundary conditions.

4.1.3.3 Relative Energy—Summary

With future applications of the method in mind, we conclude by collecting the prin-
cipal steps of the proof of the weak-strong (WS) uniqueness principle:

• Conservative state variables. Identify a suitable set conservative state variables,
the time evolution of which can be expressed in terms of the weak formulation.
These quantities enjoy certain kind of continuity in the time variable.

• Convex energy. Express the total energy as a convex function of these state vari-
ables.

• Relative energy. Relative energy is the (integrated) Bregman distance associated
to the energy between a weak solutions and suitable test functions. Its time evo-
lution can be identified by means of the energy balance and the weak formulation
of the field equations. The energy balance is indispensable at this stage; whence
only admissible weak solutions are eligible.

• Weak-strong uniqueness principle. Use the strong solution as a test function in
the relative energy inequality.
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4.1.4 Weak (Distributional) Solutions to the Complete Euler
System

The weak solutions to the complete Euler system have been introduced in Sect.
2.1.3. Unfortunately, however, the bounds provided by the energy balance Eq. (4.4),
are not strong enough to control the energy flux

(
1

2
�|u|2 + �e

)
u + pu

in the space of integrable functions. This is a serious obstacle when dealing with
sequences of approximate solutions since the limit in the energy equation is prob-
lematic. From this point of view, it seemsmore convenient toworkwith entropy rather
than the energy balance. Indeed the renormalized entropy equation (4.9), written in
the form

∂t (�Z(s)) + divx (�Z(s)u) = 0, (4.37)

requires only � andm = �u to be integrable as soon as Z is a bounded function. We
can therefore consider the system consisting of the equation of continuity (4.6), the
momentum equation (4.7), and the entropy balance (4.37). Similarly to the barotropic
case, the system can be appended by the total energy inequality

d

dt

∫
�

[
1

2
�|u|2 + �e

]
dx ≤ 0, with e = e(�, s),

as an admissibility condition. This approach is frequently used in meteorological
models that describe fluids in the low Mach number regime, where occurrence of
shockwaves or other singularities is not expected; whence all formulations are equiv-
alent.

In order to accommodate more general regimes of fluid motion, in particular those
when the entropy is not conserved, we propose the following problem as a basis for
the weak formulation

∂t� + divxm = 0, (4.38)

∂tm + divx

(
m ⊗ m

�

)
+ ∇xp = 0, (4.39)

∂t(�Z(s)) + divx (Z(s)m) ≥ 0, Z ′(s) ≥ 0, (4.40)

together with the admissibility condition

d

dt

∫
�

[
1

2

|m|2
�

+ �e

]
dx ≤ 0, (4.41)
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where p = p(�, s), e = e(�, s) are determined by appropriate EOS. Of course, the
energy balance (4.41) is conditioned by the impermeability of the boundary

m · n|∂� = 0. (4.42)

The resulting system may be seen underdetermined as we have replaced the
entropy equation (4.37) by inequality (4.40). Moreover, the total energy is no longer
conserved which is at odds with the First law of thermodynamics encoded in the
complete Euler system. However, as we shall see below, the compatibility property
(C) as well as the weak-strong uniqueness principle (WS) remain in force.

The exact definition of generalized weak solution to the complete Euler system
presented below can be seen as the first attempt of relaxation of the concept of
“standard” weak solution. We formulate the problems in terms of �,m, and s for def-
initeness. Of course, other settings are possible and the modification of the definition
is straightforward.

Definition 4.3 (GENERALIZED WEAK SOLUTION TO COMPLETE EULER SYS-
TEM) A trio [�,m, s] is called generalized weak solution of the complete Euler sys-
tem (4.2)–(4.4) with the impermeability boundary condition (4.5) in (0,T ) × � if
the following holds:

• (weak continuity) the quantities �, m belong to the class

� ∈ Cweak([0,T ];Lγ (�)), � ≥ 0 a.a. in (0,T ) × �,

m ∈ Cweak([0,T ];L 2γ
γ+1 (�;Rd )),

�Z(s) = SZ
1 + SZ

2 , where SZ
1 ∈ Cweak([0,T ];Lγ (�)),

τ �→
∫
�

SZ
2 (τ, ·)φ dx nondecreasing for any φ ∈ C1(�), φ ≥ 0,

(4.43)

for some γ > 1, and for any Z ∈ C1(R), Z ′ ≥ 0, Z concave, Z(s) ≤ Z for any s;
• (constitutive equations) the pressure p = p(�, s) and the internal energy e =
e(�, s) are determined by a given EOS,

p ∈ L1((0,T ) × �), �e ∈ L1((0,T ) × �);

• (equation of continuity) the integral identity

⎡
⎣∫

�

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�∂tϕ + m · ∇xϕ

]
dx dt (4.44)

holds for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1([0,T ] × �);
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• (momentum equation) the integral identity

⎡
⎣∫

�

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
m · ∂tϕ +

(
1�>0

m ⊗ m
�

)
: ∇xϕ + pdivxϕ

]
dx dt

(4.45)
holds for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1([0,T ] × �;Rd ), ϕ ·
n|∂� = 0;

• (entropy inequality) the integral inequality

⎡
⎣∫

�

�Z(s)ϕ dx

⎤
⎦

t=τ+

t=0

≥
τ∫

0

∫
�

[
�Z(s)∂tϕ + Z(s)m · ∇xϕ

]
dx dt (4.46)

holds for any 0 ≤ τ < T , any test function ϕ ∈ C1([0,T ] × �), ϕ ≥ 0, and any
Z ∈ C1(R), Z ′ ≥ 0, Z concave, Z(s) ≤ Z for any s;

• (energy inequality) the integral inequality

⎡
⎣∫

�

(
1

2

|m|2
�

+ �e

)
dx

⎤
⎦

t=τ

t=0

≤ 0 (4.47)

holds for a.a. 0 < τ < T .

Remark 4.10 The upper bound τ+ in (4.46) can be replaced by τ− for any 0 <

τ ≤ T . Note that, in view of (4.43) the one sided limits
∫
�

�Z(s)ϕ(τ±) dx exist for

any test function ϕ ∈ C1([0,T ] × �).

We are ready to show the compatibility property (C).

Proposition 4.2 (Compatibility) Suppose that � ⊂ Rd , d = 2, 3 is a bounded
domain with C2 boundary. Let [�,m, s] be an admissible weak solution of the Euler
system in the sense of Definition 4.3. Let ϑ = ϑ(�, s) be given by the (implicit)
constitutive relation s(�, ϑ) = s. Suppose that

ess inf
(0,T )×�

� > 0, ess inf
(0,T )×�

ϑ > 0

and that �, u = m
�
, ϑ belong to the regularity class of classical solutions specified

in Definition 4.1.
Then [�, ϑ,u] is a classical solution in the sense of Definition 4.1.

Remark 4.11 Given � > 0 and s = s(�, ϑ), the temperature is uniquely determined
by the value of the entropy s.
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Proof As � > 0 we may introduce the velocity u as well as the temperature ϑ (cf.
Remark 4.11). Now it is standard to observe that the equation of continuity as well
as the momentum equation are satisfied in the classical way:

∂t� + divx(�u) = 0, (4.48)

∂t(�u) + divx(�u ⊗ u) + ∇xp = 0. (4.49)

Next, integrating (4.44) by parts and using (4.48), we obtain

T∫
0

∫
∂�

ϕ�u · n dSx dt = 0

for any ϕ ∈ C1
c ((0,T ) × �). This yields

u · n|∂� = 0. (4.50)

Multiplying (4.49) on u and using (4.48) we derive the kinetic energy balance

∂t

(
1

2
�|u|2

)
+ divx

(
1

2
�|u|2u

)
+ divx(pu) = pdivxu. (4.51)

Furthermore, by virtue of (4.48) and Gibbs’ equation (4.1),

1

�
∂t� + 1

�
u∇x� = −divxu, ϑ

∂s

∂�
= ∂e

∂�
− p

�2
;

whence

pdivxu = − p

�
∂t� − p

�
u∇x� = �ϑ

∂s

∂�
∂t� − �

∂e

∂�
∂t� + �ϑ

∂s

∂�
u · ∇x� − �

∂e

∂�
u · ∇x�.

(4.52)

Finally, we deduce from the equation of continuity (4.48) and the entropy inequal-
ity (4.46) that

�ϑ

(
∂s

∂�
∂t� + ∂s

∂ϑ
∂tϑ

)
+ �ϑu ·

(
∂s

∂�
∇x� + ∂s

∂ϑ
∇xϑ

)
= �ϑ∂ts + �ϑu · ∇xs ≥ 0.

(4.53)
Combining (4.51)–(4.53) we may infer that

∂t

(
1

2
�|u|2 + �e

)
+ divx

(
1

2
�|u|2u + �eu

)
+ divx(pu) ≥ 0.
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This inequality, integrated over� and the comparedwith the energy inequality (4.47),
yields the total energy balance (4.4). Of course, this step requires the impermeability
boundary condition (4.50). �

4.1.5 Lower Bound on the Entropy

As shown in Proposition 2.1, an interesting consequence of the renormalized entropy
inequality is a version of minimum principle for the entropy. The result transfer
directly to the present setting.

Theorem 4.3 (Minimum entropy principle) Let [�,m, s] be a generalized weak
solution to the complete Euler system in (0,T ) × � in the sense of Definition 4.3.
Suppose that

�Z(s)(0, ·) = �0Z(s0), where
∫
�

�0 dx > 0, s0(x) ≥ s for a.a. x ∈ �.

Then

s(t, x) ≥ s a.a. in the set
{
(t, x) ∈ (0,T ) × �

∣∣∣�(t, x) > 0
}

.

4.1.6 Relative Energy for the Complete Euler System

Using the general principles introduced in Sect. 4.1.3, we identify the relative energy
for the complete Euler system. We emphasize once more that the quantity we obtain
is indeed a relative energy and not entropy. We give several definitions in terms of the
standard, conservative, and entropy-conservative variables. We will finally identify
the entropy-conservative variables as the only choice of phase variables that renders
the total energy convex and agrees with all general principles stated at the end of
Sect. 4.1.3. The key property to besides Gibbs’ relation to be satisfied by the equation
of state is the hypothesis of thermodynamic stability formulated in the standard
variables as follows

∂p(�, ϑ)

∂�
> 0,

∂e(�, ϑ)

∂ϑ
> 0. (4.54)

The physical meaning of the former condition is positive compressibility, while
the latter expresses positivity of the specific heat at constant volume of the fluid in
question.
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4.1.6.1 Relative Energy in the Standard Variables

For given ϑ̃ > 0, we introduce the ballistic energy functional,

Hϑ̃ (�, ϑ) = �
(
e(�, ϑ) − ϑ̃s(�, ϑ)

)
.

Expressed in terms of the standard variables, the relative energy reads

E
(
�, ϑ,m

∣∣∣̃�, ϑ̃, ũ
)

= 1

2
�

∣∣∣∣m� − ũ

∣∣∣∣
2

+ Hϑ̃ (�, ϑ) − ∂Hϑ̃ (̃�, ϑ̃)

∂�
(� − �̃) − Hϑ̃ (̃�, ϑ̃).

(4.55)
Furthermore, we write

Hϑ̃ (�, ϑ) − ∂Hϑ̃ (̃�, ϑ̃)

∂�
(� − �̃) − Hϑ̃ (̃�, ϑ̃)

= Hϑ̃ (�, ϑ) − Hϑ̃ (�, ϑ̃) + Hϑ̃ (�, ϑ̃) − ∂Hϑ̃ (̃�, ϑ̃)

∂�
(� − �̃) − Hϑ̃ (̃�, ϑ̃).

As e and s are interrelated throughGibbs’ equation (2.5), a direct manipulation yields

∂Hϑ̃ (�, ϑ)

∂ϑ
= �

ϑ
(ϑ − ϑ̃)

∂e(�, ϑ)

∂ϑ

and
∂2Hϑ̃ (�, ϑ̃)

∂�2
= 1

�

∂p(�, ϑ̃)

∂�
.

Consequently,
ϑ �→ Hϑ̃ (�, ϑ) − Hϑ̃ (�, ϑ̃) + Hϑ̃ (�, ϑ̃)

is a nonnegative function attaining strict minimum at ϑ = ϑ̃ for any fixed �, and

� �→ Hϑ̃ (�, ϑ̃) − ∂Hϑ̃ (̃�, ϑ̃)

∂�
(� − �̃) − Hϑ̃ (̃�, ϑ̃) is strictly convex.

In particular,

E
(
�, ϑ,m

∣∣∣̃�, ϑ̃, ũ
)

= 0 only if � = �̃, ϑ = ϑ̃, m = �̃ũ

whenever �̃ > 0. Thus, similarly to its counterpart introduced in Sect. 4.1.3 for the
barotropic Euler system, the relative energy represents a “distance” between [�, ϑ,m]
and [̃�, ϑ̃, �̃ũ]. Note, however, that the relative energy is definitely not convex with
respect to the standard variables [�, ϑ,m].
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4.1.6.2 Relative Energy in the Conservative Variables

Now, we pass to the conservative variables. Note that formula (4.55) is rather awk-
ward, containing the derivatives of the ballistic energy. Seeing that

�̃
∂(e − ϑ̃s)(̃�, ϑ̃)

∂�
= p(̃�, ϑ̃)

�̃

we may rewrite the relative energy in the form

E
(
�, ϑ,m

∣∣∣̃�, ϑ̃, ũ
)

=
(
1

2

|m|2
�

+ �e(�, ϑ)

)
−

(
1

2
�̃|̃u|2 + �̃e(̃�, ϑ̃)

)

+ 1

2
�̃|̃u|2 − m · ũ + 1

2
�|̃u|2 − ϑ̃

(
�s(�, ϑ) − �̃s(̃�, ϑ̃)

)

−
(
e(̃�, ϑ̃) − ϑ̃s(̃�, ϑ̃) + p(̃�, ϑ̃)

�̃

)
(� − �̃).

(4.56)
Next, we recall the definition of the conservative variables,

�,m,E = 1

2

|m|2
�

+ �e.

Writing p = p(�, e), s = s(�, e) we may use Gibbs’ equation (2.5) to compute

∂s

∂e
(�, e) = 1

ϑ
,

∂s

∂�
(�, e) = − p

ϑ�2
. (4.57)

Let

S = S(�,m,E) = �s

(
�,

1

�

(
E − 1

2

|m|2
�

))

be the total entropy. With help of (4.57) we compute

∂S(�,m,E)

∂�
= s − p

ϑ�
− E

ϑ�
+ 1

ϑ

|m|2
�2

= 1

ϑ

(
ϑs − p

�
− e + 1

2

|m|2
�2

)
,

∇mS(�,m,E) = − 1

�ϑ
m,

∂S(�,m,E)

∂E
= 1

ϑ
.

Setting

Ẽ = 1

2
�̃|̃u|2 + �̃e(̃�, ϑ̃), m̃ = �̃ũ,
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we rewrite the relative energy in the conservative variables

E
(
�,m,E

∣∣∣̃�, ϑ̃, ũ
)

= E − ϑ̃S(�,m,E) − m · ũ + 1

2
�|̃u|2 + p(̃�, ϑ̃)

−
(
e(̃�, ϑ̃) − ϑ̃s(̃�, ϑ̃) + p(̃�, ϑ̃)

�̃

)
�

= −ϑ̃
[
S(�,m,E) − S (̃�, m̃, Ẽ)

− ∂S (̃�, m̃, Ẽ)

∂�
(� − �̃) − ∇mS (̃�, m̃, Ẽ) · (m − m̃) − ∂S (̃�, m̃, Ẽ)

∂E
(E − Ẽ)

]
.

(4.58)
Identity (4.58) reveals the intimate relation between the relative energy and relative

entropy that differ by a multiplicative factor ϑ̃ . It also shows that the thermodynamic
stability hypothesis (4.54) may be expressed in term of concavity of the total entropy
S with respect to the conservative variables [�,m,E].

4.1.6.3 Relative Energy in the Conservative-Entropy Variables

The relative energy, expressed in terms of the conservative-entropy variables—the
density �, the momentumm, and the total entropy S = �s—fits in the general frame-
work introduced in the preceding section and may be seen as the Bregman distance
associated to the total energy. Indeed returning to (4.58) we obtain

E
(
�,m, S

∣∣∣̃�, ϑ̃, ũ
)

= E − ϑ̃S − m · ũ + 1

2
�|̃u|2 + p(̃�, ϑ̃) −

(
e(̃�, ϑ̃) − ϑ̃s(̃�, ϑ̃) + p(̃�, ϑ̃)

�̃

)
�

= 1

2
�

∣∣∣∣m� − ũ

∣∣∣∣
2

+ �e(�, S) −
(
e(̃�, ϑ̃) − ϑ̃s(̃�, ϑ̃) + p(̃�, ϑ̃)

�̃

)
(� − �̃)

− ϑ̃(S − S̃) − �̃e(̃�, ϑ̃),

where we have denoted S̃ = �̃s(̃�, ϑ̃).
Using Gibbs’ relation (2.5) we check easily that

∂ (�e(�, S))

∂�
= e(�, S) − ϑ

S

�
+ p(�, S)

�
,

and
∂ (�e(�, S))

∂S
= ϑ(�, S).
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Consequently, we may infer that

E
(
�,m, S

∣∣∣̃�, ũ, S̃
)

= 1

2
�

∣∣∣∣m� − ũ

∣∣∣∣
2

+ �e(�, S) − ∂(̃�e(̃�, S̃))

∂�
(� − �̃)

− ∂(̃�e(̃�, S̃))

∂S
(̃�, S̃)(S − S̃) − �̃e(̃�, S̃),

(4.59)

where we have replaced ϑ̃ by S̃. We may infer that, similarly to the barotropic case,
the relative energy expressed in terms of the conservative-entropy variables is the
Bregman distance associated to the total energy

E(�,m, S) = 1

2

|m|2
�

+ �e(�, S).

Of course, to see that the relative energy is Bregman distance, we have to rewrite it
in terms of the conservative-entropy variables [̃�, m̃, S̃].

4.1.6.4 Thermodynamic Stability

A direct comparison of (4.55), (4.58), and (4.59) reveals equivalent formulation of
the hypothesis of thermodynamic stability, namely:

• Standard variables.

p(�, ϑ)

∂�
> 0 (positive compressibility),

e(�, ϑ)

∂ϑ
> 0 (positive specific heat at constant volume)

• Conservative variables.

(�,m,E) �→ S(�,m,E) concave

• Conservative-entropy variables.

(�,m, S) �→ E(�,m, S) ≡ 1

2

|m|2
�

+ �e(�, S) convex
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4.1.7 Relative Energy Inequality for the Complete Euler
System

Finally, we derive a relative energy inequality for the complete Euler system. Simi-
larly to Theorem 4.1, we use only the weak formulation of the problem specified in
Definition 4.3. We start by rewriting (4.56) in the form

E
(
�,m, s

∣∣∣̃�, ϑ̃, ũ
)

=
[
1

2

|m|2
�

+ �e(�, s)

]
− ϑ̃�

[
s − s̃(̃�, ϑ̃)

]
− m · ũ + 1

2
�|̃u|2

+ p(̃�, ϑ̃) −
(
ẽ(̃�, ϑ̃) + p̃(̃�, ϑ̃)

�̃

)
�.

Aswe have seen above, there are several choices of phase variables, all of them being
essentially equivalent. Here we have opted for [�,m, s] for the weak solutions, while
the test functions [̃�, ϑ̃, ũ] correspond to the standard variables. Note that the above
formula formally coincides with its isentropic (barotropic) counterpart (4.25), with
s = const, and

p = p(�), �e = P(�), P′(�)� − P(�) = p(�).

Wehave deliberately used the different symbols p and p̃, e and ẽ, s and s̃ to distinguish
between the thermodynamic functions related to theweak solution expressed in terms
of � and s and those written in terms of the standard variables �̃ and ϑ̃ .

Pursuing step by step the arguments of Sect 4.1.3, we may calculate the time
increments ⎡

⎣∫
�

E
(
�, s,m

∣∣∣̃�, ϑ̃, ũ
)

(t, ·) dx
⎤
⎦

t=τ

t=0

in terms of the weak formulation (4.44)–(4.46) as long as the quantities [̃�, ϑ̃, ũ]
are sufficiently regular to be used as test functions. Similarly to (4.27) we therefore
require

ũ ∈ C1([0,T ] × �;Rd ), ũ · n|∂� = 0,

�̃, ϑ̃ ∈ C1([0,T ] × �), �̃ > 0, ϑ̃ > 0 in [0,T ] × �.
(4.60)

In virtue of (4.47),

⎡
⎣∫

�

[
1

2

|m|2
�

+ �e

]
dx

⎤
⎦

t=τ

t=0

≤ 0
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for a.a. τ ∈ (0,T ). Next, considering ũ as a test function in the momentum equation
(4.45), we obtain

⎡
⎣∫

�

m · ũ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
m · ∂t ũ +

(
1�>0

m ⊗ m
�

)
: ∇xũ + pdivxũ

]
dx dt.

Similarly, it follows from the weak formulation of the equation of continuity (4.44)
that

⎡
⎣∫

�

�

(
1

2
|̃u|2 − ẽ(̃�, ϑ̃) − p̃(̃�, ϑ̃)

�̃

)
dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�ũ · ∂t ũ + 1�>0

m
�

· �ũ · ∇xũ
]

dx dt

−
τ∫

0

∫
�

[
�∂t

(
ẽ(̃�, ϑ̃) + p̃(̃�, ϑ̃)

�̃

)
+ m · ∇x

(
ẽ(̃�, ϑ̃) + p̃(̃�, ϑ̃)

�̃

)]
dx dt.

Finally, we use the entropy inequality (4.46) with ϑ̃ > 0 as test function to deduce

⎡
⎣∫

�

�Z(s)ϑ̃ dx

⎤
⎦

t=τ

t=0

≥
τ∫

0

∫
�

[
�Z(s)∂tϑ̃ + Z(s)m · ∇xϑ̃

]
dx dt

for any Z as in (4.46). Moreover, in view of (4.44),

⎡
⎣∫

�

�ϑ̃ s̃(̃�, ϑ̃) dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

s̃(̃�, ϑ̃)
[
�∂tϑ̃ + m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

ϑ̃
[
�∂t̃ s(̃�, ϑ̃) + m · ∇x̃s(̃�, ϑ̃)

]
dx dt.
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Thus, introducing a modified relative energy

EZ

(
�, s,m

∣∣∣̃�, ϑ̃, ũ
)

=
[
1

2

|m|2
�

+ �e(�, s)

]
− ϑ̃�

[
Z(s) − s̃(̃�, ϑ̃)

]
− m · ũ

+ 1

2
�|̃u|2 + p̃(̃�, ϑ̃) −

(
ẽ(̃�, ϑ̃) + p̃(̃�, ϑ̃)

�̃

)
�,

(4.61)

and summing up the preceding calculations, we arrive at a relative energy inequality
in the form

⎡
⎣∫

�

EZ

(
�, s,m

∣∣∣̃�, ϑ̃, ũ
)

dx

⎤
⎦

t=τ

t=0

≤ −
τ∫

0

∫
�

1�>0
(�ũ − m) ⊗ (�ũ − m)

�
: ∇xũ dx dt

−
τ∫

0

∫
�

[
p(�, s) − p̃(̃�, ϑ̃)

]
divxũ dx dt

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇xũ + 1

�̃
∇x̃p(̃�, ϑ̃)

]
dx dt

−
τ∫

0

∫
�

[
�Z(s)∂tϑ̃ + Z(s)m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
�̃s(̃�, ϑ̃)∂tϑ̃ + s̃(̃�, ϑ̃)m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃
∂t̃p(̃�, ϑ̃) + (̃� − �)

1

�̃
ũ · ∇x̃p(̃�, ϑ̃)

]
dx dt,

(4.62)

where we have used Gibbs’ equation (4.1) to handle the terms p(̃�, ϑ̃), e(̃�, ϑ̃) and
s(̃�, ϑ̃).
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Finally, using Lemma 4.1 we may extend the class of admissible test functions
similarly to Theorem 4.1. We are ready to formulate the relative energy inequality
for the complete Euler system.

Theorem 4.4 (Relative energy inequality for complete Euler system) Let
� ⊂ Rd , d = 2, 3, be a bounded domain of class C2. Let [�,m, s] be an admis-
sible weak solution of the complete Euler system (4.2)–(4.4), with the impermeabil-
ity boundary condition (4.5) in (0,T ) × � in the sense of Definition 4.3. Suppose
that the thermodynamic functions p = p(�, ϑ), e = e(�, ϑ), s = s(�, ϑ) are of class
C2(0,∞)2. Let �̃, ϑ̃ , ũ be (test) functions belonging to the class

�̃, ϑ̃ ∈ W 1,∞((0,T ) × �), inf
(t,x)∈(0,T )×�

�̃(t, x) > 0, inf
(t,x)∈(0,T )×�

ϑ̃(t, x) > 0,

ũ ∈ W 1,∞((0,T ) × �;Rd ), ũ · n|∂� = 0.
(4.63)

Let Z be as in (4.46), and let EZ be the relative energy defined through (4.61).
Then the relative energy inequality

⎡
⎣∫

�

EZ

(
�, s,m

∣∣∣̃�, ϑ̃, ũ
)

dx

⎤
⎦

t=τ

t=0

≤ −
τ∫

0

∫
�

1�>0
(�ũ − m) ⊗ (�ũ − m)

�
: ∇xũ dx dt

−
τ∫

0

∫
�

[
p − p̃

]
divxũ dx dt

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇xũ + 1

�̃
∇x̃p

]
dx dt

−
τ∫

0

∫
�

[
�Z(s)∂tϑ̃ + Z(s)m · ∇xϑ̃

]
dx dt +

τ∫
0

∫
�

[
�̃s∂tϑ̃ + s̃m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃
∂t̃p + (̃� − �)

1

�̃
ũ · ∇x̃p

]
dx dt

(4.64)
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holds for a.a. τ ∈ (0,T ). Here we have denoted p = p(�, s) the pressure related to
the weak solution, while p̃ = p(̃�, ϑ̃), s̃ = s(̃�, ϑ̃) denote thermodynamic functions
written in terms of �̃ and ϑ̃ .

Relation (4.64) simplifies considerably if written in the conservative-entropy vari-
ables [�,m, S], and, accordingly, [̃�, ũ, S̃]. Indeed we first observe that

τ∫
0

∫
�

[
(̃� − �)

1

�̃
∂t̃p + (̃� − �)

1

�̃
ũ · ∇x̃p

]
dx dt

=
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + ũ · ∇x�̃)

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + ũ · ∇xS̃

)]
dx dt

=
τ∫

0

∫
�

[
(� − �̃)

∂p(̃�, S̃)

∂�
divxũ

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + divx (̃�ũ))

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + divx (̃ũS)

)]
dx dt

−
τ∫

0

∫
�

[
(̃� − �)

S̃

�̃

∂p(̃�, S̃)

∂S
divxũ

]
dx dt.

Consequently, the inequality (4.64) can be written as
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⎡
⎣∫

�

EZ

(
�, S,m

∣∣∣̃�, S̃, ũ
)

dx

⎤
⎦

t=τ

t=0

≤ −
τ∫

0

∫
�

1�>0
(�ũ − m) ⊗ (�ũ − m)

�
: ∇xũ dx dt

−
τ∫

0

∫
�

[
p(�, S) − (� − �̃)

∂p(̃�, S̃)

∂�
− (S − S̃)

∂p(̃�, S̃)

∂S
− p(̃�, S̃)

]
divxũ dx dt

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇xũ + 1

�̃
∇x̃p

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + divx (̃�ũ))

]
dx dt

+
∫ τ

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + divx (̃ũS)

)]
dx dt

−
τ∫

0

∫
�

[
�Z

(
S

�

)
∂tϑ̃ + Z

(
S

�

)
m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
�

�̃
S̃

(
∂tϑ̃ + m

�
· ∇xϑ̃

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)
∂p(̃�, S̃)

∂S
divxũ

]
dx dt,

(4.65)
with S̃ = �̃s(̃�, ϑ̃).

Finally, we let Z(s) ↗ s obtaining

τ∫
0

∫
�

[
�Z

(
S

�

)
∂tϑ̃ + Z

(
S

�

)
m · ∇xϑ̃

]
dx dt

→
τ∫

0

∫
�

[
S∂tϑ̃ + S

m
�

· ∇xϑ̃

]
dx dt,

and
EZ

(
�, S,m

∣∣∣ �̃, S̃, ũ
)

→ E
(
�, S,m

∣∣∣ �̃, S̃, ũ
)

.
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Consequently,

−
τ∫

0

∫
�

[
�Z

(
S

�

)
∂tϑ̃ + Z

(
S

�

)
m · ∇xϑ̃

]
dx dt

+
τ∫

0

∫
�

[
�

�̃
S̃

(
∂tϑ̃ + m

�
· ∇xϑ̃

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)
∂p(̃�, S̃)

∂S
divxũ

]
dx dt

→
τ∫

0

∫
�

[(
�

�̃
S̃ − S

) (
∂tϑ̃ + m

�
· ∇xϑ̃

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)
∂p(̃�, S̃)

∂S
divxũ

]
dx dt,

where, furthermore,

τ∫
0

∫
�

[(
�

�̃
S̃ − S

) (
∂tϑ̃ + m

�
· ∇xϑ̃

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)
∂p(̃�, S̃)

∂S
divxũ

]
dx dt

=
τ∫

0

∫
�

[(
�

�̃
S̃ − S

) (
∂tϑ̃ + ũ · ∇xϑ̃ + ∂p(̃�, S̃)

∂S
divxũ

)]
dx dt

+
τ∫

0

∫
�

(
�

�̃
S̃ − S

)(
m
�

− ũ
)

· ∇xϑ̃ dx dt
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Summing up the previous computation we may rewrite (4.65) in the form

⎡
⎣∫

�

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

dx

⎤
⎦

t=τ

t=0

≤ −
τ∫

0

∫
�

1�>0
(�ũ − m) ⊗ (�ũ − m)

�
: ∇xũ dx dt

−
τ∫

0

∫
�

[
p(�, S) − (� − �̃)

∂p(̃�, S̃)

∂�
− (S − S̃)

∂p(̃�, S̃)

∂S
− p(̃�, S̃)

]
divxũ dx dt

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇xũ + 1

�̃
∇x̃p

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + divx (̃�ũ))

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + divx (̃ũS)

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

) (
∂tϑ̃ + ũ · ∇xϑ̃ + ∂p(̃�, S̃)

∂S
divxũ

)]
dx dt

+
τ∫

0

∫
�

(
�

�̃
S̃ − S

) (
m
�

− ũ
)

· ∇xϑ̃ dx dt.

(4.66)
Similarly to Sect. 4.1.3, the relative energy inequality (4.65), or in the form (4.66),

can be used to show the weak-strong uniqueness principle. Indeed the relative energy

E
(
�,m, S

∣∣∣ �̃, ũ, S̃
)

≈ E
(
�,m, S

∣∣∣ �̃, m̃ = �̃ũ, S̃
)

corresponds to the Bregman distance associated to the total energy E(�,m, S) – a
convex function of the conservative-entropy variables [�,m, S]. In comparison with
the barotropic case, the proof of the weak-strong uniqueness is more involved, and
we postpone it to Chap. 5, where a more general class of weak solutions is treated.
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4.2 Weak and Strong Solutions to the Navier–Stokes
System, Relative Energy

The concepts of weak and strong solution to the Navier–Stokes(–Fourier) system
have been introduced and discussed in Sect. 3. Here, we focus on deriving the relative
energy inequality similarly to the Euler system.As amatter of fact, the relative energy
functional remains the same as for the inviscid fluid models.

4.2.1 Relative Energy for the Navier–Stokes System

We restrict ourselves to the barotropic Navier–Stokes system :

∂t� + divx(�u) = 0, (4.67)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�) = divxS. (4.68)

For definiteness, we consider the non-slip boundary condition

u|∂� = 0. (4.69)

As the viscous stress is in many cases a function of the velocity gradient, it is more
convenient towork in the frameof standard variables. The energy balance (inequality)
takes the form

∫
�

[
1

2
�|u|2 + P(�)

]
(τ, ·) dx +

τ∫
0

∫
�

S : ∇xu dx dt ≤
∫
�

[
1

2
�0|u0|2 + P(�0)

]
dx

(4.70)
where �0, u0 are the initial data and P the pressure potential, P′(�)� − P(�) = p(�).
For the moment, we deliberately leave open the specific choice of the rheological
relation for the viscous stress S, keeping in mind only the Second law of thermody-
namics requiring

S : ∇xu ≥ 0.

The relative energy, written in terms of standard variables � and u reads

E
(
�,u

∣∣∣̃�, ũ
)

= 1

2
�|u − ũ|2 + P(�) − P′(̃�)(� − �̃) − P(̃�) (4.71)

cf. (4.25). Note that E is not a convex function of [�,u].
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Theweak solutions to theNavier–Stokes systemwere introduced inDefinition 3.1.
The relative entropy inequality can be now derived mimicking the procedure applied
to the Euler system in Sect. 4.1.3. Indeed the only two steps to be modified are:

(i) the energy inequality (4.28) that should read

⎡
⎣∫

�

[
1

2
�|u|2 + P(�)

]
dx

⎤
⎦

t=τ

t=0

+
τ∫

0

∫
�

S : ∇xu dx dt ≤ 0,

(ii) the relation (4.29) that should be replaced by

⎡
⎣∫

�

�u · ũ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�u · ∂t ũ + (�u ⊗ u) : ∇xũ + p(�)divxũ − S : ∇xũ

]
dx dt,

where
ũ ∈ C1([0,T ] × �;Rd ), ũ|∂� = 0

is a “test function”. Putting together all the remaining integrals exactly as in
Sect. 4.1.3, we deduce the relative energy inequality in the form

[ ∫
�

E
(
�,u

∣∣∣̃�, ũ
)

dx
]t=τ

t=0
+

τ∫
0

∫
�

(S − S̃) : (∇xu − ∇xũ) dx dt

≤ −
τ∫

0

∫
�

�∇xũ · (u − ũ) · (u − ũ) dx dt

−
τ∫

0

∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divxũ dx dt

+
τ∫

0

∫
�

�

�̃
(̃u − u) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇xp(̃�) − divxS̃

]
dx dt

+
τ∫

0

∫
�

[(
1 − �

�̃

)
p′(̃�) + �

�̃
ũ · (u − ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt

+
τ∫

0

∫
�

(
�

�̃
− 1

)
(̃u − u) · divxS̃ dx dt

(4.72)
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for any pair of test functions �̃, ũ in the class

�̃ ∈ C1([0,T ] × �), �̃ > 0, ũ ∈ C1([0,T ] × �;Rd ), ũ|∂� = 0,

and S̃ ∈ C1([0,T ] × �;Rd×d
sym ),

(4.73)

cf. (4.30).

Remark 4.12 The tensor S̃ has been added “artificially” to relative energy inequal-
ity. Of course, we consider S̃ = S̃(∇xũ) in future applications to the weak-strong
uniqueness problem.

In comparison with the relative energy inequality (4.34) for the barotropic Euler
system, the relation (4.72) contains an extra term

τ∫
0

∫
�

(
�

�̃
− 1

)
(̃u − u) · divxS̃ dx dt.

Note carefully that this integral cannot be controlled by the relative energy on the
vacuum zone {� = 0} as

(
�

�̃
− 1

)
(̃u − u) · divxS̃ ≈ (̃u − u) for � → 0.

Although vacuum is not expected to appear spontaneously in viscous fluid flows,
a rigorous proof is not yet available. In order to show the weak-strong uniqueness
principle, the term

τ∫
0

∫
�

(S − S̃) : (∇xu − ∇xũ) dx dt

must be used. Details can be found in Chap. 5, where a large class of generalized
solutions is considered.

4.3 Conclusion, Bibliographical Remarks

We have introduced the concept of weak (distributional) solution and the relative
energy to both the Euler and the Navier–Stokes system. These are objects solving
the problem in the sense of generalized derivatives (distributions); satisfying auto-
matically the compatibility principle (C). If supplemented by a suitable form of the
energy balance, they also satisfy the weak-strong uniqueness principle (WS). These
results are based on the concept of relative energy and the associated relative energy
inequality for the weak solutions. In particular, the relative energy can be interpreted
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as the Bregman distance associated to the total energy of the system, cf. e.g. Sprung
[185]. Results of this type go back to the pioneering paper by Dafermos [59] in the
context of general conservation laws with involutions and are intimately related to
the thermodynamic stability of the fluid system, see e.g. Bechtel et al. [14]. Since
then the method of relative energy/entropy has found numerical applications, in par-
ticular in problems of weak-strong uniqueness for models of viscous and inviscid
fluids, see e.g. Brenier et al. Székelyhidi [26], Germain [117], Gwiazda et al. [126],
Mellet and Vasseur [164], the survey paper of Wiedemann [199], and the references
therein. Here, we have postponed the rigorous proofs to the next chapter, where even
more general class of dissipative solutions will be introduced.

There are two main issues that make analysis of numerical schemes in the frame-
work of weak solutions quite delicate:

• Despite the numerous examples provided by the method of convex integration, see
e.g., Chiodaroli et al. [49, 51], the global-in-time existence of admissible weak
solutions for theEuler system is still an open problem.Although theweak solutions
are known to exist for the Navier–Stokes(–Fourier) system, the existence proof is
rather delicate, limited to severe restrictions imposed on constitutive relations, and
difficult to implement in the proof of convergence of a numerical scheme, unless
the latter is of very special type, cf. Karper [139, 140].

• The set of all weak solutions emanating from given initial data for the Euler system
is not sequentially closed, meaning the property (S) listed in the introduction to
Part II.

To demonstrate that the class of weak solutions to the barotropic Euler system
fails to comply with the stability property (S), we report the following result proved
in [25, Proposition 2.1].

Theorem 4.5 Let� ⊂ Rd , d = 2, 3 be a bounded domain. Let �0 ∈ L∞(�), �0 > 0
be given.

Then there exists a sequence of weak solutions [�n,mn] to the Euler system (4.10),
(4.11) in (0,T ) × �, with the impermeability condition (4.5), such that �n = �n(x)
depends only on the spatial variable, and

�n → �0 weakly-(*) in L
∞(�), mn → 0 weakly-(*) in L∞((0,T ) × �;RN ),

lim inf
n→∞

∫
�

|�n − �0| dx > 0.

Note that the limit �0 is arbitrary, while themomentum limitm ≡ 0. Thus the limit
is a solution of the Euler system only if �0 = � is a (positive) constant. In particular,
a weak limit of a sequence of weak solutions to the barotropic Euler system may not
be a weak solution.
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In the following chapter, we extend the class of weak solutions to more general
objects commonly known as measure-valued or dissipative solutions. We show that
the dissipative solutions comply with all the requirements introduced above. In par-
ticular, they exist globally in time for any physically relevant initial data, they are
compatible with classical solutions, they obey the weak-strong uniqueness principle,
and the solution set associated to given initial data is compact.



Chapter 5
Generalized Weak Solutions

We identify a class of generalized solutions to the Euler and Navier–Stokes system
that comply with the four basic requirements stated at the beginning of Part II. They
exist globally in time and represent the asymptotic limits of sequences of approximate
solutions (property (E)); they are compatible with strong solutions, meaning they
solve the problem in the classical way as long as they are smooth (property (C));
they comply with the weak-strong uniqueness principle (property (WS)); the set of
all solutions emanating from fixed initial data is compact (property (S)). Our aim
is to identify the largest class possible of objects that would meet the requirements
listed above. Motivated by future applications in numerical analysis, the general-
ized solutions will be identified as asymptotic limits of suitable approximations. We
distinguish between stable approximations satisfying uniform (energy) bounds and
approximating exactly the given data, and consistent approximations that satisfy, in
addition, the underlying system of equations modulo an approximate error vanishing
in the asymptotic limit.

Although our aim is to put solutions of the Euler and the Navier–Stokes system
in a unified framework, our general philosophy is different concerning viscous and
inviscid fluid models:

• We tacitly anticipate that solutions of the Navier–Stokes system are regular. This
is indeed the case if the initial data are smooth and solutions remain uniformly
bounded in the space L∞ on the desired time interval (0, T ). Let us assume that we
are given a family of approximate solutions resulting from a numerical scheme.
The line of arguments we follow in the viscous case can be described as follows: (i)
Suppose that a family of numerical solutions is bounded uniformly with respect
to the time step and the space discretization parameter. (ii) Identify the set of
possible limits of the approximate solutions – the generalized weak solutions of
the problem. (iii) As the family of numerical solutions is bounded, we use the
weak-strong uniqueness principle to show that the limit is in fact the (unique)
strong solution of the problem. (iv) As the limit is a strong solution, we may use
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estimates derived from the relative energy inequality to evaluate the numerical
error.

• As for the Euler system, the exact solution remains smooth only on a certain
maximal time interval. If this is the case, we may deduce that convergence of
approximate solutions is strong and even evaluate the error. As soon as the solu-
tion develops singularities, the asymptotic limit belongs to the class of generalized
solutions. In such a situation, the approximate sequence of numerical solutions nec-
essarily develops oscillations thatmay be described in terms of theYoungmeasure.
In such a case, we propose a method how to visualize (compute) effectively the
associated Young measure.

As we have observed in the preceding chapters, the distribution of the total energy
plays a crucial role in the analysis of compressible fluid flows. Generalized solutions
satisfying some form of the energy balance will be called dissipative solutions. The
dissipative solutions will be defined/identified as limits of consistent approximation
schemes. Very roughly indeed, a consistent approximation is sequences of functions
satisfying the underlying system of equations modulo a certain error that vanishes
in the asymptotic limit. For the purpose of this monograph, the consistent approxi-
mations will be represented by numerical schemes. The concept is, however, more
general and includes many other kinds of approximations, in particular, the vanish-
ing viscosity limit passage from the Navier–Stokes to the Euler system. We also
consider more general stable approximations admitting certain uniform bounds and
approaching the given data in the asymptotic limit.

In many cases, the energy estimates are the only uniform bounds available for an
approximate sequence. This fact is reflected in consistent approximations that can be
controlled only in the rather weak Lp-norms. Accordingly, the dissipative solutions
are identified with weak limits of approximate sequences in the Lp-topology. Here
and hereafter, whenever we speak about weak convergence, we mean convergence
of integral averages. Specifically, we say that a sequence {Un}∞n=1 converges weakly
to a limit U if the functions U , Un, n = 1, 2, . . . are integrable in a domain Q, and

∫

B

Un dy →
∫

B

U dy as n → ∞ for any Borel set B ⊂ Q

or, equivalently, ∫

Q

ϕUn dy →
∫

Q

ϕU dy

for any smooth function ϕ.
The notoriously known stumbling block when applying weak convergence to

nonlinear problems is its incompatibility with nonlinear superpositions. In general,

Un → U weakly ����⇒ b(Un) → b(U ) weakly
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unless b is an affine function. As a matter of fact,

Un → U, b(Un) → b(U ) ⇒ Un → U strongly (a.a. for a subsequence)

as soon asb is strictly convex. This can be formally seen by applyingTaylor’s formula,

b(Un) = b(U ) + b′(U )(Un − U ) + 1

2
b′′(ξ)|Un − U |2.

Thus if b′′ is positive bounded below, we conclude

∫

B

|Un − U |2 dy → 0 for any Borel set B,

which implies, at least for a suitable subsequence, the desired pointwise convergence.
The knowledge of the weak limit of an approximate sequence is therefore insuffi-

cient to identify the limit problem as long as the underlying equations are nonlinear. A
piece of information on possible oscillations and/or concentrations of the approxima-
tions must be retained as an integral part of the definition of generalized solutions.
This idea leads to various concepts of measure-valued solutions discussed at the
beginning of this chapter. In this approach, the exact numerical value of solution is
replaced by a probability measure (Young measure) defined on the associated phase
space.

The dissipative solutions, introduced later in this chapter, can be interpreted as
expected values of the underlying Young measure. The definition is, however, intrin-
sic without explicit reference to any approximating sequence. The piece of infor-
mation pertinent to “turbulent” character of the fluid motion is encoded in a single
quantity termedReynolds stress that forms an integral part of the definition of dissipa-
tive solution. The Reynolds stress can be seen as a contribution to the viscous forces
counterbalanced by the energy dissipation defect in the energy balance equation. As
a result, the dissipative solutions enjoy the compatibility as well as the weak-strong
uniqueness property. The Reynolds stress can be identified as a positively semidefi-
nite tensor valued measure resulting from possible oscillations and/or concentrations
in the approximate sequence. Accordingly, the Reynolds stress vanishes as soon as
the approximations converge strongly in some Lp-topology. If this is the case, the
resulting dissipative solution is also a weak (distributional) solution of the problem.
In Part III, we disclose a striking fact that these properties are equivalent at least for
the Euler system. More specifically, the Reynolds stress vanishes and the conver-
gence is strong if and only if the limit is a weak solution. In other words, the limits
of oscillatory consistent approximations are not weak (distributional) solutions of
the Euler system.
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5.1 Measure-Valued Solutions to the Euler System

Consider a sequence {Un}∞n=1 of measurable functions,

Un : Q → Rk , where Q ⊂ Rm is a domain.

Identifying
Un(y) ≈ δUn(y),

where δU ∈ P(Rk) denotes the Diracmeasure inRk supported atU,wemay interpret
Un as a mapping

Un : y ∈ Q 	→ δUn(y) ∈ P(Rk) that is weakly-(*) measurable.

Recall that weak-(*) measurability here means that for any b ∈ BC(Rk), the mapping

y ∈ Q 	→ 〈
δUn(y); b

〉 = b(Un(y)) is measurable. (5.1)

Our goal is to identify the limit object generated by the sequence of parametrized
measures δUn(y), y ∈ Q.

In view of (5.1), the sequence {Un}∞n=1 can be identified with a bounded sequence
in the Banach space

L∞
weak−(∗)(Q;M(Rk)) = [

L1(0, T ; C0(R
k))

]∗
.

As the space L1(0, T ; C0(Rk)) is separable, there exists a subsequence (not relabeled
here) such that

Un → V weakly-(*) in L∞
weak−(∗)(Q;M(Rk)). (5.2)

The limit quantity V is called the Young measure associated or generated by the
sequence Un. The Young measure V is often interpreted as a parameterized family
of Borel measures {Vy}y∈Q. Recall that the weak-(*) convergence claimed in (5.2)
means

∫

Q

ϕ(y)b (Un(y)) dy →
∫

Q

ϕ(y)
〈
Vy; b(Ũ)

〉
dy for anyϕ ∈ L1(Q), b ∈ C0(R

k)

(5.3)
where 〈

Vy; b(Ũ)
〉 ≡

∫

Rk

b(Ũ) dVy(Ũ).

As V is a (weak-(*)) limit of probability measures (Dirac masses),
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Vy ∈ M+(Rk) and ‖Vy‖M(Rk ) ≤ 1 (5.4)

for a.a. y ∈ Q.

Remark 5.1 One should always keep in mind that a given sequence {Un}∞n=1 may
generate different Young measures for different subsequences.

Frequently, we omit the subscript y and use the symbol V to denote the measure-
valued mapping

V : y ∈ Q → M+(Rk), V ∈ L∞
weak−(∗)(Q;M+(Rk)).

We also systematically use the symbol Ũ to denote the “dummy” variables and write

〈
V; b(Ũ)

〉
to denote the measurable function y ∈ Q 	→

∫

Rk

b(Ũ) dVy(Ũ ).

5.1.1 Integrability, Concentrations

The Young measure as introduced in the preceding part may not be a probability
measure unless certain restrictions are imposed on the generating sequence {Un}∞n=1.
For b ∈ C0(Rk) and a bounded Borel set B ⊂ Rm, |B| > 0, we have

1

|B|
∫

B

b(Un) dy → 1

|B|
∫

B

〈
Vy; b(Ũ)

〉
dy,

which can be understood as

1

|B|
∫

B

δUn(y) dy → 1

|B|
∫

B

Vydy weakly-(*) inM(Rk).

Wedesire to identify the necessary condition for the sequence of probabilitymeasures
{ 1

|B|
∫
B

δUn(y) dy}∞n=1 to be tight; whence narrowly precompact. To this end,we estimate

1

|B|
∫

B

1|Un|≥k dy = 1

|B|
∫

B

1|Un|≥k
h(|Un|)
h(|Un|) dy ≤ 1

h(k)

1

|B|
∫

B

h(|Un|) dy dy,

where h : [0,∞) → [0,∞), h(0) = 0, h is strictly increasing, h(Z) → ∞ as Z →
∞. Consequently, the sequence of probability measures
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1

|B|
∫

B

δUn(y) dy, n = 1, 2, . . .

is (uniformly) tight if there is h ∈ C1[0,∞), h(0) = 0, h′(Z) > 0, limZ→∞ h(Z) =
∞ so that ∫

Q

h(|Un|) dy ≤ c uniformly for n → ∞. (5.5)

If (5.5) holds we may infer that

1

|B|
∫

B

Vydy ∈ P(Rk) for any Borel set B ⊂ Q, |B| > 0

which, combined with (5.4), gives rise to the desired conclusion

Vy ∈ P(Rk) for a.a. y ∈ Q. (5.6)

Obviously, the condition (5.5) is satisfied with h(Z) = Z if the sequence {Un}∞n=1 is
bounded in L1(Q),

∫

Q

|Un| dy ≤ c uniformly for n → ∞. (5.7)

The previous discussion can be summarized in the following statement.

Proposition 5.1 (Young measure)
Let Q ⊂ Rm be a domain and let {Un}∞n=1 be a sequence of measurable vectorial

functions such that

Un ∈ L1(Q; Rk), ‖Un‖L1(Q;Rk ) ≤ c uniformly for n → ∞. (5.8)

Then there exists a subsequence {Unk }∞k=1, and a parametrized family of proba-
bility measures {Vy}y∈Q,

Vy ∈ P(Rk) for a.a. y ∈ Q, y ∈ Q 	→ Vy ∈ P(Rk) weakly-(*) measurable,

such that ∫

Q

ϕ(y)b(Unk (y)) dy →
∫

Q

ϕ(y)
〈
Vy; b(Ũ)

〉
dy as k → ∞

for any ϕ ∈ L1(Q) and any b ∈ BC(Rk).
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Remark 5.2 Note that (5.8) can be replaced by the considerably weaker assumption

Un measurable,
∫

Q

h(|Un|) dy ≤ c uniformly for n → ∞,

where h(Z) → ∞ for Z → ∞.

5.1.1.1 Convergence of Nonlinear Superpositions, Concentrations

Proposition 5.1 does not identify the limits of superpositions b(Un) for b having
certain growth for large values of its argument. Consider the situation

Un ∈ L1(Q; Rk), ‖Un‖L1(Q;Rk ) ≤ c, ‖b(Un)‖L1(Q) ≤ c, b ∈ C(Rk) (5.9)

uniformly for n = 1, 2, . . . In addition, suppose we already know that {Un}∞n=1 gen-
erates a Young measure {Vy}y∈Q. We claim that b is integrable with respect to Vy,
more specifically,

〈
Vy; b(Ũ)

〉
is finite for a.a. y ∈ Q, and y ∈ Q 	→ 〈

Vy; b(Ũ)
〉 ∈ L1(Q).

Decomposing b = b+ − b− we may suppose that b ≥ 0. Now, consider a sequence
bn ∈ Cc(Rk),

0 ≤ bn ↗ b in Rk .

On one hand, by the Lévy theorem,

〈
Vy; bn(Ũ)

〉 ↗ 〈
Vy; b(Ũ)

〉 ∈ [0,∞] for a.a y ∈ Q.

On the other hand,

sup
j

∥∥b(U j)
∥∥

L1(Q)

≥ lim
j→∞

∫

B

bn(U j) dy =
∫

B

〈
Vy; bn(Ũ)

〉
dy ↗

∫

B

〈
Vy; b(Ũ)

〉
dy

as n → ∞ for any Borel set B ⊂ Q, which proves the claim. We have shown the
following result.

Proposition 5.2 (Young measure of composition)
Let Q ⊂ Rm be a given domain, let {Un}∞n=1 be a sequence of measurable vectorial

functions ranging in Rk , and let b ∈ C(Rk) such that

Un ∈ L1(Q; Rk), ‖Un‖L1(Q;Rk ) ≤ c, ‖b(Un)‖L1(Q) ≤ c uniformly for n → ∞.
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Suppose, in addition, that {Un}∞n=1 generates a Young measure {Vy}y∈Q.
Then

〈
Vy; b(Ũ)

〉
is finite for a.a. y ∈ Q, and y ∈ Q 	→ 〈

Vy; b(Ũ)
〉 ∈ L1(Q).

Remark 5.3 The statements of Propositions 5.1, 5.2 can be localized, meaning, the
space L1(Q) may be replaced by L1

loc(Q).

Finally, consider a sequence of functions {Un}∞n=1 satisfying the hypotheses of
Proposition 5.2, along with {b(Un)}∞n=1. In addition, suppose that Q ⊂ Rm is a
bounded domain. As {b(Un)}∞n=1 is only uniformly integrable, we may assert that

b(Un) → b(U) weakly-(*) inM(Q),

up to a suitable subsequence, where the space of (finite) measuresM(Q) is identified
with the dual space of C(Q).

Furthermore, suppose that

Un → U weakly in L1(Q; Rk)

up to a suitable subsequence, meaning {Un}∞n=1 is equi-integrable inQ. Thus, extract-
ing a subsequence several times as the case may be, we end up with three quantities:

b(U) ∈ M(Q), y 	→ 〈
Vy; b(Ũ)

〉 ∈ L1(Q), and b(U) – a measurable function onQ.

Definition 5.1 (DEFECT MEASURES)
Let Q ⊂ Rm be a bounded domain. Let

{Un}∞n=1 , ‖Un‖L1(Q;Rk ) ≤ c

be a sequence generating a Young measure {Vy}y∈Q. Let b ∈ C(Rk),

|b(V)| ≤ c(1 + |V|),

satisfy
b(Un) → b(U) weakly-(*) in M(Q).

We define the following quantities:

• Concentration defect

b(U) − {
y 	→ 〈

Vy; b(Ũ)
〉} ∈ M(Q)
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• Oscillation defect

{
y 	→ 〈

Vy; b(Ũ)
〉} − b(U) − a measurable function on Q.

Remark 5.4 If b is convex l.s.c, it follows from Jensen’s inequality that

b(U(y)) = b
(〈
Vy; Ũ

〉) ≤ 〈
Vy; b(Ũ)

〉
.

In particular, the oscillation defect is nonnegative, and

0 ≤ {
y 	→ 〈

Vy; b(Ũ)
〉} − b(U) ∈ L1(Q).

Intuitively, if the concentration defect of a sequence {b(Un)}∞n=1 vanishes, then
the sequence converges weakly in L1. Indeed we report the following result:

Lemma 5.1 Let Q ⊂ Rm be a bounded domain, and let {Un}∞n=1 be sequence of
vector valued functions,

Un : Q → Rk ,

∫

Q

|Un| dy ≤ c uniformly for n → ∞,

generating a Young measure Vy ∈ P(Rk), y ∈ Q. Let E : Rk → [0,∞] be a l.s.c.
function such that E(Un) ∈ L1(Q), and

E(Un) → 〈
V; E(Ũ)

〉
weakly-(*) in M(Q),

〈
ν; E(Ũ)

〉 ∈ L1(Q). (5.10)

Then
E(Un) → 〈

V; E(Ũ)
〉

weakly in L1(Q).

Remark 5.5 In (5.10), we have identified

〈
V; E(Ũ)

〉
with a function on Q, y 	→ 〈

Vy; E(Ũ)
〉
, y ∈ Q.

Proof As E is l.s.c bounded below, there is an increasing sequence of bounded
continuous functions,

Ej ∈ BC(Rk), 0 ≤ Ej ≤ j, Ej(U) ↗ E(U) for any U ∈ Rk .
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In accordance with (5.10),

∫

Q

[
Ej(Un) + (E − Ej)(Un)

]
ϕ dy =

∫

Q

E(Un)ϕ dy

→
∫

Q

〈
Vy; E(Ũ)

〉
ϕ dy =

∫

Q

〈
Vy; Ej(Ũ) + (E − Ej)(Ũ)

〉
ϕ dy

as n → ∞ for any ϕ ∈ C(Q). Since V is a Young measure generated by the sequence
{Un}∞n=1, we have ∫

Q

Ej(Un)ϕ dy →
∫

Q

〈
Vy; Ej(Ũ)

〉
ϕ dy;

whence
∫

Q

(E − Ej)(Un)ϕ dy →
∫

Q

〈
Vy; (E − Ej)(Ũ)

〉
ϕ dy as n → ∞. (5.11)

As
E ≥ E − Ej ↘ 0 as j → ∞,

we may use the Lebesgue Dominant Convergence Theorem to conclude

∫

Q

〈
Vy; (E − Ej)(Ũ)

〉
dy → 0 as j → ∞. (5.12)

Our goal is to show equi-integrability of the sequence {E(Un)}∞n=1. To this end,
write ∫

{E(Un)≥M }
E(Un) dy ≤

∫

{E(Un)≥M }
Ej(Un) dy +

∫

Q

(E − Ej)(Un) dy

≤ j |{E(Un) ≥ M }| +
∫

Q

(E − Ej)(Un) dy

≤ j

M
‖E(Un)‖L1(Q) +

∫

Q

(E − Ej)(Un) dy.

Now, by virtue of (5.11), (5.12), we my fix j = j(ε) large enough so that there exists
nj such that ∫

Q

(E − Ej)(Un) dy ≤ ε

2
for all n ≥ nj.
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Finally, we take M = M (ε, j(ε)) so large that

j(ε)

M
‖E(Un)‖L1(Q) ≤ ε

2
for all n ≥ j,

which yields the desired conclusion

∫

{E(Un)≥M (ε)}
E(Un) dy ≤ ε for n ≥ nj(ε).

�

Remark 5.6 As a byproduct of the construction of the functions Ej in the proof, we
also obtain

E(U) ≥ 〈
V; E(Ũ)

〉
inM(Q),

meaning the concentration defect is nonnegativewheneverE : Rk → [0,∞] is a l.s.c.
function. Obviously the same holds for any l.s.c. function that is bounded below.

5.1.1.2 Comparing Concentration Defects

We finish this part by comparing the concentration defect associated to two different
nonlinearities.

Proposition 5.3 (Comparison of concentration defects)
Let Q ⊂ Rm be a bounded domain. Let F : Rk → [0,∞], G : Rk → R be two Borel
measurable functions. Let {Un}∞n=1 ⊂ L1(Q; Rk) be a sequence generating a Young
measure

{
Vy
}

y∈Q
,

‖F(Un)‖L1(Q) ≤ c, ‖G(Un)‖L1(Q) ≤ c uniformly for n → ∞.

Let {Fj}∞j=1 ⊂ Cc(Rk), {Gj}∞j=1 ⊂ Cc(Rk) such that

|Fj| <∼ (1 + F + |G|), |Gj| <∼ (1 + F + |G|) uniformly for j → ∞,

Fj(U) → F(U), Gj(U) → G(U) for any U ∈ Rk as j → ∞,

lim sup
j→∞

|G(U) − Gj(U)| ≤ lim inf
j→∞

(
F(U) − Fj(U)

)
uniformly for U ∈ Rk .

(5.13)
Then ∣∣∣G(U) − 〈

V; G(Ũ)
〉∣∣∣ ≤ F(U) − 〈

V; F(Ũ)
〉
.



128 5 Generalized Weak Solutions

Remark 5.7 The exact meaning of the inequality

∣∣∣G(U) − 〈
V; G(Ũ)

〉∣∣∣ ≤ F(U) − 〈
V; F(Ũ)

〉
.

is
F(U) − 〈

V; F(Ũ)
〉 ± G(U) − 〈

V; G(Ũ)
〉 ≥ 0.

Proof Applying the Lebesgue Dominant Convergence Theorem, we obtain

〈
V; Fj(Ũ)

〉 → 〈
V; F(Ũ)

〉
,
〈
V; Gj(Ũ)

〉 → 〈
V; G(Ũ)

〉
in L1(Q) as j → ∞.

Consequently, it is enough to compare

∣∣∣G(U) − 〈
V; Gj(Ũ)

〉∣∣∣ with F(U) − 〈
V; Fj(Ũ)

〉
.

We have
∫

Q

ϕ dG(U) −
∫

Q

ϕ(y)
〈
Vy; Gj(Ũ)

〉
dy

= lim
n→∞

∫

Q

[
G(Un) − Gj(Un)

]
ϕ dy, ϕ ∈ C(Q),

and, similarly,

∫

Q

ϕ dF(U) −
∫

Q

ϕ(y)
〈
Vy; Fj(Ũ)

〉
dy

= lim
n→∞

∫

Q

[
F(Un) − Fj(Un)

]
ϕ dy, ϕ ∈ C(Q).

It follows from the hypothesis (5.13) that for any ε > 0 there exists j0 = j0(ε)
such that for all j ≥ j0

∣∣∣G(U) − 〈
V; Gj(Ũ)

〉∣∣∣ ≤ F(U) − 〈
V; Fj(Ũ)

〉 + ε for all j ≥ j0(ε).

As ε > 0 can be taken arbitrarily small, the desired conclusion follows. �

Corollary 5.1 Let Q ⊂ Rm be a bounded domain. Let F ∈ C(Rk), G ∈ C(Rk) such
that

lim sup
|U |→∞

|G(U)| ≤ lim inf|U |→∞ F(U).
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Let {Un}∞n=1 ⊂ L1(Q; Rk) be a sequence generating a Young measure
{
Vy
}

y∈Q,

‖F(Un)‖L1(Q) ≤ c uniformly for n → ∞.

Then ∣∣∣G(U) − 〈
V; G(Ũ)

〉∣∣∣ ≤ F(U) − 〈
V; F(Ũ)

〉
.

Proof Consider a family of functions

Tj ∈ Cc(R
k), 0 ≤ Tj ≤ 1, Tj(U) = 1 for all |U | ≤ j.

Set
Fj(U) = Tj(U)F(U), Gj(U) = Tj(U)G(U), j = 1, 2, . . .

It is easy to check that all hypotheses of Proposition 5.3 are satisfied; whence the
desired conclusion follows. �

Corollary 5.2 Let Q ⊂ RM be a bounded domain. Let F : Rk → [0,∞] be a l.s.c.
function. Let {Un}∞n=1 ⊂ L1(Q; Rk) be a sequence generating a Young measure{
Vy
}

y∈Q,
‖F(Un)‖L1(Q) ≤ c uniformly for n → ∞.

Let G : Rk → Rn, G ∈ C(Rk; Rn) be continuous functions satisfying

lim sup
|U |→∞

|G(U)| < lim inf|U |→∞ F(U). (5.14)

Then
F(U) − 〈

V; F(Ũ)
〉 ≥

∣∣∣G(U) − 〈
V; G(Ũ)

〉∣∣∣ . (5.15)

Remark 5.8 Here F(U) ∈ M+(Q) and G(U) ∈ M(Q; Rn). The inequality (5.15)
is understood as

F(U) − 〈
V; F(Ũ)

〉 − ξ ·
(
G(U) + 〈

V; G(Ũ)
〉) ≥ 0

for any ξ ∈ Rn, |ξ | = 1, cf. Remark 5.7.

Proof Note that the desired result for continuous functionsF , G follows fromCorol-
lary 5.1 applied for any fixed ξ .

To extend it to the class of l.s.c. functions like F , we first observe that there is a
sequence of continuous functions fn ∈ C(Rk) such that

0 ≤ fn ≤ F, fn ↗ F .
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In view of (5.14), there exists R > 0 such that

|G(U)| < F(U) whenever |U | > R.

Consider a function

T : C∞(Rk), 0 ≤ T ≤ 1, T (U) = 0 for |U | ≤ R, T (U) = 1 for |U | ≥ R + 1,

and construct a sequence

Fn(U) = T (U)max{|G(U)|; fn(U)}.

We have

0 ≤ Fn(U) ≤ F(U) and Fn(U) ≥ |G(U)| for all |U | ≥ R + 1.

Applying Corollary 5.1 componentwise, we get

Fn(U) − 〈
V; Fn(Ũ)

〉 ≥
∣∣∣G(U) − 〈

V; G(Ũ)
〉∣∣∣

for any n. Thus the proof reduces to showing

Fn(U) − 〈
V; Fn(Ũ)

〉 ≤ F(U) − 〈
V; F(Ũ)

〉
,

or
H (U) − 〈

V; H (Ũ)
〉 ≥ 0 whenever H : Rk → [0,∞] is a l.s.c function.

However, the latter was observed in Remark 5.6. �

5.1.2 Consistent Approximation of the Euler System

We consider the complete Euler system introduced in Chap. 2 written in terms of the
conservative-entropy variables [�,m, S]

∂t� + divxm = 0, (5.16)

∂tm + divx

(
m ⊗ m

�

)
+ ∇xp(�, S) = 0, (5.17)

∂t

[
1

2

|m|2
�

+ �e(�, S)

]
+ divx

([
1

2

|m|2
�

+ �e(�, S)

]
m
�

)
+ divx

(
p(�, S)

m
�

)
= 0. (5.18)
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Furthermore, we suppose the fluid is confined to a bounded physical domain	 ⊂ Rd

with impermeable boundary,
m · n|∂	 = 0. (5.19)

Finally, we recall the entropy balance satisfied by any strong solution of (5.16)–
(5.18):

∂tS + divx

(
S
m
�

)
= 0. (5.20)

Remark 5.9 We point out that the entropy balance (5.20) and the energy balance
(5.18) are entirely equivalent in the context of smooth solutions. Moreover, at least
in the context of gas dynamics, the energy balance reflecting the First law of thermo-
dynamics should be retained in some form even for weak solutions, whereas (5.20)
may be replaced by the inequality

∂tS + divx

(
S
m
�

)
≥ 0. (5.21)

The concept of dissipative solution developed in this chapter is even more general
relaxing both (5.18) and (5.20) to inequalities, see Definition 5.2 below.

For definiteness, we consider the Boyle–Mariotte EOS,

p = (γ − 1)�e, e = cvϑ, cv = 1

γ − 1
, γ > 1. (5.22)

As observed in Sect. 2.2.4, relation (5.18) yields

p(�, S) = �γ exp

(
(γ − 1)

S

�

)
,

∂p(�, S)

∂S
= 1

cv

p(�, S)

�
.

Consequently, the balance of internal energy reads:

0 = ∂te + u · ∇xe + p

�
divxu = cv

[(
∂tϑ + u · ∇xϑ

)
+ ∂p(�, S)

∂S
divxu

]
, with u ≡ m

�
.

(5.23)

We recall from Sect. 2.2.4 that the extended functions

[�,m] ∈ Rd+1 	→ 1

2

|m|2
�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

|m|2
�

if � > 0, m ∈ Rd ,

0 if � = 0, m = 0,

∞ otherwise,

(5.24)
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and

[�, S] ∈ R2 	→ (γ − 1)�e(�, S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�γ exp
(

S
cv�

)
if � > 0, S ∈ R,

0 if � = 0, S ≤ 0,

∞ otherwise

(5.25)

are convex l.s.c. ranging in [0,∞]. In particular, the total energy

E(�,m, S) = 1

2

|m|2
�

+ �e(�, S),

extended as in (5.24), (5.25) enjoys the same property.

Definition 5.2 (CONSISTENT APPROXIMATION FOR EULER SYSTEMS)
A sequence {�n,mn, Sn}∞n=1 is a consistent approximation of the Euler system

(5.16)–(5.18) in (0, T ) × 	, with the boundary condition (5.19), and the initial data
[�0,m0, S0] if:
• (energy inequality) there is a sequence {�0,n,m0,n, S0,n}∞n=1,

�0,n → �0 weakly in L1(	), m0,n → m0 weakly in L1(	; Rd ),

S0,n → S0 weakly in L1(	),
(5.26)

and

∫

	

[
1

2

|m0,n|2
�0,n

+ �0,ne(�0,n, S0,n)

]
dx →

∫

	

[
1

2

|m0|2
�0

+ �0e(�0, S0)

]
dx < ∞

(5.27)
satisfying ∫

	

[
1

2

|mn|2
�n

+ �ne(�n, Sn)

]
(τ, ·) dx

≤
∫

	

[
1

2

|m0,n|2
�0,n

+ �0,ne(�0,n, S0,n)

]
dx + e1n

(5.28)

for a.a. 0 ≤ τ ≤ T , where
e1n → 0 as n → ∞;

• (minimum entropy principle) there exists s ∈ R such that

Sn ≥ �ns a.a. in (0, T ) × 	; (5.29)
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• (equation of continuity) the integral identity

T∫

0

∫

	

[
�n∂tϕ + mn · ∇xϕ

]
dx dt = −

∫

	

�0,nϕ(0, ·) dx + e2n[ϕ] (5.30)

holds for any ϕ ∈ C1
c ([0, T ) × 	), where

e2n[ϕ] → 0 as n → ∞ for any ϕ ∈ CM
c ([0, T ) × 	),

where M ≥ 1 is a positive integer;
• (momentum equation) the integral identity

T∫

0

∫

	

[
mn∂tϕ + 1�n>0

mn ⊗ mn

�n
: ∇xϕ + 1�n>0p(�n, Sn)divxϕ

]
dx dt

= −
∫

	

m0,nϕ(0, ·) dx + e3n[ϕ]
(5.31)

holds for any ϕ ∈ C1
c ([0, T ) × 	; Rd ), ϕ · n|∂	 = 0, where

e3n[ϕ] → 0 as n → ∞ for any ϕ ∈ CM
c ([0, T ) × 	; Rd );

• (entropy inequality) the integral inequality

T∫

0

∫

	

[
Sn∂tϕ + 1�n>0

(
Sn

mn

�n

)
· ∇xϕ

]
dx dt ≤ −

∫

	

S0,nϕ(0, ·) dx + e4n[ϕ]

(5.32)
holds for any ϕ ∈ C1

c ([0, T ) × 	), ϕ ≥ 0, where

e4n[ϕ] → 0 as n → ∞ for any ϕ ∈ CM
c ([0, T ) × 	).

Remark 5.10 The hypotheses (5.26), (5.27), together with the minimum entropy
principle (5.29), are equivalent to the strong convergence of the initial data in a
suitable Lebesgue space.

Remark 5.11 There are several ways how to obtain a consistent approximation. In
this monograph, the consistent approximations will be provided by suitable numeri-
cal schemes. The value of the parameterM that characterizes the required smoothness
of test functions then depends on the scheme. In the case of periodic boundary condi-
tions 	 = T

d , we may consider M = ∞. In the case of general domain, one should
be aware of possible problems related to regularity of the boundary ∂	.
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It follows from (5.27), (5.28) that the total energy

En =
∫

	

[
1

2

|mn|2
�n

+ �ne(�n,mn)

]
(τ, ·) dx ≤ E0 (5.33)

remains bounded for a.a. τ uniformly for n → ∞. In particular �n(t, x) ≥ 0 a.a. in
(0, T ) × 	, and

mn = 0 a.a. on the vacuum set {�n = 0} (5.34)

cf. (5.24). Similarly, comparing (5.25) with (5.29) we deduce

Sn = 0 a.a. on the vacuum set {�n = 0}. (5.35)

Next, we claim that a consistent approximation of the Euler system admits the
following uniform bounds.

Lemma 5.2 (Energy bounds)
Let 	 ⊂ Rd be a bounded domain. Suppose that

{�n,mn, Sn}∞n=1

is a consistent approximation of the complete Euler system in Q = (0, T ) × 	 in the
sense of Definition 5.2.

Then
ess sup

τ∈(0,T )

‖�n(τ, ·)‖Lγ (	) ≤ c(E0, s); (5.36)

ess sup
τ∈(0,T )

‖Sn(τ, ·)‖Lγ (	) ≤ c(E0, s); (5.37)

ess sup
τ∈(0,T )

‖mn(τ, ·)‖
L

2γ
γ+1 (	;Rd )

≤ c(E0, s); (5.38)

uniformly for n → ∞, where the bounds depend only on the initial energy upper
bound in (5.33) and the entropy lower bound (5.29).

Proof As Sn ≥ s�n, we get

exp

(
Sn

cv�n

)
≥ exp

(
s

cv

)
> 0;

whence (5.36).
Next, by the Hölder inequality,

‖mn‖
L

2γ
γ+1 (	;Rd )

≤ ‖√�n‖L2γ (	)

∥∥∥∥ |mn|√
�n

∥∥∥∥
L2(	;Rd )

,



5.1 Measure-Valued Solutions to the Euler System 135

where the right hand side integrals are bounded in view of (5.33), (5.36).
Finally,

|Sn| ≤ |s|�n if Sn ≤ 0,

while

�γ
n exp

(
Sn

cv�n

)
= c−γ

v exp

(
Sn

cv�n

)(
S

cv�n

)−γ

Sγ
n ≥ c(γ )Sγ

n whenever Sn ≥ 0.

Thus (5.37) follows from (5.33), (5.36). �

Finally, we claim the bound

ess sup
τ∈(0,T )

∥∥∥∥ Sn√
�n

(τ, ·)
∥∥∥∥

L2γ (	)

≤ c(E0, s). (5.39)

Indeed one has ∣∣∣∣ Sn√
�n

∣∣∣∣ ≤ −s
√

�n if Sn ≤ 0. (5.40)

If Sn > 0, we get

�γ
n exp

(
Sn

cv�n

)
= �γ

n exp

(
Sn√
�n

1

cv
√

�n

)

= c−2γ
v

exp
(

Sn√
�n

1
cv

√
�n

)
(

Sn√
�n

1
cv

√
�n

)2γ
(

Sn√
�n

)2γ
>∼
(

Sn√
�n

)2γ

.

(5.41)

Consequently, (5.39) follows from (5.40), (5.41), and the energy bounds established
in Lemma 5.2.

5.1.3 Asymptotic Limit of Consistent Approximation
of the Euler System

Our goal is to identify the limit of a consistent approximation {�n,mn, Sn}∞n=1 for n →
∞. The resulting object will represent a generalized solution of the Euler system.
Noticing that the only uniform bounds available are the Lp-bounds established in
Lemma 5.2, we may anticipate that this procedure takes us beyond the class of weak
(distributional) solutions introduced in Chap. 4. In the course of the limit process,
we will systematically extract subsequences of the original sequence that will be not
relabeled unless explicitly specified.
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In accordance with the uniform bounds obtained in Lemma 5.2 we may assume
that

�n → � weakly-(*) in L∞(0, T ; Lγ (	)),

Sn → S weakly-(*) in L∞(0, T ; Lγ (	)),

mn → m weakly-(*) in L∞(0, T ; L
2γ

γ+1 (	; Rd ))

(5.42)

extracting suitable subsequences as the case may be. In addition, by virtue of (5.28),
(5.29),

� ≥ 0, S ≥ �s a.a. in (0, T ) × 	. (5.43)

5.1.3.1 Equation of Continuity

Letting n → ∞ in the approximate equation of continuity (5.30) we obtain

T∫

0

∫

	

[
�∂tϕ + m · ∇xϕ

]
dx dt = −

∫

	

�0ϕ dx (5.44)

for any test function ϕ ∈ CM
c ([0, T ) × 	). Here, the class of test functions can be

extended to ϕ ∈ Cc([0, T );	) ∩ W 1,∞((0, T ) × 	) by a simple density argument.
Moreover, exactly as in Sect. 2.1.3, we deduce

� ∈ Cweak([0, T ]; Lγ (	)).

Thus (5.44) can be equivalently written in the form

⎡
⎣
∫

	

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
�∂tϕ + m · ∇xϕ

]
dx dt (5.45)

for any 0 ≤ τ ≤ T , and any ϕ ∈ W 1,∞((0, T ) × 	).

5.1.3.2 Energy Balance

In accordance with (5.28), the total energy

En = E(�n,mn, Sn) = 1

2

|mn|2
�n

+ �ne(�n, Sn)

is bounded in L∞(0, T ; L1(	)) ↪→ L∞(0, T ;M+(	)). Consequently, again for a
suitable subsequence, we may assume that
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E(�n,mn, Sn) → E(�,m, S) weakly-(*) in L∞(0, T ;M+(	)).

Besides, in accordance with Proposition 5.1, the vector valued sequence

(t, x) ∈ (0, T ) × 	 	→
[
�n(t, x),mn(t, x), Sn(t, x)

]
∈ Rd+2

generates a Young measure
{
Vt,x

}
(t,x)∈(0,T )×	

. In terms of Definition 5.1, we intro-
duce:

• energy concentration defect

Ecd ≡ E(�,m, S) − 〈
V; E(̃�, m̃, S̃)

〉 ;
• energy oscillation defect

Eod ≡ 〈
V; E(̃�, m̃, S̃)

〉 − E(�,m, S);

• energy defect
E = Ecd + Eod = E(�,m, S) − E(�,m, S).

As the total energy E = E(�,m, S) is a convex l.s.c. function of its arguments,
cf. (5.24), (5.25), we may apply Corollary 5.2 to obtain

Ecd ∈ L∞(0, T ;M+(	)), (5.46)

and, by Jensen’s inequality,

Eod ∈ L∞(0, T ; L1(	)), Eod ≥ 0 a.a. in (0, T ) × 	,

in particular, E ∈ L∞(0, T ;M+(	)).
(5.47)

Finally, it follows from (5.28), (5.27) that

∫

	

dE(�,m, S)(τ ) =
∫

	

〈
Vτ,x; E(̃�, m̃, S̃)

〉
dx +

∫

	

dEcd (τ )

=
∫

	

[
1

2

|m|2
�

+ �e(�, S)

]
(τ, ·) dx +

∫

	

dE(τ )

≤
∫

	

[
1

2

|m0|2
�0

+ �0e(�0, S0)

]
dx

(5.48)

for a.a. τ ∈ (0, T ). Relation (5.48) can be seen as the asymptotic limit of the total
energy balance.
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Remark 5.12 If, in addition to (5.28), the approximate total energy

τ 	→
∫

	

En(τ, ·) dx

is a nonincreasing function of τ ∈ (0, T ), the same is true for the limit

τ 	→
∫

	

E(�,m, S)(τ ) dx.

5.1.3.3 Momentum Equation

We have everything at hand to perform the limit in the momentum equation (5.31).
As the energy of the approximate solutions is finite, we deduce

1�n>0p(�n, Sn) = (γ − 1)�ne(�n, Sn) a.a. in (0, T ) × 	.

Consequently, repeating the above arguments based on convexity of the pres-
sure/internal energy EOS, we obtain

1�n>0p(�n, Sn) → 1�>0p(�, S) weakly-(*) in L∞(0, T ;M+(	)),

with the corresponding pressure concentration/oscillation defects:

Pcd = 1�>0p(�, S) − 〈
V; 1�̃>0p(̃�, S̃)

〉
= (γ − 1)

[
�e(�, S) − 〈

V; �̃e(̃�, S̃)
〉] ∈ L∞(0, T ;M+(	)),

and

Pod = 〈
V; 1�̃>0p(̃�, S̃)

〉 − 1�>0p(�, S) = (γ − 1)
[〈
V; �̃e(̃�, S̃)

〉 − �e(�, S)
] ≥ 0.

Here, it is important to notice that the functions

[̃�, S̃] ∈ R2 	→ 1�̃>0p(̃�, S̃) and [̃�, S̃] ∈ R2 	→ (γ − 1)̃�e(̃�, S̃),

where the latter is defined through (5.25), are not the same. However, they coincide
on the set

F1 ≡
{
[̃�, S̃]

∣∣∣ �̃ > 0, S̃ > 0
}

∪
{
[̃�, S̃]

∣∣∣ �̃ ≥ 0, S̃ ≥ �s
}

.

Moreover, thanks to the energy inequality (5.28) and the lower bound on the entropy
(5.29),
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[�n(t, x), Sn(t, x)] ∈ F1 for a.a. (t, x) ∈ (0, T ) × 	.

Similarly, by virtue of the limit energy inequality (5.48), we have

Vt,x[F1] = 1 for a.a. (t, x) ∈ (0, T ) × 	,

meaning
�̃e(̃�, S̃) = 1�̃>0p(̃�, S̃) Vt,x − a.s.

for a.a. (t, x) ∈ (0, T ) × 	.
Using similar arguments, we handle the convective term. First, we introduce the

set
F2 =

{
[̃�, m̃]

∣∣∣ �̃ > 0, m̃ ∈ R
}

∪
{
[̃�, m̃]

∣∣∣ �̃ = 0, m̃ = 0
}

and observe, similarly to the above, that

[�n(t, x),mn(t, x)] ∈ F2 for a.a. (t, x) ∈ (0, T ),

and
Vt,x[F2] = 1 for a.a. (t, x) ∈ (0, T ). (5.49)

Next, we have

1�n>0
mn ⊗ mn

�n
bounded in L∞(0, T ;M+(	; Rd×d

sym ));

whence, up to a subsequence,

1�n>0
mn ⊗ mn

�n
→ 1�>0

m ⊗ m
�

weakly-(*) in L∞(0, T ;M+(	; Rd×d
sym )),

in particular,

tr

[
1�n>0

mn ⊗ mn

�

]
= |mn|2

�n

→ |m|2
�

= tr

[
1�>0

m ⊗ m
�

]
weakly-(*) in L∞(0, T ;M+(	)).

We introduce the defects associated to the convective term,

Ccd = 1�>0
m ⊗ m

�
−
〈
V; 1�̃>0

m̃ ⊗ m̃
�̃

〉
, Cod =

〈
V; 1�̃>0

m̃ ⊗ m̃
�̃

〉
− 1�>0

m ⊗ m
�

,
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and

Cd = Ccd + Cod = 1�>0
m ⊗ m

�
− 1�>0

m ⊗ m
�

.

An important observation is that the defects are positively semidefinite symmetric
matrices, more precisely,

Ccd ∈ L∞(0, T ;M+(	; Rd×d
sym )),

Cod ∈ L∞(0, T ; L1(	; Rd×d
sym )), Cod (t, x) ≥ 0 for a.a. (t, x).

Indeed, for any ξ ∈ Rd , the function

[�,m] 	→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|m·ξ |2
�

if � > 0,

0 if � = 0, m · ξ = 0,

∞ otherwise

is convex l.s.c. Consequently, in view of Corollary 5.2,

Ccd : (ξ ⊗ ξ) = |m · ξ |2
�

−
〈
V; 1�̃>0

|m̃ · ξ |2
�̃

〉
≥ 0, (5.50)

while, by Jensen’s inequality and (5.49),

Cod : (ξ ⊗ ξ) =
〈
V; 1�̃>0

|m̃ · ξ |2
�̃

〉
− 1�>0

|m · ξ |2
�

≥ 0 (5.51)

for any ξ ∈ Rd .
Summing up the previous discussion, we can let n → ∞ in the momentum equa-

tion (5.31) obtaining

T∫

0

∫

	

[
m · ∂tϕ +

〈
V; 1�>0

m ⊗ m
�

〉
: ∇xϕ + 〈

V; 1�>0p(�, S)
〉
divxϕ

]
dx dt

= −
∫

	

m0 · ϕ(0, ·) dx −
T∫

0

∫

	

∇xϕ : dCcd (t) dt −
T∫

0

∫

	

divxϕ dPcd (t) dt,

(5.52)
for any test function ϕ ∈ CM

c ([0, T ) × 	; Rd ), ϕ · n|∂	 = 0, M ≥ 1 is a positive
integer. The concentration defects

Ccd ∈ L∞(0, T ;M+(	; Rd×d
sym )), Pcd ∈ L∞(0, T ;M+(	))
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are controlled by the energy defect,

d Ecd ≤
(
tr[Ccd ] + Pcd

)
≤ d Ecd for certain constants 0 < d ≤ d . (5.53)

Relation (5.53) is crucial for the weak-strong uniqueness principle we show later in
this chapter. It follows from (5.52) that

m ∈ Cweak([0, T ]; L
2γ

γ+1 (	; Rd ));

whence (5.52) may be rewritten as

⎡
⎣
∫

	

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
m · ∂tϕ +

〈
V; 1�>0

m ⊗ m
�

〉
: ∇xϕ + 〈

V; 1�>0p(�, S)
〉
divxϕ

]
dx dt

+
τ∫

0

∫

	

∇xϕ : dCcd (t) dt +
τ∫

0

∫

	

divxϕ dPcd (t) dt

(5.54)
for any 0 ≤ τ ≤ T , and any ϕ ∈ CM ([0, T ] × 	; Rd ), ϕ · n|∂	 = 0.

Furthermore, we may rewrite (5.54) using the oscillation defects as

⎡
⎣
∫

	

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
m · ∂tϕ + 1�>0

m ⊗ m
�

: ∇xϕ + 1�>0p(�, S)divxϕ

]
dx dt

+
τ∫

0

∫

	

∇xϕ : Cod dx dt +
τ∫

0

∫

	

∇xϕ : dCcd (t) dt

+
τ∫

0

∫

	

divxϕPod dx dt +
τ∫

0

∫

	

divxϕ dPcd (t) dt

(5.55)

for any 0 ≤ τ ≤ T , and any ϕ ∈ CM ([0, T ] × 	; Rd ), ϕ · n|∂	 = 0. Finally, intro-
ducing the Reynolds defect

R ≡ Ccd + Cod +
(
Pcd + Pod

)
I ∈ L∞(0, T ;M+(	; Rd×d

sym )),
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we may rewrite (5.55) in a concise form

⎡
⎣
∫

	

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
m · ∂tϕ + 1�>0

m ⊗ m
�

: ∇xϕ + 1�>0p(�, S)divxϕ

]
dx dt

+
τ∫

0

∫

	

∇xϕ : dR(t) dt

(5.56)

for any 0 ≤ τ ≤ T , and any ϕ ∈ CM ([0, T ] × 	; Rd ), ϕ · n|∂	 = 0, M ≥ 1 is a pos-
itive integer. Moreover, the trace of Reynolds defectR is proportional to the energy
defect E, more specifically,

d E ≤ tr[R] ≤ d E for certain constants 0 < d ≤ d . (5.57)

Remark 5.13 Similarly to the limit form of the equation of continuity (5.44), the
weak formulation of the momentum equation (5.56) does not contain explicitly the
Young measure {Vt,x}(t,x)∈(0,T )×	.

5.1.3.4 Entropy Balance

Our ultimate goal is to perform the limit in the entropy inequality (5.32). Using the
uniform bound (5.39) we may write

1�n>0Sn
mn

�n
= 1�n<0

Sn√
�n

mn√
�n

,

1�n>0
Sn√
�n

bounded in L∞(0, T ; L2γ (	)),

1�n>0
mn√
�n

bounded in L∞(0, T ; L2(	; Rd )).

Consequently, again up to a suitable subsequence,

1�n>0Sn
mn

�n
→ 1�>0S

m
�

weakly-(*) in L∞(0, T ; L
2γ

γ+1 (	; Rd )).
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One is tempted to say that

1�>0S
m
�

=
〈
V; 1�̃>0S̃

m̃
�̃

〉
, (5.58)

which is indeed true, however, the argument is not straightforward as we deal with a
composition with a discontinuous Borel function. To see (5.58), consider a sequence
of functions

χk(�) ∈ C∞(R), χk(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if � ≤ 1
2k ,

∈ [0, 1] if 1
2k < � < 1

k ,

1 if � ≥ 1
k .

Writing

1�n>0Sn
mn

�n
= 1�n>0(1 − χk(�n))Sn

mn

�n
+ χk(�n)Sn

mn

�n

we deduce

χk(�n)Sn
mn

�n
→

〈
V;χk (̃�)̃S

m̃
�̃

〉
weakly-(*) in L∞(0, T ; L

2γ
γ+1 (	; Rd )),

where, by the Lebesgue Dominant Convergence Theorem,

〈
V;χk (̃�)̃S

m̃
�̃

〉
→

〈
V; 1�̃>0S̃

m̃
�̃

〉
as k → ∞.

Consequently, we have to show that

T∫

0

∫

	

1�n>0(1 − χk(�n))

∣∣∣∣Sn
mn

�n

∣∣∣∣ dx dt

≤
T∫

0

∫

	

10<�n≤ 1
k

∣∣∣∣Sn
mn

�n

∣∣∣∣ dx dt → 0 as k → ∞
(5.59)

uniformly in n = 1, 2 . . .

To see (5.59) we evoke the energy estimates, specifically (5.28), (5.29), obtaining

ess sup
t∈(0,T )

∫

	

1�n>0�
γ
n exp

(
(γ − 1)

Sn

�n

)
dx ≤ c, Sn ≥ �ns uniformly for n → ∞.
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Consequently, for any β ≥ 1, there is a constant c = c(β, s) such that

∫

	

1�n>0�
γ−β
n |Sn|β dx ≤ c(β, s)

∫

	

1�n>0�
γ
n exp

(
(γ − 1)

Sn

�n

)
dx.

