
Chapter 11
Got All the Answers! What Were
the Questions? Avoiding the Risk
of “Phenomics” Slipping
into a Technology Spree

Vincent Vadez, Jana Kholova, Grégoire Hummel, and Uladzimir Zhokhavets

Abstract For many crops, the genomics revolution has given hope that breeding
would become easier, faster, and more efficient. Relevant phenotyping is now the
main bottleneck and new technologies provide opportunities for easier, faster, more
sensitive, andmore informative phenotyping.However, the phenotyping agendamust
be driven by scientific questions rather than by a technological push, especially
for complex constraints, such as drought. In this chapter, we provide a viewpoint
on phenotyping and what it should take into account. Phenotyping is a full-fledge
research effort, calling for a multidisciplinary effort between technology providers
and several research disciplines, and which needs to address the issue of linking
scales. Two phenotyping platforms are described; a lysimetric platform (LysiField)
to assess the patterns of plant water use and relate these to grain yield, and an
imaging platform (LeasyScan) to characterize crop canopy traits responsible for
water savings. In both cases, the chapter discusses the thought process and the
hypotheses around key traits for drought adaptation that were put in the develop-
ment of these platforms. The chapter concludes with perspectives on the integration
of high-throughput phenotyping (HTP) technology with breeding, starting with an
analysis of the cost as a prerequisite to decide on its usage and adoption in breeding.
It takes a few examples of current opportunities in the domain of imaging, trying
to bring closer together what the technology can bring and what breeding pragmat-
ically needs. In conclusion, while new technologies provide opportunities to make
phenotyping easier, faster, better, cheaper, the risk of becoming the end that justifies
the means can be avoided by driving the technology with research questions, made
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possible through a cross-discipline approach between genetics, breeding, modeling,
engineering, physiology, and statistics.

Keywords Multi-discipline trait · Drought · Breeding · Genetic gain ·
Transpiration

11.1 Introduction

Although we know more and more about the ”genotype,” obtaining information on
the ”phenotype’ remains a challenge due to the complexity of biological systems
and the requirement for physical measurement of plant traits that are difficult to
perform quickly. Obtaining phenotypic information that is relevant, accurate, fast,
repeatable, and manageable in large numbers has been, and will remain, a basic
challenge of any breeding program. There is also a need, and may be an opportunity
with new technologies, tomove away from the very “integrated” phenotypes that have
been the bulk of phenotyping so far (e.g., yield, biomass, height) towards the causal
building blocks of these integrated phenotypes. In the past few years, a revolution in
plant phenotyping is taking place and technological progress has made possible an
increase in the throughput and precision of phenotyping. We argue that the current
phenotyping revolution while creating fantastic opportunities to capture phenotypic
traits quickly and non-destructively, is also running the risk of becoming driven by the
technology itself, rather than being driven by research questions around the critical
plant traits to phenotype. This chapter analyzes the opportunities and challenges
facing this phenotyping revolution, presents two phenotyping platforms that break up
phenotypes in smaller building blocks, and addresses the link to breeding applications
and forthcoming opportunities.

The first section is a viewpoint on the principles that should be applied to plant
phenotyping. At present, phenotyping is seen as a tool to generate data for the
breeding community. Contrary to this view, we argue that phenotyping is a full-
fledged scientific approach that requires a careful analysis of the traits to bemeasured
and their relevance for the targeted constraint (especially for complex traits). This
calls for a multidisciplinary approach if “phenomics” is to be relevant for crop
improvement, a view that is shared bymany others (e.g., Deery et al. 2014;White and
Snow 2012; Araus and Cairns 2014). In this section, we discuss the fact that some
phenotypes are “consequential” (for instance, staygreen),whereas others are “causal”
(for instance, leaf developmental traits). This section then explores the challenges
and opportunities of linking information at different levels of plant organization,,
i.e., from either specialized phenotyping platforms, targeting predominantly traits at
a lower level of plant organization, up to thefield for agronomic trait phenotyping.The
issue of scale in phenotyping is addressed by bringing up crop simulation modelling
as an integration tool to bridge these scales, advocating linkages between trait-based
and field-based evaluations of genotypes (Chapuis et al. 2012).
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The following section presents the LysiField and LeasyScan platforms. The Lysi-
Field platform is a lysimeter platform that measures plant water use over the entire
cropping cycle, instead of measuring roots per se, with a throughput of about 500–
600 cylinders weighted per day since it remains a manual operation. The LeasyScan
platform is a three-dimensional (3D) laser scanning system that generate 3D images
fromwhich several canopy features are extracted, like the leaf area, and that includes
a lysimeter component for an automatic pot weighing to assess plant transpiration.
This section will detail the thought process and research questions that led to the
development of LysiField, how these research questions have shaped how the plat-
form stands (Vadez et al. 2014). It then goes on describing how the knowledge gained
from LysiField generated new research questions that have led to the development
of another phenotyping platform (LeasyScan) to measure traits at a lower level of
biological organization (crop canopy traits) more quickly and precisely. This section
presents the principles of the scanning operation plant transpiration in situ. Scans
are obtained at a high rate (approximately 2500 plots scanned per hour) on several
parameters per plant, while tray weights are polled every 15′. Data management then
becomes a major challenge (Cobb et al. 2013) and a description is given of the data
handling process. This section presents the web-based interface that is used to visu-
alize the data, and the datamanagement tools are used to query data from the database
and initiate the data analysis. We also discuss critical planning aspects during the
development of a phenotyping platform such as the need to test the technology prior
to acquisition and the need for a close user-provider relationship during and after the
development of platforms.

