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Preface

Global population is expected to reach 9.8 billion and food demand is expected to
be 60% higher than it is today by 2050, which requires a double current yield
increase rate to meet the demand. During the past 20 years, molecular profiling and
sequencing technologies enabled major advances toward the large-scale
characterization of crop genomes. However, the acquisition of crop phenotypic
information has lagged behind to allow a better understanding of
genotype-to-phenotype relationships and becomes one of the bottlenecks to crop
improvement, genetics, and genomic selection (GS). Thanks to the advances in
emerging technologies in sensors, machine vision, robotics, Unmanned Aerial
Systems (UASs), crop traits (phenotypic data) are able to be acquired in a
large-scale and high-throughput manner. Big data processing and analytic
technologies (e.g., machine learning and deep learning) and high-performance
computation systems are transforming the conventional crop breeding to the
next-generation AI-based crop breeding.

This book presents state-of-the-art information on the important innovations of
high-throughput crop phenotyping technology in quantifying crop traits of shoots
and roots through various applications in field and controlled environments. The
applications cover a large range of crops (including soybean, wheat, maize, grains,
and potato), various measurements of crop phenotypes in different levels (crop
organ, plot, and field), and for different purposes. Different novel technologies and
the implementation of these technologies in high-throughput crop phenotyping are
reviewed and discussed. The technologies include emerging sensors to measure
different crop traits, automated data acquisition platforms for fast and large-scale
data collection (e.g., autonomous ground and aerial vehicles, robotic systems), big
data processing and analytics, and their integration. Each chapter of the book
focuses on different aspects of the high-throughput phenotyping technology and the
applications for specific crops. The book starts with a chapter (Chap. 1) that briefly
explains the concept, content, and roles of the high-throughput crop phenotyping
technology in crop breeding towards yield improvement using the breeder’s
equation. Chaps. 2 and 3 provide the applications of innovative field-based crop
phenotyping systems using ground-based robot systems and a cable-suspended
robot system. As one of the key components of image-based phenotyping systems,
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vi Preface

Chap. 4 discusses novel methods for developing three-dimensional (3D)
architecture of crop plants based on images or videos collected with field crop
phenotyping systems. The following chapters (Chaps. 5–8) provide applications in
crop breeding of wheat, rice, soybean, and potato, followed by the applications in a
controlled environment (Chap. 9) and root phenotyping (Chap. 10). The final
chapter (Chap. 11) discusses the challenges in adopting high-throughput crop
phenotyping technology into crop breeding pipelines by considering of cost.

This book provides insights into high-throughput crop phenotyping technology
from the different perspectives of leading researchers in multiple disciplines,
including but not limited to Crop Breeding, Genetics, Engineering, Computer
Science, and Data Science. The authors have extensive knowledge and practical
experiences in their respective fields and are actively involved in the international
community of crop phenotyping. We wish to acknowledge their expert
contributions and great efforts in the preparation for the book chapters. Finally, we
hope that this book will assist all readers who are working in or associated with the
fields of high-throughput crop phenotyping.

Columbia, MO, USA Jianfeng Zhou
Henry T. Nguyen
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Chapter 1
Solve the Breeder’s Equation Using
High-Throughput Crop Phenotyping
Technology

Jianfeng Zhou and Henry T. Nguyen

Abstract This chapter provides an overview of high-throughput crop phenotyping
technology on its concept and significance under the context of crop production
improvement. The roles of different components in the crop production equation
(P = G × E × M + ε) toward crop yield, i.e., crop yield (P) is a function of crop
genotype (G), environment (E) and management (M) is discussed. It is concluded
that all components have a great impact on the agriculture yield. Studies suggest
that the contribution of crop genetic improvement to yield improvement can be
increased substantially upon the breakthroughs in high-efficient crop phenotyping
technologies. The potential solutions to improve crop yield gain are discussed and
guided by the genetic gain (breeder’s) equation. In this chapter, the concept of high-
throughput phenotyping technology is introduced and their potential contributions
toward genetic improvement are discussed. This chapter also provides some back-
ground information for the high-throughput phenotyping technologies discussed in
the following chapters.