In particular, for β = 3γ we obtain

ess sup
t∈(0,T )

∫

	

1�n>0

(
Sn

�
2
3
n

)3γ

dx ≤ c.

Going back to (5.59) we conclude

∫

	

10<�n≤ 1
k

∣∣∣∣Sn
mn

�n

∣∣∣∣ dx =
∫

	

10<�n≤ 1
k
�

1
6
n

∣∣∣∣∣
Sn

�
2
3
n

mn√
�n

∣∣∣∣∣ dx

≤ k− 1
6

∫

	

1�n>0

∣∣∣∣∣
Sn

�
2
3
n

mn√
�n

∣∣∣∣∣ dx → 0

(5.60)

for k → ∞ uniformly in t ∈ [0, T ] and n = 1, 2, . . . .We have shown (5.59); whence
(5.58).

Summing up the previous discussion, we may write the limit entropy balance
letting n → ∞ in (5.32):

T∫

0

∫

	

[
S∂tϕ +

〈
V; 1�̃>0

(
S̃
m̃
�̃

)〉
· ∇xϕ

]
dx dt ≤ −

∫

	

S0ϕ(0, ·) dx (5.61)

for any ϕ ∈ CM
c ([0, T ) × 	), ϕ ≥ 0, M ≥ 1 being a positive integer. Moreover, the

validity of (5.61) can be extended to the class of test functions ϕ ∈ Cc([0, T ) × 	) ∩
W 1,∞((0, T ) × 	), ϕ ≥ 0, via a density argument.

The total entropy, in general, is not weakly continuous in time due to the inequality
in (5.61). However, we may deduce that the function

τ 	→
∫

	

S(τ, x)φ(x) dx +
τ∫

0

∫

	

〈
V; 1�̃>0

(
S̃
m̃
�̃

)〉
· ∇xφ(x) dx dt

is nondecreasing for any φ ∈ C(	), φ ≥ 0. In particular, we may correctly define
the one-sided limits ∫

	

S(τ±, x)φ(x) dx,
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see Sect. 2.1.4 for details. Accordingly, the entropy balance (5.61) can be written in
the form

⎡
⎣
∫

	

Sϕ dx

⎤
⎦

t=τ2+

t=τ1−

≥
τ2∫

τ1

∫

	

[
S∂tϕ +

〈
V; 1�̃>0

(
S̃
m̃
�̃

)〉
· ∇xϕ

]
dx dt (5.62)

for any 0 ≤ τ1 ≤ τ2 < T , and any ϕ ∈ W 1,∞((0, T ) × 	), ϕ ≥ 0. Here, we have set

S(0−, ·) = S0.

5.1.3.5 Conclusion

The equation of continuity (5.45), themomentumbalance (5.54), the entropy inequal-
ity (5.62), together with the energy inequality (5.48) characterize the target problem
satisfied by the asymptotic limit of a consistent approximation of the complete Euler
system (5.16)–(5.19). Note that the same result holds for the space periodic boundary
conditions	 = T

d . In this case, the test functionsϕ in themomentum balance (5.54)
do not have to satisfy any additional boundary conditions, and validity of (5.54) can
be extended to ϕ ∈ C1([0, T ] × 	; Rd ) by density argument. The Young measure
{Vt,x}(t,x)∈(0,T )×	 represents a measure-valued solution of the system introduced in
detail in the next section.

5.1.4 Measure-Valued Solutions to the Complete Euler
System

Motivated by the discussion in the preceding section, we introduce the concept of
dissipative measure-valued solution to the complete Euler system.

Definition 5.3 (DISSIPATIVE MEASURE-VALUED (DMV) SOLUTION TO

EULER SYSTEM)
Let 	 ⊂ Rd , d = 1, 2, 3 be a bounded domain. A parametrized probability mea-

sure {Vt,x}(t,x)∈(0,T )×	,

V ∈ L∞((0, T ) × 	;P(Rd+2)), Rd+2 =
{
[̃�, m̃, S̃]

∣∣∣ �̃ ∈ R, m̃ ∈ Rd , S̃ ∈ R
}

,

is called dissipative measure-valued (DMV) solution of the Euler system (5.16)–
(5.18), with the boundary conditions (5.19), and the initial conditions [�0,m0, S0] if
the following holds:
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• (lower bound on density and entropy)

Vt,x

[ {̃
� ≥ 0, S̃ ≥ s̃�

} ] = 1 for a.a. (t, x); (5.63)

• (energy inequality) the integral inequality

∫

	

〈
Vτ,x; 1

2

|m̃|2
�̃

+ �̃e(̃�, S̃)

〉
dx +

∫

	

dEcd (τ )

≤
∫

	

[
1

2

|m0|2
�0

+ �0e(�0, S0)

]
dx

(5.64)

holds for a.a. 0 ≤ τ ≤ T , with the energy concentration defect

Ecd ∈ L∞(0, T ;M+(	));

• (equation of continuity)

〈V; �̃〉 ∈ Cweak([0, T ]; Lγ (	)),
〈
V0,x; �̃

〉 = �0(x) for a.a. x ∈ 	,

and the integral identity

⎡
⎣
∫

	

〈V; �̃〉 ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
〈V; �̃〉 ∂tϕ + 〈V; m̃〉 · ∇xϕ

]
dx dt (5.65)

for any 0 ≤ τ ≤ T , and any ϕ ∈ W 1,∞((0, T ) × 	);
• (momentum equation)

〈V; m̃〉 ∈ Cweak([0, T ]; L
2γ

γ+1 (	; Rd )),
〈
V0,x; m̃

〉 = m0(x) for a.a. x ∈ 	,

and the integral identity



5.1 Measure-Valued Solutions to the Euler System 147

⎡
⎣
∫

	

〈V; m̃〉 · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
〈V; m̃〉 · ∂tϕ +

〈
V; 1�̃>0

m̃ ⊗ m̃
�̃

〉
: ∇xϕ

]
dx dt

+
τ∫

0

∫

	

〈
V; 1�̃>0p(̃�, S̃)

〉
divxϕ dx dt

+
τ∫

0

∫

	

∇xϕ : dRcd (t) dt

(5.66)

for any 0 ≤ τ ≤ T , and any ϕ ∈ CM ([0, T ] × 	; Rd ), ϕ · n|∂	 = 0, M ≥ 1, with
Reynolds concentration defect

Rcd ∈ L∞(0, T ;M+(	; Rd×d
sym ))

satisfying

d Ecd ≤ tr[Rcd ] ≤ d Ecd for some constants 0 < d ≤ d; (5.67)

• (entropy balance)

∫

	

〈
Vτ±,x; S̃

〉
φ(x) dx ≡ lim

t→τ±

∫

	

〈
Vt,x; S̃

〉
φ(x) dx exists for any 0 ≤ τ < T ,

∫

	

〈
V0−,x; S̃

〉
φ(x) dx ≡

∫

	

S0φ dx for any φ ∈ C(	),

and the integral inequality

⎡
⎣
∫

	

〈
V; S̃

〉
ϕ dx

⎤
⎦

t=τ2+

t=τ1−

≥
τ2∫

τ1

∫

	

[〈
V; S̃

〉
∂tϕ +

〈
V; 1�̃>0

(
S̃
m̃
�̃

)〉
· ∇xϕ

]
dx dt

(5.68)

for any 0 ≤ τ1 ≤ τ2 < T , and any ϕ ∈ W 1,∞((0, T ) × 	), ϕ ≥ 0.
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Remark 5.14 Similar definition can be used in the case of periodic boundary con-
ditions 	 = T

d . The only modification concerns the class of test functions ϕ in the
momentum equation (5.66), namely,

ϕ ∈ C1([0, T ] × T
d ; Rd ).

Note that (5.66) contains the concentration defect measureRcd acting on∇xϕ, which
requires the latter to be continuous in 	 for a.a. t ∈ (0, T ).

The measure Ecd reflects the energy concentration defect, whileRcd is Reynolds
concentration defect. Aswe have seen in the preceding section, they describe possible
concentrations in the sequence of approximate solutions. The important property of
DMV solutions is the energy balance (5.64) that is crucial for proving the weak
DMV-strong uniqueness principle later in this chapter. Summarizing the discussion
in Sect. 5.1.3 we obtain the following result.

Theorem 5.1 (Asymptotic limit of consistent approximation)
Let 	 ⊂ Rd , d = 1, 2, 3 be a bounded domain. Let {�n,mn, Sn}∞n=1 be a consistent

approximation of the complete Euler system specified in Definition 5.2.
Then, up to a subsequence,

• {�n,mn, Sn}∞n=1 generates a Young measure
{
Vt,x

}
(t,x)∈(0,T )×	

Vt,x ∈ P(Rd+2), Rd+2 = {̃
� ∈ R, m̃ ∈ Rd , S̃ ∈ R

} ;

•
En(�n,mn, Sn) =

[
1

2

|mn|2
�n

+ �ne(�n,mn)

]
→ E(�,m, S)

weakly-(*) in L∞(0, T ;M(	));
•

1�n>0

(
mn ⊗ mn

�n
+ p(�n, Sn)I

)
→ 1�>0

(
m ⊗ m

�
+ p(�, S)I

)

weakly-(*) in L∞(0, T ;M(	; Rd×d
sym )).

The Young measure {Vt,x}(t,x)∈(0,T )×	 is a dissipative measure-valued solution of
the Euler system in the sense of Definition 5.3, with the defect measures

Ecd = E(�,m, S) − 〈
V; E(̃�, m̃, S̃)

〉 ∈ L∞(0, T ;M+(	)),

Rcd = 1�>0

(
m ⊗ m

�
+ p(�, S)I

)
−
〈
V; 1�̃>0

(
m̃ ⊗ m̃

�̃
+ p(̃�, S̃)I

)〉

∈ L∞(0, T ;M+(	; Rd×d
sym )).
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The class of DMV solutions is the smallest one to capture all possible limits of
consistent approximations, at least in view of the available estimates. Note, however,
that the definition of the DMV solution is intrinsic, meaning it does require any
kind of generating sequence. The following theorem reveals some basic properties
of DMV solutions.

Theorem 5.2 (Properties of DMV solutions)
Let 	 ⊂ Rd , d = 1, 2, 3 be a bounded domain.

• Let {Vn}∞n=1 be a sequence of DMV solutions in the sense of Definition 5.3 starting
from the initial data [�0,n,m0,n, S0,n] satisfying

�0,n → �0 weakly in L1(	), m0,n → m0 weakly in L1(	; Rd ),

S0,n → S0 weakly in L1(	),

∫

	

[
1

2

|m0,n|2
�0,n

+ �0,ne(�0,n, S0,n)

]
dx →

∫

	

[
1

2

|m0|2
�0

+ �0e(�0, S0)

]
dx < ∞.

Then, up to a subsequence,

Vn → V weakly-(*) in L∞(0, T ;P(Rd+2)),

where V is a DMV solution starting from the initial data [�0,m0, S0].
• The set of all DMV solutions starting from the same initial data is convex.

Remark 5.15 Note that a convex combination of two DMV solutions starting from
different initial data may not be a DMV solution as the convex combination of the
initial data may violate the energy inequality (5.64).

Proof The arguments are very similar to those in Sect. 5.1.3. First observe that the
energy balance (5.64), together with the lower bound for the entropy (5.63), imply
that a family of measures

⎧⎨
⎩

1

|B|
∫

B

Vn
t,x dx dt

⎫⎬
⎭

∞

n=1

, B ⊂ (0, T ) × 	 an open set

is uniformly tight. Consequently, up to a subsequence,

Vn → V weakly-(*) in L∞(0, T ;P(Rd+2)),

where
Vt,x

{̃
� ≥ 0, S̃ ≥ s̃�

} = 1.
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Next, as the energy E = E(̃�, m̃, S̃) is a convex function, we apply Jensen’s
inequality to the energy balance (5.64) to obtain uniform bounds on the expected
values similar to (5.42). In particular,

〈
Vn; �̃

〉 → 〈V; �̃〉 weakly-(*) in L∞(0, T ; Lγ (	)),〈
Vn; m̃〉 → 〈V; m̃〉 weakly-(*) in L∞(0, T ; L

2γ
γ+1 (	; Rd )),〈

Vn; S̃
〉 → 〈

V; S̃
〉
weakly-(*) in L∞(0, T ; Lγ (	)).

Obviously, the limit satisfies the equation of continuity (5.65).
Consider the cut-off functions

χk(�) ∈ C∞(R), χk(z) =
⎧⎨
⎩
0 if � ≤ 1

2k ,

∈ [0, 1] if 1
2k < � < 1

k ,

1 if � ≥ 1
k ,

and

Tk(Y ) ∈ C∞(R), Tk(Y ) =
{
0 if Y ≤ 1

k ,

T ′
k(Y ) ≥ 0, Tk(Y ) ≤ k otherwise.

,

Tk(Y ) ↗ Y as k → ∞ for any Y ≥ 0.

Now, we rewrite the kinetic energy in the form

1

2

|m̃|2
�̃

= χk (̃�)
1

2

Tk(|m̃|)2
�̃

+ (1 − χk (̃�))
1

2

|m̃|2
�̃

+ χk (̃�)
1

2

|m̃|2 − Tk(|m̃|)2
�̃

,

(5.69)
and, similarly the convective term,

1�̃>0
m̃ ⊗ m̃

�̃
= χk (̃�)

m̃ ⊗ m̃
�̃

Tk(|m̃|)2
|m̃|2 + 1�̃>0(1 − χk (̃�))

m̃ ⊗ m̃
�̃

+ χk (̃�)
m̃ ⊗ m̃

�̃

(
1 − Tk(|m̃|)2

|m̃|2
)

.

(5.70)

Thanks to the energy balance (5.64)

Vn
t,x

[
{̃� > 0} ∪ {̃� = 0, m̃ = 0}

]
= Vt,x

[
{̃� > 0} ∪ {̃� = 0, m̃ = 0}

]
= 1

for a.a. (t, x). Consequently,

〈
Vn;χk (̃�)

1

2

Tk(|m̃|)2
�̃

〉
→

〈
V;χk (̃�)

1

2

Tk(|m̃|)2
�̃

〉
weakly-(*) in L∞((0, T ) × 	)
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as n → ∞, and, by the Lebesgue Dominant Convergence Theorem,

〈
Vt,x;χk (̃�)

1

2

Tk(|m̃|)2
�̃

〉
→

〈
Vt,x; 1

2

|m̃|2
�̃

〉
as k → ∞ for a.a. t, x.

Similarly,

〈
Vn;χk (̃�)

m̃ ⊗ m̃
�̃

Tk(|m̃|)2
|m̃|2

〉
→

〈
V;χk (̃�)

m̃ ⊗ m̃
�̃

Tk(|m̃|)2
|m̃|2

〉

weakly-(*) in L∞((0, T ) × 	; Rd×d
sym ) as n → ∞,

and

〈
Vt,x;χk (̃�)

m̃ ⊗ m̃
�̃

Tk(|m̃|)2
|m̃|2

〉
→

〈
Vt,x; 1�̃>0

m̃ ⊗ m̃
�̃

〉
as k → ∞ for a.a. t, x.

The remaining terms in (5.69), (5.70) will contribute to the concentration defect.
We have

〈
Vn; (1 − χk (̃�))

1

2

|m̃|2
�̃

〉
→ (1 − χk(�))

1

2

|m|2
�

weakly-(*) in L∞(0, T ;M+(	)) as n → ∞,

(1 − χk(�))
1

2

|m|2
�

→ E1
cd weakly-(*) in L∞(0, T ;M+(	)) as k → ∞.

Similarly,

〈
Vn; 1�̃>0(1 − χk (̃�))

m̃ ⊗ m̃
�̃

〉
→ 1�>0(1 − χk(�))

m ⊗ m
�

weakly-(*) in L∞(0, T ;M+(	; Rd×d
sym )) as n → ∞,

and

1�>0(1 − χk(�))
m ⊗ m

�
→ R1

cd weakly-(*) inL∞(0, T ;M+(	; Rd×d
sym )) as k → ∞,

where

E1
cd = 1

2
tr[R1

d ].

Applying the same treatment to the remaining terms in (5.69), (5.70), and also to
the internal energy/pressure we may infer that the limit quantities satisfy the energy
balance (5.64), (5.65), with the concentration defect measure satisfying (5.67).
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It remains to perform the limit in the entropy balance (5.68). We use the same
argument as in Sect. 5.1.3. We write the entropy flux as

〈
Vn; 1�̃S̃

m̃
�̃

〉
=
〈
Vn;χk (̃�)̃S

m̃
�̃

〉
+
〈
Vn; (1 − χk (̃�))̃S

m̃
�̃

〉
,

where
〈
Vn;χk (̃�)̃S

m̃
�̃

〉
→

〈
V;χk (̃�)̃S

m̃
�̃

〉
weakly-(*) in L∞(0, T ; L

2γ
γ+1 (	; Rd )),

and 〈
Vt,x;χk (̃�)̃S

m̃
�̃

〉
→

〈
Vt,x; 1�̃>0S̃

m̃
�̃

〉
as k → ∞ for a.a. t, x.

The remaining term 〈
Vn; (1 − χk (̃�))̃S

m̃
�̃

〉

can be handled exactly as in (5.60), namely

∣∣∣∣
〈
Vn; (1 − χk (̃�))̃S

m̃
�̃

〉∣∣∣∣ ≤ ck− 1
6

〈
Vn; 1�̃>0

∣∣∣∣∣
S̃

�̃
2
3

m̃√
�̃

∣∣∣∣∣
〉

,

where, thanks to the energy and entropy estimates

〈
Vn; 1�̃>0

∣∣∣∣∣
S̃

�̃
2
3

m̃√
�̃

∣∣∣∣∣
〉
is bounded in L∞(0, T ; L1(	)) uniformly for n → ∞.

As convexity of the set of all DMV solutions emanating from the same initial data
is obvious, the proof is complete. �

5.1.5 Measure-Valued Solutions to the Barotropic
(Isentropic) Euler System

The isentropic Euler systemmay be seen as a particular case of the complete system,
in which the entropy is supposed to be constant. As a result, the pressure p,

p = p(�, S) = �γ exp

(
(γ − 1)

S

�

)
= a�γ , a > 0, γ > 1,
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depends only on the density. Accordingly, the entropy balance (5.20) become super-
fluous, and the complete system reduces to

∂t� + divxm = 0,

∂tm + divx

(
m ⊗ m

�

)
+ ∇xp(�) = 0, p(�) = a�γ ,

(5.71)

together with the impermeability boundary condition

m · n|∂	 = 0. (5.72)

We occasionally speak about barotropic Euler system if the pressure p = p(�)

depends only on the mass density.
Obviously, all the results obtained for the complete system transfer without any

essential modification to the barotropic Euler system. We summarize the relevant
material in the two sections below.

5.1.5.1 Consistent Approximation

Similarly to the complete Euler system, we introduce consistent approximation to
its isentropic (or barotropic) version.

Definition 5.4 (CONSISTENT APPROXIMATION OF BAROTROPIC EULER SYS-
TEM)

A sequence {�n,mn}∞n=1 is a consistent approximation of the barotropic Euler
system (5.71) in (0, T ) × 	, with the boundary condition (5.72), and the initial data
[�0,m0] if:
• (energy inequality) there is a sequence {�0,n,m0,n}∞n=1,

�0,n → �0 weakly in L1(	), m0,n → m0 weakly in L1(	; Rd ), (5.73)

and

∫

	

[
1

2

|m0,n|2
�0,n

+ P(�0,n)

]
dx →

∫

	

[
1

2

|m0|2
�0

+ P(�0)

]
dx < ∞,

P′(�)� − P(�) = p(�),

(5.74)

satisfying

∫

	

[
1

2

|mn|2
�n

+ P(�n)

]
(τ, ·) dx ≤

∫

	

[
1

2

|m0,n|2
�0,n

+ P(�0,n)

]
dx + e1n (5.75)
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for a.a. 0 ≤ τ ≤ T , where
e1n → 0 as n → ∞;

• (equation of continuity) the integral identity

T∫

0

∫

	

[
�n∂tϕ + mn · ∇xϕ

]
dx dt = −

∫

	

�0,nϕ(0, ·) dx + e2n[ϕ] (5.76)

holds for any ϕ ∈ C1
c ([0, T ) × 	), where

e2n[ϕ] → 0 as n → ∞ for any ϕ ∈ CM
c ([0, T ) × 	),

where M ≥ 1 is a positive integer;
• (momentum equation) the integral identity

T∫

0

∫

	

[
mn · ∂tϕ + 1�n>0

mn ⊗ mn

�n
: ∇xϕ + p(�n)divxϕ

]
dx dt

= −
∫

	

m0,n · ϕ(0, ·) dx + e3n[ϕ]
(5.77)

holds for any ϕ ∈ C1
c ([0, T ) × 	; Rd ), ϕ · n|∂	 = 0, where

e3n[ϕ] → 0 as n → ∞ for any ϕ ∈ CM
c ([0, T ) × 	; Rd )

with a positive integer M ≥ 1.

5.1.5.2 Measure-Valued Solutions

Exactly as in Sect. 5.1.3, the asymptotic limit of a consistent approximation generates
a DMV solution. To be consistent with the definition for the complete system, we
still assume

p(�) = (γ − 1)�e(�), meaning p(�) = a�γ , P(�) = a

γ − 1
�γ . (5.78)

Definition 5.5 (DISSIPATIVE MEASURE-VALUED (DMV) SOLUTION

TO BAROTROPIC EULER SYSTEM)
Let 	 ⊂ Rd , d = 1, 2, 3 be a bounded domain. Suppose the pressure is

related to the internal energy through (5.78). A parametrized probability measure
{Vt,x}(t,x)∈(0,T )×	,
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V ∈ L∞((0, T ) × 	;P(Rd+1)), Rd+1 =
{
[̃�, m̃]

∣∣∣ �̃ ∈ R, m̃ ∈ Rd
}

,

is called dissipative measure-valued (DMV) solution of the Euler system (5.71),
(5.72), with the initial conditions [�0,m0] if the following holds:

• (energy inequality) the integral inequality

∫

	

〈
Vτ,x; 1

2

|m̃|2
�̃

+ P(̃�)

〉
dx +

∫

	

dEcd (τ ) ≤
∫

	

[
1

2

|m0|2
�0

+ P(�0)

]
dx

(5.79)
holds for a.a. 0 ≤ τ ≤ T , with the energy concentration defect

Ecd ∈ L∞(0, T ;M+(	));

• (equation of continuity)

〈V; �̃〉 ∈ Cweak([0, T ]; Lγ (	)),
〈
V0,x; �̃

〉 = �0(x) for a.a. x ∈ 	,

and the integral identity

⎡
⎣
∫

	

〈V; �̃〉ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
〈V; �̃〉 ∂tϕ + 〈V; m̃〉 · ∇xϕ

]
dx dt (5.80)

for any 0 ≤ τ ≤ T , and any ϕ ∈ W 1,∞((0, T ) × 	);
• (momentum equation)

〈V; m̃〉 ∈ Cweak([0, T ]; L
2γ

γ+1 (	; Rd )),
〈
V0,x; m̃

〉 = m0(x) for a.a. x ∈ 	,

and the integral identity

⎡
⎣
∫

	

〈V; m̃〉 · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
〈V; m̃〉 · ∂tϕ +

〈
V; 1�̃>0

m̃ ⊗ m̃
�̃

〉
: ∇xϕ + 〈V; p(̃�)〉 divxϕ

]
dx dt

+
τ∫

0

∫

	

∇xϕ : dRcd (t) dt

(5.81)
for any 0 ≤ τ ≤ T , and any ϕ ∈ CM ([0, T ] × 	; Rd ), ϕ · n|∂	 = 0, M ≥ 1, with
the Reynolds concentration defect
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Rcd ∈ L∞(0, T ;M+(	; Rd×d
sym ))

satisfying

d Ecd ≤ tr[Rcd ] ≤ d Ecd for some constants 0 < d ≤ d . (5.82)

As a direct consequence of the energy inequality (5.79), we get

Vt,x

[
{̃� > 0} ∪ {̃� = 0, m̃ = 0}

]
= 1 for a.a. (t, x), (5.83)

meaning � ≥ 0 and m vanishes on the vacuum zone Vt,x-a.s.
Finally, we reformulate Theorem 5.1 in the context of the barotropic Euler system.

Theorem 5.3 (Asymptotic limit of consistent approximation – barotropic case)

Let 	 ⊂ Rd , d = 1, 2, 3 be a bounded domain. Let the pressure p = p(�) be
related to the internal energy through (5.78). Let {�n,mn}∞n=1 be a consistent approx-
imation of the barotropic Euler system specified in Definition 5.4.

Then, up to a subsequence,

• {�n,mn}∞n=1 generates a Young measure
{
Vt,x

}
(t,x)∈(0,T )×	

,

Vt,x ∈ P(Rd+1), Rd+1 = {̃
� ∈ R, m̃ ∈ Rd

} ;

•

En(�n,mn) =
[
1

2

|mn|2
�n

+ P(�n)

]
→ E(�,m) weakly-(*) in L∞(0, T ;M(	));

•
1�n>0

mn ⊗ mn

�n
+ p(�n)I → 1�>0

m ⊗ m
�

+ p(�)I

weakly-(*) in L∞(0, T ;M(	; Rd×d
sym )).

The Young measure {Vt,x}(t,x)∈(0,T )×	 is a dissipative measure-valued solution of
the barotropic Euler system in the sense of Definition 5.5, with the defect measures

Ecd = E(�,m) − 〈V; E(̃�, m̃)〉 ∈ L∞(0, T ;M+(	)),

Rcd = 1�>0
m ⊗ m

�
+ p(�)I −

〈
V; 1�̃>0

m̃ ⊗ m̃
�̃

+ p(̃�)I

〉
∈ L∞(0, T ;M+(	; Rd×d

sym )).
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5.2 Dissipative Solutions to the Euler System

The measure-valued solutions introduced in the preceding section are probably the
smallest class of objects that can accommodate limits of consistent approximations
of the Euler system. There are, however, two conceptual difficulties related to repre-
sentation of solutions via Young measures:

• The mapping
t ∈ [0, T ] 	→ Vt,x ∈ L∞(	;P(Rd+2))

is a priori not continuous, not even in any weak sense. The continuous quantities
are only its barycenter coordinates:

t 	→ 〈
Vt,x; �̃

〉 ∈ Cweak([0, T ]; Lγ (	)),

t 	→ 〈
Vt,x; m̃

〉 ∈ Cweak([0, T ]; L
2γ

γ+1 (	; Rd )),

and, to certain extent,

t 	→ 〈
Vt,x; S̃

〉 ∈ BVweak([0, T ]; Lγ (	)).

• The specific shape (distribution) of the Young measure depends on the way how
the consistent approximation is constructed.

The second problem is particularly relevant when reconstructing the approximate
sequence from a discrete set of values produced by a numerical scheme. Consider a
very simple example of a sequence {rn}N

n=1,

rn =
{
1 for odd n
0 for even n.

,

and a family of discrete functions

gN (xn) = rn, xn = n

N
, n = 0, 1 . . . , N .

Now, we extend gn to a function defined in [0, 1] in two different ways:

g̃N (x) = gN (xn) for x ∈ [xn, xn + 1

N
],

and
ĝN (x) ∈ C([0, 1]), ĝN (xn) = gN (xn), gN affine otherwise.

It is easy to check that both {g̃N }∞N=1 and {ĝN }∞N=1 generate a Young measure
{Ṽx}x∈(0,1) and {V̂x}x∈(0,1), respectively, where
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Ṽx = 1

2
δ0 + 1

2
δ1, V̂x = L|[0,1] − the Lebesgue measure on [0, 1] for any x ∈ (0, 1).

Note, however, that the barycenter – Y = 1
2 – is the same in both cases. Moreover,

defining the oscillation defect as

|̃gN − 1

2
| = 1

2
, |̂gN − 1

2
| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 for x = xn

0 for xn+xn+1

2

affine continuous otherwise,

we deduce 〈
Ṽx;

∣∣∣∣Y − 1

2

∣∣∣∣
〉

= 1

2
,

〈
V̂x;

∣∣∣∣Y − 1

2

∣∣∣∣
〉

= 1

4
.

This observation suggests that the only relevant piece of information to be retained
for the limit problem is the value of some observables as the barycenter of themeasure
and possibly the value of the oscillation defect. This leads to the concept of dissipative
weak solution introduced in this section. Very roughly indeed, a dissipative weak
solution may be interpreted as a barycenter of a parametrized (Young) measure.

5.2.1 Dissipative Solutions to the Barotropic Euler System

We start with the barotropic Euler system, where the concept of dissipative weak
solution can be introduced in an elegant way, eliminating completely the Young
measure in the weak formulation of the problem. For the sake of simplicity, we
suppose the pressure to be related to internal energy through the constitutive equation
(5.78).

Definition 5.6 (DISSIPATIVE WEAK SOLUTION TO BAROTROPIC EULER SYS-
TEM)

Let 	 ⊂ Rd , d = 1, 2, 3 be a bounded domain. Let the pressure p = p(�) be
related to the internal energy e through the constitutive equation (5.78). We say that
[�,m] is a dissipative weak (DW) solution of the barotropic Euler system (5.71), with
the impermeability boundary condition (5.72), and with the initial data [�0,m0] if
the following holds:

• (weak continuity)

� ∈ Cweak([0, T ]; Lγ (	)), m ∈ Cweak([0, T ]; L
2γ

γ+1 (	; Rd )); (5.84)

• (energy inequality) there is a defect measure E ∈ L∞(0, T ;M+(	)) such that
the energy inequality
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∫

	

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx +

∫

	

dE(τ ) ≤
∫

	

[
1

2

|m0|2
�0

+ P(�0)

]
dx (5.85)

for a.a. 0 ≤ τ ≤ T ;
• (equation of continuity) the integral identity

⎡
⎣
∫

	

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
�∂tϕ + m · ∇xϕ

]
dx dt (5.86)

for any 0 ≤ τ ≤ T , and any test function ϕ ∈ W 1,∞((0, T ) × 	);
• (momentum equation) the integral identity

⎡
⎣
∫

	

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
m · ∂tϕ + 1�>0

m ⊗ m
�

: ∇xϕ + p(�)divxϕ

]
dx dt

+
τ∫

0

∫

	

∇xϕ : dR(t) dt

(5.87)

for any 0 ≤ τ ≤ T , any test functionϕ ∈ CM ([0, T ] × 	; Rd ),ϕ · n|∂	 = 0,M ≥
1 with the Reynolds defect

R ∈ L∞(0, T ;M+(	; Rd×d
sym ));

• (defect compatibility condition)

d E ≤ tr [R] ≤ d E for some constants 0 ≤ d ≤ d . (5.88)

Remark 5.16 It follows from the energy inequality (5.2) that

�(t, x) ≥ 0 for a.a. (t, x) ∈ (0, T ) × 	, and m(τ, x) = 0

for a.a. x ∈ {�(τ, x) = 0}, and any 0 ≤ τ ≤ T .

Remark 5.17 As the energy satisfied the inequality (5.85), we can always set

E = 1

d
tr[R]
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eliminating entirely the energy defect E from the weak formulation. Obviously,
(5.88) remains valid. In addition, a short inspection of the convergence of consistent
approximation reveal that the constant d can be expressed solely in terms of γ and
the dimension d .

It turns out, at least for the barotropic Euler system, that a DW solution may be
interpreted as a barycenter of a DMV solution and vice versa.

Theorem 5.4 (DW vs DMV)
(i) Let a parametrized measure {Vt,x}(t,x)∈(0,T )×	 be a DMV solution of the

barotropic Euler system in the sense of Definition 5.5, with the associated con-
centration defect measures Ecd , Rcd .

Then
� = 〈V; �̃〉 , m = 〈V, m̃〉

is a DW solution in the sense of Definition 5.6, with the defect measures,

E = Ecd + Eod , Eod ≡
〈
V; 1

2

|m̃|2
�̃

− P(̃�)

〉
−
(
1

2

|m|2
�

+ P(�)

)
,

R = Rcd + Rod , Rod =
〈
V; 1�̃>0

m̃ ⊗ m̃
�̃

+ p(̃�)I

〉
−
(
1�>0

m ⊗ m
�

+ p(�)I

)
.

(ii) Suppose that [�,m] is a DW solution of the barotropic Euler system in the
sense of Definition 5.6.

Then
Vt,x = δ�(t,x),m(t,x) ∈ P(Rd+1) for a.a. (t, x) ∈ (0, T ) × 	

is a DMV solution in the sense of Definition 5.5.

Proof The claim (ii) is obvious. To show (i), the only thing to observe is

Rod =
〈
V; 1�̃>0

m̃ ⊗ m̃
�̃

+ p(̃�)I

〉
−
(
1�>0

m ⊗ m
�

+ p(�)I

)

∈ L∞(0, T ;M+(	; Rd×d
sym )),

meaning the defectRod is positively semidefinite matrix valued measure. However,
this follows from Jensen’s inequality, exactly as in (5.51). �

5.2.1.1 Conclusion

As we have seen in Theorem 5.3, a consistent approximation of the barotropic Euler
system gives rise to a DMV solution that may be seen, in view of Theorem 5.4,
as a DW solution of the same problem. This fact, however, must not be interpreted
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in the way that the associated Young measure is a Dirac mass! The corresponding
oscillation defect is only “hidden” in the Reynolds defect R.

As observed in Remark 5.17, the energy defectE can be replaced by tr[R]modulo
a multiplicative constant. Thus the “turbulent” character of DW solutions is entirely
captured by the Reynolds defect

R ∈ L∞(0, T ;M+(	; Rd×d
sym )).

Moreover, as shown in Theorem 5.4,

R =
[
1�>0

m ⊗ m
�

+ p(�)I

]
−
〈
V; 1�̃>0

m̃ ⊗ m̃
�̃

+ p(̃�)I

〉

+
〈
V; 1�̃>0

m̃ ⊗ m̃
�̃

+ p(̃�)I

〉
−
(
1�>0

m ⊗ m
�

+ p(�)I

)
,

where

(
1�n

mn ⊗ mn

�n
+ p(�n)I

)
→

[
1�>0

m ⊗ m
�

+ p(�)I

]

weakly-(*) in L∞(0, T ;M+(	; Rd×d
sym )),

and {Vt,x}(t,x)∈(0,T )×	 is the Young measure generated by the associated consistent
approximation {�n,mn}∞n=1.

5.2.2 Dissipative Solutions to the Complete Euler System

The concept of DW solution can be extended to the complete Euler system. Unfortu-
nately, the resulting new formulation is less elegant as we have to retain the piece of
information provided by the measure V because of the convective term in the entropy
balance.

Definition 5.7 (DISSIPATIVE WEAK SOLUTION TO COMPLETE EULER SYS-
TEM)

Let 	 ⊂ Rd , d = 1, 2, 3 be a bounded domain. We say that a trio [�,m, S] is
dissipative weak (DW) solution of the complete Euler system (5.16)–(5.18), with
the boundary condition (5.19), and the initial condition [�0,m0, S0] if the following
holds:
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• (weak continuity)

� ∈ Cweak([0, T ]; Lγ (	)),

m ∈ Cweak([0, T ]; L
2γ

γ+1 (	; Rd )),

S ∈ L∞(0, T ; Lγ (	)) ∩ BVweak([0, T ]; Lγ (	));
(5.89)

• (energy inequality) there exists a measure

E ∈ L∞(0, T ;M+(	))

such that the inequality

∫

	

[
1

2

|m|2
�

+ �e(�, S)

]
(τ, ·) dx +

∫

	

dE(τ ) ≤
∫

	

[
1

2

|m0|2
�0

+ �0e(�0, S0)

]
dx

(5.90)
holds for a.a. 0 ≤ τ ≤ T ;

• (equation of continuity) the integral identity

⎡
⎣
∫

	

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
�∂tϕ + m · ∇xϕ

]
dx dt (5.91)

holds for any 0 ≤ τ ≤ T , any test function ϕ ∈ W 1,∞((0, T ) × 	);
• (momentum equation) the integral identity

⎡
⎣
∫

	

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
m · ∂tϕ + 1�>0

m ⊗ m
�

: ∇xϕ + 1�>0p(�, S)divxϕ

]
dx dt

+
τ∫

0

∫

	

∇xϕ : dR(t) dt

(5.92)

holds for any 0 ≤ τ ≤ T , any test functionϕ ∈ CM ([0, T ] × 	; Rd ),ϕ · n|∂	 = 0,
M ≥ 1 and a defect measure

R ∈ L∞(0, T ;M+(	; Rd×d
sym ));



5.2 Dissipative Solutions to the Euler System 163

• (entropy balance) the integral inequality

⎡
⎣
∫

	

Sϕ dx

⎤
⎦

t=τ2+

t=τ1−

≥
τ2∫

τ1

∫

	

[
S∂tϕ +

〈
V; 1�̃>0

(
S̃
m̃
�̃

)〉
· ∇xϕ

]
dx dt,

S(0−, ·) = S0,

(5.93)

holds for any 0 ≤ τ1 ≤ τ2 < T , any ϕ ∈ W 1,∞((0, T ) × 	), ϕ ≥ 0, where

{Vt,x}(t,x)∈(0,T )×	

is a parametrized measure,

V ∈ L∞((0, T ) × 	;P(Rd+2)), Rd+2 = {̃
� ∈ R, m̃ ∈ Rd , S̃ ∈ R

} ;

〈V; �̃〉 = �, 〈V; m̃〉 = m,
〈
V; S̃

〉 = S,

Vt,x
{̃
� ≥ 0, S̃ ≥ s̃�

} = 1 for a.a. (t, x) ∈ (0, T ) × 	; (5.94)

• (defect compatibility conditions)

d E ≤ tr [R] ≤ d E for some constants 0 ≤ d ≤ d , (5.95)

and

E ≥
〈
V; 1

2

|m̃|2
�̃

+ �̃e(̃�, S̃)

〉
−
(
1

2

|m|2
�

+ �e(�, S)

)
(5.96)

Remark 5.18 As observed in Remark 5.17, we may set

E = 1(d)−1tr[R]

to eliminate E in the definition.

Similarly to Theorem 5.4, we can show that the barycenter of any DMV solution
to the Euler system represents a DW solution. The defect measures are exactly the
same as in Theorem 5.4.

5.3 Measure-Valued Solutions to the Navier–Stokes System

The theory of measure-valued solutions for the Navier–Stokes system is technically
more involved because of the gradient terms explicitly present in the field equations.
At the level of a numerical scheme, they are replaced by discrete approximations that
represent a kind of “independent” quantities to be handled in the asymptotic limit
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when the discretization step tends to zero. Another technical difficulty is that the
momentumm, which is a conservative variable, must be replaced bym = �u, where
u is the fluid velocity. Although this settingmight seemquite natural, the hypothetical
possibility of the vacuum state � = 0 makes the analysis rather delicate.

We restrict ourselves to the space-periodic case 	 = T
d . The reason is rather

simple. In the applications to theNavier–Stokes system,we shall assume that the latter
admits a smooth solution. Of course, such a result relies essentially on smoothness
of the boundary of the physical domain. In numerical experiments, however, the
domain is usually a polyhedron with merely Lipschitz boundary.

5.3.1 Consistent Approximation of the Navier–Stokes System

Consider the Navier–Stokes system introduced in Chap. 3:

∂t� + divx(�u) = 0, (5.97)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�) = divxS, (5.98)

S = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI, μ > 0, λ ≥ 0. (5.99)

As agreed, we consider the spatially periodic boundary conditions

	 = T
d . (5.100)

Formally, we may rewrite

divxS = μ�xu + ν∇xdivxu, ν = μ

(
1 − 2

d

)
+ λ ≥ 0 for d = 2, 3. (5.101)

Of course, the formula holds only if the viscosity coefficients are constant. As we
shall see later, this splitting is convenient in numerical approximations as it separates
∇xu and divxu.

Similarly to the Euler system discussed in the preceding part of this chapter, the
DMV solutions to the Navier–Stokes system will be identified as limits of consis-
tent approximations. There is a technical difficulty, however, due to the fact that the
viscous stress usually acts on the gradient of the fluid velocity u, while the conser-
vative (weakly continuous) quantity is the momentum m = �u. This gives rise to
an ambiguous behavior of the velocity on the (hypothetical) vacuum zones {� = 0},
where m = 0, while, in general, u �= 0. Although the Navier–Stokes system was
derived as a model of nondilute fluids, where vacuum is not expected, the available
(known) regularity of the weak (or DMV) solutions is not strong enough to prevent
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the vacuum to appear. In contrast with the Euler system, we consider the density �

and the velocity u as the basic state variables.
Another problem is that numerical solutions are in general not differentiable,

whereas the differential operators are replaced by suitable approximations. This
requires further modification of the definition of consistent approximation at the
level of the energy balance. The latter takes the form

d

dt

∫

Td

[
1

2
�|u|2 + P(�)

]
dx +

∫

Td

S : ∇xu dx = (≤)0,

where P is the pressure potential,

P′(�)� − P(�) = p(�).

Introducing the symmetric gradient

Dxu ≡ ∇xu + ∇T
x u

2
, tr[Dxu] = divxu,

we can write

S = 2μ

(
Dxu − 1

d
tr[Dxu]I

)
+ λtr[Dxu]I,

whereas the dissipation function reads

S : ∇xu = S : Dxu.

Evoking the material of Sect. 1.3.2, we may write the constitutive law in an “implicit
way”

S : Dxu = F(Dxu) + F∗(S)

for a suitable convex potential F . Newton’s rheological law (5.99) corresponds to
the potential

F(D) = μ

∣∣∣∣D − 1

d
tr[D]I

∣∣∣∣
2

+ λ

2
|tr[D]|2 for all D ∈ Rd×d

sym , (5.102)

the conjugate function reads

F∗(S) = 1

μ

∣∣∣∣S − 1

d
tr[S]I

∣∣∣∣
2

+ 1

2λ
|tr[S]|2 (5.103)

if λ > 0,
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F∗(S) =
⎧⎨
⎩

1
μ

|S|2 if tr[S] = 0,

∞ otherwise
(5.104)

if λ = 0. Going back to formula (5.106) we may write

∫

Td

μ|∇xu|2 + ν|divxu|2 dx =
∫

Td

S : ∇xu dx =
∫

Td

F(Dxu) + F∗(S) dx. (5.105)

Note that, in general,

μ|∇xu|2 + ν|divxu|2 �= F(Dxu) + F∗(S),

however, the integrals over the physical domain of these quantities coincide as long
as the spatially periodic functions are considered. It is easy to check that (5.105)
holds whenever u ∈ W 1,2(Td ; Rd ).

We consider abstract approximate differential operators ∇n
x , div

n
x . First, recall the

Korn–Poincaré inequality that can be written in the context of spatially periodic
functions as

‖u‖2L2(	) ≤ c(M , �)

∫

Td

[
�|u|2 + |Dxu − 1

d
divxuI|2

]
dx,

∫

Td

|Dxu − 1

d
divxuI|2 dx =

∫

Td

[
|∇xu|2 − 1

d
|divxu|2

]
dx

≤ d − 1

d

∫

Td

|∇xu|2 dx,

whenever

� ≥ 0,
∫

Td

� dx = M > 0,
∫

Td

�γ dx < �.

This motivates the following definition.

Definition 5.8 (COMPATIBILITY OF APPROXIMATE DIFFERENTIAL OPERA-
TORS)

Let
Xn ⊂ L∞(Td ; Rd )

be a family of (finite-dimensional) spaces, along with a family of approximate dif-
ferential operators

∇n
x : Xn → L∞(Td ; Rd×d ), divn

x : Xn → L∞(Td ).
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We say that∇n
x is compatible with∇x, and divn

x compatible with divx if the following
is satisfied:

• (Korn–Poincaré inequality) The inequality

‖v‖2L2(	) ≤ c(M , �)

∫

Td

[
�|v|2 + ∣∣∇n

x v
∣∣2 ] dx, (5.106)

holds for any v ∈ Xn, whenever

� ≥ 0,
∫

Td

� dx = M > 0,
∫

Td

�γ dx < �, γ > 1,

with c(M , �) independent of n = 1, . . . .
• (Consistency (i)) If

un ∈ Xn, un → u weakly in L2(Td ; Rd ),

∇n
x [un] → ∇xu weakly in L2(Td ; Rd×d ),

then
∇xu = ∇xu in D′(Td ; Rd×d ).

If
un ∈ Xn, un → u weakly in L2(Td ; Rd ),

divn
x[un] → divxu weakly in L2(Td ),

then
divxu = divxu in D′(Td ).

(Consistency (ii)) There exists a projection operator

�n : L1(Td ; Rd ) → Xn

such that

�nv → v in W 1,∞((0, T ) × T
d ; Rd ),

∇n
x [�nv] → ∇xv in L∞(Td ; Rd×d ) as n → ∞ for any v ∈ C1(Td ; Rd ),

divn
x [�nv] → divxv in L∞(Td ) as n → ∞ for any v ∈ C1(Td ; Rd ).

(5.107)

Now, we have everything at hand to introduce the concept of consistent approxi-
mation for the Navier–Stokes system.
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Definition 5.9 (CONSISTENT APPROXIMATION OF THE NAVIER–STOKES

SYSTEM)
Let ∇n

x be a family of linear operators compatible with ∇x, and divn
x compatible

with divx, defined on the associated sequence of function spaces {Xn}∞n=1. A sequence
{�n,un}∞n=1 is a consistent approximation of the Navier–Stokes system (5.97), (5.98),
(5.101) in (0, T ) × T

d , with the initial data [�0,m0] if:
• (energy inequality) �n ≥ 0, un ∈ Xn, and the energy inequality

∫

Td

[
1

2
�n|un|2 + P(�n)

]
(τ, ·) dx

+
τ∫

0

∫

Td

[
μ|∇n

xun|2 + ν|divn
xun|2 dx

]
dt

≤
∫

Td

[
1

2

|m0,n|2
�0,n

+ P(�0,n)

]
dx + e1n, P′(�)� − P(�) = p(�),

(5.108)

holds for a.a. 0 ≤ τ ≤ T ,

�0,n → �0 weakly in L1(	), m0,n → m0 weakly in L1(	; Rd ),

and

∫

Td

[
1

2

|m0,n|2
�0,n

+ P(�0,n)

]
dx →

∫

Td

[
1

2

|m0|2
�0

+ P(�0)

]
dx < ∞,

e1n → 0

as n → ∞;
• (mass conservation)

∫

Td

�n(τ, ·) dx =
∫

Td

�0,n dx (5.109)

for a.a. 0 ≤ τ ≤ T ;
• (equation of continuity) the integral identity

T∫

0

∫

Td

[
�n∂tϕ + �nun · ∇xϕ

]
dx dt = −

∫

Td

�0,nϕ(0, ·) dx + e2n[ϕ] (5.110)
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holds for any ϕ ∈ C1
c ([0, T ) × T

d ), where

e2n[ϕ] → 0 as n → ∞ for any ϕ ∈ CM
c ([0, T ) × T

d ),

where M ≥ 1 is a positive integer;
• (momentum equation) the integral identity

T∫

0

∫

Td

[
�nun · ∂tϕ + �n(un ⊗ un) : ∇xϕ + p(�n)divxϕ

]
dx dt

=
T∫

0

∫

Td

(
μ∇n

xun : ∇xϕ + νdivn
xundivxϕ

)
dx dt

−
∫

Td

m0,n · ϕ(0, ·) dx + e3n[ϕ]

(5.111)

holds for any ϕ ∈ C1
c ([0, T ) × T

d ; Rd ) ∩ L2((0, T ); W 1,2(Td ; Rd )), where

e3n[ϕ] → 0 as n → ∞ for any ϕ ∈ CM
c ([0, T ) × T

d ; Rd ), M ≥ 1.

Remark 5.19 Note that (5.109) and (5.110) are compatible only if e2n[ψ] = 0 for
any spatially homogeneous function ψ = ψ(t).

5.3.2 Measure-Valued Solutions to the Navier–Stokes System

Similarly to the inviscid Euler models, the dissipative measure-valued (DMV) solu-
tions of the Navier–Stokes system will be identified as asymptotic limit of consistent
approximations. In order to derive the necessary uniform bounds, certain coercivity
properties of the pressure are needed. For the sake of simplicity, we focus on the
isentropic EOS:

p(�) = a�γ , a > 0, γ > 1. (5.112)

More general EOS can be considered retaining the basic asymptotic properties of
(5.112):

p ∈ C(0,∞) ∩ C2(0,∞), p′(�) > 0 for any � > 0, p′(�) ≈ �γ−1 as � → ∞.

(5.113)
Accordingly, the energy inequality (5.108) yield the uniform bound

ess sup
t∈[0,T ]

‖�n(t, ·)‖Lγ (Td )

<∼ 1.
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Similarly, by Hölder’s inequality,

‖�nun‖
L

2γ
γ+1 (Td ;Rd )

≤ ∥∥√�n

∥∥
L2γ (Td )

∥∥√�nun

∥∥
L2(Td ;Rd )

.

Consequently, in accordancewith the approximateKorn–Poincaré inequality (5.106),
we may suppose

�n → � weakly-(*) in L∞(0, T ; Lγ (Td )),

mn = (�nun) → m weakly-(*) in L∞(0, T ; L
2γ

γ+1 (Td ; Rd )),

and
un → u weakly in L2((0, T ) × T

d ; Rd ),

∇n
xun → ∇xu weakly in L2((0, T ) × T

d ; Rd ),

divn
xun → divxu weakly in L2((0, T ) × T

d ; Rd )).

passing to a suitable subsequence as the case may be. In particular,

u ∈ L2(0, T ; W 1,2(Td ; Rd )). (5.114)

In addition,wemay suppose that the sequence {�n,un}∞n=1 generates aYoungmeasure

{Vt,x}(t,x)∈(0,T )×Td , Vt,x ∈ P
{
[̃�, ũ]

∣∣∣̃� ∈ R, ũ ∈ Rd
}

, supp[Vt,x] ⊂ [0,∞) × Rd .

Note that V differs from its counterpart for the Euler system as it is generated by a
different sequence, namely [�n,un] instead of [�n,mn].

5.3.2.1 Equation of Continuity

Passing to the limit in (5.110) we deduce, by means of the same arguments as in
Sect. 5.1.3,

t 	→ 〈
Vt,·; �̃

〉 ∈ Cweak([0, T ]; Lγ (Td )), (5.115)

and

⎡
⎣
∫

Td

〈V; �̃〉 ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

Td

[
〈V; �̃〉 ∂tϕ + 〈V; �̃ũ〉 · ∇xϕ

]
dx dt (5.116)

for any 0 ≤ τ ≤ T . Using a simple density argument onTd , we can show that (5.116)
holds for any test function ϕ ∈ W 1,∞((0, T ) × T

d ).
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5.3.2.2 Momentum Equation

We start by the convective term,

�nun ⊗ un → �u ⊗ u weakly-(*) in L∞(0, T ;M(Td ; Rd×d
sym )).

Introducing the defect
Ccd = �u ⊗ u − 〈V; �̃ũ ⊗ ũ〉

we apply Corollary 5.2 to

�u ⊗ u : (ξ ⊗ ξ), ξ ∈ Rd

to deduce
Ccd ∈ L∞(0, T ;M+(Td ; Rd×d

sym )).

By the same token,

p(�n) → p(�) weakly-(*) in L∞(0, T ;M(Td )),

where
Pcd ≡ p(�) − 〈V; p(̃�)〉 ∈ L∞(0, T ;M+(Td )).

Thus we may let n → ∞ in the momentum equation (5.111) obtaining

t 	→ 〈
Vt,·; �̃ũ

〉 ∈ Cweak([0, T ]; L
2γ

γ+1 (Td ; Rd )),
〈
V0,·; �̃ũ

〉 = m0, (5.117)

and

⎡
⎣
∫

Td

〈V; �̃ũ〉 · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

Td

[
〈V; �̃ũ〉 · ∂tϕ + 〈V; �̃ũ ⊗ ũ〉 : ∇xϕ + 〈V; p(̃�)〉 divxϕ

]
dx dt

−
τ∫

0

∫

Td

(μ∇xu : ∇xϕ + νdivxudivxϕ) dx dt +
τ∫

0

∫

Td

∇xϕ : dR(t) dt

(5.118)

for any 0 ≤ τ ≤ T , and any test function ϕ ∈ C1([0, T ] × T
d ; Rd ). Here we have

set
R = Ccd + Pcd I ∈ L∞(0, T ;M+(Td ; Rd×d

sym )).
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5.3.2.3 Energy Inequality

Finally, we let n → ∞ in the energy inequality (5.108). Using weak lower semicon-
tinuity of convex functions, we obtain successively:

�n|un|2 + P(�n) → �|u|2 + P(�) ≡
〈
V; 1

2
�̃|̃u|2 + P(̃�)

〉
+ E

weakly-(*) in L∞(0, T ;M(Td )),

μ|∇n
xun|2 + λ|divxun|2 → μ|∇xu|2 + λ|divxu|2 ≡ μ|∇xu|2 + λ|divxu|2 + D

weakly-(*) inM([0, T ] × T
d ),

and ∫

Td

〈
V; 1

2
�̃|̃u|2 + P(̃�)

〉
(τ, ·) dx +

∫

Td

dE(τ )

+
τ∫

0

∫

Td

[
μ|∇xu|2 + ν|divxu|2] dx dt +

τ∫

0

∫

Td

dD

≤
∫

Td

[
1

2

|m0|2
�0

+ P(�0)

]
dx,

(5.119)

for a.a. 0 ≤ τ ≤ T , where the defect measures satisfy

D ∈ M+([0, T ] × T
d ),

E ∈ L∞(0, T ;M+(Td )), d E ≤ tr[R] ≤ d E for some constants 0 ≤ d ≤ d .

(5.120)
Similarly to the Euler system, the measure E can be interpreted as the energy defect,
while D represents the dissipation defect pertinent to models of viscous fluids.

Finally, we need certain relation between the limit Young measure and the Korn–
Poincaré inequality. Consider a smooth vector fieldU ∈ C1([0, T ] × T

d ; Rd ). Using
(5.106) and the hypothesis on compatibility of the differential operators ∇n

x , div
n
x we

deduce
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τ∫

0

∫

Td

|un − U |2 dx dt

<∼
τ∫

0

∫

Td

|un − �nU |2 dx dt +
τ∫

0

∫

Td

|U − �nU |2 dx dt

<∼
τ∫

0

∫

Td

�n|un − �nU |2 dx dt

+
τ∫

0

∫

Td

∣∣∇n
xun − ∇n

x [�nU]∣∣2 dx dt +
τ∫

0

∫

Td

|U − �nU |2 dx dt

<∼
τ∫

0

∫

Td

�n|un − U |2 dx dt +
τ∫

0

∫

Td

∣∣∇n
xun − ∇xU

∣∣2 dx dt

+
τ∫

0

∫

Td

∣∣∇xU − ∇n
x [�nU]∣∣2 dx dt

+
τ∫

0

∫

Td

|U − �nU |2 dx dt +
τ∫

0

∫

Td

�n|U − �nU |2 dx dt

It follows from the compatibility condition (5.107) that

τ∫

0

∫

Td

∣∣∇xU − ∇n
x [�nU]∣∣2 dx dt

+
τ∫

0

∫

Td

|U − �nU |2 dx dt +
τ∫

0

∫

Td

�n|U − �n[U]|2 dx dt → 0 as n → ∞;

whence

τ∫

0

∫

Td

〈
V; |̃u − U |2

〉
dx dt ≤ lim inf

n→∞

τ∫

0

∫

Td

|un − U |2 dx dt

<∼
τ∫

0

∫

Td

〈
V; �̃|̃u − U |2

〉
dx dt

+
τ∫

0

∫

Td

|∇x(u − U)|2 dx dt +
τ∫

0

⎛
⎜⎝
∫

Td

dE(t)

⎞
⎟⎠ dt +

τ∫

0

∫

Td

dD

(5.121)
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Relation (5.121) may be seen as a kind of compatibility condition relating the behav-
ior of the Young measure to the differential of the limit velocity field u.

Finally, going back to the original formula for the viscous stress

S = 2μ

(
Dxu − 1

d
tr[Dxu]I

)
+ λtr[Dxu]I,

we may rewrite the corresponding integral in the momentum balance (5.118) as

∫

Td

(μ∇xu : ∇xϕ + νdivxudivxϕ) dx =
∫

Td

S : ∇xϕ dx,

ν = λ − 2
d μ, and the dissipation term in the energy inequality (5.119) as

∫

Td

μ|∇xu|2 + ν|divxu|2 dx =
∫

Td

F(Dxu) + F∗(S) dx,

where the convex functions F and F∗ have been introduced in (5.102) and (5.103),
respectively.

Similarly to Sect. 5.1.5, we may define dissipative measure-valued solution for
the Navier–Stokes system.

Definition 5.10 (DISSIPATIVE MEASURE-VALUED (DMV) SOLUTION TO THE

NAVIER–STOKES SYSTEM)
Suppose that the pressure p = p(�) satisfies the isentropic EOS (5.112). A

parametrized probability measure {Vt,x}(t,x)∈(0,T )×Td ,

V ∈ L∞((0, T ) × T
d ;P(Rd+1)), Rd+1 =

{
[̃�, ũ]

∣∣∣ �̃ ∈ R, ũ ∈ Rd
}

,

Vt,x {̃� ≥ 0} = 1 for a.a. (t, x),

is called dissipative measure-valued (DMV) solution of the Navier–Stokes system
(5.97)–(5.100), with the initial conditions [�0,m0] if the following holds:

• (energy inequality) the integral inequality

∫

Td

〈
Vτ,x; 1

2
�̃|̃u|2 + P(̃�)

〉
dx +

τ∫

0

∫

Td

[
F(Dxu) + F∗(S)

]
dx dt

+
∫

Td

dE(τ ) +
τ∫

0

∫

Td

dD ≤
∫

Td

[
1

2

|m0|2
�0

+ P(�0)

]
dx

(5.122)
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holds for a.a. 0 ≤ τ ≤ T , with the energy concentration defect

E ∈ L∞(0, T ;M+(Td )),

and the dissipation defect

D ∈ M+([0, T ] × T
d );

• (equation of continuity)

〈V; �̃〉 ∈ Cweak([0, T ]; Lγ (Td )),
〈
V0,x; �̃

〉 = �0(x) for a.a. x ∈ T
d ,

and the integral identity

⎡
⎣
∫

	

〈V; �̃〉ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

Td

[
〈V; �̃〉 ∂tϕ + 〈V; �̃ũ〉 · ∇xϕ

]
dx dt (5.123)

for any 0 ≤ τ ≤ T , and any ϕ ∈ W 1,∞((0, T ) × T
d );

• (momentum equation)

〈V; �̃ũ〉 ∈ Cweak([0, T ]; L
2γ

γ+1 (Td ; Rd )),
〈
V0,x; �̃ũ

〉 = m0(x) for a.a. x ∈ T
d ,

and the integral identity

⎡
⎢⎣
∫

Td

〈V; �̃ũ〉 · ϕ dx

⎤
⎥⎦

t=τ

t=0

=
τ∫

0

∫

Td

[〈V; �̃ũ〉 · ∂tϕ + 〈V; �̃ũ ⊗ ũ〉 : ∇xϕ + 〈V; p(̃�)〉 divxϕ
]
dx dt

−
τ∫

0

∫

Td

S : ∇xϕ dx dt +
τ∫

0

∫

Td

∇xϕ : dR(t) dt

(5.124)

holds for any 0 ≤ τ ≤ T , and any ϕ ∈ C1([0, T ] × T
d ; Rd ), with the Reynolds

concentration defect
R ∈ L∞(0, T ;M+(Td ; Rd×d

sym ))

satisfying
d E ≤ tr[R] ≤ d E for some constants 0 < d ≤ d; (5.125)

• (Korn–Poincaré inequality)
the velocity field u = 〈V; ũ〉 ∈ L2(0, T ; W 1,2(Td ; Rd )) satisfies
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τ∫

0

∫

Td

〈
V; |̃u − U |2〉 dx dt

<∼
τ∫

0

∫

Td

〈
V; �̃|̃u − U |2〉 dx dt

+
τ∫

0

∫

Td

|∇x(u − U)|2 dx dt +
τ∫

0

⎛
⎝
∫

Td

dE(t)

⎞
⎠ dt +

τ∫

0

∫

Td

dD

(5.126)

for a.a. 0 ≤ τ ≤ T , and any U ∈ C1([0, T ] × T
d ; Rd ).

Finally, we summarize the results obtained in this section.

Theorem 5.5 (Asymptotic limit of consistent approximation)
Let the pressure p = p(�) be given by (5.112). Let {�n,un}∞n=1 be a consistent

approximation of the Navier–Stokes system (5.97), (5.98), (5.101) in the sense of
Definition 5.9.

Then, for a suitable subsequence,

• the sequence {�n,un}∞n=1 generates a Young measure

{Vt,x}(t,x)∈(0,T )×Td , V ∈ L∞
weak−(∗)((0, T ) × T

d ;P(Rd+1));

•

�nun ⊗ un + p(�n)I → �u ⊗ u + p(�)I weakly-(*) in L∞(0, T ;M(Td ; Rd×d ));

•
1

2
�n|un|2 + P(�n) → 1

2
�|u|2 + P(�) weakly-(*) in L∞(0, T ;M(Td ));

•

μ|∇n
xun|2 + ν|divn

xun|2 → μ|∇xu|2 + ν|divxu|2 weakly-(*) in M([0, T ] × T
d ).

The Young measure {Vt,x}(t,x)∈(0,T )×Td is a dissipative measure-valued (DMV)
solution of the Navier–Stokes system in the sense of Definition 5.10, with the defect
measures

E = 1

2
�|u|2 + P(�) −

〈
V; 1

2
�̃|̃u|2 + P(̃�)

〉
∈ L∞(0, T ;M+(Td )),

R = �u ⊗ u + p(�)I − 〈V; �̃ũ ⊗ ũ + p(̃�)I〉 ∈ L∞(0, T ;M+(Td ; Rd×d
sym )),

D = μ|∇xu|2 + ν|divxu|2 − (
μ|∇xu|2 + ν|divxu|2) ∈ M+([0, T ] × T

d ).
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5.3.3 Dissipative Solutions to the Navier–Stokes System

The concept of DMV solution for the Navier–Stokes system introduced in Definition
5.10 is rather awkwardmixing up the nonconservative variable uwith its differential.
The situation simplifies a lot if additional compactness properties may be shown at
the level of consistent approximation. Suppose that, in addition to the hypotheses
listed in Definition 5.9, we are able to show that

〈V; �̃ũ〉 = 〈V; �̃〉 〈V; ũ〉 , (5.127)

or, in other words,

�n → � weakly-(*) in L∞(0, T ; Lγ (Td )), un → u weakly in L2((0, T ) × T
d ; Rd ),

and �nun → �u weakly-(*) in L∞(0, T ; L
2γ

γ+1 (Td ; Rd )).

(5.128)
Note that hypothesis (5.128) is quite realistic as boundedness of∇n

x [un]may result in
compactness of un in the space variable while �n is expected to be (weakly) compact
in the time variable. The desired conclusion (5.128) may be then obtained applying
the standard Aubin–Lions lemma.

Taking (5.128) for granted, we may simplify considerably the definition of the
limit problem in the spirit of Sect. 5.2. Following the strategy of Sect. 5.2.1, we
introduce dissipative weak (DW) solution of the Navier–Stokes system eliminating
completely the Young measure in the definition.

Definition 5.11 (DISSIPATIVE WEAK (DW) SOLUTION TO THE NAVIER–
STOKES SYSTEM)

Let the pressure p = p(�) be given by (5.112). We say that [�,u] with the associ-
ated viscous stress S is dissipative weak (DW) solution to the Navier–Stokes system
(5.97)–(5.100) with the initial data [�0,m0] if the following holds:

• (weak continuity)

� ∈ Cweak([0, T ]; Lγ (Td )), u ∈ L2(0, T ; W 1,2(Td ; Rd )),

m = (�u) ∈ Cweak([0, T ]; L
2γ

γ+1 (Td ; Rd )),

S ∈ L2((0, T ) × T
d ; Rd×d

sym );
(5.129)
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• (energy inequality) there is a defect measure E ∈ L∞(0, T ;M+(Td )) such that
the energy inequality

∫

Td

[
1

2
�|u|2 + P(�)

]
(τ, ·) dx +

∫

Td

dE(τ ) +
τ∫

0

∫

Td

[
F(Dxu) + F∗(S)

]
dx dt

≤
∫

Td

[
1

2

|m0|2
�0

+ P(�0)

]
dx

(5.130)
for a.a. 0 ≤ τ ≤ T ;

• (equation of continuity) the integral identity

⎡
⎣
∫

Td

�ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

Td

[
�∂tϕ + �u · ∇xϕ

]
dx dt (5.131)

for any 0 ≤ τ ≤ T , and any test function ϕ ∈ W 1,∞((0, T ) × T
d );

• (momentum equation) the integral identity

⎡
⎣
∫

Td

(�u) · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

Td

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ + p(�)divxϕ

]
dx dt

−
τ∫

0

∫

Td

S : ∇xϕ dx dt +
τ∫

0

∫

Td

∇xϕ : dR(t) dt

(5.132)
for any 0 ≤ τ ≤ T , any test function ϕ ∈ C1([0, T ] × T

d ; Rd ), with the Reynolds
defect

R ∈ L∞(0, T ;M+(Td ; Rd×d
sym ));

• (defect compatibility condition)

d E ≤ tr [R] ≤ d E for some constants 0 ≤ d ≤ d . (5.133)

Remark 5.20 In view (5.130), (5.133), we may eliminate E setting

E = 1(d)−1tr[R].

Thus, similarly to the Euler system, the deviation of DW solutions from the standard
weak (distributional) solution is encoded in a single quantity – the Reynolds defect
R.
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Finally, we may use the same arguments as for the Euler system in Sect. 5.2.1 to
obtain the following result.

Theorem 5.6 (Asymptotic limit of consistent approximation)
Let the pressure p = p(�) be given by (5.112). Let {�n,un}∞n=1 be a consistent

approximation of the Navier–Stokes system (5.97), (5.98), (5.101) in the sense of
Definition 5.9 generating a Young measure {Vt,x}(t,x)∈(0,T )×Td satisfying (5.127).

Then, for a suitable subsequence,

∇n
xun → ∇xu, un → u weakly in L2((0, T ) × T

d ; Rd ),

�nun ⊗ un + p(�n)I → �u ⊗ u + p(�)I weakly-(*) in L∞(0, T ;M(Td ; Rd×d )),

and

1

2
�n|un|2 + P(�n) → 1

2
�|u|2 + P(�) weakly-(*) in L∞(0, T ;M(Td )).

The quantities
� = 〈V; �̃〉 , u = 〈V; ũ〉 ,

and the viscous stress

S = μ

(
Dxu − 1

d
divxuI

)
+ λdivxuI

represent a dissipative weak (DW) solution of the Navier–Stokes system in the sense
of Definition 5.11, with the defect measures

E = 1

2
�|u|2 + P(�) −

[
1

2
�|u|2 + P(�)

]
∈ L∞(0, T ;M+(Td )),

R = �u ⊗ u + p(�)I − [
�u ⊗ u + p(�)I

] ∈ L∞(0, T ;M+(Td ; Rd×d
sym )).

5.4 Compatibility

Compatibility of generalized solutions is theproperty (C)mentioned in the introduc-
tion to Chap.5. A compatible generalized solution is a classical solution as long as it
possess the necessary smoothness properties. Unlike theweak-strong (WS) unique-
ness property asserting stability of strong solutions in the class of generalized (weak)
solutions, compatibility is an intrinsic property of the generalized solution. In the
framework of the mathematical theory, compatibility amounts to show that the defect
measures used in the definition of generalized solutions vanish as long as the solution
is smooth enough.
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5.4.1 Compatibility for the Complete Euler System

Consider a dissipative weak (DW) solution [�,m, S] of the complete Euler system in
the sense of Definition 5.7. For the sake of simplicity, suppose that M = 1 in (5.92),
meaning the function of class C1([0, T ] × 	; Rd ) can be used as test functions in the
momentum balance (5.92). In addition, let [�,m, S] belong to the regularity class

� ∈ C1([0, T ] × 	), inf
(0,T )×	

� > 0, u ∈ C1([0, T ] × 	; Rd ), S ∈ C1([0, T ] × 	).

Our goal is to show that [�,m, S] is a classical solution of the complete Euler system.
First, we introduce the velocity field

u ≡ m
�

∈ C1([0, T ] × 	; Rd ).

Performing standard by parts integration in the equation of continuity (5.91) we get

T∫

0

∫

	

[
∂t� + divx(�u)

]
ϕ dx dt = 0

for any ϕ ∈ C∞
c ((0, T ) × 	). Consequently,

∂t� + divx(�u) = 0 in (0, T ) × 	. (5.134)

Repeating the same process with a general ϕ ∈ C∞
c ((0, T ) × 	) and using (5.134),

we get
T∫

0

∫

∂	

�u · nϕ dSx dt = 0

yielding
u · n|∂	 = 0. (5.135)

Next, we use u as a test function in the momentum equation (5.92) obtaining

⎡
⎣
∫

	

�|u|2 dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

[
�u · ∂tu + �u ⊗ u : ∇xu + p(�, S)divxu

]
dx dt

+
τ∫

0

∫

	

∇xu : dR(t) dt.
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With the help of (5.134), (5.135) we obtain

⎡
⎣
∫

	

1

2
�|u|2 dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

	

p(�, S)divxu dx dt +
τ∫

0

∫

	

∇xu : dR(t) dt,

which, subtracted from the total energy balance (5.90), yields

∫

	

�e(�, S)(τ, ·) dx +
∫

	

dE(τ )

≤
∫

	

�0e(�0, S0) dx −
τ∫

0

∫

	

p(�, S)divxu dx dt −
τ∫

0

∫

	

∇xu : dR(t) dt.

(5.136)

Finally, computing the temperature and the internal energy

s = S

�
= cv log(ϑ) − log(�),

we use ϑ as test function in the entropy balance (5.93)

0 ≥
τ∫

0

∫

	

[
−∂tSϑ − divx(�su)ϑ +

〈
V; 1�̃>0

(
S̃
m̃
�̃

)
− S

m
�

〉
· ∇xϑ

]
dx dt

=
τ∫

0

∫

	

−∂t(�e) + pdivxu +
〈
V; 1�̃>0

(
S̃
m̃
�̃

)
− S

m
�

〉
· ∇xϑ dx dt.

Adding the resulting expression to (5.136), we finally obtain

∫

	

dE(τ ) ≤
τ∫

0

∣∣∣∣∣∣
∫

	

〈
V; 1�̃>0

(
S̃
m̃
�̃

)
− S

m
�

〉
· ∇xϑ dx

∣∣∣∣∣∣ dt −
τ∫

0

∫

	

∇xu : dR.

(5.137)
At this stage, we employ the defect compatibility conditions (5.94), (5.95), (5.96):

〈V; �̃〉 = �, 〈V; m̃〉 = m,
〈
V; S̃

〉 = S, Vt,x
{̃
� ≥ 0, S̃ ≥ s̃�

} = 1

for a.a. (t, x) ∈ (0, T ) × 	,
(5.138)

d E ≤ tr [R] ≤ d E for some constants 0 < d ≤ d , (5.139)
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and

E ≥
〈
V; 1

2

|m̃|2
�̃

+ �̃e(̃�, S̃)

〉
−
(
1

2

|m|2
�

+ �e(�, S)

)
. (5.140)

Our goal is to apply Gronwall’s lemma to (5.137) to conclude that

E = R = 0, Vt,x = δ[�(t,x),m(t,x),S(t,x)] (t, x) ∈ (0, T ) × 	. (5.141)

To begin, we easily observe that the last integral in (5.137) is controlled by the
left-hand side by virtue of (5.139).

Next, we decompose the domain of the measure V into two components:

R =
{
[̃�, S̃]

∣∣∣ S̃ ≥ s̃�,
1

2
� < �̃ < 2�, |S| < 2S

}
, S =

{
[̃�, S̃]

∣∣∣ S̃ ≥ s̃�
}

\ R,

where the constants �, �, S are chosen in such a way that

0 < � ≤ �(t, x) ≤ �, |S(t, x)| ≤ S for all (t, x) ∈ (0, T ) × 	.

As the energy

E(̃�, m̃, S̃) = 1

2

|m̃|2
�̃

+ �̃e(̃�, S̃)

is convex, we deduce from (5.138)–(5.140),

E ≥ 〈
V; E(̃�, m̃, S̃) − ∂�,m,SE(̃�, m̃, S̃) · [̃� − �, m̃ − m, S̃ − S] − E(�,m, S)

〉
.

Accordingly, in view of the estimates derived in Lemma 5.2,

∣∣∣∣̃S m̃
�̃

− S
m
�

∣∣∣∣ <∼ E(̃�, m̃, S̃) − ∂�,m,SE(̃�, m̃, S̃) · [̃� − �, m̃ − m, S̃ − S] − E(�,m, S)

if [̃�, m̃, S̃] ∈ S. On the other hand, as E = E(̃�, m̃, S̃) is strictly convex,

〈
V, 1[̃�,m̃,̃S]∈R

(
S̃
m̃
�̃

− S
m
�

)〉

<∼ 〈
V; E(̃�, m̃, S̃) − ∂�,m,SE(̃�, m̃, S̃) · [̃� − �, m̃ − m, S̃ − S] − E(�,m, S)

〉
.

Thus applying Gronwall’s lemma to (5.140) we obtain (5.141).
We have proved the following result.

Theorem 5.7 (Compatibility for complete Euler system)
Let 	 ⊂ Rd be a bounded Lipschitz domain. Let [�,m, S] be a dissipative weak

(DW) solution of the complete Euler system in the sense of Definition 5.7, with M = 1
in (5.92). In addition, let [�,m, S] belong to the regularity class
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� ∈ C1([0, T ] × 	), inf
(0,T )×	

� > 0, u ∈ C1([0, T ] × 	; Rd ), S ∈ C1([0, T ] × 	).

Then [�,m, S] is a classical solution of the complete Euler system. More specifi-
cally,

E = R = 0, and Vt,x = δ[�(t,x),m(t,x),S(t,x)] for (t, x) ∈ (0, T ) × 	.

5.4.2 Compatibility for the Navier–Stokes and the Barotropic
Euler Systems

Following the ideas of the preceding section, we show the compatibility property
for the dissipative weak (DW) solutions to the Navier–Stokes system specified in
Definition 5.11.

Theorem 5.8 (Compatibility for the Navier–Stokes system)
Let [�,u],

� ∈ C1([0, T ] × T
d ), inf

(0,T )×Td
� > 0, u ∈ C1([0, T ] × T

d ; Rd )

be a dissipative weak solution of the Navier–Stokes system in the sense of Definition
5.11.

Then [�,u] is a classical solution, specifically,

E = R = 0, S ∈ ∂F(Dxu),

and the equations are satisfied in the classical sense.

Proof Following the arguments of the preceding section, we first show that

∂t� + divx(�u) = 0 in (0, T ) × T
d .

Next, we use u as a test function in the momentum equation (5.132) obtaining

⎡
⎣
∫

Td

�|u|2 dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

Td

[
�u · ∂tu + �u ⊗ u : ∇xu + p(�)divxu

]
dx dt

−
τ∫

0

∫

Td

S : ∇xu dx dt +
τ∫

0

∫

Td

∇xu : dR(t) dt.

(5.142)

Relation (5.142) subtracted from the energy balance (5.130) gives rise to
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∫

Td

dE(τ ) +
τ∫

0

∫

Td

[
F(Dxu) + F∗(S) − S : Dxu

]
dx dt ≤ −

τ∫

0

∫

Td

∇xu : dR(t) dt.

Thus the defect compatibility condition (5.133) combined with Gronwall’s lemma
yield first

E = R = 0,

and then, in accordance with Fenchel–Young inequality,

F(Dxu) + F∗(S) = S : Dxu ⇒ S ∈ ∂F(Dxu).

�

Finally, we state the result for the barotropic Euler system, the proof of which is
exactly the same as that of Theorem 5.8.

Theorem 5.9 (Compatibility for barotropic Euler system)
Let [�,m],

� ∈ C1([0, T ] × T
d ), inf

(0,T )×Td
� > 0, m ∈ C1([0, T ] × T

d ; Rd )

be a dissipative weak solution of the barotropic Euler system in the sense of Definition
5.6.

Then [�,m] is a classical solution, specifically,

E = R = 0,

and the equations are satisfied in the classical sense.

5.5 Conclusion, Bibliographical Remarks

A general exposition of the theory of Young measures can be found in Ball [8] or in
the monograph by Pedregal [178].

The measure-valued solutions as suitable objects to describe oscillations in sys-
tems of conservation laws were proposed in the pioneering work of DiPerna [65].
Later, DiPerna andMajda [66, 69, 70] developed a new approach based on measure-
valued solutions to the Euler system describing the motion of incompressible fluids.
Related results have been obtained by Greengard and Thomann [121].

The concept of measure-valued solutions has been further developed by Málek et
al. [157] in the context of non-Newtonian fluids. The related mathematical theory of
multipolar fluids was proposed by Nečas and Šilhavý [170], see also [168], [169],
or [161]. Neustupa [171] developed the theory in the direction of the compressible
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Euler and Navier–Stokes systems. The measure-valued solutions for the complete
Euler system in the entropy formulation were obtained by Kröner and Zajaczkowski
[144].

More recently, Székelyhidi and Wiedemann [188] have shown that any measure-
valued solution to the incompressible Euler system can be approximated by a
sequence of admissible weak solutions. A similar result, however, does not hold
for the compressible barotropic Euler system, see [48].



Chapter 6
Weak-Strong Uniqueness Principle

This chapter is the heart of the theoretical part of this monograph. We discuss the
weak-strong uniqueness principle for the class of generalized solutions introduced
in the previous chapter. These results are absolutely indispensable for the numerical
analysis in Part III. In particular, they can be interpreted in the spirit of the celebrated
Lax equivalence principle

stability + consistency ⇔ convergence

extended to the nonlinear framework. Weak-strong uniqueness principle is a state-
ment concerning stability of strong solutions in the class of generalized (weak) solu-
tions: A weak solution coincides with the strong solution emanating from the same
initial data as long as the latter exists. We examine the generalized solutions intro-
duced in the previous chapter and establish the relevant results case by case. The
crucial tool is the relative energy inequality introduced in the context of weak solu-
tions in Chap. 4. The relative energy represents a kind of “metric” to evaluate the
distance between a generalized solution and the smooth solution that is used as a
“test function”. More precisely, the relative energy is obtained via linearization of
the energy functional around a given point in the phase space. As the energy is a con-
vex function of the phase variables, the relative energy can be viewed as the so-called
Bregman distance. The desired conclusion is obtained via aGronwall type argument.

The relative energy is in fact a versatile tool, the applications of which go well
beyond the weak-strong uniqueness principle. It can be used in problems involving
stability of a particular smooth solution arising as singular limit, a long-time asymp-
totic regime, or a stationary state, among others. Another interesting application of
the relative energy lies in the error analysis of numerical schemes as we will see in
Part III.
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6.1 Barotropic Euler System

We start with the simplest system of equations, for which theweak-strong uniqueness
principle can be shown in an elegant way including at the same time the dissipative
measure-valued (DMV) solutions introduced in Sect. 5.1.5 and the dissipative weak
(DW) solutions from Sect. 5.2.1.

We start by recalling the classical formulation of the problem:

∂t� + divxm = 0 in (0, T ) × �, �(0, ·) = �0,

∂tm + divx

(
m ⊗ m

�

)
+ ∇x p(�) = 0 in (0, T ) × �, m(0, ·) = m0,

m · n|∂� = 0.

(6.1)

In Sect. 5.1.5, we have introduced the DMV solutions to problem (6.1) and in
Sect. 5.2.1 the DW solutions. Moreover, we have shown that these two concepts are
equivalent, see Theorem 5.4. Accordingly, we focus on the DW solutions, where the
weak-strong uniqueness principle can be shown following the arguments of Sect.
4.1.3. We recall that the DW solutions solve the system of equations

∂t� + divxm = 0, �(0, ·) = �0,

∂tm + divx

(
m ⊗ m

�

)
+ ∇x p(�) = −divxR, m(0, ·) = m0

(6.2)

in the sense of distributions, along with the total energy balance

∫
�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx +

∫

�

dE(τ ) ≤
∫
�

[
1

2

|m0|2
�0

+ P(�0)

]
dx . (6.3)

The Reynolds defect R and the energy defect E,

R ∈ L∞(0, T ;M+(�; Rd×d
sym )), E ∈ L∞(0, T ;M+(�))

satisfy the “compatibility condition”

d E ≤ tr[R] ≤ d E for some constants 0 < d ≤ d, (6.4)

see Sect. 5.2.1 for details. As pointed out several times, the formulation can be
simplified by setting

E = 1

d
tr[R].
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6.1.1 Relative Energy Inequality

Given the apparent similarity of the system (6.2), (6.3) with the weak formulation
introduced in Definition 4.2, the relative energy inequality for the barotropic Euler
system can be derived via a straightforward modification of the arguments of Sect.
4.1.3. Indeed the energy balance (4.28) will contain and extra term due to the energy
defect, while (4.29) is modified by the Reynolds defect. We should also keep in
mind that the momentum equation in (6.2) contains a measure so that admissible test
functions must be at least continuously differentiable in �.

Introducing the relative energy

E
(
�,m

∣∣∣̃�, ũ
)

= 1

2

( |m|2
�

− 2m · ũ + �|̃u|2
)

+ P(�) − P ′(̃�)(� − �̃) − P (̃�)

= 1

2
�

∣∣∣∣m� − ũ

∣∣∣∣
2

+ P(�) − P ′(̃�)(� − �̃) − P (̃�)

we deduce the relative energy inequality in the form

⎡
⎣∫

�

E
(
�,m

∣∣∣̃�, ũ
)

dx

⎤
⎦

t=τ

t=0

+
∫

�

dE(τ )

≤ −
τ∫

0

∫
�

1�>0�∇x ũ ·
(
m
�

− ũ
)

·
(
m
�

− ũ
)

dx dt

−
τ∫

0

∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divx ũ dx dt

+
τ∫

0

∫
�

1

�̃
(�ũ − m) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇x p(̃�)

]
dx dt

+
τ∫

0

∫
�

[(
1 − �

�̃

)
p′(̃�) + 1

�̃
ũ · (m − �ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt

−
τ∫

0

⎛
⎜⎝
∫

�

∇x ũ : dR(t)

⎞
⎟⎠ dt.

(6.5)

In view of (6.4), we may replace

∫

�

dE(τ ) ≈ 1

d

∫

�

dtr[R].
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Inequality (6.5) holds for any DW solution [�,m] specified in Definition 5.6 and any
test functions [̃�, ũ] in the class

�̃ ∈ C1([0, T ] × �), 0 < �̃ ≤ �̃ in [0, T ] × �, ũ ∈ CM([0, T ] × �; Rd),

M ≥ 1, ũ · n|∂� = 0,
(6.6)

where M is the same as in the momentum balance (5.87).

6.1.2 Weak-Strong Uniqueness for DW Solutions
of Barotropic Euler System

Wehave everything at hand to show the desired weak-strong uniqueness principle for
DW solutions of the barotropic Euler system. Note that the proof is almost identical
to that of Theorem 4.2.

Theorem 6.1 (Weak-strong uniqueness for DW solutions of barotropic Euler
system)

Let � ⊂ Rd, d = 2, 3, be a bounded domain of class CN , N = min{2, M}. Let
the pressure p = p(�) satisfy

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, p′(�) > 0 for � > 0,

0 < lim inf
�→∞

p′(�)

�γ−1
≤ lim sup

�→∞
p′(�)

�γ−1
< ∞ (6.7)

for some γ > 1. Suppose that [�,m] is a dissipative weak (DW) solution of the
barotropic Euler system (6.1) in (0, T ) × � in the sense of Definition 5.6, with the
initial data [�0,m0].

Let �̃, ũ be a strong solution of the same problem belonging to the class

�̃ ∈ W 1,∞((0, T ) × �), inf
(t,x)∈(0,T )×�

�̃(t, x) > 0,

ũ ∈ W 1,∞((0, T ) × �; Rd), ũ · n|∂� = 0,
(6.8)

and such that
�̃(0, ·) = �0, �̃(0, ·)̃u(0, ·) = m0.

Then
� = �̃, m = �̃ũ in (0, T ) × �,

and
E = R = 0.
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Proof The obvious idea is to use the strong solution as test functions in the relative
energy inequality (6.5). Unfortunately, they do not meet the regularity requirement
(6.6), thus some preliminary manipulation is needed. First, we realize that, by virtue
of (6.4), (6.7),

∣∣∣∣∣∣
τ∫

0

∫
�

1�>0�∇x ũ ·
(
m
�

− ũ
)

·
(
m
�

− ũ
)

dx dt

∣∣∣∣∣∣
<∼ ‖∇x ũ‖L∞((0,T )×�;Rd×d )

τ∫
0

∫
�

E
(
�,m

∣∣∣̃�, ũ
)

dx dt,

∣∣∣∣∣∣
τ∫

0

∫
�

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divx ũ dx dt

∣∣∣∣∣∣
<∼ ‖∇x ũ‖L∞((0,T )×�;Rd×d )

τ∫
0

∫
�

E
(
�,m

∣∣∣̃�, ũ
)

dx dt,

and
∣∣∣∣∣∣∣

τ∫
0

⎛
⎜⎝
∫

�

∇x ũ : dR(t)

⎞
⎟⎠ dt

∣∣∣∣∣∣∣
<∼ ‖∇x ũ‖L∞((0,T )×�;Rd×d )

τ∫
0

∫

�

1dE(t) dt.

Accordingly, the relative energy inequality (6.5) reduces to

[ ∫
�

E
(
�,m

∣∣∣̃�, ũ
)

(τ, ·) dx +
∫

�

dE(τ )
]

<∼
∫
�

E
(
�0,m0

∣∣∣̃�(0, ·), ũ(0, ·)
)

dx

+
τ∫

0

∫
�

1

�̃
(�ũ − m) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇x p(̃�)

]
dx dt

+
τ∫

0

∫
�

[(
1 − �

�̃

)
p′(̃�) + 1

�̃
ũ · (m − �ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt

+ ‖∇x ũ‖L∞((0,T )×�;Rd×d )

τ∫
0

⎡
⎢⎣
∫
�

E
(
�,m

∣∣∣̃�, ũ
)

(t, ·) dx +
∫

�

dE(t)

⎤
⎥⎦ dt

(6.9)
for the same class of test functions as in (6.6).

Now, wemay approximate functions in the class (6.8) by those in (6.6) via Lemma
4.1. Consequently, we extend (6.9) to the class (6.8), specifically,
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[ ∫
�

E
(
�,m

∣∣∣̃�, ũ
)

(τ, ·) dx +
∫

�

dE(τ )
]

<∼
∫
�

E
(
�0,m0

∣∣∣̃�(0, ·), ũ(0, ·)
)

dx

+
τ∫

0

∫
�

1

�̃
(�ũ − m) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇x p(̃�)

]
dx dt

+
τ∫

0

∫
�

[(
1 − �

�̃

)
p′(̃�) + 1

�̃
ũ · (m − �ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt

+ c
(
�, ‖∇x ũ‖L∞((0,T )×�;Rd×d )

) τ∫
0

⎡
⎢⎣
∫
�

E
(
�,m

∣∣∣̃�, ũ
)

(t, ·) dx +
∫

�

dE(t)

⎤
⎥⎦ dt

(6.10)
for any [̃�, ũ] satisfying (6.8). In particular, we may plug the strong solution [̃�, ũ]
in (6.10) and apply Gronwall’s lemma to obtain the desired conclusion

[ ∫
�

E
(
�,m

∣∣∣̃�, ũ
)

(τ, ·) dx +
∫

�

dE(τ )
]

<∼
∫
�

E
(
�0,m0

∣∣∣̃�(0, ·), ũ(0, ·)
)

dx(= 0).

(6.11)
�

Remark 6.1 (Stability)
Note that formula (6.11) provides also a piece information on stability of the

strong solution with respect to the perturbation of the initial data. Similar idea will
be used later in the numerical part to derive qualitative error estimates.

Some remarks are in order. Note that hypothesis (6.7) imposed on the pressure-
density EOS is definitely less restrictive than in Definition 5.6 formulated for the
isentropic Euler system, where

p(�) = a�γ .