The last section addresses phenotyping costs, and how this becomes a critical
factor in the adoption of modern and technology-intensive methods in the breeding
process. This section also presents a few examples using imaging technology to
mirror what the technology can provide and what the immediate needs of breeding
programs are.

11.2 Phenotyping: Basic Principles

11.2.1 Phenotyping is a Research Approach

Understand the basic biological and physiological processes behind phenotypes
is critical, especially for complex phenotypes. For instance, canopy temperature
measurements can be used as a proxy phenotype for the transpiration capacity of
genotypes. However, done at a late stage in a crop exposed to drought, this transpi-
ration capacity could reflect: (i) the capacity to extract water from deep soil layer
thanks to deeper rooting, or (ii) the fact that there is water remaining in the soil
profile. In turn, the latter could be the consequence of a slower water use at earlier
stages and have different causes, including (ii-a) a smaller leaf canopy size; and/or
(ii-b) a lower canopy conductance under certain conditions. A smaller canopy size
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could come from reduced tillering or branching, a lower leaf number, a smaller
leaf or leaflet size. This example illustrates how a phenotype can be explained by
a cascade of possible other phenotypes reflecting biological processes underneath.
Similarly, the expression of a staygreen phenotype is actually the consequence of
several phenotypes having contributed to differences in plant water use much earlier
(Borrell et al. 2014). The concept of “phenes,” i.e., the phenotypic equivalent of genes
(Lynch and Brown 2012), representing building blocks of more complex pheno-
types, with a cause/consequence order between phenes measured at different levels
of plant organization, reflects the difficulty and complexity of choosing the “right”
phene (Fig. 11.1). As such, several “causal” phenes could influence a “consequen-
tial” trait (for instance, tillering and leaf size on staygreen (Borrell et al. 2014)), or
how phene-to-phene interactions could influence a “consequential” trait (e.g., leaf
size and leaf thickness effect on transpiration rate (Kholova et al. 2012), in a similar
manner than pleiotropy and epistasis in genetics. We think there is no alternative to
carefully ordering the cause-consequence structure of phenes to make phenotyping
relevant and useful to genetics and breeding. Therefore, phenotyping is not only
about generating trait data using well-set protocols, it is truly a scientific approach
that involves the deciphering of complex biological cause/consequence relationships
in a phenotype.
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Fig. 11.1 Profile of water extraction under terminal drought conditions in a set of terminal drought
tolerant (n = 12 lines) and sensitive (n = 8 lines) chickpea genotypes having a narrow range of
flowering time (re-drawn from Vadez et al. 2014—J Exp. Bot. https://doi.org/10.1093/jxb/eru040).
Tolerant genotypes extracted less water during vegetative stage and more during reproduction and
grain filling. The figure lists possible “causal” canopy phenotypes (in blue), and “consequential”
phenotypes (in green), possibly explaining the differences in the patterns of water use
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11.2.2 Research-Driven, not Technology-Driven
Development of Phenotyping Platforms

In the past decade, the capacity to image plants has progressed dramatically. This
includes simple digital measurement with RGB (Red-Green-Blue) cameras, more
specific measurement of temperature with Infrared (IR)-cameras, more complex
multi-spectral sensors including the simpler versions to assess vegetative index (e.g.,
Normalized Difference Vegetation Index (NDVI)), and highly complex hyperspec-
tral or fluorescence measurements. The revolution in phenotyping tools offers both
a terrific opportunity and also a major challenge. The opportunity is to extract infor-
mation from genetic material on “phenotypes” that are non-visible to the human eye,
visible but too complex to bemeasured from simple observations, or new phenotypes
that were not considered before. However, the risk is of losing perspective on the
target phenotype in favor of the many phenotypes that can be acquired and may be
unrelated to the target phenotype.