Keywords Crop production · Interaction of genotype, environment and
management · Genetic gain equation · High-throughput phenotyping

1.1 Crop Production

The world population is estimated to increase by 2 billion in the next 30 years, from
7.7 billion currently to 9.7 billion in 2050, although the growth speed is at a slower
pace (UNDESA 2019). It is estimated that global crop production needs to double by
2050 tomeet the projected demands from rising population, diet shifts, and increasing
biofuels consumption (Alexandratos and Bruinsma 2012a; Hickey et al. 2019; Ray
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2 J. Zhou and H. T. Nguyen

et al. 2013). However, the current yearly increases of crop production for maize (Zea
mays L.) at 1.6%, rice (Oryza sativa L.) at 1.0%, wheat (Triticum aestivum L.) at
0.9%, and soybean [Glycine max (L.) Merr.] at 1.3% are insufficient to meet the
projected demands of ~ 2.4% in 2050 (Alexandratos and Bruinsma 2012b; Ray et al.
2013). How to improve the production of the major crops has become an impressing
pressure to the global research communities (Hatfield and Walthall 2015).

Crop production is very complicated and determined bymany factors, such as crop
genotypes (varieties), growing environments (e.g., weather, soil, microclimate, and
location), and agronomicmanagement strategies (e.g., seed treatment and placement,
planting, fertilizer, and pest management). All the effects of different factors to
crop production can be summarized using a crop production equation, i.e., crop
production (P) is the function of the interactions of genotype (G), environment (E),
and management (M), as shown in Eq. 1.1 (Beres et al. 2020; Hatfield and Walthall
2015).

P = G × E × M + ε (1.1)

where, P = plant Phenotypes that refer to the observable physical properties of
an organism, including yield; G = Genotype that refers to the genetic makeup of
an organism; E = Environmental factors that affect plant growth, such as climate,
soil quality, light, temperature, and water availability; and M = Management prac-
tices of plant and field, such as seed treatment, planting, pest management, nutrition
management, and irrigation; ε is the total errors of the model. The equation suggests
that crop yield can be increased with the improvement in crop genotypes through
breeding programs, adoption of crops to environment, and improvement in field and
crop management strategies (von Mogel 2013).

The natural environment is not possible tomanage, but it has a great impact on crop
production. Under climate change, environment is becoming unfavorable to plant
growth, such as changes in CO2 level, global temperature, degradation of soil quality,
and extreme weather conditions (e.g., flood and drought). For example, according to
the US National Aeronautics and Space Administration (NASA) weather simulation
models, there is a predicted 30% increase in heavy precipitation events by the year
2030, which is expected to significantly increase the risk and frequency of flooding
(Rosenzweig et al. 2002). Flooding damage to crops can be caused by extreme rainfall
events, excess irrigation, or by rainfall that occurs after an irrigation event (Heatherly
and Pringle III 1991). Environment will continue generating strong impacts on crop
production negatively. According to a recent study (Aggarwal et al. 2019), it is
found that global crop yields declines due to climate change starts as early as the
2020s, and yield losses are projected to increase with time, up to 50% by the 2080s.
Therefore, there is a pressing need to develop climate-resilient crops and agronomic
management strategies to suite for the dynamic environment.

Advances in agronomic management in crops and fields have a great positive
impact on crop production. Some studies even suggest that the influence of manage-
ment is more than the genotype does on the crop yield. For example, it is found thatN
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andwater limit crop yieldmore than plant genetics (Sinclair andRufty 2012). A study
from Brisson et al. (2010) also suggested that wheat yield was significantly affected
by the increased variability in climate during the growing season because of the
heat stress during grain-filling and water stress during stem elongation and tillering.
Affholder et al. (2013) found that poor soil fertility and weed infestation have more
impact on agriculture production than other factors of environment and genotypes.
In addition, research also shows that yield of corn and soybean is heavily affected by
the planting date and planting depth (Baum et al. 2018; Hu and Wiatrak 2012). With
continuous improvement in agronomic management with emerging technologies,
using emerging technologies in precision agriculture, sensors, internet of things, big
data and artificial intelligence, management will make a greater contribution in crop
yield improvement.