On the one hand, it can be shown that the conclusion of Theorem 6.1 remains valid
under a more general restriction

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, p′(�) > 0 for � > 0,

lim sup
�→∞

p(�)

P(�)
< ∞, P ′(�)� − P(�) = p(�).

(6.12)

On the other hand, however, the limit of a consistent approximation of the Euler
system with p satisfying merely (6.12) may not be a DW solution as positivity of
R requires p = p(�) to be a convex function. From this point of view, the optimal
pressure-density EOS should satisfy
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p ∈ C[0,∞) ∩ C2(0,∞), p(0) = 0, p′(�) > 0 for � > 0,

P ′(�)� − P(�) = p(�), P(0) = 0,

P − a p, a p − P convex for some a > 0, a > 0.

(6.13)

It is easy to check that (6.13) implies coercivity of the pressure potential, specifically,

P(�) ≥ a�γ whenever � ≥ 1 for certain a > 0, γ = 1 + 1

a
> 1. (6.14)

Indeed

a p′′(�) − P ′′(�) = a p′′(�) + p′(�)

�
≥ 0;

whence (
log(p′(�))

)′ ≥ log′
(
�

1
a

)
⇒ p′(�) ≥ p′(1)�

1
a , � ≥ 1.

Note that (6.14), together with the energy inequality, guarantees the desired bounds

� ∈ L∞(0, T ; Lγ (�)), m ∈ L∞(0, T ; L 2γ
γ+1 (�; Rd)).

In view of the equivalence of the concepts of dissipative weak and dissipative
measure-valued solution stated in Theorem 5.4, we obtain the following corollary of
Theorem 6.1.

Corollary 6.1 (Weak strong uniqueness for DMV solutions of barotropic Euler
system)

Under the hypotheses of Theorem 6.1, suppose that a parametrized measure
{Vt,x }(t,x)∈(0,T )×� is a DMV solution of the barotropic Euler system in the sense of
Definition 5.5, with the initial data [�0,m0] and the associated concentration defect
measures Ecd , Rcd . Let �̃, ũ be a strong solution of the same problem belonging to
the class (6.8) and such that

�̃(0, ·) = �0, �̃(0, ·)̃u(0, ·) = m0.

Then
Vt,x = δ�̃(t,x),̃�(t,x )̃u(t,x) for a.a. (t, x) ∈ (0, T ) × �,

and
Ecd = Rcd = 0.

Remark 6.2 Both Theorem 6.1 and its Corollary 6.1 apply to the periodic boundary
conditions � = T

d with obvious modifications in the proof.
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6.2 Complete the Euler System

Next, we consider the dissipative weak solutions to the complete Euler system intro-
duced in Sect. 5.2.2. Recall that the classical formulation of the problem reads:

∂t� + divxm = 0 in (0, T ) × �, �(0, ·) = �0,

∂tm + divx

(
m ⊗ m

�

)
+ ∇x p(�, S) = 0 in (0, T ) × �, m(0, ·) = m0,

∂t

[
1

2

|m|2
�

+ �e(�, S)

]
+ divx

([
1

2

|m|2
�

+ �e(�, S) + p(�, S)

]
m
�

)
= 0 in (0, T ) × �,

S(0, ·) = S0,

m · n|∂� = 0,
(6.15)

where S = �s is the total entropy, see Sect. 4.1.
The DW solutions satisfy the system of equations

∂t� + divxm = 0, �(0, ·) = �0,

∂tm + divx

(
1�>0

m ⊗ m
�

)
+ ∇x1�>0 p(�, S) = −divxR, m(0, ·) = m0,

∂t S + divx

〈
V; 1�̂>0 Ŝ

m̂
�̂

〉
≥ 0, S(0, ·) = S0,

〈
V; [̂�, m̂, Ŝ]〉 = [�,m, S],

V
{̂
� ≥ 0, Ŝ ≥ s�̂

} = 1,
(6.16)

in the sense of distribution, together with the total energy balance

∫
�

[
1

2

|m|2
�

+ �e(�, S)

]
(τ, ·) dx +

∫

�

dE(τ ) ≤
∫
�

[
1

2

|m0|2
�0

+ �0e(�0, S0)

]
dx .

(6.17)
The energy defect E ∈ L∞(0, T ;M+(�)) dominates both the Reynolds defect,

dE ≤ tr[R] ≤ dE, 0 < d ≤ d, (6.18)

and the oscillation defect associated to the measure V ,

E ≥
〈
V; 1

2

|m̂|2
�̂

+ �̂e(̂�, Ŝ)

〉
−
(
1

2

|m|2
�

+ �e(�, S)

)
, (6.19)

cf. Definition 5.7.

Remark 6.3 Exceptionally, the dummy variables in the argument of the measure V
are denoted [̂�, m̂, Ŝ] instead of [̃�, m̃, S̃] as the latter symbol will be used for the
test functions in the relative energy inequality.
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6.2.1 Relative Energy Inequality

Similarly to the preceding section, we derive the relative energy inequality from its
counterpart in Sect. 4.1.6. First we recall the relative energy in the conservative-
entropy variables

E
(
�,m, S

∣∣∣̃�, ũ, S̃
)

= 1

2
�

∣∣∣∣m� − ũ

∣∣∣∣
2

+ �e(�, S) − ∂(̃�e(̃�, S̃))

∂�
(� − �̃) − ∂(̃�e(̃�, S̃))

∂S
(̃�, S̃)(S − S̃)

− �̃e(̃�, S̃),

(6.20)
cf. (4.59).

The relative energy inequality stated in (4.66) requires only a minor modification
to accommodate the defects. The final result reads

⎡
⎣∫

�

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

dx

⎤
⎦
t=τ

t=0

+
∫

�

dE(τ )

≤ −
τ∫

0

∫
�

1�>0
(�ũ − m) ⊗ (�ũ − m)

�
: ∇x ũ dx dt

−
τ∫

0

∫
�

[
p(�, S) − (� − �̃)

∂p(̃�, S̃)

∂�
− (S − S̃)

∂p(̃�, S̃)

∂S
− p(̃�, S̃)

]
divx ũ dx dt

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇x ũ + 1

�̃
∇x p̃

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + divx (̃�ũ))

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + divx (̃uS̃)

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)(
∂t ϑ̃ + ũ · ∇x ϑ̃ + ∂p(̃�, S̃)

∂S
divx ũ

)]
dx dt

+
τ∫

0

∫
�

〈
Vt,x ;

(
�̂
S̃

�̃
(t, x) − Ŝ

)(
m̂
�̂

− ũ(t, x)

)〉
· ∇x ϑ̃ dx dt

−
τ∫

0

⎛
⎜⎝
∫

�

∇x ũ : dR(t)

⎞
⎟⎠ dt

(6.21)
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for any DW solution [�,m, S] in the sense of Definition 5.7, and any trio of test
functions [̃�, m̃, S̃] belonging to the class

�̃, S̃ ∈ W 1,∞((0, T ) × �), �̃ ≥ � > 0, ϑ̃ ≡ 1

γ − 1

∂p(̃�, S̃)

∂S
≥ ϑ > 0 in (0, T ) × �,

ũ ∈ CM ([0, T ] × �; Rd ), ũ · n|∂� = 0, M ≥ 1 is a positive integer.
(6.22)

6.2.2 Weak-Strong Uniqueness for DW Solutions
of Complete the Euler System

We are ready to establish the weak-strong uniqueness principle for DW solutions of
the complete Euler system following the line of arguments of the proof of Theorem
6.1.

Theorem 6.2 (Weak-strong uniqueness for DWsolutions of complete Euler sys-
tem)

Let � ⊂ Rd, d = 2, 3, be a bounded domain of class CN , N = min{2, M}. Sup-
pose that [�,m, S] is a dissipative weak (DW) solution of the complete Euler system
(6.15) in (0, T ) × � in the sense of Definition 5.7, with the initial data [�0,m0, S0].

Let a trio [̃�, m̃, S̃],

with the velocity ũ = m̃
�̃

, and the temperature ϑ̃ = 1

γ − 1

1

�̃

∂p(̃�, S̃)

∂S
,

belonging to the class

�̃, S̃ ∈ W 1,∞((0, T ) × �), �̃ ≥ � > 0, ϑ̃ ≥ ϑ > 0 in (0, T ) × �,

ũ ∈ W 1,∞((0, T ) × �; Rd), ũ · n|∂� = 0.
(6.23)

be a strong solution of the same problem,

�̃(0, ·) = �0, �̃(0, ·)̃u(0, ·) = m0, S̃(0, ·) = S0.

Then
� = �̃, m = �̃ũ, S = S̃ in (0, T ) × �,

and
Vt,x = δ�̃(t,x),̃�ũ(t,x),S̃(t,x) for a.a. (t, x) ∈ (0, T ) × �, E = R = 0.

Proof Exactly as in the proof of Theorem 6.1, we first enlarge the class of test
functions (6.22) to accommodate the strong solution. Accordingly, we deduce
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⎡
⎢⎣
∫
�

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

(τ, ·) dx +
∫

�

dE(τ )

⎤
⎥⎦

≤
∫
�

E
(
�0, S0,m0

∣∣∣̃�(0, ·), S̃(0, ·), ũ(0, ·)
)

dx

+
τ∫

0

∫
�

(�ũ − m) ·
[
∂t ũ + ũ · ∇x ũ + 1

�̃
∇x p̃

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂�
(∂t �̃ + divx (̃�ũ))

]
dx dt

+
τ∫

0

∫
�

[
(̃� − �)

1

�̃

∂p(̃�, S̃)

∂S

(
∂t S̃ + divx (̃uS̃)

)]
dx dt

+
τ∫

0

∫
�

[(
�

�̃
S̃ − S

)(
∂t ϑ̃ + ũ · ∇x ϑ̃ + ∂p(̃�, S̃)

∂S
divx ũ

)]
dx dt

+
τ∫

0

∫
�

〈
Vt,x ;

(
�̂
S̃

�̃
(t, x) − Ŝ

)(
m̂
�̂

− ũ(t, x)

)〉
· ∇x ϑ̃ dx dt

+ c
(
�, ‖ũ‖W 1,∞((0,T )×�;Rd )

) τ∫
0

⎛
⎜⎝
∫
�

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

(t, ·) dx +
∫

�

dE(t)

⎞
⎟⎠ dt

(6.24)
for any [̃�, ũ, S̃] as in (6.23). In particular, we may consider the strong solution
[̃�, ũ, S̃] as a test function in (6.24) obtaining

⎡
⎢⎣
∫
�

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

(τ, ·) dx +
∫

�

dE(τ )

⎤
⎥⎦

≤ c
(
�, ‖ũ‖W 1,∞((0,T )×�;Rd )

) τ∫
0

⎛
⎜⎝
∫
�

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

(t, ·) dx +
∫

�

dE(t)

⎞
⎟⎠ dt

+
τ∫

0

∫
�

〈
Vt,x ;

(
�̂
S̃

�̃
(t, x) − Ŝ

)(
m̂
�̂

− ũ(t, x)

)〉
· ∇x ϑ̃ dx dt.

(6.25)
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By virtue of (6.19), we have

∫
�

〈
V; E

(̂
�, Ŝ, m̂

∣∣∣̃�, S̃, ũ
)〉

(τ, ·) dx

<∼
⎡
⎢⎣
∫
�

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

(τ, ·) dx +
∫

�

dE(τ )

⎤
⎥⎦ .

Consequently, we have only to show the algebraic inequality

∣∣∣∣
(

�

�̃
S̃ − S

)(
m
�

− ũ
)∣∣∣∣ <∼ E

(
�, S,m

∣∣∣̃�, S̃, ũ
)

(6.26)

for any
� > 0, S ≥ s�, (6.27)

cf. (5.94), and
0 < � ≤ �̃ ≤ �, |S̃| ≤ S, |̃u| ≤ u,

where the constant hidden in
<∼ depends only on �, �, S, and u.

To see (6.26), we decompose the set of [�, S] into two parts:

R =
{
[�, S]

∣∣∣ S ≥ s�,
1

2
� < � < 2�, |S| < 2S

}
, S =

{
[�, S]

∣∣∣ S ≥ s�
}

\ R,

cf. Sect. 5.4.1. One one hand, in view of strict convexity of the relative energy, we
check easily that

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

>∼
∣∣∣∣m� − ũ

∣∣∣∣
2

+ |� − �̃|2 + |S − S̃|2 whenever [�, S] ∈ R for [�, S] ∈ S.

Seeing that

∣∣∣∣
(

�

�̃
S̃ − S

)(
m
�

− ũ
)∣∣∣∣ <∼ |� − �̃|2 + |S − S̃|2 +

∣∣∣∣m� − ũ

∣∣∣∣
2

we may infer that (6.26) holds whenever [�, S] ∈ R.
On the other hand, we can check by direct manipulation that

E
(
�, S,m

∣∣∣̃�, S̃, ũ
)

>∼ 1 + |m|2
�

+ �e(�, S) ≈ 1 + |m|2
�

+ �γ exp

(
(γ − 1)

S

�

)
, (6.28)
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while ∣∣∣∣
(

�

�̃
S̃ − S

)(
m
�

− ũ
)∣∣∣∣ <∼

∣∣∣∣1�>0S
|m|
�

∣∣∣∣+ � + |S| + |m|

as soon as [�, S] ∈ S. Going back to the proof of Lemma 5.2 we can see that the term
� + |S| + |m| can be controlled by the right-hand side of (6.28) as required. Finally, we claim

∣∣∣∣1�>0S
|m|
�

∣∣∣∣ <∼ 1 + |m|2
�

+ �γ exp

(
(γ − 1)

S

�

)
.

Indeed we have ∣∣∣∣1�>0S
|m|
�

∣∣∣∣ <∼ |m|2
�

+ S2

�
,

where
|S|2
�

≤ −s� if S ≤ 0,

and (
|S|2
�

)γ
<∼ �γ exp

(
(γ − 1)

S

�

)
if S > 0,

cf. (5.41). We have shown (6.26) so that the rest of the proof follows by direct application of
Gronwall’s lemma. �

At the level of DMV solutions introduced in Definition 5.3, Theorem 6.2 yields
the following corollary.

Corollary 6.2 Under the hypotheses of Theorem 6.2, let a parametrized measure

{Vt,x }(t,x)∈(0,T )×�

be a dissipative measure-valued (DMV) solution of the complete Euler system (6.15)
in (0, T ) × � in the sense of Definition 5.3, with the initial data [�0,m0, S0]. Let a
trio [̃�, m̃, ũ], with the temperature ϑ̃ ,

ϑ̃ = 1

γ − 1

1

�̃

∂p(̃�, S̃)

∂S
,

belonging to the class (6.23) be a strong solution of the same problem,

�̃(0, ·) = �0, �̃(0, ·)̃u(0, ·) = m0, S̃(0, ·) = S0.

Then
Vt,x = δ�̃(t,x),̃�ũ(t,x),S̃(t,x) for a.a. (t, x) ∈ (0, T ) × �,

and

http://dx.doi.org/10.1007/978-3-030-73788-7_5
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Ecd = Rcd = 0.

Remark 6.4 Both Theorem 6.2 and Corollary 6.2 remain valid for the periodic
boundary conditions � = T

d .

6.3 Navier–Stokes System

We address the problem of weak-strong uniqueness for the Navier–Stokes system
with the spatially periodic boundary conditions:

∂t� + divx (�u) = 0 in (0, T ) × T
d , �(0, ·) = �0,

∂t (�u) + divx (�u ⊗ u) + ∇x p(�) = divxS in (0, T ) × T
d , �u(0, ·) = m0,

S = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI, μ > 0, λ ≥ 0,

� = T
d .

(6.29)
As a matter of fact, we can accommodate more general viscous stress tensor S
interrelated to Dxu through the “implicit” rheological law,

S : Dxu = F(Dxu) + F∗(S),

as long as F enjoys certain coercivity, see Sect. 1.3.2.2. To simplify, however, we
focus only on F with quadratic growth pertinent to the Navier–Stokes system.

Let us first consider the dissipative weak (DW) solutions introduced in Sect. 5.3.3,
namely the system of field equations

∂t� + divx (�u) = 0, �(0, ·) = �0,

∂t (�u) + divx (�u ⊗ u) + ∇x p(�) = divxS − divxR, �u(0, ·) = m0
(6.30)

satisfied in the sense of distributions and supplemented with the energy inequality

∫
Td

[
1

2
�|u|2 + P(�)

]
(τ, ·) dx +

∫
Td

dE(τ ) +
τ∫

0

∫
Td

[
F(Dxu) + F∗(S)

]
dx dt

≤
∫
Td

[
1

2

|m0|2
�0

+ P(�0)

]
dx .

(6.31)
The defect measures

E ∈ L∞(0, T ;M+(Td)), R ∈ L∞(0, T ;M+(Td; Rd×d
sym ))
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satisfy the compatibility condition

dE ≤ tr[R] ≤ dE, 0 < d ≤ d, (6.32)

cf. Definition 5.11.

6.3.1 Relative Energy Inequality

The relative energy for the Navier–Stokes system is the same as for its inviscid Euler
limit

E
(
�, u

∣∣∣̃�, ũ
)

= 1

2
� |u − ũ|2 + P(�) − P ′(̃�)(� − �̃) − P (̃�),

where we have replaced m by �u. The associated relative energy inequality may be
recovered from (6.5) keeping in mind the extra contribution by the viscous stress.
The resulting expression reads

⎡
⎣∫
Td

E
(
�, u

∣∣∣̃�, ũ
)

dx

⎤
⎦

t=τ

t=0

+
∫
Td

dE(τ ) +
τ∫

0

∫
Td

[
F(Dxu) + F∗(S)

]
dx dt

−
τ∫

0

∫
Td

S : Dx ũ dx dt +
τ∫

0

∫
Td

S̃ : (Dx ũ − Dxu) dx dt

≤ −
τ∫

0

∫
Td

1�>0�∇x ũ · (u − ũ) · (u − ũ) dx dt

−
τ∫

0

∫
Td

[
p(�) − p′(̃�)(� − �̃) − p(̃�)

]
divx ũ dx dt

+
τ∫

0

∫
Td

�

�̃
(̃u − u) ·

[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇x p(̃�) − divx S̃

]
dx dt

+
τ∫

0

∫
Td

[(
1 − �

�̃

)
p′(̃�) + �

�̃
ũ · (u − ũ)

] [
∂t �̃ + divx (̃�ũ)

]
dx dt

−
τ∫

0

⎛
⎝∫
Td

∇x ũ : dR(t)

⎞
⎠ dt +

τ∫
0

∫
Td

(� − �̃)
1

�̃
divx S̃ · (̃u − u) dx dt

(6.33)
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for any DW solution of the Navier–Stokes system and any trio of test functions
[̃�, ũ, S̃] belonging to the class

�̃ ∈ C1([0, T ] × T
d), 0 < � ≤ �̃ in (0, T ) × T

d ,

ũ ∈ C1([0, T ] × T
d; Rd), S̃ ∈ L2(0, T ;W 1,∞(Td; Rd×d

sym )).
(6.34)

Remark 6.5 Note that the integrals containing the tensor S̃ have been just added to
the entropy inequality associated to the compressible Euler system. In particular, the
regularity hypotheses imposed on S̃ may be relaxed given the available integrability
of � and u.

6.3.2 Weak-Strong Uniqueness for DW Solutions
of the Navier–Stokes System

Following the arguments of Sect. 6.1 we can establish the weak-strong uniqueness
principle for the dissipative weak solutions to the Navier–Stokes system.

Theorem 6.3 (Weak-strong uniqueness for DW solutions of Navier–Stokes sys-
tem)

Let the pressure p = p(�) satisfy

p ∈ C1[0,∞) ∩ C2(0,∞), p(0) = 0, p′(�) > 0 for � > 0,

0 < lim inf
�→∞

p′(�)

�γ−1
≤ lim sup

�→∞
p′(�)

�γ−1
< ∞

for some γ > 1. Let [�, u], with the associated viscous stress S, be a DW solution of
the Navier–Stokes system (6.29) with the initial data [�0,m0 = �u(0, ·)]. Suppose
that [̃�, ũ] is a strong solution of the same system, with

S̃ ∈ ∂F(Dx ũ), �̃(0, ·) = �0, �̃ũ(0, ·) = m0,

belonging to the class (6.34).
Then

� = �̃, u = ũ, S = S̃ in (0, T ) × T
d ,

E = R = 0.
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Proof Apparently, the onlymodification neededwith respect to the proof of Theorem
6.1 consists in

• showing positivity of the integral

τ∫
0

∫
Td

[
F(Dxu) + F∗(S) − S : Dx ũ + S̃ : (Dx ũ − Dxu)

]
dx dt;

• controlling the integral

τ∫
0

∫
Td

(� − �̃)
1

�̃
divx S̃ · (̃u − u) dx dt

on the right-hand side of the relative entropy inequality (6.33).

First observe that for S̃ ∈ ∂F(Dx ũ) we have

F(Dxu) − S̃ : (Dxu − Dx ũ) − F(Dx ũ)

≈ μ

∣∣∣∣
(
Dx − 1

d
divxI

)
(u − ũ)

∣∣∣∣
2

+ λ|divx (u − ũ)|2,

while, in view of the Fenchel–Young inequality,

F(Dx ũ) + F∗(S) − S : Dx ũ ≥ 0.

Consequently, plugging the strong solution in the relative energy inequality (6.33)
we obtain

[ ∫
Td

E
(
�, u

∣∣∣̃�, ũ
)

(τ, ·) dx +
∫
Td

dE(τ )
]

+ μ

τ∫
0

∫
Td

∣∣∣∣
(
Dx − 1

d
divxI

)
(u − ũ)

∣∣∣∣
2

dx dt

<∼ ‖∇x ũ‖L∞((0,T )×Td ;Rd×d )

τ∫
0

∫
Td

[
E
(
�, u

∣∣∣̃�, ũ
)

(t, ·) +
∫
Td

dE(t)
]
dx dt

+
τ∫

0

∫
Td

(� − �̃)
1

�̃
divx S̃ · (̃u − u) dx dt

(6.35)
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To control the last integral in (6.35) we consider three sets:

R =
{
0 <

1

2
� < � < 2�

}
, S+ = {� ≥ 2�} , S− =

{
0 ≤ � ≤ 1

2
�

}
.

As P is strictly convex, we have

E
(
�, u

∣∣∣̃�, ũ
)

>∼ |u − ũ|2 + |� − �̃|2 whenever � ∈ R.

Accordingly, we get

1�∈R
∣∣∣∣(� − �̃)

1

�̃
divx S̃ · (̃u − u)

∣∣∣∣ <∼ 1�∈RE
(
�, u

∣∣∣̃�, ũ
)

.

Next,

E
(
�, u

∣∣∣̃�, ũ
)

>∼ 1 + �|u − ũ|2 + �γ whenever � ∈ S+ ∪ S−.

Consequently,

1�∈S+

∣∣∣∣(� − �̃)
1

�̃
divx S̃ · (̃u − u)

∣∣∣∣ <∼ 1�∈S+
(
� + �|̃u − u|2) <∼ E

(
�, u

∣∣∣̃�, ũ
)

for � ∈ S+.
Finally,

1�∈S−

∣∣∣∣(� − �̃)
1

�̃
divx S̃ · (̃u − u)

∣∣∣∣ <∼ δ|u − ũ|2 + 1�∈S−c(δ) for any δ > 0.

Thus we may use the following variant of the Korn–Poincaré inequality

∫

Td

|u − ũ|2 dx
<∼ c(M, 
)

⎡
⎢⎣
∫

Td

�|u − ũ|2 dx +
∫

Td

∣∣∣∣
(
Dx − 1

d
divx I

)
(u − ũ)

∣∣∣∣
2

dx

⎤
⎥⎦

whenever 0 < M ≤
∫

Td

� dx, ‖�‖Lγ (Td ) ≤ 


(6.36)
to conclude the proof. �

Aswe have observed, the proof does not depend essentially on the specific form of
the viscous stress characterized by the potential F and the technique can be adapted
to more general non-Newtonian constitutive relations for viscosity.
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Theorem 6.3, combined with the local existence of strong solutions and the con-
ditional regularity criterion of Sun, Wang, and Zhang (see Theorem 3.5), yields a
remarkable corollary.

Corollary 6.3 (Conditional regularity of DW solutions of the Navier–Stokes
system)

Let the pressure p = p(�) by given by the isentropic EOS,

p(�) = a�γ , a > 0, γ > 1.

Suppose the [�, u] is a DW solution of the Navier–Stokes system in the sense of
Definition 5.11 in (0, T ) × T

d with regular initial data

�0 ∈ W 3,2(Td), m0 = �0u0, u0 ∈ W 3,2(Td , Rd), inf
x∈Td

�0(x) > 0.

(i) Suppose that the bulk viscosity coefficient λ = 0 and that � ∈ L∞((0, T ) ×
T
d). Then [�, u] is a strong solution and R = E = 0.
(ii) Suppose � ∈ L∞((0, T ) × T

d), u ∈ L∞((0, T ) × T
d; Rd). Then [�, u] is a

strong solution and R = E = 0.

Proof By virtue of the local existence results stated in Theorems 3.1, 3.4, there exists
a time interval [0, Tmax) on which the problem admits a strong solution. Furthermore,
it follows from the conditional regularity criterionofSun,Wang, andZhang (Theorem
3.5) that Tmax = T in the case (i); while the same is true in the case (ii) in view of
Remark 3.6. As pointed out inRemark 3.5, the solution remains in the same regularity
class as the initial data, in particular, all relevant derivatives are continuous. �

6.3.3 Weak-Strong Uniqueness Principle for DMV Solutions
to the Navier–Stokes System

The proof of weak-strong uniqueness for the dissipative measure-valued (DMV)
solutions of the Navier–Stokes system requires only minor modification with respect
to Theorem 6.3. In accordance with Definition 5.10, the relative energy reads

E
(
�, u

∣∣∣̃�, ũ
)

=
〈
V; 1

2
� |u − ũ|2 + P(�) − P ′(̃�)(� − �̃) − P (̃�)

〉
,

with the associated relative energy inequality
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⎡
⎣∫
Td

E
(
�, u

∣∣∣̃�, ũ
)

dx

⎤
⎦

t=τ

t=0

+
∫
Td

dE(τ ) +
τ∫

0

∫
Td

D

+
τ∫

0

∫
Td

[
F(Dxu) + F∗(S)

]
dx dt

−
τ∫

0

∫
Td

S : Dx ũ dx dt +
τ∫

0

∫
Td

S̃ : (Dx ũ − Dxu) dx dt

≤ −
τ∫

0

∫
Td

〈
V; 1�>0�∇x ũ · (u − ũ) · (u − ũ)

〉
dx dt

−
τ∫

0

∫
Td

〈
V; p(�) − p′(̃�)(� − �̃) − p(̃�)

〉
divx ũ dx dt

+
τ∫

0

∫
Td

〈
V; �

�̃
(̃u − u)

〉
·
[
∂t (̃�ũ) + divx (̃�ũ ⊗ ũ) + ∇x p(̃�) − divx S̃

]
dx dt

+
τ∫

0

∫
Td

〈
V;
(
1 − �

�̃

)
p′(̃�) + �

�̃
ũ · (u − ũ)

〉 [
∂t �̃ + divx (̃�ũ)

]
dx dt

−
τ∫

0

⎛
⎝∫
Td

∇x ũ : dR(t)

⎞
⎠ dt +

τ∫
0

∫
Td

〈
V; (� − �̃)

1

�̃
divx S̃ · (̃u − u)

〉
dx dt

(6.37)

The proof of weak-strong uniqueness is now exactly the same as in Theorem
6.3, where the Korn–Poincaré inequality (6.36) is replaced by its Young measure
counterpart (5.126). Let us state the result.

Theorem 6.4 (Weak-stronguniqueness forDMVsolutions of theNavier–Stokes
system)

Let the pressure p = p(�) satisfy

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, p′(�) > 0 for � > 0,

0 < lim inf
�→∞

p′(�)

�γ−1
≤ lim sup

�→∞
p′(�)

�γ−1
< ∞

for some γ > 1. Let a parametrized measure {Vt,x }(t,x)∈(0,T )×Td be a dissipative
measure-valued solution of the Navier–Stokes system with the initial data [�0,m0 =
�u(0, ·)] introduced in Definition 5.10. Suppose that [̃�, ũ] is a strong solution of
the same system, with
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S̃ ∈ ∂F(Dxu), �̃(0, ·) = �0, �̃ũ(0, ·) = m0,

belonging to the class (6.34).
Then

Vt,x = δ[̃�(t,x),̃u(t,x)] for a.a. (t, x) ∈ (0, T ) × T
d , S = S̃ in (0, T ) × T

d ,

E = D = R = 0.

Finally, we reformulate Corollary 6.3 in terms of the dissipative measure-valued
solutions.

Corollary 6.4 (Conditional regularity of DMV solutions of the Navier–Stokes
system)

Let the pressure p = p(�) by given by the isentropic EOS,

p(�) = a�γ , a > 0, γ > 1.

Let a parametrized measure {Vt,x }(t,x)∈(0,T )×Td be a DMV solution of the Navier–
Stokes system in the sense of Definition 5.10 in (0, T ) × T

d with regular initial data

�0 ∈ W 3,2(Td), m0 = �0u0, u0 ∈ W 3,2(Td , Rd), inf
x∈Td

�0(x) > 0.

(i) Suppose that the bulk viscosity coefficient λ = 0 and that

Vt,x {0 ≤ �̃ ≤ �} = 1 for a.a. (t, x) ∈ (0, T ) × T
d

and a certain constant �. Then

V = δ[�(t,x),u(t,x)] for a.a. (t, x) ∈ (0, T ) × T
d ,

where [�, u] is a strong solution and R = E = D = 0.
(ii) Suppose that

Vt,x {0 ≤ �̃ ≤ �, |u| ≤ u} = 1 for a.a. (t, x) ∈ (0, T ) × T
d

and certain constants �, u.
Then

V = δ[�(t,x),u(t,x)] for a.a. (t, x) ∈ (0, T ) × T
d ,

where [�, u] is a strong solution and R = E = D = 0.

We point out that the presence of viscosity is crucial in this result. Similar con-
clusion is definitely false in the case of the Euler system.



208 6 Weak-Strong Uniqueness Principle

6.4 Conclusion, Bibliographical Remarks

Weak strong uniqueness principle in the context of measure-valued solutions to
the barotropic Euler system was shown by Gwiazda, Świerczewska–Gwiazda, and
Wiedemann [126]. They used the generalized Young measures introduced by Alibert
andBouchitté [4]. The proofwas simplified and extended to a larger class ofmeasure-
valued solutions for the Navier–Stokes system in [82]. A general result for systems
of conservation laws without concentration effects was shown by Brenier et al. [26].
The complete Euler system including concentrations is treated in [40]. There is a
nice survey of these results Wiedemann [199].

All results concerning weak-strong uniqueness for the Navier–Stokes system can
be extended to more general “implicit” rheological relation

S : Dxu = F(Dxu) + F∗(S)

under certain restrictions imposed on F . In view of the applications to the numerical
schemes discussed in thismonograph,we focused only on quadratic F corresponding
to the standard Navier–Stokes system. The reader interested in general theory may
consult [2].



Part III
Numerical Analysis

The ultimate and principal objective of this monograph is analysis of certain numer-
ical schemes (methods) used in continuum fluid mechanics. Notably, we examine
numerical approximations of the Euler and Navier–Stokes systems discussed in the
previous chapters. There are three main issues to be discussed:
• Stability. The output of a numerical method is a finite set of numerical values that
represents discrete approximation of the continuous (target) solution. These must
be extended in a suitable way to the whole physical space (0, T ) × � to obtain a
family of approximate solutions interpreted as numerical functions of the physical
variables t and x . The approximate solutions are bounded, typically piecewise
constant or piecewise polynomial and may enjoy certain properties inherited from
the limit system. For instance, the approximate density and temperature may be
strictly positive functions.A sequence of approximate solutions is stable if it admits
bounds in certain function spaces that are uniform with respect to n → ∞. The
problemof stability is therefore intimately related to the a priori estimates available
for the limit system. As we have seen in Part II, the (known) a priori bounds are
based on the underlying laws of classical thermodynamics:
(i) Conservation of mass yielding uniform integrability of the density.
(ii) Conservation of energy, where the latter is a convex function of the density,

momentum, and entropy.
(iii) Entropy production yielding a lower bound on the total entropy.
Besides, the problems with energy dissipation as the Navier–Stokes–Fourier

systemprovide uniformbounds on the velocity and temperature gradient as a result of
diffusive transport. A family of approximate solutions satisfying the relevant uniform
bounds is termed stable approximation.
• Consistency. Stability itself is not sufficient for showing that a numerical method
approaches the limit system. Consistent approximations discussed in detail in
Chap. 5 solve the limit problem modulo an error that vanishes in the asymptotic
limit. This is usually a sufficient piece of information for proving convergence to
the continuous solution if the underlying system is linear (cf. the celebrated Lax
equivalence theorem [149]). As we have seen in Chap. 5, consistent approxima-
tions converge to generalized (measure-valued or dissipative weak) solutions of

https://doi.org/10.1007/978-3-030-73788-7_5
https://doi.org/10.1007/978-3-030-73788-7_5
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nonlinear problems. In view of the weak–strong uniqueness principle derived for
generalized solutions in Chap. 6, however, a generalized solution coincides with
the (unique) strong solution of the limit problem as long as the latter exist. This
property may be seen as an extension of Lax equivalence theorem to nonlinear
problems. A family of approximate solutions consistent with the limit system of
field equations is termed consistent approximation.

• Convergence.
The problem of convergence is fundamental in numerical analysis. There are two

principal aspects discussed in chapters below:
(i) Identifying the limit of the approximate solutions and its relation to the exact
solution of the target continuous problem.

(ii) The way how the limit is attained – an issue intimately related to error
estimates.

Given the rather poor uniformbounds, the approximate solutions usually approach
the limit only in the weak topology in the sense of Lebesgue spaces, meaning only
integralmeans converge. The limit object is then characterized through the associated
Young measure that captures statistical distribution of the oscillating sequence, cf.
Chap. 5 and notably Sect. 5.1, where this issue is discussed for the Euler system.
Even if we know that an approximate sequence {Un}∞n=1 converges weakly to the
exact solution U, the output of a specific implementation of a numerical method
would provide in this case only chaotic oscillations (wiggles) for which the desired
limit object – barycenter of the associated Young measure – is hard to be identified.

Strong, meaning pointwise with respect to the physical variables (t, x), conver-
gence is definitely more convenient as the limit object can be clearly identified at
least at a sufficiently high resolution of the discretization parameters. Recall that
pointwise convergence along with equi-integrability of a sequence {Un}∞n=1 imply
strong convergence in the integral norm L1((0, T ) × �) but not vice versa, as the
other implication requires to pass to a suitable subsequence as the case may be.

We propose a method how to convert weakly converging sequences to strongly
converging by means of an averaging procedure mimicking the Strong Law of Large
Numbers in probability. The resulting concept of convergence is commonly known
as K–convergence or convergence of Cesàro averages. Its functional analytic back-
ground goes back to the classical results of Banach and Saks; here, we use the refined
more recent approach based on pointwise convergence due to Komlós. As we shall
see, themethod not only provides an efficient visualization of the asymptotic limits of
numerical methods but also the associated Young measures that may be generated by
them. In particular, we establish pointwise convergence in (t, x) of these quantities
with respect to a suitable distance (Monge–Kantorowich or Wasserstein).

https://doi.org/10.1007/978-3-030-73788-7_6
https://doi.org/10.1007/978-3-030-73788-7_5
https://doi.org/10.1007/978-3-030-73788-7_5


Chapter 7
Weak and Strong Convergence

We examine in detail the issue of weak and strong convergence of a sequence of
approximate solutions resulting from a numerical scheme. Very roughly indeed,
“weak”means the convergence in integral averageswhile “strong” refers to pointwise
convergence with respect to the physical variables t and x. Here “pointwise” should
be understood “pointwise a.a.” with respect to the Lebesgue measure of the physical
space (0,T ) × �.

In particular, we consider sequences of approximate solutions to the compress-
ible Euler system admitting uniform energy bounds (stable approximation) and/or
satisfying the relevant field equations modulo an error vanishing in the asymptotic
limit (consistent approximation). We discover a rather striking fact that either (i) the
approximate sequence converges strongly in the energy norm, or (ii) the limit is not
a weak solution of the associated Euler system. The latter alternative may be seen
as a motivation for considering the more general classes of solutions introduced in
Chap. 5.

7.1 Sharp Form of Jensen’s Inequality

In Sect. 5.1 we have considered a general sequence {Un}∞n=1 of measurable functions
defined on a (bounded) set Q ⊂ Rm and ranging in Rk , along with its superposition
E(Un) with a l.s.c. function

E : Rk → [0,∞].

If ∫

Q

(|Un| + E(Un)) dy ≤ c

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
E. Feireisl et al., Numerical Analysis of Compressible Fluid Flows, MS&A 20,
https://doi.org/10.1007/978-3-030-73788-7_7
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uniformly for n → ∞, we may identify the limit

E(Un) → E(U) weakly-(*) in M+(Q),

along with a Young measure V generated by {Un}∞n=1, passing to a suitable subse-
quence as the case may be. Similarly to Sect. 5.1, we introduce the concentration
defect

E(U) − 〈V;E(Ũ)
〉
,

and the oscillation defect 〈
V;E(Ũ)

〉− E
(〈
V; Ũ 〉) .

We have also seen that the concentration defect is nonnegative and vanishes only if

Un → U weakly in L1(Q;Rk),

cf. Lemma 5.1.
If E is convex, then Jensen’s inequality implies that also the oscillation defect is

nonnegative. If, in addition,E is strictly convex, then, roughly speaking, the following
implication holds:

vanishing oscillation defect + E strictly convex

⇒ Vy = δU ⇒ Un → U in measure (pointwise up to subsequence).

A rigorous statement reads as follows:

Lemma 7.1 (Sharp form of Jensen’s inequality)
Suppose that E : Rm → [0,∞] is a l.s.c. convex function satisfying:

• E is strictly convex on its domain of positivity, meaning for any y1, y2 ∈ Rm such
that 0 < E(y1) < ∞, E(y2) < ∞, y1 �= y2, we have

E

(
y1 + y2

2

)
<

1

2
E(y1) + 1

2
E(y2).

• If y ∈ ∂Dom[E], then either E(y) = ∞ or E(y) = 0, in other words,

E(y) = 0 whenever y ∈ Dom[E] ∩ ∂Dom[E]. (7.1)

Let ν ∈ P[Rm] be a (Borel) probability measure with finite first moment satisfying

E(〈ν; ỹ〉) = 〈ν;E(̃y)〉 < ∞. (7.2)

Then
(i) either

ν = δY , Y = 〈ν; ỹ〉 ∈ Dom[E], E(Y ) > 0,

http://dx.doi.org/10.1007/978-3-030-73788-7_5
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(ii) or

supp[ν] ⊂
{
y ∈ Rm

∣∣∣ E(y) = 0
}

.

Proof First observe that, obviously, 〈ν; ỹ〉 ∈ Dom[E], and, by virtue of (7.2) and
positivity of E,

ν
{
Rm \ Dom[E]} = 0.

(i) Suppose first that Y ≡ 〈ν; ỹ〉 ∈ int[Dom[E]], E(Y ) > 0. Then there exists

� ∈ ∂E(Y )

such that
E(y) ≥ E(Y ) + � · (y − Y ) for any y ∈ Rm.

As E is strictly convex in Dom[E] ∩ {E > 0}, however, we claim that the above
inequality must be sharp:

E(y) − E(Y ) − � · (y − Y ) > 0 for all y ∈ Rd , y �= Y .

Now it follows from (7.2) that

〈
ν;E(̃y) − E(Y ) − � · (̃y − Y )

〉
= 0

which yields the desired conclusion (i).

(ii) Suppose that Y = 〈ν; ỹ〉 ∈ Dom[E] ∩ ∂Dom[E] or E(Y ) = 0. In accordance
with the hypothesis (7.1), we have in both cases

E(Y ) = 0.

Consequently, we get from (7.2)

〈ν;E(̃y)〉 = 0

which implies that ν is supported by zero points of E as E ≥ 0 which is alternative
(ii). �

7.2 K–Convergence

The basic idea behind the concept of K–convergence is that averaging compactifies
weakly converging sequences. A prominent example is the Strong Law of Large
Numbers in probability,
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1

N

N∑
n=1

fn(y) → 1

|Q|
∫

Q

f1(y) dy as N → ∞ for a.a. in y ∈ Q, (7.3)

where fn are random variables (measurable functions) on a probability spaceQ ⊂ Rm

with the probability measure 1
|Q| dy that have the same distribution, meaning

|f −1
n (B)| is independent of n for any Borel set B ⊂ R1;

and are mutually independent, meaning

∣∣∣
{
y
∣∣∣fm(y) ∈ [a, b], fn(y) ∈ [c, d ]

}∣∣∣ =
∣∣∣
{
y
∣∣∣ fm(y) ∈ [a, b]

}∣∣∣
∣∣∣
{
y
∣∣∣ fn(y) ∈ [c, d ]

}∣∣∣
for any m �= n, a < b, c < d .

Komlós theorem discussed below represents a fundamental ingredient of our anal-
ysis of weakly convergent sequences and may be seen as a generalization of (7.3) to
an arbitrary sequence of random variables.

7.2.1 Banach–Saks Theorem in Functional Analysis

The fundamental idea behind the Banach–Saks theorem and similar statements in
functional analysis is that the weak and strong closure of a convex set coincide in an
appropriate functional space. Let us recall the statement, see Banach and Saks [11],
Kakutani [135].

Theorem 7.1 (Banach–Saks Theorem in Lp-spaces)
Let Q ⊂ Rm be a bounded measurable set, 1 < p < ∞. Let {Un}∞n=1 be a bounded

sequence of functions in Lp(Q),

∫

Q

|Un|p dy <∼ 1 uniformly for n → ∞.

Then there is an increasing sequence of indices nk → ∞ such that

Unk → U ∈ Lp(Q) weakly,
1

N

N∑
k=1

Unk → U (strongly) in Lp(Q).

In addition, Erdös andMagidor [75] showed that the subsequence in Theorem 7.1
can be chosen in such a way that any of its subsequences enjoys the same property:

Theorem 7.2 Let Q ⊂ Rm be a bounded measurable set, 1 < p < ∞. Let {Un}∞n=1
be a bounded sequence of functions in Lp(Q),
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∫

Q

|Un|p dy <∼ 1 uniformly for n → ∞.

Then there is an increasing sequence of indices nk → ∞ such that for each its
subsequence nl → ∞ it holds

Unl → U ∈ Lp(Q) weakly,
1

N

N∑
l=1

Unl → U (strongly) in Lp(Q).

As a matter of fact, there is a stronger version of Theorem 7.1 stating that

∥∥∥∥∥
N∑

k=1

(Unk −U )

∥∥∥∥∥
Lp(Q)

<∼ N
max

{
1
p , 12

}
, (7.4)

see [10, Chap. 12, Theorem 2]. Extensions to weakly convergent sequences in L1 are
also available, see Szlenk [189].

The principal idea behind Banach–Saks theorem and related results is uniform
convexity of theBanach norm in the spacesLp. To simplify, consider theHilbert space

L2(0, 2π), together with its orthonormal basis
{

1√
2π

exp (inx)
}∞
n=1

. The sequence

Un = 1√
2π

exp (inx) , n = 1, 2, . . .

is a standard example of a weak null sequence, meaning

Un → 0 weakly in L2(0, 2π) as n → ∞.

We have, because of orthonormality,

‖Un‖L2(0,2π) = 1,

∥∥∥∥∥
N∑
n=1

Un

∥∥∥∥∥
L2(0,2π)

=
(

N∑
n=1

‖Un‖2L2(0,2π)

) 1
2

= N
1
2

in agreement with (7.4). A similar treatment may be applied to a general sequence

Un → U weakly in L2(Q).

First, we introduce

Vn = Un −U → 0 weakly in L2(Q), ‖Vn‖L2(Q) = Vn.
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if the convergence is genuinely week (meaning not strong), there is a subsequence
(not relabeled for simplicity) such that

‖Vn‖ → V > 0 as n → ∞.

Normalizing {Vn} we may suppose that ‖Vn‖L2(Q) = 1 for all n = 1, 2, . . . . Now, we
fix V1 and choose recursively Vnk such that

∣∣∣∣∣∣∣
∫

Q

VnkVnj dy

∣∣∣∣∣∣∣
< χ(k), j = 1, . . . , k − 1,

where χ(k) is an arbitrary function such that χ(k) → 0 for k → ∞. This is possible
as Vn converges weakly to zero. Consequently,

SN ≡
∥∥∥∥∥

N∑
k=1

Vnk

∥∥∥∥∥
2

L2(Q)

=
∥∥∥∥∥
N−1∑
k=1

Vnk + VnN

∥∥∥∥∥
2

L2(Q)

=
∥∥∥∥∥
N−1∑
k=1

Vnk

∥∥∥∥∥
2

L2(Q)

+ 1 + 2
N−1∑
k=1

∫

Q

VnN Vn−k dy ≤ SN−1 + 1 + 2(N − 1)χ(N ).

We thus deduce recursively

SN ≤ N + 2
N∑
n=1

nχ(n)

where χ(n) → 0 is arbitrary.
On the example of orthonormal basis {Un}∞n=1 we also see that

∥∥∥∥∥
N∑

k=1

Unk

∥∥∥∥∥
L2(Q)

= N
1
2

independently of any chosen subsequence nk → ∞. Thus the convergence rate of
the Cesàro averages ∥∥∥∥∥

1

N

N∑
k=1

Unk

∥∥∥∥∥
L2(Q)

= N− 1
2

is optimal and in fact independent of the choice of the subsequence. On the other
hand, introducing the standard metric on the unit ball for the weak topology



7.2 K–Convergence 217

d(U,V ) =
∞∑
n=1

1

2n

∣∣∣∣∣∣∣
∫

Q

(U − V )Un dy

∣∣∣∣∣∣∣
,

we can see that the rate of weak convergence, measured in terms of d , can be made
as fast as desired by choosing a suitable subsequence since

d(Unk , 0) = 1

2nk
.

The above observation indicate that the convergence rate of Cesàro averages of
an oscillatory (weakly convergent) sequence Un → 0 depends on:

• the speed in which the oscillation defect ‖Un‖L2(Q) converges to its (nonzero)
asymptotic limit;

• the number N of terms in the Cesàro average.

Strangely enough, the frequency (rate of weak convergence in the metric d ) may
not have any influence on the convergence rate of Cesàro averages. Of course, one
should keep in mind that all the above results require extracting a suitable but a priori
unknown subsequence.

7.2.2 Pointwise Convergence of Cesàro Averages – Komlós
Theorem

Komlós theorem is a variant of Banach–Saks theorem in the L1-setting. It applies in
the situation when the sequence is not equi-integrable and in general does not admit a
weakly convergent subsequence. In particular, the version of Banach–Saks theorem
of Szlenk [189] is not applicable.

Theorem 7.3 (Komlós Theorem)
Let Q ⊂ Rm be a Borel set of finite Lebesgue measure. Suppose that

∫

Q

|Un| dy <∼ 1 for a sequence of measurable functions {Un}∞n=1.

Then there exists a subsequence nk → ∞ such that for any subsequence {nl} ⊂
{nk},

1

N

N∑
l=1

Unl → U ∈ L1(Q) a.a. in Q as N → ∞.
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Theorem 7.3 is due to Komlós [142]. There are several generalizations, notably
by Berkes [19], who asserts validity of the above result not only for any subsequence
{nl}∞l=1 but for arbitrary permutation of the sequence {nk}∞k=1.

7.2.3 Application to the Young Measures

The advantage of having pointwise convergence in Theorem 7.3 becomes imminent
when the theory is extended to Young measures. Consider a sequence of measurable
vector valued functions {Un}∞n=1,

Un : Q → Rm, Q ⊂ Rm a bounded domain,

uniformly bounded in L1(Q;Rm),

∫

Q

|Un| dy <∼ 1 for n → ∞.

In future applications to the Euler/Navier–Stokes system we consider

Un : (0,T ) × � ⊂ Rd+1 �→ [	n,mn, Sn] ∈ Rd+2.

As we have seen in Proposition 5.1, there is a subsequence (not relabeled) that
generates a Young measure

V : Q → P(Rk), weakly-(*) measurable,

meaning

y ∈ Q �→ 〈
Vy, g(Ũ)

〉
is Lebesgue measurable for any g ∈ BC(Rk).

By “generates” we mean that

g(Un) → 〈
V; g(Ũ)

〉
weakly-(*) in L∞(Q) for any g ∈ BC(Rk). (7.5)

This can be equivalently stated in terms of the weak-(*) convergence in the space
L∞(Q;M(Rk)) if Un is interpreted as the Dirac measure

Un(y) ≈ δUn(y) for a.a. y ∈ Q.

Convergence claimed in (7.5) is very weak, meaning expressed only in terms of
integral averages.
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A better way to “visualize” the Young measure, inspired by Sects. 7.2.1, 7.2.2, is
to consider the Cesàro averages

1

N

N∑
n=1

δUn(y) ∈ P(Rk) for a.a. y ∈ Q.

Such a process requires subtracting further subsequence(s), for which we are still
keeping the original notation {Un}∞n=1.

Similarly to the construction of the Young measure in Sect. 5.1, we consider a
countable family of functions {gj}∞j=1 of compactly supported functions, dense in
Cc(Rk). In view of the Komlós theorem, see Theorem 7.3, applied to {gj(Un)}∞n=1,
we may assume, having extracted several subsequences as the case may be,

1

N

N∑
n=1

gj(Un(y)) → 〈
Vy; gj(Ũ)

〉
for a.a. y ∈ Q, j = 1, 2, . . . (7.6)

and

1

N

N∑
n=1

gj(Un) → 〈
V; gj(Ũ)

〉
in Lq(Q) for any 1 ≤ q < ∞, j = 1, 2, . . .

Indeed we already know that {Un}∞n=1 generates the Young measure V; whence

gj(Un) → 〈
V; gj(Ũ)

〉
weakly in Lq(Q), 1 ≤ q < ∞,

which identifies the limit in (7.6).
The result can be extended to a larger class of sublinear nonlinearities if {Un}∞n=1

is integrable.

Lemma 7.2 Let Q ⊂ Rm be a bounded domain,

Un : Q → Rk ,

∫

Q

|Un| dy ≤ c uniformly for n → ∞.

Then, extracting a suitable subsequence as the case may be, we have

1

N

N∑
n=1

g(Un)(y) → 〈
Vy; g(Ũ)

〉
as N → ∞ for a.a. y ∈ Q

for any

g ∈ C(Rk), |g(U)| <∼ 1 + |U |.
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In particular,

1

N

N∑
n=1

|Un(y)| → 〈
Vy; |Ũ |〉 for a.a. y ∈ Q. (7.7)

Proof On one hand, by Biting Lemma, there is a subsequence (not relabeled) of
measurable setsMk ⊂ Q,

|Mk | → 0 as k → ∞,

and a function g(U) ∈ L1(Q) such that

g(Un) → g(U) weakly in L1(Q \ Mk) as n → ∞

for any k = 1, 2, . . . .
On the other hand, by the Komlós theorem, the Cesàro averages

1

N

N∑
n=1

g(Un) converge a.a. in Q,

again for a suitable subsequence. Consequently,

1

N

N∑
n=1

g(Un)(y) → g(U)(y) for a.a. y ∈ Q \ Mk

for any k = 1, 2, . . . . Thus we may infer that

1

N

N∑
n=1

g(Un)(y) → g(U)(y) for a.a. y ∈ Q.

Finally, we observe that

g(U)(y) = lim
m→∞ gm(U)(y) = lim

m→∞
〈
Vy; b(Ũ)

〉
for a.a. y ∈ Q

for a suitable approximating sequence gm ∈ BC(Rk), gm → g. We conclude

g(U)(y) = 〈Vy; g(Ũ)
〉
for a.a. y ∈ Q.

�
Remark 7.1 (K-limit vs. biting limit)

The quantity g(U) identified in the proof of Lemma 7.2 is called biting limit
of the sequence {g(Un)}∞n=1. We have shown that the biting limit coincides with the
limit of Cesàro averages arising in the Komlós theorem. The relation between biting
limits and the Young measures has been studied by Ball and Murat [9]. As some-
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how expected, the limit of Cesàro averages ignores concentrations in the generating
sequence.

Resuming our discussion, we rewrite

1

N

N∑
n=1

g(Un(y)) = 1

N

N∑
n=1

〈
δUn(y); g(Ũ)

〉 ;

obtaining, by virtue of Theorem 4,

dW1

[
1

N

N∑
n=1

δUn(y);Vy

]
→ 0 as N → ∞, for a.a. y ∈ Q, (7.8)

where dW1 is the Wasserstein 1-distance. Moreover,

∫

Q

∣∣∣∣∣dP
[
1

N

N∑
n=1

δUn(y);Vy

]∣∣∣∣∣
q

dy → 0 as N → ∞ for any 1 ≤ q < ∞, (7.9)

where dP is the Lévy–Prokhorov distance equivalent to dw−(∗) distance. Note that
dP(ν, μ) ≤ 1 for any probability measures ν, μ.

If higher power integral bounds

∫

Q

|Un|r dy <∼ 1, r > 1

are available, then, in view of Lemma 7.2, (7.7) can be strengthened, for a suitable
subsequence, to

1

N

N∑
n=1

|Un(y)|r = 1

N

N∑
n=1

〈
δUn(y); |Ũ |r 〉→ 〈

Vy; |Ũ |r 〉 as n → ∞ for a.a. y ∈ Q,

(7.10)
and, in view of the Banach–Saks theorem, see Theorem 7.2,

1

N

N∑
n=1

|Un|s = 1

N

N∑
n=1

〈
δUn; |Ũ |s〉→ 〈

V; |Ũ |s〉 as N → ∞

in L
r
s (Q) for all 1 ≤ s < r. (7.11)
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Thus we conclude

∫

Q

∣∣∣∣∣dP
[
1

N

N∑
n=1

δUn(y);Vy

]∣∣∣∣∣
q

dy → 0 as N → ∞ for any 1 ≤ q < ∞ (7.12)

and

∫

Q

∣∣∣∣∣dWr

[
1

N

N∑
n=1

δUn(y);Vy

]∣∣∣∣∣
s

dy → 0 as N → ∞ for any 1 ≤ s < r, (7.13)

where Wr denotes the Wasserstein r-distance.
The results obtained in this section are summarized in the following theorem.

Theorem 7.4 (K–convergence of integrable sequences)
Let Q ⊂ Rm be a bounded domain. Let {Un}∞n=1 be a sequence of measurable

vector valued functions

Un : Q → Rk ,

∫

�

|Un|r dx <∼ 1 for some 1 ≤ r < ∞.

Then there is a subsequence {Unj }∞j=1 enjoying the following properties:

• {Unj }∞j=1 generates a Young measure {Vy}y∈Q, specifically,

δUnj
→ V weakly-(*) in L∞(Q;M(Rk)) as j → ∞.

•
dW1

⎡
⎣ 1

N

N∑
j=1

δUnj (y)
;Vy

⎤
⎦→ 0 as N → ∞ for a.a. y ∈ Q.

• If, in addition r > 1, then

∫

Q

∣∣∣∣∣∣dWr

⎡
⎣ 1

N

N∑
j=1

δU j(y);Vy

⎤
⎦
∣∣∣∣∣∣
s

dy → 0 as N → ∞ for any 1 ≤ s < r.
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7.3 Strong Convergence of Approximate Solutions
to the Complete Euler System

We consider the complete Euler system introduced in Chap. 2 written in the
conservative-entropy variables [	,m, S]

∂t	 + divxm = 0,

∂tm + divx

(
m ⊗ m

	

)
+ ∇xp(	, S) = 0,

∂t

(
1

2

|m|2
	

+ 	e(	, S)

)
+ divx

[(
1

2

|m|2
	

+ 	e(	, S) + p(	, S)

)
m
	

]
= 0, (7.14)

supplemented with the (renormalized) entropy balance

∂t

(
	Z

(
S

	

))
+ divx

(
Z

(
S

	

)
m
)

≥ 0 (7.15)

for any Z ∈ C1(R), Z ′ ≥ 0. The boundary conditions are either periodic � = T
d or

impermeable, specifically � ⊂ Rd bounded and

m · n|∂� = 0.

In accordance with our choice of independent variables, we prescribe the initial
conditions

	(0, ·) = 	0, m(0, ·) = m0, S(0, ·) = S0. (7.16)

We consider a sequence of approximate solutions {	n,mn, Sn}∞n=1, with the initial
data [	0,n,m0,n, S0,n]. Note that the notion of “initial data” is rather vague aswe do not
assume any continuity of the approximate sequence. Numerical solutions considered
in this monograph are right continuous with respect to t so we may suppose

	n(0+, ·) = 	0,n, mn(0+, ·) = m0,n, S(0+, ·) = S0,n.

7.3.1 Positivity of the Density and Total Mass Conservation

Positivity (nonnegativity) of the approximate mass density 	n is absolutely necessary
not only because of its physical interpretation but also for all fields appearing in the
equations to be well defined. Note that the equation of continuity written in terms
of momentum itself is not sufficient to guarantee this property. From this point of
view, it is more convenient to write the mass conservation in terms of the standard
variables – the density and the velocity
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∂t	 + u · ∇x	 = −	divxu,

where, at least formally, the density remains positive as soon as it is so initially and
divxu is controlled. If 	 ≥ 0 then the equation of continuity integrated over the spatial
domain � gives rise to the total mass conservation

∫

�

	(τ, ·) dx =
∫

�

	0 dx for any τ ≥ 0, in particular 	 ∈ L∞(0,T ;L1(�)).

Formally, positivity can be enforced by setting the total energy

E = E(	,m, S) = 1

2

|m|2
	

+ 	e(	, S) = ∞ whenever 	 < 0

and considering solutions with finite total energy. As for the approximate sequence,
we shall therefore assume

	n ≥ 0 a.a. in (0,T ) × �,

sup
τ∈(0,T )

‖	n(τ, ·)‖L1(�)

<∼ 1 or, equivalently, sup
τ∈(0,T )

∫

�

	n(τ, ·) dx ≤ M

uniformly for n → ∞. (7.17)

7.3.2 Minimum Entropy Principle

The minimum entropy principle for the Euler system states that

min
x∈�

s(τ, x) ≥ min
x∈�

s(0, x) = min
x∈�

S0
	0

(x) for any τ ≥ 0. (7.18)

This property can be easily but still formally deduced from the entropy inequality
(7.15) yielding for Z(Y ) = Y the transport equation (inequality)

∂ts + u · ∇xs ≥ 0.

It is worth noting that we have divided by 	 in this process so we have tacitly assumed
that the density is strictly positive.

The minimum entropy principle can be rephrased as

S(t, x) ≥ s	(t, x) for a.a. (t, x), where s = min
x∈�

s(0, x). (7.19)
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This condition has been introduced in Definition 5.2 of consistent approximation
of the Euler system. Here, we start with a much weaker restriction imposed on the
sequence of approximate solutions, namely

∫

�

Sn(τ, x) dx ≥ S for all τ ≥ 0, n → ∞. (7.20)

In contrast with (7.19), verification of (7.20) requires only integration of (7.15) in
the space variable. Moreover, unlike (7.19) the relation (7.20) holds for a large class
of approximate solutions that comply with the Second law of thermodynamics –
nonnegativity of the entropy production rate.

7.3.3 Total Energy

The total energy

E = ekin + eint, ekin ≡ 1

2

|m|2
	

, eint ≡ 1

γ − 1
p = cv	

γ exp

(
S

cv	

)
, cv = 1

γ − 1
,

(7.21)
represents an absolutely crucial quantity in obtaining uniform bounds. We suppose,
in accordance with the energy balance equation, that

∫

�

E(	n,mn, Sn)(τ, ·) dx ≡
∫

�

(
1

2

|mn|2
	n

+ 	ne(	n, Sn)

)
dx

≤
∫

�

(
1

2

|m0,n|2
	0,n

+ 	0,ne(	0,n, S0,n)

)
dx

<∼ 1 for n → ∞. (7.22)

Note that (7.21) includes the isentropic case s = s – a constant, for which

eint = a

γ − 1
	γ , a = exp

(
s

cv

)
> 0, p = a	γ .

The energy E as a function of the variables 	,m, S is correctly defined through (7.21)
only out of the vacuum, meaning for 	 > 0. As we have observed in Sect. 2.2.4, the
total energy can be extended as a convex l.s.c. function to the whole phase space
Rd+2

ekin(	,m) =
{
0 if 	 = 0, m = 0,
∞ if 	 < 0 or 	 = 0, m �= 0,

(7.23)

and
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eint(	, S) =
{
0 if 	 = 0, S ≤ 0,
∞ if 	 < 0 or 	 = 0, S > 0.

(7.24)

Lemma 7.3 (Convexity of the total energy)
The function E = E(	,m, S), defined for 	 > 0 as

E(	,m, S) = ekin(	,m) + eint(	, S) = 1

2

|m|2
	

+ cv	
γ exp

(
S

cv	

)
,

and extended through (7.23), (7.24) if 	 ≤ 0, is convex l.s.c. function of variables
(	,m, S) ∈ Rd+2 ranging in [0,∞]. Moreover, E is strictly convex at any point where
	 > 0, in particular, it satisfies all hypotheses of Lemma 7.1.

Next we claim that the uniform bounds (7.17), (7.20), and (7.22) imply bounds
on the L1 norm of all state variables [	n,mn, Sn]. To see this, we choose an arbitrary
point [̃	, 0, S̃] ∈ Rd+2, 	̃ > 0, and consider the function

0 ≤ E(	n,mn, Sn) − ∂E(̃	, 0, S̃)

∂	
(	n − 	̃) − ∂E(̃	, 0, S̃)

∂m
· (mn − m̃)

− ∂E(̃	, 0, S̃)

∂S
(Sn − S̃) − E(̃	, 0, S̃)

= 1

2

|mn|2
	n

+ 	ne(	n, Sn) − ∂(	e)(̃	, S̃)

∂	
(	 − 	̃) − ∂(	e)(̃	, S̃)

∂S
(S − S̃)

− (̃	e(̃	, S̃)).

Seeing that ∂E
∂S = ϑ > 0, we conclude

∫

�

[
E(	n,mn, Sn) − ∂E(̃	, 0, S̃)

∂	
(	n − 	̃) − ∂E(̃	, 0, S̃)

∂m
· (mn − m̃)

− ∂E(̃	, 0, S̃)

∂S
(Sn − S̃) − E(̃	, 0, S̃)

]
dx

≤ c(̃	, S̃)

⎛
⎝1 +

∫

�

E(	n,mn, Sn) dx +
∫

�

	n dx −
∫

�

Sn dx

⎞
⎠

≤ c(̃	, S̃)

⎛
⎝1 +

∫

�

E(	0,n,m0,n, S0,n) dx +
∫

�

	0,n dx −
∫

�

S0,n dx

⎞
⎠ .

As E is strictly convex at [̃	, 0, S̃], we have
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E(	n,mn, Sn) − ∂E(̃	, 0, S̃)

∂	
(	n − 	̃)

− ∂E(̃	, 0, S̃)

∂m
· (mn − m̃) − ∂E(̃	, 0, S̃)

∂S
(Sn − S̃) − e(̃	, 0, S̃)

>∼ |	n − 	̃| + |mn| + |Sn − S̃|
as soon as

|	n − 	̃| + |mn| + |Sn − S̃| ≥ 1.

Definition 7.1 (STABLE APPROXIMATION TO COMPLETE EULER SYSTEM)
We say that a sequence {	n,mn, Sn}∞n=1 is a stable approximation of the complete

Euler system in (0,T ) × �, with the initial data [	0,m0, S0], if

	n ≥ 0, ess sup
τ∈(0,T )

∫

�

	n(τ, ·) dx ≤ M ,

ess inf
τ∈(0,T )

∫

�

Sn(τ, ·) dx ≥ S (7.25)

uniformly for n → ∞;

ess sup
τ∈(0,T )

∫

�

E(	n,mn, Sn) dx ≤
∫

�

E(	0,m0, S0) dx + en for all n = 1, 2, . . .

(7.26)
where en → 0 as n → ∞.

Summarizing the above discussion, we obtain the following result.

Proposition 7.1 (Energy bounds on stable approximation)
Let � ⊂ Rd be a bounded domain. Let a sequence {	n,mn, Sn}∞n=1 be a stable

approximation of the complete Euler system in the sense of Definition 7.1.
Then

ess sup
τ∈(0,T )

[‖	n(τ, ·)‖L1(�) + ‖mn(τ, ·)‖L1(�;Rd ) + ‖Sn(τ, ·)‖L1(�)

] <∼ 1

uniformly for n → ∞.

Remark 7.2 In contrast with Lemma 5.2, where uniform bounds on consistent
approximation were established, Proposition 7.1 does not require validity of the
minimum entropy principle (7.19).

We conclude that under very mild assumptions (7.17), (7.19), and (7.22), any
stable approximation of the complete Euler system is bounded at least in the L1-
norm and as such, up to a suitable subsequence, generates a Young measure

http://dx.doi.org/10.1007/978-3-030-73788-7_5
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Vt,x ∈ L∞
weak

(
(0,T ) × �;P [Rd+2 = {̃	 ∈ R, m̃ ∈ Rd , S̃ ∈ R

}])
.

Moreover, the measure Vt,x has finite moments for a.a. (t, x) ∈ (0,T ) × �.

7.3.4 Strong Convergence of a Stable Approximation
to a Weak Solution

The behavior of the total energy completely determines the convergence properties
of the stable approximation. In accordance with (7.26), we may assume

E(	n,mn, Sn) → E(	,m, S) weakly-(*) in L∞(0,T ;M(�))

passing again to a suitable subsequence if necessary. The associated concentration
defect is defined as

Ecd ≡ E(	,m, S) − 〈V;E(̃	, m̃, S̃)
〉
,

while the oscillation defect reads

Eod ≡ 〈V;E(̃	, m̃, S̃)
〉− E(	,m, S).

Here we have denoted

[	(t, x),m(t, x), S(t, x)] ≡ [〈Vt,x; 	̃
〉
,
〈
Vt,x; m̃

〉
,
〈
Vt,x; S̃

〉]

the barycenter of the Young measure generated by {	n,mn, Sn}∞n=1. As pointed out
in Remarks 5.4, 5.6, both concentration and oscillation defects are nonnegative,
specifically,

Ecd ∈ L∞(0,T ;M+(�)), Eod ∈ L1((0,T ) × �), Eod ≥ 0. (7.27)

Our goal is to show a rather surprising result: A stable approximation converges
strongly as soon as the barycenter [	,m, S] of the associated Young measure is a
weak solution to the Euler system (7.14)–(7.16).

Theorem 7.5 (Asymptotic limit of stable approximation)
Let � ⊂ Rd be a bounded domain. Let {	n,mn, Sn}∞n=1 be a stable approximation

of the complete Euler system in the sense of Definition 7.1, with the initial data

	0 > 0, m0, S0 ≥ 	0s, where s ∈ R. (7.28)

In addition, suppose that the sequence {	n,mn, Sn}∞n=1 generates a Young measure
{Vt,x}(t,x)∈(0,T )×�. Finally, let the barycenter

[	(t, x),m(t, x), S(t, x)] ≡ [〈Vt,x; 	̃
〉
,
〈
Vt,x; m̃

〉
,
〈
Vt,x; S̃

〉]
, (t, x) ∈ (0,T ) × �,
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be aweak solution of the Euler system (7.14)–(7.16) in the sense ofDefinition 2.4, sat-
isfying the entropy inequality (2.70), and emanating form the initial data [	0,m0, S0].

Then
Vt,x = δ[	(t,x),m(t,x),S(t,x)] for a.a. (t, x) ∈ (0,T ) × �,

and, up to a suitable subsequence,

	n → 	 a.a. in (0,T ) × �,

mn → m a.a. in (0,T ) × �,

Sn → S a.a. in (0,T ) × �.

Proof It follows from the energy bound (7.26) that

E(	n,mn, Sn) ≡
[
1

2

|mn|2
	n

+ 	ne(	n, Sn)

]
→ E(	,m, S)

weakly-(*) in L∞(0,T ;M+(�)),

where

∫

�

dE(	,m, S)(τ, ·) ≤
∫

�

[
1

2

|m0|2
	0

+ 	0e(	0, S0)

]
dx for a.a. τ ∈ (0,T ). (7.29)

On the other hand, it follows from the weak formulation of the energy equation
(2.69) that

∫

�

[
1

2

|m|2
	

+ 	e(	, S)

]
(τ, ·) dx =

∫

�

[
1

2

|m0|2
	0

+ 	0e(	0, S0)

]
dx

for a.a. τ ∈ (0,T ). As

[
1

2

|m|2
	

+ 	e(	, S)

]
≤ E(	,m, S),

we deduce from (7.29) that

[
1

2

|m|2
	

+ 	e(	, S)

]
= E(	,m, S) a.a. in (0,T ) × �. (7.30)

In particular,

Ecd = E(	,m, S) − 〈V;E(̃	, m̃, S̃)
〉 = 0,

Eod = 〈V;E(̃	, m̃, S̃)
〉− E(	,m, S) = 0. (7.31)
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Now, we can use Lemma 7.1 to conclude that for a.a. (t, x) either

Vt,x = δ	(t,x),m(t,x),S(t,x) (7.32)

or
supp[Vt,x] ⊂

{
[̃	, m̃, S̃]

∣∣∣ 	̃ = 0, m̃ = 0, S̃ ≤ 0
}

. (7.33)

However, in accordance with hypothesis (7.28) and the minimum entropy principle
established in Proposition 2.1, the total entropy S satisfies S ≥ 	s, in particular

	(t, x) = 0 implies S(t, x) = 0 for a.a. (t, x).

Consequently, V reduces to a Dirac mass in the case (7.33) as well. In view of
Proposition 7.1, this implies pointwise a.a. convergence of a suitable subsequence
of {	n,mn, Sn}∞n=1. �

The most striking aspect of the above result is that only weak convergence of the
approximate sequence to a weak solution of the Euler system is required, without
any consistency hypotheses imposed on the approximating sequence. The conclusion
asserts that either (i) a sequence of approximate solutions converges pointwise or (ii)
the limit is not a weak solution of the Euler system. The latter statement justifies the
measure-valued solutions as a legitimate object to characterize the limit of numerical
schemes. It should be pointed out, however, that the fact that an approximate sequence
converges weakly does not exclude the possibility for the target problem to admit a
weak solution.

7.3.5 Strong Convergence of Consistent Approximation

The pointwise convergence claimed in Theorem 7.5 can be considerably improved if
the approximate sequence represents a consistent approximation of the Euler system
in the sense of Definition 5.2. It turns out that the crucial property is the minimum
entropy principle (5.29).

Theorem 7.6 (Asymptotic limit of stable approximation with minimum entropy
principle)

Let {	n,mn, Sn}∞n=1 be an approximate sequence satisfying all the hypotheses of
Theorem 7.5. In addition, suppose that

Sn ≥ s	n for some constant s ∈ R uniformly for n → ∞.

Then
	n → 	 in Lq(0,T ;Lγ (�)),

mn → m in Lq(0,T ;L 2γ
γ+1 (�;Rd )),

Sn → S in Lq(0,T ;Lγ (�))
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for any finite 1 ≤ q < ∞, passing to suitable subsequences as the case may be.

Proof As shown in Lemma 5.2, the approximate sequence admits the following
uniform bounds:

	n(t, x) ≥ 0, and 	n(t, x) = 0 ⇒ mn(t, x) = 0 and Sn(t, x) = 0

for a.a. (t, x) ∈ (0,T ) × �; (7.34)

ess sup
τ∈(0,T )

‖	n(τ, ·)‖Lγ (�)

<∼ 1; (7.35)

ess sup
τ∈(0,T )

‖Sn(τ, ·)‖Lγ (�)

<∼ 1; (7.36)

ess sup
τ∈(0,T )

‖mn(τ, ·)‖
L

2γ
γ+1 (�;Rd )

<∼ 1; (7.37)

uniformly for n → ∞. Accordingly, up to a subsequence, we may assume that

	n → 	 as n → ∞ weakly-(*) in L∞(0,T ;Lγ (�)),

mn → m as n → ∞ weakly-(*) in L∞(0,T ;L 2γ
γ+1 (�;Rd )),

Sn → S as n → ∞ weakly-(*) in L∞(0,T ;Lγ (�)), (7.38)

where
	 ≥ 0, S ≥ s	 a.a. in (0,T ) × �.

In addition, exactly as in the proof of Theorem 7.5, we have

E(	n,mn, Sn) ≡
[
1

2

|mn|2
	n

+ 	ne(	n, Sn)

]
→ E(	,m, S)

weakly-(*) in L∞(0,T ;M+(�)),

where
Ecd = E(	,m, S) − 〈V;E(̃	, m̃, S̃)

〉 = 0,

Eod = 〈V;E(̃	, m̃, S̃)
〉− E(	,m, S) = 0.

By virtue of Lemma 5.1 and the pointwise convergence established in Theorem 7.5,
we may infer that

E(	n,mn, Sn) ≡
[
1

2

|mn|2
	n

+ 	ne(	n, Sn)

]
→ E(	,m, S) in Lq(0,T ;L1(�)),

(7.39)

http://dx.doi.org/10.1007/978-3-030-73788-7_5
http://dx.doi.org/10.1007/978-3-030-73788-7_5
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for any 1 ≤ q < ∞. Consequently, keeping in mind the pointwise convergence
already shown in Theorem 7.5, it is enough to observe that the total energy dominates
the norms of {	n,mn, Sn}∞n=1 in appropriate function spaces. Evoking the estimates
obtained in the proof of Lemma 5.2, we get

|	n|γ <∼ 1 + E(	n,mn, Sn),

|mn|
2γ

γ+1
<∼ 1 + E(	n,mn, Sn),

|Sn|γ <∼ 1 + E(	n,mn, Sn);

whence the desired conclusion follows from (7.39) and the pointwise convergence
established in Theorem 7.5. �

7.3.6 Strong Convergence of Approximate Solutions
to the Complete Euler System – Summary

We summarize the results obtained in the previous two sections. We consider a
general stable approximation, not necessarily consistent with the limit Euler system,
that enjoys only the uniform mass and energy bounds accompanied, possibly, by the
minimum entropy principle.

Theorem 7.7 (Asymptotic behavior of stable approximation to complete Euler
system)

Let � ⊂ Rd be a bounded domain. Let {	n,mn, Sn}∞n=1 be a stable approximation
of the complete Euler system in the sense of Definition 7.1 with the initial data
[	0,m0, S0],

	0, m0, S0 ≥ 	0s, s ∈ R.

More specifically,

	n ≥ 0, ess sup
τ∈(0,T )

∫

�

	n(τ, ·) dx ≤ M ,

ess inf
τ∈(0,T )

∫

�

Sn(τ, ·) dx ≥ S

uniformly for n → ∞;

ess sup
τ∈(0,T )

∫

�

E(	n,mn, Sn) dx ≤
∫

�

E(	0,m0, S0) dx + en for all n = 1, 2, . . .

where en → 0 as n → ∞.
Then

http://dx.doi.org/10.1007/978-3-030-73788-7_5
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ess sup
τ∈(0,T )

‖	n(τ, ·)‖L1(�)

<∼ 1,

ess sup
τ∈(0,T )

‖mn(τ, ·)‖L1(�)

<∼ 1,

ess sup
τ∈(0,T )

‖Sn(τ, ·)‖L1(�)

<∼ 1, (7.40)

and the following holds true for a suitable subsequence:

• The sequence {	n,mn, Sn}∞n=1 generates a Young measure {Vt,x}(t,x)∈(0,T )×�, with
finite first moments

	 = 〈V; 	̃〉 , m = 〈V; m̃〉 , S = 〈V; S̃〉 ;
•
(
1

2

|mn|2
	n

+ 	ne(	n, Sn)

)
→ 1

2

|m|2
	

+ 	e(	, S)weakly-(*) in L∞(0,T ;M(�)),

(7.41)
and

Ecd = 1

2

|m|2
	

+ 	e(	, S) −
〈
V; 1

2

|m̃|2
	̃

+ 	̃e(̃	, S̃)

〉
≥ 0,

Eod = 〈V;E(̃	, m̃, S̃)
〉− 1

2

|m|2
	

+ 	e(	, S) ≥ 0. (7.42)

• If the limit [	,m, S] is an admissible weak solution to the Euler system then

Ecd = Eod = 0, and 	(t, x) = 0 ⇒ S(t, x) = 0 for a.a. (t, x),

and
	n → 	 a.a. in (0,T ) × �,

mn → m a.a. in (0,T ) × �,

Sn → S a.a. in (0,T ) × �.

• If the limit [	,m, S] is an admissible weak solution to the Euler system, and, in
addition,

Sn ≥ s	n a.a. in (0,T ) × � for n → ∞,

then
	n → 	 in Lq(0,T ;Lγ (�)),

mn → m in Lq(0,T ;L 2γ
γ+1 (�;Rd )),

Sn → S in Lq(0,T ;Lγ (�))
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for any finite 1 ≤ q < ∞.

Remark 7.3 Theorem 7.7 remains valid for the periodic boundary conditions � =
T
d .

Theorem 7.7 is a conditional result. A stable approximation converges strongly
as soon as its limit is a weak solution of the Euler system. In view of the weak-strong
uniqueness principle discussed in detail in Chap. 6, the convergence is strong on
condition that (i) the sequence {	n,mn, Sn}∞n=1 is a consistent approximation, and (ii)
the limit system admits a smooth solution. We state the relevant results for the space
periodic boundary conditions � = T

d . As observed in Chap. 6 certain regularity of
the spatial domain is needed to guarantee the weak-strong uniqueness principle. As
the Lipschitz domains pertinent to numerical experiments do not enjoy the necessary
smoothness, it is more convenient to work on compact domains without boundary
as Td .

Theorem 7.8 (Convergence of consistent approximation to strong solution)
Suppose that the thermodynamic functions p, e, and s satisfy the polytropic EOS

(5.22). Let {	n,mn, Sn}∞n=1 be a consistent approximation of the complete Euler sys-
tem in (0,T ) × T

d , with the initial data [	0,m0, S0] in the sense of Definition 5.2.
Suppose that the limit Euler system admits a strong solution [	,m, S] in the class

	, S ∈ W 1,∞((0,T ) × T
d ), m ∈ W 1,∞((0,T ) × T

d ;Rd ), 0 < 	 ≤ 	 in [0,T ) × T
d .

Then

1

2

|mn|2
	n

+ 	ne(	n, Sn) → 1

2

|m|2
	

+ 	e(	, S) in Lq(0,T ;L1(Td )),

and
	n → 	 in Lq(0,T ;Lγ (�)),

mn → m in Lq(0,T ;L 2γ
γ+1 (�;Rd )),

Sn → S in Lq(0,T ;Lγ (�))

for any finite 1 ≤ q < ∞.

Proof It follows fromTheorem5.1 that the sequence {	n,mn, Sn}∞n=1 generates (up to
a subsequence) a Young measure {Vt,x}(t,x)∈(0,T )×Td that represents a DMV solution
of the complete Euler system in the sense of Definition 5.3. As observed in Sect.
5.2.2, the barycenter

[	,m, S](t, x) = 〈Vt,x; [̃	, m̃, S̃]〉

is a DW solution of the same system specified in Definition 5.7. Moreover, the
corresponding Reynolds defect R satisfies
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0 ≤
[
1

2

|m|2
	

+ 	e(	, S)

]
−
(
1

2

|m|2
	

+ 	e(	, S)

)
<∼ tr[R],

where

(
1

2

|mn|2
	n

+ 	ne(	n, Sn)

)
→
[
1

2

|m|2
	

+ 	e(	, S)

]
weakly-(*) in L∞(0,T ;M(Td )).

Finally, applying the weak-strong uniqueness principle established in Theorem
6.2 (see also Remark 6.4), we conclude that

Vt,x = δ[	(t,x),m(t,x),S(t,x)], R = 0,

and the DW solution coincides with the strong solution. The desired convergence
can be shown exactly as in Theorem 7.7. As the limit is unique, there is no need to
consider subsequences. �

7.3.6.1 Conclusion

The major point of this section is that the approximate solutions to the complete
Euler system converge pointwise a.a. if one of the following conditions is satisfied:

• the limit is a weak solution of the Euler system;
• the Euler system admits strong solution;
• the limit is continuously differentiable.

The third alternative follows from the compatibility principle discussed in Sect.
5.4.1.

7.4 Weak Convergence of Approximate Solutions
to the Euler System

Weuse the abstract results obtained in Sect. 7.2.3 to describe the behavior of a weakly
convergent sequences of approximate solutions to the complete Euler system. To
begin, we consider stable approximations introduced in Definition 7.1. These are
sequences of functions {	n,mn, Sn}∞n=1 enjoying the following properties:

	n ≥ 0,
∫

�

	n dx
<∼ 1; (7.43)
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−
∫

�

Sn dx
<∼ 1; (7.44)

∫

�

[
1

2

|mn|2
	n

+ 	ne(	n, Sn)

]
(τ, ·) dx ≤ E0,n → E0 as n → ∞ (7.45)

for a.a. 0 ≤ τ ≤ T . These are only conditions reflecting the natural a priori bounds
discussed in Sect. 7.3. We also consider approximate sequence that satisfy the mini-
mum entropy principle

Sn ≥ s	n for some s ∈ R. (7.46)

As we have seen in Theorem 7.5, the sequence of approximate solutions must
converge pointwise (strongly) as long as its limit is a weak solution of the Euler
system with the initial (total) energy E0. In this section, we focus on the situation
when the convergence is not strong, meaning the limit is not a weak solution to the
complete Euler system but rather a dissipativemeasure-valued (DMV) solution in the
sense of Definition 5.3. In particular, our goal will be to “compute” or “visualize” the
associated Young measure via the method of averaging introduced in Sect. 7.2.3. We
also focus on the barycenter of the Young measure that represents a DW solution of
the Euler system. Recall that a DW solution satisfies the original system of equations
modulo a Reynolds defect that is compensated by the corresponding defect in the
total energy equation.

7.4.1 K–Convergence

As we know from Theorem 7.5, even the rather poor a priori or stability estimates
(7.43)–(7.45) give rise to uniform bounds on the integrals

ess sup
τ∈(0,T )

∫

�

	n(τ, ·) dx <∼ 1, ess sup
τ∈(0,T )

∫

�

|Sn|(τ, ·) dx <∼ 1,

ess sup
τ∈(0,T )

∫

�

|mn|(τ, ·) dx <∼ 1.

In particular, we may assume that {	n,mn, Sn}∞n=1 generates a Young measure

V(t,x) ∈ P(Rd+2), Rd+2 = {[̃	, m̃, S̃] ∈ Rd+2
}
.

In accordance with (7.45) and weak lower semicontinuity of convex functions, we
have

supp[Vt,x] ⊂ {̃	 ≥ 0} . (7.47)
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Moreover,
Vt,x

{
[̃	, m̃, S̃]

∣∣∣̃	 = 0, m̃ �= 0
}

= 0,

Vt,x

{
[̃	, m̃, S̃]

∣∣∣̃	 = 0, S̃ ≥ 0
}

= 0,

meaning

Vt,x

{
m̃ = 0, S̃ ≤ 0

∣∣∣ 	̃ = 0
}

= 1. (7.48)

Adapting the first part of Theorem 7.4 we obtain the following conclusion.

Proposition 7.2 (Weak convergence, part I)
Let {	n,mn, Sn}∞n=1 be a stable approximation satisfying (7.43)–(7.45).
Then there exists a subsequence {	nk ,mnk , Snk }∞k=1 enjoying the following prop-

erties:

• (Young measure) the sequence {	nk ,mnk , Snk }∞k=1 generates a Young measure
{Vt,x}(t,x)∈(0,T )×�,

δ	n,k ,mnk ,Snk
→ V as k → ∞ weakly-(*) in L∞((0,T ) × �;M(Rd+2))

supp[Vt,x] ⊂ {̃	 ≥ 0} ,

Vt,x

{
[̃	, m̃, S̃]

∣∣∣̃	 = 0, m̃ �= 0
}

= 0,

Vt,x

{
[̃	, m̃, S̃]

∣∣∣̃	 = 0, S̃ ≥ 0
}

= 0

for a.a. (t, x) ∈ (0,T ) × �. The measure Vt,x possesses finite first moments,

	(t, x) = 〈Vt,x; 	̃
〉
, m(t, x) = 〈Vt,x; m̃

〉
, S(t, x) = 〈Vt,x; S̃

〉
for a.a. (t, x) × �.

• (K–convergence)

1

N

N∑
k=1

	nk → 	 as N → ∞ a.a. in (0,T ) × �,

1

N

N∑
k=1

mnk → m as N → ∞ a.a. in (0,T ) × �,

1

N

N∑
k=1

Snk → S as N → ∞ a.a. in (0,T ) × �. (7.49)

• (K–convergence of Young measures)

dW1

[
1

N

N∑
k=1

δ[	nk (t,x);mnk (t,x),Snk (t,x)];Vt,x

]
→ 0 as N → ∞ (7.50)
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a.a. in (0,T ) × �.

Remark 7.4 (K–convergence of energy)
In view of Lemma 7.2 and the convergences stated in (7.49), one is tempted to

say

1

N

N∑
k=1

(
1

2

|mnk |2
	nk

+ 	nk e(	nk , Snk )

)
→
〈
V; 1

2

|m̃|2
	̃

+ 	̃e(̃	, S̃)

〉
as N → ∞

(7.51)
a.a. in (0,T ) × �. This is, however, not true, in general, as the energy

[̃	, m̃, S̃] �→ 1

2

|m̃|2
	̃

+ 	̃e(̃	, S̃).

is not a continuous at 	̃ = 0 but only l.s.c. The correct conclusion is

1

N

N∑
k=1

(
1

2

|mnk |2
	nk

+ 	nk e(	nk , Snk )

)
→ E as N → ∞ (7.52)

a.a. in (0,T ) × �, where

E ≥
〈
V; 1

2

|m̃|2
	̃

+ 	̃e(̃	, S̃)

〉
.

In the analysis of certain schemes, we will assume that the sequence of approximate
densities {	n}∞n=1 is bounded belowaway fromzero. If this is the case, the convergence
stated in (7.51) holds true.

7.4.2 K–Convergence with the Minimum Entropy Principle

If, in addition, the stable approximation satisfies the minimum entropy condition
(7.46), the above result can be strengthened as follows.

Proposition 7.3 (Weak convergence, part II)
Under the hypotheses of Proposition 7.2, suppose that the approximate sequence

{	n,mn, Sn}∞n=1 satisfies the minimum entropy principle

Sn ≥ s	n for a constant s ∈ R.

Then, in addition to the conclusion of Proposition 7.3, we have:

• (Support of Young measure)
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supp[Vt,x] ⊂ {̃	 ≥ 0, S̃ ≥ s̃	
}
. (7.53)

• (Strong convergences of Cesàro averages)

1

N

N∑
k=1

	nk → 	 as N → ∞ in Lq(0,T ;Lγ (�)) for any 1 ≤ q < ∞,

1

N

N∑
k=1

mnk → m as N → ∞ in Lq(0,T ;L 2γ
γ+1 (�;Rd )) for any 1 ≤ q < ∞,

1

N

N∑
k=1

Snk → S as N → ∞ in Lq(0,T ;Lγ (�)) for any 1 ≤ q < ∞. (7.54)

• (Lq convergence to Young measure)

dWr

[
1

N

N∑
k=1

δ[	nk ;mnk ,Snk ];V
]

→ 0 as N → ∞ in Ls((0,T ) × �) (7.55)

for r = 2γ
γ+1 and any 1 ≤ s < r.

Finally, keeping the notation of Proposition 7.3 we denote

VN ≡ 1

N

N∑
k=1

δ[	nk ,mnk ,Snk ] with the barycenter [VN ] ≡ 1

N

N∑
k=1

[	nk ,mn,k , Snk ],

and
V with the barycenter [V] ≡ [	,m, S],

where all quantities are parametrized by (t, x). Next, we introduce the approximate
deviation 〈

VN ; ∣∣[̃	, m̃, S̃] − [VN ]∣∣〉 ,
and the final deviation 〈

V; ∣∣[̃	, m̃, S̃] − [V]∣∣〉 .
Combining (7.54), (7.55) with Theorem 4, we may infer that

〈
VN ; ∣∣[̃	, m̃, S̃] − [VN ]∣∣〉→ 〈

V; ∣∣[̃	, m̃, S̃] − [V]∣∣〉 asN → ∞ in L1((0,T ) × �).