11.2.3 People-Skills, Cross-Discipline Interactions

Phenotyping is also a cross-road where technology providers, physiologists, pathol-
ogists, geneticists, breeders, data analysts, statisticians, and others, come to interact.
It calls for a multidisciplinary effort. For instance, scientists working in the area of
stomata patchiness (stomata at the leaf level are regulated by patches that are inter-
connected) have provided evidence of a close relationship between these processes
and those in computation (Peak et al. 2004), and this was only possible because
biologists interacted with computer scientists. Linking phenomics information to
genomics is a first step as we learn more about “phenes.” However, there is much
to be done to make this link workable and useful, first in terms of data format, suit-
able databases, meta-data informing trials, ontologies, and statistical tools to analyze
complex data (Cobb et al. 2013) or multi-trait analysis (Brown et al. 2014; Korol
et al. 2001). Linking these dimensions goes beyond finding a technical fix to connect
these spheres of information: It is about co-designing the linkages across disciplines
and their technical features so that the linkage can be truly functional, leading to
new and relevant knowledge. For instance, designing marker-trait analysis that takes
into account environmental conditions as a covariate, or discussing population size
beforehand to avoid logistical constraints of phenotyping populations larger than,
say, 500 individuals, or defining what precision is needed in the measurements. Last
but not least, a very close and iterative interaction between technology suppliers and
biologists is needed to ensure the phenotyping platforms/sensors truly address the
phenotyping needs.
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11.2.4 An Issue of Scales: Combining Platform-
and Field-Based Phenotyping

Earlier, we discussed the importance of deciphering phenotypes at different levels of
biological organization, and then of structuring phenotypes into cause-consequence
relationships. This is where specialized platforms have a role to play, in assessing the
variation for critical causal traits and harnessing the genetics of these building blocks.
Because such platforms cannot be developed in all breeding programs, there is a need
to have a connection between platform-based trait phenotyping that the breeder can
access in a simple and high-throughput manner and field-based phenotyping. The
connection between trait and field phenotyping can also be established when traits
can be measured in the field itself by imagery sensors, and then linked to agronomic
assessment, e.g., grain or stover yield, in a network of testing locations. A few recent
papers describe a number of such applications for trait phenotyping in the field
(Araus andCairns 2014;White et al. 2012;Deery et al. 2014), including tractor-based
supporting devices and airborne devices. For instance, genotypic differences in the
response of leaf expansion to vapor pressure deficit (VPD) (e.g., Welcker et al. 2011)
could be proxied by NDVI measurements in the field. In this case, NDVI assessment
in the fieldwould integrate over time the cumulative effects of a physiological process
that can be measured in a specialized platform. These applications also need to
monitor the degree of causality/consequence of the different phenotypes that are
measured (Fig. 11.1). The next step as we move up in the degree of plant integration
is to establish links with agronomic assessments, where it can be tested in which
environment a given trait, measured in a specialized platform, would have an effect
on yield. Taking again the example of the sensitivity of leaf expansion to high VPD,
it was shown that this trait was correlated to the drought sensitivity index measured
in the field (Chapuis et al. 2012). In short, there is a great prospect for using the
information from specialized platforms to inform and enrich field-based phenotyping
application and use these traits in selection (see Fig. 11.2).

11.2.5 Linking Phenotyping to Crops Simulation modeling

Once traits benefitting crops under certain water stress patterns have been identified,
testing their effects of traits via experimental means is restricted to a few traits at a
time and a few environmental and climatic scenarios. In addition, the complexity in
the resulting phenotypes originates from the interaction among traits and from their
interactions with the environment (Buckler et al. 2009; Schuster 2011). This is where
cropmodels can serve to “integrate” complex behavioral/developmental processes of
plants that are all related through water need/use (Fig. 11.2). Models that are suitable
for this must contain algorithms that reflect observable and quantifiable biological
observations (Sinclair and Seligman 2000; Hammer et al. 2010). This is only then
that models can be sensitive to changes in the conditions and can accurately predict
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Fig. 11.2 Schematic linkage relationships between disciplinary effort toward crop improvement.
The left part of the schemadealswith trait dissectionvariability (blue), andhowspecificplatforms are
designed to phenotype for critical traits at a large scale. The top left graph displays genetic variation
for a water-saving trait (Kholova et al 2010). The bottom right picture presents the LeasyScan
platform (Vadez et al. 2015). The central part of the schema represents the interface with crop
simulation and genetic analysis (black). The top central map represents the yield increase arising
from the modification of a genetic trait, displayed in form of model output in 1° latitude × 1°
longitude averaged across 50 years of weather information (Vadez et al. 2017). The right part of
the schema are the field applications of phenotyping (green), where consequential phenotypes are
measured along with agronomic traits. The top right picture represents the expression of a staygreen
phenotype in sorghum lines introgressed with a staygreen QTL. The bottom right pictures represent
different possible applications to field phenotyping. The different arrows represent the main linkage
relationships between disciplinary domains and indicate the type of actions needed tomake the links
functional