Although the production of major commodity crops has been increasing over time
due to the improved genetics, improvedmanagement, and environmental adaptations,
their contributions of each factor are difficult to quantify due to the complicated inter-
actions and the dynamic nature of environment andmanagement practices. However,
in a study, Fischer (2009) found that Australian wheat yield had a 1.3% total increase
per year over the past 100 years. The author attributed 0.2% of the total increase to
the environment, 0.5% to genetic improvement and the interaction of genotype with
management, and 0.6% to management alone, which are equivalent to about 30%
to genetic improvement, 15% to environment adoption, and 55% to management
(Hillel and Rosenzweig 2013). In addition, Duvick (2005) argued that increases in
maize yield in the past 50 years were due equally to breeding and improved manage-
ment. Although the yield gain of the world’s staple crops continues improving due
to improvement in breeding technologies (Li et al. 2018), the yield increases also
depend on the improved agronomic management to realize the potential of these
breeding-based improvements in farmer’s fields (Fischer and Connor 2018). The
potential yield is defined as the yield of the best-adapted cultivar with currently the
best agronomic management practices ensuring the absence of manageable abiotic
and biotic stresses (Fischer 2015). However, the gap between potential yield and
yield in farm yields can be substantial (Beres et al. 2020), for example, the farm
yields of rice, wheat, and maize are about 80% of potential yields under irrigated
conditions, and 50% or less under rainfed conditions (Lobell et al. 2009). Therefore,
it is critical to consider the interaction effects of G×E×M as the key to screening
genotypes and closing yield gaps (Hatfield and Walthall 2015).

Field and crop management strategies have been improved significantly thanks
to the advances in precision agriculture, sensing technologies, data processing, and
analysis (Yost et al. 2019). However, there are practical constraints in management
that are needed to be considered when maximizing the crop yield. Management
strategies are heavily dependent on accumulative experiences from practices, but
climate change makes it difficult to make proper decisions on management for the
unpredictable environment, which brings significant challenges in crop management
to maintain a stable and high yield production. In addition, although modern agricul-
ture with advancedmanagement has been successful in increasing food production, it
has also caused extensive environmental damage. For example, increasing fertilizer
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use has led to the degradation of water quality in many regions (Bennett et al. 2001;
Matson et al. 1997). It is also evident that some irrigated lands have become heavily
salinized, causing the worldwide loss of ∼1.5 million hectares of arable land per
year, along with an estimated $11 billion losses in production (Wood et al. 2000). Up
to ∼40% of global croplands may also be experiencing some degree of soil erosion,
reduced fertility, or overgrazing (Wood et al. 2000). Therefore, over-managed agri-
cultural systems may not be beneficial for sustainable agricultural system in long
run.

There are very limited natural resources that are available for farmers to make
desired management practices to optimize crop production. For example, 92% of
the soybean acreage in the United States is under rainfed dryland conditions (Irwin
et al. 2017) where crop productivity is always threatened by unpredictable drought
but irrigation is not an option. In addition, the management of crops under flooding
conditions is always challenging. It was reported that the 2011 Mississippi River
flood caused a loss of $2 billion in crop damages when fewer than 6,500 acres of
soybeanwere harvested in the southern counties of Illinois (Olson andMorton 2013).
The situation was even worse in 2015, as more than half of the states’ soybean
crop was affected and the crop damage caused by the floods of 2019 was even
severer than that of 2015. The crop yield loss due to the constraints in management
may be compensated through the development of new crop varieties with flood
or drought-resilient traits. The conventional breeding programs are transferring to
more efficientmodern breedingprograms through integrating emerging technologies,
especially the high-throughput phenotyping technology. It is believed by authors that
the contributions of genetic improvement based on high-throughput phenotyping
technology will increase crop yield gains significantly in the near future. In the
following sections of this chapter, we will focus on how to improve the yield gain in
breeding programs using high-throughput phenotyping technology.