(7.56)
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7.4.2.1 Conclusion

For a general weakly convergent approximate sequence {	n,mn, Sn}∞n=1, the Cesàro
averages convergence strongly in the same topology as the strongly convergent
consistent approximations discussed in Sect. 7.3. Such a process, however, requires
extracting a subsequence as the case may be.

7.5 Convergence of Approximate Solutions to the
Barotropic Euler System

The barotropic Euler system introduced in Sect. 2.3 reads

∂t	 + divxm = 0,

∂tm + divx

(
m ⊗ m

	

)
+ ∇xp(	) = 0, (7.57)

supplemented with the impermeability boundary condition

m · n|∂� = 0, (7.58)

or, alternatively, the space periodic boundary conditions � = T
d . Accordingly, the

system (7.57), (7.58) yields the total energy balance (inequality)

∫

�

[
1

2

|m|2
	

+ P(	)

]
(τ, ·) dx ≤

∫

�

[
1

2

|m0|2
	0

+ P(	0)

]
dx, P′(	)	 − P(	) = p(	).

(7.59)
We recall that strict inequality in (7.59) is pertinent to the weak solutions and may
be seen as a “ghost” term obtained in the vanishing viscosity limit.

At least for the pressure in the iconic isentropic form p(	) = a	γ , a > 0, 	 >

1, the system (7.57) can be seen as a special case of the complete Euler system
with constant entropy. Accordingly, the main convergence results stated in Theorem
7.7, Propositions 7.2, 7.3 transfer with only minor modifications. Unfortunately, the
strong convergence to a weak solution stated for the complete system in Theorem 7.5
cannot be proven at the same level of generality as theweak solutions to the barotropic
Euler systemsatisfy only the energy inequality (7.59) thatmayaccommodate possible
concentration/oscillation defect.

The approximate sequence {	n,mn}∞n=1 is supposed to be measurable satisfying
the energy bounds

sup
τ∈(0,T )

∫

�

[
1

2

|mn|2
	n

+ P(	n)

]
(τ, ·) dx <∼ 1. (7.60)
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Recall that this already entails

	n(t, x) ≥ 0, 	(t, x) = 0 ⇒ m(t, x) = 0 for a.a. (t, x) ∈ (0,T ) × �,

and, in view of Hölder’s inequality,

|m| 2γ
γ+1 + 	γ <∼ 	γ + |m|2

	
≤ 1

2

|m|2
	

+ P(	), (7.61)

the uniform bounds

ess sup
τ∈(0,T )

‖mn(τ, ·)‖
L

2γ
γ+1 (�;Rd )

<∼ 1, ess sup
τ∈(0,T )

‖	n(τ, ·)‖Lγ (�)

<∼ 1.

7.5.1 Weak Convergence of Approximate Solutions
to the Barotropic Euler System

Rephrasing Propositions 7.2, 7.3 in terms of the barotropic Euler system we obtain
the following results.

Theorem 7.9 (Weak convergence)
Let � ⊂ Rd be a bounded domain. Suppose the pressure p = p(	) satisfies the

isentropic EOS,
p(	) = a	γ , a > 0, γ > 1.

Let {	n,mn}∞n=1 be an approximate sequence satisfying the uniform energy bound
(7.60).

Then, extracting a suitable subsequence as the casemay be, we have the following:

• (Young measure, defect measures) The sequence generates a Young measure
{Vt,x}(t,x)∈(0,T )×�. Moreover,

1

2

|mn|2
	n

+ P(	n) → 1

2

|m|2
	

+ P(	) weakly-(*) in L∞(0,T ;M(�)), (7.62)

where

Ecd ≡ 1

2

|m|2
	

+ P(	) −
〈
V; 1

2

|m̃|2
	̃

+ P(̃	)

〉
∈ L∞(0,T ;M+(�)), (7.63)

and

Eod ≡
〈
V; 1

2

|m̃|2
	̃

+ P(̃	)

〉
−
[
1

2

|m|2
	

+ P(	)

]
≥ 0 a.a. in (0,T ) × �. (7.64)
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• (Weak and K–convergence)

	n → 	 weakly-(*) as n → ∞ in L∞(0,T ;Lγ (�)),

1

N

N∑
n=1

	n → 	 as N → ∞ in Lq(0,T ;Lγ (�)), 1 ≤ q < ∞,

mn → m weakly-(*) as n → ∞ in L∞(0,T ;L 2γ
γ+1 (�;Rd )),

1

N

N∑
n=1

mn → m as N → ∞ in Lq(0,T ;L 2γ
γ+1 (�;Rd )), 1 ≤ q < ∞,

1

N

N∑
n=1

(
1

2

|mn|2
	n

+ P(	n)

)
→ E as N → ∞ a.a. in (0,T ) × �, (7.65)

where

E ≥
〈
V; 1

2

|m̃|2
	̃

+ P(̃	)

〉
,

and

dWr

[
1

N

N∑
k=1

δ[	nk (t,x);mnk (t,x)];Vt,x

]
→ 0 as N → ∞ in Ls((0,T ) × �) (7.66)

for r = 2γ
γ+1 and any 1 ≤ s < r.

7.5.2 Strong Convergence of Approximate Solutions
to the Barotropic Euler System

Our goal is to obtain an analogue of Theorem 7.5 in the context of the barotropic
Euler equations. Specifically, the convergence of an approximate sequence is strong
(a.a. pointwise) provided the limit object is a weak solution. The answer turns out to
be different than for the complete Euler system, where this property is enforced by
the fact that the limit system includes the energy conservation principle. We claim
the following result.

Theorem 7.10 Let � ⊂ Rd be a bounded domain. Suppose the pressure p = p(	)

satisfies the isentropic EOS,

p(	) = a	γ , a > 0, γ > 1.

Let {	n,mn}∞n=1 be a consistent approximation of the barotropic Euler system in the
sense of Definition 5.4. Suppose that the limit [	,m] identified in Theorem 7.9 is a
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weak solution of the Euler system (7.57), (7.58). In addition, suppose there is an
open neighborhood U of the boundary ∂� such that

T∫

0

∫

U

[
1

2

|mn|2
	n

+ P(	n)

]
dx dt →

T∫

0

∫

U

[
1

2

|m|2
	

+ P(	)

]
dx dt. (7.67)

Then

T∫

0

∫

�

[
1

2

|mn|2
	n

+ P(	n)

]
dx dt →

T∫

0

∫

�

[
1

2

|m|2
	

+ P(	)

]
dx dt, (7.68)

in particular

	n → 	 in Lq(0,T ;Lγ (�)), mn → m in Lq(0,T ;L 2γ
γ+1 (�;Rd )) (7.69)

for any 1 ≤ q < ∞.

Remark 7.5 In contrast with the complete Euler system considered in Theorem
7.5, the approximate sequence must be a consistent approximation, and the strong
convergence of the total energy in a neighborhood of the boundary is required. On
the other hand, strong convergence of the energy at the initial time is not necessary.

Proof It is enough to verify that

Ecd = Eod = 0. (7.70)

Indeed it follows from Lemma 5.1, Proposition 5.3, and the estimate (7.61) that
Ecd = 0 implies

	γ
n → 	γ weakly in Lq(0,T ;L1(�)), |mn|

2γ
γ+1 → |m| 2γ

γ+1 (7.71)

weakly in Lq(0,T ;L1(�;Rd )) for any 1 ≤ q < ∞. Moreover, in view of Lemma
7.1, Eod = 0 yields

Vt,x = δ	(t,x),m(t,x) for a.a. (t, x) ∈ (0,T ) × �. (7.72)

Relations (7.71), (7.72) give rise to the desired conclusion.
To see (7.70), we evoke Theorems 5.3, 5.4 concerning the asymptotic limit of

a consistent approximation. In particular, we recover the limit of the momentum
equation

http://dx.doi.org/10.1007/978-3-030-73788-7_5
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⎡
⎣
∫

�

m · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫

�

[
m · ∂tϕ + 1	>0

m ⊗ m
	

: ∇xϕ + p(	)divxϕ

]
dx

+
τ∫

0

∫

�

∇xϕ : dR(t) dt

(7.73)

for any 0 ≤ τ ≤ T , and any test functionϕ ∈ C1([0,T ] × �;Rd ),ϕ · n|∂� = 0, with
the Reynolds defect measure

R ∈ L∞(0,T ;M+(�;Rd×d
sym )), d(Ecd + Eod ) ≤ tr[R] ≤ d(Ecd + Eod )

d = min{2, γ − 1}, d = max{2, γ − 1}. Consequently, (7.70) follows as soon as
we can show R = 0.

It follows from hypothesis (7.67) that

R|(0,T )×U = 0. (7.74)

Moreover, as [	,m] is a weak solution of the Euler system, we deduce from (7.73)
that

τ∫

0

⎛
⎜⎝
∫

�

∇xϕ : dR
⎞
⎟⎠ dt = 0 for all ϕ ∈ C1([0,T ] × �;Rd ), ϕ · n|∂� = 0.

As R ∈ L∞(0,T ;M+(�;Rd×d
sym )), it follows that

∫

�

∇xϕ : dR(τ ) = 0 for any ϕ ∈ C1(�;Rd ), ϕ · n|∂� = 0 and a.a. τ ∈ (0,T ).

(7.75)
Our ultimate goal is to show that (7.74), (7.75) imply R = 0 for any R ∈

M+(Rd×d
sym ). To this end, we first observe that (7.75) remains valid for any ϕ ∈

C1(�;Rd ), meaning without the restriction ϕ · n|∂� = 0. To see this, write

ϕ = ϕ1 + ϕ2, ϕ1 ∈ C1
c (�;Rd ), supp[ϕ2] ⊂ U .

Using (7.74), (7.75) we obtain
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∫

�

∇xϕ : dR =
∫

�

∇xϕ
1 : dR +

∫

U

∇xϕ
2 : dR = 0.

Consequently, we may infer that

∫

�

∇xϕ : dR(τ ) = 0 for any ϕ ∈ C1(�;Rd ),

R(τ ) ∈ M+(�;Rd×d
sym ) for a.a. τ ∈ (0,T ).

(7.76)

Finally, we choose
ϕ = (ξ ⊗ ξ) · x, ξ ∈ Rd

obtaining

∫

�

(ξ ⊗ ξ) : dR(τ ) = 0 ⇒ (ξ ⊗ ξ) : R(τ ) = 0 for any ξ ∈ Rd ⇒ R(τ ) = 0.

�

7.5.3 Strong Convergence to Strong Solutions

Assuming the limit Euler system admits a strong solution, we may show uncondi-
tional convergence of consistent approximation. The following result can be seen as
an analogue of Theorem 7.8

Theorem 7.11 (Strong convergence to strong solution)
Let the pressure p be given,

p(	) = a	γ , a > 0, γ > 1.

Let {	n,mn}∞n=1 be a consistent approximation of the barotropic Euler system in
(0,T ) × �, with the initial data [	0,m0] in the sense of Definition 5.4. Suppose that
the Euler system admits a strong solution [	,m] in (0,T ) × � in the class

	 ∈ W 1,∞((0,T ) × �), 0 < 	 ≤ 	 in [0,T ) × �, m ∈ W 1,∞((0,T ) × �;Rd ).

Then
1

2

|mn|2
	n

+ P(	n) → 1

2

|m|2
	

+ P(	) in Lq(0,T ;L1(�)),

and
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	n → 	 in Lq(0,T ;Lγ (�)), mn → m in Lq(0,T ;L 2γ
γ+1 (�;Rd ))

for any 1 ≤ q < ∞.

Remark 7.6 The same result holds for the periodic boundary conditions � = T
d .

7.6 Convergence of Approximate Solutions
to the Navier–Stokes System

We consider the Navier–Stokes system

∂t	 + divx(	u) = 0, 	(0, ·) = 	0,

∂t(	u) + divx(	u ⊗ u) + ∇xp(	) = divxS, 	u(0, ·) = m0

S = μ

(
∇xu + ∇ t

xu − 2

d
divxuI

)
+ λdivxuI. (7.77)

For the sake of simplicity, we restrict ourselves to the periodic boundary conditions
� = T

d .
Approximate solutions to the Navier–Stokes system usually enjoy slightly better

regularity because of the presence of viscosity terms. Introducing m = 	u, the total
energy is the same as for the Euler system,

E(	,m) = 1

2

|m|2
	

+ P(	),

while the energy inequality reads

∫

Td

[
1

2

|m|2
	

+ P(	)

]
(τ, ·) dx +

τ∫

0

∫

Td

S : ∇xu dx dt

≤
∫

Td

[
1

2

|m0|2
	0

+ P(	0)

]
dx.

Moreover, as we observed in Sect. 6.3, it is convenient to use the Fenchel–Young
inequality and rewrite the energy inequality in the form

∫

Td

[
1

2

|m|2
	

+ P(	)

]
(τ, ·) dx +

τ∫

0

∫

Td

[
F(Dxu) + F∗(S)

]
dx dt

≤
∫

Td

[
1

2

|m0|2
	0

+ P(	0)

]
dx
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for the convex potential F and its conjugate F∗ specified in (5.102)–(5.104).

7.6.1 Momentum-Velocity Splitting

As the energy functional is the same as for the barotropic Euler system, Theorem
7.9 remains valid also for the Navier–Stokes system. We focus on the possibility of
splitting the Young measure as in (5.127), meaning finding suitable conditions for
the following relation to hold:

	n → 	weakly-(*) inL∞(0,T ;Lγ (Td )),

un → uweakly inL2((0,T ) × T
d ;Rd ),

	nun → mweakly-(*) inL∞(0,T ;L 2γ
γ+1 (Td ;Rd ))

⇒ m = 	u. (7.78)

The problem can be attacked by means of the following result.

Lemma 7.4 Let Q = (0,T ) × �, where� ⊂ Rd is a bounded domain. Suppose that

rn → r weakly in Lp(Q), vn → v weakly in Lq(Q), p > 1, q > 1,

and
rnvn → w weakly in Lr(Q), r > 1.

In addition, let

∂trn = divxgn + hn in D′(Q), ‖gn‖Ls(Q;Rd )

<∼ 1, s > 1,

hn precompact in W−1,z, z > 1,

and
‖∇xvn‖M(Q;Rd )

<∼ 1 uniformly for n → ∞.

Then
w = rv a.a. in Q.

Proof First, we introduce a cut-off function

Tk(v) = kT
( v
k

)
, T ∈ C∞ ∩ BC(R),

T (Z) = T (−Z), T (Z) = Z if |Z| ≤ 1, 0 ≤ T ′(Z) ≤ 1.

Next, write
vn = Tk(vn) +

(
vn − Tk(v)

)
,
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and
rnvn = rnTk(vn) + rn

(
vn − Tk(v)

)
.

Passing to a subsequence (not relabeled) we may assume

Tk(vn) → Tk(v) weakly-(*) in L
∞(Q), rnTk(vn) → wk weakly in Lr(Q) as n → ∞.

We claim that it is enough to show

wk = rTk(v) a.a. in Q for any k → ∞.

Indeed we have
∫

Q

|vn − Tk(vn)| dx dt ≤
∫

|vn≥k|
|vn| dx dt

≤ |{vn ≥ k}| 1
q′ ‖vn‖Lq(Q) → 0 as k → ∞

uniformly for n → ∞, and

∥∥∥v − Tk(v)
∥∥∥
L1(Q)

≤ lim inf
n→∞ ‖vn − Tk(vn)‖L1(Q) → 0 as k → ∞.

Note that this implies
wk = rTk(v) → rv in L1(Q)

by means of the Lebesgue dominance theorem, as

‖wk‖Lr(Q) ≤ ‖w‖Lr(Q) uniformly for k → ∞.

Similarly

∫

Q

|rn(vn − Tk(vn))| dx dt ≤
∫

|vn≥k|
|rnvn| dx dt

≤ |{vn ≥ k}| 1
r′ ‖rnvn‖Lr(Q) → 0 as k → ∞ uniformly in n.

Since

‖∇xvn‖M(Q;Rd )

<∼ 1 ⇒ ‖∇xTk(vn)‖M(Q;Rd )

<∼ 1 uniformly for n → ∞,

it is enough to show the conclusion under the assumption

vn → v weakly-(*) in L∞(Q).
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To this end, we apply Div–Curl lemma to the vector fields

Un = [rn,−gn] : Q → Rd+1, divt,xUn = ∂trn + divxgn = hn,

Un → U = [r, g] weakly in Lmin{s,p}(Q),

and

Vn = [vn, 0] : Q → Rd+1, curlt,xVn ≈ ∇xvn bounded inM(Q;Rd×d ).

Applying Div–Curl Lemma we obtain the desired conclusion. �

7.6.2 Strong Convergence to Strong Solutions

Similarly to the Euler system, a consistent approximation to the Navier–Stokes sys-
tem converges strongly as soon as the limit problem admits a strong solution.

Theorem 7.12 (Convergence to strong solution)
Let {	n,un}∞n=1 be a consistent approximation of the Navier–Stokes system in

(0,T ) × T
d , with the initial data [	0,m0 = 	0u0] in the sense of Definition 5.9.

Suppose that the Navier–Stokes system admits a strong solution [	,u] in the class
	 ∈ C1([0,T ] × T

d ;Rd ), 0 < 	 ≤ 	, u ∈ C1([0,T ] × T
d ;Rd ) ∩ L2(0,T ;W 2,∞(Td ;Rd )).

Then

	n → 	 in Lq(0,T ;Lγ (�)), 	nun → 	u in Lq(0,T ;L 2γ
γ+1 (�;Rd ))

for any 1 ≤ q < ∞, and

un → u in Lq((0,T ) × T
d ;Rd ) for any 1 ≤ q < 2 and weakly in L2((0,T ) × T

d ;Rd ).

Proof By virtue of Theorem 5.5, the sequence {	n,un}∞n=1 generates a Young mea-
sure {Vt,x}(t,x)∈(0,T )×� that represents a DMV solution of the Navier–Stokes system
in the sense of Definition 5.10. More precisely,

	n → 	 weakly-(*) in L∞(0,T ;Lγ (Td )),

mn = (	nun) → m weakly-(*) in L∞(0,T ;L 2γ
γ+1 (Td ;Rd )),

un → u weakly in L2((0,T ) × T
d ;Rd ), u ∈ L2(0,T ;W 1,2(Td ;Rd )),

[	,u] = 〈V; [̃	, ũ]〉 .
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Moreover, the Reynolds defect is

R = 	u ⊗ u + p(	)I − 〈V; 	̃ũ ⊗ ũ + p(̃	)I〉 ∈ L∞(0,T ;M+(Td ;Rd×d
sym )),

where

	nun ⊗ un + p(	n)I → 	u ⊗ u + p(	)I weakly-(*) in L∞(0,T ;M(Td ;Rd×d
sym )).

By virtue of the weak-strong uniqueness principle established in Theorem 6.4,
we have

R = 0,

and
Vt,x = δ	(t,x),u(t,x),

which yields the desired strong convergence. �

7.6.3 Convergence of Bounded Consistent Approximations

Probably the most convincing argument demonstrating the synergy effect between
mathematical analysis and numerical experiments is the following result on conver-
gence of bounded approximate solutions to the Navier–Stokes system. It turns out
that uniformly bounded consistent approximation always converges strongly to a
strong solution as soon as the initial data are sufficiently smooth.

Theorem 7.13 (Convergence of bounded approximate solutions)
Let {	n,un}∞n=1 be a consistent approximation of the Navier–Stokes system in

(0,T ) × T
d in the sense of Definition 5.9, with the initial data [	0,m0 = 	0u0],

	0 ∈ W 3,2(Td ), m0 = 	0u0, u0 ∈ W 3,2(Td ,Rd ), inf
x∈Td

	0(x) > 0.

• Suppose that the bulk viscosity λ = 0 and that

0 ≤ 	n ≤ 	 for all n → ∞.

Then

	n → 	 in Lq((0,T ) × T
d ), 	nun → 	u in Lq(0,T ;L 2γ

γ+1 (Td ;Rd ))

for any 1 ≤ q < ∞, and

un → uin Lq((0,T ) × T
d ;Rd ) for any 1 ≤ q < 2

and weakly in L2((0,T ) × T
d ;Rd ),
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where [	,u] is a strong solution of the Navier–Stokes system.
• Suppose that

0 ≤ 	n ≤ 	, |un| ≤ u for all n → ∞.

Then
	n → 	 in Lq((0,T ) × T

d ), un → u in Lq((0,T ) × �;Rd ))

for any 1 ≤ q < ∞, where [	,u] is a strong solution of the Navier–Stokes system.
Proof The proof follows the same line of arguments as in Theorem 7.12. At the final
step, use the conditional regularity for DMV solutions stated in Corollary 6.4. �

We point out that the existence of the strong solutions to the Navier–Stokes sys-
tem is not a priori required in Theorem 7.13. A bounded consistent approximation
converges always strongly and unconditionally to a smooth solution of the Navier–
Stokes system! There is no counterpart of this result in the framework of the Euler
(inviscid) fluid models.



Chapter 8
Numerical Methods

The principal objective of this monograph is to studynumericalmethods for models of
compressible fluid flow. By a numerical method we mean a finite system of algebraic
equations yielding approximate solutions to the target system of partial differential
equations. The models are evolutionary—the state of the system depends on time.

We exclusively use the implicit time discretization. The resulting system has a
structure closer to the target system so that rigorous convergence analysis may be
performed. A nonlinear system that arise at each time step can be solved by a suitable
iterative solver, such as the fixed point or Newton method. In some cases, we omit
the process of time discretization and study semidiscrete schemes, where only spa-
tially dependent operators are approximated. The resulting problem then represents
a system of (nonlinear) ODEs to be attacked by purely analytical methods. From the
analysis point of view, the semidiscrete schemes share the principal difficulties with
the fully discrete implicit schemes avoiding the unnecessary technical difficulties
connected with the time discretization.

The space discretization will be mostly performed via finite volume approxima-
tion. A finite volume (FV) method is very well suited for partial differential equations
in the divergence form. The discretization is based on applying the Gauss–Green
formula on each mesh element and applying a suitable approximation of the fluxes
through the interfaces of the element. Consequently, the method is automatically
in conservative form. Numerical solutions are piecewise discontinuous polynomi-
als. This is to be compared with a finite element (FE) method, which is based on
the variational formulation of the continuous problem and the Galerkin approxima-
tion. Numerical solutions are piecewise polynomial functions that satisfy some type
of continuity along the element interfaces. This yields a higher connectivity in the
resulting discrete system than by the finite volume methods.

Due to their flexibility and automatic conservativity property, the finite volume
methods have been widely used as a basis of the CFD (Computational Fluid Dynam-
ics) packages, in particular for the Euler and Navier–Stokes systems studied in this
monograph. We focus on discretization via piecewise constant functions that yields

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
E. Feireisl et al., Numerical Analysis of Compressible Fluid Flows, MS&A 20,
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the first order approximation, but generalizations to higher order methods both in
space and time are possible. We will also present examples where the basic finite
volume strategy will be combined with the finite element approximation of diffusive
parts of the Navier–Stokes system, see Chap. 13 or reformulated as the staggered
finite difference method, see Chap. 14. Except Chap. 9, where, as an example, some
standard finite volume methods for hyperbolic conservation laws will be analyzed
for the barotropic Euler equation, we will apply a particular numerical flux function
for the approximation of the convective terms.

The approximation process necessarily affects the boundary of the computational
domain. While analytical statements are mostly stated for “sufficiently smooth”
domains � ⊂ Rd , the computational domain �h is a polyhedral approximation of
�. Accordingly, the computational domains are typically Lipschitz or, in the best
case, convex approximation of the physical domain �. Such a low level of regularity
does not guarantee the existence of regular (smooth) solutions of the target problem
necessary to perform rigorous convergence analysis. Ignoring this problem is usu-
ally referred to as committing “variational crimes”. The problem can be avoided or
solved by considering the space periodic boundary conditions, meaning

� = T
d ,

or approximating a smooth domain � by a family {�h}h↘0, respectively.
The finite volume methods yield an approximation of the weak formulation of

the underlying system of PDEs in the corresponding discrete space. Clearly, the
finite volume methods share many common properties with the PDEs. Still certain
physically relevant principles may not be encoded directly in the approximation and
must be either verified a posteriori or imposed as extra constraints. The prominent
examples are:

• Strict positivity of the mass density. The mass density by its physical meaning is
a nonnegative quantity. The models of viscous fluids as the Navier–Stokes system
operating with velocity rather than momentum have been derived for nondilute
fluids far from vacuum. Accordingly, the mass density should be strictly positive.
To certain extent, the same stipulation may be applied to the Euler system as well.
Note that we deal almost exclusively with theweak solutions, where the possibility
of developing vacuum in finite time is an open problem (Navier–Stokes system)
or not excluded (Euler system). Mainly because of this reason, we do not expect
to keep the density bounded from below uniformly through the approximation
process. Positivity of the density at a fixed level of approximation is, however,
desirable for various physical quantities to be well defined and in many cases
enhances stability of the method. Moreover, strong positivity of the mass density
facilitates the passage from one type of state variables to another.

• Strict positivity of the (absolute) temperature. This is an indispensable property
for several thermodynamic functions, notable the entropy to be well defined. Note
that positivity of the absolute temperature is enforced by the Second law of ther-
modynamics. In the literature, positivity of the temperature is often replaced by
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positivity of the pressure. Physically speaking, this is not the same but equivalence
obviously holds for the EOS considered in this monograph. Note that the pressure
vanishes on the vacuum together with the density while the (physical) meaning of
the temperature in this area might be dubious.

• Total energy balance. The validity of the First law of thermodynamics, notably
the control of the total energy is absolutely necessary for the analysis of all numer-
ical methods in this monograph. Note that uniform boundedness of the energy at
any level of numerical approximation is practically the only source of stability
estimates indispensable for the method to converge at least in a weak sense. For
barotropic systems the energy is identified with the “mathematical entropy” in the
literature. In this context some authors call an energy stable scheme as entropy
stable. This is the case of the barotropic Euler system studied in the forthcoming
chapter.

• Entropy balance and positivity of the entropy production rate. The Second
law of thermodynamics is encoded in the models involving thermal changes as
the entropy balance. Although the latter may not be directly used in the formula-
tion of a numerical method, its satisfaction is crucial for convergence. Indeed the
convective terms in the energy equation are difficult to control by the available
stability estimates and it is the entropy and the total energy balance that is used for
showing convergence. At the level of the Euler system, this limit procedure gives
rise to the dissipative solutions introduced and discussed in Sect. 5.2 of Chap. 5.

As we shall see below, incorporating the above properties in the numerical approx-
imation is not only physically relevant but provides a valuable piece of information
for the convergence analysis. In the context of the Euler system, the numerical meth-
ods satisfying the above properties are called invariant domain preserving methods.

8.1 Discrete Versus Continuous Time Representation

As agreed in Preliminary material, a numerical approximation of a field U will
be denoted Uk

h , where k refers to the time level and h to the spatial resolution.
Specifically, given a time step �t > 0 and the initial time t0 (typically t0 = 0), we
denote

tk = t0 + k�t, k = 1, 2, . . . .

Time derivative ∂U
∂t is approximated by the backward Euler finite difference

∂U
∂t

≈ DtU k
h ≡ Uk

h − Uk−1
h

�t
;
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while the associated evolutionary problem

∂U
∂t

= F(U, t)

is replaced by the implicit time discretization

Uk
h − U k−1

h

�t
= Fh(Uk

h, tk).

That being said, the numerical method is reduced to a (finite) system of nonlinear
algebraic equations,

Uk
h − �tFh(U k

h, tk) = U k−1
h , k = 1, 2, . . . , NT . (8.1)

that can be solved recursively at any time level tk , with U0
h being a suitable discrete

approximation of the initial data. Note that the specific form of the left hand side of
equation (8.1) is suitable for a direct application of a fixed point theorem.

When using a semidiscrete scheme we consider a system of ordinary differential
equations

d

dt
Uh(t) = Fh(Uh(t), t).

In practical applications a suitable ODE solver can be applied afterward.
To illustrate the proximity of semi and fully discrete schemes, we recall the defi-

nition of piecewise constant interpolation in time, cf. (47)

Uh(t) =
∑

k≥0

Uk
h1[tk ,tk+1)(t), t ≥ 0.

This can be seen as a function of time ranging in a suitable finite-dimensional space
given by the type of space discretization. Let ψ ∈ C2

c [0, T ), where, for the sake of
simplicity, we suppose T = tNT for some NT ≥ 1. Accordingly, following analogous
arguments as in Lemma 8 we obtain

T∫

0

Uh∂tψ dt =
NT∑

k=0

Uk
h

tk+1∫

tk

∂tψ dt =
NT∑

k=0

Uk
h

(
ψ(tk+1) − ψ(tk )

)

= −U0
hψ(0) −

NT∑

k=1

ψ(tk )
(
Uk
h − Uk−1

h

)

= −U0
hψ(0) −

NT∑

k=0

tk+1∫

tk

ψ(tk )DtUh dt = −U0
hψ(0)

−
T∫

0

ψDtUh dt +
NT∑

k=1

tk+1∫

tk

(
ψ − ψ(tk )

)
DtUh dt.

(8.2)
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As ψ is twice continuously differentiable, we may use the Taylor expansion writing
the consistency error in the form

NT∑

k=1

tk+1∫

tk

(
ψ(t) − ψ(tk)

)
DtUh dt = e1 + e2,

where

e1 ≡
NT∑

k=1

tk+1∫

tk

(
ψ(t) − ψ(tk) − ∂tψ(tk)(t − tk)

)
DtUh dt

e2 ≡
NT∑

k=1

tk+1∫

tk

∂tψ(tk)(t − tk)DtUh dt = �t

2

NT∑

k=1

∂tψ(tk)
(
Uk

h − Uk−1
h

)

= − �t

2

⎛

⎝U0
h∂tψ(0) −

T∫

0

Uh∂
2
t ψ dt

⎞

⎠ .

Going back to (8.2) we may infer that

T∫

0

Uh∂tψ dt = −U0
hψ(0) −

T∫

0

ψDtUh dt + e(�t, T,Uh, ψ), (8.3)

with the consistency error

|e| ≤ �t c
(‖ψ‖C2[0,T ]

)
⎛

⎝|U0
h | +

T∫

0

|Uh | dt

⎞

⎠ . (8.4)

Thus the distributional derivative d
dtUh is well approximated by DtUh provided the

right-hand side of (8.4) is controlled. For that we need very mild stability estimates,
namely the uniform integrability of the approximate solutions Uh in L1(0, T ). Note
that such a bound is necessary to perform any kind of convergence analysis even in
the framework of weak solutions.

In the light of the above arguments, the analysis of the semidiscrete and fully
discrete methods concentrates on the spatial discretization and replacing Dt by d

dt
and vice versa does not create any extra difficulties.
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8.2 Diffusive Upwind Numerical Flux

The Euler and Navier–Stokes systems considered in this monograph can be written
in a general form

∂tU + divxF(U) = divxT(U),

where F is the convective flux and T represents the diffusive stress.
Let us discuss shortly the discretization of the convective flux F(U) present in

both the viscous and the inviscid model. Assume that the computational domain �

is discretized by a regular mesh Th , and the approximate solutions Uk
h are piecewise

constant (on any volume cell K ⊂ �) at any time level k. Denoting Uk
K the value on

the cell K , we may approximate

∂tU + divx (F(U)) ≈ DtU k
K + (divDFh(Uk

h))K on K ∈ Th .

In the finite volume methods the discrete divergence operator divD, cf. (9.3), requires
that the numerical flux Fh is evaluated on any face σ ∈ ∂K using the values on the
neighboring elements. A natural choice would be

Fh(Uk
h)

∣∣∣
σ

= {{
F(U k

h)
}}

,

which is locally consistent but may create problems with stability estimates and
consequently with the global consistency errors. As a result, a suitable stabilization
term is needed. Accordingly, a general flux approximation

Fσ (U k
h) = {{

F(Uk
h)

}}
n − λ

[[
U k

h

]]
, where Fhn ≡ Fσ (8.5)

is commonly used, with a positive factor λ depending, in general, on Uh . The term

λ
[[
U k

h

]]

represents numerical diffusion. Specific examples of numerical fluxes will be dis-
cussed in Chap. 9.

Formula (8.5) is simple, elegant, but not always convenient when the properties
of transported quantities are analyzed. Indeed the crucial quantity for the transport
is the fluid velocity u. Although u is a natural state variable for the Navier–Stokes
system, it is usually replaced by the (conservative) quantity – the momentum m –
in the context of the Euler system. This leads to a rather awkward formulation of
the equation of continuity and renders the problem of positivity of the density quite
delicate. In Chap. 10, we propose a new discretization of the Euler system based
on Brenner’s idea discussed in Chap. 3, Sect. 3.2.2. The leading idea is to keep the
velocity as a state variable at the discrete level. As a result, the convective term is
discretized in the same way for both the Euler and Navier–Stokes system by means
of the upwind discretization we shortly describe below.
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First we realize that all convective terms take the form divx (ru), where r stays for
a transported quantity and u is the flow velocity. Integrating the convective term over
an arbitrary element K and applying the Gauss–Green theorem we easily identify
the leading term in the flux discretization

∫
σ
ru · n dSx for any σ ∈ E(K ). A suitable

stable approximation is obtained by following the flow along streamlines. This leads
to the following upwind discretization of the convective term:

Given a velocity field uh ∈ Qh or V h , the upwind flux on a face σ ∈ E is defined
as

Up[rh, uh] = r in
h [〈uh〉σ · n]+ + rout

h [〈uh〉σ · n]−

= {{rh}} 〈uh〉σ · n − 1

2
| 〈uh〉σ · n| [[rh]] ,

(8.6)

where we have denoted

[ f ]± = f ± | f |
2

.

Recall that f in and f out are the inward and outward traces of a piecewise smooth
function f on a face σ defined in (8). Introducing the upwind information of a
function rh ∈ Qh on a face σ ∈ E by

rup
h =

⎧
⎨

⎩

r in
h if 〈uh〉σ · n ≥ 0,

rout
h if 〈uh〉σ · n < 0,

(8.7)

the upwind flux (8.6) can be rewritten equivalently as

Up[rh, uh] = rup
h 〈uh〉σ · n.

The resulting numerical flux may be augmented by additional numerical diffusion,
which yields the following diffusive upwind numerical flux function

Fup
h [rh, uh] = Up[rh, uh] − hε [[rh]] , ε > −1. (8.8)

Indeed the additional numerical diffusion term introduced above acts as an artificial
diffusion of order O(h1+ε) since

∑

σ∈E(K )

|σ |
|K |h

ε [[rh]] = h1+ε(�hrh)K ,

where �h stays for the approximation of the Laplace operator with central differ-
ences. Compared with the general formula (8.5), the upwind flux retains the infor-
mation concerning the fluid velocity. As we shall see below, this fact enables us to
adopt the continuous methods for transport equations to obtain unconditional den-
sity positivity as well as the renormalized entropy equation yielding the minimum
entropy principle at the discrete level.
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Further, we define the upwind-type divergence operators

divup
h (rh, uh) =

∑

K∈Th

1Kdivup
h (rh, uh)K , divup

h (rh, uh)K =
∑

σ∈E(K )

|σ |
|K | F

up
h [rh, uh].

(8.9)
Note that the formulas make sense if the domain � = T

d is periodic, or for the
upwind flux (8.6) defined on a bounded domain with the impermeability condition

〈uh〉σ · n = 0 if σ ⊂ ∂�. (8.10)

Moreover, we set
[[rh]]σ = 0 if σ ⊂ ∂�, (8.11)

which corresponds to the homogeneous Neumann boundary condition for rh . The
impermeability condition (8.10) together with the homogeneous Neumann boundary
condition (8.11) are sometimes called in the literature no-flux boundary conditions.

Keeping the above convention in mind and realizing that nσ,K = −nσ,L for all
σ = K |L ∈ E , we deduce the conservative property

∑

K∈Th

∑

σ∈E(K )

Fup
h [rh, uh] = 0 and

∫

�

divup
h (rhuh) dx = 0 (8.12)

for rh ∈ Qh and uh ∈ V 0,h or uh ∈ Qh ∪ W h .

The following technical result will be suitable in many future calculations.

Lemma 8.1 (Diffusive upwind numerical flux)
Let rh ∈ Qh, uh ∈ Qh and φ ∈ C1(�). Let the periodic or the no-flux boundary

conditions be imposed.
Then the following holds:

∫

Eint

(
Up[rh, uh]

[[ |uh |2
2

]]
− Up[rhuh, uh] · [[uh]]

)
dSx

= 1

2

∫

Eint



up
h |〈uh〉σ · n| [[uh]]2 dSx ,

(8.13a)

and

∫

Eint

(
Fup
h [rh, uh]

[[ |uh |2
2

]]
− Fup

h [rhuh, uh] · [[uh]]

)
dSx

= 1

2

∫

Eint



up
h |〈uh〉σ · n| [[uh]]2 dSx + hε

∫

Eint

{{rh}} |[[uh]]|2 dSx .

(8.13b)
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Moreover,
∫

�

rhuh · ∇xφ dx −
∫

Eint

Fup
h [rh, uh]

[[
�Qφ

]]
dSx

=
∫

Eint

(
1

2
| 〈uh〉σ · n| + hε + 1

4
[[uh]] · n

)
[[rh]]

[[
�Qφ

]]
dSx

+
∫

�

rhuh · (∇xφ − ∇h
(
�Qφ

))
dx .

(8.13c)

Proof First, we recall the definition of the upwind flux (8.6) and notice 〈uh〉σ =
uin
h +uout

h
2 to derive (8.13b), i.e.

∫

Eint

Up[rh, uh]
[[ |uh |2

2

]]
dSx −

∫

Eint

Up[rhuh, uh] · [[uh]] dSx

=
∫

Eint

rup
h 〈uh〉σ · n(〈uh〉σ − uup

h ) · [[uh]] dSx

=
∫

Eint

r in
h [〈uh〉σ · n]+(〈uh〉σ − uin

h ) · [[uh]] dSx

+
∫

Eint

rout
h [〈uh〉σ · n]−(〈uh〉σ − uout

h ) · [[uh]] dSx

= 1

2

∫

Eint

(
r in
h [〈uh〉σ · n]+ − rout

h [〈uh〉σ · n]−)
[[uh]]2 dSx

= 1

2

∫

Eint

rup
h |〈uh〉σ · n| [[uh]]2 dSx .

Next we recall the definition of the diffusive upwind flux (8.8) and equality (8.24a)
to calculate
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∫

Eint

Fup
h [rh, uh]

[[ |uh |2
2

]]
dSx −

∫

Eint

Fup
h [rhuh, uh] · [[uh]] dSx

=
∫

Eint

(
Up[rh, uh] − hε [[rh]]

) [[ |uh |2
2

]]
dSx

−
∫

Eint

(
Up[rhuh, uh] − hε [[rhuh]]

) · [[uh]] dSx

= 1

2

∫

Eint

rup
h |〈uh〉σ · n| [[uh]]2 dSx

− hε

∫

Eint

(
[[rh]]

[[ |uh |2
2

]]
− [[rhuh]] · [[uh]]

)
dSx

= 1

2

∫

Eint

rup
h |〈uh〉σ · n| [[uh]]2 dSx + hε

∫

Eint

{{rh}} [[uh]]2 dSx ,

which proves (8.13b). Further, we proceed to show (8.13c). Clearly,

∫

�

rhuh · ∇xφ dx =
∑

K∈Th

∫

K
rhuh · ∇xφ dx

=
∑

K∈Th

∫

K
rhuh · (∇xφ − ∇h

(
�Qφ

)
) dx + I1,

where the term I1 can be reformulated as

I1 =
∑

K∈Th

∫

K
rhuh · ∇h

(
�Qφ

)
dx =

∑

K∈Th
(rhuh)K ·

∫

∂K
n

{{
�Qφ

}}
dSx

= −
∫

Eint

[[
rhuh

]] · n {{
�Qφ

}}
dSx =

∫

Eint

{{rhuh}} · n [[
�Qφ

]]
dSx

=
∫

Eint

({{rhuh}} − {{rh}} {{uh}}) · n [[
�Qφ

]]
dSx

+
∫

Eint

{{rh}} {{uh}} · n [[
�Qφ

]]
dSx

=
∫

Eint

1

4

[[
rh

]] [[
uh

]] · n [[
�Qφ

]]
dSx +

∫

Eint

F
up
h [rh , uh ] [[�Qφ

]]
dSx

+
∫

Eint

(
1

2
| {{uh}} · n| + hε

) [[
rh

]] [[
�Qφ

]]
dSx ,
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thanks to (23), (39) and the definition of the numerical flux Fup
h in (8.8). Combining

the above two steps concludes the proof.

Note that the upwind numerical flux (8.8) approximates the convective term in
a scalar-like manner, meaning component by component, and depends only on the
sign of the normal component of velocity. This is in contrast with some standard
numerical flux functions used for systems of hyperbolic conservation laws, where
the eigenvalues of the corresponding Jacobi matrices of the flux vector are considered,
cf. (8.5) and Chap. 9 below.

8.3 Discrete Continuity Equation

The aim of this section is to demonstrate some fundamental properties of the dis-
crete density obtained as a solution of a finite volume method based on the use of
the numerical flux (8.8). In particular, we will show the conservation of mass and
positivity of the density. To this end we start by a precise formulation of the numerical
method for the continuity equation.

Let 
0
h ∈ Qh and uk

h ∈ Qh or V h , k = 1, 2, . . . , NT , be given. In addition, if � is a
domain with boundary, we suppose that the no-flux boundary conditions are applied,
i.e. uk

h · n|∂� = 0 and
[[

k
h

]]
σ

= 0, σ ∈ Eext . The numerical approximation of the
density 
k

h ∈ Qh , k = 1, 2, . . . , NT , is computed by the following finite volume
update

Dt

k
h

∣∣∣
K

+
∑

σ∈E(K )∩Eint

|σ |
|K | F

up
h [
k

h, u
k
h] = 0 (8.14)

or equivalently,

∫

�

Dt

k
hφh dx −

∫

Eint

Fup
h [
k

h, u
k
h] [[φh]] dSx = 0 for all φh ∈ Qh . (8.15)

8.3.1 Mass Conservation

Setting φh ≡ 1 in (8.15), we obtain

∫

�

Dt

k
h dx = 0
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for all k = 1, . . . , NT , which implies the total mass conservation

M0 ≡
∫

�


0
h dx =

∫

�


k
h dx, k = 1, . . . , NT . (8.16)

8.3.2 Renormalized Continuity Equation and Positivity
of Density

First, we derive a discrete version of the renormalized continuity equation introduced
in Chap. 3, formula (3.34).

Lemma 8.2 (Renormalized continuity equation)
Let 
k

h ∈ Qh be a solution to the discrete problem (8.14), k = 1, . . . , NT , uk
h ∈

Qh ∪ V h . We suppose that either the periodic or the no-flux boundary conditions
hold.

Then for any function B ∈ C1(R) and any φh ∈ Qh it holds:

∫

�

Dt B(
k
h)φh dx −

∫

Eint

Fup
h [B(
k

h), u
k
h] [[φh]] dSx

+
∫

�

φh
(

k
h B

′(
k
h) − B(
k

h)
)

divhuk
h dx

= − 1

�t

∫

�

φh
(
B(
k−1

h ) − B(
k
h) − B ′(
k

h)(

k−1
h − 
k

h)
)

dx,

−
∑

K∈Th

∫

K

φh

∑

σ∈E(K )∩Eint

|σ |
|K |

( [[
B(
k

h)
]] − B ′(
k

h)
[[

k
h

]] )
(hε − [〈uk

h

〉
σ

· n]−) dx .

(8.17)

Proof We use φh ≈ B ′(
k
h)φh as a test function in the discrete continuity equation

(8.15) obtaining

∫

�

Dt

k
h B

′(
k
h)φh dx +

∫

�

divup
h

(

k
hu

k
h

)
B ′(
k

h)φh dx = 0.

First, it is easy to check

∫

�

Dt

k
h B

′(
k
h)φh dx =

∫

�


k
h − 
k−1

h

�t
B ′(
k

h)φh dx =
∫

�

Dt B(
k
h)φh dx

+ 1

�t

∫

�

φh
(
B(
k−1

h ) − B(
k
h) − B ′(
k

h)(

k−1
h − 
k

h)
)

dx .
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Next, recalling the definition of the upwind flux (8.6) and denoting uσ = 〈
uk
h

〉
σ

· n,
we may rewrite the convective term as

∫

�

divup
h (
k

h, u
k
h)B

′(
k
h)φh dx

=
∑

K∈Th

∫

K

φh B
′(
k

h)
∑

σ∈E(K )∩Eint

|σ |
|K |

(


k,up
h uσ − hε

[[

k
h

]])
dx

=
∫

�

φh

k
h B

′(
k
h)divhuk

h dx +
∑

K∈Th

∫

K

φh B
′(
k

h)
∑

σ∈E(K )

|σ |
|K | (


k,up
h − 
k

h)uσ dx

− hε
∑

K∈Th

∫

K

φh B
′(
k

h)
∑

σ∈E(K )∩Eint

|σ |
|K |

[[

k
h

]]
dx

=
∫

�

φh

(

k
h B

′(
k
h) − B(
k

h)
)

divhuk
h dx −

∫

Eint

Fup
h [B(
k

h), u
k
h] [[φh]] dSx

+
∑

K∈Th

∫

K

φh B
′(
k

h)
∑

σ∈E∩Eint

|σ |
|K |

[[

k
h

]] (
[uσ ]− − hε

)
dx + D,

where

D =
∫

�

φh B(
k
h)divhuk

h dx +
∫

Eint

Fup
h [B(
k

h), u
k
h] [[φh]] dSx . (8.18)

Summing up the last two formulas we find that (8.17) holds as soon as (8.18) can be
rewritten as

D =
∑

K∈Th

∫

K

φh

∑

σ∈E(K )∩Eint

|σ |
|K |

[[
B(
k

h)
]]

(hε − [〈uk
h

〉
σ

· n]−) dx . (8.19)

For the first term on the right hand side of (8.18) we have

∫

�

φh B(
k
h)divhuk

h dx =
∑

K∈Th

∫

K

φh B(
k
h)

∑

σ∈E(K )

|σ |
|K |uσ dx

=
∑

K∈Th

∫

K

φh

∑

E(K )

|σ |
|K |

( {{
B(
k

h)
}} − 1

2

[[
B(
k

h)
]] )

uσ dx .
(8.20)
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Further, concerning the second term on the right hand side of (8.18) we calculate

∫

Eint

Fup
h [B(
k

h), u
k
h] [[φh]] dSx

= −
∑

K∈Th

∫

K

φh

∑

E(K )∩Eint

|σ |
|K |

( {{
B(
k

h)
}}
uσ − |uσ |

2

[[
B(
k

h)
]] − hε

[[
B(
k

h)
]] )

dx

=
∑

K∈Th

∫

K

φh

∑

E(K )∩Eint

|σ |
|K | (h

ε − [uσ ]−)
[[
B(
k

h)
]]

dx

−
∑

K∈Th

∫

K

φh

∑

E(K )∩Eint

|σ |
|K |

( {{
B(
k

h)
}} − 1

2

[[
B(
k

h)
]] )

uσ dx .

(8.21)
Finally, summing up (8.20) and (8.21) proves (8.19), which completes the proof of
(8.17).

With the renormalized continuity equation at hand we are ready to show positivity
of the discrete density.

Lemma 8.3 (Positivity of density)
Let 
0

h > 0. Then any solution of (8.14) satisfies 
k
h > 0 for all k = 1, . . . , NT .

Proof We use mathematical induction and start with the induction hypothesis 
k−1
h >

0. We use the renormalized continuity equation (8.17) for φ ≡ 1 and B a continuously
differentiable convex function obtaining

∫

�

Dt B(
k
h) dx +

∫

�

(

k
h B

′(
k
h) − B(
k

h)
)

divhuk
h dx ≤ 0. (8.22)

Next, we aim to use B(
) = max{0,−
} ≥ 0. Strictly speaking, this is not a C1

function, however, we may easily construct an approximate sequence

Bδ : R → [0,∞), Bδ ∈ C1(R), Bδ(
) = 0 for 
 ≥ −δ, B ′
δ(0) = 0,

Bδ(
) → max{0,−
} uniformly in R, B ′
δ(
) = −1 for all 
 < δ.

Plugging Bδ in (8.17) and performing the limit δ → 0 we conclude

∫

�

B(
k
h) dx ≤ 0.

As B is a nonnegative function we have B(
k
h) ≡ 0 holds for all x ∈ �. Thus we

have proved 
k
h ≥ 0.

Finally, we assume there exists a K ∈ Th such that 
k
K = 0. Then a straightforward

calculation using the discrete equation for the density (8.14) yields
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|K |
�t

(0 − 
k−1
K ) = −

∫

K

divup
h (
k

h, u
k
h) dx ≥ −

∑

σ∈E(K )

(
k
h)

out[〈uk
h · n〉

σ
]− ≥ 0,

which implies 
k−1
K ≤ 0 in contrast with the assumption 
k−1

h > 0. Thus necessarily

k
h > 0.

Note carefully that positivity of the density stated in Lemma 8.3 is unconditional;
it holds independently of the length of the time step and the degree of spatial dis-
cretization. Standard numerical fluxes, such as those introduced in (8.5), in general
do not enjoy this property unless certain restrictions are imposed on the length of the
time step in the form of a CFL (Courant–Friedrichs–Lewy) condition. The crucial
role in the diffusive upwind numerical flux is the presence of the flow velocity in the
upwind discretization.

8.4 Stability and Consistency of Numerical Solutions

The notion of consistent approximation has been introduced and discussed in
Sects. 7.3, 7.5 and 7.6. In this section, we revisit the topic in the context of numerical
solutions introducing stable and consistent approximations to the Euler and Navier–
Stokes systems.

8.4.1 Stability

Stability of a numerical method reflects uniform bounds imposed by natural con-
straints resulting from the laws of physics inherited by the system of field equations.
Ideally, stability estimates coincide with the a priori bounds available for the con-
tinuous model. In addition, there is a common believe that the numerical viscosity
omnipresent in numerical schemes may “pick up” the physically relevant solution
even if the limit problem is ill-posed. This is particularly relevant for the Euler sys-
tem, however, a rigorous proof at least in the multidimensional case is so far not
available.

In the context of compressible fluid flow models, natural properties to be satisfied
are the conservation of mass and positivity of the discrete density discussed in the
preceding part. For models of viscous fluids, further important stability estimates
result from the dissipation of the discrete energy. For the complete Euler system,
the Second law of thermodynamics enforced through the discrete entropy inequality
provides more bounds at the level of thermostatic variables. Its satisfaction entails
other important properties as the minimum entropy principle. In what follows we
will define more precisely the concept of a stable numerical method for the Euler
and Navier–Stokes systems, respectively.
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Consider the barotropic Euler system (7.57). Here, the conservative state variables
are the mass density 
 and the momentum m. Alternatively, we may replace m by
the velocity u = m



. Note, however, that strict positivity of 
 is required to justify

this choice.

Remark 8.1 Strictly speaking, numerical solutions {
k
h,m

k
h}h↘0 resulting from

the fully discrete scheme are defined on discrete time levels t k = t0 + k�t , k =
0, 1, . . . , NT . As introduced in Preliminary material, we work with the piecewise
constant interpolation on the full time interval t ∈ [0, T + �t)


h(t, ·) =
NT∑

k=0


k
h1[tk ,tk+1)(t), mh(t, ·) =

NT∑

k=0

mk
h1[tk ,tk+1)(t).

Clearly, other suitable interpolations are possible as well. The solutions resulting
from the semidiscrete (continuous time) schemes are defined naturally for any t . We
tacitly assume this convention whenever omitting the upper time step index.

Definition 8.1 (STABLE NUMERICAL METHOD FOR THE BAROTROPIC EULER

SYSTEM)
Let {
h,mh}h↘0 be a sequence obtained by a numerical method with the initial

data [
0
h,m

0
h] and either periodic (� = T

d ) or no-flux boundary conditions (8.10),
(8.11) with rh = 
h . We say that a numerical method is stable for the barotropic
Euler system (7.57), (7.58), if the resulting numerical solutions (
h,mh) enjoy the
following properties:

• positivity of density 
h ≥ 0;
• conservation of total mass

∫

�


h(t, ·) dx =
∫

�


0
h dx, t ∈ [0, T ];

• momentum-density compatibility 
h = 0 ⇒ mh = 0;
• total energy inequality

∫

�

[
1

2

|mh |2

h

+ P(
h)

]
(t, ·) dx ≤

∫

�

[
1

2

|m0
h |2


0
h

+ P(
0
h)

]
dx t ∈ [0, T ],

where P(
) = 

∫ 


1
p(z)
z2 dz is the pressure potential.

Remark 8.2 Recall that the kinetic energy 1
2

|m|2



has been defined as a convex l.s.c.

function for any [
,m] ∈ Rd+1 by (1.26). In particular, the stipulation that the kinetic
energy is finite at each step of numerical approximation includes implicitly both
nonnegativity of the density and the momentum-density compatibility property.
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Next, we specify stability of a numerical method for the (complete) Euler system
in terms of the conservative variables [
,m, E]. We also assume the existence of
a physical entropy s, 
s(
,m, E) being a concave function of the state variables.
Recall that in the case of the standard Boyle–Mariotte EOS, the entropy takes the
form

s = 1

γ − 1
log

(
γ − 1


γ

(
E − |m|2




))
.

Definition 8.2 (STABLE NUMERICAL METHOD FOR THE EULER SYSTEM)
Let {
h,mh, Eh}h↘0 be a numerical solution of the Euler system (2.34)–(2.36),

supplemented with either periodic (� = T
d ) or the no-flux boundary conditions

(8.10), (8.11) with rh = 
h, ph and with the initial data [
0
h,m

0
h, E

0
h ]. Here ph denotes

the corresponding discrete pressure. We say that the numerical method is stable if
the following properties hold:

• positivity of density 
h ≥ 0;
• conservation of mass

∫

�


h(t, ·) dx =
∫

�


0
h dx, t ∈ [0, T ];

• conservation of total energy

∫

�

Eh(t, ·) dx =
∫

�

E0
h dx, t ∈ [0, T ];

• renormalized entropy inequality

∫

�


hχ
(
s(
h,mh, Eh)

)
(t, ·) dx ≥

∫

�


0
hχ

(
s(
0

h,m
0
h, E

0
h)

)
dx, t ∈ [0, T ],

(8.23)
for any nondecreasing, concave, twice continuously differentiable functionχ on
R that is bounded from above;

• minimum entropy principle

sh(t, ·) ≥ s, t ∈ [0, T ] and a.e. in �, s ∈ R.

Remark 8.3 As we have seen in Proposition 2.1, the minimum entropy principle
follows from (8.23) as long as the initial entropy admits a uniform lower bound.

Remark 8.4 The minimum entropy principle represents a rather strong constraint
that implies, at least in the case of Boyle–Mariotte EOS, other key stability estimates:
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• momentum-density compatibility 
 = 0 ⇒ m = 0;
• strict positivity of the absolute temperature ϑ > 0.

Finally, we consider the Navier–Stokes system (7.77). As viscosity plays a crucial
role in this model, it is convenient to consider the mass density 
 and the fluid velocity
u as state variables.

Definition 8.3 (STABLE NUMERICAL METHOD FOR THE NAVIER–STOKES

SYSTEM)
Let {
h, uh}h↘0 be an approximate solution resulting from a numerical method

for the Navier–Stokes system (7.77), with the space periodic boundary condition
(� = T

d ) or the no-slip boundary conditions (1.54), and with the initial data [
0
h, u

0
h].

We say that the numerical method is stable if the following holds:

• positivity of density 
h ≥ 0;
• conservation of mass

∫

�


h(t, ·) dx =
∫

�


0
h dx, t ∈ [0, T ];

• total energy inequality

∫

�

[
1

2

h|uh |2 + P(
h)

]
(t, ·) dx + μ ‖∇huh(t)‖2

L2(�) + ν ‖divhuh(t)‖2
L2(�)

≤
∫

�

[
1

2

0
h |u0

h |2 + P(
0
h)

]
dx, t ∈ [0, T ],

where P(
) = 

∫ 


1
p(z)
z2 dz and ν = d−2

d μ + λ.

The symbols ∇h and divh are the discrete differential operators introduced in (15)
for piecewise constant approximation of the velocity field. They may be replaced
accordingly by their analogues in (15) if different velocity discretization is used.

8.4.2 Consistency

A numerical method is consistent if the numerical solution satisfies the continuous
problem up to a consistency error that can be evaluated from the local truncation anal-
ysis. In what follows, we introduce consistent numerical methods for the Euler and
Navier–Stokes systems. They should be compared to their continuous counterparts
discussed in Chap. 5.
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Definition 8.4 (CONSISTENT NUMERICAL METHOD FOR THE BAROTROPIC

EULER SYSTEM)
Let {
h,mh}h↘0 be a sequence obtained by a numerical method for the barotropic

Euler system with the no-flux boundary conditions (8.10), (8.11) with rh = 
h or the
periodic (� = T

d ) boundary conditions, and with the initial data [
0
h,m

0
h]. We say

that a numerical method is consistent with the barotropic Euler system (5.71) if

−
∫

�


0
hϕ(0, ·) dx =

T∫

0

∫

�

[

h∂tϕ + mh · ∇xϕ

]
dx dt +

T∫

0

e1,h(t, ϕ) dt (8.24a)

for any ϕ ∈ C2
c ([0, T ) × �);

−
∫

�

m0
h · ϕ(0, ·) dx =

T∫

0

∫

�

[
mh · ∂tϕ +

(
1
n>0

mh ⊗ mh


h

)
: ∇xϕ + phdivxϕ

]
dx dt

+
T∫

0

e2,h(t,ϕ) dt, ph = p(
h) (8.24b)

for any ϕ ∈ C2
c ([0, T ) × �; Rd), ϕ · n|∂� = 0;

‖e1,h(·, ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 , ‖e2,h(·,ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 for some β > 0.

Going back to Definition 5.4, Sect. 5.1.5, we easily check that the numerical
solutions represent a consistent approximation in the sense of Definition 5.4 provided
the method is both stable in the sense of Definition 8.1 and consistent in the sense
of Definition 8.4. In particular, the abstract convergence results derived in Sect. 7.5
are applicable.

Next, we consider the (complete) Euler system written in the conservative vari-
ables [
,m, E] in (2.34)–(2.36). As we have observed in Sects. 7.3, 7.4, the problems
related to convergence of approximate solutions are easier to study in the framework
of the conservative-entropy variables [
,m, S]. Note that both descriptions are equiv-
alent at the discrete level as long as the mass density is strictly positive. Accordingly,
we define consistency in terms of the entropy formulation (7.14), (7.15).

Definition 8.5 (CONSISTENT NUMERICAL METHOD FOR THE EULER SYS-
TEM)

Let {
h,mh, Eh}h↘0 be a sequence obtained by a numerical method for the
Euler system (2.34)–(2.36), supplemented with either periodic (� = T

d ) or the no-
flux boundary conditions (8.10), (8.11) with rh = 
h, ph, and with the initial data
[
0

h,m
0
h, E

0
h ]. Here ph and sh denote the associated discrete pressure and entropy,



272 8 Numerical Methods

respectively. We say that a numerical method is consistent with the Euler system
(7.14), (7.15) if

−
∫

�


0
hϕ(0, ·) dx =

T∫

0

∫

�

[

h∂tϕ + mh · ∇xϕ

]
dx dt +

T∫

0

e1,h(t, ϕ) dt (8.25)

for any ϕ ∈ C2
c ([0, T ) × �);

−
∫

�

m0
h · ϕ(0, ·) dx =

T∫

0

∫

�

[
mh · ∂tϕ +

(
1
n>0

mh ⊗ mh


h

)
: ∇xϕ + phdivxϕ

]
dx dt

+
T∫

0

e2,h(t,ϕ) dt (8.26)

for any ϕ ∈ C2
c ([0, T ) × �; Rd), ϕ · n|∂� = 0;

T∫

0

∫

�

[

hχ(sh)∂tϕ + (χ(sh)mn) · ∇xϕ

]
dx dt +

T∫

0

e3,h(t, ϕ) dt

≤ −
∫

�


0
hχ(s0

h)ϕ(0, ·) dx (8.27)

for any ϕ ∈ C2
c ([0, T ) × �), and χ a nondecreasing, concave, twice continuously

differentiable function on R that is bounded from above.

The consistency errors satisfy

‖e j,h(·, ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 , j = 1, 3, ‖e2,h(·,ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 ,

for some β > 0.

One may add the conservation of the global energy

∫

�

Eh(t, ·) dx =
∫

�

E0
h dx, t ∈ (0, T ] (8.28)

as another consistency requirement. Note, however, that this condition is already
included in Definition 8.2 of stability of the Euler system.
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It may seem that consistency for the (complete) Euler system requires actually
much less than expected. In particular, the energy equation is replaced by the entropy
inequality (8.27) and the total energy balance (8.28). As we shall see, convergence
of a numerical method can be shown even under these “minimalist” conditions. The
point is that suitable a priori bounds that would control the energy convection are
simply not available given the present state-of-the-art of the mathematical theory.

Finally, we address consistency for the Navier–Stokes system.

Definition 8.6 (CONSISTENT NUMERICAL METHOD FOR THE NAVIER–
STOKES SYSTEM)

Let {
h, uh}h↘0 be a sequence obtained by a numerical method for the Navier–
Stokes system (7.77) with the initial data [
0

h, u
0
h], and the periodic boundary condi-

tions (� = T
d ) or the no-slip boundary conditions (1.41) and the Neumann bound-

ary condition (8.11) for 
h . We say that a numerical method is consistent with the
Navier–Stokes system (7.77) if

−
∫

�


0
hϕ(0, ·) dx =

T∫

0

∫

�

[

h∂tϕ + 
huh · ∇xϕ

]
dx dt +

T∫

0

e1,h(t, ϕ) dt,

(8.29a)
for any ϕ ∈ C2

c ([0, T ) × �);

−
∫

�


0
hu

0
h · ϕ(0, ·) dx =

T∫

0

∫

�

[

huh · ∂tϕ + (
huh ⊗ uh + phI) : ∇xϕ

]
dx dt

−
T∫

0

∫

�

(μ∇huh : ∇xϕ + ν divhuh divxϕ) dx dt +
T∫

0

e2,h(t,ϕ) dt, (8.29b)

where ν = μ d−2
d + λ and ϕ ∈ C2

c ([0, T ) × �; Rd);

‖e1,h(·, ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 , ‖e2,h(·,ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 for some β > 0.

Note that the discrete operators divh and ∇h , introduced in Preliminary material,
are compatible with divx and ∇x , cf. Definition 5.8.

As already pointed out in the context of the barotropic Euler system, a consistent
approximation specified in Definition 5.9 includes also the energy inequality. Thus
a numerical approximation is consistent in the sense of Definition 5.9, if the numer-
ical method is stable in the sense of Definition 8.3 and consistent in the sense of
Definition 8.6.
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8.5 Convergence of Numerical Solutions

A common theme of this monograph is to establish convergence of certain numerical
methods for compressible fluid flows in the spirit of the celebrated Lax equivalence
theorem, see Lax and Richtmeyer, [149]:

Given a properly posed linear initial value problem and a linear finite difference
approximation to it that satisfies the consistency condition, stability is a necessary
and sufficient condition that a scheme be a convergent approximation of the initial
value problem.

In the following chapters, we will present several numerical methods, based on the
finite volume approximation and their combinations with the nonconforming finite
elements or finite differences. In particular, the goal will be to show their stability and
consistency in order to apply the results from Chap. 7 to obtain their convergence.

Mathematically speaking, showing convergence of a sequence of numerical
approximations requires precompactness and passing to a subsequence as the case
may be. This can be seen as a serious drawback from the practical view point as
different subsequences may give rise to different solutions. This is indeed a serious
issue in particular for the Euler system that is known to be ill posed in the class of
admissible weak solutions. Indeed, convergence of the entire sequence can be rigor-
ously justified only if the limit is unique, which translates to well posedness of the
limit problem.

The method of averaging, incorporated in the theory via the concept of K–
convergence in Chap. 7, besides the original motivation to visualize the weak limits,
may be seen as a tentative tool to eliminate possible fluctuations and “pick up” a
unique limit. A rigorous proof of such a statement, however, is out of reach of the
available analytical tools considered in this monograph.

8.6 Conclusion, Bibliographical Remarks

There is a large amount of literature on the finite element methods mostly devoted
to the approximation of the elliptic or parabolic problems and on the finite volume
methods that typically deals with the hyperbolic conservation laws. We assume that
the reader is familiar with basic concepts of these methods. We refer to monographs
Boffi et al. [23], Ciarlet [55, 56], Ern and Guermond [76] for the theory of finite
element methods and to Godlewski, Raviart [119], Eymard, Gallouët, Herbin [78],
Kröner [143], LeVeque [151], Toro [194] for the finite volume methods. A compre-
hensive overview of various numerical techniques suitable for the compressible and
incompressible flow problems can be found in Feistauer et al. [99, 100] and John
[132]. Among other methods available for numerical solution of partial differential
equations, one should mention the so-called discontinuous Galerkin method. This
numerical method can be viewed as an extension of the nonconforming finite ele-
ment methods enriched by the concept of numerical fluxes borrowed from the finite
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volume methods, see, e.g., Di Pietro and Ern [63], Dolejší and Feistauer [71]. In fact,
any finite volume method working with piecewise constant approximations can be
seen as a low-order discontinuous Galerkin method.

A typical numerical flux used in the present monograph to approximate convec-
tive terms is the upwinding approximation (8.6). The basic idea is well-known and
can be found both in the finite element as well as finite volume literature. The infor-
mation that propagates along streamlines (or characteristics) is taken as a suitable
candidate for a particular approximation. The numerical flux that we frequently use
in what follows adds to the numerical diffusion due to the upwinding an additional
numerical diffusion of order hε+1, ε > −1. The latter will allow us to obtain better
stability estimates. We refer to Karper [140] and the monograph [88], where such
a diffusive upwinding has been successfully applied to approximate weak solutions
of the compressible Navier–Stokes equations. The interested reader may consult
Karlsen, Karper [137–139] for the approximation of the Stokes problem and [87] for
the convergence analysis to a weak solution of the Navier–Stokes–Fourier system. A
recent result on the convergence analysis of the Navier–Stokes–Fourier system via
the concept of DMV solution can be found in [95].



Chapter 9
Finite Volume Method for the Barotropic
Euler System

The Euler equations belong to the class of hyperbolic conservation laws that can be
written in a general form

∂tU + divxF(U) = 0, in � × (0, T )

U(0, ·) = U0, in �.
(9.1)

HereU,F(U) denote the vector of conservative variables and the fluxmatrix, respec-
tively. The system (9.1) is usually accompanied with suitable boundary conditions,
such as no-flux or periodic boundary conditions. System (9.1) is called hyperbolic if
the Jacobian matrix dF

dU is diagonalizable and has real eigenvalues. The methods of
choice for hyperbolic conservation laws are the so-called finite volume methods that
we now briefly describe. As discussed in the previous chapter there are different pos-
sibilities for time discretization. In this section we concentrate on the semidiscrete
method, letting time continuous and applying piecewise constant approximation in
space. We note by passing that in Chap. 12 we will introduce a new finite volume
method for the barotropic Euler equations, where the implicit time discretization will
be applied.

Let a computational domain � be discretized by a mesh Th consisting of regular
quadrilaterals (d = 2) or cuboids (d = 3), seeDefinition 3. The finite volume approx-
imation of (9.1) is a piecewise constant vector valued functionUh ,Uh(t)|K = UK (t),
that satisfies

d

dt
UK (t) + (divDFh(t))K = 0, t > 0, K ∈ Th,

UK (0) = (�Q(U0))K , K ∈ Th .
(9.2)

The numerical flux function Fh quantifies the flux across the interfaces σ ∈ E .

For σ = K |L we set Fσ ≡ Fh(UK ,U L)nσ . The discrete divergence operator divD
represents the finite difference of the numerical flux on edges, i.e.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
E. Feireisl et al., Numerical Analysis of Compressible Fluid Flows, MS&A 20,
https://doi.org/10.1007/978-3-030-73788-7_9
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(divDFh)K =
∑

σ∈E(K )

|σ |
|K | FhnσK . (9.3)

In the literature, one can find a large variety of numerical flux functions. Most
of them satisfy some suitable admissibility conditions. First, the numerical flux Fh

should be consistent with the physical flux F in the sense that Fh(w,w) = F(w)

for all w ∈ RN , N being the number of equations in the system (9.1). Further, the
numerical flux is assumed to be locally Lipschitz continuous, i.e. for every compact
set D ⊂ RN there exists C > 0 such that

‖Fσ − F(UK )nσ‖ ≡ ‖Fh(UK ,U L)nσ − F(UK )nσ‖
≤ C‖UK − U L‖,

whenever UK , U L ∈ D.

Certain numerical schemes are further required to preserve some important physi-
cal properties of the underlying continuous solutions, such as positivity preserving of
some physical quantities. It turns out that for convergence analysis a discrete version
of the entropy inequality plays a crucial role. Below, we will describe the concept
of entropy stable schemes as introduced by E. Tadmor. The results are presented
without proofs and the interested reader may consult Tadmor [190–192] for details.

Let (η, g) be an entropy-flux pair associated with system (9.1), i.e.,
(η, g) : RM → R × Rd such thatη = η(U) is a convex function of the state variables
U , and g is the associated entropy flux that satisfies for allU ∈ RN the compatibility
condition

∇Ugs(U)T = ∇Uη(U)T∇U Fs(U), s = 1, . . . , d.

Accordingly, the entropy satisfies an additional conservation law

∂tη(U) + divx g(U) = 0

that can be derived from the original system of equations (9.1) on condition that
all quantities are smooth. Note carefully that in the context of the barotropic Euler
system and/or the (complete) Euler system written down in the conservative-entropy
variables [�,m, S], the total energy is a mathematical entropy. If the complete Euler
system is written in terms of the conservative variables [�,m, E], then it is the
total entropy −S(�,m, E) that plays the role of mathematical entropy. As we have
seen in Sect. 4.1.6, convexity of a (mathematical) entropy is closely related to the
thermodynamic stability of the Euler system.

Finite volume method (9.2) is said to be entropy stable if it satisfies the discrete
entropy inequality

d

dt
η(UK (t)) + (divDGh(t))K ≤ 0, K ∈ Th, t > 0 (9.4)
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for a suitable numerical flux Gh . If, in particular, equality holds in (9.4), we say the
finite volume method (9.2) is entropy conservative. Similarly to Fh , the numerical
entropy flux Gh is a function of two neighboring values, i.e., Gσ ≡ Gh(UK ,U L)

for σ = K |L . It is assumed to be consistent with the differential entropy flux g, i.e.,
Gh(w,w) = g(w) for all w ∈ RN . Introducing the entropy variables V = ∇Uη(U)

and the so-called potential function ψ(V ), such that

∇Vψ(V ) = F(U(V ))

we can express the entropy flux Gh explicitly in terms of the numerical flux Fh as

Gσ = {{V h}}σ Fσ − {{ψ(V h)}}σ . (9.5)

Remark 9.1 (Entropy variables for the Euler system)
As it can be checked by rather lengthy but straightforward manipulation, the

standard choice of entropy for the complete Euler system,

s = log

(
p

�γ

)
, p = (γ − 1)�e, e = cvϑ,

yields the entropy variables in the form

V = 1

e

[
e (γ − s) − |u|2

2
, u,−1

]
, u ≡ m

�
.

In particular, the entropyvariablesV should not be confusedwith the conservative-
entropy variables [�,m, S] introduced in Sect. 2.2.4. The potential function for the
Euler system reads ψ(V ) = m.

Remark 9.2 (Entropy variables for the barotropic Euler system)
Direct calculation yields for the barotropic Euler system the entropy variables and

the potential function

V =
[

aγ

γ − 1
�γ−1 − |u|2

2
, u

]
, ψ(V ) = aγ �γ−1m.

9.1 Numerical Methods

In this chapter we will discuss some standard finite volume approximations of the
Euler equations for barotropic fluids (2.34),(2.35), with the isentropic pressure-
density EOS p(�) = a�γ , γ > 1, cf. (2.71):
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∂t� + divxm = 0, (9.6)

∂tm + divx

(
m ⊗ m

�

)
+ ∇x p = 0. (9.7)

The above system is written in the form (9.1), with the conservative variables U =
(�,m), and the flux F(U) = (m, m⊗m

�
+ pI). As pointed out above (cf. also (2.73)),

the total energy E plays the role of mathematical entropy η for the barotropic Euler
system

η ≡ E = 1

2

|m|2
�

+ P(�), P(�) = a

γ − 1
�γ

with the associated flux g =
(
1

2

|m|2
�

+ P(�) + p(�)

)
m
�

.

In order to approximate (9.6), (9.7) we apply the Lax–Friedrichs or the Rusanov
(local Lax–Friedrichs) numerical flux function

Fσ ≡ {{F(Uh)}} · n − λσ [[Uh]] . (9.8)

In the case of the Rusanov flux we set λσ ≡ 1

2
max

s=1,...,d
(|λs(UK )|, |λs(U L)|),

σ = K |L and λs is the s-th eigenvalue of the corresponding Jacobian
dF

dU
(Uh).

Setting

λσ ≡ λ ≡ 1

2
max

s=1,...,d
max
K∈Th

|λs(UK )| (9.9)

we obtain the Lax–Friedrichs finite volume scheme.
We consider either the periodic (� = T

d ) or the impermeability boundary condi-
tions

{{mh}} · n = 0 for each σ ∈ Eext . (9.10)

In the latter case, we have to add the homogeneous Neumann boundary condition
for �h , i.e. [[

�h
]] = 0 for each σ ∈ Eext (9.11)

yielding the no-flux boundary conditions to specify the numerical diffusion on the
boundary. Plugging the aboveRusanov flux function in the finite volume formulation
(9.2) we obtain

d

dt
�K (t) +

∑

σ∈E(K )∩Eint

|σ |
|K |

({{mh(t)}} n − λσ

[[
�h(t)

]]) = 0, (9.12a)
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d

dt
mK (t) +

∑

σ∈E(K )∩Eint

|σ |
|K |

({{
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)

}}
n − λσ [[mh(t)]]

)
= 0,

t > 0, K ∈ Th .
(9.12b)

For the global numerical diffusion coefficient (9.9) gives

d

dt
�K (t) +

∑

σ∈E(K )∩Eint

|σ |
|K |

({{mh(t)}} n − λ
[[
�h(t)

]]) = 0, (9.13a)

d

dt
mK (t) +

∑

σ∈E(K )∩Eint

|σ |
|K |

({{
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)

}}
n − λ [[mh(t)]]

)
= 0,

t > 0, K ∈ Th . (9.13b)

Recall that ph(t) = p(�h(t)) = a�
γ

h (t), γ > 1, a > 0, cf. (2.71). The initial condi-
tions for the schemes (9.12) and (9.13) are

(�K (0),mK (0)) = ((�Q�0)K , (�Qm0)K ), K ∈ Th . (9.14)

In what follows we address the issues of stability, consistency, and, finally, con-
vergence of the numerical schemes (9.12) and (9.13). As we shall see, the results
will be conditional. Specifically, some additional hypotheses must be imposed on
the family of approximate solutions that can not be derived from (9.12) and (9.13) in
any direct manner. This is the price to pay for the relative simplicity of the standard
schemes.

Clearly, positivity of the discrete density is necessary for the scheme to be prop-
erly defined. Starting frompositive initial density�h(0) > 0, the semidiscrete scheme
admits a unique solution defined on a maximal time interval [0, Tmax). Indeed, each
of the finite volume methods (9.12) and (9.13) build an ODE system for the approxi-
mate solutions (�h(t),mh(t)). As the numerical flux functions are locally Lipschitz-
continuous, the standard ODE theory implies that for a given initial state

�h(0) ∈ Qh, �h(0) > 0, mh(0) ∈ Qh

each of the semidiscrete systems (9.12) and (9.13) admits a unique solution (�h,mh)

defined on a maximal time interval [0, Tmax), where

�h(t) > 0 for all t ∈ [0, Tmax).

In general, Tmax may even depend on the mesh parameter h and shrink to zero for
h → 0. In order to avoid this difficulty, suitable a priori bounds that would guarantee
�h(t) being bounded below away from zero must be established. At the level of limit
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system, such bounds may be derived from the existence of invariant domains—parts
of the phase space preserved by the flow. For fully discrete methods based on the
explicit time discretization some kind of the so-called CFL (Courant–Friedrichs–
Lewy) stability condition are typically applied to preserve invariance at the discrete
level. In general, this technique requires uniform bounds on numerical solutions that
are not available. To eliminate this problem, we shall therefore impose positivity of
�h as our principal working hypothesis:

�h(t) ≥ � > 0 uniformly for t ∈ [0, T ], h → 0 (9.15)

for a positive constant �.

Remark 9.3 Strictly speaking, themethod is well defined under amilder assumption

�h(t) ≥ �
h

> 0 uniformly for t ∈ [0, T ],

meaning the lower bound is allowed to vanish in the asymptotic limit h → 0. This
is, in turn, quite realistic if vacuum appears in the solution of the limit problem. As
we shall see, condition (9.15) plays a crucial role not only for stability but also for
consistency of the method.

9.2 Stability

We show the stability of the finite volume methods (9.12) and (9.13) by deriving a
priori estimates and the discrete energy inequality (9.4).

9.2.1 Mass Conservation

First, we sum up the continuity equation (9.12a) (or (9.13a)) multiplied by |K | for
all K ∈ E and integrate in time to get

∫

�

�h(t) dx =
∫

�

�h(0) dx .

The anticipated positivity of �h(t) then implies �h ∈ L∞(0, T ; L1(�)).
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9.2.2 Energy Inequality

In what follows we will show that the finite volume methods (9.12) and (9.13) are
entropy stable, cf. (9.4) bearing in mind that entropy≈ energy in the present context.

To this end let us multiply by V (U) = dE(U)

dU the finite volume method (9.2). From
the flux part we obtain

V KdivDFh = divD({{V h}}Fh) −
∑

σ∈E(K )∩Eint

1

2dσ

[[V h]]Fh

= divD({{V h}}Fh − {{
ψh

}}
) −

∑

σ∈E(K )∩Eint

1

2dσ

(
[[V h]] · Fσ − [[

ψh · nσ

]])
.

Hence, if we define the numerical entropy flux Gh ≡ {{V h}}Fh − {{
ψh

}}
, then

(9.2) multiplied by V (U)K gives

d

dt
EK (t) + (divDGh(t))K =

∑

σ∈E(K )∩Eint

1

2dσ

rσ , K ∈ Th (9.16)

with the local energy residual rσ ≡ [[V h]]σ · Fσ − [[
ψh · n]]

σ
. Direct calculation

yields that the energy residual for the Rusanov and the Lax–Friedrichs numerical
flux can be reformulated as

rσ = −δσ [[Uh]]σ · [[V h]]σ .

Here δσ ≥ λσ = 1
2 max(|uK | + cK , |uL | + cL) (Rusanov flux) or δσ ≥ λ = 1

2
max(|uh | + ch) (Lax–Friedrichs flux). Note that u ≡ m

�
is the flow velocity, and the

quantity ch ≡
√

γ ph
�h

=
√
aγ �

γ−1
h has the physical meaning of sound speed related

directly to compressibility of the fluid.
Due to the mean value theorem we have for any interface σ

[[V ]] = dV (U∗)
dU

[[U]] = d2E(U∗)
dU2 [[U]] ,

where U∗ ∈ co{UK ,U L} with σ = K |L .
Realizing that the energy E(U) is a convex function of U , see Remark 2.11 and

also Lemma 9.1 below, we obtain rσ ≤ 0 and thus the desired energy inequality

d

dt
EK (t) + (divDGh(t))K ≤ 0, K ∈ Th . (9.17)
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Since the numerical energy flux given by (9.5) is conservative, which means∑
K∈Th

(divDGh(t))K = 0, the integral of (9.17) yields

∫

�

Eh(t) dx ≤
∫

�

Eh(0) dx .

Remark 9.4 We should not “forget” that the original form of the energy balance is
(9.16). In particular, we also have

−
∑

K∈Th

|K |
2dσ

∑

σ∈E(K )∩Eint

rσ ≤
∫

�

Eh(0) dx

keeping in mind that rσ ≤ 0. This is a valuable piece of information that will be
exploited later to derive the so-called weak BV bounds.

Remark 9.5 As a matter of fact, the specific form of the energy (entropy) flux Gh

will not be used in the analysis. The integrated version of (9.16) is sufficient.

Similarly to the above, the latter inequality gives rise to Eh ∈ L∞(0, T ; L1(�)).

Noting also (2.71) and (2.72), we obtain the following bounds of our finite volume
solutions uniform with respect to the norms in the following spaces:

�h ∈ L∞(0, T ; Lγ (�)), γ > 1, ph ∈ L∞(0, T ; L1(�)),

√
�huh ∈ L∞(0, T ; L2(�)), and mh = �huh ∈ L∞(0, T ; L 2γ

γ+1 (�)).
(9.18)

9.2.3 Weak BV Estimates

Clearly, the uniform estimates obtained so far are quite limited in order to allow the
limit passage h → 0 in the nonlinear flux functions. On the other hand, as the Euler
system is a model of inviscid fluid, there is no hope to obtain uniform estimates
on the discrete gradients. But there is still one piece of information to be discussed
mentioned in Remark 9.4. These are the so-called weak BV estimates arising from
the discrete energy (entropy) inequality. Specifically, the precise form of the energy
residual term rσ allows us to control at least how fast the discrete gradients blow up.
Unfortunately, the price to pay will be to augment the list of anticipated properties
of the numerical solutions.

Lemma 9.1 (Weak BV estimates)
Let us assume that there exist two positive constants �, � such that

0 < � ≤ �h(t) ≤ � (9.19)

uniformly for t ∈ [0, T ], h → 0.
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Then the energy Hessian
d2E(U)

dU2 is strictly positive definite and the following

weak BV estimate

T∫

0

∑

σ∈Eint

λσ

∣∣ [[Uh(t)]]
∣∣hd dt <∼ h1/2 as h → 0 (9.20)

holds for the Rusanov scheme (9.2) with (9.8), where

λσ = 1

2
max

s=1,...,d
(|λs(UK )|, |λs(U L)|), σ = K |L .

Proof For the barotropic Euler system the energy Hessian reads

d2E(U)

dU2 =
(
aγ �γ−2 + |m|2

�3 − mT

�2

− m
�2

1
�
I

)
,

where I is a d × d unit matrix. The associated eigenvalues read

λ1,2 = 1

2�3

(
aγ �γ+1 + �2 + |m|2 ± √

D
)

,

and λ3,...,d+1 = 1
�
with D = (

aγ �γ+1 + �2 + |m|2)2 − 4aγ �γ+3. Thus, the Hessian
is uniformly strictly positive as soon as (9.19) holds. Consequently, there exists

E(�, �) > 0 such that
d2E(U)

dU2 ≥ EI. (9.21)

Next, as pointed out in Remark 9.4, the energy inequality (9.16), integrated over
� and over the time interval (0, T ), yields

−
T∫

0

∑

σ∈Eint

∫

σ

rσ dSx dt
<∼
∫

�

Eh(0) dx . (9.22)

Let us now reconsider the energy residual rσ ,

rσ = −δσ [[Uh]]σ [[V h]]σ .

Positivity of the energy Hessian (9.21) and the mean value theorem imply

[[U]] = U ′(V ∗) [[V ]] =
(
d2(E(U∗))

dU2

)−1

[[V ]]
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and thus
E [[Uh]] ≤ [[V h]] .

Consequently, by virtue of (9.22) and the fact |σ | ≈ hd−1, we have

T∫

0

∑

σ∈Eint

hdλσ [[Uh]]
2 dt ≤ 1

E

T∫

0

∑

σ∈Eint

hdδσ [[Uh]] [[V h]] dt
<∼ h. (9.23)

In order to control the weak BV estimates we apply first the Hölder inequality

T∫

0

∑

σ∈Eint

hdλσ | [[Uh]] | dt

≤
⎛

⎝
T∫

0

∑

σ∈Eint

hdλσ dt

⎞

⎠
1/2⎛

⎝
T∫

0

∑

σ∈Eint

hdλσ | [[Uh]] |2 dt
⎞

⎠
1/2

.

(9.24)

The second term on the right hand side is controlled by (9.23). To show boundedness
of thefirst termweapply the discrete trace inequality that holds for arbitrary piecewise
constant function fh ∈ Qh , cf. (28)

‖ fh‖L p(∂K ) ≤ h−1/p‖ fh‖L p(K ), 1 ≤ p ≤ ∞.

Thus, taking into account that |K | ≈ hd yields

T∫

0

∑

σ∈Eint

hdλσ dt ≤ h

T∫

0

∑

K∈Th

∑

σ∈E(K )∩Eint

∫

σ

λσdSx dt

� h

T∫

0

∑

K∈Th

1

h

∫

K
|λ(UK )| dx dt ≤ const., λ(UK ) = |uK | + cK . (9.25)

The last inequality follows from the assumption (9.15) and from a priori estimates
(9.18). In conclusion, theweakBV estimate (9.20) holds for the finite volume scheme
(9.12) provided there is novacuumand the entropyHessian is strictly positive definite.

Clearly, the above proof can be repeated step by step for the Lax–Friedrichs
scheme up to inequality (9.25), except the last estimate. At this point, it is necessary
to control the L∞-norm of the approximate velocity, specifically the integral

T∫

0

‖uh‖L∞(�;Rd ) dt.
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In view of the inverse L p-estimates, cf. (26), we get

T∫

0

‖uh‖L∞(�;Rd ) dt
<∼ h− d

2

T∫

0

‖uh‖L2(�;Rd ) dt
<∼ h− d

2

uniformly for h → 0. Going back to (9.24) we may infer that

T∫

0

∑

σ∈Eint

λσ

∣∣ [[Uh(t)]]
∣∣hd dt <∼ h

2−d
4 as h → 0, (9.26)

which yields an uniform bound for d = 2. In general, another extra hypothesis must
be introduced to save the weak BV estimates

T∫

0

λ
∑

σ∈Eint

∣∣ [[Uh(t)]]
∣∣hd dt → 0 as h → 0 (9.27)

for the Lax–Friedrichs scheme. To avoid technicalities, we simply assume that the
speed of propagation is controlled, specifically there exists λ

λs(Uh(t)) ≤ λ uniformly for t ∈ [0, T ] and h → 0. (9.28)

In terms of the conservative variables (�,m) (9.28), together with (9.19), boil down
to

0 < � ≤ �h(t) ≤ �, |mh | ≤ m (9.29)

uniformly for t ∈ [0, T ] and h → 0.

Remark 9.6 It might be of interest to compare the weak BV estimates (9.20) with
the BV-norm of the piecewise constant function Uh ,

‖Uh‖BV (�) = ‖Uh‖L1(�) + hd−1
∑

σ∈Eint

| [[Uh]] |

that, in view of (9.20), blows up as h− 1
2 for h → 0.

Although the anticipated uniform bounds (9.19) and (9.29) may seem strong,
they are still weak stability estimates. This means they guarantee compactness of the
sequence of approximate solutions only in terms of integral averages. As we have
observed in the first part of this monograph, this is a serious obstacle for convergence
of the method in the context of nonlinear problems.
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9.3 Consistency

Our aim is to show consistency of the finite volume methods (9.12), (9.13). To this
end let us multiply the continuity equations (9.12a) or (9.13a) by |K |(�Qϕ(t))K ,

with ϕ ∈ C2
c ([0, T ) × �), and the momentum equations (9.12b) or (9.13b) with

ϕ ∈ C2
c ([0, T ) × �; Rd). If the no-flux boundary condition (9.10) is imposed, the

test function for the momentum equation should also satisfy

ϕ · n|∂� = 0. (9.30)

This might be a bit ambiguous statement as the numerical domain in our case consists
of a finite union of rectangles/cuboids. In particular, � need not be even Lipschitz if
d = 3. Here and hereafter, we tacitly adopt the convention that ϕ satisfies (9.30) at
any x ∈ ∂�, where the outer normal vector n(x) exists. It is easy to check that some
components of such a function must vanish on the certain edges (vertices) lying on
∂�.

We sum the resulting equations over K ∈ Th and integrate in time. A priori esti-
mates (9.18) combined with the weak BV estimates (9.20), (9.27) allow us to show
consistency.