effects. There is now convincing evidence that crop models are relevant to guide
breeding targets (Kholová et al. 2014; Vadez et al. 2012; Reynolds et al. 2018).
Using a mechanistic crop model, Soltani and colleagues (1999) showed that an early
decline in leaf expansion and transpiration upon soil drying in chickpea led to about
5% yield increases under water stress conditions. Therefore, these traits had a limited
interest where they were tested and did not justify an investment in breeding. In
another study with chickpea, a rapid root growth rate decreased yield by an average
of 5%, whereas an increase in the depth of root water extraction by 20 cm increased
yield by an average of 10% (Vadez et al. 2012). This example shows the efficacy
of a model for comparing genetic options, before deciding what to possibly invest
in. In the last example in sorghum, the capacity to restrict transpiration under high
VPDwas simulated and showed yield advantage in all situations where it was tested,
yet with higher effect in zones facing severe water stress (Kholová et al. 2014). The
modeling approach is powerful because it is now possible to simulate the effects of
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certain Quantitative Trait Loci (QTLs) on yield, based on the percentage effect of
a given QTL on particular traits (Chapman et al. 2003; Welcker et al. 2007; Chenu
et al. 2009; Cooper et al. 2009). We believe that investment in HTP platforms could
be guided by prior crop simulation of the value of the trait that is targeted in these
platforms.

11.3 Phenotyping Platforms

11.3.1 Lysimetric System to Assess Plant Water Use

Roots are intuitively basic for crops and especially for the adaptation of a crop
to water deficit because nutrients and water are absorbed through them. However,
they are difficult to work with (Vadez 2014). For water stress research, the root
capacity to extract water was the basis of the idea to develop a lysimeter-based
system (Vadez et al. 2008, 2014), in which consecutive weighings of lysimeters
provide data on plant water extraction to support transpiration at different times
(Fig. 11.3). Because the goal was to measure water use in crops grown under field
conditions (something that is difficult to do precisely in the field) and with a high
throughput, certain basic principles had to be followed. The platformwas set outdoors
and the tubes were designed and placed so that soil volume and surface area were
similar to field population densities. Therefore, two types of tubes were developed to
cater for different crops: Small lysimeters (1.2 m length and 20 cm diameters) were
designed for crops sown at approximately 20 plant m−2 like chickpeas (Zaman-Allah
et al. 2011b), whereas the large lysimeters (2.0 m length and 25 cm diameters) were
designed for crops sown at approximately 10 plant m−2 (Vadez et al., 2011, 2013a).
Lysimeterswere also treated asmicro-plots and kept undisturbed fromone crop to the
next, following a field-like rotation, alternating either experimental or fallow crops.

Fig. 11.3 Overview of the
lysimetric platform at
ICRISAT (LysiField),
showing the large tubes
(25 cm diameter, 2.0 m
length), which are set in
trenches and allow a planting
density of about 10 plant
m−2. A pigeon pea crop is
seen on the left trench and a
sorghum crop in the central
trench