1.2 Breeder’s Equation for Crop Production

Crop yield can be improved through optimal management and breeding new crop
varieties with improved traits. The improvement of crop yield and other traits
due to artificial or genomic selection is quantified using the genetic gain equation
(commonly known as ‘breeder’s equation’) calculated using Eq. 1.2 (Eberhart 1970;
Li et al. 2018).

�G = irσA

L
(1.2)

where �G is the genetic gain (yearly gain due to genetic factors), i is the selection
intensity, r is the selection accuracy, σA is the square root of the additive genetic
variance within the population, and L is the length of breeding cycle interval or
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generation. The breeder’s equation provides general guidance and useful frame-
work for the design of breeding programs leading to the improvement of genetic
gain. It can be seen from Eq. 1.2 that genetic gain is positively proportional to the
parameters of selection intensity, selection accuracy and genetic variance. Selection
intensity is determined by the selection rate, i.e., the proportion of the population
selected from the total population (Xu et al. 2017). A larger population size allows
a greater selection intensity and improves the probability of identifying progenies
with desired traits, such as high yield potential and resilience to stresses. Therefore,
the first way to improve the genetic gain is to increase the breeding population.
The second favorable factor, the selection accuracy, refers to the accuracy of selec-
tion on breeding value. The selection accuracy is determined by heritability and
can be increased by increasing the marker density. The advances in high-throughput
sequencing technologies and genomic selection (GS) can remarkably improve the
selection accuracy (Bhat et al. 2016; Crossa et al. 2017). In addition, the selection
accuracy can be increased by increasing repeatability in the breeding population thus
increases the selection response for the trait of interest (Araus et al. 2018). For the
breeding programs with a fixed budget, it needs to balance between the population
and replication to maximize the genetic gain.

In addition, genetic variance is also positive to the increase of genetic gain.
Although the vast number of valuable germplasm collections in gene banks can
be used as a source to acquire genetic variation, the contribution is limited by the
time and resources required to precisely characterize the accessions at large scale,
and identifying and transferring the useful alleles into adapted germplasm. Advanced
tools are needed to identify more molecular markers that can reveal genetic variation
(Xu et al. 2017) and accurately quantify genetic variations due to environment (Araus
et al. 2018). In the equation, the length of breeding cycle interval or generation is
directly reciprocal to genetic gain. Conventional breeding programs have a fixed
timeline for the development of new varieties and it is hard to change the breeding
cycles. However, in recent years, researchers are studying a method called ‘speed
breeding’ or ‘rapid breeding’ to shorten the breeding cycle and accelerate breeding
and research programs (Li et al. 2018; Watson et al. 2018). For example, speed
breeding technology is potential to achieve up to six generations per year for spring
wheat, durumwheat, barley, chickpea, and pea, and four generations for canola under
normal glasshouse conditions (Watson et al. 2018). In addition, breeding cycle is also
potentially to accelerate by improving the prediction accuracy and discovering more
reliable secondary crop traits using emerging phenotyping tools (Araus et al. 2018).