Time derivative
Integration by parts with respect to time leads to

|K |
T∫

0

d

dt

∑

K∈Th

�K (t)(�Qϕ(t))K dt =
T∫

0

d

dt

∫

�

�h(t)ϕ(t, x) dx dt

=
⎡

⎣
∫

�

�h(τ )ϕ(τ, ·) dx
⎤

⎦
τ=T

τ=0

−
T∫

0

∫

�

�h(t)∂tϕ(t, x) dx dt

in the continuity equation, and, similarly, to

|K |
T∫

0

d

dt

∑

K∈Th

mK (t) · (�Qϕ(t))K dt

=
⎡

⎣
∫

�

mh(τ ) · ϕ(τ, x) dx

⎤

⎦
τ=T

τ=0

−
T∫

0

∫

�h

mh(t) · ∂tϕ(t, x) dx dt

in the momentum equation.

Convective terms
To treat the convective terms in the continuity equations we use the discrete integra-
tion by parts (41) and the Taylor expansion to get
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|K |
T∫

0

∑

K∈Th

divhmh(t)(�Qϕ(t))K dt

= −|K |
T∫

0

∑

K∈Th

d∑

s=1

ms
K (t)

(∫

K

ϕ(t, x + hes) − ϕ(t, x − hes)
2h

dx

)
dt

= −
T∫

0

∫

�

mh(t) · ∇xϕ(t, x) dx dt + r1,

where es is the unit basis vector in the s-th space direction, s = 1, ..., d, and the
reminder term r1 is estimated as follows

r1 � h

∥∥∥∥
d2ϕ

dx2
(x̂)

∥∥∥∥
C(0,T )

‖mh‖L∞(L1), where
d2ϕ

dx2
≡
(

∂2ϕ

∂xi∂x j

)d

i, j=1

. (9.31)

Point x̂ appears in the remainder of the Taylor expansion and lies either between the
points x + hes and x or the points x and x − hes .

We proceed analogously with the convective term in the momentum equations

|K |
T∫

0

∑

K∈Th

divh

(
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I

)
(�Qϕ(t))K dt

= −|K |
T∫

0

∑

K∈Th

d∑

s=1

d∑

z=1

(
ms

h(t)m
z
h(t)

�h(t)
+ ph(t)

)

×
(∫

K

ϕz(t, x + hes) − ϕz(t, x − hes)
2h

dx

)
dt

= −
T∫

0

∫

�

(
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I

)
· ∇xϕ(t, x) dx dt + r2,

where term r2 is bounded by

r2 � h

∥∥∥∥
d2ϕ

dx2
(x̂)

∥∥∥∥
C(0,T )

{∥∥√�huh‖L∞(L2) + ‖ph
∥∥
L∞(L1)

}
.

Note that we have used the fact that the normal trace of ϕ vanishes on the boundary
of ∂�.
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Numerical diffusion
Now we estimate the numerical diffusion term of the Rusanov finite volume method
(9.12), estimates for the Lax–Friedrichs method (9.13) can be obtained in an analo-
gous way under the assumption (9.29) on the finite speed of propagation.

Considering the diffusion terms in (9.12) we obtain, cf. (19)

T∫

0

∑

K∈Th

∑

σ∈E(K )∩Eint

∫

σ

λσ [[Uh(t)]]
(
�Qϕ(t)

)
K dt. (9.32)

The terms belonging to an arbitrary but fixed face σ = K |L are

1

dσ

T∫

0

(
λσ [[Uh(t)]]

∫

K
ϕ(t) dx − λσ [[Uh(t)]]

∫

L
ϕ(t) dx

)
dt . (9.33)

Let us now consider an arbitrary but fixed point x̃ ∈ σ ; without loss of generality let
x̃ = (x̃s, x ′), x ′ ∈ Rd−1, s = 1, . . . , d. The Taylor expansion for x = (xs, x ′) ∈ K
with respect to (x̃s, x ′) gives

ϕ(xs, x
′) = ϕ(x̃s, x

′) − ξ∂sϕ(x̃s, x
′) + O(h2),

where ξ ∈ (0, dσ ). Analogously, we have for x = (x̃s, x ′) ∈ L

ϕ(xs, x
′) = ϕ(x̃s, x

′) + ξ∂sϕ(x̃s, x
′) + O(h2).

Substituting the above Taylor expansions in (9.33) we directly see that the terms
multiplied by ϕ(x̃s, x ′) vanish. The resulting terms give

∣∣∣∣∣∣

T∫

0

− 1

dσ

λσ [[Uh]]

dσ∫

0

∫

σ

ξ∂sϕ(x̃s, x
′)dSx ′dξ

+ 1

dσ

λσ [[Uh]]

dσ∫

0

∫

σ

−ξ∂sϕ(x̃s, x
′)dSx ′dξ dt

∣∣∣∣∣∣

≤ 2

dσ

T∫

0

∣∣∣λσ [[Uh]]

dσ∫

0

∫

σ

ξ∂sϕ(x̃s, x
′)dSx ′dξ

∣∣∣ dt

� hd
T∫

0

λσ

∣∣∣ [[Uh]]
∣∣∣dt ‖ϕ‖C1([0,T ]×�) → 0 for h → 0.
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The last convergence follows from the weak BV property (9.20) and implies the
consistency of the numerical diffusion term (9.32).

Let us summarize the obtained consistency result.

Lemma 9.2 (Consistency)
Let us assume that there exist two positive constants �, � such that

0 < � ≤ �h(t) ≤ �

uniformly for t ∈ [0, T ], h → 0.
Then the Rusanov finite volume method (9.12) is consistent with the barotropic

Euler equations (9.6) and (9.7), specifically

−
∫

�

�0
hϕ(0, ·) dx =

T∫

0

∫

�

[
�h∂tϕ + mh · ∇xϕ

]
dx dt +

T∫

0

e1,h(t, ϕ) dt, (9.34a)

for any ϕ ∈ C2
c ([0, T ) × �);

−
∫

�

m0
hϕ(0, ·) dx =

T∫

0

∫

�

[
mh · ∂tϕ + mh ⊗ mh

�h
: ∇xϕ + phdivxϕ

]
dx dt

+
T∫

0

e2,h(t,ϕ) dt

(9.34b)
for any ϕ ∈ C2

c ([0, T ] × �), ϕ · n|∂� = 0 ;

‖e1,h(·, ϕ)‖L1(0,T ) � h‖ϕ‖C2 , ‖e2,h(·,ϕ)‖L1(0,T ) � h‖ϕ‖C2 .

If we assume that

0 < � ≤ �h(t) ≤ �, |mh(t)| ≤ m, t ∈ [0, T ],

then the Lax–Friedrichs scheme (9.13) is consistent with the barotropic Euler equa-
tions and the above consistency formulation holds.

Remark 9.7 Note that the above formulation includes also the problem with space
periodic boundary conditions as soon asTd is interpreted as ad-dimensionalmanifold
without boundary.
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9.4 Convergence

In the previous two sections we have shown that the finite volume methods (9.12),
(9.13) are stable and consistent. This implies that their numerical solutions
{�h,mh}h↘0 yield consistent approximations of the barotropic Euler equations (9.6),
(9.7), in the sense of Definition 5.4. We are ready to apply the theory of generalized
solutions to study convergence.

To begin, we point out that our results so far have been conditioned by the hypothe-
ses (9.19), (9.29), respectively. Accordingly, in the remaining part of this section, we
suppose at least (9.19), specifically,

0 < � ≤ �h(t) ≤ � for t ∈ [0, T ]

uniformly for h → 0. Accordingly, there is a sequence hn → 0 such that

�n ≡ �hn → � weakly-(*) in L∞((0, T ) × �),

mn ≡ mhn → m weakly-(*) in L∞(0, T ; L2(�; Rd)).

In addition, the limit density satisfies

0 < � ≤ � ≤ � a.a. in (0, T ) × �.

Leaving apart the fundamental question in which sense the limit solves the Euler
system, there are several issues to discuss even at this level:

• Q1:Does the limit dependon the choice of the sequence of numerical steps hn →0?
• Q2: Is it possible to visualize the weak convergence and to identify the limit with
some predictable error?

In the context of the barotropic Euler system, we can guarantee that the limit
is unique, meaning independent of the choice of hn → 0 only if the limit system
admits a unique solution. As the Euler system is in general ill posed in the class of
(admissible) weak solutions, the only possibility is that the limit is a strong solution.
As we have seen in Chap. 4, smooth initial data prescribed on smooth domain give
rise to local-in-time strong solutions. In general, however, smooth solutions loose
regularity in a finite time, see Chap. 2 for details. As soon as the limit problem
is not uniquely solvable, we have to content ourselves with convergence up to a
subsequence.

Weak convergence, or convergence of integral averages, provides very little piece
of information concerning the limit. Even if we anticipate that concentrations are
eliminated, which is actually the case under the hypothesis (9.29), oscillations or
wiggles represent serious difficulties in identifying the weak limit. The concept of
K–convergence, discussed in Sect. 7.2, introduces statistical averaging in the limit
process that may help to eliminate fluctuations and gives rise to strong convergence.
Indeed, using Theorems 7.1, 7.3, we may infer that
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1

N

N∑

n=1

�n → � (strongly) in Lq((0, T ) × �) as N → ∞, for any 1 ≤ q < ∞,

1

N

N∑

n=1

mn → m (strongly) in L2((0, T ) × �; Rd)) as N → ∞

and
1

N

N∑

n=1

�n → � a.a. in (0, T ) × � as N → ∞,

1

N

N∑

n=1

mn → m a.a. in (0, T ) × � as N → ∞

passing again to a suitable subsequence as the case may be. Strong is definitely better
than weak, however, the process is more costly in practical implementations as it
requires the knowledge of all successive approximations up to order hN , hN → 0.
One may also worry that the method based on Cesàro averaging may actually slow
down the real speed of convergence, if available. To illuminate this phenomenon,
suppose that Un → U in certain norm ‖ · ‖ with the rate

‖Un −U‖ <∼ n−β, 0 < β ≤ 1.

Then

∥∥∥∥∥
1

N

N∑

n=1

Un −U

∥∥∥∥∥ ≤ 1

N

N∑

n=1

‖Un −U‖ <∼ 1

N

N∑

n=1

n−β ≈
⎧
⎨

⎩

log(N )

N if β = 1,

1
1−β

N−β if 0 < β < 1.

In other words, if we assume that the convergence rate is O(hβ), i.e.

‖Uh −U‖ <∼ hβ, 0 < β ≤ 1,

then the convergence rate of the Cesàro averages for a subsequence hn ≈ 1/n is

∥∥∥∥∥
1

N

N∑

n=1

Uhn −U

∥∥∥∥∥ ≤ 1

N

N∑

n=1

∥∥Uhn −U
∥∥ <∼ 1

N

N∑

n=1

hβ
n ≈

⎧
⎨

⎩

− log(hN )hN if β = 1,

1
1−β

hβ

N if 0 < β < 1.

Thus the rate is of the same order if β < 1 and slightly worse if β = 1. Note that for
piecewise constant approximations the value β = 1 is optimal.

In addition, knowing the sequence of approximate solutions {�h,mh}h↘0 we may
also consider a Young measure. Note that this step may require another subsequence
even if the limits �, m were already identified. More specifically, Theorem 5.3
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implies that there is a subsequence of {�hn ,mhn }∞n=1 that generates a Young mea-
sure

{
Vt,x

}
(t,x)∈(0,T )×�

,

Vt,x ∈ P(Rd+1), Rd+1 = {
�̃ ∈ R, m̃ ∈ Rd

}

that is aDMVsolution of the barotropic Euler equations in the sense ofDefinition 5.5.
Moreover, in view of the available bounds, Vt,x possesses finite second moments,
and

Vt,x

{
� ≤ �̃ ≤ �, m̃ ∈ Rd

}
= 1

for a.a. (t, x). Finally, byvirtue ofTheorem5.4, theweak limit (�,m) is the barycenter
of V ,

� = 〈V; �̃〉 , m = 〈V, m̃〉 ,

and as such represents a DW solution in the sense of Definition 5.6.

9.4.1 Strong Convergence

We assume that the Euler system (9.6), (9.7), possibly with impermeability condition
(9.10), admits a smooth solution [�,m] in [0, T ]. Our goal is to apply Theorem 7.11.
Let us start with the periodic boundary conditions.

Theorem 9.1 (Strong convergence for Lax–Friedrichs/Rusanov scheme, peri-
odic case)

Let {�h,mh}h↘0 be a family of approximate solutions obtained by the Rusanov
finite volume method (9.12) or the Lax–Friedrichs finite volume method (9.13), with
the periodic boundary conditions (� = T

d). In addition, suppose that (�h,mh) sat-
isfy

0 < � ≤ �h(t) ≤ � for t ∈ [0, T ]

for the Rusanov scheme, and

0 < � ≤ �h(t) ≤ �, |mh(t)| ≤ m, t ∈ [0, T ]

for the Lax–Friedrichs scheme.
Finally, suppose that the limit Euler system admits a strong solution [�,m] in the

class

� ∈ W 1,∞((0, T ) × T
d), inf

(0,T )×Td
� > 0, m ∈ W 1,∞((0, T ) × T

d; Rd).

Then
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�h → � in Lq((0, T ) × T
d), mh → m in Lq(0, T ; L2(Td; Rd))

as h → 0 for any 1 ≤ q < ∞.

To retain the same result for the problem endowed with the impermeability con-
dition, we have to realize that the smooth solution [�,m] must be eligible as a test
function in the consistency formulation stated in Lemma 9.2, namely

� ∈ C2
c ([0, T ) × �), m ∈ C2

c ([0, T ) × �; Rd), m · n|∂� = 0. (9.35)

At first glance, this may seem rather unrealistic, in view of the low regularity of
the boundary of the numerical domain. However, smooth solutions of the barotropic
Euler system admit the finite speed of propagation. Consider the Cauchy problem

∂t� + divxm = 0, (9.36)

∂t� + divx

(
m ⊗ m

�

)
+ ∇x p(�) = 0, (9.37)

in [0, T ) × Rd , with the far-field conditions

� → � > 0, m → 0 as |x | → ∞,

and with the initial data confined to a bounded ball,

�0(x) = �, m0(x) = 0 whenever |x | > R. (9.38)

Then any C1 solution [�,m] of the problem satisfies

�(t, x) = �, m(t, x) = 0 whenever |x | > R + t
√
p′(�),

see e.g. Sideris [183, Lemma 3.2]. Clearly, the above solution is smooth if the initial
data are smooth and it satisfies the impermeability condition on any sufficiently large
domain � ⊂ Rd satisfying

{
|x | ≤ R + T

√
p′(�)

}
⊂ �.

In view of this observation, let us reformulate Theorem 9.1 for the impermeability
boundary conditions.
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Theorem 9.2 (Strong convergence for Lax–Friedrich/Rusanov scheme, no-flux
boundary)

Theorem 9.1 remains valid in the case of the no-flux boundary condition (9.10),
(9.11) provided:

• the numerical domain is bounded Lipschitz;
• the strong solution [�,m] belongs to the class

� ∈ C2
c ([0, T ) × �), m ∈ C2

c ([0, T ) × �; Rd), m · n|∂� = 0.

The weak-strong compatibility principle stated in Theorem 5.9 gives rise to
another interesting situation when convergence is strong and unconditional. For the
sake of simplicity, we consider the periodic boundary conditions.

Theorem 9.3 (Strong convergence for Lax–Friedrichs/Rusanov scheme, smooth
limit)

Let {�h,mh}h↘0 be a family of approximate solutions obtained by the Rusanov
finite volume method (9.12) or the Lax–Friedrichs finite volume method (9.13), with
the periodic boundary conditions (� = T

d). In addition, suppose that (�h,mh) sat-
isfy

0 < � ≤ �h(t) ≤ � for t ∈ [0, T ]

for the Rusanov scheme, and

0 < � ≤ �h(t) ≤ �, |mh(t)| ≤ m, t ∈ [0, T ]

for the Lax–Friedrichs scheme.
Finally, suppose there is a sequence hn → 0 such that

�hn → � weakly-(*) in L∞((0, T ) × T
d),

mhn → m weakly-(*) in L∞(0, T ; L2(Td; Rd)),

where
� ∈ C1([0, T ] × T

d), m ∈ C1([0, T ] × T
d; Rd).

Then [�, m] is a classical solution to the limit Euler system, and

�h → � in Lq((0, T ) × T
d), mh → m in Lq(0, T ; L2(Td; Rd))

as h → 0 for any 1 ≤ q < ∞.

Note carefully the subtle difference between Theorems 9.1 and 9.3. The former
postulates the existence of a smooth solution of the limit system; while the lat-
ter requires smoothness of the asymptotic limit. The convergence is unconditional,
meaning for the full range h → 0, in both cases.
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The last situation when the strong convergence is guaranteed is a direct conse-
quence of Theorem 7.10.

Theorem 9.4 (Strong convergence to weak solution)
Let {�h,mh}h↘0 be a sequence of approximate solutions obtained by the Rusanov

finite volume method (9.12) or the Lax–Friedrichs finite volume method (9.13), with
the no-flux boundary condition (9.10), (9.11) on a bounded Lipschitz domain. In
addition, suppose that (�h,mh) satisfy

0 < � ≤ �h(t) ≤ � for t ∈ [0, T ]

for the Rusanov scheme, and

0 < � ≤ �h(t) ≤ �, |mh(t)| ≤ m, t ∈ [0, T ]

for the Lax–Friedrichs scheme.
Let there exist a subsequence hn → 0, such that

�hn → � weakly-(*) in L∞((0, T ) × �),

mhn → m weakly-(*) in L∞(0, T ; L2(�; Rd)),

where [�,m] is a weak solution to the limit Euler system in (0, T ) × �. Finally,
suppose that

�hn → � in L1((0, T ) × U), mhn → m in L2((0, T ) × U; Rd), (9.39)

where U is an open neighborhood of the boundary ∂�.
Then

�hn → � in Lq((0, T ) × �), mhn → m in Lq(0, T ; L2(�; Rd))

for any 1 ≤ q < ∞.

Very roughly indeed, if the approximate sequence converges strongly in a neigh-
borhood of the physical boundary to a weak solution, then the convergence must
be strong in the full domain. Note that the scenario required in (9.39) may be quite
realistic in view of the finite speed of propagation property for the Euler system
discussed above. Indeed the weak solution may be constant in a neighborhood of
the boundary and convergence may be strong in this neighborhood. Solutions with
compact support are often chosen in the benchmark problems.
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9.4.2 Weak Convergence

The weak convergence includes concentrations and oscillations in the approximate
sequence. Here the concentrations have been (artificially) eliminated for the Lax–
Friedrichs scheme by hypothesis (9.29) and largely eliminated by (9.19) for the
Rusanov scheme. In addition, as the density is bounded below in both cases, the total
energy

E = 1

2

|m|2
�

+ a

γ − 1
�γ

may be viewed as a continuous convex function of [�,m].
In view of the convergence results stated in Theorems 9.1, 9.2, the convergence

may be weak only if the limit problem does not admit a strong solution. Moreover,
by virtue of Theorem 9.3, the weak limit [�,m] is not continuously differentiable.
Finally, extrapolating a bit the conclusion of Theorem 9.4, wemay say that the limit is
not a weak solution of the limit Euler system; whence a larger class of DW solutions
must be used. Let us first summarize the general convergence result.

Theorem 9.5 (Weak convergence)
Let {�h,mh}h↘0 be a sequence of approximate solutions obtained by the Rusanov

finite volume method (9.12) or the Lax–Friedrichs finite volume method (9.13) with
the periodic boundary conditions (� = T

d) or with the no-flux boundary conditions
(9.10), (9.11) on a bounded Lipschitz domain. In addition, suppose that (�h,mh)

satisfy
0 < � ≤ �h(t) ≤ �, t ∈ [0, T ]

for the Rusanov scheme, and

0 < � ≤ �h(t) ≤ �, |mh(t)| ≤ m, t ∈ [0, T ]

for the Lax–Friedrichs scheme.
Then there is a sequence hn → 0 such that

�hn → � weakly-(*) in L∞((0, T ) × �),

mhn → m weakly-(*) in L∞(0, T ; L2(�; Rd)),

1

N

N∑

n=1

�hn → � in Lq((0, T ) × �), and a.a. in (0, T ) × � as N → ∞,

1

N

N∑

n=1

mhn → m in L2((0, T ) × �; Rd)), and a.a. in (0, T ) × � as N → ∞,

for any 1 ≤ q < ∞; and
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mhn ⊗ mhn

�hn

+ a�
γ

hn
I → m ⊗ m

�
+ a�γ I weakly-(*) in L∞(0, T ;M(�; Rd×d

sym )).

(9.40)
The limit [�,m] is a DW solution of the barotropic Euler system in the sense of
Definition 5.6, with M = 1 in the case of periodic boundary conditions and M = 2
in the case of impermeability boundary conditions, and with the Reynolds defect

R = m ⊗ m
�

+ a�γ I −
(
m ⊗ m

�
+ a�γ

I

)
.

9.4.3 Weak Convergence – Young Measure

Finally, we reformulate the conclusion of the abstract result stated in Theorem 7.9 in
the present context. As already pointed out, the family {�h,mh}h↘0 of approximate
solutions generates a Young measure {Vt,x }(t,x)∈(0,T )×�. More specifically, there is a
sequence hn → 0 such that

g(�hn ,mhn ) → 〈V; g(̃�, m̃)〉 weakly-(*) in L∞((0, T ) × �),

1

N

N∑

n=1

g(�hn ,mhn )(t, x) → 〈
Vt,x ; g(̃�, m̃)

〉
as N → ∞ for a.a. (t, x) ∈ (0, T ) × �

(9.41)
for any g ∈ Cc(Rd+1). Moreover, in view of the hypotheses (9.19), (9.29), validity
(9.41) can be extended to any

g ∈ C(Rd+1), |g(̃�, m̃)| <∼ (1 + |m̃|q), 1 ≤ q < 2 for all � ≤ �̃ ≤ �

in the case of Rusanov scheme, and to any

g ∈ C(Rd+1)

in the case of the Lax–Friedrichs scheme. In particular, the Reynolds defect in The-
orem 9.5 takes the form

R = m ⊗ m
�

+ a 〈V; �̃γ 〉 I −
(
m ⊗ m

�
− a�γ

I

)

for the Rusanov scheme, and

R =
〈
V; m̃ ⊗ m̃

�̃
+ a�̃γ

I

〉
−
(
m ⊗ m

�
− a�γ

I

)
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for the Lax–Friedrichs scheme. Recall that energy is continuous on the support of
the Young measure V in both cases.

Summarizing the above observations, we may apply Theorem 7.9 (see also The-
orem 6) to deduce the following conclusion.

Theorem 9.6 (Weak convergence – Young measure)
Under the hypotheses of Theorem 9.5, the subsequence hn → 0 can be chosen so

that {�hn ,mhn } generates a Young measure V . More specifically, there holds:

• Weak convergence to Young measure

δ�hn ,mhn
→ V weakly-(*) in L∞((0, T ) × �;M(Rd+1));

• Strong convergence of Cesàro averages

dWs

[
1

N

N∑

n=1

δ�hn (t,x),mhn (t,x);Vt,x

]
→ 0 as N → ∞

in Ls((0, T ) × �) and for a.a. (t, x) ∈ (0, T ) × �,

where 1 ≤ s < 2 for the Rusanov scheme, and s ≥ 1 arbitrary finite for the Lax–
Friedrichs scheme;

• Strong convergence of deviations/variations

〈
1

N

N∑

n=1

δ�hn ,mhn
;
∣∣∣∣∣(̃�, m̃) −

〈
1

N

N∑

n=1

δ�hn ,mhn
; (̃�, m̃)

〉∣∣∣∣∣

s〉

→
〈
V;

∣∣∣(̃�, m̃) − 〈V; (̃�, m̃)〉
∣∣∣
s〉

as N → ∞ in L1((0, T ) × �),

(9.42)

where 1 ≤ s < 2 for the Rusanov scheme, and s ≥ 1 arbitrary finite for the Lax–
Friedrichs scheme.

Note that s = 1 in (9.42) corresponds to convergence of deviations while s = 2
indicates convergence of variations.

9.5 Avoiding the Subsequence Principle – Statistical
Convergence

The weak topology, discussed in detail in the preceding section, is not suitable for
studying convergence properties of a numerical scheme. In order to capture the
asymptotic behavior of an approximate sequence, we need to take into account the
behavior of its last N terms, with a suitable large N . The resulting convergence
results require substracting a subsequence that is not known a priori. In practice, we
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therefore assume that extracting of subsequence is not necessary and consider the
whole sequence. This reflects the common belief, still not rigorously justified, that
the scheme enjoys the same asymptotic properties in the vanishing discretization.
We try to formulate this hypothesis in a rigorous way.

Suppose that for each h ∈ (0, h0), h0 < 1, we have an approximate solution Uh :
Q ⊂ RL → RM . In the context of the Euler system discussed in this chapter, Q =
(0, T ) × � is the physical space, Uh = (�h,mh), and L = M = d + 1. In addition,
suppose that Uh ∈ L1(Q; RM). Our aim is to introduce the concept of statistical
convergence of the family {Uh}h↘0 of approximate solutions. By this we mean,
roughly speaking, that the statistical distribution ofUh in the phase space RM should
become stationary for h → 0.

Definition 9.1 (STATIONARY FAMILY)
Let {U S

hn }∞n=1 be a family of functions, Uhn ∈ L1(Q; RM) for any n = 1, 2, . . .
We say that {U S

hn }∞n=1 is stationary if

∫

Q

F
(
U S

hk1
,U S

hk2
. . . ,U S

hk j

)
dy =

∫

Q

F
(
U S

hk1+n
, . . . ,U S

hk j+n

)
dy,

for all integers k1, . . . , k j , j ≥ 0, all n > 0, and any F ∈ Cc(RN j ).

The definition of stationary family is reminiscent of that of the stochastic process
ranging in RM ,with the probability spaceQ endowedwith the (normalized)Lebesgue
measure. Of course, we do not expect a family of numerical solutions to be stationary.
However, we desire that any sequence of approximate solutions {Uhn }∞n=1 behaves in
the regime of small numerical steps as a stationary family. More precisely, if j > 0
is given and B1, . . . , Bj are Borel sets in RM , then the measure of the sets

{
(t, x) ∈ Q

∣∣∣ Uhk1
∈ B1, . . . , Uhk j

∈ Bj

}

{
(t, x) ∈ Q

∣∣∣ Uhk1+n ∈ B1, . . . , Uhk j+n ∈ Bj

}
, n > 0,

is asymptotically the same when min j {k j } → ∞. A suitable concept is the (S)–
convergence introduced below.

Definition 9.2 ((S)–CONVERGENCE)
Let {Uhn }∞n=1 be a sequence of approximate solutions. We say that {Uhn }∞n=1 is

statistically (S)–convergent if for any b ∈ Cc(RM) the following hold:

• Correlation limit

lim
n→∞

∫

Q

b(Uhn )b(Uhm ) dy exists for any fixed m; (9.43)
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• Disintegration for correlations

lim
N→∞

1

N 2

N∑

n=1,m=1

∫

Q

b(Uhn )b(Uhm ) dy

= lim
M→∞

1

M

M∑

m=1

⎛

⎝ lim
N→∞

1

N

N∑

n=1

∫

Q

b(Uhn )b(Uhm ) dy

⎞

⎠ .

(9.44)

Both (9.43) and (9.44) concern the asymptotic behavior of correlations of parts
of the “tail” of the approximate sequence. The first crucial observation is that (9.43)
yields weak-(*) convergence of the sequence {b(Uhn )}∞n=1.

Lemma 9.3 Let {Uhn }∞n=1 be a sequence of approximate solutions and b ∈ Cc(RM).
The following statements are equivalent:

• {b(Uhn )}∞n=1 satisfies (9.43);•
b(Uhn ) → b(U) weakly-(*) in L∞(Q) as n → ∞; (9.45)

• the limit

lim
N→∞

1

N

N∑

k=1

∫

Q

b(Uhnk
)b(Uhm ) dy (9.46)

exists for any m and any subsequence {Uhnk
}∞k=1.

Proof Obviously, the weak-(*) convergence in (9.45) yields both (9.43) and (9.46).
Next, it is easy to check that if the limit in (9.46) exists for any subsequence, then

(9.43) holds. Indeed, should there be two subsequences such that

lim
k→∞

∫

Q

b(Uhnk
)b(Uhm )dy �= lim

l→∞

∫

Q

b(Uhnl
)b(Uhm )dy,

one could construct a new subsequence for which the limit (9.46) would not exist.
This follows from the fact that the limit in (9.46) is the same if we change a finite
number of terms in {Uhnk

}∞k=1.
Consequently, it remains to show that (9.43) implies the weak-(*) convergence in

(9.45). To this end, consider

W = closureL2(Q)

[
span

{
b(Uhm )

∣∣∣ m = 1, 2, . . .
}]

.

W is a closed subspace of the Hilbert space L2(Q) that can be written as

L2(Q) = W ⊕ W⊥.
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In view of (9.43), we get

lim
n→∞

∫

Q

b(Uhn )w dy for any w ∈ W,

while ∫

Q

b(Uhn )v dy = 0 for any n as soon as v ∈ W⊥.

Consequently
b(Uhn ) → b(U) weakly in L2(Q),

which yields (9.45).

Obviously, any convergent family satisfying

Uhn → U in L1(Q; RM) as hn → 0

is (S)–convergent. In particular, the approximate families obtained in Theorems 9.1,
9.2, 9.3, and 9.4 are strongly convergent; whence (S)–convergent. Note that strongly
convergent approximate solutions obviously satisfy

∫

Q

b(Uhn )b(Uhm ) dy →
∫

Q

b(U)b(U) dy, hn → 0, hm → 0,

where U is the (strong) limit.
On the other hand, the (S)–convergent approximate families are well behaved in

the statistical sense, in particular, they generate a single Young measure and their
Cesàro means converge strongly as following result shows.

Theorem 9.7 (Unconditional weak convergence)
Suppose that {Uhn }∞n=1 is an (S)–convergent approximate family,

∫

Q
|Uhn | dy <∼ 1.

Then for any b ∈ Cc(RM) there is a unique b(U) such that

1

N

N∑

n=1

b(Uhn ) → b(U) in L1(Q) as N → ∞. (9.47)

If, in addition,

‖Uh‖Lq (Q)

<∼ 1 for some q > 1,
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then
1

N

N∑

n=1

Uhn → U in L1(Q; RM) as N → ∞. (9.48)

Proof As we know from Lemma 9.3,

b(Uhn ) → b(U) weakly-(*) in L∞(Q) as n → ∞;

in particular,

1

N

N∑

n=1

b(Uhn ) → b(U) weakly-(*) in L∞(Q) as N → ∞.

Next, it follows from (9.46) that

∥∥∥ 1
N

∑N
n=1 b(Uhn )

∥∥∥
2

L2(Q)
= 1

N 2

∑N
n,m=1

∫
Q b(Uhn )b(Uhm ) dy

= limM→∞ 1
M

∑M
m=1

∫
Q b(Uhm )b(U) dy =

∥∥∥b(U)

∥∥∥
2

L2(Q)
,

(9.49)
which yields the strong convergence claimed in (9.47).

Finally, relation (9.48) follows under the hypothesis of higher integrability ofUh .

Theorem 9.7 shows that any (S)–convergent approximate sequence generates a
single Young measure that can be strongly approximated via Cesàro averages, in
particular there is no need to pick up a subsequence in Theorem 9.6. Whether or not
a given numerical scheme is (S)–convergent remains an interesting open question.
In practical implementations, however, the (S)–convergence is tacitly assumed as
the experimental convergence analysis is performed directly on a sequence (not a
subsequence) of approximate solutions.

9.6 Conclusion, Bibliographical Remarks

The aim of this chapter was to present convergence analysis of some standard
finite volume methods for multidimensional Euler equations describing motion of
barotropic fluids, i.e. p = p(�). In particular, we have analyzed the Rusanov and
Lax–Friedrichs finite volume methods, see, e.g., Feistauer, Felcman, Straškraba
[100],Kröner [143], Toro [194].Bothof thembelong to the class of so-called invariant
domain preservingmethods that have been introduced in Guermond and Popov [123,
124]. It means that the finite volume methods preserve some important (physical)
properties of the underlying continuous problem, such as the positivity of density
and pressure as well as the entropy/energy inequality. Indeed, a crucial property
in order to prove convergence of a numerical scheme is the entropy stability, that
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means that the discrete entropy inequality holds on each mesh cell. The concept of
entropy stable/entropy conservative methods has been introduced by Tadmor [190],
see also [102, 105, 191, 192]. We should also mention the results of Bouchut et
al. [20, 21, 24], where the kinetic flux-splitting method has been used. Relying on
the fully discrete entropy inequality and applying the method of DiPerna [64] and
Tartar’s results on compensated compactness the authors proved strong convergence
of fully discrete kinetic flux-splitting scheme to the bounded weak entropy solution
of barotropic Euler equations provided numerical solutions satisfy L∞-bounds and
the vacuum does not appear.

In [134] Jovanović and Rohde assumed the existence of a classical solution to
the Cauchy problem of a general multidimensional hyperbolic conservation law.
Applying the stability result for classical solutions in the class of entropy solutions
due to Dafermos [59] andDiPerna’s method [64, 67], they derived error estimates for
the explicit finite volume schemes satisfying the discrete entropy inequality and thus
proved that the numerical solutions converge strongly to the exact classical solution.

In view of the results on nonuniqueness of weak entropy solutions Fjordholm,
Mishra andTadmor revisited the question of convergence andproved that the semidis-
crete entropy stable finite volume schemes converge to the measure-valued solutions
provided numerical solutions satisfy L∞-bounds, coefficients of numerical viscosity
are uniformly bounded from below by a positive constant and the entropy Hessian
is strictly positive definite, see [101, 106]. In this context a further generalization,
the so-called statistical solutions have been introduced by Fjordholm, Mishra et al.
for general hyperbolic conservation laws, [103, 104]. Analogously to the DMV or
DW solutions the statistical solutions are probabilistic-type solutions. In fact, they
are time-parametrized probability measures satisfying an infinite set of partial differ-
ential equations consistent with the underlying hyperbolic conservation laws. Thus,
they are the measure-valued solutions augmented by information on multipoint spa-
tial correlations. In order to obtain the strong convergence of the entropy stable finite
volume solutions to a statistical solution one needs to assume that a special condi-
tion on an approximate scaling of structure factors holds. The latter is related to the
Kolmogorov compactness criterium.

In this chapter we have showed that under the assumption on boundedness of the
density (and the velocity for the Lax–Friedrichs method) the finite volume solutions
generated by the Rusanov and the Lax–Friedrichs methods converge in the following
way

• weak convergence to a DW solution
• K–convergence to a DW solution, i.e. strong convergence of Cesàro averages of a
suitable subsequence

• if a limit identified above is a weak solution and condition (9.39) on the behavior
around boundary holds, then the convergence is strong

• strong convergence to the strong solution, provided the strong solution exists.

As we have already observed the concept of K–convergence based on the aver-
aging over different meshes naturally inherits compactness. Consequently, we have
obtained the strong solution to a generalized DW solution without any additional
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assumptions. Note that this convergence result holds in general only for a subse-
quence. However, if the sequence of approximate solutions is (S)–convergent then
the strong convergence of the Cesàro averages holds for the whole sequence. The
aim of this chapter was to demonstrate the application of theory developed in the
previous parts of this book, in particular Chaps. 5–7 to some standard first order
finite volume methods. For this purpose we have chosen the Lax–Friedrichs finite
volume method and its local version, the Rusanov method. Generalization to other
well-known first order finite volume methods as well as their higher order versions
is possible and it is left to an interested reader.



Chapter 10
Finite Volume Method for the Complete
Euler System

Having analyzed some standard finite volumemethods for the barotropic Euler equa-
tions we continue with the convergence analysis of the complete Euler system of
equations of gas dynamics (2.1)–(2.3), see also (2.34)–(2.36). Following the general
approach described in Chap. 8, we introduce a new finite volume method based on
the Brenner model discussed in Sect. 3.2.2. Specifically, H. Brenner proposed the
following alternative to the complete Navier–Stokes–Fourier system as a model of
viscous and heat conductive fluids:

∂t� + divx(�um) = 0,

∂t(�u) + divx (�u ⊗ um) + ∇xp(�) = divxS(∇xu),

∂tE + divx(Eum) + divx(pu) + divxq = divx(S(∇xu) · u) (10.1)

with the Fourier heat flux q = −κ∇xϑ and Newton’s rheological relation

S(∇xu) = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI. (10.2)

The model contains two velocities, u and um interrelated, as Brenner suggested,
through the following phenomenological relation:

u − um = K∇x log(�). (10.3)

Although the model suffers numerous physical deficiencies and as such has been
thoroughly criticized, it exhibits striking similarity with certain numerical approxi-
mations. Indeed setting κ = cv�K = cvh�λ, λ ≥ 0, h > 0 and

S(∇xu) = hλ�∇xu + hα∇xu,
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the system (10.1) rewrites as

∂t� + divx(m) = hdivx(λ∇x�), (10.4)

∂tm + divx(m ⊗ u) + ∇xp = hdivx (λ∇xm) + hα�xu, (10.5)

∂tE + divx((E + p)u) = hdivx(λ∇xE) + hαdivx(∇xu · u). (10.6)

One can directly observe that without the hα-dependent terms, the system (10.4)–
(10.6) is strongly reminiscent of the Rusanov or the Lax–Friedrichs numerical
scheme where hdivx(λ∇xU), U = (�,m,E), plays the role of the numerical dif-
fusion, cf. (9.12), (9.13).
We set λ ≡ λh = {{uh}} · n + hε, ε > −1, where uh ∈ Qh is a numerical approxi-
mation of the velocity u. Approximating the divergence operator with the central
differences leads to the following (vector valued) numerical flux function, cf. (8.8)

Fup
h = Up[Uh,uh] − hε [[Uh]] , (10.7)

where Uh = (�h,mh,Eh) is a piecewise constant approximation of U and ε > −1.
Further,

Up[Uh,uh] = {{Uh}} {{uh}} · n − 1

2
| {{uh}} · n| [[Uh]] (10.8)

= U in
h [{{uh}} · n]+ + Uout

h [{{uh}} · n]−,

see also (8.6) with 〈uh〉σ ≡ {{uh}} for uh ∈ Qh. The vector valued flux function can
be written as Fup

h = (Fup
h,�,F

up
h,m,Fup

h,E) with the corresponding components for the
density, momentum and energy equations.

10.1 Numerical Method

Let� ⊂ Rd ,d = 2, 3be a boundeddomain.Weare now ready to formulate a semidis-
cretefinite volumemethodbasedon the numerical flux function (10.7) to approximate
the complete Euler system

∂t� + divxm = 0,

∂tm + divx

(
m ⊗ m

�

)
+ ∇xp = 0,

∂tE + divx

(
(E + p)

m
�

)
= 0,

m · n|∂� = 0.

(10.9)
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We consider an unstructured mesh in the sense of Definition 1. Given the initial
values (�0,h,m0,h,E0,h) ∈ Qh × Qh × Qh, we seek a piecewise constant approxi-
mation (�h(t),mh(t),Eh(t)) ∈ Qh × Qh × Qh that solves at any time t ∈ (0,T ) the
following system of ordinary differential equations

d

dt
�K +

∑
σ∈E(K)∩Eint

|σ |
|K |F

up
h,� = 0,

d

dt
mK +

∑
σ∈E(K)∩Eint

|σ |
|K |

(
Fup
h,m + {{ph}}n

) = hα−1
∑

σ∈E(K)∩Eint

|σ |
|K | [[uh]] ,

d

dt
EK +

∑
σ∈E(K)∩Eint

|σ |
|K |
(
Fup
h,E + ( {{ph}}uh + ph {{uh}}

) · n
)

= hα−1

2

∑
σ∈E(K)∩Eint

|σ |
|K |

[[|uh|2]] ,

(10.10)

for any K ∈ Th . Analogously as in Chap. 9

ph = (γ − 1)

(
Eh − 1

2

|mh|2
�h

)
, ϑh = ph

�h
, eh = cvϑh, sh = log

(
ϑ
cv
h

�h

)

are the approximations of the pressure p, the temperature ϑ , the internal energy e
and the entropy s, respectively. We accompany (10.10) with the no-flux boundary
conditions that can be written as

{{uh}} · n = 0,
[[
�h
]] = 0 = [[

ph
]]

for any σ ∈ Eext .

Note that the boundary conditions for the density and the pressure are enforced by
the artificial viscosity contained in the approximation. In the target Euler system only
the impermeability condition {{u}} · n = 0 is required.

In what follows we will refer to the scheme (10.10) as viscous finite volume (VFV)
method. Indeed the hα-terms in themomentum and energy equations can be identified
with a vanishing viscosity regularization. Formulation (10.10) can be equivalently
rewritten in the integral form

∫
�

d

dt
�hφh dx −

∑
σ∈Eint

∫
σ

Fup
h,�[�h,uh] [[φh]] dSx = 0, for all φh ∈ Qh, (10.11)

∫
�

d

dt
mh · φh dx −

∑
σ∈Eint

∫
σ

(
Fup
h,m[mh,uh] − {{ph}} n

) · [[φh

]]
dSx

= −hα−1
∑

σ∈Eint

∫
σ

[[uh]] · [[φh

]]
dSx, (10.12)
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for all φh ∈ Qh,
{{
φh

}} · n = 0 for any σ ∈ Eext,∫
�

d

dt
Ehφh dx −

∑
σ∈Eint

∫
σ

Fup
h,E[Eh,uh] [[φh]] dSx

−
∑

σ∈Eint

∫
σ

(
{{ph}} [[φhuh]] − {{phφh}} [[uh]]

)
· n dSx

= −hα−1
∑

σ∈Eint

∫
σ

[[uh]] · {{uh}} [[φh]] dSx, for all φh ∈ Qh.

(10.13)

We point out that the pressure term in the energy equation can be rewritten as

∑
σ∈Eint

∫
σ

(
{{ph}} [[φhuh]] − {{phφh}} [[uh]]

)
· n dSx

=
∑

σ∈Eint

∫
σ

{{ph}} {{uh}} · n [[φh]] dSx − 1

4

∑
σ∈Eint

∫
σ

[[
ph
]]
[[uh]] · n [[φh]] dSx.

(10.14)

The numerical approximations (�h,mh,Eh) provided by a semidiscrete scheme
are continuous functions of time. Thus, the VFV method (10.11)–(10.13) may be
interpreted as a finite system of ODEs. Since the flux terms are locally Lipschitz-
continuous it follows from the standard ODE theory that for a given initial state

�h(0) = �0,h ∈ Qh, �0,h > 0, m(0) = m0,h ∈ Qh, Eh(0) = E0,h ∈ Qh,

E0,h − 1

2

|m0,h|2
�0,h

> 0,

the semidiscrete system (10.11)–(10.13) admits a unique solution (�h,mh,Eh)

defined on a maximal time interval [0,Tmax), where

�h(t) > 0, ph(t) = (γ − 1)

(
Eh(t) − 1

2

|mh(t)|2
�h(t)

)
> 0 for all t ∈ [0,Tmax).

(10.15)
In particular, the absolute temperature ϑh can be defined,

ϑh(t) = ph(t)

�h(t)
= γ − 1

�h(t)

(
Eh(t) − 1

2

|mh(t)|2
�h(t)

)
. (10.16)

We will show in Sect. 10.2 that the system (10.11)–(10.13) admits sufficiently
strong a priori bounds that will guarantee (i) Tmax = ∞, (ii) validity of (10.15) for
any t ≥ 0.

In what follows we proceed with a discussion on invariant domain preserving
properties and stability of the VFV method (10.11)–(10.13). In particular, we show
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• positivity of the discrete density, pressure and temperature
• entropy stability
• minimum entropy principle
• weak BV estimates.

10.2 Stability

We start by deriving some standard a priori bounds that directly follow from the
finite volume formulation (10.11)–(10.13). First, taking φh ≡ 1 in the equation of
continuity (10.11) yields the total mass conservation

∫
�

�h(t, ·) dx =
∫
�

�0,h dx = M0 > 0, t ≥ 0. (10.17)

A similar argument applied to the total energy balance yields

∫
�

Eh(t, ·) dx =
∫
�

E0,h dx = E0 > 0, t ≥ 0. (10.18)

Further important source of a priori estimates is the discrete entropy inequality that
we will derive in what follows.

10.2.1 Entropy Stability

We start by introducing some notation:

ruph =
⎧⎨
⎩
rinh if {{uh}} · n ≥ 0

routh if {{uh}} · n < 0,
, rdownh =

⎧⎨
⎩
routh if {{uh}} · n ≥ 0

rinh if {{uh}} · n < 0,
, (10.19)

and

[̃[rh]] = ruph − rdownh = − [[rh]] sgn({{uh}} · n), (10.20)

for any rh ∈ Qh,uh ∈ Qh.
Next, we derive renormalized versions of the discrete continuity equation and the

transport equation.

Lemma 10.1 Let b ∈ C2(R), χ ∈ C2(R), and let (�h,uh) solve the VFV method
(10.11)–(10.13).

Then there hold:
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• Renormalized discrete continuity equation

∫
�

d

dt
b(�h)φh dx −

∑
σ∈Eint

∫
σ

Up[b(�h),uh] [[φh]] dSx

+
∑

σ∈Eint

∫
σ

{{uh}} · n
[[(

b(�h) − b′(�h)�h

)
φh

]]
dSx

= −
∑

σ∈Eint

hε

∫
σ

[[
�h
]] [[

b′(�h)φh
]]
dSx

−
∑

σ∈Eint

∫
σ

φdown
h

(
˜
[[
b(�h)

]]− b′(�down
h )

[̃[
�h
]])| {{uh}} · n|dSx,

(10.21)

for any φh ∈ Qh.
• Renormalized discrete transport equation

∫
�

d

dt
(�hgh)χ

′(gh)φh dx −
∑

σ∈Eint

∫
σ

Up[�hgh,uh]
[[
χ ′(gh)φh

]]
dSx

=
∫
�

d

dt
(�hχ(gh))φh dx −

∑
σ∈Eint

∫
σ

Up[�hχ(gh),uh] [[φh]] dSx

+ hε
∑

σ∈Eint

∫
σ

[[
�h
]] [[(

χ(gh) − χ ′(gh)gh
)
φh
]]
dSx

+
∑

σ∈Eint

∫
σ

φdown
h �

up
h

(
˜[[χ(gh)]] − χ ′(gdownh )[̃[gh]]

)
| {{uh}} · n|dSx

(10.22)

for any gh ∈ Qh, φh ∈ Qh.

Proof The discrete renormalized continuity equation follows from Lemma 8.2, with
an obvious modification to accommodate the continuous time derivative. In order to
derive (10.22), we consider first the upwind term. Direct calculations yield

−
∑

σ∈Eint

∫
σ

Up[�hgh,uh]
[[
χ ′(gh)φh

]]
dSx

= −
∑

σ∈Eint

∫
σ

Up[�hχ(gh),uh] [[φh]] −Up[�h,uh] [[χ(gh)φh]] dSx

−
∑

σ∈Eint

∫
σ

Up[�h,uh]
[[
χ ′(gh)ghφh

]]
dSx

+
∑

σ∈Eint

∫
σ

φdown
h �

up
h

(
˜[[χ(gh)]] − χ ′(gdownh )[̃[gh]]

)
| {{uh}} · n|dSx.
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Combining the above with the continuity equation (10.11) leads to

∫
�

d

dt
(�hgh)χ

′(gh)φh dx −
∑

σ∈Eint

∫
σ

Up[�hgh,uh]
[[
χ ′(gh)φh

]]
dSx

=
∫
�

�h
d

dt
χ(gh)φh dx −

∑
σ∈Eint

∫
σ

Up[�hχ(gh),uh] [[φh]] dSx

+
∑

σ∈Eint

∫
σ

Up[�h,uh] [[χ(gh)φh]] dSx − hε
∑

σ∈Eint

∫
σ

[[
�h
]] [[

χ ′(gh)ghφh
]]
dSx

+
∑

σ∈Eint

∫
σ

φdown
h �

up
h

(
˜[[χ(gh)]] − χ ′(gdownh )[̃[gh]]

)
| {{uh}} · n|dSx.

Finally, we consider χ(gh)φh as a test function in the discrete continuity equation
(10.11) and deduce the desired result.

We proceed to prove that the VFV method satisfies the discrete entropy equation
as well as its renormalized version.

Theorem 10.1 (Entropy stability)
The VFV method (10.11)–(10.13) is entropy stable, i.e. the discrete entropy equa-

tion and the renormalized discrete entropy inequality hold:

• Discrete entropy equation

d

dt

∫
�

�hshφh dx −
∑

σ∈Eint

∫
σ

Up[�hsh,uh] [[φh]] dSx

= hα−1
∑

σ∈Eint

∫
σ

[[uh]]2
{{

φh

ϑh

}}
dSx

+ 1

2

∑
σ∈Eint

∫
σ

(
φh

ϑh

)down

�
up
h | {{uh}} · n| [[uh]]2 dSx

+
∑

σ∈Eint

∫
σ

hε

(
{{�h}}

{{
φh

ϑh

}}
− 1

4

[[
�h
]] [[φh

ϑh

]])
[[uh]]2 dSx

+
∑

σ∈Eint

∫
σ

φdown
h

(
˜
[[
b(�h)

]]− b′(�down
h )

[̃[
�h
]])| {{uh}} · n|dSx

− cv
∑

σ∈Eint

∫
σ

φdown
h �

up
h

(
˜

[[
log(ϑh)

]]− 1

ϑdown
h

[̃[ϑh]]

)
| {{uh}} · n|dSx
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− cv
∑

σ∈Eint

∫
σ

hε
[[
�hϑh

]] [[φh

ϑh

]]
dSx

− cv
∑

σ∈Eint

∫
σ

hε
[[
�h
]] [[

(log(ϑh) − 1) φh
]]
dSx (10.23)

+
∑

σ∈Eint

∫
σ

hε
[[
�h
]] [[

b′(�h)φh
]]
dSx, where b(�) = � log(�)

holds for any φh ∈ Qh.
• Renormalized discrete entropy inequality Let χ be a nondecreasing, concave,
twice continuously differentiable function on R that is bounded from above. Then
we have for φh ∈ Qh, φh ≥ 0

d

dt

∫
�

�hχ(sh)φh dx −
∑
c

∫
σ

(
Up[�hχ(sh),uh]

+ hε
({{∇�(�hχ(sh))

}} [[
�h
]]+ {{∇p(�hχ(sh))

}} [[
ph
]]) )

[[φh]] dSx

≥
∑

σ∈Eint

∫
σ

hα−1 [[uh]]2
{{

χ ′(sh)φh

ϑh

}}
dSx

+
∑

σ∈Eint

∫
σ

hε

(
{{�h}}

{{
χ ′(sh)φh

ϑh

}}
− 1

4

[[
�h
]] [[χ ′(sh)φh

ϑh

]])
[[uh]]2 dSx

+ 1

2

∑
σ∈Eint

∫
σ

(
χ ′(sh)φh

ϑh

)down

�
up
h | {{uh}} · n| [[uh]]2 dSx

+
∑

σ∈Eint

∫
σ

(
χ ′(sh)φh

)down ( ˜
[[
b(�h)

]]− b′(�down
h )

[̃[
�h
]]) | {{uh}} · n|dSx

− cv
∑

σ∈Eint

∫
σ

(
χ ′(sh)φh

)down
�
up
h

(
˜

[[
log(ϑh)

]]− 1

ϑdown
h

[̃[ϑh]]

)
| {{uh}} · n|dSx

−
∑

σ∈Eint

∫
σ

φdown
h �

up
h

(
˜[[χ(sh)]] − χ ′(sdownh )̃[[sh]]

)
| {{uh}} · n|dSx,

(10.24)
where b(�) = � log(�).

Proof In order to obtain the discrete entropy equation, we first derive a discrete
kinetic energy equation which will be subtracted from the discrete energy equation
(10.13) to obtain a discrete internal energy equation.
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To this end we first take a test function φh = uhφh in (10.12):

d

dt

∫
�

mh · uhφh dx −
∑

σ∈Eint

∫
σ

Fup
h [mh,uh] · [[uhφh]] dSx

−
∑

σ∈Eint

∫
σ

{{ph}}n · [[uhφh]] dSx = −hα−1
∑

σ∈Eint

∫
σ

[[uh]] · [[uhφh]] dSx.

Next, we use relation (10.22) for each component of uh, i.e. for gh = uh,k , k =
1, . . . , d and χ(uh,k) = 1

2u
2
h,k . Summing the resulting equations for k = 1, . . . , d

yields

d

dt

∫
�

mh · uhφh dx −
∑

σ∈Eint

∫
σ

Up[mh,uh] · [[uhφh]] dSx

= d

dt

∫
�

�huh · uhφh dx −
∑

σ∈Eint

∫
σ

Up[�huh,uh] · [[uhφh]] dSx

= d

dt

∫
�

1

2
�h|uh|2φh dx −

∑
σ∈Eint

∫
σ

Up

[
1

2
�h|uh|2,uh

]
[[φh]] dSx

−
∑

σ∈Eint

∫
σ

hε
[[
�h
]] [[1

2
|uh|2φh

]]
+ 1

2
φdown
h �

up
h | {{uh}} · n| [[uh]]2 dSx.

Consequently, summing up the previous two relations we derive the discrete kinetic
energy equation

d

dt

∫
�

1

2
�h|uh|2φh dx −

∑
σ∈Eint

∫
σ

Up

[
1

2
�h|uh|2,uh

]
[[φh]] dSx

= −hα−1
∑

σ∈Eint

∫
σ

[[uh]] · [[uhφh]] dSx +
∑

σ∈Eint

∫
σ

{{ph}}n · [[uhφh]] dSx

+ hε
∑

σ∈Eint

∫
σ

− [[mh]] [[uhφh]] + [[
�h
]] [[1

2
|uh|2φh

]]
dSx

− 1

2

∑
σ∈Eint

∫
σ

φdown
h �

up
h | {{uh}} · n| [[uh]]2 dSx.

(10.25)

Now, let us subtract (10.25) from the total energy balance (10.13)



316 10 Finite Volume Method for the Complete Euler System

d

dt

∫
�

�hehφh dx −
∑

σ∈Eint

∫
σ

(
Up[�heh,uh] − hε

[[
�heh

]] )
[[φh]] dSx

= hα−1
∑

σ∈Eint

∫
σ

[[uh]]2 {{φh}} dSx + 1

2

∑
σ∈Eint

∫
σ

φdown
h �

up
h | {{uh}} · n| [[uh]]2 dSx

−
∑

σ∈Eint

∫
σ

{{phφh}} [[uh]] · ndSx +
∑

σ∈Eint

∫
σ

hε
[[
�huh

]]
[[uhφh]] dSx

−
∑

σ∈Eint

∫
σ

hε
[[
�h
]] [[1

2
|uh|2φh

]]
dSx −

∑
σ∈Eint

∫
σ

hε

[[
1

2
�h|uh|2

]]
[[φh]] dSx.

Applying the product rule we obtain

[[
�huh

]]
[[uhφh]] − 1

2

[[
�h
]] [[|uh|2φh

]]− 1

2

[[
�h|uh|2

]]
[[φh]]

= {{�h}} [[uh]] · [[uh]] {{φh}} + {{�h}} {{uh}} · [[uh]] [[φh]]

+ 1

2

[[
�h
]] {{uh}} · [[uhφh]] − 1

2

[[
�h
]]
[[uh]] · {{uhφh}} − 1

2

[[
�h|uh|2

]]
[[φh]]

= {{�h}} [[uh]] · [[uh]] {{φh}} + {{�h}} {{uh}} · [[uh]] [[φh]]

+ 1

2

[[
�h
]] | {{uh}} |2 [[φh]] − 1

2

[[
�h|uh|2

]]
[[φh]] − 1

8

[[
�h
]]
[[uh]]2 [[φh]]

= {{�h}} [[uh]] · [[uh]] {{φh}} + {{�h}} {{uh}} · [[uh]] [[φh]] − 1

2
{{�h}} [[uh · uh]] [[φh]]

− 1

4

[[
�h
]]
[[uh]]

2 [[φh]] = {{�h}} [[uh]]2 {{φh}} − 1

4

[[
�h
]]
[[uh]]2 [[φh]] .

Consequently, we derive the discrete internal energy equation for eh = cvϑh

d

dt

∫
�

�hehφh dx −
∑

σ∈Eint

∫
σ

(
Up[�heh,uh] − hε

[[
�heh

]] )
[[φh]] dSx

= hα−1
∑

σ∈Eint

∫
σ

[[uh]]2 {{φh}} dSx + 1

2

∑
σ∈Eint

∫
σ

φdown
h �

up
h | {{uh}} · n| [[uh]]2 dSx

+
∑

σ∈Eint

∫
σ

hε

(
{{�h}} {{φh}} − 1

4

[[
�h
]]
[[φh]]

)
[[uh]]2 dSx

−
∑

σ∈Eint

∫
σ

{{phφh}} [[uh]] · ndSx.

(10.26)
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It is worthwhile to look closer on the numerical diffusion term

hε

(
{{�h}} {{φh}} − 1

4

[[
�h
]]
[[φh]]

)
[[uh]]2 .

Direct calculation yields

{{�h}} {{φh}} − 1

4

[[
�h
]]
[[φh]] = 1

4
(�in

h + �out
h )(φin

h + φout
h ) − 1

4
(�out

h − �in
h )(φout

h − φin
h )

= 1

2
�in
h φout

h + 1

2
�out
h φin

h .

Consequently,

∑
σ∈Eint

∫
σ

hε

(
{{�h}} {{φh}} − 1

4

[[
�h
]]
[[φh]]

)
[[uh]]2 dSx

=
∑

σ∈Eint

∫
σ

hε

2

(
�in
h φout

h + �out
h φin

h

)
[[uh]]2 dSx. (10.27)

At this stage, we are ready to derive the discrete entropy balance together with its
renormalization. Taking the test function φh = φh/ϑh ∈ Qh in equation (10.26), we
get

cv

∫
�

d

dt
(�hϑh)

(
φh

ϑh

)
dx − cv

∑
σ∈Eint

∫
σ

Up[�hϑh,uh]
[[

φh

ϑh

]]
dSx

=
∑

σ∈Eint

∫
σ

(
hα−1 [[uh]]2

{{
φh

ϑh

}}
+ 1

2

(
φh

ϑh

)down

�
up
h | {{uh}} · n| [[uh]]2

)
dSx

+
∑

σ∈Eint

∫
σ

hε

(
{{�h}}

{{
φh

ϑh

}}
− 1

4

[[
�h
]] [[φh

ϑh

]])
[[uh]]2 dSx

−
∑

σ∈Eint

∫
σ

[[uh]] · n {{�hφh}} dSx − cv
∑

σ∈Eint

∫
σ

hε
[[
�hϑh

]] [[φh

ϑh

]]
dSx.

The left hand side of the above equation canbe rewritten bymeans of the renormalized
discrete transport equation (10.22) with gh = logϑ

cv
h which yields
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d

dt

∫
�

�h log(ϑ
cv
h )φh dx −

∑
σ∈Eint

∫
σ

Up[�h log(ϑ
cv
h ),uh] [[φh]] dSx

=
∑

σ∈Eint

∫
σ

hα−1 [[uh]]2
{{

φh

ϑh

}}
+ 1

2

(
φh

ϑh

)down

�
up
h | {{uh}} · n| [[uh]]2 dSx

+
∑

σ∈Eint

∫
σ

hε

(
{{�h}}

{{
φh

ϑh

}}
− 1

4

[[
�h
]] [[φh

ϑh

]])
[[uh]]2 dSx

−
∑

σ∈Eint

∫
σ

[[uh]] · n {{�hφh}} dSx

− cv
∑

σ∈Eint

hε

∫
σ

([[
�hϑh

]] [[φh

ϑh

]]
+ [[

�h
]] [[

(log(ϑh) − 1) φh
]])

dSx

− cv
∑

σ∈Eint

∫
σ

φdown
h �

up
h

(
˜

[[
log(ϑh)

]]− 1

ϑdown
h

[̃[ϑh]]

)
| {{uh}} · n|dSx.

(10.28)

Finally, we consider b(�) = � log(�) in the renormalized equation (10.21):

d

dt

∫
�

�h log(�h)φh dx −
∑

σ∈Eint

∫
σ

Up[�h log(�h),uh] [[φh]] dSx

= −
∑

σ∈Eint

∫
σ

hε
[[
�h
]] [[

b′(�h)φh
]]
dSx −

∑
σ∈Eint

∫
σ

[[uh]] · n {{�hφh}} dSx

−
∑

σ∈Eint

∫
σ

φdown
h

(
˜
[[
b(�h)

]]− b′(�down
h )

[̃[
�h
]])| {{uh}} · n|dSx.

(10.29)

Subtracting (10.29) from (10.28) we obtain for the entropy sh = log

(
ϑ
cv
h

�h

)
the

desired discrete entropy equation (10.23)

d

dt

∫
�

�hshφh dx −
∑

σ∈Eint

∫
σ

Up[�hsh,uh] [[φh]] dSx

=
∑

σ∈Eint

∫
σ

(
hα−1 [[uh]]2

{{
φh

ϑh

}}
+ 1

2

(
φh

ϑh

)down

�
up
h | {{uh}} · n| [[uh]]2

)
dSx

+
∑

σ∈Eint

∫
σ

hε

(
{{�h}}

{{
φh

ϑh

}}
− 1

4

[[
�h
]] [[φh

ϑh

]])
[[uh]]2 dSx

+
∑

σ∈Eint

∫
σ

φdown
h

(
˜
[[
b(�h)

]]− b′(�down
h )

[̃[
�h
]])| {{uh}} · n|dSx
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− cv
∑

σ∈Eint

∫
σ

φdown
h �

up
h

(
˜

[[
log(ϑh)

]]− 1

ϑdown
h

[̃[ϑh]]

)
| {{uh}} · n|dSx (10.30)

− cv
∑

σ∈Eint

hε

∫
σ

([[
�hϑh

]] [[φh

ϑh

]]
+ [[

�h
]] [[

(log(ϑh) − 1) φh
]])

dSx

+
∑

σ∈Eint

∫
σ

hε
[[
�h
]] [[

b′(�h)φh
]]
dSx, where b(�) = � log(�).

In order to control the sign of the last two integrals in (10.30) we proceed by the
derivation of the renormalized discrete entropy inequality. Applying formula (10.22)
in (10.30) and taking b(�) = � log(�) we get

d

dt

∫
�

�hχ(sh)φh dx −
∑

σ∈Eint

∫
σ

Up[�hχ(sh),uh] [[φh]] dSx

=
∑

σ∈Eint

∫
σ

hα−1 [[uh]]2
{{

χ ′(sh)φh

ϑh

}}
dSx

+
∑

σ∈Eint

∫
σ

hε

(
{{�h}}

{{
χ ′(sh)φh

ϑh

}}
− 1

4

[[
�h
]] [[χ ′(sh)φh

ϑh

]])
[[uh]]2 dSx

+ 1

2

∑
σ∈Eint

∫
σ

(
χ ′(sh)φh

ϑh

)down

�
up
h | {{uh}} · n| [[uh]]2 dSx

+
∑

σ∈Eint

∫
σ

(
χ ′(sh)φh

)down ( ˜
[[
b(�h)

]]− b′(�down
h )

[̃[
�h
]]) | {{uh}} · n|dSx

− cv
∑

σ∈Eint

∫
σ

(
χ ′(sh)φh

)down
�
up
h

(
˜

[[
log(ϑh)

]]− 1

ϑdown
h

[̃[ϑh]]

)
| {{uh}} · n|dSx

−
∑

σ∈Eint

∫
σ

φdown
h �

up
h

(
˜[[χ(sh)]] − χ ′(sdownh )̃[[sh]]

)
| {{uh}} · n|dSx

− cv
∑

σ∈Eint

hε

∫
σ

([[
�hϑh

]] [[χ ′(sh)φh

ϑh

]]
+ [[

�h
]] [[

(log(ϑh) − 1) χ ′(sh)φh
]])

dSx

+
∑

σ∈Eint

hε

∫
σ

([[
�h
]] [[

b′(�h)χ
′(sh)φh

]]− [[
�h
]] [[(

χ(sh) − χ ′(sh)sh
)
φh
]])

dSx.

(10.31)
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Next, we compute

− cv
∑

σ∈Eint

hε

∫
σ

([[
�hϑh

]] [[χ ′(sh)φh

ϑh

]]
+ [[

�h
]] [[

(log(ϑh) − 1) χ ′(sh)φh
]])

dSx

+
∑

σ∈Eint

hε

∫
σ

([[
�h
]] [[

b′(�h)χ
′(sh)φh

]]− [[
�h
]] [[(

χ(sh) − χ ′(sh)sh
)
φh
]])

dSx

= −cv
∑

σ∈Eint

hε

∫
σ

([[
�hϑh

]] [[χ ′(sh)φh

ϑh

]]
+ [[

�h
]] [[

log(ϑh)χ
′(sh)φh

]])
dSx

+
∑

σ∈Eint

hε

∫
σ

([[
�h
]] [[

log(�h)χ
′(sh)φh

]]− [[
�h
]] [[(

χ(sh) − χ ′(sh)sh
)
φh
]])

dSx

+ (cv + 1)
∑

σ∈Eint

∫
σ

hε
[[
�h
]] [[

χ ′(sh)φh
]]
dSx

= −cv
∑

σ∈Eint

∫
σ

hε
[[
�hϑh

]] [[
�h

χ ′(sh)φh

�hϑh

]]
dSx

−
∑

σ∈Eint

∫
σ

hε
[[
�h
]] [[(

χ(sh) − (cv + 1)χ ′(sh)
)
φh

]]
dSx

= −cv
∑

σ∈Eint

∫
σ

hε
[[
ph
]] [[

�h
χ ′(sh)φh

ph

]]
dSx

−
∑

σ∈Eint

hε

∫
σ

[[
�h
]] [[(

χ(sh) − (cv + 1)χ ′(sh)
)
φh

]]
dSx

= −
∑

σ∈Eint

hε

∫
σ

([[
φh∇�(�hχ(sh))

]] [[
�h
]]+ [[

φh∇p(�hχ(sh))
]] [[

ph
]])

dSx.

Finally, we obtain the general entropy balance
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d

dt

∫
�

�hχ(sh)φh dx −
∑

σ∈Eint

∫
σ

Up[�hχ(sh),uh] [[φh]] dSx

=
∑

σ∈Eint

∫
σ

hα−1 [[uh]]2
{{

χ ′(sh)φh

ϑh

}}
dSx

+
∑

σ∈Eint

∫
σ

hε

(
{{�h}}

{{
χ ′(sh)φh

ϑh

}}
− 1

4

[[
�h
]] [[χ ′(sh)φh

ϑh

]])
[[uh]]2 dSx

+ 1

2

∑
σ∈Eint

∫
σ

(
χ ′(sh)φh

ϑh

)down

�
up
h | {{uh}} · n| [[uh]]2 dSx

+
∑

σ∈Eint

∫
σ

(
χ ′(sh)φh

)down ( ˜
[[
b(�h)

]]− b′(�down
h )

[̃[
�h
]]) | {{uh}} · n|dSx

− cv
∑

σ∈Eint

∫
σ

(
χ ′(sh)φh

)down
�
up
h

(
˜

[[
log(ϑh)

]]− 1

ϑdown
h

[̃[ϑh]]

)
| {{uh}} · n|dSx

−
∑

σ∈Eint

∫
σ

φdown
h �

up
h

(
˜[[χ(sh)]] − χ ′(sdownh )̃[[sh]]

)
| {{uh}} · n|dSx

−
∑

σ∈Eint

hε

∫
σ

([[
φh∇�(�hχ(sh))

]] [[
�h
]]+ [[

φh∇p(�hχ(sh))
]] [[

ph
]])

dSx,

(10.32)
where b(�) = � log(�). The last integral can be rewritten using the product rule as

−
∑

σ∈Eint

∫
σ

hε [[φh]]
({{∇�(�hχ(sh))

}} [[
�h
]]+ {{∇p(�hχ(sh))

}} [[
ph
]])

dSx

−
∑

σ∈Eint

∫
σ

hε {{φh}}
([[∇�(�hχ(sh))

]] [[
�h
]]+ [[∇p(�hχ(sh))

]] [[
ph
]])

dSx.
(10.33)

The first sum in (10.33), together with the upwind term in (10.32), represents the
numerical entropy flux Gh

∑
σ∈Eint

∫
σ

Gh · n [[φh]] dSx =
∑

σ∈Eint

∫
σ

(
Up[�hχ(sh),uh]

− hε
({{∇�(�hχ(sh))

}} [[
�h
]]+ {{∇p(�hχ(sh))

}} [[
ph
]]) )

[[φh]] dSx,

The rest in (10.32) and (10.33) gives the numerical entropy production rh ≡ ∑
σ∈Eint

rσ ,

cf. (9.22). Indeed, for �h > 0 and ϑh > 0 we have rh ≥ 0.
To see this property, let us firstly realize that due to (10.27) the numerical diffusion

term can be rewritten in the following way
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∑
σ∈Eint

∫
σ

hε

(
{{�h}}

{{
χ ′(sh)φh

ϑh

}}
− 1

4

[[
�h
]] [[χ ′(sh)φh

ϑh

]])
[[uh]]2 dSx

=
∑

σ∈Eint

∫
σ

hε

2

(
�in
h

χ ′(south )φout
h

ϑout
h

+ �out
h

χ ′(sinh )φin
h

ϑ in
h

)
[[uh]]2 dSx ≥ 0.

Further, recall that the total entropy

(�, p) → −�χ(s(�, p)) = −�χ

(
log

(
ϑcv

�

))
= −�χ

(
1

γ − 1
log

(
p

�γ

))

is a convex function of the variables � and p. Indeed, direct calculations show that
the function S(Z) = χ(log(Z)) satisfies the conditions (2.49), i.e.

S ′(Z) > 0, (γ − 1)S ′(Z) + γS ′′
(Z)Z < 0 for all Z > 0.

Now, it follows from Sect. 2.2.3 that −�χ
(

1
γ−1 log

(
p
�γ

))
is a convex function of

�, p. In particular,−∇�,p(�χ(s(�h, ph))) is monotone and the term in the second line
of (10.33) is nonnegative. This concludes the proof.

We will discuss the positivity of discrete density and temperature in what follows.

10.2.2 Positivity of the Discrete Density

Our aim is to show that the discrete density obtained by the VFV method (10.11)–
(10.13) remains strictly positive on [0,T ] provided �0 > 0. To this end, we prove
the following discrete version of the comparison theorem.

Lemma 10.2 (Positivity of the discrete density)
Let (�h,uh) be the discrete density and velocity obtained by the VFV method,

specifically,

d

dt

∫
�

�hφh dx −
∑

σ∈Eint

∫
σ

Fup
h [�h,uh] [[φh]] dSx = 0 for any φh ∈ Qh.

Let � be a subsolution of the same equation, meaning,

d

dt

∫
�

�φh dx −
∑

σ∈Eint

∫
σ

Fup
h [�,uh] [[φh]] dSx ≤ 0 for any φh ∈ Qh, φh ≥ 0.

(10.34)
In addition, suppose that

�h(0) ≥ �(0).
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Then
�h(t) ≥ �(t) for all 0 ≤ t ≤ T .

Proof It is easy to check that the difference r = �h − � is a supersolution, meaning

d

dt

∫
�

rφh dx −
∑

σ∈Eint

∫
σ

Fup
h [r,uh] [[φh]] dSx ≥ 0 for any φh ∈ Qh, φh ≥ 0.

Let b : R → R be a convex function such that b′(r) ≤ 0 for a.a. r ∈ R. Similarly
to (10.21), we obtain the integrated renormalized inequality

∫
�

d

dt
b(r) dx +

∑
σ∈Eint

∫
σ

{{uh}} · n
[[(

b(r) − b′(r)r
)]]

dSx ≤ 0.

Taking b(r) = −r− = −min{r, 0} gives rise to
∫
�

d

dt
(�h − �)− dx ≥ 0

yielding the desired conclusion

r = �h − � ≥ 0 for any t ∈ [0,T ].

Now we choose �
0

> 0, such that

�h(0, ·) ≥ �
0
,

and consider

�(t) = exp(−L(t))�
0
, t ≥ 0, L(0) = 0.

Seeing that

[[
�(t)

]]
= 0,

{{
�(t)

}}
= �(t),

we easily deduce that

d

dt

∫
�

�φh dx −
∑

σ∈Eint

∫
σ

Fup
h [�,uh] [[φh]] dSx

= −L′(t)
∫
�

exp(−L(t))�
0
φh dx +

∑
σ∈Eint

∫
σ

exp(−L(t))�
0
{{uh}} · n [[φh]] dSx
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≤ −L′(t)
∫
�

exp(−L(t))�
0
φh dx + Z(t, h)

∫
�

exp(−L(t))�
0
φh dx. (10.35)

Using the discrete kinetic energy equation (10.25) we may derive that

T∫
0

(
sup

σ∈Eint

[[uh]]2
)

dt
<∼ ω(h),

where ω(h) denotes a generic function that may blow up in the asymptotic regime
h → 0. Indeed, let us consider (10.25) with a test function φh = 1. Seeing that

−
∑

σ∈Eint

∫
σ

hε [[mh]] [[uh]] dSx +
∑

σ∈Eint

∫
σ

hε
[[
�h
]] [[1

2
|uh|2

]]
dSx =

−
∑

σ∈Eint

∫
σ

hε {{�h}} [[uh]]2 dSx,

we may integrate (10.25) in time and use the energy bound (10.18) to deduce

hα−1

T∫
0

∑
σ∈Eint

∫
σ

[[uh]]2 dSx dt + hε

T∫
0

∑
σ∈Eint

∫
σ

{{�h}} [[uh]]2 dSx dt

+ 1

2

T∫
0

∑
σ∈Eint

∫
σ

�
up
h | {{uh}} · n| [[uh]]2 dSx dt

<∼ 1 +
∑

σ∈Eint

T∫
0

∫
σ

{{ph}}n · [[uh]] dSx dt.

Finally, we again use (10.18) combined with the inverse Lp–estimates (26) and
Hölder’s inequality to conclude

T∫
0

∑
σ∈Eint

∫
σ

[[uh]]2 dSx dt
<∼ ω(h). (10.36)

In particular, relation (10.36) implies

T∫
0

(
sup

σ∈Eint

[[uh]]2
)

dt
<∼ ω(h), (10.37)

with another ω(h) generally different from its counterpart in (10.36).
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Going back to (10.35) the latter implies

Z(t, h) ≥ 0, Z(·, h) ∈ L1(0,T ).

Taking L(t) =
t∫
0
Z(h, s) ds, we conclude that �(t) = �(h, t) is a subsolution and

strict positivity of �h follows from Lemma 10.2:

�h(t) ≥ �(h, t) > 0 for all t ∈ [0,T ]. (10.38)

Clearly, the estimate (10.38) is not uniform, neither with respect to T nor for
h → 0. But for each fixed mesh step h we have a strictly positive discrete density �h

on any given time interval [0,T ].

10.2.3 Minimum Entropy Principle and Positivity
of the Discrete Pressure and Temperature

In what follows we want to derive the minimum entropy principle from the renor-
malized discrete entropy inequality (10.22), where we consider

φh = 1, χ(sh) = (sh − s)−, −∞ < s < min sh(0).

Realizing that

� → � log(�) is convex, ϑ → log(ϑ) is concave, s → χ(s) is concave,

and (�, p) → �χ(s(�, p)) is concave,

the entropy production term r on the right hand side of (10.22) is nonnegative, and
we may infer that

∫
�

�h(t)(sh(t) − s)− dx ≥ 0 for any t ≥ 0.

Consequently, we have obtained the minimum entropy principle

sh(t) ≥ s for all t ≥ 0. (10.39)

We proceed by considering the entropy as a function of � and p,

s = 1

γ − 1
log

(
p

�γ

)
.
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Minimum entropy principle (10.39) immediately implies

0 < exp{(γ − 1)s} ≤ ph(t)

�
γ

h (t)
for all t ≥ 0. (10.40)

In particular, the pressure is positive and (10.16), meaning the relation

ϑh(t) = ph(t)

�h(t)

is valid for any t ≥ 0. Evoking the energy bound (10.18) we get

1

2

∫
�

|mh(t)|2
�h(t)

dx + cv

∫
�

�h(t)ϑh(t) dx ≤ E0 for all t ≥ 0. (10.41)

Thus going back to (10.40) we obtain

∫
�

�
γ

h (t) dx
<∼
∫
�

ph(t) dx
<∼ E0 for all t ≥ 0. (10.42)

The following lemma summarizes the properties of discrete solution (�h,mh,Eh)

obtained by the VFV method (10.11)–(10.13).

Lemma 10.3
Suppose that the initial data (�0,h, m0,h, E0,h) satisfy

�0,h ≥ � > 0, E0,h − 1

2

|m0,h|2
�0,h

> 0. (10.43)

Then the semidiscrete approximate system (10.11)–(10.13) admits a unique global-
in-time solution (�h,mh,Eh) such that

�h(t) > 0, Eh(t) − 1

2

|mh(t)|2
�h(t)

> 0 for any t ≥ 0

and the following a priori bounds hold uniformly for h → 0:

‖�h‖L∞(0,T ;Lγ (�))

<∼ 1, ‖mh‖L∞(0,T ;L2γ /(γ+1)(�))

<∼ 1, ‖Eh‖L∞(0,T ;L1(�))

<∼ 1.

(10.44)

Moreover, the renormalized entropy balance (10.24) holds.
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10.2.4 Weak BV Estimates

We conclude the discussion on the stability properties of the VFV method by deriv-
ing some suitable weak BV estimates. To this end we examine more closely the
dissipation mechanism hidden in the entropy production term rh, cf. (10.22).

Theorem 10.2 (Weak BV estimates)
Let (�h,mh,Eh) be the family of approximate solutions generated by the VFV

method. Let the hypothesis (10.43) on the initial data hold.
Then we have

∫
�

�hsh(t) dx
<∼ 1 +

∫
�

Eh(t) dx ≤ 1 + E0, (10.45)

and the following weak BV estimates

T∫
0

∑
σ∈Eint

∫
σ

hα−1 [[uh]]2
{{

1

ϑh

}}
dSx dt

+
T∫

0

∑
σ∈Eint

∫
σ

hε

2

(
�h

in

ϑout
h

+ �h
out

ϑ in
h

)
[[uh]]2 dSx dt

+ 1

2

T∫
0

∑
σ∈Eint

∫
σ

(
1

ϑh

)down

�
up
h | {{uh}} · n| [[uh]]2 dSx dt

+
T∫

0

∑
σ∈Eint

∫
σ

(
˜
[[
b(�h)

]]− b′(�down
h )

[̃[
�h
]]) | {{uh}} · n|dSx dt

− cv

T∫
0

∑
σ∈Eint

∫
σ

�
up
h

(
˜

[[
log(ϑh)

]]− 1

ϑdown
h

[̃[ϑh]]

)
| {{uh}} · n|dSx dt

− cv

T∫
0

∑
σ∈Eint

∫
σ

hε min{�in
h , �out

h } [[ϑh]]

[[
1

ϑh

]]
dSx dt

+
T∫

0

∑
σ∈Eint

∫
σ

hε
[[
�h
]] [[

log(�h)
]]
dSx dt

<∼ (1 + E0).

(10.46)

Proof In view of the minimum entropy principle established in (10.39), it is enough
to observe that
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�h log

(
ϑ
cv
h

�h

)
<∼ 1 + �hϑh provided 0 < �h

<∼ ϑ
cv
h .

Seeing that �h log(�h) is controlled by (10.42) we restrict ourselves to �h log(ϑ
cv
h ).

Here,
�h log(ϑ

cv
h )

<∼ �hϑh
<∼ E0 if ϑh ≥ 1,

while
|�h log(ϑ

cv
h )| ≤ ϑ

cv
h | log(ϑcv

h )| <∼ 1 for ϑh ≤ 1.

Thus we have shown (10.45).
Now, we take φh = 1, χε(s) = min{s, 1

ε
} in the renormalized entropy balance

(10.32). Letting ε → 0 and recalling (10.27) we obtain the uniform estimate:

T∫
0

∑
σ∈Eint

∫
σ

hα−1 [[uh]]2
{{

1

ϑh

}}
dSx dt

+
T∫

0

∑
σ∈Eint

∫
σ

hε

2

(
�h

in

ϑout
h

+ �h
out

ϑ in
h

)
[[uh]]2 dSx dt

+ 1

2

T∫
0

∑
σ∈Eint

∫
σ

(
1

ϑh

)down

�
up
h | {{uh}} · n| [[uh]]2 dSx dt

+
T∫

0

∑
σ∈Eint

∫
σ

([̃[
b(�)

]]− b′(�down
h )

[̃[
�h
]]) | {{uh}} · n|dSx dt

− cv

T∫
0

∑
σ∈Eint

∫
σ

�down
h

(
˜

[[
log(ϑh)

]]− 1

ϑdown
h

[̃[ϑh]]

)
| {{uh}} · n|dSx dt

−
T∫

0

∑
σ∈Eint

hε

∫
σ

([[∇�(�hsh)
]] [[

�h
]]+ [[∇p(�hsh)

]] [[
ph
]])

dSx dt
<∼ (1 + E0).

(10.47)
Direct manipulation of the last integral in (10.47) yields
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−
T∫

0

∑
σ∈Eint

hε

∫
σ

[[∇�(�hsh)
]] [[

�h
]]+ [[∇p(�hsh)

]] [[
ph
]]
dSx dt

= −cv

T∫
0

∑
σ∈Eint

∫
σ

hε {{�h}} [[ϑh]]

[[
1

ϑh

]]
dSx dt

+
T∫

0

∑
σ∈Eint

∫
σ

hε
[[
�h
]] [[

log(�h)
]]
dSx dt

− cv

T∫
0

∑
σ∈Eint

∫
σ

hε

([[
log(ϑh)

]]+ {{ϑh}}
[[

1

ϑh

]]) [[
�h
]]
dSx dt.

Next, we show that

− [[
�h
]] ([[

log(ϑh)
]]+ {{ϑh}}

[[
1

ϑh

]])
≤ −1

2
| [[�h

]] | [[ϑh]]

[[
1

ϑh

]]
. (10.48)

First realize that both expressions in the above inequality are invariant with respect
to the change “in” and “out”. Moreover, the right-hand side is invariant with respect
to the same operation in �h and ϑh separately. Thus, it is enough to show (10.48)
assuming �in

h ≥ �out
h . In other words, − [[�h

]] = | [[�h
]] | ≥ 0. Consequently, the

proof of (10.48) reduces to the inequality

[[
log(ϑh)

]]+ {{ϑh}}
[[

1

ϑh

]]
≤ −1

2
[[ϑh]]

[[
1

ϑh

]]
.

Denoting Z = ϑout
h

ϑ in
h
, we have to show

log(Z) − 1

2

(
Z − 1

Z

)
≤ 1

2

(
Z + 1

Z

)
− 1

or
log(Z) ≤ Z − 1.

The latter is clear since log is a concave function. Relations (10.48) and (10.47) yield
(10.46) and conclude the proof.

10.3 Consistency

The next step towards the convergence is to prove that the VFV scheme (10.11)–
(10.13) is consistentwith theEuler system (7.14)–(7.15) in the sense ofDefinition 8.5.
Careful analysis of consistency error below shows that this can be done under addi-
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tional hypotheses on the boundedness of discrete density from below and discrete
temperature from above uniformly for h → 0.

Theorem 10.3 (Consistency of VFV scheme)
Suppose that the initial data (�0,h, m0,h, E0,h) satisfy

�0,h ≥ � > 0, E0,h − 1

2

|m0,h|2
�0,h

> 0.

Let (�h,mh,Eh) be the unique solution of the VFV scheme (10.11)–(10.13) on the
time interval [0,T ].

Then

⎡
⎣∫

�

�hϕ dx

⎤
⎦

t=τ

t=0

=
∫ τ

0

∫
�

[
�h∂tϕ + mh · ∇xϕ

]
dx dt +

∫ τ

0
e1,h(t, ϕ) dt (10.49)

for any ϕ ∈ C2([0,T ] × �);

⎡
⎣∫

�

mh · ϕ dx

⎤
⎦

t=τ

t=0

=
∫ τ

0

∫
�

[
mh · ∂tϕ + mh ⊗ mh

�h
: ∇xϕ + phdivxϕ

]
dx dt

+
∫ τ

0
e2,h(t,ϕ) dt

for any ϕ ∈ C2([0,T ] × �;Rd ), ϕ · n|∂� = 0;

∫
�

Eh(t) dx =
∫
�

E0,h dx; (10.50)

⎡
⎣∫

�

�hχ(sh)ϕ dx

⎤
⎦

t=τ

t=0

≥
∫ τ

0

∫
�

[
�hχ(sh)∂tϕ + χ(sh)mh · ∇xϕ

]
dx dt

+
∫ τ

0
e3,h(t, ϕ) dt

(10.51)

for any ϕ ∈ C2([0,T ] × �), ϕ ≥ 0, and any χ ,

χ : R → R a nondecreasing concave function, χ(s) ≤ χ for all s ∈ R.

If, in addition,

0 < α <
4

3
, (10.52)
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and

0 < � ≤ �h(t), ϑh(t) ≤ ϑ for all t ∈ [0,T ] uniformly for h → 0, (10.53)

then

‖ej,h(·, ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 , j = 1, 3, ‖e2,h(·,ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 ,

for some β > 0.

Proof First of all we note that in view of the minimum entropy principle (10.39)
the hypothesis (10.53) yields the uniform boundedness of the discrete density and
temperature as h → 0. Indeed, under the assumption

0 < ϑh(t) ≤ ϑ for all t ∈ [0,T ] uniformly for h → 0, (10.54)

theminimum entropy principle (10.39) yields a similar bound on the discrete density,

0 < �h(t) ≤ � for all t ∈ [0,T ] uniformly for h → 0. (10.55)

On the other hand, in view of (10.39) assuming

0 < � ≤ �h(t) for all t ∈ [0,T ] uniformly for h → 0 (10.56)

implies a similar lower bound on the discrete temperature,

0 < ϑ ≤ ϑh(t) for all t ∈ [0,T ] uniformly for h → 0. (10.57)

Under these circumstances, we easily deduce from the total energy inequality (10.41)
and weak BV estimates (10.46) the following bounds:

sup
t∈[0,T ]

‖uh(t)‖L2(�)

<∼ 1, (10.58)

T∫
0

∑
σ∈Eint

∫
σ

| {{uh}} · n| [[uh]]2 dSx dt <∼ 1, (10.59)

T∫
0

∑
σ∈Eint

∫
σ

| {{uh}} · n| [[�h
]]2

dSx dt
<∼ 1, (10.60)

T∫
0

∑
σ∈Eint

∫
σ

| {{uh}} · n| [[ϑh]]
2 dSx dt

<∼ 1, (10.61)
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T∫
0

∑
σ∈Eint

∫
σ

hε [[uh]]2 dSx dt
<∼ 1. (10.62)

In particular, we obtain the estimates

hα−1

T∫
0

∑
σ∈Eint

∫
σ

[[uh]]2 dSx dt
<∼ 1, (10.63)

T∫
0

∑
σ∈Eint

∫
σ

λh
[[
�h
]]2

dSx dt
<∼ 1, (10.64)

T∫
0

∑
σ∈Eint

∫
σ

λh [[ϑh]]
2 dSx dt

<∼ 1, (10.65)

where λh ≈ | {{uh}} · n| + hε. In view of our hypothesis (10.53), the product rule
yields

[[
ph
]] ≈ [[

�h
]]+ [[ϑh]] , (10.66)

and the estimates (10.64), (10.65) imply

T∫
0

∑
σ∈Eint

∫
σ

hε
[[
�h
]]2

dSx
<∼ 1, (10.67)

T∫
0

∑
σ∈Eint

∫
σ

hε [[ϑh]]
2 dSx

<∼ 1. (10.68)

Moreover, by virtue of the minimum entropy principle (10.39), the entropy sh is
bounded below uniformly for h → 0. As the cut-off function χ is supposed to be
bounded from above, we may assume

|χ(sh)| <∼ 1 for h → 0. (10.69)

Having derived the necessary bounds to control the consistency error we proceed
step by step with the estimates.