11 Got All the Answers! What Were the Questions? … 231

The lysimetric platform was originally designed to screen genotypes for the
capacity to extract water from the soil profile, instead of measuring roots. Genetic
variation for total plant water extraction was found in all species that were tested
(for a review see Vadez et al. 2014). However, the range of variation (30% among a
subset of the sorghum reference collection) was not related to yield differences under
stress conditions. The relationship between water extraction during the grain filling
period and grain yield under stress conditions was much more critical (see Vadez
et al. 2014 for a review), e.g., in pearl millet (Vadez et al. 2013a) chickpea (Zaman-
Allah et al. 2011b) or peanut (Ratnakumar et al. 2009). For at least three crops,
the availability of water during the grain filling period was not related to a higher
capacity to extract water, but to earlier water-saving under non-stress conditions.
For instance, tolerant chickpea genotypes had a smaller leaf canopy at the vege-
tative stage (Zaman-Allah et al. 2011a). Tolerant peanut genotypes also developed
a smaller leaf canopy (Ratnakumar and Vadez 2011) and tolerant pearl millet had
both a lower canopy conductance and the capacity to further reduce the conductance
under high VPD conditions (Kholova et al. 2010). There have been similar findings
in other crops such as cowpea (Belko et al. 2012) and sorghum (Borrell et al. 2014).
In short, even if the cylinders were weighted only about once a week, the lysimetric
system provided sufficient precision to pinpoint small but critical differences in the
patterns of plant water use. From then on, the focus shifted towards traits that explain
these small water use differences and influence the rate at which a crop uses the soil
profile’s moisture, including (i) canopy size and dynamic of canopy development;
(ii) canopy conductance; and (iii) canopy conductance under high VPD (see a review
in Vadez et al. 2013b). In other words, specific patterns of plant water use were a
“consequential phenotype,” and further attention shifted to the “causal phenotypes,”
which required a different type of measurement (see Fig. 11.1 for an example in
chickpea).

11.3.2 The LeasyScan Platform: 3D Scanning Plus
Transpiration Assessment

11.3.2.1 Description

LeasyScan’s principle is to have a continuous and simultaneous monitoring of plant
water use and leaf canopy development. In brief, the platform is using a set of scanners
(PlantEye, Phenospex,Heerlen,Netherlands)which aremoved above the plants using
a carrier device and generate 3D point clouds of the crop canopy, fromwhich the leaf
area and several other plant parameters are extracted after a segmentation process
of the 3D data cloud (Fig. 11.4). Validation of scanned leaf area versus observation
has been successfully done before acquiring the equipment and has been re-validated
later onwhileworking onhigher planting densities (Figs. 4 and 5 inVadez et al. 2015).
Leaf canopy development traits that influence plant water use are a combination of
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Fig. 11.4 Overview of the LeasyScan platform at ICRISAT. A groundnut crop is seen on side strips.
The central strip shows the installation of load cells to allow the continuous weighing of the pots.
Eight scanners (small white boxes) can be seen, attached to an irrigation boom that travels over the
crop, on top of a center and two side walls. The central metal box has a key role to ensure a steady
platform movement

(i) vigor, i.e., how quick the canopy develops; and (ii) size, i.e., how large a canopy
develops (Fig. 1 of Vadez et al. 2013b).

The PlantEye sensor projects a very thin laser line in the near infrared (NIR)
region of the light spectrum (940 nm) on plants and captures the reflected light with
an integrated complementary metal oxide-semiconductor (CMOS)-camera. Since
most of the light is reflected from plants, the device can operate day and night. All
artifacts from sunlight or background noise are automatically removed with inter-
graded optical- and algorithm-based sunlight filters. During the scanning process,
the scanner linearly moves over the plants and generates 50 height profiles/s, those
are then automatically merged into a 3D point cloud with a resolution of around 0.8
× 0.8× 0.2 mm into the xyz-direction, respectively. The measurements are triggered
and stopped via mechanical barcodes (metal plates 20 mm × 50 mm) positioned on
the platform. PlantEye computes a diverse set of plant parameters on the flight by
meshing neighboring points with a nearest neighbor search. From this triangle mesh
a subsequent surface triangulation algorithm computes 3D leaf area (which is the
area of the leaf independently of its position and orientation in the 3D space and
relative to the sensor), plant height, leaf angle distribution within a second.

At the LeasyScan platform, the scanners are pre-set to image an area of 65 cm
width and a length of either 40 or 60 cm. The volume in which the 3D image is
generated is then a cuboid of 65 × 40 × 100 cm or 65 × 60 × 100 cm. Each
scanning unit is referred to as a “sector.” Every 12 consecutive sectors constitute
a “field.” Sector-wise binning of data point clouds is performed using a system of
barcodes every 5 m (12 times 40 cm + 20 cm gap or 8 times 60 cm + 20 cm gap)
to re-set the scanner position in height and length. As in the lysimetric facility, our
choice was to remain as close as possible to the field conditions where plants are
cultivated in each sector at a density similar to the field (for instance 24–32 plant m−2
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chickpea or 16 plant m−2 for pearl millet or sorghum). The scanners are mounted on
top of an irrigation boom, which is electronically controlled to be fully automated
and speed-controlled. At a movement speed of 3 mmin−1, eight scanners are capable
of scanning 4800 sectors (the name of an experimental unit) in slightly <2 h.