In summary, there are many approaches to increase genetic gain of a breeding
program by solving the breeder’s equation (Cobb et al. 2019; Hickey et al. 2019;
Pieruschka and Schurr 2019). To develop next-generation breeding programs, we
should consider some critical factors closely related to genetic gains (Araus et al.
2018; Awada et al. 2018; Cobb et al. 2019; Li et al. 2018; Zhao et al. 2017). Some
examples include: (a) how to increase the capacity for larger breeding population
to enable higher selection intensity; (b) how to enhance selection accuracy using
emerging technologies; (c) how to identify genetic variations; and (d) how to reduce
the breeding cycles. While we continue advancing the molecular-based breeding
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strategies using genomic technology, special efforts should be taken to eliminate
the bottlenecks in current breeding programs, i.e., how to measure plant phenotypes
efficiently and accurately for a large breeding population. Current breeding programs
are limited by cost, time, human labor, land and other resources to efficiently scan
a large population of progenies (Rebetzke et al. 2016), which limit the selection
intensity, affect the genetic accuracy, and result in low genetic gain. Therefore, the
development and application of low-cost, high-throughput phenotyping tools allow
reallocation of resources tomanage larger populations, enable an increase in selection
intensity within a fixed budget.

1.3 High-Throughput Crop Phenotyping

The term “phenotype” as a counterpart concept to “genotypes” was created one
century ago (Johannsen 1903, 1911), which has been used to describe a wide range
of traits in plants, microbes, fungi and animals (Walter et al. 2015). Plant phenotype
is the functional plant body that is formed during plant growth and development from
the dynamic interaction between the genetic background (genotype) and the physical
world in which plants develop (environment). The term ‘phenotyping’ began using in
the 1960s (Walter et al. 2015) and later was referred to as the set ofmethodologies and
protocols used to accurately measure plant growth, architecture, and composition at
different scales (Fiorani and Schurr 2013). Traditionally, to select superior progenies
or identify gene loci in the genome controlling a trait, usually, hundreds to thou-
sands of plant phenotypes aremeasured by breeders using low-throughput laboratory
assessments, visual observations, and manual tools. Traditional crop phenotyping
methods are labor-intensive, time-consuming, subjective, and frequently destructive
to plants (Chen et al. 2014; Furbank and Tester 2011). The lags in the advances
of emerging technologies and low throughput in plant phenotyping have become a
critical constraint to crop breeding and functional genomics studies (Deery et al.
2016).

High-throughput phenotyping (HTP) technologies emerged in the last decade
thanks to the advances and reduced cost in sensor, computer vision, automation
and advanced machine learning technologies. Crop HTP refers as the gathering of
multi-dimensional phenotypic data at multiple levels from cell, organ, plant to popu-
lation using emerging technologies (Lobos et al. 2017; Zhao et al. 2019). A compre-
hensive HTP system is consisted of supportive hardware (sensors and platforms)
and computation component (data process and analytics). Widely used sensors in
HTP technology are primarily non-contact and non-invasive sensors, such as digital
cameras (e.g., visible, multispectral, hyperspectral Chlorophyll fluorescence and
thermal cameras), three-dimensional depth sensors (LiDAR, time-of-flight camera)
(see list of the cameras in Araus et al. 2018 and Zhao et al. 2019). Explorable research
is testing and adopting some advanced imaging techniques that are widely used in
medical applications, such as magnetic resonance imaging (MRI), positron emission
tomography (PET), and computed tomography (CT), to HTP systems in the growth
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chamber or greenhouse. The advances in sensor technology are primarily driven
by the industry sector, while efforts have been made toward integrating them to
crop HTP systems. In addition, supportive hardware also includes automation plat-
forms for efficient data collection. Commonly used automation platforms include
track-based automation systems (Zhou et al., 2018a; b), indoor and outdoor robotic
systems (Awada et al. 2018; Chapman et al. 2014; Yang et al. 2020; Zhao et al. 2019),
unmanned aerial system (UAS) (Yang et al. 2017), which are commercially available
or developed by the research team for special need.