Let ϕ ∈ C2([0,T ] × �) and ϕ ∈ C2([0,T ] × �;Rd ), ϕ · n|∂� = 0. We take
φh = �Qφ and ϕh = �Qϕ in the continuity equation (10.11) and the momentum
equation (10.12), respectively. Moreover, we consider ϕh = �Qϕ in the renormal-
ized discrete entropy inequality (10.24) for a function ϕ ∈ C2([0,T ] × �) such that
ϕ ≥ 0. In what follows we show the consistency of the VFV scheme in three steps.
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(1) Convective terms:
To show the consistency of the numerical fluxes in the continuity and momentum
equations, as well as the numerical entropy flux we recall the identity (8.13c) from
Lemma 8.1,

∫
�

rhuh · ∇xϕ dx −
∫
Eint

Fup
h [rh,uh]

[[
�Qϕ

]]
dSx =

4∑
j=1

Ej(rh),

where

E1(rh) = 1

2

∫
Eint

| {{uh}} · n| [[rh]]
[[
�Qϕ

]]
dSx,

E2(rh) = 1

4

∫
Eint

[[uh]] · n [[rh]]
[[
�Qϕ

]]
dSx,

E3(rh) =
∫
�

rhuh ·
(
∇xϕ − ∇h

(
�Qϕ

))
dx,

E4(rh) =
∫
Eint

hε [[rh]]
[[
�Qϕ

]]
dSx

are the errors to be controlled. Recall
∫
Eint

dSx ≡ ∑
σ∈Eint

∫
σ

dSx. The first three of them

correspond to the upwind part of the numerical flux and hence need to be controlled
for the consistency of the numerical entropy flux as well, specifically for rh either
equal to �h, �huj,h, j = 1, . . . , d , or �hχ(sh). The last term only appears in the
numerical flux of the continuity and momentum equations, and thus needs to be
handled for rh = �h and rh = �huj,h, j = 1, . . . , d . The hε-term in the numerical
entropy flux reads

E5 = hε

∫
Eint

({{∇�(�hχ(sh))
}} [[

�h
]]+ {{∇p(�hχ(sh))

}} [[
ph
]] ) [[

�Qϕ
]]
dSx.

In what follows we show Ej, j = 1, . . . , 5 vanish as h → 0.

• Term E1: In view of (19) it is enough to show that

E1,h(rh) = h
∫
Eint

| {{uh}} · n| |[[rh]]| dSx → 0, (10.70)

as h → 0 for any fixed ϕ ∈ C2(�).
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Let rh be either equal to �h or �hχ(sh). The error can be handled as

h
∫
Eint

| {{uh}} · n| |[[rh]]| dSx <∼ h
∫
Eint

| {{uh}} · n|
(
| [[�h

]] | + | [[ϑh]] |
)
dSx

<∼ h

⎛
⎝∫
Eint

| {{uh}} | dSx
⎞
⎠

1/2⎛
⎝∫
Eint

| {{uh}} · n|
([[

�h
]]2 + [[ϑh]]

2
)
dSx

⎞
⎠

1/2

<∼ √
h‖uh‖1/2L1(�)

F1
h

<∼ √
hF1

h , ‖F1
h‖L2(0,T )

<∼ 1.

We are left with E1,h(�huj,h), specifically,

h
∫
Eint

| {{uh}} · n| ∣∣[[�huj,h
]]∣∣ dSx

<∼ h
∫
Eint

| {{uh}} · n|| [[uh]] | dSx + h
∫
Eint

| {{uh}} · n|| {{uh}} || [[�h
]] | dSx.

The first integral can be estimated as

h
∫
Eint

| {{uh}} · n|| [[uh]] | dSx <∼ h

⎛
⎝∫
Eint

[[uh]]2 dSx

⎞
⎠

1/2⎛
⎝∫
Eint

| {{uh}} |2 dSx
⎞
⎠

1/2

<∼ h
3
2 − α

2 F2
h h

− 1
2 ‖uh‖L2(�) ≤ h1−

α
2 F2

h , ‖F2
h‖L2(0,T )

<∼ 1,
(10.71)

where we have used the trace inequality, (10.58) and (10.63). Next, by Hölder’s
inequality, the trace inequality, (10.60), we get

h
∫
Eint

| {{uh}} · n|| {{uh}} || [[�h
]] | dSx

<∼ h

⎛
⎝∫
Eint

| {{uh}} |3 dSx
⎞
⎠

1/2⎛
⎝∫
Eint

| {{uh}} · n| [[�h
]]2

dSx

⎞
⎠

1/2

<∼ √
h‖uh‖3/2L3(�)

F3
h , ‖F3

h‖L2(0,T )

<∼ 1.

Now, in view of the interpolation inequality

‖uh‖L3(�)

<∼ ‖uh‖1/2L2(�)
‖uh‖1/2L6(�)

,
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combined with (10.58), we obtain

h
∫
Eint

| {{uh}} · n| | {{uh}} || [[�h
]] | dSx <∼ √

h‖uh‖3/4L6(�)
F3
h .

Finally, we apply the discrete Sobolev embedding (10.34) and (10.63) to conclude

h
∫
Eint

| {{uh}} · n|| {{uh}} || [[�h
]] | dSx <∼ √

hF3
h

⎛
⎝1 +

⎛
⎝∫
Eint

[[uh]]2

h
dSx

⎞
⎠

1/2⎞
⎠

3/4

<∼ h
4−3α
8 F3

hF
4
h , ‖F4

h‖L8/3(0,T )

<∼ 1.

Note that (4 − 3α)/8 > 0 due to (10.52).
• Term E2: Using (19) we only need to show that

E2,h(rh) = h
∫
Eint

|[[uh]] · n| |[[rh]]| dSx → 0 (10.72)

as h → 0 for any fixed ϕ ∈ C2(�).

With (10.55), (10.56), and (10.69) at hand, the convergence of these errors for rh
either equal to �h or �hχ(sh) reduces to showing

h
∫
Eint

| [[uh]] | dSx → 0.

To see this, we use Hölder’s inequality,

h
∫
Eint

| [[uh]] | dSx ≤ h

⎛
⎝∫
Eint

[[uh]]2 dSx

⎞
⎠

1/2⎛
⎝∫
Eint

1 dSx

⎞
⎠

1/2

<∼ √
h

⎛
⎝∫
Eint

[[uh]]2 dSx

⎞
⎠

1/2

<∼ h1−
α
2 F2

h , ‖F2
h‖L2(0,T )

<∼ 1,

where the last inequality follows from (10.63).
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Analogously as above, we need to show E2,h(�huj,h) → 0 as h → 0. It rewrites as

h
∫
Eint

∣∣[[�huj,h
]]∣∣ |[[uh]] · n| dSx

<∼ h
∫
Eint

[[uh]]2 dSx + h
∫
Eint

| {{uh}} || [[uh]] | dSx

<∼ h2−αF5
h + h

⎛
⎝∫
Eint

[[uh]]2 dSx

⎞
⎠

1/2⎛
⎝∫
Eint

| {{uh}} |2 dSx
⎞
⎠

1/2

<∼ h2−αF5
h + h

3
2 − α

2 F2
h h

− 1
2 ‖uh‖L2(�)

<∼ h2−αF5
h + h1−

α
2 F2

h , ‖F5
h‖L1(0,T )

<∼ 1.

• Term E3: For this integral with rh either equal to �h, �huh or �hχ(sh) we directly
get ∫

�

rhuh ·
(
∇xϕ − ∇h

(
�Qϕ

))
dx

<∼ h ‖rh‖L2 ‖uh‖L2 <∼ h

due to (10.20), (10.55), (10.56), (10.58), and (10.69).

• Term E4: Firstly, let rh = �h.Hölder’s inequality with (10.19) and (10.67) directly
yield

∫
Eint

hε
[[
�h
]] [[

�Qϕ
]]
dSx

<∼
⎛
⎝∫
Eint

hε
[[
�h
]]2

dSx

⎞
⎠

1/2⎛
⎝∫
Eint

h2+ε dSx

⎞
⎠

1/2

<∼ h
1+ε
2 F6

h , ‖F6
h‖L2(0,T )

<∼ 1.

Secondly, for rh = �huh, analogously as above, using the product rule, the trace
inequality, and bounds (10.55), (10.62), (10.63), (10.67) we get

∫
Eint

hε
[[
�huh

]] · [[�Qϕh

]]
dSx

<∼ h

⎛
⎝∫
Eint

hε
[[
�h
]]2

dSx

⎞
⎠

1/2⎛
⎝∫
Eint

hε| {{uh}} |2 dSx
⎞
⎠

1/2

+ h
1+ε
2

⎛
⎝∫
Eint

hε [[uh]]2 dSx

⎞
⎠

1/2

<∼ h
1+ε
2 ‖uh‖L2(�)F

6
h + h

1+ε
2 F7

h
<∼ h

1+ε
2 F6

h + h
1+ε
2 F7

h , ‖F7
h‖L2(0,T )

<∼ 1.

Both exponents of h are positive as ε > −1.
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• Term E5: Finally, (10.66), (10.67) and (10.68) imply

∫
Eint

hε
( {{∇�(�hχ(sh))

}} [[
�h
]]+ {{∇p(�hχ(sh))

}} [[
ph
]] ) [[

�Qϕ
]]
dSx

<∼ √
h

⎛
⎝∫
Eint

hε
[[
�h
]]2

dSx

⎞
⎠

1/2

+ √
h

⎛
⎝∫
Eint

hε [[ϑh]]
2 dSx

⎞
⎠

1/2

<∼ √
h(F6

h + F8
h ), ‖F8

h‖L2(0,T )

<∼ 1.

(2) Artificial viscosity term:
In accordancewith (10.19), for the artificial viscosity term in themomentumequation
(10.12), we get

hα−1
∫
Eint

[[uh]] · [[�Qϕ
]]
dSx

<∼ hα−1

⎛
⎝∫
Eint

[[uh]]2 dSx

⎞
⎠

1/2⎛
⎝∫
Eint

h2 dSx

⎞
⎠

1/2

<∼ hα− 1
2

⎛
⎝∫
Eint

[[uh]]2 dSx

⎞
⎠

1/2

<∼ h
α
2 F2

h .

(3) Pressure term:
In order to control the last remaining term in the momentum equation (10.12) we
recall the definition of the discrete divergence operator (15) and compute

∫
Eint

{{ph}}n · [[�Qϕ
]]
dSx =

∫
�

phdivh(�Qϕ) dx

=
∫
�

ph
(
divh(�Qϕ) − divxϕ

)
dx +

∫
�

phdivxϕ dx.

In view of the hypotheses on uniform boundedness of the approximate density and
temperature the corresponding consistency error can be easily estimated using (20),

∫
�

ph
(
divh(�Qϕ) − divxϕ

)
dx

<∼ h ‖ph‖L1 ‖ϕ‖C2 ,

and tends to 0 for h → 0 as ph ∈ L∞(0,T ;L1(�)).

Summing up the latter results we get the consistency formulation of the VFV
scheme (10.11)–(10.13).
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10.4 Convergence

Based on the results of the previous two sections and applying the convergence
results for consistent approximations from Sects. 7.3, 7.4 we are now ready to
prove the convergence of the VFV method. Although the approximate problem
was stated and solved in terms of the field equations for the conservative variables
(�h,mh,Eh), the convergence will be studied in terms of the conservative-entropy
variables (�h,mh, Sh). The reason is that the uniform bounds obtained in the previ-
ous part are not strong enough to control integrability of the convective terms in the
energy equation (10.13) that must be replaced by the entropy balance.

As the approximate density and temperature are strictly positive, there is a bijec-
tive mapping between the conservative variables (�h,mh,Eh) computed by the VFV
method (10.11)–(10.13) and the conservative-entropy variables (�h,mh, Sh), where

Eh = |mh|2
2�h

+ e(�h, Sh), the internal energy e(�, S) is given by (5.25), and equiv-

alently Sh = 1

γ − 1
�h log

(
γ − 1

�
γ

h

(
Eh − |mh|2

�h

))
, cf. Sections 4.1, 5.1.2. Thus,

for the purpose of convergence analysis we may consider a sequence of numeri-
cal solutions in the conservative-entropy variables {�h,mh, Sh}h↘0 which yields a
consistent approximation of the Euler system in the sense of Definition 5.2. Conse-
quently, there exists a subsequence {�hn ,mhn , Shn}hn↘0 that generates a Young mea-
sure

{
Vt,x
}

(t,x)∈(0,T )×�
,

Vt,x ∈ P(Rd+2), Rd+2 = {̃
� ∈ R, m̃ ∈ Rd , S̃ ∈ R

}
Vt,x

{̃
� > 0, S̃ ≥ s̃�

} = 1 for a.a. (t, x) ∈ (0,T ) × �,

which is a DMV solution in the sense of Definition 5.3.Moreover, in accordance with
the extra hypotheses imposed on the sequence of numerical solutions, we obtain:

Vt,x

{
0 < � ≤ �̃ ≤ �, s̃� ≤ S̃ ≤ �̃ s

}
= 1 for a.a. (t, x) ∈ (0,T ) × �.

The first two coordinates of the barycenter of the Young measure

〈V; �̃〉 = �, 〈V; m̃〉 = m (10.73)

are weakly continuous functions, specifically,

� ∈ Cweak([0,T ];Lγ (�)), m ∈ Cweak([0,T ];L 2γ
γ+1 (�;Rd ))

while S = 〈
V; S̃〉 satisfies

S ∈ L∞(0,T ;Lγ (�)) ∩ BVweak([0,T ];Lγ (�)).



10.4 Convergence 339

More importantly, [�,m, S] is a DW solution in the sense of Definition 5.7. Applying
Theorem 5.1 we have the following convergence result for the VFV method.

Theorem 10.4 (Weak convergence of the VFV method)
Let {�h,mh, Sh}h↘0 be the family of numerical solutions generated by the VFV

method (10.11)–(10.13)with 0 < α < 4/3 and ε > −1. In addition, assume that the
numerical solutions remain in the gas nondegenerate region, i.e. 0 < � ≤ �h and

ϑh ≤ ϑ , uniformly for h → 0.
Then there exists a subsequence {�hn ,mhn , Shn}hn↘0 such that:

• weak convergence and defect measures

�hn → � weakly-(∗) in L∞((0,T ) × �),

Shn → S weakly-(∗) in L∞((0,T ) × �),

mhn → m weakly-(∗) in L∞(0,T ;L2(�;Rd ))

as hn → 0, where [�,m, S] is a DW solution of the Euler system (7.14)–(7.16). In
addition,

� ≥ � > 0, S ≥ �s a.a. in (0,T ) × �.

Moreover,

E(�hn ,mhn , Shn) =
[
1

2

|mhn |2
�hn

+ �hne(�hn ,mhn)

]
→ E(�,m, S)

weakly-(*) in L∞(0,T ;M(�)) and the energy defect measure E is a sum of
the energy concentration defect Ecd and the energy oscillation defect Eod , E =
Ecd + Eod

Ecd ≡ E(�,m, S) − 〈
V;E(̃�, m̃, S̃)

〉 ∈ L∞(0,T ;M+(�)),

Eod ≡ 〈
V;E(̃�, m̃, S̃)

〉− E(�,m, S) ≥ 0.

Furthermore, we have for the momentum flux

(
mhn ⊗ mhn

�hn

+ p(�hn , Shn)I

)
→
(
m ⊗ m

�
+ p(�, S)I

)

weakly-(*) in L∞(0,T ;M(�;Rd×d
sym )) and the Reynolds defect R is a sum of the

concentration defect Rcd and the oscillation defect Rod , R = Rcd + Rod

Rcd ≡ m ⊗ m
�

−
〈
V; m̃ ⊗ m̃

�̃

〉
∈ L∞(0,T ;M+(�;Rd×d

sym )),

Rod ≡
〈
V;
(
m̃ ⊗ m̃

�̃
+ p(̃�, S̃)I

)〉
−
(
m ⊗ m

�
+ p(�, S)I

)
.
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Specifically, the Reynolds defect is controlled by the energy defect in the following
way

d E ≤ tr[R] ≤ d E for certain constants 0 < d ≤ d . (10.74)

Proof follows from Theorem 5.1, the detailed discussion of the limiting process is
presented in Sect. 5.1.3. As pointed in Remarks 5.4 and 5.6 both the concentration
and oscillation energy defects are nonnegative. The control of the Reynolds defect by
the energy defect (10.74) follows from (5.53). Note that there is no defect measure
in the entropy inequality, since the limiting process in the entropy convective term
yields

Shn
mhn

�hn

→ S
m
�

=
〈
V; S̃ m̃

�̃

〉
weakly-(∗) in L∞(0,T ;L2(�;Rd )),

see Sect. 5.1.3.4.

Clearly, the weak convergence of the VFVmethod is not a very suitable indication
in practical numerical simulations. It is the strong convergence that is more desirable.
As elaborated in the analytical part, it is therefore more convenient to pass to the
corresponding DMV solution that can be visualized by computing its Cesàro means.
A suitable tool to achieve this goal is theK–convergence that provides strong conver-
gence of the Cesàro averages to a DW solution (the barycenter of the DMV solution)
as well as strong convergence of the approximate deviation of the associated Young
measure.

Theorem 10.5 (K–convergence of the VFV method )
Under the hypothesis of Theorem 10.4 there exists a subsequence

{�hn ,mhn , Shn}hn↘0 such that

• strong convergences of Cesàro averages

1

N

N∑
n=1

�hn → � as N → ∞ in Lq((0,T ) × �), for any 1 ≤ q < ∞,

1

N

N∑
n=1

mhn → m as N → ∞ in Lq(0,T ;L2(�;Rd )) for any 1 ≤ q < ∞,

1

N

N∑
n=1

Shn → S as N → ∞ in Lq((0,T ) × �) for any 1 ≤ q < ∞.

• Lq convergencetoYoungmeasure

dWs

[
1

N

N∑
n=1

δ[�hn ,mhn ,Shn ];V
]

→ 0 as N → ∞ in Lq((0,T ) × �)

for any 1 ≤ q < s ≤ 2.
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• L1 convergenceofthedeviation

1

N

N∑
n=1

〈
[�hn ,mhn , Shn ] − 1

N

N∑
k=1

[�hn ,mhn , Shn ]
〉

≡
〈
1

N

N∑
n=1

δ[�hn ,mhn ,Shn ];
∣∣∣∣∣[̃�, m̃, S̃] −

〈
1

N

N∑
n=1

δ[�hn ,mhn ,Shn ]; [̃�, m̃, S̃]
〉∣∣∣∣∣
〉

→
〈
V; ∣∣[̃�, m̃, S̃] − [�,m, S]∣∣〉 as N → ∞ in L1((0,T ) × �).

Proof follows from (7.54), (7.55) and Theorem 10.6.

Finally, we are ready to show that a sequence of finite volume solutions itself
converges strongly, not only its Cesàro averages. Indeed, applying Theorems 7.5, 7.6
and 7.8 we obtain that the finite volume solutions converge strongly. Consequently,
the limit is a weak (or strong) solution of the Euler system (5.16)–(5.19) with the
entropy inequality (5.21) (or the entropy equality (5.20)).

Theorem 10.6 (Strong convergence of the VFV method) Let {�h,mh, Sh}h↘0 be
finite volume solutions generated by the VFV method (10.11)–(10.13) with 0 < α <

4/3, ε > −1 and with the initial data �0,h = �Q�0, m0,h = �Qm0, S0,h = �QS0,
�0 ≥ � > 0, S0 ≥ �s. Assume that the numerical solutions remain in a gas nonde-

generate region, i.e. 0 < � ≤ �h and ϑh ≤ ϑ .
Let

(�hn ,mhn , Shn) → [�,m, S] as n → ∞

in the sense specified in Theorem 10.4.
Then the following holds:

• weak solution
If [�,m, S] is a weak solution of the Euler system (7.14)–(7.16) in the sense of
Definition 2.4, satisfying the entropy inequality (2.70), and emanating from the
initial data [�0,m0, S0], then

Vt,x = δ[�(t,x),m(t,x),S(t,x)] for a.a. (t, x) ∈ (0,T ) × �,

and

�hn → � in Lq((0,T ) × �),

mhn → m in Lq(0,T ;L2(�;Rd )),

Shn → S in Lq((0,T ) × �),

1

2

|mhn |2
�hn

+ �hne(�hn , Shn) → 1

2

|m|2
�

+ �e(�, S) in Lq(0,T ;L1(�))

for any 1 ≤ q < ∞.
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• strong solution
Suppose that the Euler system admits a strong solution [�,m, S] in the class

�, S ∈ W 1,∞((0,T ) × �), m ∈ W 1,∞((0,T ) × �;Rd ), � ≥ � > 0 in [0,T ) × �

emanating from the initial data [�0,m0, S0]. Then for any 1 ≤ q < ∞ and h → 0

1

2

|mh|2
�h

+ �he(�h, Sh) → 1

2

|m|2
�

+ �e(�, S) in Lq(0,T ;L1(�))

and
�h → � in Lq((0,T ) × �),

mh → m in Lq(0,T ;L2(�;Rd )),

Sh → S in Lq((0,T ) × �).

• classical solution
Let � ⊂ Rd be a bounded Lipschitz domain and [�,m, S] such that

� ∈ C1([0,T ],×�), � ≥ � > 0, m ∈ C1([0,T ] × �;Rd ), S ∈ C1([0,T ] × �).

Then [�,m, S] is a classical solution to the Euler system and

�h → � in Lq((0,T ) × �),

mh → m in Lq(0,T ;L2(�;Rd )),

Sh → S in Lq((0,T ) × �)

as h → 0 for any q ≥ 1.

Proof of the strong convergence to a weak solution follows from Theorem 7.6, see
also the proof of Theorem 7.5. The crucial point is to realize that the energy defect
measures Ecd and Eod vanish and the strong convergence of E(�hn ,mhn , Shn) →
E(�,m, S) inLq(0,T ;L1(�)) follows. Due to the sharp formof the Jensen inequality,
cf. Lemma 7.1 we conclude that

Vt,x = δ[�(t,x),m(t,x),S(t,x)] for a.a. (t, x) ∈ (0,T ) × �,

and in view of Proposition 7.1 and a priori bounds (10.44) we obtain the strong
convergence of {�hn ,mhn , Shn}h↘0 to a weak solution [�,m, S].

The strong convergence to the strong solution follows from Theorem 7.8. Indeed,
if the strong solution to the Euler system exists, we apply the weak-strong unique-
ness principle established in Theorem 6.2 (see also Remark 6.4). Consequently, we
conclude that
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Vt,x = δ[�(t,x),m(t,x),S(t,x)], R = 0,

and a DW solution [�,m, S] is the strong solution. As the limit is unique, the whole
sequence of finite volume solutions {�h,mh, Sh}h↘0 converges strongly to the strong
solution. We note that the results of Theorem 7.8 hold not only for the periodic
boundary conditions but also for the impermeability boundary conditionsm · n = 0,
as long as the strong solution exists.

The last statement follows from the weak-strong uniqueness principle between a
DW solution and the classical solution, cf. Theorem 6.2.

Remark 10.1 It is crucial to notice the substantial difference between the “weak”
and “strong” part of the conclusion of the above theorem. In the “weak” statement,
we suppose that the approximate solutions, expressed in terms of the conservative-
entropy variables, converge (weakly) to a weak solution of the limit problem. The
statement need not hold if we instead suppose the limit problem admits a weak
solution. In the “strong” statement (the second statement), we suppose that the limit
problem admits a (unique) strong solution and deduce strong convergence to it.

There is also a delicate difference between the convergence result in the second and
third statements. While in the convergence result to the strong solution its existence
is postulated, in the convergence result to the classical solution we only require
smoothness of the limit [�,m, S]. In both cases the convergence holds for the whole
sequence {�h,mh, Sh}h↘0 which is advantageous to result on the K–convergence
presented in Theorem (10.5).

10.5 Numerical Experiments

To illustrate the concept ofK–convergence we consider the Kelvin–Helmholtz prob-
lem with shear flow over two interfaces. The basic mechanism of the Kelvin–
Helmholtz problem lies in the existence of a uniform velocity shear and fluids of
different densities superposed one over the other. Consequently, the instability devel-
ops that is characterized as unstable small scale motions occurring vertically and
laterally. It is a well-known fact that numerical methods for inviscid fluids do not
converge for this test problem as we will also see below. Our aim is to demonstrate
the role of K–convergence and to show experimentally that strong convergence of
the coarse-grained quantities, such as the mean and the first deviation.

Clearly, the VFV method works with the conservative variables (�h,mh,Eh).
Under the hypothesis of strict positivity of the discrete density there is a bijectivemap-
ping between the conservative variables (�h,mh,Eh) and the conservative-entropy
variables (�h,mh, Sh) in which we have proved the convergence theoretically. In
numerical simulations we will investigate convergence of the conservative-entropy
variables (�h,mh, Sh) as well as of the energy Eh. Although our theoretical results
of the K–convergence to a DW solution presented in Theorem 10.5 do not yield the
strong convergence for the energy, we will observe in numerical simulations below
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that the Cesàro averages of the energy converge strongly. Note however that the limit
of the Cesàro averages of the energy is in general neither equal to E(�,m, S) being
the function of the limiting DW solution [�,m, S] nor to 〈V;E(�̃, m̃, S̃)〉.

Let us first introduce the following abbreviations for averages

Ũhn = 1

n

n∑
j=1

Uhj , U †
hn

= 1

n

n∑
j=1

∣∣Uhj − Ũhn

∣∣ , Vn
t,x ≡ 1

n

n∑
j=1

δUhj (t,x)
,

whereU ∈ {�,m, S,E}.Wedenote byE1,E2,E3, andE4 theL1-error of the difference
between the numerical solution and the reference solution computedon thefinest grid,
the L1-error of the Cesàro averages, the L1-error of the deviation, and the L1-error of
the Wasserstein distance for the Cesàro average of the Dirac measures concentrated
on numerical solutions, respectively. More precisely, we have

E1 = ∥∥Uhn −UhN

∥∥ , E2 = ∥∥Ũhn − ŨhN

∥∥ ,

E3 =
∥∥∥U †

hn
−U †

hN

∥∥∥ , E4 =
∥∥∥W1(V

n
t,x,V

N
t,x)

∥∥∥ ,
(10.75)

where hn = 1
n , n is the number of rectangular mesh cells in each direction,N = 2048.

Thus, the reference solution Uref ≡ UhN . In all of the following tests we set � =
[0, 1]2 and apply periodic boundary conditions. We consider the following initial
data for the Kelvin–Helmholtz problem

(�, u1, u2, p)(x) =
{

(2,−0.5, 0, 2.5), if I1 < x2 < I2
(1, 0.5, 0, 2.5), otherwise.

Here the interface profiles Ij = Ij(x) ≡ Jj + εYj(x), j = 1, 2, are chosen to be small
perturbations around the lower x2 = J1 = 0.25 and the upper x2 = J2 = 0.75 inter-
face, respectively. Further,

Yj(x) =
m∑

k=1

akj cos(b
k
j + 2kπx1), j = 1, 2,

where akj ∈ [0, 1] and bkj , j = 1, 2, k = 1, . . . ,m are fixed numbers. The coefficients
akj have been normalized such that

∑m
k=1 a

k
j = 1 to guarantee that |Ij(x) − Jj| ≤ ε

for j = 1, 2. We have set m = 10 and ε = 0.01.
Inwhat followswepresent the numerical simulations obtained by theVFVmethod

with α = 1.8, ε = 0.8, upwind finite volume method, i.e. the VFV method without
the artificial diffusion terms of the order hε and hα , and the generalized Riemann
problem (GRP) finite volume method. The latter is chosen as an example of higher
order finite volumemethod. The GRPmethod is a second order finite volumemethod
based on the use of a solution to a generalized Riemann problem with piecewise
linear data. In the VFV method and the upwind finite volume method we use the
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Table 10.1 Convergence study for the Kelvin–Helmholtz problem: E1, E2, E3, and E4 errors for
density (left to right)
hn E1 E2 E3 E4

error EOC error EOC error EOC error EOC

(a) VFV scheme

1/64 3.09e−01 – 1.81e−01 – 2.00e−01 – 2.45e−01 –

1/128 3.13e−01 −0.02 1.26e−01 0.52 1.06e−01 0.92 1.64e−01 0.58

1/256 3.27e−01 −0.06 9.83e−02 0.36 7.44e−02 0.51 1.20e−01 0.45

1/512 3.54e−01 −0.12 6.94e−02 0.50 4.99e−02 0.58 8.62e−02 0.48

1/1024 3.58e−01 −0.01 4.59e−02 0.59 2.97e−02 0.75 5.54e−02 0.64

(b) upwind FV scheme

1/64 3.24e−01 – 2.41e−01 – 2.40e−01 – 2.97e−01 –

1/128 3.41e−01 −0.08 1.59e−01 0.61 1.21e−01 0.99 1.95e−01 0.61

1/256 3.64e−01 −0.09 1.12e−01 0.50 7.96e−02 0.60 1.34e−01 0.54

1/512 3.90e−01 −0.10 7.36e−02 0.60 5.23e−02 0.61 9.37e−02 0.52

1/1024 3.87e−01 0.01 4.75e−02 0.63 3.00e−02 0.80 6.02e−02 0.64

(c) GRP scheme

1/64 2.03e−01 – 1.28e−01 – 1.06e−01 – 1.44e−01 –

1/128 1.49e−01 0.45 6.95e−02 0.88 5.21e−02 1.03 9.98e−02 0.53

1/256 1.40e−01 0.08 4.45e−02 0.64 3.41e−02 0.61 6.52e−02 0.61

1/512 1.86e−01 −0.41 3.81e−02 0.22 2.48e−02 0.46 5.65e−02 0.21

1/1024 1.31e−01 0.50 2.33e−02 0.71 1.60e−02 0.63 2.18e−02 1.37

forward Euler method to solve the resulting ODE system which yields the first order
explicit approximation in time. On the other hand the GRP method profits from the
construction of an approximate Riemann solution at time tk + �t/2 and applies the
second order Runge–Kutta method.

At the final time T = 2 we can observe small-scales vortex sheets that already
been formed at the interfaces. In Table10.1 we show the results of the convergence
study for the errorsE1, . . . ,E4 in density. The experimental convergence order (EOC)
is determined by

EOC = log2(errn/err2n), (10.76)

where errn and err2n stand for the corresponding errors E1, . . . ,E4 evaluated at the
grids with hn and h2n mesh steps, respectively. We can clearly recognize that none of
the methods converges in the classical sense, i.e. single numerical solutions do not
converge, see the first column. This behavior is also demonstrated in the Figs. 10.1,
10.2.

The second, third and fourth columns in Table10.1 show the convergence results
for the Cesàro averages of numerical solutions and their first deviation, as well as
K–convergence of the Wasserstein distance of the corresponding Dirac measures.
We should point out that the convergence is strong in the L1-norm as proved above,
cf. Theorem 10.5. The graphs in Fig. 10.1 show the results of the convergence study
for all variables �,m, S,E. As expected, these variables behave in a similar manner.
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Fig. 10.1 Convergence study for the Kelvin–Helmholtz problem: E1, E2, E3, and E4 errors (left to
right)

Approximate solutions for the density computed by the second order GRP scheme
are presented in Fig. 10.2, which also clearly indicates that by refining the mesh we
recover finer and finer vortex structures and the method does not converge in the
classical sense. However, as already pointed out we have K–convergence of the
numerical solution and its first deviation, see Figs. 10.3, 10.4. The results obtained
by the VFV scheme are similar, but more diffusive due to the first order accuracy.

10.6 Conclusion, Bibliographical Remarks

The aim of this chapter was to present the convergence of a new finite volume
method, the so-called VFV method, that is based on the two-velocity model pro-
posed by Brenner, see [27–29]. Brenner’s approach to model dynamics of viscous
and heat conducting fluids is based on two velocity fields distinguishing the bulk
mass transport from the purely microscopic motion. On the one hand side this model
has been subjected in literature to thorough criticism due to the incompatibility with
certain physical principles. Nevertheless, on the other hand side some computational
simulations have been performed by Greenschields and Reese [122], Bardow and
Öttinger [12], Guo and Xu [125], who showed suitability of the model in specific sit-
uations. More recently, Guermond and Popov [124] rediscovered the Brenner model
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Fig. 10.2 Density computed by the GRP scheme at T = 2 for the Kelvin–Helmholtz problem on
a mesh with n × n cells

pointing out its striking similarity with certain numerical methods based on the finite
volume approximation of the inviscid fluids. In particular, unlike the conventional
and well accepted Navier–Stokes–Fourier system, the Brenner model reflects the
basic physical properties of the complete Euler system in the asymptotic limit of
vanishing viscosity coefficients. Thus, the Brenner model can be seen as a physically
admissible viscous regularization of the Euler system.

Consequently, the VFV method (10.11)–(10.13), that is based on the Brenner
model, enjoys some crucial properties of the Euler system, such as the positivity of
the approximate density and internal energy, the minimal entropy principle and the
Second law of thermodynamics. Thus, the VFV method that was proposed in [93]
belongs to the class of invariant domain preserving methods.

The analysis presented here has been done for the first order semidiscrete finite
volume method. The numerical solutions are piecewise constant function in space
and continuous in time. A generalization to a higher order method, where a suit-
able piecewise bilinear reconstruction is applied, is in principle possible and it is
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Fig. 10.3 Cesàro averages of the density computed by the GRPmethod onmeshes with n × n cells,
n = 64, 128, . . . ,N , for the Kelvin–Helmholtz problem

an interesting question for future study. In practical simulations the ODE system
(10.11)–10.13) can be approximated by any suitable ODE solver. Due to the nonlin-
earity of the ODE system one typically opts for an explicit ODE solver, such as the
explicit Euler or SSP (strong stability preserving) higher order time discretizations
[120].

In Sect. 10.5 we have presented simulations obtained not only by the first order
VFV method but also by the second order GRP finite volume method. The general-
ized Riemann problem finite volume method is one of successful standard numerical
methods to simulate the Euler equations. It was developed as an analytical second
order accurate extension of the classical Godunov finite volume method Ben–Artzi,
Falcovitz [15, 16]. A direct Eulerian GRP scheme was presented in Ben–Artzi, Li
[17], Li, Sun [153] by employing the regularity property of the Riemann invari-
ants. Theoretically, a close coupling between the spatial and temporal evolution is
recovered through the analysis of detailed wave interactions in the GRP scheme.
Numerical results presented in Sect. 10.5 for the GRP finite volume method confirm
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Fig. 10.4 Deviation of the density computed by the GRP method on meshes with n × n cells,
n = 64, 128, . . . ,N , for the Kelvin–Helmholtz problem

that analogous convergence results for the Cesàro averages, deviation as well as for
the Cesàro average of the corresponding Young measures hold. Consequently, we
believe that the convergence can be proved rigorously for the GRP method or other
standard finite volume methods applying the same tools as presented in Chaps. 9,
10.

As already pointed out before the results presented here can be seen as a nonlinear
generalization of the celebrated Lax equivalence principle. Indeed, showing that the
VFVmethod is stable and consistent already implies its convergence. In summary,we
have shown the following convergence results under the hypothesis that the numerical
solutions remain in a gas nondegenerate region, i.e. 0 < � ≤ �h and ϑh ≤ ϑ :

• the VFV method converges weakly to a DW solution of the Euler system
• the Cesàro averages of the VFV solutions converge strongly to a DW solution of
the Euler system

• if the above DW solution is a weak solution of the Euler system, then the VFV
method converges strongly to this weak solution
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• if the above DW solution belongs to the class of C1([0,T ] × �) functions, then it
is a classical solution and the convergence of the VFV method is strong

• the VFV method converges strongly to the strong solution of the Euler system on
the lifespan of the latter.

Whereas the first three convergence results hold (up to a suitable subsequence), the
convergence to the strong or classical solution holds for the whole finite volume
sequence generated by the VFV method as the mesh step h → 0.



Chapter 11
Finite Volume Method
for the Navier–Stokes System

Having studied finite volume approximation of the inviscid compressible fluids
in preceding chapters we now proceed with a finite volume approximation of the
Navier–Stokes system, cf. (3.14)–(3.16):

∂t� + divx(�u) = 0

∂t(�u) + divx(�u ⊗ u) + ∇xp(�) = divxS(∇xu)
(11.1)

where S is the viscous stress tensor

S(∇xu) = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI, μ > 0, λ ≥ −d − 2

d
μ,

and p is the pressure given by the isentropic EOS

p = a�γ , a > 0, γ > 1, (11.2)

cf. (2.71). The system is supplemented with the periodic boundary conditions (� =
T
d ) and the initial data

�(0) = �0 ≥ � > 0, �0 ∈ L∞(Td ), u(0) = u0 ∈ L∞(Td ;Rd ). (11.3)

The case of Dirichlet boundary conditions is discussed in Chap. 13, where amixed
finite volume – finite element method is studied.

The aim of this chapter is to show that the numerical solution is a consistent
approximation of the Navier–Stokes system in the sense of Definition 5.9. Then,
applying the theoretical results stated in Theorems 5.5, 7.12, and 7.13, we obtain
convergence of the scheme. More precisely, we need the numerical solution to be
stable in the sense of Definition 8.3 and consistent in the sense of Definition 8.6.
Our scheme is solvable at any step of discretization and preserves the total mass as
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well as positivity of the discrete densities. This is due to the presence of viscosity
in the approximated Navier–Stokes system. In particular, we may use the velocity u
rather than the momentum m as the main phase variable. Accordingly, the equation
of continuity can be exploited directly to avoid the arguments based on invariant
domains necessary in many standard schemes for the Euler system.

11.1 Numerical Method

We consider a fully discrete FV method approximating the Navier–Stokes system
(11.1) on a structured mesh in the sense of Definition 3, cf. also the notation intro-
duced in Preliminary material and Chap. 8. Clearly, the grid satisfies the mesh regu-
larity assumption (33). The computational domain is the flat torus� = T

d consistent
with the periodic boundary conditions. Accordingly, we have Eext = ∅ and E = Eint .
We use the upwinding flux functions introduced in (8.6) to approximate the convec-
tive terms.

Definition 11.1 (FV METHOD FOR THE NAVIER–STOKES SYSTEM)
Given the initial data (�0

h,u
0
h) = (�Q�0,�Qu0) ∈ Qh × Qh, the FV approxima-

tion {�k
h,u

k
h}NT

k=1 ∈ Qh × Qh is a solution of the following system of algebraic equa-
tions:

Dt�
k
h + divuph (�k

h,u
k
h) = 0,

Dtmk
h + divuph (mk

h,u
k
h) + ∇hp

k
h = μ�hukh + ν∇hdivhukh.

(11.4)

where ν = d−2
d μ + λ, mk

h = �k
hu

k
h, Qh = (Qh)

d and ph = p(�h). Here the discrete
operators ∇h, divh,�h are given in (11.15), and divuph is given in (8.9).

We may interpret the above FV method elementwisely for all K ∈ Th as

Dt�
k
K +

∑
σ∈E(K)

|σ |
|K |F

up
h [�k

h,u
k
h] = 0,

Dt(�
k
hu

k
h)K+

∑
σ∈E(K)

|σ |
|K |

(
Fup
h [�k

hu
k
h,u

k
h] + {{

pkh − νdivhukh
}}
n − μ

[[
ukh
]]

dσ

)
= 0,

whereFup
h [r,u] is the diffusive upwind flux given in (8.8), {{·}} and [[·]] are the average

and jump operators defined in (9), respectively.
For the purpose of numerical analysis it is convenient to rewrite the method in a

weak form.

Lemma 11.1 (FV method for the Navier–Stokes system: weak formulation)
Let (�k

h,u
k
h) ∈ Qh × Qh be a finite volume solution of (11.4).

Then (�k
h,u

k
h) fulfills the following weak formulation
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∫
Td

Dt�
k
hφh dx −

∫
E

Fup
h [�k

h,u
k
h] [[φh]] dSx = 0 for all φh ∈ Qh, (11.5a)

∫
Td

Dt(�
k
hu

k
h) · φh dx −

∫
E

Fup
h [�k

hu
k
h,u

k
h] · [[φh

]]
dSx −

∫
Td

pkhdivhφh dx

= −μ

∫
Td

∇Dukh : ∇Dφh dx − ν

∫
Td

divhukh divhφh dx for all φh ∈ Qh. (11.5b)

Note that the discrete gradient ∇D is different from ∇h. The former is based on
the dual element while the latter is based on the primary element, see in (11.16) and
(11.15) for their definitions.

11.1.1 Fundamental Properties

In this subsection we show some important properties of the FV method (11.5): the
conservation of total mass, positivity of the density, and the internal energy balance.
Finally, we establish existence of numerical solutions. We recall the notation

c ∈ co{a, b} if min{a, b} ≤ c ≤ max{a, b}. (11.6)

Lemma 11.2 (Positivity of density, mass conservation, and internal energy bal-
ance)

Let (�h,uh) be a solution to the FV method (11.5) with the initial density �0 > 0.
Then it enjoys the following properties:

1. Discrete conservation of mass.
∫
Td

�h(t) dx =
∫
Td

�0 dx ≡ M0, t ∈ (0,T ). (11.7)

2. Positivity of discrete density. �h(t) > 0 for all t ∈ (0,T ).

3. Internal energy balance (integrated renormalization).
For the pressure potential P(�) = a�γ

γ−1 we have

∫
Td

DtP(�k
h) dx +

∫
Td

p(�k
h)divhu

k
h dx = −�t

2

∫
Td

P′′(ξ)|Dt�
k
h|2 dx−

−
∫
E

P′′(�k
h,†)

[[
�k
h

]]2 (
hε + 1

2
| 〈ukh〉σ · n|

)
dSx,

(11.8)

for some �k
h,† ∈ co{(�k

h)
in, (�k

h)
out} for any σ ∈ E and ξ ∈ co{�k−1

h , �k
h}.
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Proof We refer to equation (8.16) and Lemma 8.3, respectively, for the proof of
mass conservation and positivity of density. Moreover, the internal energy balance is
a consequence of the renormalized continuity equation stated in Lemma 8.2, which
can be derived by setting φh = 1 and B = P(�h) in Lemma 8.2.

Remark 11.1 Note that 〈fh〉σ ≡ {{fh}}σ for fh ∈ Qh. To keep consistent with the nota-
tions of other chapters, we have decided to use {{�h}}σ and 〈uh〉σ respectively for the
mean value of density and velocity on a face σ .

The FV method (11.5) is a system of nonlinear algebraic equations. Next, we
show that it admits at least one solution.

Lemma 11.3 (Existence of a numerical solution)
Suppose that �0 > 0. Then for any k = 1, . . . ,NT , there exists a solution (�k

h,u
k
h)∈ Qh × Qh to the discrete problem (11.5). Moreover, �k

h > 0.

Proof The proof is done via the topological degree theory, specifically Theorem 15.
First, let us denote

V = {
(�k

h,u
k
h) ∈ Qh × Qh, �k

h > 0
}
,

W = {
(�k

h,u
k
h) ∈ Qh × Qh, ε < �k

h < C1,
∥∥ukh∥∥ ≤ C2

}
,

where
∥∥ukh∥∥ ≡ ∥∥∇Dukh

∥∥
L2(Td )

+ ∥∥ukh∥∥L2(Td )
. Note that by writing �k

h > c we mean

�k
K > c for all K ∈ Th.
It is obvious that the dimension of the spacesQh andQh is finite. Indeed the space

Qh can be identified as Qh ⊂ RM , where M is the total number of elements of Th.
Analogously, Qh ⊂ RN , where N = d M .

Second, we define the following mapping

F : V × [0, 1] → Qh × Qh, (�k
h,u

k
h, ζ ) �−→ (��,u�) = F(�k

h,u
k
h, ζ ),

where ζ ∈ [0, 1] and (��,u�) ∈ Qh × Qh satisfy

∫
Td

��φh dx =
∫
Td

�k
h − �k−1

h

�t
φh dx + ζ

∫
Td

divuph (�k
h,u

k
h)φh dx, (11.9)

∫
Td

u� · φh dx =
∫
Td

�k
hu

k
h − �k−1

h uk−1
h

�t
· φh dx + μ

∫
Td

∇Dukh : ∇Dφh dx

+ζ

∫
Td

divuph (�k
hu

k
h,u

k
h) · φh dx + ζ

∫
Td

(
divhukh − p(�k

h)
)
divhφh dx, (11.10)

for any φh ∈ Qh and φ = (φ1,h, . . . , φd ,h) ∈ Qh.
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Obviously F is well defined and continuous since the values of �� and u� can
be determined by setting φh = 1K in (11.9), and φi,h = 1K , φj,h = 0 for j �= i, i, j ∈
(1, . . . , d) in (11.10).

Next, we aim to show that the first hypothesis of Theorem15 holds. To this end, we
suppose (�k

h,u
k
h) ∈ Qh × Qh is a solution to F(�k

h,u
k
h, ζ ) = (0, 0) for any ζ ∈ [0, 1].

Then the system (11.9)–(11.10) becomes

∫
Td

�k
h − �k−1

h

�t
φh dx + ζ

∫
Td

divuph (�k
h,u

k
h)φh dx = 0 (11.11a)

∫
Td

�k
hu

k
h − �k−1

h uk−1
h

�t
· φh dx + μ

∫
Td

∇Dukh : ∇Dφh dx

+ζ

∫
Td

divuph (�k
hu

k
h,u

k
h) · φh dx + ζ

∫
Td

(
divhukh − p(�k

h)
)
divhφh dx = 0. (11.11b)

Taking φh = 1 as a test function in (11.11a) and using the conservativity of the
numerical flux (8.12) we obtain

∥∥�k
h

∥∥
L1(Td )

=
∫
Td

�k
h dx =

∫
Td

�k−1
h dx ≡ M0 > 0. (11.12)

Further, setting φh = P′(�k
h) − |ukh|2

2 and φh = ukh as the test functions in (11.11a) and
(11.11b), respectively, it follows from the standard proof of energy estimates, cf. also
Theorem 11.1 below that the velocity gradient is bounded. Moreover, applying the
Sobolev–Poincaré inequality, we have the following bound

∥∥ukh∥∥ ≡ ∥∥∇Dukh
∥∥
L2(Td )

+ ∥∥ukh∥∥L2(Td )
≤ C2, (11.13)

where C2 depends on the data of the problem.
Further, let K ∈ Th be such that �k

K = minL∈Th �k
h . Then

[[
�k
h

]]
σ∈E(K)

≥ 0. Now
setting φh = 1K leads to

|K |
�tζ

(�kK − �k−1
K ) = −

∫
K

divuph (�kh, u
k
h)

= −
∑

σ∈E(K)

|σ | �k,uph

〈
ukh

〉
σ

· n +
∑

σ∈E(K)

|σ | hε
[[

�kh

]]

≥ −
∑

σ∈E(K)

|σ | �kK
〈
ukh

〉
σ

· n +
∑

σ∈E(K)

|σ | (�kK − �
k,up
h )

〈
ukh

〉
σ

· n

= − |K | �kK (divhu
k
h)K −

∑
σ∈E(K)

|σ |
[[

�kh

]]
[
〈
ukh

〉
σ

· n]− ≥ − |K | �kK (divhu
k
h)K

≥ − |K | �kK
∣∣∣divhukh

∣∣∣
K

.
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Thus �k
h ≥ �k

K ≥ �k−1
K

1+�tζ |(divhukh)K | > 0. Consequently, by virtue of (11.13) �k
h > ε,

where ε depends only on the data of the problem. Further, we get from (11.12)
that �k

h ≤ M0
minK∈Th |K | , which indicates the existence of C1 > 0 such that �k

h < C1.

Therefore, the first hypothesis of Theorem 15 is satisfied.
Next, we proceed to show that the second hypothesis of Theorem 15 is satisfied.

Let ζ = 0 then the system F(�k
h,u

k
h, 0) = 0 reads

�k
h = �k−1

h (11.14a)

∫
Td

�k
hu

k
h − �k−1

h uk−1
h

�t
· φh dx + μ

∫
Td

∇Dukh : ∇Dφh dx = 0. (11.14b)

From (11.14a) it is obvious �k
h = �k−1

h > 0. Substituting (11.14a) into (11.14b) we
arrive at a linear systemonukhwith a symmetric positive definitematrix.Thus (11.14b)
admits a unique solution. Consequently, the second hypothesis of Theorem 15 is
satisfied.

We have shown that both hypotheses of Theorem 15 hold. Applying Theorem 15
finishes the proof.

11.2 Stability

The scheme (11.5) is stable in the sense of Definition 8.3. Indeed, we have the
following energy estimates.

Theorem 11.1 (Energy stability of the FV method)
Let the pressure p satisfy the equation of state (11.2) and let (�h,uh) = {�k

h,u
k
h}NT

k=1
be a family of numerical solutions obtained by the FV method (11.5).

Then there exist ξ ∈ co{�k−1
h , �k

h} and for any σ ∈ Eint �k
h,† ∈ co{(�k

h)
in, (�k

h)
out}

such that

Dt

∫
Td

(
1

2
�k
h|ukh|2 + P(�k

h)

)
dx + μ

∥∥∇Dukh
∥∥2
L2

+ ν
∥∥divhukh∥∥2L2

= −hε

∫
E

{{
�k
h

}} ∣∣[[ukh]]∣∣2 dSx − �t

2

∫
Td

P′′(ξ)|Dt�
k
h|2 dx

−
∫
E

P′′(�k
h,†)

[[
�k
h

]]2 (
hε + 1

2

∣∣〈ukh〉σ · n∣∣
)
dSx

− �t

2

∫
Td

�k−1
h |Dtukh|2 dx − 1

2

∫
E

(�k
h)

up
∣∣〈ukh〉σ · n∣∣ ∣∣[[ukh]]∣∣2 dSx.

(11.15)
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Proof First, taking φh = −|ukh|2
2 in (11.5a) we get

−
∫
Td

Dt�
k
h

|ukh|2
2

dx +
∫
E

Fup
h [�k

h,u
k
h]
[[ |ukh|2

2

]]
dSx = 0

Next, by taking φh = ukh in (11.5b) we derive

∫
Td

Dt(�
k
hu

k
h) · ukh dx −

∫
E

Fup
h [�k

hu
k
h,u

k
h] · [[ukh]] dSx −

∫
Td

p(�k
h)divhu

k
h dx

= −μ
∥∥∇Dukh

∥∥2
L2 − ν

∥∥divhukh∥∥2L2 .

Further, summing up the previous two equalities and recalling (8.13b) we infer that

Dt

∫
Td

1

2
�h|ukh|2 dx + μ

∥∥∇Dukh
∥∥2
L2

+ ν
∥∥divhukh∥∥2L2

= −�t

2

∫
Td

�k−1
h |Dtukh|2 dx −

∫
Td

pkhdivhu
k
h dx − hε

∫
E

{{
�k
h

}} ∣∣[[ukh]]∣∣2 dSx

− 1

2

∫
E

(�k
h)

up
∣∣〈ukh〉σ · n∣∣ ∣∣[[ukh]]∣∣2 dSx.

(11.16)

Finally, combining (11.16) with (11.8) we get

Dt

∫
Td

(
1

2
�k
h|ukh|2 + P(�k

h)

)
dx + μ

∥∥∇Dukh
∥∥2
L2 + ν

∥∥divhukh∥∥2L2

= −�t

2

∫
Td

�k−1
h |Dtukh|2 dx − �t

2

∫
Td

P′′(ξ)|Dt�
k
h|2 dx

−
∫
E

P′′(�k
h,†)

[[
�k
h

]]2 (
hε + 1

2

∣∣〈ukh〉σ · n∣∣
)
dSx

− hε

∫
E

{{
�k
h

}} ∣∣[[ukh]]∣∣2 dSx − 1

2

∫
E

(�k
h)

up
∣∣〈ukh〉σ · n∣∣ ∣∣[[ukh]]∣∣2 dSx,

which completes the proof.
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11.2.1 Uniform Bounds

In this subsection we derive the uniform bounds that are necessary to show the
consistency of the FV method (11.5).

First, as a consequence of Theorem 11.1 and the Sobolev–Poincaré inequality
(37), we have the following corollary, that gives a priori estimates for numerical
solutions of the FV method (11.5).

Corollary 11.1 (Uniform bounds)
Let the pressure p satisfy the equation of state (11.2) and (�h,uh) be a solution

of the FV method (11.5) in the sense of (47). Then the following estimates hold

∥∥�h |uh|2
∥∥
L∞L1

<∼ 1, ‖�h‖L∞Lγ

<∼ 1, ‖�huh‖
L∞L

2γ
γ+1

<∼ 1, (11.17a)

‖∇Duh‖L2 L2 <∼ 1, ‖divhuh‖L2L2 <∼ 1, ‖uh‖L2L6 <∼ 1, (11.17b)

hε

T∫
0

∫
E

{{�h}} |[[uh]]|2 dSx dt <∼ 1, (11.17c)

T∫
0

∫
E

P′′(�h,†)
[[
�h
]]2

(hε + | {{uh}} · n|)dSx dt <∼ 1, (11.17d)

where �h,† ∈ co{�in
h , �out

h } for any σ ∈ Eint .

Remark 11.2 Obviously, the estimate ‖uh‖L2L6 <∼ 1 in (11.17b) follows from the

Sobolev embeddings for d = 3. If d = 2we have instead a better estimate ‖uh‖L2Lp <∼
1 for any 1 ≤ p < ∞.

We proceed with deriving negative estimates that are less obvious but follow also
from the energy estimates (11.15).

Lemma 11.4 (Negative estimates of density and momentum)
Let the pressure p satisfy (11.2), and let (�h,uh) be a solution to the FV

method (11.5) in the sense of (47) with h ∈ (0, 1). Then we have the following neg-
ative estimates

‖�h‖L2 L2 <∼ hβD , βD =
{
max

{
− 3ε+3+d

6γ ,
γ−2
2γ d

}
, if γ ∈ (1, 2),

0, if γ ≥ 2,
(11.18a)

‖�h‖L2 L6/5 <∼ hβR , βR =
{
max

{
− 3ε+3+d

6γ ,
5γ−6
6γ d

}
, if γ ∈ (1, 6

5 ),

0, if γ ≥ 6
5 ,

(11.18b)
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‖�huh‖L2L2 <∼ hβM , βM =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 3ε+3+d
6γ , if γ ∈ (1, 2),

γ−3
3γ d , if γ ∈ [2, 3),
0, if γ ≥ 3 for d = 3,

0, if γ > 2 for d = 2.

(11.18c)

Proof We start with the proof of (11.18a). Firstly, for γ ≥ 2 it is clear that

‖�h‖L2L2 <∼ ‖�h‖L∞Lγ

<∼ 1.

Secondly, for γ ∈ (1, 2), we show the proof in two steps. On the one hand, a direct
application of the inverse estimate (11.26) leads to

‖�h‖L2 L2 <∼ hd( 1
2 − 1

γ
) ‖�h‖L∞Lγ

<∼ h
γ−2
2γ d

.

On the other hand, recalling the algebraic inequality

aγ
(
�

γ/2
L − �

γ/2
K

)2 ≤ ∂2P(ζ )

∂�2
(�L − �K )2, ∀�h,† ∈ co{�L, �K }, �L, �K > 0

for γ ∈ (1, 2), we deduce from the estimate (11.17d) that

∥∥∥∇D�
γ/2
h

∥∥∥2
L2L2

=
T∫

0

∫
�

|∇D�
γ/2
h |2 dx dt

<∼
T∫

0

∫
�

P′′(�h,†)|∇D�h|2 dx dt

<∼ h−ε−1.

Using the above inequalities together with the Sobolev–Poincaré inequality (34),
inverse estimate (11.26), and the second estimate of (11.17a), we derive

‖�h‖L1 L∞ =
T∫

0

∥∥∥�γ/2
h

∥∥∥2/γ
L∞

dt ≤
T∫

0

(
h−d/6

∥∥∥�γ/2
h

∥∥∥
L6

)2/γ
dt

≤ h−d/(3γ )

T∫
0

(∥∥∥�γ/2
h

∥∥∥2
L2

+
∥∥∥∇D�

γ/2
h

∥∥∥2
L2

)1/γ

dt

≤ h−d/(3γ )

(
‖�h‖L1 Lγ +

∥∥∥∇D�
γ/2
h

∥∥∥2/γ
Lγ /2L2

)

≤ h−d/(3γ )

(
‖�h‖L∞Lγ +

∥∥∥∇D�
γ/2
h

∥∥∥2/γ
L2L2

)
<∼ h− 3ε+3+d

3γ .
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Furthermore, the above inequality together with the Hölder inequality and the second
estimate in (11.17a) immediately yield (11.18a), specifically

‖�h‖L2 L2 =
⎛
⎝

T∫
0

‖�h‖2L2 dt
⎞
⎠

1/2

≤
⎛
⎝

T∫
0

‖�h‖L1 ‖�h‖L∞ dt

⎞
⎠

1/2

≤ ‖�h‖1/2L∞L1 ‖�h‖1/2L1 L∞
<∼ h− 3ε+3+d

6γ .

Collecting the above results we finish the proof of (11.18a).
Next, we show (11.18b). Firstly, it is obvious for γ ≥ 6

5 that

‖�h‖L2L6/5 <∼ ‖�h‖L∞Lγ

<∼ 1.

Secondly, for γ ∈ (1, 6/5)we show the proof of (11.18b) in two steps. On one hand,
it is easy to observe for h ∈ (0, 1) that

‖�h‖L2L6/5 <∼ ‖�h‖L2 L2 <∼ hβD ≤ h− 3ε+3+d
6γ .

On the other hand, due to the inverse estimates (11.26) and the density estimate in
(11.17a) we have

‖�h‖L2L6/5 <∼ ‖�h‖L∞L6/5
<∼ h

d
(

5
6− 1

γ

)
‖�h‖L∞Lγ

<∼ h
5γ−6
6γ d

.

Finally, we proceed to show the momentum estimate (11.18c). Firstly, for the case
γ ∈ (1, 2) we have

‖�huh‖L2L2 <∼ ∥∥√�h

∥∥
L2 L∞

∥∥√�huh
∥∥
L∞L2 = ‖�h‖1/2L1 L∞

∥∥�hu2h
∥∥1/2
L∞L1

<∼ h− 3ε+3+d
6γ .

Secondly, for the case γ ≥ 3 and d = 3 it follows by Hölder’s inequality that

‖�huh‖L2L2 <∼ ‖�h‖L∞L3 ‖uh‖L2 L6 <∼ ‖�h‖L∞Lγ ‖uh‖L2 L6 <∼ 1.

Analogous estimates for γ > 2 and d = 2 yield

‖�huh‖L2L2 <∼ ‖�h‖L∞Lγ ‖uh‖
L2 L

2γ
γ−2

<∼ 1.

Thirdly, for γ ∈ [2, 3) we have by inverse estimate (11.26) and Hölder’s inequality
that

‖�huh‖L2L2 <∼ ‖�h‖L∞L3 ‖uh‖L2 L6 <∼ hd( 1
3− 1

γ
) ‖�h‖L∞Lγ ‖uh‖L2 L6 <∼ h

γ−3
3γ d

,

which completes the proof.
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Further, we state a dissipation estimate for the density.

Lemma 11.5 (Density dissipation)
Let the pressure p satisfy (11.2) with γ ≥ 2 and let (�h,uh) be a solution of the

FV method (11.5) in the sense of (47). Then there holds

T∫
0

∫
E

[[
�h
]]2

max{�in
h , �out

h } |〈uh〉σ · n| dSx dt <∼ 1. (11.19)

Proof First, recalling Lemma 11.2 we know that the FV method (11.5) preserves
positivity of the density. Thus we may test (11.5a) with ln �h which leads to

∫
Td

Dt�h ln �h dx =
∫
E

Fup
h [�h,uh]

[[
ln �h

]]
dSx

=
∫
E

�
up
h 〈uh〉σ · n [[ln �h

]]
dSx − hε

∫
E

[[
�h
]] [[

ln �h
]]

︸ ︷︷ ︸
≥0

dSx

≤
∑

σ=K |L∈E
|σ | (�K [〈uh〉σ · nσK ]+ + �L[〈uh〉σ · nσK ]−) (ln �L − ln �K )

=
∑

σ=K |L∈E
|σ | (�K [〈uh〉σ · nσK ]+ − �L[〈uh〉σ · nσL]+

)
(ln �L − ln �K ).

(11.20)

Next, noticing that B(�) = � ln � − � is a convex function of �, with B′(�) = ln �

for � > 0, we find in view of the mass conservation (11.7) that

∫
Td

Dt(�h ln �h) dx =
∫
Td

DtB(�h) dx ≤
∫
Td

ln �hDt�h dx.

Further, substituting the above inequality into (11.20) we derive

∫
Td

Dt(�h ln �h) dx

≤
∑

σ=K |L∈E
|σ | (�K [〈uh〉σ · nσK ]+ − �L[〈uh〉σ · nσL]+

)
(ln �L − ln �K ),

which implies
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∑
σ=K |L∈E

|σ |[〈uh〉σ · nσK ]+ (�K (ln �K − ln �L) − (�K − �L))

+
∑

σ=K |L∈E
|σ |[〈uh〉σ · nσL]+ (�L(ln �L − ln �K ) − (�L − �K ))

≤
∑

σ=K |L∈E
|σ | ([〈uh〉σ · nσK ]+(�L − �K ) + [〈uh〉σ · nσL]+(�K − �L)

)

−
∫
Td

Dt(�h ln �h) dx

=
∑
σ∈E

|σ | 〈uh〉σ · n [[�h
]] −

∫
Td

Dt(�h ln �h) dx

=
∑
K∈Th

�K

∑
σ∈E(K)

|σ | 〈uh〉σ · n −
∫
Td

Dt(�h ln �h) dx

=
∫
Td

�hdivhuh dx −
∫
Td

Dt(�h ln �h) dx.

Moreover, we observe

1

2

∑
σ=K |L∈E

|σ | |〈uh〉σ · n|
[[
�h
]]2

max{�K , �L}
≤

∑
σ=K |L∈E

|σ |[〈uh〉σ · nσK ]+ (�K (ln �K − ln �L) − (�K − �L))

+
∑

σ=K |L∈E
|σ |[〈uh〉σ · nσL]+ (�L(ln �L − ln �K ) − (�L − �K ))

≤
∫
Td

�hdivhuh dx −
∫
Td

Dt(�h ln �h) dx,

where we have used

b(ln b − ln a) − (b − a) = b

b∫
a

1

y
dy −

b∫
a

dy =
b∫

a

1

y
(b − y)dy

= c

b∫
a

(b − y)dy = c
(b − a)2

2
≥ 1

max{a, b}
(b − a)2

2

with c ∈ co{ 1a , 1
b } for any a, b > 0.

Consequently, we derive (11.19)
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T∫
0

∑
σ=K |L∈E

|σ | |〈uh〉σ · n|
[[
�h
]]2

max{�K , �L} dt

≤ 2

T∫
0

∫
Td

�hdivhuh − Dt(�h ln �h) dx dt

<∼ ‖�h‖L2L2 ‖divhuh‖L2 L2 + ‖�h ln �h‖L∞L2
<∼ 1,

which concludes the proof.

Finally, the following lemma completes the list of estimates that will be useful
for the derivation of the consistency formulation.

Lemma 11.6 Let the pressure p(�) satisfy (11.2) and let (�h,uh) be a solution of
the FV method (11.5) in the sense of (47) with h ∈ (0, 1). Then there exists c > 0
independent of h and �t such that

T∫
0

∫
E

∣∣[[�h
]]
uh · n∣∣ dSx dt ≤ chβ,

where

β =
{

− 1
2 if γ ≥ 6

5 ,

− 1
2 + 1

2d( 56 − 1
γ
) if γ ∈ (1, 6

5 ),

Proof For γ ≥ 2 we recall Lemma 11.5 and get

T∫
0

∫
E

∣∣[[�h
]] 〈uh〉σ · n∣∣ dSx dt

≤
⎛
⎝

T∫
0

∫
E

[[
�h
]]2

max{�in
h , �out

h } |〈uh〉σ · n| dSx dt
⎞
⎠

1/2

×

×
⎛
⎝

T∫
0

∫
E

|〈uh〉σ · n|max{�in
h , �out

h }dSx dt
⎞
⎠

1/2

≤ h−1/2 ‖�h‖1/2L2 L6/5 ‖uh‖1/2L2 L6 .

Further, for γ ∈ (1, 2) it is easy to check that P′′(�h,†)(�h,† + 1) ≥ 1 for all �h,† > 0,
where �h,† ∈ co{�in

h , �out
h }. Note that �h > 0 owing to Lemma 11.2. Then
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T∫
0

∫
E

∣∣[[�h
]] 〈uh〉σ · n∣∣ dSx dt

≤
T∫

0

∫
E

∣∣[[�h
]] 〈uh〉σ · n∣∣√P′′(�h,†)(�h,† + 1)︸ ︷︷ ︸

≥1

dSx dt

≤
⎛
⎝

T∫
0

∫
E

P′′(�h,†)
[[
�h
]]2 |〈uh〉σ · n| dSx dt

⎞
⎠

1/2

×

×
⎛
⎝

T∫
0

∫
E

(�h,† + 1) |〈uh〉σ · n| dSx dt
⎞
⎠

1/2

≤ ch−1/2
(‖�h‖L2 L6/5 + 1

)1/2 ‖uh‖1/2L2L6 .

Consequently, collecting the above two estimates and recalling (11.18b) finish the
proof.

11.3 Consistency

Having established stability of the scheme (11.5), we can prove consistency in the
sense of Definition 8.6. In particular, we show that the numerical solutions satisfy the
weak formulation of the continuous problem up to consistency error terms vanishing
for �t, h → 0.

Theorem 11.2 (Consistency of the FV method)
Let the pressure p satisfy (11.2) with γ > 1 and let (�h,uh) be a solution of the

discrete problem (11.5) on the time interval [0,T ] in the sense of (47). Let

�t ≈ h ∈ (0, 1) and ε > −1.

If γ ∈ (1, 2) we moreover assume that ε < 2γ − 1 − d/3.
Then there hold

−
∫
Td

�0
hϕ(0, ·) dx =

T∫
0

∫
Td

[
�h∂tϕ + �huh · ∇xϕ

]
dx dt +

T∫
0

e1,h(t, ϕ) dt,

(11.21)
for any ϕ ∈ C2

c ([0,T ) × T
d );
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−
∫
Td

�0
hu

0
hϕ(0, ·) dx =

T∫
0

∫
Td

[
�huh · ∂tϕ + (�huh ⊗ uh + phI) : ∇xϕ

]
dx dt,

− μ

T∫
0

∫
Td

∇Duh : ∇xϕ dx dt − ν

T∫
0

∫
Td

divhuh divxϕ dx dt

+
T∫

0

e2,h(t,ϕ) dt,

(11.22)
for any ϕ ∈ C2

c ([0,T ) × T
d ;Rd );

‖e1,h(·, ϕ)‖L1(0,T )

<∼ hβ‖ϕ‖C2 , ‖e2,h(·,ϕ)‖L1(0,T )

<∼ hβ‖ϕ‖C2 , for some β > 0.

Proof Let ϕ ∈ C2
c ([0,T ) × T

d ) and ϕ ∈ C2
c ([0,T ) × T

d ;Rd ). We test the equa-
tions (11.5a) and (11.5b) with �Qϕ and �Qϕ, respectively, and deal with each term
separately in four steps:

(1) Time derivative terms:
First we recall (48) and get

T∫
0

∫
Td

Dtrh�Qϕ dx dt +
T∫

0

∫
Td

rh∂tϕ dx dt +
∫
Td

r0hϕ(0, ·) dx

≤ �tc(‖ϕ‖C2) ‖rh‖L1L1 + �tc(‖ϕ‖C1)
∥∥r0h∥∥L1 ,

where rh stands for �h or �hui,h, i = 1, . . . , d . Then by using the estimate (11.17a)
we know that

‖�h‖L1L1 <∼ ‖�h‖L∞Lγ

<∼ 1 and ‖�huh‖L1L1 <∼ ‖�huh‖
L∞L

2γ
γ+1

<∼ 1.

Thus, we have

T∫
0

∫
Td

Dt�h�Qϕ dx dt +
T∫

0

∫
Td

�h∂tϕ dx dt +
∫
Td

�0
hϕ(0, ·) dx <∼ �t, (11.23a)

∫ T

0

∫
Td

(
Dt(�huh) · �Qϕ + �huh · ∂tϕ

)
dx dt +

∫
Td

�0
hu

0
h · ϕ(0, ·) dx <∼ �t,

(11.23b)
for the continuity and the momentum equations, respectively.

(2) Convective terms:
To deal with the convective terms, it is convenient to recall the following identity

from Lemma 8.1:
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T∫
0

∫
Td

rhuh · ∇xϕ dx dt −
T∫

0

∫
E

Fup
h [rh,uh]

[[
�Qϕ

]]
dSx dt =

4∑
j=1

Ej(rh),

where

E1(rh) = 1

2

T∫
0

∫
E

| {{uh}} · n| [[rh]]
[[
�Qϕ

]]
dSx dt,

E2(rh) = 1

4

T∫
0

∫
E

[[uh]] · n [[rh]]
[[
�Qϕ

]]
dSx dt,

E3(rh) =
T∫

0

∫
E

hε [[rh]]
[[
�Qϕ

]]
dSx dt,

E4(rh) =
T∫

0

∫
Td

rhuh ·
(
∇xϕ − ∇h

(
�Qϕ

))
dx dt,

are the error terms to be estimated. Again, rh is either �h or �hui,h, i = 1, . . . , d .

• Term E1: We can write

E1(rh) =1

2

T∫
0

∫

E
|{{uh}} · n| [[rh]] [[�Qϕ

]]
dSx dt

= 1

2

T∫
0

d∑
i=1

∑
σ∈Ei

∫
σ

∣∣{{ui,h}}∣∣ [[rh]] [[�Qϕ
]]
dSx dt

= 1

2

T∫
0

d∑
i=1

∑
σ∈Ei

∫
Dσ

hi
∣∣∣�(i)

W ui,h
∣∣∣ ðDi

rhðDi
�Qϕ dx dt

= −1

2

T∫
0

d∑
i=1

∑
K∈Th

∫
K

hirhð
(i)
T

(∣∣∣�(i)
W ui,h

∣∣∣ðDi
�Qϕ

)
dx dt

= −1

2

T∫
0

d∑
i=1

∑
K∈Th

∫
K

rKhi

(
�Q

∣∣∣�(i)
W ui,h

∣∣∣ ð
(i)
T (ðDi

�Qϕ)+

+
(
ð
(i)
T

∣∣∣�(i)
W ui,h

∣∣∣)�Q(ðDi
�Qϕ)

)
dx dt,

where we have used the integration by parts formula (44), and a product rule

r2q2 − r1q1 = r1 + r2
2

(q2 − q1) + q1 + q2
2

(r2 − r1).
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Further, noticing the mesh is uniform and employing twice the inequality(
a + b

2

)2

≤ a2 + b2

2
yield

∥∥∥�Q

∣∣∣�(i)
W ui,h

∣∣∣ ∥∥∥
L2

<∼ ∥∥ui,h∥∥L2 .

Similarly, identity
(
ð

(i)
T �

(i)
W ui,h

)
K

= �Q
(
ðDi ui,h

)
K implies

∥∥∥ð(i)
T �

(i)
W ui,h

∥∥∥
L2

<∼ ∥∥ðDi ui,h
∥∥
L2

.

Then applyingHölder’s inequality, interpolation error estimates (11.25), the veloc-
ity estimates (11.17b), the fact |∂xui| ≥ ∂x |ui|, and noticing �

(i)
h r ≡ ð

(i)
T ðDi r, we

derive

E1(rh) = −1

2

T∫
0

d∑
i=1

∑
K∈Th

∫
K

rKhi
(
�Q

∣∣∣�(i)
W ui,h

∣∣∣ ð
(i)
T (ðDi�Qϕ)+

+
(
ð

(i)
T

∣∣∣�(i)
W ui,h

∣∣∣)�Q(ðDi�Qϕ)
)
dx dt,

<∼ h
d∑
i=1

‖rh‖L2 L2
(∥∥∥�(i)

h �Qϕ

∥∥∥
L∞L∞

∥∥ui,h∥∥L2 L2 +

+ ∥∥ðDi�Qϕ
∥∥
L∞L∞

∥∥ðDi ui,h
∥∥
L2 L2

)

<∼ h ‖rh‖L2 L2
(∥∥�h�Qϕ

∥∥
L∞L∞ ‖uh‖L2 L2 + ∥∥∇h�Qϕ

∥∥
L∞L∞ ‖∇Duh‖L2 L2

)
<∼ h ‖rh‖L2 L2 .

Consequently, employing the negative estimates (11.18a) and (11.18c) for γ ∈
(1, 2) we derive for rh being �h or �hui,h, i = 1, . . . , d that

E1(rh)
<∼ hβ, β = 1 − 3ε + 3 + d

6γ
.

Obviously, β > 0 provided ε < 2γ − 1 − d/3.
If γ ∈ [2, 3) the more restrictive estimates are due to rh = �hui,h, cf. (11.18a),
(11.18c) and yield

E1(rh)
<∼ hβ, β = 1 + d

γ − 3

3γ
.

Clearly, β > 0 if γ ∈ [2, 3). Furthermore, for γ ≥ 3 we have due to (11.18a),
(11.18c)

E1(rh)
<∼ h.
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• Term E2:
Thanks to Hölder’s inequality, the velocity estimate (11.17b), interpolation error
(11.19) and trace inequality (11.28) we derive

E2(rh) = 1

4

T∫
0

∫
E

[[uh]] · n [[rh]]
[[
�Qϕ

]]
dSx dt

<∼ h ‖ϕ‖C1

⎛
⎝

T∫
0

∫
E

[[uh]]2 dSx dt

⎞
⎠

1/2⎛
⎝

T∫
0

∫
E

[[rh]]
2 dSx dt

⎞
⎠

1/2

<∼ hh1/2 ‖∇Duh‖L2L2
⎛
⎝

T∫
0

∫
E

{{rh}}2 dSx dt
⎞
⎠

1/2

<∼ h ‖rh‖L2 L2 ,

Thus in view of the negative estimates (11.18a) and (11.18c) we derive for γ ∈
(1, 2)

E2(rh)
<∼ hβ, β = 1 − 3ε + 3 + d

6γ

for rh = �h and �hui,h, i = 1, . . . , d . Analogously to the above, we have

E2(rh)
<∼ hβ, β = 1 + d

γ − 3

3γ
for γ ∈ [2, 3) and β = 1 for γ ≥ 3.

• TermE3: Analogously to the above, the integration by parts formula (42), Hölder’s
inequality, and the interpolation error estimate (11.25) yield

E3(rh) = hε

T∫
0

∫
E

[[rh]]
[[
�Qϕ

]]
dSx dt = hε+1

T∫
0

∫
Td

∇Drh · ∇D�Qϕ dx dt

= −hε+1

T∫
0

∫
Td

rh�h�Qϕ dx dt ≤ hε+1c(‖ϕ‖C2) ‖rh‖L1L1 <∼ hε+1 ‖rh‖L1L1 .

Using the estimates (11.17a) we can conclude for rh being �h or �hui,h, i =
1, . . . , d , that

E3(rh)
<∼ hε+1.

• Term E4: Using the uniform bounds on the kinetic energy and momentum (see
(11.17a)) together with the interpolation error (11.25) we obtain for rh being �h
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or �hui,h, i = 1, . . . , d that

E4(rh) =
T∫

0

∫
Td

rhuh · (∇xϕ − ∇h
(
�Qϕ

))
dx dt

<∼ h ‖ϕ‖C2 ‖rhuh‖L1 L1

<∼ h ‖rhuh‖L∞L1
<∼ h.

Consequently, we conclude the consistency formulation of the convective terms
by collecting the above estimates of the four terms Ej, j = 1, . . . , 4.

T∫
0

∫
Td

�huh · ∇xϕ dx dt −
T∫

0

∫
E

Fup
h [�h,uh]

[[
�Qϕ

]]
dSx dt

<∼ hβ1 ,

T∫
0

∫
Td

�huh ⊗ uh : ∇xϕ dx dt −
T∫

0

∫
E

Fup
h [�huh,uh]

[[
�Qϕ

]]
dSx dt

<∼ hβ2

(11.24)
for some β1, β2 > 0.More precisely, in the case γ ∈ (1, 2)we require−1 < ε <

2γ − 1 − d/3 to obtain β1, β2 > 0. If γ ≥ 2 the above estimates hold for ε > −1.

(3) Viscosity terms:
In accordance with (11.25) and (11.17b) we can control the viscosity terms.

Indeed, we have

T∫
0

∫
Td

∇Duh : ∇xϕ dx dt −
T∫

0

∫
Td

∇Duh : ∇D(�Qϕ) dx dt

=
T∫

0

∫
Td

∇Duh : (∇xϕ − ∇D�Qϕ) dx dt
<∼ ‖∇Duh‖L2L2 h ‖ϕ‖C2

<∼ h,

(11.25a)

and for the divergence term we get

T∫
0

∫
Td

divhuh divh
(
�Qϕ

)
dx dt −

T∫
0

∫
Td

divhuh divxϕ dx dt

=
T∫

0

∫
Td

divhuh
(
divh

(
�Qϕ

) − divxϕ
)
dx dt

<∼ ‖divhuh‖L2L2 h ‖ϕ‖C2

<∼ h,

(11.25b)

by using (11.25) and (11.17b).
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(4) Pressure term: The pressure term can be controlled by using the integration
by parts formula (39), the interpolation error (11.25), and the estimate (11.17a) which
yield

T∫
0

∫
Td

phdivh(�Qϕ) dx dt −
T∫

0

∫
Td

phdivxϕ dx dt

=
T∫

0

∫
Td

ph
(
divh

(
�Qϕ

) − divxϕ
)
dx dt

<∼ ‖ph‖L∞L1 h ‖ϕ‖C2
<∼ h.

(11.26)

Collecting the inequalities (11.23)–(11.26) we complete the proof of Theorem 11.2.

Remark 11.3 We would like to emphasize that the additional numerical diffusion
of order O(hε+1) plays a crucial role in order to obtain the consistency formulation
of the convective terms. Indeed in the derivation of (11.24) we have used Lemma
11.2, which benefits from the uniform bounds (11.17d) of the hε-terms.

11.4 Convergence

Theorem 11.3 (Convergence of the FV method)
Let the pressure p satisfy (11.2) with γ > 1 and (�h,uh) be a solution of the

discrete problem (11.5) on the time interval [0,T ] in the sense of (47). Let

�t ≈ h ∈ (0, 1) and ε > −1.

If γ ∈ (1, 2) we moreover assume that ε < 2γ − 1 − d/3.
Then the FV method (11.5) converges in the following way:

1. Convergence to a DMV solution. There is a sequence hn → 0 such that
{�k

hn
,ukhn}h↘0 generates a Young measure {Vt,x}(t,x)∈(0,T )×Td – a dissipative

measure-valued solution of the Navier–Stokes system in the sense of Defini-
tion 5.10.

2. Convergence to a strong solution. Let the Navier–Stokes system endowed with
the initial data [�0,u0] admit a strong solution [�,u] belonging to the class

� > 0, � ∈ C([0,T ] × T
d ), ∇x�,u ∈ C([0,T ] × T

d ;Rd ),

∇xu ∈ C([0,T ] × T
d ;Rd×d ), ∂tu ∈ L2(0,T ;C(Td ;Rd )).

Then
�h → � (strongly) in Lγ ((0,T ) × T

d ),

uh → u (strongly) in L2((0,T ) × T
d ;Rd ).
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3. Unconditional convergence with bounded density. Suppose that

• the initial databelong to the class�0 ∈ W 3,2(Td ), �0 > 0, u0 ∈ W 3,2(Td ;Rd );
• bulk viscosity vanishes, meaning λ = 0;
• uniform bound of density �hn

<∼ 1 for some hn → 0.

Then

�h → � (strongly) in Lq((0,T ) × T
d ), for any 1 ≤ q < ∞,

uh → u (strongly) in L2((0,T ) × T
d ;Rd ),

where [�,u] is the strong solution to the Navier–Stokes system (11.1) with the
initial data [�0,u0].

Proof Wehave proven in Theorem 11.1 and Theorem 11.2, respectively, the stability
and consistency of the numerical solutions obtained by the FVmethod (11.5). More-
over, due to (11.25) the consistency of the discrete gradient and divergence operators
acting on Qh, cf. (5.107), holds. Furthermore, we have due to the Sobolev–Poincaré
inequality (11.15) and a priori estimates presented in Corollary 11.1 that

�h → � weakly-(*) in L∞(0,T ;Lγ (Td )),

mh = (�huh) → m weakly-(*) in L∞(0,T ;L 2γ
γ+1 (Td ;Rd )),

and
uh → u weakly in L2((0,T ) × T

d ;Rd ),

∇Duh → ∇xu weakly in L2((0,T ) × T
d ;Rd×d ),

divhuh → divxu weakly in L2((0,T ) × T
d )

passing to a suitable subsequence as the case may be. Moreover,

u ∈ L2(0,T ;W 1,2(Td ;Rd )).

This already tells us that any solution to (11.5) is a consistent approximation of the
Navier–Stokes system (11.1), cf. Definition 5.9. Thanks to Theorem 5.5 the limit
of the consistent approximation for h → 0 generates a dissipative measure-valued
(DMV) solution of the Navier–Stokes system (11.1). Note that in Definition 5.10 of
the DMV solution we also require that the Korn–Poincaré inequality (5.126) holds.
Due to the consistency of the discrete differential operators divh and ∇D and the
discrete Sobolev–Poincaré inequality (11.15) we obtain that, cf. (5.121),
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τ∫
0

∫
Td

〈
V; |̃u − U |2〉 dx dt ≤ lim inf

h→0

τ∫
0

∫
Td

|uh − U |2 dx dt

<∼
τ∫

0

∫
Td

〈
V; �̃|̃u − U |2〉 dx +

τ∫
0

∫
Td

|∇x(u − U)|2 dx dt

+
τ∫

0

(∫
Td

dE(t)

)
dt +

τ∫
0

∫
Td

dD.

(11.27)

Consequently, (5.126) from the definition of DMV solution holds. This concludes
the proof of the first item. The second and third convergence result follow from
Theorem 7.12 and Theorem 7.13, respectively.

Remark 11.4 When assuming the upper bound for density, all results of Theo-
rems 11.3 may be extended to an unstructured grid. Indeed the only difference of
the proof would be showing the consistency of the convective terms in (11.24). The
estimate of the error terms E1(�h) and E1(�huh) could be done without the discrete
integration by parts thanks to L∞-bound on the density.

11.5 Numerical Experiment

In this section, we study a two-dimensional example to illustrate behavior of the FV
method (11.5) and confirm theoretical convergence result proved in Theorem 11.3
via numerical experiments. In particular, we consider the following error norms

e� = ‖�h − �ref‖L∞(0,T ;Lγ (Td )) , eu = ‖uh − uref‖L2((0,T )×Td ) ,

e∇u = ‖∇D(uh − uref)‖L2((0,T )×Td ) , ep = ‖p(�h) − p(�ref)‖L∞(0,T ;L1(Td ))
(11.28)

between a numerical solution (�h,uh) and a reference solution (�ref ,uref) computed
on a fine grid with h = 1/1024.

The computational domain � is set to � = [0, 1]2, we apply periodic boundary
conditions and the following initial conditions

�0(x1, x2, t) = 2 + cos(2π(x1 + x2)), u0(x1, x2, t) = 0. (11.29)

Further, we use the parameters μ = 0.1, ν = 0, γ = 1.4 and ε = 0.6 that satisfy the
restriction stated in Theorem 11.3. Note that the FVmethod (11.5) yields a nonlinear
algebraic system thatwe solve by fixed point iterations. For each sub-iteration a linear
system is solved with the time step�t = 0.4h/(|uh| + ch)max, where ch = √

γ ph/�h

is the sound speed.
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Table11.1 documents the convergencebehavior of theFVmethod (11.5).Note that
the experimental order of convergence (EOC) was defined in (10.76). As expected,
we can observe the first order convergence rate for the density and slightly better
convergence rate for the velocity. Recall that we use piecewise constant approxima-
tion in space (on a primary mesh) and the first order implicit approximation in time.
Moreover, the discrete velocity gradients are approximated by means of a dual mesh,
which actually yields piecewise linear representation of the velocity on a dual mesh.

In Fig. 11.1 we present time evolution of the kinetic energy
∫
Td

1
2�|u|2 dx, internal

energy
∫
Td P(�) dx and the total energy. Figure11.2 illustrates fluid flow evolution

that is driven by the pressure gradient. We can see that the fluid velocity increases at
the beginning and then decreases afterwards.

11.6 Conclusion, Bibliographical Remarks

In the literature we can find a variety of numerical schemes for viscous compressible
flows, such as the Marker–and–Cell scheme Gallouët et al. [110, 113, 115], Hošek
and She [129], the finite element schemes Ansanay–Alex et al. [5], Karper [140],
Zienkiewicz et al. [201], the finite volume schemes Feistauer [99], Eymard et

Table 11.1 EOC of FV method for Navier–Stokes at T = 0.1

h e� EOC eu EOC e∇u EOC ep EOC

γ = 1.4

1/32 5.51e-01 – 2.77e-02 – 2.62e-01 – 4.34e-01 –

1/64 3.30e−01 0.74 1.37e−02 1.02 1.30e−01 1.01 2.12e−01 1.03

1/128 1.92e−01 0.78 6.41e−03 1.09 6.11e−02 1.09 9.92e−02 1.10

1/256 1.05e−01 0.87 2.75e−03 1.22 2.62e−02 1.22 4.25e−02 1.22

1/512 4.78e−02 1.13 9.17e−04 1.58 8.74e−03 1.58 1.42e−02 1.58

γ = 5/3

1/32 7.51e−01 – 3.70e−02 – 3.55e−01 – 6.20e−01 –

1/64 4.88e−01 0.62 1.83e−02 1.02 1.77e−01 1.01 3.03e−01 1.03

1/128 3.10e−01 0.66 8.58e−03 1.09 8.32e−02 1.09 1.42e−01 1.10

1/256 1.86e−01 0.73 3.68e−03 1.22 3.57e−02 1.22 6.07e−02 1.22

1/512 9.63e−02 0.95 1.23e−03 1.58 1.19e−02 1.58 2.02e−02 1.58

γ = 2

1/32 9.69e−01 – 5.03e−02 – 5.01e−01 – 9.39e−01 –

1/64 6.77e−01 0.52 2.49e−02 1.01 2.52e−01 0.99 4.58e−01 1.03

1/128 4.63e−01 0.55 1.17e−02 1.09 1.19e−01 1.08 2.14e−01 1.10

1/256 3.03e−01 0.61 5.03e-03 1.22 5.13e-02 1.22 9.20e-02 1.22

1/512 1.75e-01 0.79 1.68e-03 1.58 1.71e-02 1.58 3.07e-02 1.58
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Fig. 11.1 FV method for the Navier–Stokes equations: time evolution of the energy

al. [78], Haack et al. [127], Meister and Sonar [163] and the discontinuous Galerkin
schemes Dolejší and Feistauer [71], Gassner et al. [116], Ioriatti and Dumbser [130].

Although thesemethods are frequently used in practical simulations, their conver-
gence for multidimensional viscous compressible flows remains open in general. For
a mixed finite element–discontinuous Galerkin method, the convergence to a weak
solution has been shown by Karper in his pioneering work [140] under the assump-
tion that the adiabatic coefficient γ > 3. Note that the convergence in this case holds
up to a subsequence as the weak solutions are not known to be unique. Moreover, any
generalization of the proof of Karper [140] for other numerical schemes, in particular
for cell-centered finite volume methods discussed in this chapter, is highly nontriv-
ial. In [133] Jovanović obtained the error estimate for the Navier–Stokes equations
for entropy dissipative finite volume – finite difference methods under some rather
restrictive assumptions on the global smooth solution.

We should also mention the recent results on the analysis of the Marker–and–Cell
schemes, cf. [113, 115, 129], which are based on the staggered grid approximation of
the velocity and the primary grid approximation of the density. In [113] the conver-
gence to a weak solution of stationary Navier–Stokes equations for γ > 3 has been
proved. In [129] the consistency and the energy stability of the Marker–and–Cell
scheme has been shown for instationary Navier–Stokes equations. The error esti-
mates for γ > 3/2 have been presented in [115] using the relative entropy method.