These parameters can be visualized through a web-based software interface
(HortControlR), which allows the selection of sectors and performs basic grouping
functions to assess how the experiment is progressing. In addition, the platform is
equipped with a set of 12 environmental sensors (Campbell Scientific, Logan, Utah,
USA) that continuously monitor relative humidity (RH%) and temperature (T°C),
integrating values every 30 min, one light sensor, one wind sensor. Each scanner is
wirelessly connected to a local area network (LAN) through which the analyzed data
are downloaded onto a server, along with the 3D images. 3D images can be reused
at any time; for example, to re-calculate new parameters based on a new algorithm
for additional plant traits or for better-optimized scanning software. Therefore, the
scanning images become a repository of plant measurements that can be reused at a
later date. An important factor to decide on the scanning system was to understand
the signal-noise ratio for our targeted phenotype (leaf area), and then check not only
the resolution of the sensor itself but also the noise of the environment, e.g., wind,
diurnal rhythm of leaves, rain, reflection.

11.3.2.2 Integration of Canopy Growth with Plant Transpiration

A basic necessity in the development of the LeasyScan platform was to combine the
measurements of leaf development parameters (which can be encapsulated in “vol-
umetric growth”) with a continuous assessment of plant transpiration (or “massic
growth” considering transpiration as a proxy for photosynthesis), to obtain a contin-
uous measurement of the canopy conductance and shift from earlier destructive
measurements (Kholova et al. 2012). In earlier studies, a low canopy conductance
under high VPD was closely related to terminal drought stress adaptation in several
crops (see a review in Vadez et al. 2014), but this phenotype depended on time-
consuming leaf area measurements, especially in a crop like chickpea (Zaman-Allah
et al. 2011b). One part of that phenotype, the leaf area, is described above. The other
part of that phenotype, plant transpiration, is typically measured manually by gravi-
metrically determining transpiration (e.g., Zaman-Allah et al. 2011b). Using scales
(also called load cells) then allowed to have a continuous weighing of the pots,
avoiding time-consuming weighing of pots. Notably, in the development of this plat-
form, we also sought the possibility to study intra- or inter-specific variations in
crop water loss during the night (following recent results in wheat (Schoppach et al.
2014)), the interaction between water use and the 3D architecture of the crop canopy,
possible relationships between leaf movements during the day (especially in legumes
or, for example, in Arabidopsis (Dornbusch et al. 2012)), patterns of plant water use
during the day, and of course the interplay between volumetric (leaf area dynamics)
and massic (transpiration) growth.
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The scales (PSX Rugged Scale 50, Phenospex, Heerlen, Netherlands) that were
initially used had a capacity of 50 kg, with 0.02% accuracy. The accuracy of these
temperature-corrected scales (−10 °C and +40°C range) was tested under artificial
rapid increase in temperature (14°/h, i.e., much above our experimental conditions)
and showed that the error remainedwithin the stipulated0.02%error range.The scales
provided a reading with a 0.02% precision every second and these were integrated
over one hour, giving readings with a precision of 0.1 g. An initial prototype of scale
was developed where the frequency of measurements was limited to one every hour.
After validation that key phenotypes like the capacity to restrict transpiration under
high VPD could be measured (see Fig. 11.9 in Vadez et al. 2015), 1500 load cells
were installed, each with a 150 kg capacity (Fig. 11.4). This increased capacity now
allows to grow plants on large trays (60 cm × 40 cm × 30 cm, length-width-height)
containing about 90 kg of soil and allowing to grow several plants in conditions that
mimics the field. It also allows to irrigate at less frequent intervals, yet maintaining
plants away from water stress.

11.3.2.3 Data Generation, Storage, and Visualization in HortControl

Scanning takes place every 2 h so that about 50,000 scans are captured every day and
about 10 traits are calculated for each scan. This is in addition to the environmental
data that are measured every minute. With regards to load cells, these are polled by
a micro-processor every half-second and these data are integrated and loaded on the
database every 15 min so that each load cell delivers 96 data points every day. All
data gathered fromPlantEye sensors, scales, and associated climate sensors are stored
in a central PostgreSQL database. The data can be accessed and visualized with the
web-based HortControl software that allows to follow up the progress in the different
parameters that are measured. The three types of data collected in the platform, i.e.,
scan, weight, climate, are not collected at the same frequency. Therefore, the data are
downloaded independently. R-scripts have then been developed to aggregate data at
a time scale suited for all three types of data (Kar et al. 2020a). HortControl is used
as a data visualization tool to monitor the experiment, for instance, to ensure scan
data are properly computed, or possibly to detect load cell errors. In particular, the
3D image of any sector at any time during the experiment can be called for quality
control, which is particularly useful to pinpoint possible outliers (for example, in
case of sector to sector overlapping or other unexpected disturbance). It also allows
the simultaneous plotting of the environmental conditions to the parameter evolution,
for instance, to qualitatively estimate reasonable wind thresholds in each species.