The more important component of an HTP system is data processing and analytic
system. Current HTP systems, especially high-resolution imaging systems, are ready
to collect high-dimensional data of crops of a large population. However, researchers
will realize soon that they may be overwhelmed by the huge data that are beyond
their ability to handle (Blumenthal et al. 2020; Yang et al. 2020; Zhao et al. 2019).
Therefore, one of the urgent tasks for HTP system is to develop frameworks or
pipelines for efficient data processing and analytics that can translate sensor data
to important crop traits (Blumenthal et al. 2020; Hallowell et al. 2018; Zhou et al.
2018a). More efforts should be taken to develop and integrate emerging technologies
such as cloud computing, edge computing, machine learning, deep learning and
artificial intelligence (AI) into HTP systems. With the continuous efforts from the
community, HTP technology can potentially be the key component to solve the
breeder’s equation and accelerate the process of breeding new crop varieties with
advanced traits. The following examples demonstrate the potential applications of
HTP technologies to breeding programs based on the breeder’s equation:

(1) Delivery efficient and objective measurements of crop traits. High-throughput
phenotyping systems are able to phenotype breeding fields in a more efficient
and cost-effective way, which allows an increase in the capacity of breeding
programs to handle a larger breeding population and improve the selection
intensity. For example, UAS-based HTP platforms are able to screen breeding
fields within a short period (e.g., 30 min for a 5-acre field). The implements of
spectrum reflectance, photogrammetry, and computer vision provide consistent
criteria to estimate crop traits inmultiple dimensions, such as plant height, plant
temperature, chlorophyll content.

(2) Identification of novel crop traits. Advanced sensors (e.g., hyperspectral and
infrared cameras) capture crop information beyond human vision and sense.
Advanced data analytics andAImodels reveal hidden information from human
and sensor data and have great potential in discovering novel crop traits. The
novel traits can be used to describe crop performance at a specific growth stage
(e.g., emerging, flowering or harvesting) or to profile crop dynamic responses to
environments along growth seasons. Novel crop traits are able to provide addi-
tional information to quantify subtle genetic variations of different genotypes
and potentially increase the genetic variance.

(3) Integration of phenotypic data and genotypic data. HTP-based phenotypes
could be integrated into genetic analysis, such as quantitative trait locus (QTL)
mapping or genome-wide association study (GWAS) to identify key genetic



8 J. Zhou and H. T. Nguyen

elements underlying or associated with the yield gain or stress tolerance.
The genetic elements for favorable crop traits could be further incorporated
into the current germplasm through marker-assisted selection (MAS) during
breeding. The integration will allow accurate selection, reduce breeding cycles
and increase the genetic gain.

(4) Allow advanced models to integrate G×E×M. High-throughput phenotyping
technology allows collecting big data of crops in a high spatiotemporal reso-
lution and discovering novel crop traits, which will enable the integration with
environment and management to reveal G × E × M interactions. Advanced
models based on machine learning and deep learning technologies will trans-
form breeding program from descriptive phenotyping, to predictive pheno-
typing and prescriptive phenotyping that allow ‘manufacture’ crop traits based
on needs.

In summary crop HTP technology provides a potential solution to the breeder’s
equation tomaximize the genetic gains by increasing the selection intensity and accu-
racy, improving the identification of genetic variations, and accelerating breeding
cycles. Crop HTP technology uses an interdisciplinary and holistic approach to inte-
grate research in agronomy, life sciences, information science, mathematics, and
engineering sciences, and combines high-performance computing and artificial intel-
ligence technology. Advanced data analytic methods (e.g., machine learning, deep
learning) are used to analyze the multifarious phenotypic information of crops and
develop predictive and prescriptive models to phenotype crops in a high-throughput,
multi-dimensional, big-data, intelligent and automatically measuring manner. The
big data of plant phenotypic data collected by plant HTP systems will be inte-
grated with multi-scale genomic and environmental data to mining genes associated
with important agronomic traits, and propose new intelligent solutions for precision
breeding (Zhao et al. 2019). This book provides showcases HTP applications in the
world-leading research programs and by the active researchers and scientists in the
areas of crop breeding, genetics, agronomy, engineering, computers, and information
technology. The following chapters will focus on the showcases (a) application of
merging sensing technology (sensors), (b) introduction ofHTPplatforms (hardware),
(c) approaches of data mining and analytics (big data and AI) and (d) development
of HTP framework and pipeline in various crops. We hope this book provides the
state-of-the-art of HTP technology and its applications in plant breeding and genetics
and brings some case studies that can help researchers to develop and advance the
HTP in their research projects.
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Chapter 2
Field Robotic Systems
for High-Throughput Plant Phenotyping:
A Review and a Case Study