The finite volume method studied in this chapter was proposed in [94]. Due to
the use of the dissipative upwinding we get an additional artificial diffusion which
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Fig. 11.2 FV method for the Navier–Stokes equations: time evolution of the flow. From top to
down are t = 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5. From left to right are �, u1, and u2
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allows us to obtain “better” a priori estimates on the discrete density and momentum,
see Lemma 11.2. These allow us to perform the desired analysis. We have shown
that the FV method (11.5) belongs to the class of structure preserving schemes.
Indeed, we have the conservation of the mass, positivity of the discrete density, and
energy dissipation. As illustrated in the previous chapters for inviscid flows, having
obtained the stability and consistency of the FV method (11.5) implies convergence
of numerical solutions. In general, we get weak convergence of the finite volume
solutions (up to a subsequence) towards a DMV solution, cf. Theorem 11.3. In the
case that a strong solution exists or numerical densities are uniformly bounded we
have obtained the strong convergence to the strong solution. The results presented in
this chapter are valid for any adiabatic constant γ > 1, which is more general than
other convergence results available in the literature so far. For γ ≥ 2 the convergence
holds for any ε > −1 and thus only a very little amount of numerical diffusion
is needed. On the other case, if γ ∈ (1, 2) we have a condition on the numerical
diffusion, which implies that we need enough numerical diffusion depending on
γ and d to prove the convergence of the FV method (11.4). More importantly,
the convergence analysis via the measure-valued solutions covers the physically
reasonable case of gases γ ∈ (

1, 5
3

]
. For a generalization of the convergence of the

FV method for the Navier–Stokes–Fourier system we refer a reader to [95].



Chapter 12
Finite Volume Method for the Barotropic
Euler System – Revisited

On the one hand, we have seen in Chap. 10 that under the condition that the numer-
ical solution remains in the gas nondegenerate region 0 < � ≤ �h and ϑh ≤ ϑ , the
finite volume method (10.10) is consistent, stable and consequently convergent. On
the other hand, as shown in Chap. 11, the unconditional convergence of the finite
volume method (11.4) for the Navier–Stokes system can be obtained. Being inspired
by these results and realizing that the finite volume method (10.10) can be seen as
a vanishing viscosity approximation for the corresponding inviscid system, we pro-
pose another approximation scheme for the barotropic Euler system that is based
on the Brenner-type regularization (10.4), (10.5). In this approach, the numerical
viscosity is enhanced by “natural” viscosity of Newtonian type, where both vanish
in the asymptotic regime. As a result, the scheme is unconditionally convergent, in
particular, the density remains strictly positive at any level of approximation without
imposing any extra condition of CFL type.

Before formulating a new finite volume method we recall for convenience the
continuous system, the Euler equations for barotropic fluidswith the pressure-density
EOS p(�) = a�γ , γ > 1, cf. (2.71):

∂t� + divxm = 0,

∂tm + divx

(
m ⊗ m

�

)
+ ∇x p = 0.

(12.1)

Recall that for the barotropic Euler equation, the total energy plays the role of a
mathematical entropy η, cf. (2.73):

η ≡ E = 1

2

|m|2
�

+ P(�), P(�) = a

γ − 1
�γ ,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
E. Feireisl et al., Numerical Analysis of Compressible Fluid Flows, MS&A 20,
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with the associated entropy flux g =
(
1

2

|m2|
�

+ P(�) + p(�)

)
m
�

. We accompany

the Euler equations with the periodic boundary conditions (� = T
d ), and the initial

conditions [�0,m0] belonging to the class

�0 > 0, �0 ∈ L∞(Td), m0 ∈ L∞(Td; Rd).

Since the proposed scheme can be seen as a hybrid mixing up the Navier–Stokes
system in the zero viscosity regime with the inviscid Euler system, it is convenient
to work with the fluid velocity u = m

�
rather than the momentum m. Accordingly,

the initial data [�0, u0] should satisfy

�0 > 0, �0 ∈ L∞(Td), u0 ∈ L∞(Td; Rd).

12.1 Numerical Method

Wepropose a fully discrete numericalmethodbasedon the implicit timediscretization
and diffusive upwind numerical flux (8.8) for the approximation of the system (12.1).
In addition, analogously as in the finite volume method for the (complete) Euler sys-
tem, we include a diffusion term of order hα , α > 0 in the momentum equation.
Thus, the resulting viscous finite volume (VFV) method shares some similarities
with the finite volume methods (11.4) and (10.10) proposed for the Navier–Stokes
and (complete) Euler system, respectively.

Let the initial values (�0
h,m

0
h) = (	Q�0,	Qm0) ∈ Qh × Qh be given, u

0
h = m0

h

�0
h
.

Our aim is to find a piecewise constant approximation (�k
h, u

k
h) ∈ Qh × Qh satisfying

for k = 1, . . . , NT the following equations:

Dt�
k
K +

∑
σ∈E(K )

|σ |
|K | F

up
h [�k

h, u
k
h] = 0, (12.2)

Dt (�
k
hu

k
h)K +

∑
σ∈E(K )

|σ |
|K |

(
Fup

h [�k
hu

k
h, u

k
h] + {{

pkh
}}
n
) = hα−1

∑
σ∈E(K )

|σ |
|K |

[[
uk
h

]]
,

for any K ∈ Th, where Th is a structured mesh approximation of Td in the sense of
Definition 3. Recall that Fup

h [rh, uh] is the diffusive upwind flux given in (8.8). The
term on the right hand side of the momentum equation represents the diffusion term
hα�huk

h with α > 0. Analogously as in Chap. 11 we have a fully discrete implicit
scheme,where the value of the solution at the time level k − 1 is incorporated through
the discrete time derivative

Dt�
k
K = �k

K − �k−1
K

�t
.
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For numerical analysis it will be convenient to use the integral formulation that is
analogous to (11.5)

∫
Td

Dt�
k
hφh dx −

∑
σ∈E

∫
σ

Fup
h [�k

h, u
k
h] [[φh]] dSx = 0 for all φh ∈ Qh, (12.3a)

∫
Td

Dt (�
k
hu

k
h) · φh dx −

∑
σ∈E

∫
σ

Fup
h [�k

hu
k
h, u

k
h] · [[φh

]]
dSx −

∫
Td

pkhdivhφh dx

= −hα

∫
Td

∇Duk
h : ∇Dφh dx for all φh ∈ Qh . (12.3b)

We recall that the discrete gradient ∇D is based on jumps over faces σ , cf. (15).
Direct comparison of our new finite volume method (12.3) and the finite volume

method (11.5) for the Navier–Stokes equations shows that (12.3) can be viewed
as the vanishing viscosity approximation of the barotropic Euler system. Indeed,
setting μ = hα and ν = 0 in (11.5) we obtain (12.3). Consequently, most of the
results obtained in Chap. 11 can be directly applied to our new finite volume method
(12.3) as we will see in the next sections.

12.2 Stability

In what follows we summarize the properties of discrete solutions {�k
h, u

k
h}NT

k=1 and
discuss the stability of (12.3).

Lemma 12.1 For any k = 1, . . . , NT there exists a solution (�k
h, u

k
h) ∈ Qh × Qh

to the finite volume method (12.3). Moreover, its piecewise constant interpolant in
time (�h(t), uh(t)), t ∈ [0, T ], enjoys the following properties:

• Discrete conservation of mass.
∫
Td

�h(t) dx =
∫
Td

�0 dx, t ∈ (0, T ]. (12.4)

• Positivity of discrete density.
Let �0 > 0. Then it holds for all t ∈ (0, T ] that �h(t) > 0.
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• Discrete energy balance.

Dt

∫
Td

(
1

2
�k
h|uk

h |2 + P(�k
h)

)
dx + hα

∥∥∇Duk
h

∥∥2
L2

= −hε
∑
σ∈E

∫
σ

{{
�k
h

}} [[
uk
h

]]2
dSx − �t

2

∫
Td

P ′′(ξ)|Dt�
k
h|2 dx

−
∑
σ∈E

∫
σ

P ′′(�k
h,†)

[[
�k
h

]]2 (
hε + 1

2

∣∣{{uk
h

}} · n∣∣
)

dSx

− �t

2

∫
Td

�k−1
h |Dtuk

h |2 dx − 1

2

∑
σ∈E

∫
σ

(�k
h)

up
∣∣{{uk

h

}} · n∣∣ [[uk
h

]]2
dSx ,

(12.5)

where ξ ∈ co{�k−1
h , �k

h} and �k
h,† ∈ co{(�k

h)
in, (�k

h)
out} for any σ ∈ Eint .

Proof of the existence of a numerical solution follows from Lemma 11.2. The proof
of the three properties, conservation of mass, positivity of density and energy balance
can be done analogously as in (8.16), Lemma 8.3 and Theorem 11.1, respectively.

It will be helpful to summarize the uniform estimates that follow from the dis-
crete energy inequality for the numerical solution (�h, uh) analogously as in Corol-
lary 11.1:

∥∥�h |uh |2
∥∥
L∞L1

<∼ 1, ‖�h‖L∞Lγ

<∼ 1, ‖�huh‖
L∞L

2γ
γ+1

<∼ 1,

hα/2 ‖∇Duh‖L2L2
<∼ 1, hα/2 ‖uh‖L2L p

<∼ 1,

hε

T∫
0

∑
σ∈E

∫
σ

{{�h}} [[uh]]
2 dSx dt

<∼ 1,

T∫
0

∑
σ∈E

∫
σ

P ′′(�h,†)
[[
�h
]]2

(hε + | {{uh}} · n|) dSx dt
<∼ 1,

where �h,† ∈ co{�in
h , �out

h } for any σ ∈ Eint , p < ∞ for d = 2 and p ≤ 6 for d = 3.
Moreover, we have negative estimates for the density and momentum that can be

proved analogously as in Lemma 11.4:

Lemma 12.2 (Negative estimates)
Let (�h, uh) be a solution of the FV method (12.3). Then

‖�h‖L2L2
<∼ hβD , βD =

{
− 3ε+3+d

6γ , if γ ∈ (1, 2),

0, if γ ≥ 2,
(12.7)
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‖�huh‖L2L2
<∼ hβM , βM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 3ε+3+d
6γ , if γ ∈ (1, 2),

− d
2γ , if γ ≥ 2,

−α
2 , if γ > 2 for d = 2 or γ ≥ 3 for d = 3,

−α
2 + γ−3

γ
, if γ ∈ [2, 3) for d = 3.

(12.8)

Proof First, recalling Lemma 11.4 directly proves (12.7) and

‖�huh‖L2L2
<∼ h− 3ε+3+d

6γ , if γ ∈ (1, 2).

Next, for γ ≥ 2 we apply the inverse estimate (26), and the first two estimates of
uniform bounds (12.6) in order to get

‖�huh‖L2L2 ≤ ‖�h‖1/2L1L∞
∥∥�h|uh |2

∥∥1/2
L∞L1

<∼ h− d
2γ .

Further, for d = 2 and γ > 2 we have

‖�huh‖L2L2 ≤ ‖�h‖L∞Lγ ‖uh‖
L2L

2γ
γ−2

<∼ h− α
2 .

For d = 3 we obtain

‖�huh‖L2L2 ≤ ‖�h‖L∞L3 ‖uh‖L2L6
<∼ h− α

2 ‖�h‖L∞Lγ hβγ = h− α
2 +βγ ,

whereβγ = 0 if γ ≥ 3 andβγ = d γ−3
3γ = γ−3

γ
due to the inverse estimate (26), which

completes the proof.

12.3 Consistency

Having shown the stability of the finite volume method (12.3) we can proceed with
discussing the consistency. Thus, our aim is to show that consistency errors in (8.24)
vanish as h → 0. These errors have been already identified in Chap. 11 in the proof
of Theorem 11.2.

We focus only on the integrals depending on the velocity that must be handled
differently in the present setting. These are:

E1(rh) = 1

2

T∫
0

∑
σ∈E

∫
σ

| {{uh}} · n| [[rh]]
[[
	Qϕ

]]
dSx dt,

E2(rh) = 1

4

T∫
0

∑
σ∈E

∫
σ

[[uh]] · n [[rh]]
[[
	Qϕ

]]
dSx dt
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for rh being �h or �hui,h, i = 1, . . . , d.

Term E1 can be estimated in the following way

E1(rh)
<∼ h||ϕ||C2 ||rh||L2L2 (‖uh‖L2L2 + ‖∇Duh‖L2L2)

<∼ h1−
α
2 ‖rh‖L2L2 ,

where we have used the velocity bound in the second line of (12.6). Further, applying
(12.7) and (12.8) we get

E1(�h)
<∼ hδ1 , δ1 = 1 − α

2
+ βD,

and
E1(�huh)

<∼ hδ2 , δ2 = 1 − α

2
+ βM ,

respectively, where βD and βM are given in Lemma 12.2.
Furthermore, we have

E2(�h)
<∼ h||ϕ||C2

⎛
⎝

T∫
0

∑
σ∈E

∫
σ

[[uh]]
2 dSx dt

⎞
⎠

1/2⎛
⎝

T∫
0

∑
σ∈E

∫
σ

[[
�h
]]2

dSx dt

⎞
⎠

1/2

<∼ h||ϕ||C2h
1
2 ‖∇Duh‖L2L2

⎛
⎝

T∫
0

∑
σ∈E

∫
σ

{{�h}}2 dSx dt

⎞
⎠

1/2

<∼ h1−
α
2 ||ϕ||C2 ||�h||L2L2

<∼ hδ1 ||ϕ||C2 , for δ1 = 1 − α

2
+ βD,

where βD is given in Lemma 12.2, and, exactly in the same way as in the proof of
Theorem 11.2,

E2(�huh)
<∼ h1−

α
2 ‖ϕ‖C2‖�huh‖L2L2

<∼ hδ2 , δ2 = 1 − α

2
+ βM ,

where βM is given in Lemma 12.2. The above estimates yield the following con-
ditions on the diffusion parameters hε, hα. In order to keep δ1, δ2 > 0 we require
ε < 2γ (1 − α

2 ) − d
3 − 1 for γ ∈ (1, 2) and

0 < α < α0, α0 =
{
2 − d/3+1+ε

γ
if γ ∈ (1, 2),

2 − d
γ

if γ ∈ [2,∞).

Finally, diffusive term on the right hand side of the momentum equation

d(h,ϕ) ≡ −hα

∫
Td

∇Duk
h : ∇D(	Qϕ) dx
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can be handled as follows
∣∣∣∣∣∣h

α

∫
Td

∇Duk
h : ∇D(	Qϕ) dx

∣∣∣∣∣∣

≤ h
α
2

⎛
⎝hα

∫
Td

(∇Duk
h)

2 dx

⎞
⎠

1/2⎛
⎝∫
Td

(∇D(	Qϕ))2 dx

⎞
⎠

1/2

<∼ h
α
2 ||ϕ||C1 → 0 as h → 0 for α > 0.

Combining the above estimates with those obtained in Theorem 11.2 we obtain
the consistency of the finite volume method (12.3).

Theorem 12.1 (Consistency of the finite volume method (12.3))
Let the parameters ε and α satisfy

− 1 < ε and 0 < α < 2 − d/3 + 1 + ε

γ
for γ ∈ (1, 2),

or − 1 < ε and 0 < α < 2 − d

γ
for γ ≥ 2.

(12.9)

Then the finite volume method (12.3) is consistent with the barotropic Euler equa-
tions (12.1) with the periodic boundary conditions and initial data [�0,m0 ≡ �0u0].
Specifically, setting the discrete initial conditions as (�0

h,m
0
h) = (	Q�0,	Qm0)

with u0
h = m0

h

�0
h
, the numerical solutions (�h, �huh ≡ mh) satisfy

−
∫
Td

�0
hϕ(0, ·) dx =

T∫
0

∫
Td

[
�h∂tϕ + mh · ∇xϕ

]
dx dt +

T∫
0

e1,h(t, ϕ) dt

(12.10a)
for any ϕ ∈ C2

c ([0, T ) × T
d);

−
∫
Td

m0
h · ϕ(0, ·) dx =

T∫
0

∫
Td

[
mh · ∂tϕ +

(
mh ⊗ mh

�h

)
: ∇xϕ + phdivxϕ

]
dx dt

+
T∫

0

e2,h(t,ϕ) dt, ph = p(�h) (12.10b)

for any ϕ ∈ C2
c ([0, T ) × T

d; Rd);

‖e1,h(·, ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 , ‖e2,h(·,ϕ)‖L1(0,T ) � hβ‖ϕ‖C2 for some β > 0.
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12.4 Convergence

At this stage we are ready to apply the machinery developed in Chap. 5 and Sect. 7.5
to prove the convergence of the finite volume method (12.3) to a solution of the
barotropic Euler system (12.1) with periodic boundary conditions and initial data
[�0,m0 ≡ �0u0] belonging to the class

�0 > 0, E0 =
∫
Td

[
1

2

|m0|2
�0

+ P(�0)

]
dx < ∞.

Weconcentrate on thephysically relevant case 1 < γ < 2.According toTheorem5.3
the sequence {�h,mh = �huh}h↘0 of finite volume solutions of (12.3) generates a
Young measure

{
Vt,x

}
(t,x)∈(0,T )×Td ,

Vt,x ∈ P(Rd+1), Rd+1 = {̃
� ∈ R, m̃ ∈ Rd

}

that is a DMV solution of the barotropic Euler equations, see Definition 5.5. In
addition, the Young measure admits finite first moments and its barycenter

� = 〈V; �̃〉 , m = 〈V, m̃〉

is a DW solution in the sense of Definition 5.6, cf. Theorem 5.4.
The following two theorems can be proved analogously as Theorems 9.3, 9.5, 9.6,

9.1. Note however that the convergence results in Chap. 9 are conditional, i.e. numer-
ical density, and for the Lax–Friedrichs scheme the velocity as well, is supposed to
be uniformly bounded. On the contrary, the convergence results presented below are
unconditional. The main reason is that the present VFVmethod (12.5) mimics a van-
ishing viscosity approximation of the Euler system. Thus, the additional numerical
diffusion in the momentum equation controls the blow up rates of discrete veloc-
ity gradients, a piece of information that is not available in standard finite volume
schemes designed for general hyperbolic conservation laws.

Theorem 12.2 (Weak convergence of finite volume solutions)
Let {�h,mh ≡ �huh}h↘0 be a family of numerical solutions obtained by the finite
volume method (12.3) with the conditions (12.9) for ε and α.
Then there exists a subsequence {�hn ,mhn }hn↘0 such that

• weak convergence

�hn → � weakly-(*) in L∞(0, T ; Lγ (Td)),

mhn → m weakly-(*) in L∞(0, T ; L 2γ
γ+1 (Td; Rd)),



12.4 Convergence 385

E(�hn ,mhn ) ≡ 1

2

|mhn |2
�hn

+ P(�hn ) → 1

2

|m|2
�

+ P(�)

weakly-(*) in L∞(0, T ;M(Td)) as hn → 0.

• K–convergence

1

N

N∑
n=1

�hn → � as N → ∞ in Lq(0, T ; Lγ (Td)), 1 ≤ q < ∞,

1

N

N∑
n=1

mhn → m as N → ∞ in Lq(0, T ; L 2γ
γ+1 (Td; Rd)), 1 ≤ q < ∞,

1

N

N∑
n=1

(
1

2

|mhn |2
�hn

+ P(�hn )

)
→ E as N → ∞ a.a. in (0, T ) × T

d ,

E ≥
〈
V; 1

2

|m̃|2
�̃

+ P (̃�)

〉
.

• Strong convergence to the Young measure in the Wasserstein distance

dWr

[
1

N

N∑
n=1

δ[�hn (t,x);mhn (t,x)];Vt,x

]
→ 0 as N → ∞

for a.a. (t, x) ∈ (0, T ) × T
d ,

and in Ls((0, T ) × T
d) for any r = 2γ

γ+1 and 1 ≤ s < r . Here, dWr denotes the
Wasserstein r-distance introduced in (3).

• L1 convergence of the deviations

1

N

N∑
n=1

∣∣∣∣∣[�hn ,mhn ] − 1

N

N∑
k=1

[�hn ,mhn ]
∣∣∣∣∣

≡
〈
1

N

N∑
n=1

δ[�hn ,mhn ];
∣∣∣∣∣[̃�, m̃] −

〈
1

N

N∑
n=1

δ[�hn ,mhn ]; [̃�, m̃]
〉 ∣∣∣∣∣
〉

→ 〈V; |[̃�, m̃] − [�,m]|〉 as N → ∞ in L1((0, T ) × T
d).

Theorem 12.3 (Strong convergence of finite volume solutions)
Suppose that {�h,mh}h↘0 is a sequence of finite volume solutions obtained by the
finite volume method (12.3) with the conditions (12.9) for ε and α.
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• strong solution
Assume that the Euler system (12.1) admits a strong solution [�,m], such that

� ∈ W 1,∞((0, T ) × T
d), m ∈ W 1,∞((0, T ) × T

d; Rd).

Then for any 1 ≤ q < ∞

�h → � in Lq(0, T ; Lγ (Td)),

mh → m in Lq(0, T ; L 2γ
γ+1 (Td; Rd)),

E(�h,mh) → E(�,m) in Lq(0, T ; L1(Td)) as h → 0.

• classical solution
Suppose there is a sequence hn → 0 such that

�hn → � weakly-(*) as hn → 0 in L∞(0, T ; Lγ (Td))

mhn → m weakly-(*) as hn → 0 in L∞(0, T ; L 2γ
γ+1 (Td; Rd)),

where
� ∈ C1([0, T ] × T

d), m ∈ C1([0, T ] × T
d; Rd).

Then [�,m] is a classical solution to the limit Euler system, and

�h → � in Lq(0, T ; Lγ (Td)), mh → m in Lq(0, T ; L 2γ
γ+1 (Td; Rd))

as h → 0 for any 1 ≤ q < ∞.

Proof In order to prove the strong convergence to the weak solution that belongs to
the class (1.14) we apply the weak-strong uniqueness result. Indeed, if V is a DW
solution generated by the finite volume method (12.3) and a weak solution [�, u]
belonging to the class (1.14) exists then

V = δ[�,m] a.a. in (0, T ) × �

and the strong convergence follows.
The strong convergence to the strong or classical solution can be shown in the

same way as Theorems 9.1, 9.3.

Applying the results from Sect. 9.5 we can avoid the subsequence argument as
soon as the approximate sequence {�hn ,mhn }∞n=1 is (S)–convergent.

Theorem 12.4 (Statistical convergence of finite volume solutions)Let {�hn ,mhn }∞n=1
be a sequence of approximate solutions obtained by the finite volume method (12.3)
with the conditions (12.9) for ε and α.
In addition, suppose that {�hn ,mhn }∞n=1 is (S)–convergent in the sense of Defini-
tion 9.2.
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Then

1

N

N∑
n=1

�hn → � as N → ∞ in Lq((0, T ) × T
d) for 1 ≤ q < γ,

1

N

N∑
n=1

mhn → m as N → ∞ in Lq((0, T ) × T
d; Rd) for 1 ≤ q <

2γ

γ + 1
.

Moreover, the sequence of numerical solutions {�hn ,mhn }∞n=1 generates a Young
measure {Vt,x }(t,x)∈(0,T )×Td and

dWq

[
1

N

N∑
n=1

δ[�hn ;mhn ];V
]

→ 0 as N → ∞ in Lq((0, T ) × T
d)

for any 1 ≤ q <
2γ

γ+1 .
ThemeasureV is aDMV solution of the Euler system in the sense of Definition 5.5,

whereas its barycenter [�,m] is a dissipative solution in the sense of Definition 5.6.

12.5 Error Estimates

The relative energy inequality, derived in Sects. 4.1.3, 6.1.1, together with the
stability-consistency formulation (12.5), (12.10), can be used to derive error esti-
mates as soon as the Euler system admits a smooth solution. Indeed a short inspec-
tion of the proof of the relative energy inequality in Sect. 4.1.3 reveals that it is
enough to add the consistency errors computed in (12.10) to the right-hand side of
the relative energy inequality (6.5) evaluated for � = �h ,m = mh , and �̃ = �, ũ = u
– the smooth solution of the limit system. Realizing that the defect measures E and
R vanish, we obtain

⎡
⎣∫
Td

E
(
�h,mh

∣∣∣�, u
)

dx

⎤
⎦

t=τ

t=0

≤ −
τ∫

0

∫
Td

�h∇xu ·
(
mh

�h
− u

)
·
(
mh

�h
− u

)
dx dt

−
τ∫

0

∫
Td

[
p(�h) − p′(�)(�h − �) − p(�)

]
divxu dx dt

+
∥∥∥∥e1,h

(
·, P ′(�) − 1

2
|u|2

)∥∥∥∥
L1(0,T )

+ ‖e2,h(·, u)‖L1(0,T ),

(12.11)
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where e1,h , e2,h are the consistency errors identified in (12.10), and E
(
�h,mh

∣∣∣�, u
)

is the relative energy introduced in (4.25).
Thus we may apply Gronwall’s lemma to conclude that

∫
Td

E
(
�h,mh

∣∣∣�, u
)

(τ, ·) dx

≤ c (T, ‖u‖C1)

⎡
⎣∫
Td

E
(
�h,mh

∣∣∣�, u
)

(0, ·) dx

+
∥∥∥∥e1,h

(
·, P ′(�) − 1

2
|u|2

)∥∥∥∥
L1(0,T )

+ ‖e2,h(·, u)‖L1(0,T )

]
(12.12)

for any 0 ≤ τ < T . Thus we have an explicit estimate of the rate of convergence
of the numerical method in terms of the error in the initial data approximation
and the consistency errors. More precisely, choosing the initial data �0

h = 	Q�0,

m0
h = 	Qm0 we have E

(
�0
h,m

0
h

∣∣∣�0, u0

)
<∼ h. Further,

∥∥∥∥e1,h
(

·, P ′(�) − 1

2
|u|2

)∥∥∥∥
L1(0,T )

+ ‖e2,h(·, u)‖L1(0,T ) ≤ hδ

with δ = min
[

α
2 , 1 −

(
3ε+3+d

6γ + α
2

)]
, which determines rate of the convergence.

12.6 Numerical Experiments

As in Chap. 10 we want to illustrate the concept of K–convergence for barotropic
Euler system. To this end we consider the Kelvin–Helmholtz problem as stated in
Sect. 10.5.

We chose a computational domain � = [0, 1]2, apply periodic boundary condi-
tions and the following initial data

(�, u1, u2)(x) =
{

(2,−0.5, 0), if I1 < x2 < I2
(1, 0.5, 0), otherwise.

It is well-known that the Kelvin–Helmholtz problem describes the uniform veloc-
ity shear for fluids of different densities superposed one over the other. The interface
profiles I j = I j (x) ≡ Jj + εY j (x), j = 1, 2, are chosen to be small perturbations
around the lower x2 = J1 = 0.25 and the upper x2 = J2 = 0.75 interface, respec-
tively. Further,
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Y j (x) =
m∑

k=1

akj cos(b
k
j + 2kπx1), j = 1, 2,

where akj ∈ [0, 1] and bkj , j = 1, 2, k = 1, . . . ,m are arbitrary but fixed numbers.
The coefficients akj have been normalized such that

∑m
k=1 a

k
j = 1 to guarantee that

|I j (x) − Jj | ≤ ε for j = 1, 2. Analogously as in the case of complete Euler system
we set m = 10 and ε = 0.01.

In Figs. 12.1 and 12.4 the results obtained by the VFVmethod (12.2) for γ = 1.1
and γ = 1.4 are presented. The coefficients of numerical viscosity are chosen to
be α = 1.0 = ε. Grid resolution is consecutively refined using 2562, 5122, 10242,
and 20482 finite volume cells. As a comparison we also present in Figs. 12.2, 12.3,
12.5 and 12.6 the results obtained by more classical finite volume methods such
as the Rusanov and the Lax–Friedrichs method, cf. (9.12) and (9.13). It is well-
known that the Lax–Friedrichs finite volume method is quite diffusive which can
be observed by results on a grid with 20482 cells. In order to obtain better res-
olution of shear effects numerical simulations on a finer grid would need to be
performed. Another option is, of course, to apply a higher order approximation

Fig. 12.1 VFV scheme with α = 1.0, ε = 1.0, γ = 1.1

Fig. 12.2 Rusanov finite volume method, γ = 1.1

Fig. 12.3 Lax–Friedrichs finite volume method, γ = 1.1
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Fig. 12.4 VFV scheme with α = 1.0, ε = 1.0, γ = 1.4

Fig. 12.5 Rusanov finite volume method, γ = 1.4

Fig. 12.6 Lax–Friedrichs finite volume method, γ = 1.4

using, e.g., a piecewise linear reconstruction. For simplicity, all simulations are done
with the first order explicit time discretization using the CFL stability condition

�t max(|uh | +
√

γ �
γ−1
h )/h = 0.3. Recall that h = 1/n, where n is the number of

grid cells in one spatial direction.
Figure 12.7 documents the convergence behavior of the vanishing viscosity finite

volume method (12.2) for γ = 1.1 and γ = 1.4. The coefficients of numerical dif-
fusion are taken to be ε = 1.0 and α = 1.5 or α = 1.0. Let us recall that the error
E1 measures the L1-error of the difference between the numerical solution and the
reference solution computed on the finest grid, the L1-error of the Cesàro averages,
the L1-error of the deviation, and the L1-error of the Wasserstein distance for the
Cesàro average of the Dirac measures concentrated on numerical solutions, respec-
tively, see (10.75). We observe that due to small scale oscillations the convergence
of individual numerical solutions is not achieved, see the first column. On the other
hand the K-convergence approach using the Cesàro averages yields better conver-
gence rates, see the second column. This can be seen by considering the gradients
of the error curves, in particular for the density and smaller numerical diffusion with
α = 1.5. The larger the gradient is, the better convergence rate is achieved. Similar
effects are observed for the errors E3 and E4 of deviation and the Cesàro averages
of the Dirac measures, respectively.
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Fig. 12.7 Convergence study for the Kelvin–Helmholtz problem: E1, E2, E3, and E4 errors (left
to right)



Chapter 13
Mixed Finite Volume – Finite Element
Method for the Navier–Stokes System

InChap. 11wehave studied the convergenceof afinite volumemethod for theNavier–
Stokes system using piecewise constant approximations for density and velocity. Due
to the viscosity terms in the momentum equation another rather natural option would
be to work with piecewise linear approximation for the velocity. Moreover, due to
the parabolic character of the momentum equation it is suitable to approximate it
by means of finite element method. This gives rise to a mixed finite volume – finite
element method that combines the advantage of finite volume approximation of the
convective terms in the continuity and momentum equations, with the finite element
approximation of the dissipation terms. The goal of present chapter is to introduce
such a mixed method for the Navier–Stokes system and analyze its convergence.

Let us consider the Navier–Stokes system in the time-space cylinder (0,T ) × �

(� ⊂ Rd , d = 2, 3):

∂t� + divx(�u) = 0, (13.1a)

∂t(�u) + divx(�u ⊗ u) + ∇xp(�) = divxS(∇xu), (13.1b)

p = a�γ , a > 0, γ > 1, (13.1c)

where S is the viscous stress tensor

S(∇xu) = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI

for μ > 0 and λ ≥ − d−2
d μ. As the viscosity coefficients are constant, we may

rewrite
divxS(∇xu) = μ�xu + ν∇xdivxu,

where ν = d−2
d μ + λ ≥ 0.
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The system is supplemented with the initial data

�(0) = �0 ≥ � > 0, �0 ∈ L∞(�), u(0) = u0 ∈ W 1,2
0 (�;Rd ) ∩ L∞(�;Rd )

(13.2)
and the no-slip boundary condition

u|∂� = 0. (13.3)

Alternativelywemay apply the periodic boundary conditions. In that case the domain
can be identified with the flat torus (� = T

d ), cf. Chap. 11.
The main program is to apply the theoretical results on the convergence of con-

sistent approximations to a DMV solution (see Theorem 5.5) and the convergence to
strong solutions (see Theorems 7.12 and 7.13). Thus the main goal is to show that the
numerical solution is a consistent approximation of the Navier–Stokes system (13.1)
in the sense of Definition 5.9, namely the numerical solution is stable in the sense of
Definition 8.3 and consistent in the sense of Definition 8.6. Note, however, that the
analysis performed in the theoretical part concerns exclusively the case of spatially
periodic boundary conditions.Although there are nomajor obstacles to accommodate
the no-slip condition (13.3), there is one issue that deserves attention. The present
approach yields strong convergence to a strong solution as long as the latter exists.
As computational domains are usually of polygonal type, meaning merely Lipschitz,
the existence of a smooth solution for a problem involving second order in space
differential operators is a delicate issue. To avoid this difficulty, we approximate a
smooth physical domain � by a family of computational domains �h,

�h ⊂ �, K ⊂ �h for any compact K ⊂ � and any 0 < h ≤ h0. (13.4)

As this is the only part of the book, where variable computational domain is consid-
ered, we feel it is more convenient to explain the changes on this particular example
rather than elaborate a new version of the abstract theory.

Our approach is based on the following steps:

• we derive the discrete energy inequality in the sense of Definition 8.3;
• we derive the consistency formulation of the problem in the sense of Definition 8.6
upon the uniform bounds obtained from the previous step of the energy stability;

• we combine the results of previous two steps to gain a consistent approximation
of the Navier–Stokes system in the sense of Definition 5.9;

• we verify the compatibility of discrete differential operators in the sense of Defi-
nition 5.8;

• finally,we apply suitablemodifications of Theorems 5.5 and 7.12 (or Theorem7.13
for bounded density) to derive the convergence results.

We start by introducing the numerical method and continue with studying its
stability, consistency, and convergence step by step.
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13.1 Numerical Method

In this section we introduce a mixed finite volume – finite element method for the
Navier–Stokes equations (13.1). Concerning the notation used in the scheme, we
invite the reader to Preliminary material and Chap. 8 for the definitions. In accor-
dance with (13.4), we assume that the physical domain � is approximated by a
polygonal, resp. polyhedral approximation �h ⊂ � using an unstructured mesh Th,
cf. Definition 1.

Definition 13.1 (FV–FE SCHEME FOR THE NAVIER–STOKES SYSTEM)
Given the initial data (13.2) we set

�0
h = 	Q�0, u0h = 	Vu0

so that�0
h ∈ Qh andu0h ∈ Vh, whereQh andVh are the space of piecewise constant and

piecewise linear Crouzeix–Raviart elements, respectively, see (13.10). A sequence
(�k

h,u
k
h) ∈ Qh × V0,h, k = 1, . . . ,NT is a numerical solution of the finite volume –

finite element method if the following holds for any φh ∈ Qh and φh ∈ V0,h

∫
�h

Dt�
k
hφh dx −

∫
Eint

Fup
h [�k

h,u
k
h] [[φh]] dSx = 0, (13.5a)

∫
�h

Dt
(
�k
huh

k) · φh dx −
∫
Eint

Fup
h [�k

huh
k ,ukh] · [[φh

]]
dSx

−
∫
�h

p(�k
h)divhφh dx + μ

∫
�h

∇hukh : ∇hφh dx + ν

∫
�h

divhukhdivhφh dx = 0.

(13.5b)

Here, the discrete operators divh and ∇h are given in (15), and the operator [[·]]
is given in (13.6), respectively. Recall that the operator f = 	Qf represents the
elementwise constant interpolation and the symbol

∫
Eint

stands for
∑

σ∈Eint

∫
σ

.More-
over, the diffusive upwind numerical flux reads

Fup
h [r,u] = Up[r,u] − hε

2
[[r]]χ

( 〈u〉 · n
hε

)
, χ(z) =

{
1 − |z| if |z| ≤ 1,

0 otherwise,
(13.6)

where Up[r,u] represents the standard upwind flux, see (8.6).

Remark 13.1 Note that the diffusive upwind flux Fup
h in this chapter is slightly

different from those used previously. In (8.8) we have defined the following version
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Fup
h [r,u] = Up[r,u] − hε [[r]] = {{r}} 〈u〉 · n − [[r]] (hε + 1

2
|〈u〉 · n|). (13.7)

By an easy calculation we may reformulate the numerical flux (13.6) as

Fup
h [r,u] = {{r}} 〈u〉 · n − 1

2
[[r]] max{hε, |〈u〉 · n|},

which implies a smaller viscosity coefficient 1
2 max{hε, |〈u〉 · n|} compared to (hε +

|〈u〉 · n|), which is the artificial viscosity coefficient of the flux function defined
in (13.7).

The numerical flux function (13.6) satisfies the following identities.

Lemma 13.1 (Diffusive numerical flux)
Let rh, φh ∈ Qh, uh ∈ V0,h, φ ∈ C1(�). Then we have

∫
Eint

(
Fup
h [rh,uh]

[[ |uh|2
2

]]
− Fup

h [rhuh,uh] · [[uh]]
)

dSx = D1 + D2 , (13.8)

where

D1 = 1

2

∫
Eint

ruph |〈uh〉 · n| |[[uh]]|2 dSx

= 1

2

∫
Eint

(
rinh [〈uh〉 · n]+ − routh [〈uh〉 · n]−) |[[uh]]|2 dSx,

D2 = hε

2

∫
Eint

{{rh}} |[[uh]]|2 χ

( 〈uh〉 · n
hε

)
dSx;

and ∫
�h

rhuh · ∇xφ dx −
∫
Eint

Fup
h [rh,uh] [[φh]] dSx

= hε

2

∫
Eint

[[rh]] [[φh]]χ

( 〈uh〉 · n
hε

)
dSx

+
∑
K∈Th

∑
σ∈E(K)

∫
σ

(φh − φ) [[rh]] [〈uh〉 · n]− dSx

+
∑
K∈Th

∑
σ∈E(K)

∫
σ

φrh
(
uh − 〈uh〉

) · n dSx

+
∫
�h

rh(φh − φ)divhuh dx.

(13.9)
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Proof The proof is analogous to the proof of Lemma 8.1 and we omit it here.

Next, replacing φ by ϕ ∈ C∞
c ([0,T ) × �) and φh by ϕh = 	Qϕ in (13.9), we

deduce

T∫
0

∫
�h

rhuh · ∇xϕ dx dt −
T∫

0

∫
Eint

Fup
h [rh,uh] [[ϕh]] dSx dt =

4∑
i=1

ei(rh). (13.10)

Using the interpolation estimate (13.9), Poincaré’s inequality (13.2) and Hölder’s
inequality we get the following estimates

|e1(rh)| <∼ hε+1

T∫
0

∫
Eint

∣∣∣∣[[rh]]χ
( 〈uh〉 · n

hε

)∣∣∣∣ dSx dt,

|e2(rh)| <∼ h

T∫
0

∫
Eint

∣∣[[rh]] [〈uh〉 · n]−∣∣ dSx dt,

|e3(rh)| =
T∫

0

∑
K∈Th

∑
σ∈E(K)

∫
σ

rh(ϕ − 	Qϕ)
(
uh − 〈uh〉

) · n dSx dt

<∼ h ‖rh‖L2L2 ‖∇huh‖L2L2 ,

|e4(rh)| <∼ h ‖rh‖L2L2 ‖divhuh‖L2L2 .

Analogously, replacing φ by ϕ ∈ C∞
c ([0,T ) × �) and φh by ϕh = 	Vϕ in (13.9),

we deduce

T∫
0

∫
�h

rh ⊗ uh : ∇xϕ dx dt −
T∫

0

∫
Eint

Fup
h [rh,uh]

[[
	Vϕ

]]
dSx dt =

4∑
i=1

ei(rh),

(13.11)
where ei(rh), i = 1, 2, 3, 4, are bounded as in (13.10) by using the interpolation
estimate (13.21), Poincaré’s inequality (13.2) and Hölder’s inequality .

Remark 13.2 In view of hypothesis (13.4), we have

C∞
c ([0,T ) × �) ⊂

⋃
k>0

⋂
h<k

C∞
c ([0,T ) × �h).

In particular, the test functions belonging to this space are eligible in the numerical
scheme defined only on the computational domain �h.
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Hereafter, we recall the piecewise constant approximation in time (47) to extend
the discrete values {f kh }NT

k=1 to the whole time interval (0,T ), i.e.

fh(t) =
NT∑
k=0

1[k�t,(k+1)�t)f
k
h , fh ∈ {�h,uh}.

In what follows we list a few properties of the scheme (13.5).

Lemma 13.2 (Properties of the mixed FV–FE scheme)
Let the initial data [�0,u0] satisfy (13.2). The mixed FV–FE scheme (13.5) enjoys

the following properties:

1. Existence of a numerical solution. For any h > 0, given (�k−1
h ,uk−1

h ) ∈ Qh ×
Vh, there exists at least one solution (�k

h,u
k
h) ∈ Qh × V0,h to the scheme (13.5)

for all k = 1, . . . ,NT .
2. Positivity of discrete density. Any solution to (13.5) satisfies �h(t) > 0 for all

t ∈ (0,T ).

3. Discrete mass conservation. Any solution to (13.5) satisfies the conservation
of mass ∫

�h

�h(t) dx =
∫
�h

�0 dx, t ∈ (0,T ).

4. Internal energy balance. There exist ξ ∈ co{�k−1
h , �k

h}, ζ ∈ co{(�k
h)

in, (�k
h)

out}
for any σ ∈ Eint such that

∫
�h

DtP(�k
h) + p(�k

h)divhu
k
h dx = −�t

2

∫
�h

P′′(ξ)|Dt�
k
h|2 dx

− 1

2

∫
Eint

P′′(ζ )
[[
�k
h

]]2
max{hε,

∣∣〈ukh〉 · n∣∣} dSx.
(13.12)

Proof We refer to Lemma 11.3 and Lemma 6 for the proof as it can be done exactly
in the same way.

13.2 Stability

The first step in the convergence analysis of the mixed FV–FE scheme is showing its
stability. Indeed, the energy stability in the sense of Definition 8.3 is crucial for the
proof of convergence.
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Theorem 13.1 (Energy stability)
Let (�h,uh) be a numerical solution obtained by the mixed FV–FE method (13.5)

in the sense of (47). Then, for any k = 1, . . . ,NT , there exist ξ ∈ co{�k−1
h , �k

h} and
ζ ∈ co{(�k

h)
in, (�k

h)
out} for any σ ∈ Eint , such that

∫
�h

Dt

[
1

2
�k
h

∣∣uhk ∣∣2 + P(�k
h)

]
dx +

∫
�h

[
μ|∇hukh|2 + ν|divhukh|2

]
dx = −D�t,h,

whereP(�) = a
γ−1�

γ is the pressure potential andD�t,h ≥ 0 represents the numerical
diffusion

D�t,h = 1

2

∫
�h

P′′(ξ)

(
�k
h − �k−1

h

)2
�t

dx +
∫
�h

�t

2
�k−1
h

∣∣∣∣∣
uh

k − uh
k−1

�t

∣∣∣∣∣
2

dx

+ 1

2

∫
Eint

P′′(ζ )
[[
�k
h

]]2
max{hε,

∣∣〈ukh〉 · n∣∣} dSx

+ hε

2

∫
Eint

{{
�k
h

}} · [[uhk]]2 χ

(〈
ukh
〉 · n
hε

)
dSx

+ 1

2

∫
Eint

(
(�k

h)
in[〈ukh〉 · n]+ − (�k

h)
out [〈ukh〉 · n]−

) [[
uh

k]]2 dSx.

Proof First, we test the discrete continuity equation (13.5a) by −|uhk |2
2 to get

−1

2

∫
�h

Dt�
k
h

∣∣uhk ∣∣2 dx + 1

2

∫
Eint

Fup
h [�k

h,u
k
h]
[[∣∣uhk ∣∣2

]]
dSx = 0.

Next, we test the discrete momentum equation (13.5b) by ukh to obtain

∫
�h

Dt
(
�k
huh

k) · ukh dx −
∫
Eint

Fup
h [�k

huh
k ,ukh] · [[uhk]] dSx

−
∫
�h

p(�k
h)divhu

k
h dx + μ

∥∥∇hukh
∥∥2
L2 + ν

∥∥divhukh∥∥2L2 = 0.

Summing up the above two equations and recalling (13.8) we derive
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∫
�h

Dt

(
1

2
�k
h

∣∣uhk ∣∣2
)

dx +
∫
�h

�t

2
�k−1
h

∣∣Dtuh
k
∣∣2 dx

+ μ
∥∥∇hukh

∥∥2
L2 + ν

∥∥divhukh∥∥2L2 + hε

2

∫
Eint

{{
�k
h

}} · [[uhk]]2 χ

(〈
ukh
〉 · n
hε

)
dSx

+ 1

2

∫
Eint

(
(�k

h)
in[〈ukh〉 · n]+ − (�k

h)
out
[〈
ukh
〉 · n]−) [[ukh

]]2
dSx

=
∫
�h

p(�k
h)divhu

k
h dx.

Finally, summing up the above equality with the internal energy balance (13.12)
completes the proof.

As a consequence of the energy balance, see Theorem 13.1, we have the following
uniform bounds.

Corollary 13.1 (Uniform bounds)
Let (�h,uh) be a solution of the mixed FV–FE method (13.5). Then we have the

following uniform estimates:

∥∥�h|uh|2
∥∥
L∞L1

<∼ 1, ‖�h‖L∞Lγ

<∼ 1, ‖�huh‖L∞L2γ /(γ+1)

<∼ 1, (13.13a)

‖∇huh‖L2 L2 <∼ 1, ‖divhuh‖L2 L2 <∼ 1, ‖uh‖L2 Lq <∼ 1, (13.13b)

T∫
0

∫
Eint

P′′(ζ )
[[
�h
]]2

max {hε, |〈uh〉 · n|} dSx dt <∼ 1, (13.13c)

hε

T∫
0

∫
Eint

{{�h}} · |[[uh]]|2 χ

( 〈uh〉 · n
hε

)
dSx dt

<∼ 1, (13.13d)

T∫
0

∫
Eint

(
(�h)

in[〈uh〉 · n]+ − (�h)
out[〈uh〉 · n]−) |[[uh]]|2 dSx dt

<∼ 1, (13.13e)

where q = 6 if d = 3 and 1 ≤ q < ∞ if d = 2.

Further application of the above estimates leads to the following corollary, for the
proof we refer to the proofs of Lemmas 11.4, 11.5, and 11.6 as it can be done exactly
in the same way.
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Corollary 13.2 (Some useful estimates)
Let (�h,uh) be a numerical solution of the mixed FV–FE method (13.5). Then the

following estimates hold:

‖�h‖L2L2 <∼ hβD , βD =
{

− 3ε+3+d
6γ if γ ∈ (1, 2),

0, if γ ≥ 2,
(13.14a)

‖�h‖L2L6/5 <∼ hβR , βR =
{

5γ−6
6γ d if γ ∈ (1, 6

5 ),

0, if γ ≥ 6
5 ,

(13.14b)

‖�huh‖L2L2 <∼ hβM , βM =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 3ε+3+d
6γ , if γ ∈ (1, 2),

γ−3
3γ d , if γ ∈ [2, 3),
0, if γ ≥ 3 and d = 3,

0, if γ ≥ 2 and d = 2,

(13.14c)

T∫
0

∫
Eint

[[
�h
]]2

max{�in
h , �out

h } |〈uh〉 · n| dSx dt <∼ 1 for γ ≥ 2, (13.14d)

T∫
0

∫
Eint

∣∣[[�h
]] 〈uh〉 · n∣∣ dSx dt <∼ hβF , βF =

{
− 1

2 if γ ≥ 6
5 ,

d
2 ( 56 − 1

γ
) − 1

2 if γ ∈ (1, 6
5 ).

(13.14e)

13.3 Consistency

The next step towards the convergence analysis is showing the consistency of numer-
ical solutions in the sense of Definition 8.6, meaning that the numerical solutions
satisfy the weak formulation of the Navier–Stokes system (13.1) with certain remain-
der terms that tend to zero as h → 0.

Theorem 13.2 (Consistency of the mixed FV–FE scheme)
Let (�h,uh) be a numerical solution of the mixed FV–FE scheme (13.5) with

�t ≈ h ∈ (0, 1). Further, we assume that

0 < ε if γ ≥ 2 and ε ∈ (0, 2γ − 1 − d/3) if γ ∈ (4d/(1 + 3d), 2).

Then for any test functions ϕ ∈ C∞
c ([0,T ) × �) and ϕ ∈ C∞

c ([0,T ) × �;Rd )

the following holds:
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−
∫
�

�0
hϕ(0, ·) dx =

T∫
0

∫
�

[
�h∂tϕ + �huh · ∇xϕ

]
dx dt +

T∫
0

e1,h(t, ϕ) dt;

(13.15a)

−
∫
�

�0
huh

0 · ϕ(0, ·) dx

=
T∫

0

∫
�

[
�huh · ∂tϕ + �huh ⊗ uh : ∇xϕ + p(�h)divxϕ

]
dx dt

−
T∫

0

∫
�

[
μ∇huh : ∇xϕ + νdivhuhdivxϕ

]
dx dt +

T∫
0

e2,h(t,ϕ) dt;

(13.15b)

‖e1,h(·, ϕ)‖L1(0,T )

<∼ hβ‖ϕ‖C2 , ‖e2,h(·,ϕ)‖L1(0,T )

<∼ hβ‖ϕ‖C2 , for some β > 0.

Proof Given ϕ ∈ C∞
c ([0,T ) × �) and ϕ ∈ C∞

c ([0,T ) × �;Rd ) we set ϕh = 	Qϕ

and ϕh = 	Vϕ to be the test functions in the discrete continuity and momentum
equation, respectively. As pointed out in Remark 13.2, we have ϕ ∈ C∞

c ([0,T ) ×
�h;Rd ) for all h small enough so that we may replace � by �h in the momentum
equation (13.15b). Similarly, extending uh to be zero outside �h, we may adopt the
same convention in the continuity equation (13.15a). Adopting this convention, we
simply write � instead of �h in the remaining part of the proof.

In what follows we deal with each term in the following four steps.

1. Time derivative terms:

We recall (48a) with rh = �h and apply the density bound in (13.13a) as well as
the initial condition (13.2) to derive

T∫
0

∫
�

Dt�h	Qϕ dx dt +
T∫

0

∫
�

�h∂tϕ dx dt +
∫
�

�0
hϕ(0) dx

<∼ �tc(‖ϕ‖C2) ‖�h‖L1L1 + �tc(‖ϕ‖C1)
∥∥�0

h

∥∥
L1

<∼ �t ‖�h‖L∞Lγ + �t
∥∥�0

h

∥∥
L1

<∼ �t.

Analogously, by setting rh = �huh in (48b) and using the momentum bound in
(13.13a) as well as the initial condition (13.2) we derive

T∫
0

∫
�

(Dt(�huh) · 	Vϕ + �huh · ∂tϕ) dx dt +
∫
�

�0
huh

0 · ϕ(0) dx
<∼ �t + h.
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2. Convective terms:

We first deal with the convective term of the continuity equation. To begin, we
recall (13.10) for rh = �h to get

T∫
0

∫
�

�huh · ∇xϕ dx dt −
T∫

0

∫
Eint

Fup
h [�h,uh] [[ϕh]] dSx dt =

4∑
j=1

ej(�h),

where

|e1(�h)| <∼ hε+1

T∫
0

∫
Eint

∣∣∣∣[[�h
]]

χ

( 〈uh〉 · n
hε

)∣∣∣∣ dSx dt,

|e2(�h)| <∼ h

T∫
0

∫
Eint

∣∣[[�h
]] [〈uh〉 · n]−∣∣ dSx dt,

|e3(�h)| <∼ h ‖�h‖L2L2 ‖∇huh‖L2L2 ,

|e4(�h)| <∼ h ‖�h‖L2L2 ‖divhuh‖L2L2 .

Now we deal with the above residual terms ej(�h) for j = 1, 2, 3, 4.
Term e1(�h). We apply the trace estimates (28), the fact

∣∣[[�h
]]∣∣ ≤ 2 {{�h}} and the

density estimate (13.13a) to get

|e1(�h)| <∼ hε+1

T∫
0

∫
Eint

∣∣[[�h
]]∣∣ dSx dt <∼ hε+1

T∫
0

∫
Eint

{{�h}} dSx dt

<∼ hε ‖�h‖L1L1 <∼ hε ‖�h‖L∞Lγ

<∼ hε.

Term e2(�h). Recalling the estimate (13.14e) we get a positive β such that

|e2(�h)| <∼ hβ, β = 1 + βF =
{

1
2 , if γ ≥ 6

5 ,

1
2 + 1

2d
(
5
6 − 1

γ

)
> 1

4 , if γ ∈ (1, 6
5 ),

where βF is given in (13.14e).
Term e3(�h) and e4(�h). We use the negative estimate (13.14a) and the velocity

bound (13.13b) to get

|e3(�h)| + |e4(�h)| <∼ h
( ‖∇huh‖L2L2 + ‖divhuh‖L2L2

) ‖�h‖L2L2 <∼ hβ.

Note that β = 1 + βD, where βD is given in (13.14a). Clearly, for γ ≥ 2 we have
β > 0. Further, for γ < 2 it holds β > 0 if ε < 2γ − 1 − d/3.
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For the sum
∑4

i=1 |ei(�h)| we then have the estimate

∣∣∣∣∣∣
T∫

0

∫
�

�huh · ∇xϕ dx dt −
T∫

0

∫
Eint

Fup
h [�h,uh] [[ϕh]] dSx dt

∣∣∣∣∣∣
<∼ hβ. (13.16)

It holds β > 0 for all ε ∈ (0, 2γ − 1 − d/3) if γ ∈ (1, 2), and for all ε > 0 if γ ≥ 2.
Next, to show the consistency of the convective term of the momentum equation,

we set rh = �huh in (13.11), which implies

T∫
0

∫
�

(�huh ⊗ uh) : ∇xϕ dx dt −
T∫

0

∫
Eint

Fup
h [�huh,uh] · [[	Vϕ

]]
dSx dt

=
4∑

j=1

ej(�huh),

where the estimates of residual terms ej(�huh), j = 1, 2, 3, 4, read

|e1(�huh)| <∼ hε+1

T∫
0

∫
Eint

∣∣∣∣[[�huh
]]

χ

( 〈uh〉 · n
hε

)∣∣∣∣ dSx dt,

|e2(�huh)| <∼ h

T∫
0

∫
Eint

∣∣[[�huh
]]
[〈uh〉 · n]−∣∣ dSx dt,

|e3(�huh)| <∼ h ‖�huh‖L2L2 ‖∇huh‖L2L2 ,

|e4(�huh)| <∼ h ‖�huh‖L2L2 ‖divhuh‖L2L2 .

Term e1(�huh). First we apply the chain rule (13.23) and the triangle inequality
to get

|e1(�huh)| <∼ hε+1

T∫
0

∫
Eint

|{{�h}} [[uh]]| χ

( 〈uh〉 · n
hε

)
dSx dt

+ hε+1

T∫
0

∫
Eint

∣∣ [[�h
]] {{uh}}∣∣ χ

( 〈uh〉 · n
hε

)
dSx dt

≡ e11 + e12.

Next,we applyHölder’s inequality, the density bound (13.13a), numerical dissipation
(13.13d), and the trace inequality (28) to control the first term e11, i.e.
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e11 = h1+ε

T∫
0

∫
Eint

|{{�h}} [[uh]]| χ

( 〈uh〉 · n
hε

)
dSx dt

<∼ h1+ε

⎛
⎝

T∫
0

∫
Eint

{{�h}} |[[uh]]|2 χ

( 〈uh〉 · n
hε

)
dSx dt

⎞
⎠

1/2

×

×
⎛
⎝

T∫
0

∫
Eint

{{�h}} dSx dt
⎞
⎠

1/2

<∼ h(1+ε)/2.

Further, the term e12 can be estimated in two steps. On one hand, for γ ≥ 6/5 it is
obvious by the trace inequality (28) that

e12 = hε+1

T∫
0

∫
Eint

∣∣[[�h
]] {{uh}}∣∣ χ

( 〈uh〉 · n
hε

)
dSx dt

<∼ hε ‖�h‖L2L6/5 ‖uh‖L2L6 <∼ hε.

On the other hand, for γ ∈ (1, 6/5) we may apply Hölder’s inequality, trace
inequality (28) and a priori estimates (13.13b) and (13.13c) to estimate the second
term e12,

e12 = hε+1

T∫
0

∫
Eint

∣∣[[�h
]] {{uh}}∣∣ χ

( 〈uh〉 · n
hε

)
dSx dt

<∼ hε+1

T∫
0

∫
Eint

∣∣∣∣
√
P′′(�h,†)

[[
�h
]]√

�
2−γ

h,† {{uh}}
∣∣∣∣ dSx dt

<∼ hε+1

T∫
0

∑
σ∈Eint

(∫
σ

P′′(�h,†)
[[
�h
]]2

dSx

)1/2

‖uh‖L6(σ )

∥∥∥∥
√

�
2−γ

h,†

∥∥∥∥
L3(σ )

dt

<∼ h
1+ε
2

⎛
⎝hε

T∫
0

∫
Eint

P′′(�h,†)
[[
�h
]]2

dSx dt

⎞
⎠

1/2

‖uh‖L2 L6
∥∥∥∥
√

�
2−γ

h,†

∥∥∥∥
L∞L3

<∼ h
1+ε
2 ‖�h‖(2−γ )/2

L∞L3(2−γ )/2

<∼ h
ε
2

where �h,† ∈ co{�in
h , �out

h } is given in Corollary 13.1 and we have used the inverse
estimate (26) in the last inequality, i.e.
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h
1+ε
2 ‖�h‖(2−γ )/2

L∞L3(2−γ )/2

<∼ h
1+ε
2

(
hd( 2

3(2−γ )
− 1

γ
) ‖�h‖L∞Lγ

) 2−γ

2 <∼ h
ε
2 + (3+5d)γ−6d

6γ
<∼ h

ε
2

as (5d + 3)γ > 5d + 3 ≥ 6d . Hence

|e1(�huh)| <∼ e11 + e12
<∼ h

1+ε
2 + h

ε
2 .

Term e2(�huh). We apply the product rule (13.23) and triangular inequality to get

|e2(�huh)| <∼ h

T∫
0

∫
Eint

∣∣((�h)
out [[uh]] + [[�h

]]
uh
) [〈uh〉 · n]−∣∣ dSx dt

<∼ h

T∫
0

∫
Eint

(∣∣(�h)
out [[uh]] [〈uh〉 · n]−∣∣+ ∣∣[[�h

]]
uh[〈uh〉 · n]−∣∣) dSx dt

≡ e21 + e22.

In order to estimate e21, we use Hölder’s inequality, the numerical
diffusion (13.13e), trace inequality, velocity bound (13.13b) and negative density
estimate (13.14b), i.e.

e21 = h

T∫
0

∫
Eint

∣∣(�h)
out [[uh]] [〈uh〉 · n]−∣∣ dSx dt

<∼ h

⎛
⎝

T∫
0

∫
Eint

−(�h)
out |[[uh]]|2 [〈uh〉 · n]− dSx dt

⎞
⎠

1/2

×

×
⎛
⎝

T∫
0

∫
Eint

(�h)
out |〈uh〉| dSx dt

⎞
⎠

1/2

<∼ h
(
h−1 ‖�h‖L2L6/5 ‖uh‖L2L6

)1/2 <∼ hβ,

where β > 1
4 depends on βR given in (13.14b),

β = 1

2
+ 1

2
βR =

{
1
2 , if γ ≥ 6

5 ,

1
2

(
1 + (5γ−6)d

6γ

)
> 1

4 , if γ ∈ (1, 6
5 ).
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Further, we estimate the term e22 in two steps. On one hand, for γ ≥ 2 we have

e22 = h

T∫
0

∫
Eint

∣∣[[�h
]]
uh[〈uh〉 · n]−∣∣ dSx dt

<∼ h

⎛
⎝

T∫
0

∫
Eint

[[
�h
]]2

max{�in
h , �out

h }
∣∣[〈uh〉 · n]−∣∣ dSx dt

⎞
⎠

1/2

×

×
⎛
⎝

T∫
0

∫
Eint

max{�in
h , �out

h } |uh|2
∣∣[〈uh〉 · n]−∣∣ dSx dt

⎞
⎠

1/2

<∼ h
(
h−1 ‖�h‖L∞L2 ‖uh‖L2L6 ‖uh‖L∞L6

)1/2
<∼ h1/2(�t)−1/4 ≈ h1/4,

where we have applied the uniform bounds (13.13a), (13.13b), (13.14d), inverse
estimate (26) and the trace inequality (28).

On the other hand, for γ ∈ (1, 2) we use �t ≈ h and apply the uniform bounds
(13.13a), (13.13b), (13.13c), inverse estimate (26) and trace inequality (28) to deduce

e22 = h

T∫
0

∫
Eint

∣∣[[�h
]]
uh[〈uh〉 · n]−∣∣ dSx dt

<∼ h

T∫
0

∫
Eint

√
P′′(�h,†)�

2−γ

h,†

∣∣[[�h
]]
uh[〈uh〉 · n]−∣∣ dSx dt

<∼ h

⎛
⎝

T∫
0

∫
Eint

P′′(�h,†)
[[
�h
]]2 ∣∣[〈uh〉 · n]−∣∣ dSx dt

⎞
⎠

1/2

×

×
⎛
⎝

T∫
0

∫
Eint

{{2�h}}2−γ |uh|2
∣∣[〈uh〉 · n]−∣∣ dSx dt

⎞
⎠

1/2

<∼ h
(
h−1

∥∥∥�2−γ

h

∥∥∥
L∞L2

‖uh‖L2L6 ‖uh‖L∞L6

)1/2
<∼ h1/2(�t)−1/4 ‖�h‖(2−γ )/2

L∞L4−2γ ‖uh‖3/2L2L6
<∼ h1/4 ‖�h‖(2−γ )/2

L∞L4−2γ ,

where �h,† ∈ co{�in
h , �out

h } for any σ ∈ E . Clearly, for 4 − 2γ ≤ γ (meaning γ ≥
4/3), we have

h1/4 ‖�h‖(2−γ )/2
L∞L4−2γ

<∼ h1/4 ‖�h‖(2−γ )/2
L∞Lγ .
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Concerning the case 4 − 2γ > γ (meaning γ < 4/3), thanks to the inverse esti-
mate (26), we have

e22
<∼ h1/4 ‖�h‖(2−γ )/2

L∞L4−2γ

<∼ h
1
4

(
hd( 1

4−2γ − 1
γ
) ‖�h‖L∞Lγ

)(2−γ )/2 <∼ h
1
4 +d 3γ−4

4γ .

Thus we get

e22
<∼ hβ, β =

{
1
4 if γ ≥ 4

3 ,
(1+3d)γ−4d

4γ if γ ∈ (1, 4
3 ).

Obviously β > 0 requires γ > 4d/(1 + 3d). Collecting the estimates of the terms
e21 and e22 we derive

|e2(�huh)| <∼ hβ for a β > 0 provided γ >
4d

1 + 3d
.

Term e3(�huh) and e4(�huh).We use the negative estimate (13.14c) and the veloc-
ity bounds (13.13b) to get

|e3(�huh)| + |e4(�huh)| <∼ h ‖�huh‖L2L2 (‖∇huh‖L2L2 + ‖divhuh‖L2L2) <∼ hβ,

where β = 1 + βM , see βM in (13.14c). If γ ∈ (1, 2) then β > 0 provided ε <

2γ − 1 − d/3, else if γ ≥ 2 then β > 0.
Consequently, collecting the above terms leads to the consistency of the convective

term of the momentum method, i.e.

∣∣∣∣∣∣
T∫

0

∫
�

�h (uh ⊗ uh) : ∇xϕ dx dt −
T∫

0

∫
Eint

Fup
h [�huh,uh] · [[	Vϕ

]]
dSx dt

∣∣∣∣∣∣
<∼ hβ.

We have β > 0 provided ε ∈ (0, 2γ − 1 − d/3) and γ ∈ (4d/(1 + 3d), 2). Further,
for γ ≥ 2 we have β > 0 for all ε > 0.

3. Viscosity and pressure terms:

It is easy to derive, analogously as (18), that

∫
K

∇xϕ dx =
∫
K

∇h	Vϕ dx and
∫
K

divxϕ dx =
∫
K

divh	Vϕ dx.

Noticing that ∇huh, divhuh and p(�h) are piecewise constant functions, we have
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∫
�

∇huh : ∇h	Vϕ dx =
∫
�

∇huh : ∇xϕ dx,

∫
�

divhuhdivh 	Vϕ dx =
∫
�

divhuh divxϕ dx,

∫
�

p(�h) divh	Vϕ dx =
∫
�

p(�h) divxϕ dx.

Finally, summing up the previous observations, we obtain (13.15), i.e.

−
∫
�

�0
hϕ(0, ·) dx =

T∫
0

∫
�

[
�h∂tϕ + �huh · ∇xϕ

]
dx dt + O(hβ1)

for β1 > 0 provided ε ∈ (0, 2γ − 1 − d/3) if γ ∈ (1, 2) and ε > 0 if γ ≥ 2.

−
∫
�

�0
huh

0 · ϕ(0, ·) dx

=
T∫

0

∫
�

[
�huh · ∂tϕ + �huh ⊗ uh : ∇xϕ + p(�h)divxϕ

]
dx dt

−
T∫

0

∫
�

[
μ∇huh : ∇xϕ + νdivhuh · divxϕ

]
dx dt + O(hβ2)

for β2 > 0 provided ε ∈ (0, 2γ − 1 − d/3) if γ ∈ (4d/(1 + 3d), 2) and ε > 0 if
γ ≥ 2.

Remark 13.3 A close inspection of the previous discussion shows that the same
method can be used to handle a variable time step �tk adjusted for each step of
iteration by means of a CFL-type condition, such as ||uk−1

h + ck−1
h ||L∞(�)�tk/h ≤

CFL. Here CFL ∈ (0, 1] and ck−1
h ≡

√
p′(�k−1

h ) denotes the sound speed. Though
this condition is necessary for stability of time-explicit numerical schemes, it still
may be appropriate even for implicit schemes for areas of high-speed flows.

13.4 Convergence

Before stating our main result concerning convergence of the mixed FV–FE element
scheme, we specify the necessarymodification in Definition 5.10 that accommodates
the no-slip boundary conditions (13.3). We recall the identity
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∫
�

[
μ|∇xu|2 + ν|divxu|2

]
dx =

∫
�

[
F(Du) + F∗(S)

]
dx

that can be verified for the limit exactly as in Definition 5.10.

Definition 13.2 (DMV SOLUTION, NO SLIP BOUNDARY CONDITION)
A parametrized probability measure {Vt,x}(t,x)∈(0,T )×�,

V ∈ L∞((0,T ) × �;P(Rd+1)), Rd+1 =
{
[̃�, ũ]

∣∣∣ �̃ ∈ R, ũ ∈ Rd
}

,

Vt,x {̃� ≥ 0} = 1 for a.a. (t, x),

is called dissipative measure-valued (DMV) solution of the Navier–Stokes system
(13.1), (13.3), with the initial conditions [�0,m0], if the following hold (10):

• (energy inequality)

u ≡ 〈V; ũ〉 ∈ L2(0,T ;W 1,2
0 (�;Rd )), S ∈ L2(0,T ;L2(�;Rd×d

sym )),

and the integral inequality

∫
�

〈
Vτ,x; 1

2
�̃|̃u|2 + P(̃�)

〉
dx +

τ∫
0

∫
�

[
F(Dxu) + F∗(S)

]
dx dt

+
∫

�

dE(τ ) +
τ∫

0

∫

�

dD ≤
∫
�

[
1

2

|m0|2
�0

+ P(�0)

]
dx

(13.17)

holds for a.a. 0 ≤ τ ≤ T , with the energy concentration defect

E ∈ L∞(0,T ;M+(�)),

and the dissipation defect

D ∈ M+([0,T ] × �);

• (equation of continuity)

〈V; �̃〉 ∈ Cweak([0,T ];Lγ (�)),
〈
V0,x; �̃

〉 = �0(x) for a.a. x ∈ �,

and the integral identity

⎡
⎣∫

�

〈V; �̃〉ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
〈V; �̃〉∂tϕ + 〈V; �̃ũ〉 · ∇xϕ

]
dx dt (13.18)
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for any 0 ≤ τ ≤ T , and any ϕ ∈ W 1,∞((0,T ) × �);
• (momentum equation)

〈V; �̃ũ〉 ∈ Cweak([0,T ];L 2γ
γ+1 (�;Rd )),

〈
V0,x; �̃ũ

〉 = m0(x) for a.a. x ∈ �,

and the integral identity

⎡
⎣∫

�

〈V; �̃ũ〉 · ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[〈V; �̃ũ〉 · ∂tϕ + 〈V; �̃ũ ⊗ ũ〉 : ∇xϕ + 〈V; p(̃�)〉 divxϕ
]
dx dt

−
τ∫

0

∫
�

S : ∇xϕ dx dt +
τ∫

0

∫
�

∇xϕ : dR(t) dt

(13.19)
holds for any 0 ≤ τ ≤ T , and any ϕ ∈ C1

c ([0,T ] × �;Rd ), with the Reynolds
concentration defect

R ∈ L∞(0,T ;M+(�;Rd×d
sym ))

satisfying
d E ≤ tr[R] ≤ d E for some constants 0 < d ≤ d; (13.20)

• (Poincaré inequality) the velocity field u = 〈V; ũ〉 ∈ L2(0,T ;W 1,2(�;Rd )) sat-
isfies

τ∫
0

∫
�

〈
V; |̃u − U |2〉 dx dt

<∼
τ∫

0

∫
�

|∇x(u − U)|2 dx dt +
τ∫

0

⎛
⎜⎝
∫

�

dE(t)

⎞
⎟⎠ dt +

τ∫
0

∫

�

dD

(13.21)

for a.a. 0 ≤ τ ≤ T , and any U ∈ C1
c ([0,T ] × �;Rd ).

The only difference with respect to Definition 5.10 is the class of admissible test
functions in themomentum equation (13.19), and the Poincaré inequality (13.21) that
replaces theKorn–Poincaré inequality (5.126). It is easy to check that all fundamental
results stated in Theorems 7.12, 7.13 remain valid in the present setting.

Indeed, it is enough to observe that themomentumbalance (13.19) can be extended
to the class of test functions including the strong solution, namely ϕ ∈ C1([0,T ] ×
�;Rd ), ϕ|∂� = 0. As ∂� is smooth, it is easy to construct a sequence of functions
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χn ∈ C1
c (�), 0 ≤ χn ≤ 1,

χn(x) = 0 if dist[x, ∂�] <
1

2n
, χn(x) = 1 for dist[x, ∂�] >

1

n
,

|∇xχn(x)| <∼ n for x ∈ �.

For ϕ ∈ C1([0,T ] × �;Rd ), we have

ϕn(t, x) = χn(x)ϕ(t, x) ∈ C1
c ([0,T ] × �;Rd ),

and

ϕn(t, x) → ϕ(t, x), ∇xϕn(t, x) → ∇xϕ(t, x) for any t ∈ [0,T ], x ∈ �,

|∇xϕn(t, x)| ≤ |∇xχn(x) · ϕ(t, x)| + |χn(x)∇xϕ(t, x)| <∼ 1

as

|∇xχn(x) · ϕ(t, x)| <∼ n sup
dist[x,∂�]≤ 1

n

|ϕ(t, x)| <∼ 1 for any (t, x) ∈ [0,T ] × �.

Using ϕn as a test function in the momentum balance (13.19) and passing to the
limit for n → ∞ we get the desired conclusion. Note that, by virtue of the Lebesgue
theorem,

T∫
0

∫
�

∇xϕn : dR(t) dt →
T∫

0

∫
�

∇xϕ : dR(t) dt,

in particular, the limit integral is over the open set �.
Our ultimate goal is to establish the convergence of the numerical solutions

obtained by the mixed FV–FE method (13.5) to a DMV solution. The principal diffi-
culty is that certain nonlinear terms in the consistency formulation (13.15b) contain
both uh and its projection uh.

Theorem 13.3 (Convergence of the FV–FE method)
Let � ⊂ Rd , d = 2, 3, be a bounded domain of class C2+α , α > 0. Let (�h,uh)

be a solution to the mixed FV–FE method (13.5) with the initial data (13.2) and
�t ≈ h. Further, assume that ε > 0 if γ ≥ 2 and 0 < ε < 2γ − 1 − d/3 if γ ∈
(4d/(1 + 3d), 2).

1. Convergence to DMV solution. AnyYoungmeasure {Vt,x}(t,x)∈(0,T )×� generated
by a sequence of FV–FE solutions {�k

h,uh
k}h↘0 represents a DMV solution of the

Navier–Stokes system in (0,T ) × � in the sense of Definition 13.2.
2. Convergence to strong solution. Suppose that the Navier–Stokes system (13.1),

(13.3), endowed with the initial data (13.2), admits a regular solution [�,u]
belonging to the class
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� > 0, � ∈ C([0,T ] × �), ∇x�, u ∈ C([0,T ] × �;Rd ),

∇xu ∈ C([0,T ] × �;Rd×d ), ∂tu ∈ L2(0,T ;C(�;Rd )), u|∂� = 0.

Then

�h → � (strongly) in Lγ ((0,T ) × K), uh → u (strongly) in L2((0,T ) × K;Rd )

for any compact K ⊂ �.
3. Convergence to strong solution with bounded density. Suppose that

• the initial data belong to the class �0 ∈ W 3,2(�), u0 ∈ W 3,2(�;Rd );
• bulk viscosity vanishes, meaning λ = 0;
• uniform bound of density ‖�h‖L∞((0,T )×�)

<∼ 1 for h → 0.

Then

�h → � (strongly) in Lq((0,T ) × �), q ≥ 1,

uh → u (strongly) in L2((0,T ) × �;Rd ),

[�,u] is the strong solution to the Navier–Stokes system (11.1) with the initial
data [�0,u0].

Proof In order to prove the convergence to aDMVsolution, we follow the arguments
of Theorem 5.5. In view of Theorem 13.1, wemay suppose, passing to a subsequence
if necessary, that {�h,uh}h↘0 generates a Young measure

{Vt,x}(t,x)∈(0,T )×�, V ∈ L∞
weak−(∗)((0,T ) × �;P(Rd+1)).

Moreover, we can deduce from Theorem 13.1 that for a suitable subsequence

�h → � weakly-(*) in L∞(0,T ;Lγ (�)), � ≥ 0

uh, uh → u weakly in L2((0,T ) × �;Rd ),

where u ∈ L2(0,T ;W 1,2
0 (�;Rd )), ∇huh → ∇xu weakly in L2((0,T ) × �;Rd×d ),

�huh → �u weakly-(*) in L∞(0,T ;L 2γ
γ+1 (�;Rd )).

Further, by virtue of the discrete Poincaré inequality (30) and the energy estimates,
cf. Theorem 13.1, we also have

‖uh − uh‖L2(0,T ;L2(K;Rd ))

<∼ h for any compact K ∈ �.

Consequently, the Young measures generated by {�h,uh}h↘0 and {�h,uh}h↘0 coin-
cide for a.a. (t, x) ∈ (0,T ) × �. In particular, their barycenter’s second coordinate
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represented by the limits of uh and uh coincide on (0,T ) × �. Indeed this can
be checked by considering a globally Lipschitz compactly supported function
b = b(�,u) for which we can estimate

T∫
0

∫
K

|b(�h,uh) − b(�h,uh)| dx dt <∼
T∫

0

∫
K

|uh − uh| dx dt

<∼ ‖uh − uh‖L2(0,T ;L2(K;Rd ))

<∼ h.

Now, passing to the limit with h → 0 in the consistency formulation of the con-
tinuity equation (13.15a), see Theorem 13.2, we obtain

⎡
⎣∫

�

�ϕ(t, ·) dx
⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
�∂tϕ + �u · ∇xϕ

]
dx dt (13.22)

for any 0 ≤ τ ≤ T and any ϕ ∈ C∞([0,T ] × �). This can be rewritten as (13.18)
from Definition 13.2 of the DMV solution, i.e.

⎡
⎣∫

�

〈V; �̃〉ϕ dx

⎤
⎦

t=τ

t=0

=
τ∫

0

∫
�

[
〈V; �̃〉 ∂tϕ + 〈V; �̃ũ〉 · ∇xϕ

]
dx dt

for any 0 ≤ τ ≤ T , and any ϕ ∈ W 1,∞((0,T ) × �).

In order to apply a similar treatment to the momentum equation (13.15b), we
have to replace the expression �huh ⊗ uh in the convective term by �huh ⊗ uh. This
is possible as

‖�huh ⊗ uh − �huh ⊗ uh‖L1L1 = ‖�huh ⊗ (uh − uh)‖L1 L1
<∼ ‖�huh‖L2 L2‖uh − uh‖L2 L2 <∼ h1+βM ,

where, by virtue of (13.14c), 1 + βM > 0 as soon as 0 < ε < 2γ − 1 − d/3 for
γ ∈ (1, 2). For γ ≥ 2 it holds that 1 + βM > 0.

Moreover, we have

�huh ⊗ uh + p(�h)I → �u ⊗ u + p(�)I weakly-(*) in L∞(0,T ;M(�;Rd×d
sym ));

whence letting h → 0 in (13.15b) gives rise to the integral equality for themomentum
equation (13.19) from Definition 13.2 of the DMV solution.
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Finally, in order to assure that the limit is a DMV solution in the sense of Defini-
tion 13.2, it remains to show that the discrete differential operators are compatible,
cf. Definition 5.8. Indeed, due to (13.20), (13.2), the consistency of the discrete gra-
dient and divergence operators holds. Thus, the limit V is a DMV solution in the
sense of Definition 13.2. Consequently, we may apply Theorems 7.12, and 7.13 to
obtain to the second and the third convergence statements.

Remark 13.4 Note that the Navier–Stokes system (13.1) admits local-in-time strong
solutions for arbitrary smooth initial data, see Theorem 3.4, as soon as the physical
domain � is sufficiently smooth.

13.5 Numerical Experiment

The aim of this section is to illustrate behavior of the mixed FV–FE method (13.5)
and confirm theoretical convergence result proved in Theorem 13.3 via numerical
experiments. To this end, we study the experimental order of convergence (EOC),
cf. (10.76), with respect to the following norms

e∇u = ‖∇D(uh − uref)‖L2((0,T )×�) , eu = ‖uh − uref‖L2((0,T )×�) ,

e� = ‖�h − �ref‖L1((0,T )×�) , ep = ‖p(�h) − p(�ref)‖L∞(0,T ;L1(�)) ,

e†� = ‖�h − �ref‖L∞(0,T ;Lγ (�)) .

(13.23)
Here (�h,uh) denotes a numerical solution obtained by the mixed FV–FE method
(13.5). Since the exact solution is not explicitly known we choose for the reference
solution (�ref ,uref) the numerical solution computed on a fine grid with the mesh
size h = 1/512.

Analogously as in Chap. 11 we consider the following initial data

�0(x1, x2, t) = 2 + cos(2π(x1 + x2)), u0(x1, x2, t) = 0

on a two-dimensional domain � = [0, 1]2, no-slip boundary conditions and the fol-
lowing parameters μ = 1.0, λ = 0, γ = 1.4 and ε = 0.6. We apply the fixed point
iteration method to solve the nonlinear system resulting from (13.5). For each subit-
eration we apply additionally the CFL condition �t = 0.6h/(|uh| + ch)max, where
ch = √

γ ph/�h is the sound speed.
Table13.1 illustrates the numerical convergence measured in the norms presented

in (13.23). Clearly, we observe the first order convergence rate for the density and
the gradient of velocity. As expected the convergence rate of the velocity is higher
due to piecewise linear approximation.
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Table 13.1 EOC of mixed FV–FE method for the Navier–Stokes equations at T = 0.1
h e†� EOC eu EOC e∇u EOC ep EOC e� EOC

γ = 1.4

1/32 3.12e−02 – 3.08e−03 – 1.69e−01 – 7.78e−03 – 1.03e−03 –

1/64 1.91e−02 0.71 1.30e−03 1.24 8.60e−02 0.97 3.92e−03 0.99 4.99e−04 1.04

1/128 1.16e−02 0.72 7.00e−04 0.89 4.41e−02 0.96 1.94e−03 1.01 2.46e−04 1.02

1/256 5.87e−03 0.98 2.53e−04 1.47 2.23e−02 0.98 7.53e−04 1.37 1.02e−04 1.27

γ = 5/3

1/32 8.64e−02 – 5.04e−03 – 2.31e−01 – 1.69e−02 – 1.02e−03 –

1/64 5.73e−02 0.59 2.22e−03 1.18 1.18e−01 0.97 8.52e−03 0.99 4.92e−04 1.05

1/128 3.76e−02 0.61 1.00e−03 1.15 6.01e−02 0.97 4.21e−03 1.02 2.38e−04 1.05

1/256 2.13e−02 0.82 3.60e−04 1.48 3.03e−02 0.99 1.64e−03 1.36 9.83e−05 1.27

γ = 2

1/32 2.16e−01 – 6.58e−03 – 4.15e−01 – 4.65e−02 – 9.94e−04 –

1/64 1.30e−01 0.73 3.25e−03 1.02 1.69e−01 1.30 1.68e−02 1.47 4.90e−04 1.02

1/128 9.15e−02 0.50 1.49e−03 1.13 8.62e−02 0.97 8.37e−03 1.01 2.36e−04 1.05

1/256 5.71e−02 0.68 5.16e−04 1.53 4.33e−02 0.99 3.26e−03 1.36 9.61e−05 1.30

Fig. 13.1 Mixed FV–FE method for the Navier–Stokes equations: time evolution of the energy till
t = 0.6

Figure13.1 demonstrates energy dissipation of the flow. Finally, we show in
Fig. 13.2 time evolution of the solution. Note that the results are now quite different
to Fig. 11.2, which are computed by the VFVmethod (11.5) due to the different type
of boundary conditions.
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Fig. 13.2 Mixed FV–FEmethod for the Navier–Stokes equations: time evolution of the flow. From
top to bottom are t = 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5. From left to right are �, u1, and u2



418 13 Mixed Finite Volume – Finite Element Method for the Navier–Stokes System

13.6 Conclusion, Bibliographical Remarks

In this chapter we have studied the convergence of numerical solutions to the mixed
finite volume – finite element method for the Navier–Stokes system (13.1). The
method has been introduced by Karper in [140] who obtained the convergence to
a weak solution for the adiabatic coefficient γ > 3. We also refer a reader to [88,
Part II] for more details. Error estimates for the mixed finite volume – finite element
method have been proved by Gallouët et al. in [114] for γ > 3/2. The proof is based
on the assumption that a strong solution exists and belongs to C2 regularity class.

The convergence analysis of the mixed finite volume – finite element method for
the case γ ∈ (1, 2) and d = 3 was originally studied in [92]. Here we have presented
a more careful analysis and extended the result also to d = 2 and γ ≥ 2 for d = 2, 3.

In order to establish the convergence result we have used the concept of consis-
tent approximations, see Definition 5.9 and DMV solutions for the Navier–Stokes
system (5.10). These tools allow us to show

• weak convergence of a suitable subsequence of the finite volume – finite element
solutions to a DMV solution of the Navier–Stokes equations

• strong convergence of the numerical solutions, if the strong solution exists
• strong convergence of the numerical solutions and the existence of the strong
solution, if the discrete densities are uniformly bounded.

Comparing the convergence results for the finite volume method obtained in
Chap. 11 we realize that the results presented there are slightly more general. Indeed,
for the mixed finite volume – finite element method we have a slightly stronger con-
dition on γ, γ > 4d/(1 + 3d) and ε > 0. Both convergence results, obtained in
Chap. 11 as well as here, hold for physically interesting cases including dry air with
γ = 1.4.



Chapter 14
Finite Difference Method
for the Navier-Stokes System

In the previous chapters we have rigorously proved convergence of a finite volume
method and amixed finite volume – finite element method for the Navier–Stokes sys-
tem, see Theorems 11.3 and 13.3. As already discussed previously these convergence
results follow from the consistency and stability of the corresponding numerical
schemes and can be seen as a nonlinear analogue of the Lax equivalence theorem.
In this chapter, our aim is to apply similar ideas to the convergence analysis of a
finite difference method for the whole range of adiabatic coefficient γ ∈ (1,∞). In
addition, we will discuss the convergence rate of the finite difference approximation
towards a regular solution for γ > d/2.

To begin, let us recall the Navier–Stokes system, cf. (3.14)–(3.16):

∂t� + divx (�u) = 0, (14.1a)

∂t (�u) + divx (�u ⊗ u) + ∇x p(�) = divxS(∇xu) (14.1b)

in the time-space cylinder [0, T ] × �, with the space periodic boundary conditions
(meaning � = T

d , d = 2, 3). Here � is the density, u is the velocity field, and S is
the viscous stress tensor given by

S(∇xu) = μ

(
∇xu + ∇T

x u − 2

d
divxuI

)
+ λdivxuI, μ > 0, λ ≥ −d − 2

d
μ.

The pressure is assumed to satisfy the isentropic law

p = a�γ , a > 0, γ > 1. (14.2)

The system (14.1) is supplemented with the initial data

�(0) = �0 ≥ � > 0, �0 ∈ L∞(Td) and u(0) = u0 ∈ L∞(Td; Rd). (14.3)
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14.1 Numerical Method

In this section we define a finite difference Marker–and–Cell (MAC) scheme for the
Navier–Stokes system and list useful notations, identities, and estimates.

Concerning the time discretization we recall the notation f kh = fh(t k) for t k =
k�t , k = 1, 2, ..., NT (≡ T/�t) and adopt analogously as in (47) a piecewise con-
stant approximation in time

fh(t, ·) = f 0h for t < �t, fh(t, ·) = f kh for t ∈ [t k, t k+1), k = 1, 2, . . . , NT ,

where fh represents a generic discrete function.
For the spatial discretizationwefirstly define a staggered gridG = (

Th, {Di,h}di=1

)
,

where Th is a structured mesh given in Definition 3 and Di,h , i = 1, . . . , d, are dual
grids of Th given in Definition 4. Recall that Eint = E due to the periodicity of the
domain.

We set the discrete density and pressure in the center of each element K ∈ Th
to be �K and pK = p(�K ), respectively. We further approximate the i th velocity
component in the center of each dual element Dσ ∈ Di,h by ui,σ for all i = 1, . . . , d.

It is convenient to extend these quantities to functions defined on T
d :

�h(x) =
∑
K∈Th

�K1K (x), ph(x) =
∑
K∈Th

pK1K (x), ui,h(x) =
∑
σ∈Ei

ui,σ1Dσ
(x),

for all x ∈ T
d , where 1K and 1Dσ

are characteristic functions, see (12). Clearly, for
any t ∈ (0, T ) we have �h(t), ph(t) ∈ Qh and uh(t) ∈ W h , see the definition of the
discrete function spaces (10).

We further introduce a bidual grid that shall be useful only for the definition
of a discrete gradient operator for a piecewise constant velocity on the dual grid.
This will allow us to integrate by parts at the discrete level in order to derive the
weak formulation of the scheme. Note that the bidual grid is not necessary for the
implementation of the scheme defined below.

Definition 14.1 (BIDUAL GRID)Let Ẽ(Dσ ) be the set of all faces of the dual cell Dσ

given in Definition 4 and Ẽi be the set of all faces of the dual gridDi,h , i = 1, . . . , d.
A generic dual face and its barycenter are denoted by ε ∈ Ẽ(Dσ ) and xε , respectively.
We write ε = Dσ |Dσ ′ if ε ∈ Ẽ(Dσ ) ∩ Ẽ(Dσ ′) separates the dual cells Dσ and Dσ ′ .
Further, we write ε = −−−−→

Dσ |Dσ ′ if, moreover, xσ ′ − xσ = hei for some i = 1, . . . , d.
The bidual cell Dε associated to ε = Dσ |Dσ ′ is defined as the union of adjacent
halves of Dσ and Dσ ′ , see Fig. 14.1 for a graphic illustration in two dimensions.

We recall the definition of discrete operators from Preliminary material and more-
over define the following discrete divergence operator divupT and discrete Laplace
operator �E :
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Fig. 14.1 MAC grid in two dimensions

divupT (r, u)(x) =
∑
K∈Th

1Kdiv
up
T (r, u)K , divupT (r, u)K =

∑
σ∈E(K )

|σ |
|K |Up[r, u]σ ,

�Eui =
∑
σ∈Ei

1Dσ
(�Eui )σ , (�Eui )σ = 1

h2
∑

σ ′∈N 
(σ )

(ui,σ ′ − ui,σ ),

where we have denoted N 
(σ ) the set of all faces whose associated dual elements
are neighbors of Dσ , meaning,

N 
(σ ) = {σ ′ | Dσ ′ is a neighbor of Dσ }.

Based on the bidual grid, we define a new discrete velocity gradient, different from
the gradient operators defined in (15) and (16). Specifically,

∇εu(x) = (∇εu1(x), . . . ,∇εud(x)
)
with ∇εui (x) = (

ð1ui (x), . . . ,ðdui (x)
)
,

where
ð j ui (x) =

∑
ε∈Ẽ j

(ð j ui )Dε
1Dε

(x)

and
(ð j ui )Dε

= uσ ′ − uσ

h
for ε = −−−−→

Dσ |Dσ ′ ∈ Ẽ j , σ, σ ′ ∈ Ei .