11.3.2.4 Database Access, Processing, and Analysis

One major challenge of this platform, and of any high-throughput platform, is the
analysis of the data. This issue was discussed at length in a recent review (Cobb et al.
2013). At the same time, well-documented datasets represent a potential treasure
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trove to investigate plant growth processes on a large scale (for example, in meta-
analysis (Poorter et al. 2010)). In that regard, we focused on linking measurement
data with the most critical environmental parameters affecting plant growth (i.e.,
temperature, relative humidity, and light). It is also critical to have detailed meta-data
accompanying the datasets if they are to be re-used in the future.

Processed data (e.g., leaf area) can be downloaded from a function in HortCon-
trol. These data are queried from the database via an R-command library interface
working at the back-end (R, version 4.2.1, the R foundation) (Fig. 11.5). Among
the essential features of the library is a process for smoothing data and for filtering
the data to reject outliers. For instance, wind affects the quality of the 3D images.
Data obtained when the wind is too high to have useful information (from shaky
images) should be filtered out. The scanning data are tagged to the timing of each
scan so that the time stamp can be linked to the environmental data provided. A data
pre-processing and analysis pipeline has now been recently developed (Kar et al.
2020b) for scanning data, which allows to apply filters on raw data towards outlier
detection, to input missing data, to choose for an optimal time window for geno-
type discrimination, and for spatially adjusting data. A similar pipeline has been
developing to extract features from the transpiration profiles coming from the load
cells and that characterize the transpiration response to high VPD conditions (Kar
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Tablet

SQL Statement

The R Project
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• Data filtering and smoothing
• Perform further analysis in R
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• Access Parameters and RAW 
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Further Plant 
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Fig. 11.5 The phenotyping processes flow; the information generated by the PlantEyeR scanners
along with the information from the environmental sensors are connected to one another through
time stamps and stored in the data repository system. Data can be called from the repository
through various means: using R software, web-based interface browser (HortcontrolR), and is also
compatible with other analytical tools (SQL)
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et al. 2020a). We are also planning to develop an alternative time stamp, right from
the ”R’ interface, calculated from the temperature conditions and based on either
thermal time or equivalent time at 20° (Parent et al. 2010). This feature would allow
us to compare growth traces across experiments and analyze environmental effects
on canopy development, independent of temperature effects. In this way, the analysis
will increasingly become an exercise of statistical treatment of massive data series.

11.4 Cost of HTP Methods and Their Linkage to Breeding
Efforts

11.4.1 Cost of HT Phenotyping

While new technologies offer precision and throughput, technology cost is an
important decision factor. High-throughput phenotyping could directly contribute to
breeding efforts but the choicemade by breeders to adopt or not a givenHTPapproach
will often/always be driven by a cost consideration. The “breeder’s equation” is as
follow:

�Gyear = i ∗ r ∗ σ
/
L

where�Gyear is the genetic gain per year, i is the selection intensity, r is the selection
accuracy (or the heritability), σ is the genetic variance for the desired trait, and L
is the length of one generation. The cost of achieving a given �Gyear per unit of
phenotyping cost would then be

�Gyear∗$ = i ∗ r ∗ σ
/
L ∗ C

where C is the phenotyping cost per progeny. Breeding being a numbers’ game,
optimizing this ratio can be done in several ways where HT phenotyping has a role
to play:

• The coefficient ”r’ proxies the accuracy of the trait. Breeders would always ask if
a given trait is more accurate that those they measure already such as yield. Let’s
assume a trait is a good predictor of an increased yield, it could be given priority
over yield assessment if its heritability was higher than yield heritability, provided
its cost is not prohibitive. One could assume that the decision would depend on
the ratio r/C. A heritability doubled by a HTP method would afford an increase
in cost per progeny of a similar magnitude.

• The coefficient ”i’ here becomes important because it concerns the throughput at
which phenotyping efforts are made. Let’s assume here again a trait that is a good
predictor of an increased yield. Its advantage could be in the fact that thousands
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of progeny lines could be tested, instead of only a smaller number of lines that
can be tested for yield. Therefore, any HTP method that could cater for a large
number would allow to dramatically increase the selection accuracy. Here also
the cost factor determines the choice within the boundaries of the i/C ratio.