Yin Bao, Jingyao Gai, Lirong Xiang, and Lie Tang

Abstract Continuous crop improvement is essential to meet the growing demands
for food, feed, fuel, and fiber around the globe. High-throughput plant phenotyping
(HTPP) aims to break the bottleneck in plant breeding programs where pheno-
typic data are mostly collected with inefficient manual methods. With the recent
rapid advancements and applications of robotics in many industries, field robots are
also expected to bring transformational changes to HTPP applications. This chapter
presents an updated review of the infield ground-based robotic HTPP systems devel-
oped so far. Moreover, we report a case study of an autonomous mobile phenotyping
robot PhenoBot 3.0 for row crop phenotyping, focusing on the development and
evaluation of the navigation system for the articulated steering, a four-wheel-drive
robot with an extremely tall sensor mast. Several navigation techniques were inte-
grated to achieve robustness at different corn plant growth stages. Additionally, we
briefly review the major sensing technologies for field-based HTPP and present a
vision sensor PhenoStereo to show the promising potential of integrating conven-
tional stereo imaging with the state-of-the-art visual perception techniques for plant
organ phenotyping applications. As an example, we show that a highly accurate
estimation of sorghum stem diameter can be achieved with PhenoStereo. With this
chapter, our goal is to provide valuable insights and guidance on the development of
infield ground robotic HTPP systems to researchers and practitioners.
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2.1 Introduction

To feed the global population, crop production needs to be doubled by 2050 (Tilman
et al. 2011); the yield trend, however, has been found insufficient to meet this require-
ment (Ray et al. 2013), let alone the rising demand for feed, fuel, and fiber. This
growing agricultural crisis must be tackled frommany different aspects to boost crop
yield in a sustainableway.One of themost effectiveways to increase crop yield poten-
tial is through plant breeding programs (Duvick 2005; Vermerris et al. 2007). The
basic principle of plant breeding is to make crosses between different varieties under
different environments, and to select the best progeny based on the plant phenotypes.
The rapid advancements in high-throughput genotyping technologies have greatly
improved the efficiency and lowered the cost of molecular breeding in the last few
decades (Appleby et al. 2009). In contrast, plant phenotyping heavily relies on infield
manual measurement and scouting. The process is labor-intensive, time-consuming,
prone to human errors, and ergonomically poor. Consequently, the phenotypic data
collection lacked spatial and temporal resolutions as well as precision. The massive
genomic information acquired with high-throughput DNA sequencing technologies
has not been fully utilized for crop improvement due to lack of sufficient information
on plant phenotypes. Therefore, there is a strong need for developing high-efficient
high-throughput plant phenotyping (HTPP) systems.