For the proper implementation of the scheme we need to interpolate the functions
defined on the primary grid to the dual grid and vice versa. First, we recall the
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definition of the average operator for any scalar function rh ∈ Qh,

{{rh}}σ = rK + rL
2

, σ = K |L ∈ E .

If in addition, σ = K |L ∈ Ei for an i ∈ {1, . . . , d}, we write

{{rh}}(i)σ = rK + rL
2

, and {{rh}}(i) =
∑
σ∈Ei

1Dσ
{{rh}}(i)σ .

Further, for vector valued functions rh = (r1,h, . . . , rd,h) ∈ Qh and
vh = (v1,h, . . . , vd,h) ∈ W h, we define

{{rh}} =
({{

r1,h
}}(1)

, . . . ,
{{
rd,h

}}(d)
)

,

vi,h =
∑
K∈Th

1K (vi,h)K , (vi,h)K = vi,σK ,i+ + vi,σK ,i−

2
, and (vh)K =

d∑
i=1

(vi,h)K ei ,

where σK ,i− and σK ,i+ are the left and right edge of K in the i th-direction.
It is easy to check that for u,U ∈ W h

∫
Td

�Eu · U dx = −
∫
Td

∇εu : ∇εU dx . (14.4)

Moreover, it follows from (42) that

∫
Td

{{(
ð

( j)
T u j,h

)}}(i)
Ui,h dx =

∫
Td

(
ð

( j)
T u j,h

)
Ui,h dx = −

∫
Td

u j,h

(
ðD j Ui,h

)
dx .

(14.5)
Applying the mean value theorem and the Taylor expansion yield

∥∥∇D�Qφ
∥∥
L∞

<∼ ‖φ‖C1 ,

∥∥∥�(i)
W φ − φ

∥∥∥
L∞

<∼ h ‖φ‖C1 for any φ ∈ C1(Td).

(14.6a)
Further, for any φ ∈ C2(Td) and φ ∈ C2(Td; Rd) we have

∥∥∇D�Qφ − ∇xφ
∥∥
L∞

<∼ h ‖φ‖C2 , ‖∇ε�Wφ − ∇xφ‖L∞
<∼ h ‖φ‖C2 , (14.6b)

∣∣�h�Qφ
∣∣ <∼ ‖φ‖C2 ,

∣∣∣ð( j)
T ðD j �

(i)
W φ

∣∣∣ <∼ ‖φ‖C2 ,
∥∥Dt�Wφ

∥∥
L∞L∞

<∼ ‖∂tφ‖L∞L∞ .

(14.6c)
Finally, we point out that

‖uh − uh‖L2(K ) = h ‖divT uh‖L2(K ) for any K ∈ Th . (14.7)
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Note that the equality (14.7) is different from the Poincaré inequality due to the
staggered discretization of velocity components and the construction of discrete
divergence operator divT .

We are now ready to introduce an implicit in time MAC scheme for the Navier–
Stokes system and its weak formulation.

Definition 14.2 (MAC SCHEME FOR THE NAVIER–STOKES SYSTEM) Given
the initial data (14.3) we set (�0

h, u
0
h) = (

�Q�0,�Wu0
) ∈ Qh × W h . The MAC

approximation of theNavier–Stokes system (14.1a)–(14.1b) is a sequence (�k
h, u

k
h) ∈

Qh × W h which solves the following system of algebraic equations:

Dt�
k
h + divupT (�k

h, u
k
h) − hε+1�h�

k
h = 0,

Dt
{{

�k
hui,h

k
}}(i) + {{

divupT (�k
hui,h

k, uk
h)
}}(i) + ðDi p(�

k
h) − μ�Eu

k
i,h

− νðDidivT uk
h = hε+1

d∑
j=1

{{
ð

( j)
T

({{
ui,h

k
}}( j)

(ðD j �
k
h)
)}}(i)

,

(14.8)
for all i = 1, . . . , d, and for all k = 1, . . . , NT . Recall uk

h = (uk1,h, . . . , u
k
d,h), ui,h ∈

W (i)
h . The parameter ε satisfies

ε ∈
(
0, 2γ − 1 − d

3

)
for γ ∈ (1, 2), and ε > 0 for γ ≥ 2. (14.9)

Lemma 14.1 (MAC scheme for the Navier–Stokes system: weak formulation)
Let (�k

h, u
k
h) ∈ Qh × W h be a solution of the MAC scheme (14.8) with the initial

data as in Definition 14.2.
Then the sequence (�k

h, u
k
h), k = 1, . . . , NT , fulfils the followingweak formulation

for any φh ∈ Qh and φh = (φ1,h, . . . , φd,h) ∈ W h,

∫
Td

Dt�
k
hφh dx −

∫
E

Up[�k
h, u

k
h] [[φh]] dSx + hε+1

∫
Td

∇D�k
h · ∇Dφh dx = 0,

(14.10a)∫
Td

Dt (�
k
huh

k) · φh dx −
∫
E

Up[�k
huh

k, uk
h] · [[φh

]]
dSx

+ μ

∫
Td

∇εuk
h : ∇εφh dx + ν

∫
Td

divT uk
h divT φh dx (14.10b)

=
∫
Td

pkhdivT φh dx − hε+1
d∑

i=1

d∑
j=1

∫
Td

{{
ui,h

k
}}( j)

(ðD j �h)ðD j φi,h dx,

where the parameter ε satisfies (14.9) and Up[�huh, uh] = ∑d
i=1 Up[�hui,h, uh]ei .
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Analogously to Lemma 8.1, it is easy to derive the following relations for rh ∈ Qh ,
uh ∈ W h , and φ ∈ C1(Td):

∫
E

Up[rh, uh]
[[ |uh |2

2

]]
dSx −

∫
E

Up[rhuh, uh] · [[uh]] dSx

= 1

2

∫
E

ruph |uh · n| [[uh]]
2 dSx ,

(14.11a)

∫
Td

Up[rh, uh]
[[
�Qφ

]]
dx =

∫
Td

rhuh · ∇xφ dx

+
∫
Td

rhuh · (∇D(�Qφ) − ∇xφ
)
dx + h

2

d∑
i=1

∑
K∈Th

∫
K

rh�
(i)
h (�Qφ)

∣∣ui,h∣∣ dx

+ h

2

d∑
i=1

∑
K∈Th

∫
K

rhðDi (�Qφ)ð
(i)
T
∣∣ui,h∣∣ dx,

(14.11b)
and ∫

Td

Up[rh, uh]
[[

�
(i)
W φ

]]
dx =

∫
Td

rhuh · ∇xφ dx

+
∫
Td

rhuh · (∇D(�Q�
(i)
W φ) − ∇xφ

)
dx

+ h

2

d∑
j=1

∑
K∈Th

∫
K

rh�
( j)
h (�Q�

(i)
W φ)

∣∣u j,h

∣∣ dx

+ h

2

d∑
j=1

∑
K∈Th

∫
K

rhðD j (�Q�
(i)
W φ) ð

( j)
T
∣∣u j,h

∣∣ dx .

(14.11c)

The lemma below describes the main properties of the MAC scheme (14.10).

Lemma 14.2 (Properties of the MAC scheme) Let �0 > 0. Then the MAC
scheme (14.10) enjoys the following properties:

1. Existence of a numerical solution.
There exists a solution (�h, uh) = {�k

h, u
k
h}NT

k=1 ∈ Qh × W h to (14.10).
2. Positivity of discrete density.

Any solution to (14.10) satisfies �h(t) > 0 for t ∈ (0, T ).
3. Discrete conservation of mass.

Any solution to (14.10) satisfies the conservation of mass
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∫
Td

�h(t) dx =
∫
Td

�0 dx ≡ M0, t ∈ (0, T ).

4. Internal energy balance.
There exist ζ ∈ co{(�k

h)
in, (�k

h)
out} for any σ ∈ E and ξ ∈ co{�k−1

h , �k
h} such that

∫
Td

Dt P(�k
h) dx +

∫
Td

p(�k
h)divhu

k
h dx = −�t

2

∫
Td

P ′′(ξ)
∣∣Dt�

k
h

∣∣2 dx−

−
∫
E

P ′′(ζ )
[[
�k
h

]]2 (
hε + 1

2
|uk

h · n|
)

dSx ,

(14.12)
where P(�) = a

γ−1�
γ is the pressure potential.

Proof We refer to Lemma 11.3 and 11.2 for the proof as it can be done exactly in
the same way.

14.2 Stability

The finite difference scheme (14.10) is stable in the sense of Definition 8.3. Indeed,
we have the following energy estimates.

Theorem 14.1 (Energy stability of theMAC scheme) Let (�h, uh) be a numerical
solution obtained from the MAC scheme (14.10). Then there exist ξ ∈ co{�k−1

h , �k
h}

and ζ ∈ co{(�k
h)

in, (�k
h)

out}, such that for any k = 1, . . . , NT

Dt

∫
Td

(
1

2
�k
h

∣∣uh
k
∣∣2 + P(�k

h)

)
dx + μ

∫
Td

∣∣∇εuk
h

∣∣2 dx + ν

∫
Td

∣∣divT uk
h

∣∣2 dx

= −�t

2

∫
Td

P ′′(ξ)
∣∣Dt�

k
h

∣∣2 dx −
∫
E

P ′′(ζ )
[[
�k
h

]]2 (
hε + 1

2

∣∣uk
h · n∣∣

)
dSx

− �t

2

∫
Td

�k−1
h

∣∣Dtuh
k
∣∣2 dx − 1

2

∫
E

(�k
h)

up
∣∣uk

h · n∣∣ [[uh
k]]2 dSx .

(14.13)

Proof First, taking φh = −|uh
k|2
2 in (14.10a) we get
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−1

2

∫
Td

Dt�
k
h

∣∣uh
k
∣∣2 dx + 1

2

∫
E

Up[�k
h, u

k
h]
[[∣∣uh

k
∣∣2]] dSx

= hε+1

2

∫
Td

∇D�k
h · ∇D

∣∣uh
k
∣∣2 dx .

Next, setting φh = uk
h in (14.10b) and noticing

{{
ui,h

}}( j)
ðD j ui,h = 1

2ðD j |ui,h |2 we
derive

∫
Td

Dt (�
k
huh

k) · uh
k dx −

∫
E

Up[�k
huh

k, uh
k] · [[uk

h

]]
dSx

+ μ

∫
Td

∣∣∇εuk
h

∣∣2 dx + ν

∫
Td

∣∣divT uk
h

∣∣2 dx

=
∫
Td

p(�k
h)divT uk

h dx − hε+1

2

d∑
i=1

d∑
j=1

∫
Td

(ðD j �h)
(
ðD j |ui,hk |2

)
dx

=
∫
Td

p(�k
h)divT uk

h dx − hε+1

2

∫
Td

∇D�k
h · ∇D

∣∣uh
k
∣∣2 dx .

Further, summing up the previous two equalities and recalling (14.11b) we infer that

Dt

∫
Td

1

2
�k
h

∣∣uh
k
∣∣2 dx + μ

∫
Td

∣∣∇εuk
h

∣∣2 dx + ν

∫
Td

∣∣divT uk
h

∣∣2 dx

= −�t

2

∫
Td

�k−1
h

∣∣Dtuh
k
∣∣2 dx −

∫
Td

pkhdivT uk
h dx

− 1

2

∫
E

(�k
h)

up
∣∣uk

h · n∣∣ [[uh
k]]2 dSx .

(14.14)

Finally, combining (14.14) with (14.12) we get

Dt

∫
Td

(
1

2
�h

k
∣∣uh

k
∣∣2 + P(�k

h)

)
dx + μ

∫
Td

∣∣∇εuk
h

∣∣2 dx + ν

∫
Td

∣∣divT uk
h

∣∣2 dx

= −�t

2

∫
Td

�k−1
h

∣∣Dtuh
k
∣∣2 dx − �t

2

∫
Td

P ′′(ξ)
∣∣Dt�

k
h

∣∣2 dx

−
∫
E

P ′′(ζ )
[[
�k
h

]]2 (
hε + 1

2

∣∣uk
h · n∣∣

)
dSx − 1

2

∫
E

(�k
h)

up
∣∣uk

h · n∣∣ [[uh
k]]2 dSx ,

which completes the proof.
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The energy inequality (14.13), theSobolev–Poincaré inequality (37) andRemark1
yield the following corollary.

Corollary 14.1 (Uniform bounds)

1. Let (�h, uh) be a solution to theMAC scheme (14.10) with the pressure satisfying
(14.2). Then there exists c > 0 depending on the initial energy E0 such that

∥∥�h|uh |2
∥∥
L∞L1 ≤ c, ‖�h‖L∞Lγ ≤ c, ‖mh‖

L∞L
2γ

γ+1
≤ c, (14.15a)

‖divT uh‖L2L2 ≤ c, ‖∇εuh‖L2L2 ≤ c, ‖uh‖L2L6 ≤ c, (14.15b)

�t

T∫
0

∫
Td

�h(t − �t) |Dtuh |2 dx dt ≤ c, (14.15c)

h

T∫
0

∑
σ∈E

∫
Dσ

�
up
h |uh · n| |∇Duh |2 dx dt ≤ c, (14.15d)

T∫
0

∫
Td

(
(hε+1 + h|uσ |)P ′′(�h,†) |∇D�h|2

)
dx dt ≤ c, (14.15e)

where mh = �huh, �h,† ∈ co{�in
h , �out

h } for any σ ∈ E .
2. In addition, let [r,U] belong to the class

0 < r ≤ r(t, x) ≤ r , U ∈ C1([0, T ] × T
d; Rd).

Then there exists c = c(M0, E0, r , r , ‖U‖C1) > 0 such that

∥∥uk
h − U k

h

∥∥
Lq

<∼ ∥∥∇ε(uk
h − U k

h)
∥∥
L2 + cE(�k

h, u
k
h |rkh ,U k

h)
1/2, (14.16)

sup
0≤k≤NT

E(�k
h, u

k
h |rkh ,U k

h) ≤ c, (14.17)

where q ∈ [1, 6] if d = 3 and q ∈ [1,∞) if d = 2, (rh,Uh) = (�Qr,�WU),
and E is the discrete version of the relative energy functional, cf. Section 6.3,
given by

E
(
�k
h, u

k
h

∣∣∣rkh ,U k
h

)
≡
∫
Td

[
1

2
�k
h

∣∣∣uh
k − Uh

k
∣∣∣2 + E(�k

h |rkh )
]

dx . (14.18)

Here the relative energy part related to the potential energy is denoted by

E(�h|rh) = P(�h) − P ′(rh)(�h − rh) − P(rh).
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Analogously to Lemmas 11.4–11.6, we claim the following estimates,

‖�h‖L2L2
<∼ hβD , βD =

{
max

{
− 3ε+d+3

6γ ,
γ−2
2γ d

}
, if γ ∈ (1, 2),

0, if γ ≥ 2,
(14.19a)

‖�h‖L2L6/5

<∼ hβR , βR =
{
max

{
− 3ε+d+3

6γ ,
5γ−6
6γ d

}
, if γ ∈ (1, 6

5 ),

0, if γ ≥ 6
5 ,

(14.19b)

‖�huh‖L2L2
<∼ hβM , βM =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 3ε+d+3
6γ , if γ ∈ (1, 2),

γ−3
3γ d, if γ ∈ [2, 3),
0, if γ ≥ 3 for d = 3,

0, if γ > 2 for d = 2,

(14.19c)

T∫
0

∫
E

[[
�h
]]2

max{�in
h , �out

h } |uh · n| dSx dt
<∼ 1, for γ ≥ 2, (14.19d)

T∫
0

∫
E

∣∣[[�h
]]
uh · n∣∣ dSx dt

<∼ hβF , βF =
{

− 1
2 if γ ≥ 6

5 ,
d
2 (

5
6 − 1

γ
) − 1

2 if γ ∈ (1, 6
5 ).

(14.19e)

14.3 Consistency

Another step towards convergence is the consistency in the sense of
Definition 8.6.

Theorem 14.2 (Consistency of theMAC scheme) Let the pressure p satisfy (14.2)
with γ > 1. Let (�h, uh) be a solution of the MAC scheme (14.10) with �t ≈ h.

Then for any ϕ ∈ C2
c ([0, T ) × T

d) and ϕ ∈ C2
c ([0, T ) × T

d; Rd) there holds

−
∫
Td

�0
hϕ(0, ·) dx =

T∫
0

∫
Td

[
�h∂tϕ + �huh · ∇xϕ

]
dx dt (14.20a)

+
T∫

0

e1,h(t, ϕ) dt, β1 > 0; (14.20b)
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−
∫
Td

�0
huh

0 · ϕ(0, ·) dx

=
T∫

0

∫
Td

[
�huh · ∂tϕ + �huh ⊗ uh : ∇xϕ + phdivxϕ

]
dx dt (14.20c)

− μ

T∫
0

∫
Td

∇εuh : ∇xϕ dx dt − ν

T∫
0

∫
Td

divT uh divxϕ dx dt

+
T∫

0

e2,h(t,ϕ) dt,

where

‖e1,h(·, ϕ)‖L1(0,T )

<∼ hβ‖ϕ‖C2 , ‖e2,h(·,ϕ)‖L1(0,T )

<∼ hβ‖ϕ‖C2 , for some β > 0.

Proof Toshow the consistency formulation (14.20)we test the continuityEq. (14.10a)
andmomentum equation (14.10b) with�Qϕ and�Wϕ, respectively. Inwhat follows
we handle each term step by step.

(1) Time derivative terms:

First, we recall (48a) and apply the density estimate of (14.15a) to derive

T∫
0

∫
Td

Dt�h�Qϕ dx dt +
T∫

0

∫
Td

�h∂tϕ dx dt +
∫
Td

�0
hϕ(0) dx

<∼ �t ‖ϕ‖C2 ‖�h‖L1L1 + �t ‖ϕ‖C1

∥∥�0
h

∥∥
L1

<∼ �t.

Next, we recall (48c) for mh = �huh and apply the momentum estimate of
(14.15a) to obtain

T∫
0

∫
Td

Dtmh · �Wϕ dx dt +
T∫

0

∫
Td

mh∂tϕ dx dt +
∫
Td

m0
h · ϕ(0) dx

<∼ �t
(‖ϕ‖C2 ‖mh‖L1L1 + ‖ϕ‖C1

∥∥m0
h

∥∥
L1

) <∼ �t.
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(2) Convective terms:

To deal with the convective term of the continuity Eq. (14.10a) we recall (14.11b)
with (rh, φ) = (�h, ϕ) to get

T∫
0

∫
Td

Up[�h, uh]
[[
�Qϕ

]]
dx dt −

T∫
0

∫
Td

�huh · ∇xϕ dx dt =
4∑

i=1

ei ,

where the terms ei , i = 1, 2, 3, 4, read

e1 =
T∫

0

∫
Td

�huh · (∇D(�Qϕ) − ∇xϕ
)
dx dt,

e2 = h

2

d∑
i=1

T∫
0

∑
K∈Th

∫
K

�h�
(i)
h (�Qϕ)

∣∣ui,h∣∣ dx dt,

e3 = h

2

d∑
i=1

T∫
0

∑
K∈Th

∫
K

�hðDi (�Qϕ)ð
(i)
T
∣∣ui,h∣∣ dx dt,

e4 =
T∫

0

∫
Td

�h(uh − uh) · ∇xϕ dx dt.

Now, we use Hölder’s inequality, the interpolation error (14.6), and the uniform
bounds (14.15b) to obtain

|e1| <∼ h ‖�h‖L2L6/5 ‖uh‖L2L6 ‖ϕ‖C2
<∼ hβ1 ,

|e2| <∼ h ‖�h‖L2L6/5 ‖ϕ‖C2 ‖uh‖L2L6
<∼ hβ1 ,

|e3| <∼ h ‖�h‖L2L2 ‖ϕ‖C1 ‖divhuh‖L2L2
<∼ hβ2 ,

|e4| <∼ h ‖�h‖L2L2 ‖ϕ‖C1 ‖∇εuh‖L2L2
<∼ hβ2 ,

where β1 = 1 + βR > 0 and β2 = 1 + βD > 0 provided ε satisfies (14.9), see the
definition of βR and βD in (14.19).

Next, setting (rh, φ) = (�hui,h, ϕi ), i = 1, . . . , d, in formula (14.11c) for the
convective term, we get

T∫
0

∫
Td

[
Up[mh, uh] · [[�Wϕ

]]− (�huh ⊗ uh) : ∇xϕ
]
dx dt =

4∑
i=1

ẽi ,

where the terms ẽi , i = 1, 2, 3, 4, read
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ẽ1 =
d∑

i=1

T∫
0

∫
Td

�hui,huh · (∇D(�Q�
(i)
W ϕi ) − ∇xϕi

)
dx dt,

ẽ2 =
d∑

i=1

d∑
j=1

T∫
0

h

2

∑
K∈Th

∫
K

�hui,h�
( j)
h (�Q�

(i)
W ϕi )

∣∣u j,h

∣∣ dx dt,

ẽ3 =
d∑

i=1

d∑
j=1

T∫
0

h

2

∑
K∈Th

∫
K

�hui,hðD j (�Q�
(i)
W ϕi )ð

( j)
T
∣∣u j,h

∣∣ dx dt,

ẽ4 =
T∫

0

∫
Td

�huh ⊗ (uh − uh) : ∇xϕ dx dt.

Then we apply Hölder’s inequality and the uniform bounds (14.15) to control the
terms ẽi , i = 1, 2, 3, 4 as follows

|ẽ1| <∼ h
∥∥�h|uh |2

∥∥
L1L1 ‖ϕ‖C2

<∼ h,

|ẽ2| <∼ h ‖�huh‖L2L2 ‖uh‖L2L6 ‖ϕ‖C2
<∼ hβ,

|ẽ3| <∼ h ‖�huh‖L2L2 ‖divT uh‖L2L2 ‖ϕ‖C2
<∼ hβ,

|ẽ4| <∼ h ‖�huh‖L2L2 ‖∇εuh‖L2L2 ‖ϕ‖C1
<∼ hβ,

where in view of the negative estimate (14.19c) we have β = 1 + βM > 0 provided
ε satisfies (14.9) and βM > −1 is given in (14.19c).

(3) Pressure and viscosity terms:

Due to the identity (18) we have

T∫
0

∫
Td

p(�h)divT �Wϕ dx dt =
T∫

0

∫
Td

p(�h)divxϕ dx dt,

T∫
0

∫
Td

divT uh divT �Wϕ dx dt =
T∫

0

∫
Td

divT uh divxϕ dx dt.

Next, we apply Hölder’s inequality and the interpolation estimate (14.6b) to con-
trol

T∫
0

∫
Td

∇εuh : ∇ε�Wϕ dx dt −
T∫

0

∫
Td

∇εuh : ∇xϕ dx dt

<∼ ‖∇εuh‖L2L2 ‖∇ε�Wϕ − ∇xϕ‖L2L2
<∼ h.
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(4) Artificial diffusion term:

We apply the integration by parts formula (44) and the estimate (14.6c) to control
the artificial diffusion term in the continuity Eq. (14.10a),

hε+1

T∫
0

∫
Td

∇D�h · ∇Dϕ dx dt = −hε+1

T∫
0

∫
Td

�h�hϕ dx dt

<∼ hε+1 ‖�h‖L∞Lγ ‖ϕ‖C2
<∼ hε+1.

Similarly, using the integration by parts formulas (44) and (14.5), together with
the product rule and the negative density estimate (14.19a) we obtain for the artificial
diffusion term in the momentum equation (14.10b) the following estimate:

− hε+1

T∫
0

d∑
i=1

d∑
j=1

∫
Td

{{
ui,h

k
}}( j)

(ðD j �h) ðD j �
(i)
W ϕi dx dt

= hε+1

T∫
0

d∑
i=1

d∑
j=1

∫
Td

�hð
( j)
T

({{
ui,h

k
}}( j)

ðD j �
(i)
W ϕi

)
dx dt

= hε+1

T∫
0

d∑
i=1

d∑
j=1

∫
Td

�hð
( j)
T

({{
ui,h

k
}}( j)

)
ðD j �

(i)
W ϕi dx dt

+ hε+1

T∫
0

d∑
i=1

d∑
j=1

∫
Td

�h
{{
ui,h

k
}}( j)

ð
( j)
T

(
ðD j �

(i)
W ϕi

)
dx dt

<∼ hε+1 ‖�h‖L2L2

(‖∇εuh‖L2L2 ‖ϕ‖C1 + ‖uh‖L2L2 ‖ϕ‖C2

)
<∼ hζ ,

where ζ = ε + 1 + βD > 0 as ε > 0 and βD > −1 is given in (14.19a) provided ε

satisfies (14.9).
Consequently, collecting all the above estimates yields (14.20a) and (14.20c) and

thus completes the proof of Theorem 14.2.

14.4 Convergence

We present the convergence result for the MAC scheme (14.10).

Theorem 14.3 (Convergence of the MAC scheme) Let [�0, u0] be the initial
data given in (14.3). Let the pressure satisfy (14.2) with γ > 1. Let {�h, uh}h↘0(=
{�k

h, u
k
h}NT

k=1) be a family of solutions obtained by the MAC scheme (14.10) with
�t ≈ h.
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Then we have the following convergence results:

1. Convergence to DMV solution.
Any Young measure {Vt,x }(t,x)∈(0,T )×Td generated by (�hn , uhn ) for a suitable
sequence hn ↘ 0 represents a dissipative measure-valued solution of the Navier–
Stokes system (14.1) in the sense of Definition 5.10.

2. Convergence to a strong solution. Let the Navier–Stokes system endowed with
the initial data [�0, u0] admit a strong solution [�, u] belonging to the class

� > 0, � ∈ C([0, T ] × T
d), ∇x�, u ∈ C([0, T ] × T

d; Rd),

∇xu ∈ C([0, T ] × T
d; Rd×d), ∂tu ∈ L2(0, T ;C(Td; Rd)).

Then

�h → � (strongly) in Lγ ((0, T ) × T
d),

uh → u (strongly) in L2((0, T ) × T
d; Rd).

3. Convergence to a strong solution for bounded density.
Suppose that

• the initial data belong to the class �0 ∈ W 3,2(Td), u0 ∈ W 3,2(Td; Rd);
• bulk viscosity vanishes, meaning λ = 0;
• discrete density is uniformly bounded, i.e. ‖�h‖L∞((0,T )×Td )

<∼ 1 for h → 0.

Then

�h → � (strongly) in Lq((0, T ) × T
d), q ≥ 1,

uh → u (strongly) in L2((0, T ) × T
d; Rd),

where [�, u] is a strong solution to the Navier–Stokes system (14.1) with the initial
data [�0, u0].

Proof Due to Theorems 7.12 and 7.13, it suffices to show that the numerical solution
of theMAC scheme is a consistent approximation of the Navier–Stokes system in the
sense of Definition 5.9. Note that the essential prerequisites to achieve a consistent
approximation are the energy stability and consistency formulation of the numerical
scheme in the sense of Definitions 8.3 and 8.6 which were shown in Sects. 14.2 and
14.3, respectively. Thus, the proof can be done analogously as for Theorem 13.3. For
completeness, we repeat the main arguments here.

First, from the uniform bounds given in Corollary 14.1 we derive for a suitable
subsequence (not relabeled) that

uh, uh → u weakly in L2((0, T ) × T
d; Rd),

∇εuh → ∇xu weakly in L2((0, T ) × T
d; Rd×d),

divT uh → divxu weakly in L2((0, T ) × T
d),
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whereu ∈ L2(0, T ;W 1,2(Td; Rd)). Further, recall that themass conservation, energy
stability and consistency of the numerical solution have been proven in Lemma 14.2,
Theorems 14.1 and 14.2, respectively. Thus, there is a subsequence of {�h, uh}h↘0

generating a Young measure

{Vt,x }(t,x)∈(0,T )×Td , V ∈ L∞
weak−(∗)((0, T ) × T

d;P(Rd+1)).

Using the inequality (14.7) for each K ∈ T
d we can deduce that

‖uh − uh‖L2L2
<∼ h.

Consequently, the Young measures generated by {�h, uh}h↘0 and {�h, uh}h↘0 coin-
cide for a.a. (t, x) ∈ (0, T ) × T

d . Particularly, their barycenter’s second coordinate
represented by the limits of uh and uh coincide on (0, T ) × T

d , see also the proof
of Theorem 13.3. Finally, recalling the interpolation estimates (18) and (14.6b) we
know that the discrete operators divT and∇ε are compatiblewith divx and∇x , respec-
tively. Consequently, the sequence {�h, uh}h↘0 is a consistent approximation of the
Navier–Stokes system in the sense of Definition 5.9. Applying Theorem 5.5 proves
the first statement, which is the weak convergence to a DMV solution. Employ-
ing Theorems 7.12 and 7.13 finally leads to the second and the third convergence
statement.

14.5 Error Estimates

Assuming a smooth solution to the Navier–Stokes system exists, we can use the
discrete relative energy functional introduced in (14.18) to derive the error estimates.

The following algebraic inequality related to the relative energy functional shall
be used at the end of this section in the final step of proving the convergence rate for
the MAC scheme.

Lemma 14.3 Let γ > 1, 0 < r < r < ∞ and r ∈ [r , r ].
Then there exists a c = c(r , r) > 0 such that

E(�|r) ≥ c(r , r)
(
(1 + �γ )1R+\[r/2,2r ](�) + (� − r)21[r/2,2r ](�)

)
,

where E(�|r) = P(�) − P ′(r)(� − r) − P(r), P(r) = arγ , a > 0, γ > 1.

Proof As � �→ E(�|r) is a strictly convex function on [0,∞) attaining its minimum
(zero) at � = r , we get

E(�|r) ≥ min
ξ∈[r/2,2r ]

P ′′(ξ)(� − r)2, � ∈ [r/2, 2r ],
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and

E(�|r) ≥ min
{
E(r/2, r);E(2r , r)

}
> 0 for any � ∈ [0, r/2] ∪ [2r ,∞).

In particular, we have

E(�|r) ≥ E(r/2)
rγ

rγ
≥ E(r/2)

rγ
�γ for all � ∈ [0, r/2].

Finally,

lim
�→∞

E(�|r)
�γ

= a

γ − 1
,

which yields the desired conclusion for � ∈ [2r ,∞).

The result on error estimates for the MAC scheme (14.10) follows.

Theorem 14.4 (Convergence rate of the MAC scheme) Let γ > d
2 and the

assumptions of Theorem 14.3 hold. Suppose further that the Navier–Stokes system
(14.1) admits a strong solution [� = r, u = U] belonging to the class

r ∈ C2([0, T ] × T
d), 0 < r ≤ r(t, x) ≤ r , U ∈ C2([0, T ] × T

d; Rd). (14.21)

Then, for �t << 1, there exists a positive number c depending on M0, E0, r , r ,
‖(r,U)‖C2 , ‖p‖C2([r ,r ]) , T, γ , such that, for

(rkh ,U
k
h) = (�Qr(t

k),�WU(t k))

there holds

sup
0≤k≤NT

E(�k
h, u

k
h |rkh ,U k

h) + �t
NT∑
k=1

μ

2

∫
Td

|∇ε(uk
h − Uk

h)|2 dx

≤ c
(
hA + √

�t + E(�0
h, u

0
h |r0h ,U0

h)
) (14.22)

with the exponent

A = min

{
2γ − d

γ
,
1

2

}
. (14.23)

Before showing the convergence rate of the MAC scheme (14.10) for the Navier–
Stokes system (14.1a)–(14.1b) as stated above we prepare the main ingredients for
doing so, namely

1. Exact discrete relative energy equality: the discrete counterpart of the continuous
version of the relative energy inequality;
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2. Approximate discrete relative energy inequality: the exact discrete relative energy
with a particularly chosen discrete test functions and suitably transformed terms;

3. Consistency error: the identity satisfied by a strong solution tested with uh − Uh ,
which shall be useful to compensate the terms in step 2;

1. Exact discrete relative energy equality

In the first step we derive the discrete relative energy equality satisfied by a solution
(�h, uh) of the MAC scheme (14.10) and a generic function pair (rh,Uh).

Lemma 14.4 (Exact discrete relative energy) Let (�h, uh) be a solution to the
MAC scheme (14.10). Then for any {rkh ,U k

h}NT
k=1 ∈ Qh × W h, rh > 0, and for m =

1, . . . NT it holds

∫
Td

1

2

(
�m
h

∣∣∣uh
m − Uh

m
∣∣∣2 − �0

h |uh
0 − Uh

0|2
)

dx

+
∫
Td

(
E(�m

h |rmh ) − E(�0
h|r0h )

)
dx

+ �t
m∑

k=1

μ

∫
Td

|∇ε(uk
h − Uk

h)|2 dx + �t
m∑

k=1

ν

∫
Td

|divT (uk
h − Uk

h)|2 dx

+
8∑

i=1

Ti = −
5∑

i=1

Di ,

(14.24)

where Ti =
m∑

k=1
�t T k

i and Di =
m∑

k=1
�t Dk

i ≥ 0 with

T k
1 = μ

∫
Td

∇εUk
h : ∇ε(uk

h − U k
h) dx + ν

∫
Td

divT Uk
h divT (uk

h − Uk
h) dx

T k
2 =

∫
Td

�k−1
h DtU

k
h

(
uh

k−1 − Uh
k−1 + Uh

k

2

)
dx,

T k
3 =

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

({{
Uh

k
}}

− uh
k,up
)

· Uh
k
(uk

h · n)dSx ,

T k
4 =

∫
Td

p(�k
h)divT U

k
h dx,

T k
5 =

∫
Td

r kh − �k
h

�t

(
P ′(rk−1

h ) − P ′(rkh )
)
dx,

T k
6 = −

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h P ′(rk−1

h )(uk
h · n)dSx ,
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T k
7 = hε+1

∫
Td

�h�
k
h P

′(rk−1
h ) dx,

T k
8 = hε+1

∫
Td

∇D�k
h · ∇DUh

k ·
{{
Uh

k − uh
k
}}

dx,

Dk
1 = 1

2�t

∫
Td

�k−1
h

∣∣uh
k−1 − uh

k
∣∣2 dx ≥ 0,

Dk
2 = 1

�t

∫
Td

(
E(�k−1

h |�k
h) + E(rkh |rk−1

h )
)
dx ≥ 0,

Dk
3 = 1

2

∫
E

�
k,up
h

[[
uh

k]]2 ∣∣uk
h · n∣∣ dSx ≥ 0,

Dk
4 =

∫
E

∣∣uk
h · n∣∣E (�k,in

h |�k,out
h

)
dSx ≥ 0,

Dk
5 = hε+1

∑
K∈Th

∑
σ∈E(K )

∫
σ

∇D�k
h · ∇DP ′(�k

h)dSx

= hε+1
∑
K∈Th

∑
σ∈E(K )

∫
σ

|∇D�k
h |2P ′′(�k

h,†)dSx ≥ 0.

Proof We set φh = 1
2

(∣∣∣Uh
k
∣∣∣2 − ∣∣uh

k
∣∣2) in (14.10a), φh = (

P ′(�k
h) − P ′(rk−1

h )
)
in

(14.10a), and φh = (uk
h − Uk

h) in (14.10b), respectively, to deduce

3∑
k=1

Ik = 0,
6∑

k=4

Ik = 0,
11∑
k=7

Ik = 0,

where

I1 = 1

2

∫
Td

Dt�
k
h

(∣∣∣Uh
k
∣∣∣2 − ∣∣uh

k
∣∣2) dx,

I2 = −1

2

∫
E

Up[�k
h, u

k
h]
[[∣∣∣Uh

k
∣∣∣2 − ∣∣uh

k
∣∣2]] dSx ,

I3 = hε+1

2

∫
Td

∇D�k
h · ∇D

(∣∣∣Uh
k
∣∣∣2 − ∣∣uh

k
∣∣2) dx,

I4 =
∫
Td

Dt�
k
h

(
P ′(�k

h) − P ′(rk−1
h )

)
dx,
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I5 = −
∫
E

Up[�k
h, u

k
h]
[[
P ′(�k

h) − P ′(rk−1
h )

]]
dSx ,

I6 = hε+1
∫
Td

∇D�k
h · ∇D

(
P ′(�k

h) − P ′(rk−1
h )

)
dx,

I7 =
∫
Td

Dt�
k
huh

k · (uh
k − Uh

k)
dx,

I8 = −
∫
E

Up[�k
huh

k, uk
h] ·

[[
uh

k − Uh
k
]]

dSx ,

I9 = −
∫
Td

p(�k
h) · divT

(
uk
h − Uk

h

)
dx,

I10 = μ

∫
Td

∇εuk
h · ∇ε

(
uk
h − U k

h

)
dx + ν

∫
Td

divT uk
h divT

(
uk
h − Uk

h

)
dx,

I11 = hε+1
d∑

i=1

d∑
j=1

∫
Td

{{
ui,h

k
}}( j)

ðD j �
k
h ðD j

(
ui,h

k −Ui,h
k
)

dx .

Now we sum up all Ik terms and derive the desired inequality in 7 steps:

• The term I1 and I7:

I1 + I7 = 1

2

∫
Td

Dt�
k
h

(∣∣∣Uh
k
∣∣∣2 − ∣∣uh

k
∣∣2) dx +

∫
Td

Dt
(
�k
huh

k) · (uh
k − Uh

k)
dx

= 1

2�t

∫
Td

�k
h

(∣∣∣Uh
k
∣∣∣2 − ∣∣uh

k
∣∣2 + 2uh

k · (uh
k − Uh

k))
dx

− 1

2�t

∫
Td

�k−1
h

(∣∣∣Uh
k
∣∣∣2 − ∣∣uh

k
∣∣2 + 2uh

k−1 · (uh
k − Uh

k))
dx

= 1

2�t

∫
Td

(
�k
h

∣∣∣uh
k − Uh

k
∣∣∣2 − �k−1

h

∣∣∣uh
k−1 − Uh

k−1
∣∣∣2
)

dx

+
∫
Td

�k−1
h DtU

k
h

(
uh

k−1 − Uh
k−1 + Uh

k

2

)
dx

+ 1

2�t

∫
Td

�k−1
h

∣∣uh
k−1 − uh

k
∣∣2 dx

= 1

2�t

∫
Td

(
�k
h

∣∣∣uh
k − Uh

k
∣∣∣2 − �k−1

h

∣∣∣uh
k−1 − Uh

k−1
∣∣∣2
)

dx + T k
2 + Dk

1 .
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• The term I4:

I4 =
∫
Td

Dt�
k
h

(
P ′(�k

h) − P ′(rk−1
h )

)
dx

= 1

�t

∫
Td

(
P(�k−1

h ) − P(�k
h) − P ′(�k

h)(�
k−1
h − �k

h)
)
dx

+ 1

�t

∫
Td

(
P(�k

h) − P(�k−1
h ) + P ′(rk−1

h )(�k−1
h − �k

h)
)
dx

= 1

�t

∫
Td

E(�k−1
h |�k

h) dx + 1

�t

∫
Td

(
P(�k

h) − P(rkh ) − P ′(rkh )(�
k
h − rkh )

)
dx

− 1

�t

∫
Td

(
P(�k−1

h ) − P(rk−1
h ) − P ′(rk−1

h )(�k−1
h − rk−1

h )
)
dx

+ 1

�t

∫
Td

(
P(rkh ) − P(rk−1

h ) + P ′(rkh )(�
k
h − rkh ) + P ′(rk−1

h )(rk−1
h − �k

h)
)
dx

= 1

�t

∫
Td

(
E(�k−1

h |�k
h) + E(�k

h|rkh ) − E(�k−1
h |rk−1

h )
)
dx

+ 1

�t

∫
Td

(
E(rkh |rk−1

h ) + P ′(rkh )(�
k
h − rkh ) + P ′(rk−1

h )(rkh − �k
h)
)
dx

= 1

�t

∫
Td

(
E(�k

h|rkh ) − E(�k−1
h |rk−1

h )
)
dx

+ 1

�t

∫
Td

(
E(�k−1

h |�k
h) + E(rkh |rk−1

h )
)
dx

+
∫
Td

r kh − �k
h

�t

(
P ′(rk−1

h ) − P ′(rkh )
)
dx

= 1

�t

∫
Td

(
E(�k

h|rkh ) − E(�k−1
h |rk−1

h )
)
dx + Dk

2 + T k
5 .

• The term I2 and I8:

I2 + I8 = −1

2

∫
E

Up[�k
h, u

k
h]
[[∣∣∣Uh

k
∣∣∣2 − ∣∣uh

k
∣∣2]] dSx

−
∫
E

Up[�k
huh

k, uk
h] ·

[[
uh

k − Uh
k
]]

dSx
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=
∫
E

(
Up[�k

huh
k, uk

h] ·
[[
Uh

k
]]

− 1

2
Up[�k

h, u
k
h]
[[∣∣∣Uh

k
∣∣∣2
]])

dSx

+
∫
E

(
1

2
Up[�k

h, u
k
h]
[[∣∣uh

k
∣∣2]]− Up[�k

huh
k, uk

h] · [[uh
k]]) dSx

=
∫
E

�
k,up
h (uk

h · n)
[[
Uh

k
]]

·
(
uh

k,up −
{{
Uh

k
}})

dSx

+ 1

2

∫
E

�
k,up
h

[[
uh

k]]2 |uk
h · n| dSx

= T k
3 + Dk

3,

where we have used (14.11a).
• The sum of I5 and I9 yields both T k

4 and T k
6 :

I5 + I9 = −
∫
E

Up[�k
h, u

k
h]
[[
P ′(�k

h) − P ′(rk−1
h )

]]
dSx

−
∫
Td

p(�k
h) · divT

(
uk
h − Uk

h

)
dx

=
∫
Td

p(�k
h)divT U

k
h dx +

∫
E

Up[�k
h, u

k
h]
[[
P ′(rk−1

h )
]]
dSx

−
∫
Td

p(�k
h)divT uk

h dx −
∫
E

Up[�k
h, u

k
h]
[[
P ′(�k

h)
]]
dSx

= T k
4 + T k

6 + Dk
4,

where

Dk
4 = −

∫
Td

p(�k
h)divT uk

h dx −
∫
E

Up[�k
h, u

k
h]
[[
P ′(�k

h)
]]
dSx

=
∑
K∈Th

∑
σ∈E(K )

∫
σ

(
�
k,up
h P ′(�k

h) − p(�k
h)
)
uk
h · ndSx

=
∑

σ=K |L∈E

∫
σ

[uk
h · n]+(P(�k

K ) − P ′(�k
L)(�

k
K − �k

L) − P(�k
L))dSx

+
∑

σ=K |L∈E

∫
σ

[uk
h · nσ,L ]+(P(�k

L) − P ′(�k
K )(�k

L − �k
K ) − P(�k

K ))dSx
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=
∑

σ=K |L∈E

∫
σ

[uk
h · nσK ]+E(�k

K |�k
L) + [uk

h · nσ L ]+E(�k
L |�k

K )dSx

=
∫
E

∣∣uk
h · n∣∣E (�k,in

h |�k,out
h

)
dSx ≥ 0.

• The term I3 and I11:

I3 + I11 = hε+1

2

∫
Td

∇D�k
h · ∇D

(∣∣∣Uh
k
∣∣∣2 − ∣∣uh

k
∣∣2) dx

+ hε+1
d∑

i=1

d∑
j=1

∫
Td

{{
ui,h

k
}}( j)

ðD j �
k
hðD j (ui,h

k −Ui,h
k
) dx

= hε+1
d∑

i=1

d∑
j=1

∫
Td

ðD j �
k
hðD j Ui,h

k
{{
Ui,h

k
}}( j)

dx

− hε+1
d∑

i=1

d∑
j=1

∫
Td

{{
ui,h

k
}}( j)

ðD j �
k
hðD j Ui,h

k
dx

= T k
8 ,

where we have used the equality

d∑
i=1

d∑
j=1

∫
Td

{{
ui,h

k
}}( j)

ðD j �
k
hðD j (ui,h

k) dx =
∫
Td

1

2
∇D�k

h · ∇D
∣∣uh

k
∣∣2 dx .

• Term I6:

I6 = hε+1
∫
Td

∇D�k
h · ∇D

(
P ′(�k

h) − P ′(rk−1
h )

)
dx

= hε+1
∫
Td

�h�
k
h P ′(rk−1

h ) dx + hε+1
∫
Td

|∇D�k
h |2

P ′′(�k
h,†)

2
dx

= T k
7 + Dk

5 .

• Term I10:

I10 = μ

∫
Td

∇εuk
h : ∇ε(uk

h − U k
h) dx + ν

∫
Td

divT uk
h divT (uk

h − U k
h) dx

= μ
∥∥∇ε(uk

h − Uk
h)
∥∥2
L2 + ν

∥∥divT (uk
h − Uk

h)
∥∥2
L2 + T k

1 .
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Finally, collecting all the above calculations and summing up from k = 1 to m
finishes the proof.

2. Approximate relative energy inequality

In this step we set (rh,Uh) = (�Qr,�WU) in Lemma 14.4 for [r,U] belonging to
the class (14.21), and we further analyze the equality (14.24)—mainly the Ti terms
given in Lemma 14.4.

Lemma 14.5 (Approximate discrete relative energy) Let (�h, uh) ∈ Qh × W h be
a solution to the MAC scheme (14.10), and let (rh,Uh) = (�Qr,�WU) for [r,U]
belonging to the class (14.21). Then there exists a positive constant

c = c
(
M0, E0, r , r , ‖p‖C2([r ,r ]) , ‖(r,U)‖C2

)

such that for all m = 1, . . . , NT we have

E(�m
h , um

h |rmh ,Um
h ) − E(�0

h, u
0
h |r0h ,U0

h) + �t
m∑

k=1

μ

∫
Td

|∇ε(uk
h − U k

h)|2 dx

+ �t
m∑

k=1

ν

∫
Td

|divT (uk
h − U k

h)|2 dx ≤
6∑

i=1

Qi + Rm
h + Gm,

(14.25)
where the terms Qi , i = 1, . . . , 6, read

Q1 = −�t
m∑

k=1

∫
Td

(
μ∇εUk

h : ∇ε(uk
h − Uk

h) + νdivT U k
h divT (uk

h − Uk
h)
)
dx,

Q2 = �t
m∑

k=1

∫
Td

�k−1
h DtUh

k
(
Uh

k − uh
k
)

dx,

Q3 = �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

(
Uh

k,up − uh
k,up
)

· (Uk
h − Uh

k
)Uh

k,up · ndSx ,

Q4 = −�t
m∑

k=1

∫
Td

p(�k
h)(divxU)k dx,

Q5 = �t
m∑

k=1

∫
Td

(rkh − �k
h)

p′(rkh )
rkh

(∂t r)
k dx,

Q6 = −�t
m∑

k=1

∫
Td

�k
h

p′(rkh )
rkh

uh
k · (∇xr)

k dx,
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and

∣∣Gm
∣∣ ≤ c�t

m∑
k=1

E(�k
h, u

k
h |rkh ,U k

h),

∣∣Rm
h

∣∣ ≤ c(
√

�t + hA), A =
{

2γ−d
γ

if γ ∈ ( d2 , 2),
1
2 if γ ≥ 2.

Proof We start the proof from the inequality (14.24) derived in the previous
Lemma 14.4. We only need to deal with the terms Ti , i = 1, . . . , 8, as the other
terms will remain the same.

• We keep the term T1 unchanged and set Q1 = −T1.
• The second term T2 can be rewritten as

− T2 = �t
m∑

k=1

∫
Td

�k−1
h DtU

k
h

(
Uh

k−1 + Uh
k

2
− uh

k−1 ± 1

2
Uh

k ± uh
k

)
dx

= Q2 + R1,

where

R1 = �t
m∑

k=1

∫
Td

1

2
�k−1
h DtU

k
h(Uh

k−1 − Uh
k
) + �k−1

h DtU
k
h(uh

k − uh
k−1) dx .

By the interpolation estimate (14.6c) and the uniform bounds (14.15) we have

|R1| <∼ �t ‖�h‖L∞L1 ‖∂tU‖2L∞W 1,∞

+ ‖�h‖1/2L1L1 ‖∂tU‖L∞W 1,∞

⎛
⎝

T∫
0

∫
Td

�h(t − �t)|Dtuh |2(�t)2 dx dt

⎞
⎠

1/2

<∼ c(E0, ‖U‖C2)(�t + �t1/2).

• From the third term T3 we get

− T3 = −�t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

({{
Uh

k
}}

− uh
k,up
)

· Uh
k
(uk

h · n)dSx

= −�t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

(
Uh

k,up − uh
k,up
)

· Uh
k
(uk

h · n)dSx + R21,
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where

R21 = �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

(
Uh

k,up −
{{
Uh

k
}})

· Uh
k
(uk

h · n)dSx

= �t

2

m∑
k=1

∑
σ=K |L∈E

∫
σ

[
�k
K |Uk

K − U
k
L |2[uk

h · n]+

+ �k
L |Uk

K − U
k
L |2[uk

h · nσ,L ]+
]
dSx .

Seeing the equality

∑
K∈Th

∑
σ∈E(K )

∫
σ

f k,uph · Uk
h(u

k
h · n)dSx = 0 for f k,uph = �

k,up
h

(
Uh

k,up − uh
k,up
)

we have

− T3 = �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

(
Uh

k,up − uh
k,up
)

· (Uk
h − Uh

k
)(uk

h · n)dSx

+ R21

= �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

(
Uh

k,up − uh
k,up
)

· (Uk
h − Uh

k
)Uh

k,up · ndSx

+ R21 + R22 = Q3 + R21 + R22,

where

R22 = �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

(
Uh

k,up − uh
k,up
)

· (Uh
k − Uk

h)(U
k,up
h − uk

h) · n dSx

= �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

(
Uh

k,up − uh
k,up
)

· (Uh
k − Uk

h)(U
k,up
h − uh

k,up) · n dSx

+ �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h

(
Uh

k,up − uh
k,up
)

· (Uh
k − Uk

h)(uh
k,up − uk

h) · n dSx

≡ R221 + R222.
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By Hölder’s inequality, the uniform bounds (14.15), and the trace inequality (28)
we have

|R21| <∼ h ‖�h‖L2L6/5 ‖uh‖L2L6 (‖∇xU‖L∞L∞)2
<∼ c(E0, ‖U‖C1)h,

where β = 1 + βR > 2
3 for γ > d

2 and βR is given in (14.19b).
Further, by similar argument it holds

|R221| <∼ c(‖U‖C1)�t
m∑

k=1

E(�k
h, u

k
h |rkh ,U k

h),

and

|R222| <∼ ‖U‖C1

∥∥√�h

∥∥
L∞L2γ �t

m∑
k=1

E(�k
h, u

k
h |rkh ,U k

h)
1/2
∥∥uh

k,up − uk
h

∥∥
Lq

<∼ ‖U‖C1 ‖�h‖1/2L∞Lγ

(
h
2d
(

1
q − 1

2

)
h2 ‖∇εuh‖2L2L2 + �t

m∑
k=1

E(�k
h, u

k
h |rkh ,U k

h)

)

<∼ c(E0, ‖U‖C1)h
2γ−d

γ + c(E0, ‖U‖C1)�t
m∑

k=1

E(�k
h, u

k
h |rkh ,U k

h),

where we have also used Young’s inequality. Here q = 2γ
γ−1 ∈ (2, 6) provided

γ > d
2 .• The fourth term T4 directly yields, due to (18),

−T4 = −�t
m∑

k=1

∫
Td

p(�k
h)divT U

k
h dx = −�t

m∑
k=1

∫
Td

p(�k
h)[divxU]k dx = Q4.

• We proceed with the fifth term T5 and obtain

− T5 = �t
m∑

k=1

∫
Td

r kh − �k
h

�t

(
P ′(rkh ) − P ′(rk−1

h )
)
dx

= �t
m∑

k=1

∫
Td

r kh − �k
h

�t

(
P ′′(rkh )(r

k
h − rk−1

h ) − P ′′′(rn,

h )

2
(rkh − rk−1

h )2
)

dx

= �t
m∑

k=1

∫
Td

(rkh − �k
h)

p′(rkh )
rkh

[∂t r ]k dx + R3

= Q5 + R3,
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where we have used the fact P ′′(r) = p′(r)
r . Here, the residual term R3 reads

R3 = −�t
m∑

k=1

∫
Td

r kh − �k
h

�t

P ′′′(rn,

h )

2
(rkh − rk−1

h )2 dx,

+ �t
m∑

k=1

∫
Td

(rkh − �k
h)

p′(rkh )
rkh

(Dtr
k
h − [∂t r ]k) dx .

It is easy to get

|R3| <∼ �t ‖rh − �h‖L1L1 |p|C2([r ,r ]) ‖∂t r‖L∞L∞

+ �t ‖rh − �h‖L∞L1 |p|C1([r ,r ])
( ∥∥∂2

t r
∥∥
L∞L∞ + ‖∂t∇xr‖L∞L∞

)
<∼ �t.

• Term T6 yields Q6 after a suitable manipulation and estimating three residual
terms. Indeed,

− T6 = �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�
k,up
h P ′(rk−1

h )(uk
h · n)dSx

= �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�k
h

(
P ′(rk−1

h ) − P ′(�Wr
k−1)

)
(uk

h · n)dSx

+ �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

(�
k,up
h − �k

h)
(
P ′(rk−1

h ) − P ′(�Wr
k−1)

)
(uk

h · n)dSx

︸ ︷︷ ︸
R41

= �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�k
h P

′′(rk−1
h )(rk−1

h − �Wr
k−1)(uk

h · n)dSx + R41

− �t

2

m∑
k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�k
h P

′′′(rkh,†)(r
k−1
h − �Wr

k−1)2(uk
h · n)dSx

︸ ︷︷ ︸
R42

= −�t
m∑

k=1

∫
Td

�k
h P

′′(rk−1
h )uh

k · (∇xr)
k−1 dx + R41 + R42

+ �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�k
h P

′′(rk−1
h )(rk−1

h − �Wr
k−1)(uh

k − uk
h) · nσ,KdSx

︸ ︷︷ ︸
R43

= Q6 + R41 + R42 + R43,
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where �W = �
(i)
W for any σ ∈ Ei . Here we have used the following equality in the

last second line

∑
σ∈E(K )

∫
σ

(rK − �Wr)uh · ndSx = −
∫
K

uh · ∇xr dx .

Now we estimate the residual terms R4i , i = 1, 2, 3. It holds

|R41|

=
∣∣∣∣∣∣�t

m∑
k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

(�
k,up
h − �k

h)
(
P ′(rk−1

h ) − P ′(�Wr
k−1)

)
uk
h · ndSx

∣∣∣∣∣∣
<∼ �t

m∑
k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

|(�k,up
h − �k

h)u
k
h · n| P ′′(rk−1

h,† )|rk−1
h − �Wr

k−1|dSx

<∼ h|p|C1([r ,r ]) ‖∇xr‖L∞L∞

T∫
0

∑
K∈Th

∑
σ∈E(K )

∫
σ

∣∣[[�h
]]

(uh · n)−
∣∣ dSx dt

<∼ c
(
E0, |p|C1([r ,r ]), ‖∇xr‖L∞L∞

)
h1/2,

(14.26)
where we have used (14.19e). Further, we derive

|R42| = �t

2

m∑
k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�k
h P

′′′(rkh,†)(r
k−1
h − �Wr

k−1)2(uk
h · n)dSx

<∼ h |p|C2([r ,r ]) ‖∇xr‖2L∞L∞ ‖�h‖L2L6/5 ‖uh‖L2L6

≤ c
(
E0, |p|C2([r ,r ]) , ‖∇xr‖2L∞L∞

)
hβ,

where β = 1 + βR > 2
3 for γ > d

2 and βR is given in (14.19b).
Finally, using Hölder’s inequality, the trace inequality (28), the velocity bounds
(14.15b), and the negative estimate (14.19b) we get

|R43|

=
∣∣∣∣∣∣�t

m∑
k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

�k
h P

′′(rk−1
h )(rk−1

h − �Wr
k−1)(uh

k − uk
h) · ndSx

∣∣∣∣∣∣
<∼ h|p|C1([r ,r ]) ‖∇xr‖L∞L∞ ‖�h‖L2L2 ‖∇εuh‖L2L2

<∼ c
(
E0, |p|C1([r ,r ]) ‖∇xr‖L∞L∞

)
hβ,
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where

β =
{
1 + γ−2

2γ d >
2γ−d

γ
if γ ∈ ( d2 , 2),

1 if γ ≥ 2.
(14.27)

• For the seventh term T7 we get by integration by parts formula (44) and Hölder’s
inequality that

|T7| =
∣∣∣∣∣∣�thε+1

m∑
k=1

∫
Td

�h�
k
h P

′(rk−1
h ) dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣�thε+1

m∑
k=1

∫
Td

�k
h�h P

′(rk−1
h ) dx

∣∣∣∣∣∣
<∼ hε+1|p|C2([r ,r ]) ‖∇xr‖L∞L∞ ‖�h‖L1L1

<∼ hε+1|p|C2([r ,r ]) ‖∇xr‖L∞L∞ ‖�h‖L∞Lγ

≤ c(E0, |p|C2([r ,r ]), ‖∇xr‖L∞L∞) hε+1.

• The last term T8 admits the bound

|T8| = �thε+1

∣∣∣∣∣∣
m∑

k=1

d∑
i=1

d∑
j=1

∫
Td

ðD j �
k
hðD j Ui,h

k
{{
Uk

i,h − uki,h

}}( j)
dx

∣∣∣∣∣∣

= �thε+1

∣∣∣∣∣∣
m∑

k=1

d∑
i=1

d∑
j=1

∫
Td

�k
hð

( j)
T

(
ðD j Ui,h

k
{{
Ui,h

k − ui,h
k
}}( j)

)
dx

∣∣∣∣∣∣
<∼ �thε+1

∣∣∣∣∣∣
m∑

k=1

∫
Td

�k
h

(
�hUh

k ·
{{
Uh

k − uh
k
}})

dx

∣∣∣∣∣∣

+ �thε+1

∣∣∣∣∣∣
m∑

k=1

d∑
i=1

d∑
j=1

∫
Td

�k
hðD j Ui,h

k · ð( j)
T

{{
Ui,h

k − ui,h
k
}}( j)

dx

∣∣∣∣∣∣
<∼ hε+1 ‖�h‖L2L6/5 ‖U‖C2 (‖Uh‖C0 + ‖uh‖L2L6)

+ hε+1 ‖�h‖L1L1 ‖U‖2C1 + hε+1 ‖U‖C1 ‖�h‖L2L2 ‖∇εuh‖L2L2

<∼ hε+1 + hζ ,

where we have used the inequality

∥∥∥ð( j)
T
{{
ui,h

k
}}( j)

∥∥∥
L2

<∼ ∥∥ð j ui,h
∥∥
L2 ,

and ζ = ε + β > A with β being given in (14.27). Here, we have used the same
trick as in the estimate of the term R43.
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3. Consistency error

Weproceed by assuming now that the “test functions” in the relative energy inequality
solve the Navier–Stokes system.

Lemma 14.6 (Consistency error) Let (�h, uh) = {�k
h, u

k
h}NT

k=1 be a family of solu-
tions obtained by the MAC scheme (14.10). Let [r,U] be a solution of the Navier–
Stokes system (14.1) that belongs to the class (14.21). Then for any m = 1, . . . , NT

and (rh,Uh) = (�Qr,�WU) the following identity holds true:

5∑
i=1

Ji + Rh = 0, (14.28)

where |Rh | <∼ h + �t and

J1 = �t
m∑

k=1

∫
Td

r k−1
h DtUh

k
(
uh

k − Uh
k
)

dx,

J2 = �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

∫
σ

rk,uph

(
uh

k,up − Uh
k,up
)

· (Uk
h − Uh

k
)Uh

k,up · ndSx ,

J3 = �t
m∑

k=1

∫
Td

p(rkh )divxU
k + p′(rkh )uh

k · ∇xr
k dx,

J4 = μ�t
m∑

k=1

∫
Td

∇εU k
h : ∇ε(uk

h − Uk
h) dx,

J5 = ν�t
m∑

k=1

∫
Td

divT U k
h divT (uk

h − U k
h) dx .

(14.29)

Proof (of Lemma 14.6) Noticing [r,U] is a solution of (14.1), we subtract (14.1a)
from (14.1b) to derive

r∂tU + rU · ∇xU + ∇x p(r) = μ�xU + ν∇xdivxU .

Further, taking the above equation at time t = t k , multiplying with �t (uk
h − U k

h),
integrating over Td , and summing up from k = 1 to m (≤ NT ) we derive

5∑
i=1

Gi = 0 with G1 = �t
m∑

k=1

∫
Td

r k∂tU k · (uk
h − U k

h) dx,

G2 = �t
m∑

k=1

∫
Td

r kUk · ∇xUk · (uk
h − Uk

h) dx,
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G3 = �t
m∑

k=1

∫
Td

∇x p(r
k) · (uk

h − Uk
h) dx,

G4 = −μ�t
m∑

k=1

∫
Td

�xUk · (uk
h − Uk

h) dx,

G5 = −ν�t
m∑

k=1

∫
Td

∇xdivxU k · (uk
h − U k

h) dx .

In what follows we analyze the above Gi terms.

• Term G1 yields J1:

G1 = �t
m∑

k=1

∫
Td

r k∂tUk · (uk
h − Uk

h) dx = J1 + R1,

where

R1 = G1 − J1 = �t
m∑

k=1

∫
Td

r k∂tUk · (uk
h − Uk

h) − rk−1
h DtUh

k
(
uh

k − Uh
k
)

dx

= �t
m∑

k=1

∫
Td

r k∂tUk ·
(
(uk

h − U k
h) − (uh

k − Uh
k
)
)

dx

+ �t
m∑

k=1

∫
Td

(
rk − rk−1

h

)
∂tUk · (uh

k − Uh
k
) dx

+ �t
m∑

k=1

∫
Td

r k−1
h

(
∂tU k − DtUh

k
)

· (uh
k − Uh

k
) dx

≡ R11 + R12 + R13.

Due to the regularity (14.21) and the velocity bound (14.15b), the residual terms
R11, R12 and R13 can be estimated in the following steps.

R11 = �t
m∑

k=1

∫
Td

r k∂tU k ·
(
(uk

h − U k
h) − (uh

k − Uh
k
)
)

dx

= �t
d∑

i=1

m∑
k=1

∑
K∈Th

∫
K

rk∂tU
k
i

(
(uki,h −Uk

i,h) − (ui,h
k −Ui,h

k
)
)

dx

<∼ h ‖r‖L∞L∞ ‖∂tU‖L∞L∞ ‖∇ε(uh − Uh)‖L2L2

<∼ h ‖r‖L∞L∞ ‖∂tU‖L∞L∞ (‖∇εuh‖L2L2 + ‖∇xU‖L∞L∞)

<∼ h,
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R12 = �t
m∑

k=1

∫
Td

(
rk − rkh + rkh − rk−1

h

)
∂tU k · (uh

k − Uh
k
) dx

<∼ (h ‖∇xr‖L∞L∞ + �t ‖∂t r‖L∞L∞)
∥∥∂tUk

∥∥
L∞L∞

∥∥∥uh
k − Uh

k
∥∥∥
L2L6

<∼ �t + h,

R13 = �t
m∑

k=1

∫
Td

r k−1
h

(
∂tUk − DtUk

h + DtU k
h − DtUh

k
)

· (uh
k − Uh

k
) dx

<∼ ‖r‖L∞L∞ (�t ‖∂t tU‖L∞L∞ + h ‖∂t∇xU‖L∞L∞) ‖uh − Uh‖L2L6

<∼ �t + h.

Collecting the above three estimates, we have

G1 = J1 + R1, R1 = R11 + R12 + R13
<∼ �t + h.

• Term G2 yields J2:
We first reformulate the term G2 as

G2 = �t
m∑

k=1

∫
Td

r kU k · ∇xU k · (uk
h − U k

h) dx

= �t
m∑

k=1

∫
Td

r khUh
k · ∇xU k · (uh

k − Uh
k
) dx + R21 ≡ G21 + R21,

where G21 = �t
m∑

k=1

∫
Td

r khUh
k · ∇xUk · (uh

k − Uh
k
) dx and

R21 = �t
m∑

k=1

∫
Td

r kUk · ∇xU k ·
(
(uk

h − Uk
h) − (uh

k − Uh
k
)
)

dx

+ �t
m∑

k=1

∫
Td

r k(Uk − Uh
k
) · ∇xUk · (uh

k − Uh
k
) dx

+ �t
m∑

k=1

∫
Td

(rk − rkh )Uh
k · ∇xUk · (uh

k − Uh
k
) dx

<∼ c (r , ‖∇xr,U,∇xU‖L∞L∞ , ‖∇εuh‖L2L2 , ‖uh‖L2L6) h.
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Further, by Stokes’ formula and using the fact that rkh and Uh
k
are piecewise

constants, we get

G21 = �t
m∑

k=1

∫
Td

r khUh
k · ∇xUk · (uh

k − Uh
k
) dx

= �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

|σ |rkKU k
K · nU k

h · (uh
k − Uh

k
)

= �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

|σ |rkKU k
K · n(U k

h − Uh
k
) · (uh

k − Uh
k
)

= �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

|σ |(rkhUk
K )up · n(U k

h − Uh
k
) · (uh

k − Uh
k
)up + R22

= J2 + R22,

where we have used the equality
∑

σ∈(K )

∫
σ
n dSx = 0 and

R22 = �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

|σ |(rkK − (rkh )
up
)
U

k
K · n(U k

h − Uh
k
) · (uh

k − Uh
k
)

+ �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

|σ |(rkh )up
(
U

k
K − (U

k
K )up

) · n(Uk
h − Uh

k
) · (uh

k − Uh
k
)

+ �t
m∑

k=1

∑
K∈Th

∑
σ∈E(K )

|σ |(rkhU k
K )up · n(Uk

h − Uh
k
)

·
(
(uh

k − Uh
k
) − (uh

k − Uh
k
)up
)

<∼ h ‖∇xr‖L∞L∞ ‖U‖L∞L∞ ‖∇xU‖L∞L∞
( ‖uh‖L2L6 + ‖U‖L∞L∞

)
+ h ‖r‖L∞L∞ ‖∇xU‖2L∞L∞

( ‖uh‖L2L6 + ‖U‖L∞L∞
)

+ h ‖r‖L∞L∞ ‖U‖L∞L∞ ‖∇xU‖L∞L∞
( ‖∇εuh‖L2L2 + ‖∇xU‖L∞L∞

)
<∼ h.

Collecting the above two estimates we have

G2 = J2 + R2, R2 = R21 + R22
<∼ h.
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• Term G3 yields J3:

G3 = �t
m∑

k=1

∫
Td

∇x p(r
k) · (uk

h − U k
h) dx

= �t
m∑

k=1

∫
Td

(
p′(rk)∇xr

k · uk
h − ∇x p(r

k) · Uk

+∇x p(r
k) · (Uk − Uk

h)
)
dx

= �t
m∑

k=1

∫
Td

(
p′(rkh )uh

k · ∇xr
k + p(rkh )divxU

k
)
dx + R3

= J3 + R3,

where R3 reads

R3 = �t
m∑

k=1

∫
Td

(
p′(rk)uk

h − p′(rkh )uh
k) · ∇xr

k dx

+ �t
m∑

k=1

∫
Td

(
p(rk) − p(rkh )

)
divxUk dx

+ �t
m∑

k=1

∫
Td

∇x p(r
k) · (Uk − U k

h) dx

≡ R31 + R32 + R33.

First, the term R31 can be estimated by

R31 = �t
m∑

k=1

∫
Td

(
p′(rk)uk

h − p′(rkh )uh
k) · ∇xr

k dx

= �t
m∑

k=1

∫
Td

(
(p′(rk) − p′(rkh ))u

k
h − p′(rkh )(u

k
h − uh

k)
) · ∇xr

k dx

<∼ h
(|p|C2(r ,r) ‖∇xr‖L∞L∞ ‖uh‖L2L6 + |p|C1(r ,r) ‖∇εuh‖L2L2

) ‖∇xr‖L∞L∞

<∼ h.
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Next, it is easy to estimate the term R32 by

R32 = �t
m∑

k=1

∫
Td

(
p(rk) − p(rkh )

)
divxU k dx

<∼ h|p|C1(r ,r) ‖∇xr‖L∞L∞ ‖Uh‖C1
<∼ h.

Finally, we have

R33 = �t
m∑

k=1

∫
Td

∇x p(r
k) · (U k − Uk

h) dx

= �t
m∑

k=1

∫
Td

p′(rk)∇xr
k · (Uk − Uk

h) dx

<∼ h|p|C1(r ,r) ‖∇xr‖L∞L∞ ‖∇xUh‖L∞L∞
<∼ h.

Collecting the above three estimates, we have

G3 = J3 + R3, R3 = R31 + R32 + R33
<∼ h.

• Term G4 yields J4:

G4 = −μ�t
m∑

k=1

∫
Td

�xUk · (uk
h − Uk

h) dx

= −μ�t
m∑

k=1

d∑
i=1

∑
σ∈Ei

(uki,h −Uk
i,h)

∫
Dσ

d∑
j=1

∂

∂x j

∂Uk
i

∂x j
dx

= −μ�t
m∑

k=1

d∑
i=1

d∑
j=1

∑
σ∈Ei

(uki,σ −Uk
i,σ )

∑
ε∈Ẽ(Dσ )

∫
ε

∂Uk
i

∂x j
nε,Dσ

dSx

= μ�t
m∑

k=1

d∑
i=1

d∑
j=1

∑
ε∈Ẽi

|Dε |ð j (u
k
i,h −Uk

i,h)
1

|ε|
∫
ε

∂Uk
i

∂x j
dSx

= μ�t
m∑

k=1

∫
Td

∇ε(uk
h − Uk

h) : ∇εUk
h dx + R4 = J4 + R4,

where nε,Dσ
is the unit normal vector on ε pointing outwards Dσ and
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R4 = μ�t
m∑

k=1

d∑
i=1

d∑
j=1

∑
ε∈Ẽi

|Dε |ð j (u
k
i,h −Uk

i,h)

⎛
⎝ 1

|ε|
∫
ε

∂Uk
i

∂x j
dSx − ð jU

k
i,h

⎞
⎠

<∼ h (‖∇εuh‖L2L2 + ‖U‖C1) ‖U‖C2
<∼ h.

• Term G5 yields J5:

G5 = −ν�t
m∑

k=1

∫
Td

∇xdivxUk · (uk
h − Uk

h) dx

= −ν�t
m∑

k=1

d∑
i=1

∑
σ∈Ei

(uki,h −Uk
i,h)ei ·

∑
ε∈Ẽ(Dσ )

ε⊥ei

∫
ε

divxU knε,Dσ
dSx

= ν�t
m∑

k=1

d∑
i=1

∑
K∈Th

|K |ð(i)
T (uki,h −Uk

i,h)
1

|ε|
∫
ε

divxU kdSx

= ν�t
m∑

k=1

∫
Td

divT (uk
h − U k

h)divT U
k
h dx + R5 = J5 + R5,

where ε = {x ∈ K |xi = (xK )i } is the plane (or the line if d = 2) crossing the point
xK (center of element K ) that separates K into two halves and

R5 = ν�t
m∑

k=1

d∑
i=1

∑
K∈Th

|K |ð(i)
T (uki,h −Uk

i,h)

⎛
⎝ 1

|ε|
∫
ε

divxUkdSx − divT Uk
h

⎞
⎠

<∼ h (‖divT uh‖L2L2 + ‖U‖C1) ‖U‖C2
<∼ h.

Consequently, collecting the above implies

5∑
i=1

Ji + Rh = 0 with |Rh | =
∣∣∣∣∣

5∑
i=1

Ri

∣∣∣∣∣
<∼ h + �t,

which completes the proof.

Now we are ready to prove Theorem 14.4.

Proof (of Theorem 14.4) In order to deduce the desired convergence rate we apply
the discrete Gronwall lemma to the sum of the two estimates derived in the second
and the third step above.
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More precisely, we sum up (14.25) and (14.28) to get

E(�m
h , um

h |rmh ,Um
h ) − E(�0

h, u
0
h |r0h ,U0

h) + �t
m∑

k=1

μ

∫
Td

|∇ε(uk
h − Uk

h)|2 dx

≤ P1 + P2 + P3 + Rm
h + Gm,

where
∣∣Gm

∣∣ ≤ c�t
m∑

k=1

E(�k
h, u

k
h |rkh ,U k

h),
∣∣Rm

h

∣∣ ≤ c(
√

�t + hA) are given in

Lemma 14.5, and Pi = �t
m∑

k=1

Pk
i , i = 1, 2, 3, read

Pk
1 =

∫
Td

(�k−1
h − rk−1

h )DtUh
k
(
Uh

k − uh
k
)

dx,

Pk
2 =

∑
K∈Th

∑
σ∈E(K )

∫
σ

(�
k,up
h − rk,uph )

(
Uh

k,up − uh
k,up
)

· (Uk
h − Uh

k
)Uh

k,up · ndSx ,

Pk
3 =

∫
Td

p′(rkh )
rkh

(rkh − �k
h)
([∂t r ]k + uh

k · ∇xr
k
)
dx

+
∫
Td

(
p(rkh ) − p(�k

h)
)
divxUk dx .

Recalling that [r,U] satisfies (14.1a) we have

∂t r
k = −divx (r

kUk) = −U k · ∇xr
k − rkdivxUk .

Then we may rewrite Pk
3 as

Pk
3 =

∫
Td

p′(rkh )
rkh

(rkh − �k
h)
(−U k · ∇xr

k − rkdivxUk + uh
k · ∇xr

k
)
dx

+
∫
Td

(
p(rkh ) − p(�k

h)
)
divxU k dx

=
∫
Td

(
p′(rkh )
rkh

(rkh − �k
h)(uh

k − U k) · ∇xr
k + E(rkh |�k

h)divxU
k

)
dx .

Next, we estimate the terms P1, P2, and P3.
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• Term P1:
Thanks toHölder’s inequality, the estimate (14.16), Lemma 14.3, Young’s inequality,
and the bound (14.17) we can estimate P1 in the following way

Pk
1 =

∫
Td

(�k−1
h − rk−1

h )DtUh
k
(
Uh

k − uh
k
)

dx

≤ ∥∥∂tUk
∥∥
L∞

∥∥∥Uh
k − uh

k
∥∥∥
L6

∥∥�k−1
h − rk−1

h

∥∥
L6/5

≤ ∥∥∂tUk
∥∥
L∞

∥∥∥Uh
k − uh

k
∥∥∥
L6

×
×
( ∥∥(�k−1

h − rk−1
h )1R+\[r/2,2r ](�k−1

h )
∥∥
L6/5 + ∥∥(�k−1

h − rk−1
h )1[r/2,2r ](�k−1

h )
∥∥
L2

)

≤ c(r , r)
∥∥∂tUk

∥∥
L∞
(∥∥∇ε(Uk

h − uk
h)
∥∥
L2 + E(�k

h, u
k
h |rkh ,U k

h)
1/2
)×

×
(
E(�k−1

h , uk−1
h |rk−1

h ,U k−1
h )5/6 + E(�k−1

h , uk−1
h |rk−1

h ,U k−1
h )1/2

)

≤ c

δ
E(�k−1

h , uk−1
h |rk−1

h ,U k−1
h ) + δ

∥∥∇ε(Uk
h − uk

h)
∥∥2
L2

+ cE(�k
h, u

k
h |rkh ,U k

h) + c

δ
E(�k−1

h , uk−1
h |rk−1

h ,U k−1
h )5/3

≤ cE(�k−1
h , uk−1

h |rk−1
h ,U k−1

h ) + δ
∥∥∇ε(U k

h − uk
h)
∥∥2
L2

+ cE(�k
h, u

k
h |rkh ,U k

h),

where c depends on r , r , ‖U‖C1 , and the initial data of the problem (mass and total
energy). Consequently, we have derived

P1 ≤ c�t E(�0h , u0h |r0h ,U0
h) + c�t

m∑
k=1

E(�kh, u
k
h |rkh ,Uk

h) + δ�t
m∑

k=1

∥∥∥∇ε(Uk
h − ukh)

∥∥∥2
L2

.

• Term P2:

Pk
2 =

∑
K∈Th

∑
σ∈E(K )

∫
σ

(�
k,up
h − rk,uph )

(
Uh

k,up − uh
k,up
)

· (U k
h − Uh

k
)Uh

k,up · ndSx

<∼ ∥∥∂tUk
∥∥
L∞
∥∥∇xUk

∥∥
L∞

∥∥∥Uh
k − uh

k
∥∥∥
L6

∥∥�k−1
h − rk−1

h

∥∥
L6/5 .

By the same reasoning, we have

P2 ≤c�t E(�0
h, u

0
h|r0h ,U0

h) + c�t
m∑

k=1

E(�k
h, u

k
h |rkh ,U k

h)

+ δ�t
m∑

k=1

∥∥∇ε(Uk
h − uk

h)
∥∥2
L2 ,
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where c depends on δ, r , r , ‖U‖C1 , and the initial data.
• Term P3:

Pk
3 =

T∫
0

∫
Td

(
p′(rkh )
rkh

(rkh − �k
h)(uh

k − U k) · ∇xr
k + E(rkh |�k

h)divxU
k

)
dx dt

≤ ∥∥divxUk
∥∥
L∞ E(�k

h, u
k
h |rkh ,U k

h)

+
∣∣∣∣ p

′(r)
r

∣∣∣∣
C[r ,r ]

∥∥∇xr
k
∥∥
L∞

∥∥∥Uh
k − uh

k
∥∥∥
L6

∥∥�k−1
h − rk−1

h

∥∥
L6/5 .

Analogously, we have

P3 ≤c�t
m∑

k=1

E(�k
h, u

k
h |rkh ,U k

h) + c�t E(�0
h, u

0
h |r0h ,U0

h)

+ δ�t
m∑

k=1

∥∥∇ε(Uk
h − uk

h)
∥∥2
L2 ,

where c depends on δ, r , r , ‖U‖C1 , ‖∇xr‖L∞L∞ , and the initial data.
Collecting the above estimates we conclude

E(�m
h , um

h |rmh ,Um
h ) + �t

m∑
k=1

μ

2

∫
Td

|∇ε(uk
h − Uk

h)|2 dx

≤ c
[
hA + √

�t + E(�0
h, u

0
h |r0h ,U0

h)
]

+ c�t
m∑

k=1

E(�k
h, u

k
h |rkh ,U k

h),

(14.30)

for all m = 1, . . . , NT . Here, the parameter A is given in (14.23) and

c = c
(
M0, E0, r , r , γ, ‖p‖C2([r ,r ]) , ‖[r,U]‖C2([0,T ]×Td )

)

is a positive constant.
Finally, applying Gronwall’s inequality, see Lemma 9, to (14.30) we derive the

desired estimate of the relative energy

E(�m
h , um

h |rmh ,Um
h ) + �t

m∑
k=1

μ

2

∫
Td

|∇ε(uk
h − Uk

h)|2 dx

≤ c
[
hA + √

�t + E(�0
h, u

0
h |r0h ,U0

h)
]
exp

(
m c�t

1 − c�t

)

for 0 < �t < 1
c . This concludes the proof of Theorem 14.4.
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14.6 Numerical Experiments

In this section we illustrate theoretical results stated in Theorem 14.4, in particular,
the convergence rate derived in terms of the relative energy. Hence, we focus on the
following errors

eE = sup
0≤n≤NT

E(�k
h, u

k
h |�k

ref , u
k
ref), e∇u = ‖∇ε(uh − uref)‖L2((0,T )×Td ) ,

e� = ‖�h − �ref‖L1((0,T )×Td ) , e†� = ‖�h − �ref‖L∞(0,T ;Lγ (Td )) ,

eu = ‖uh − uref‖L2((0,T )×Td ) , ep = ‖p(�h) − p(�ref)‖L∞(0,T ;L1(Td ))

(14.31)
between the numerical solution (�h, uh) and the reference solution (�ref , uref). The
latter is a numerical solution obtained by theMACscheme (14.10) on afinemeshwith
h = 1/1024. We present the results of two numerical experiments where numerical
solutions to the Navier–Stokes system are computed on the domain� = [0, 1]2 with
periodic boundary conditions. In our numerical simulations we use the following
parameters μ = 0.1, ν = 0, ε = 0.6, and �t = CFL h

|uh |max+ch
, where CFL = 0.4,

ch =
√
aγ �

γ−1
h .

Experiment 1

In the first experiment we take the initial data

�0(x1, x2, t) = 2 + cos(2π(x1 + x2)), u0(x1, x2, t) = 0. (14.32)

The fluid dynamics emanates from the initial pressure gradient. Table 14.1 presents
the errors measured in the norms defined in (14.31) and the experimental order of
convergence (EOC), cf. (10.76), for different γ. The final time was set to T = 0.1.
We can observe the second order convergence rate for the relative entropy and the
first order convergence rate for the density, velocity and the gradient of velocity.
Our numerical simulations indicate that theoretical convergence rate obtained in
Theorem 14.4 may be suboptimal.

Further, Fig. 14.2 depicts time evolution of the kinetic energy
∫
Td

1
2�|u|2, internal

energy
∫
Td P(�) dx and total energy. Comparing Fig. 13.1 with 11.1 we observe a

higher peak in the kinetic energy. Finally, we present in Fig. 14.3 time evolution of
the flow that is driven by the pressure gradient. We can see that the fluid velocity
increases at the beginning and decreases afterwards.

Experiment 2

In this experiment we consider vortex flow and take an initial vortex centered at
xc = (0.5, 0.5) with the radius r0 = 0.2:

�0 = 1, u0 = ur (r)

r

(
x2 − 0.5
0.5 − x1

)
,
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Fig. 14.2 Experiment 1: MAC scheme for the Navier–Stokes equations, time evolution of the
energy

where r = √
(x1 − 0.5)2 + (x2 − 0.5)2 and the radial velocity of the vortex ur is

ur (r) = √
γ

⎧⎨
⎩
2r/r0 if 0 ≤ r < r0/2,
2(1 − r/r0) if r0/2 ≤ r < r0,
0 if R ≥ r0.

Numerical solutions are computed on different meshes up to a final time T = 0.1. In
Table 14.2 we present the errors measured in the norms defined in (14.31), and the
experimental order of convergence (EOC), cf. (10.76), for different γ . Convergence
rates obtained in the previous experiment are confirmed again. Similarly as before
we can see the second order convergence rate for the relative entropy and the first
order convergence rate for the density, velocity and the gradient of velocity.

Further, we also present in Fig. 14.4 time evolution of the fluid flow emanating
from the initial vortex. We can see that the vortex dissipates slowly during time
evolution. This is also confirmed by Fig. 14.5 that presents the energy dissipation.
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Fig. 14.3 Experiment 1: MACmethod for the Navier–Stokes equations, time evolution of the flow.
From top to down are t = 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5. From left to right are �, u1, and u2
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Fig. 14.4 Experiment 2: MAC scheme for the Navier–Stokes equations, time evolution of the flow.
From top to down are t = 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5. From left to right are �, u1, and u2
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Fig. 14.5 Experiment 2: MAC scheme for the Navier–Stokes equations, time evolution of the
energy

14.7 Conclusion, Bibliographical Remarks

Staggered mesh approach for the finite difference approximation is very popular in
computational fluid dynamics due to its computational efficiency. A typical example
is the well-known MAC (Marker–and–Cell) method frequently used in engineering,
physics or geophysics in order to approximate viscous flows. The MACmethod was
firstly introduced for incompressible viscous flows by the Los Alamos group: B. J.
Daly, F. H. Harlow, J. P. Shannon and J. E. Welch in their 1965 report [61], but an
idea of this discretization has already existed in the work of V. I. Lebedev in 1964,
cf. [150]. Afterwards the method has been quickly generalized for compressible
viscous fluids and it is nowadays a basis of several academic or industrial codes.

Since the MAC scheme has been originally introduced for the incompressible
Navier–Stokes equations it is quite instructive to look on the history of the error anal-
ysis of the MAC scheme for the incompressible Navier–Stokes equations. Although
the method has been used successfully since 1965, its theoretical numerical analysis
was not carried out until 1992 by Nicolaides and his collaborators [172, 173]. They
reinterpreted the MAC scheme as a finite volume approximation of the velocity-
vorticity equations on the dual meshes and proved the first order error estimates for
pressure and velocity in the standard L2 norms. Afterwards there has been quite a
number of papers where the convergence order of the MAC scheme was analyzed
from the theoretical point of view. For example, in 1996 Girault and Lopez [118]
showed that the finite difference equations of the MAC method can be derived by
combining a velocity-vorticity mixed finite element method of degree one with an
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adequate quadrature formula. Later, in 2008 Kanschat [136] showed that the MAC
scheme is algebraically equivalent to the first order local discontinuous Galerkin
method with a proper quadrature and also obtained first order convergence of the
scheme. Further, in 2018 Gallouët, Herbin et al. [112] showed the convergence of
the MAC scheme on nonuniform grids.

In 2015 Li and Sun [152] succeeded to show the superconvergence of the MAC
scheme and proved the second order convergence of velocity and pressure measured
in the L2 norms even on irregular rectangular grids. The authors do not reinterpret
the MAC method as finite volume or finite element scheme, but work directly in
the finite difference framework. Careful and elegant analysis of various sources of
errors shows that although the local truncation errors are only first order, a suitable
cancellation of local errors yields after summation the second order global errors for
both the velocity and pressure.

Analogous superconvergence results for compressible Navier–Stokes equations
are not yet available. Indeed, there are only relatively few results for the convergence
and error analysis of theMACmethod for compressibleNavier–Stokes equations.We
refer to the convergence analysis for stationaryNavier–Stokes equations byGallouët,
Herbin, Latché and Maltese [113], stability and consistency analysis by Hošek and
She [129] and the error estimates results by Gallouët et al. [115], and Mizerová,
She [165]. The latter are obtained using the relative energy as a tool to quantify the
error between the numerical and a strong exact solution.

The convergence analysis discussed in the present chapter follows the same lines
as in the previous chapters of the book. First, we have shown the stability and consis-
tency of the MAC scheme, see Theorems 14.1 and 14.2, respectively. Consequently,
applying Theorems 5.5, 7.12 and 7.13 we have proven the convergence of numerical
solutions, see Theorem 14.3. Despite the fact that the methodology of convergence
analysis for the Navier–Stokes equations had been already used in the previous
chapters, the proof for the MAC scheme remains nontrivial. The analysis required
an elaborate treatment and technical estimates linked to the staggered grid and suit-
able discrete differential operators applied to staggered and non-staggered discrete
functions.

Further, assuming the existence of a regular solution to the Navier–Stokes system,
we have derived error estimates for the MAC scheme (14.10) in terms of the relative
energy, see Theorem 14.4. Theoretical convergence rate is 1/2 for the relative energy
functional. On the other hand, in numerical experiments we can observe the second
order convergence rate, cf. Tables 14.1 and 14.2. Apparently, theoretical convergence
rate is suboptimal, but we point out that the result is unconditional, meaning there is
no assumption on the regularity or boundedness of numerical solutions. Assuming
that numerical solutions are uniformly bounded would allow us to obtain the second
order convergence rate for the relative energy, too.

Relative energy approach has been used recently also in the context of the error
analysis of a mixed finite volume – finite element method, see [84, 85, 96, 114].
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126. Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for
measure-valued solutions of some compressible fluid models. Nonlinearity 28(11), 3873–
3890 (2015)

127. Haack, J., Jin, S., Liu, J.G.: An all-speed asymptotic-preserving method for the isentropic
Euler and Navier-Stokes equations. Commun. Comput. Phys. 12(4), 955–980 (2012)

128. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-
Stokes problem part iv: Error analysis for second-order time discretization. SIAM J. Numer.
Anal. 27(2), 353–384 (1990)

129. Hošek, R., She, B.: Stability and consistency of a finite difference scheme for compressible
viscous isentropic flow in multi-dimension. J. Numer. Math. 26(3), 111–140 (2018)

130. Ioriatti,M.,Dumbser,M.: Semi-implicit staggered discontinuousGalerkin schemes for axially
symmetric viscous compressible flows in elastic tubes. Comput.&Fluids 167, 166–179 (2018)

131. Isett, P.: A proof of Onsager’s conjecture. Ann. of Math. 188(3), 871–963 (2018)
132. John, V.: Finite element methods for incompressible flow problems, Springer Series in Com-

putational Mathematics, vol. 51. Springer, Cham (2016)
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