• Finally, the coefficient ”σ ’ could be concerned in caseswhere there is large genetic
variance for a given trait. A genetic variance for a given trait that is larger than the
genetic variance for yield would potentially favor this trait over yield, provided
that there is also a close association between this trait and yield under relevant
scenarios.

11.4.2 Integration of HTP Methods into Breeding

This effort is a mix of being pragmatic while seeking the advantage of new technolo-
gies. Technology developer often propose high-end solutions while breeders want
simple tools, easy to use, and cheap. So, efforts are needed to connect these two
domains. Here, a few examples of existing cases showcase a possible fit between the
“offer” from the HTP standpoint and the “demand” from the breeding side.

Drone/ remote sensing imaging—HTP methods at the service of yield trial quality
control—The use of drone imaging to acquire plant features that would be otherwise
difficult or simply impossible to acquire has grown exponentially (Potgieter et al.
2016). Except for few programs the use of drone in routine breeding still remains
at a research phase, although opportunities exist that would bring a lot of benefit.
The first among these would be the use of drone imaging to support the quality
control of plot measurements. Indeed, breeding networks in the National Agriculture
Research Systems (NARS) could benefit from imaging technology to quickly assess
the quality of testing fields. For instance, by measuring plant counts and ensuring
these are in accordance with targeted density, or by measuring NDVI around canopy
closure to ensure homogeneity in the plots. This information could be used to remove
heterogeneous plots or parts of the field in the analysis and it would increase the
accuracy of the evaluations. Quality standards during data acquisition will be needed
to ensure the quality of drone images. For breeding programs to have an easy access to
drone technology, data processing and analysis pipelinewill also be needed, allowing
breeding programs to easily load their images and receive data with a rapid turnover
time to be part of the selection decisions. Then onlymore sophisticatedmeasurements
can be taken from the research stage to the scale of a breeding program. Additional
such traits could be yield estimates (Guo et al. 2018), or indices that reflect on the crop
development, functioning and efficiency with indices reflecting light interception,
radiation use efficiency.
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11.4.3 Quality Analysis

NIRS spectroscopy is being routinely used in the assessment of quality in grain and
in stover. NIRS measurement currently take place in the lab using benchtop NIRS
equipment inmost cases.NIRSprobes can also bemounted on combine harvesters, as
is done in the private sector formajor crops likemaize. There is also an opportunity to
insert NIRS probes in smaller harvesting equipment like the Harvest Master (Juniper
System Inc, Logan, UT, USA). Different portable NIRS now exist and start being
tested for a direct evaluation of quality in the field (Blummel, pers. Comm.). Raman
spectroscopy is also appearing as a new opportunity technology, complementary to
NIRS in the domain of quality analysis (Altangerel et al. 2017). X-ray fluorescence
(XRF) equipment are used to measure mineral content of grain such as Fe or Zn,
which are important but deficient component of the diet of poor rural populations of
Africa and Asia.

For many breeding programs of the public system in crops others than the main
commercial commodities like maize, wheat, or rice, breeding for quality to respond
to a market or consumer demand, or to address a nutritional issue, imply a major
shift in what is being evaluated. While the technologies above are available, they
are still largely disconnected from the breeding process pipeline. That is, agronomic
traits are measured at harvest while quality traits are measured after harvest, often
too late to be taken into consideration in breeding selection decisions. Therefore,
efforts here are needed to streamline the assessment of quality with the usual traits,
allowing the combination of the probes above in the breeding process, here also
accounting for time and cost of including these additional sensors and of making
additional measurements. It requires the re-designing of harvesting pipelines, the
possible re-development of harvesting tools including quality probes.

11.5 Conclusion

While new technologies provide opportunities to make phenotyping easier, faster,
less expensive, and more informative, they also run the risk of becoming the end
that justifies the means. We can avoid this by driving the technology with research
questions, made possible through a cross-discipline approach between genetics,
breeding, modeling, engineering, physiology, pathology, data management, and
statistics. Combination of trait-based phenotyping targeting “building blocks” of
critical phenotypes (phenes) to field-based phenotyping for capturing these traits or
their consequences holds great promise to generate relevant phenotyping information
to breeding programs and match up the load of genomic data available for finding
genes behind the phenes. Last but not least, the cost of these HTP technologies has
to be taken into consideration if these are to be used in breeding pipelines.
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