During the last decade, various HTPP systems were developed. In controlled
environments (e.g., growth chambers and greenhouses), the state-of-the-art HTPP
systems realize the plant-to-sensor concept. A plant-to-sensor HTPP system conveys
individual plants to a screening station where various imagery data are collected,
for instance, the Greenhouse Scanalyzer (LemnaTec GmbH, Aachen, Germany).
The conveyor-based system typically has a throughput in the order of hundreds of
plants per day. In addition, a key advantage is that a single plant can be imaged
with controlled lighting conditions, background color, and viewing angles, which
reduces the complexity of subsequent image processing. In the field, sensors must
be moved to plants, namely, the sensor-to-plant concept. Field-based HTPP systems
can be classified into two categories: aerial systems and ground systems. Aerial
HTPP systems use satellites and manned/unmanned aerial vehicles as sensor carriers
(Liebisch et al. 2015; Shi et al. 2016; Tattaris et al. 2016;Watanabe et al. 2017). They
excel at covering large fields in a short amount of time, but struggle with detailed
plant phenotyping, particularly at the individual plant level and at the plant organ
level. Several commercial companies offer remote sensing services for agricultural
research studies and crop scouting, for example, AgPixel (Johnston, IA, USA) and
Precision Hawk (Raleigh, NC, USA). As for ground HTPP systems, sensors can be
carried on either a mobile platform or a fixed platform. Mobile platforms and fixed
platforms have opposite advantages and disadvantages. Mobile platforms can cover
large fields and are easy to transport, but are typically limited to short crops and
cannot operate on rainy days or on overly wet soils, whereas fixed platforms can
handle a wide range of plant height and various weather conditions, but with the
limitations of reduced field size, fixed location, and high cost.
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Thanks to the convergence of technologies (e.g., advanced manufacturing,
sensing, actuation, controls, edge computing, and artificial intelligence (AI)), robotics
has undergone rapid advancements in recent years and is expected to bring trans-
formational changes to every industry and everyday life. In the area of HTPP,
infield ground-based robotic systems are likely to impact crop improvement the
most. Although greenhouse-based HTPP can be highly automated with a full suite
of sensor technologies, the resultant research findings often do not translate well into
the field due to the complex outdoor environmental factors. Meanwhile, breeders,
agronomists, and plant scientists have begun adopting commercial low-cost aerial
HTPP solutions. Aerial HTPP systems are mostly capable of the characterization
of top crop canopy. Some agronomic traits such as crop stress responses can be
predicted from aerial imagery to different extents. However, a complex trait like yield
is influenced by many other traits that require more precise phenotyping beyond the
canopy level. Compared to aerial systems, ground-based robotic systems can more
easily carry sensors andmanipulators to perform complicatedmeasurement tasks like
humans. Therefore, this book chapter aims to provide an updated literature review
about infield ground-based robotic HTPP systems. The remainder of this chapter
is organized as follows. In Sect. 2.2, various types of infield ground-based robotic
HTPP platforms are reviewed and discussed. In Sect. 2.3, a case study is presented
to provide insights into the development of a mobile ground-based robotic platform
PhenoBot 3.0. In Sect. 2.4, we briefly review the major sensing technologies for
field-based HTPP and present a vision sensor PhenoStereo for the purposes of plant-
organ phenotyping. Lastly, we summarize this chapter, followed by our vision for
future research directions in Sect. 2.5.

2.2 Infield Ground-Based Robotic HTPP Platforms

2.2.1 Fixed Platforms

Fixed ground-based robotic HTPP platforms are essentially infield stationary infras-
tructures that allowvarious degrees of sensormobility. Large-scale ones can be gantry
systems and cable-suspended systems. LemnaTec GmbH has built two gigantic
gantry systems named Field Scanalyzer in the world, one for the Rothamsted
Research center in London, UK (Virlet et al. 2017) and one for the University of
Arizona and USDA-ARS in Maricopa, Arizona, USA (Fig. 2.1 top left). The Field
Scanalyzer is based on a 3-axis industrial portal crane systemwhere two parallel rails
(x-axis) support a mobile portal on which a sensor box can be moved perpendicu-
larly to the rails (y-axis) and vertically (z-axis). It is worth mentioning that rainout
shelters can be integrated into a gantry system using the same rail system (Fig. 2.1
bottom left), adding the capability for drought research (Beauchêne et al. 2019). An
alternative to a gantry system is a cable-suspended system, which typically consists
of four winch towers at each corner of a rectangular field. An overhead sensor carrier
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Fig. 2.1 Fixed infield robotic high-throughput plant phenotyping platforms

within the field is connected to the four winches by four high-strength, lightweight
cables. Winding and unwinding the four cables in a coordinated way controls the
XYZ position of the sensor carrier. Two large-scale cable-suspended systems have
been developed so far, the FIP in Zürich, Switzerland (Kirchgessner et al. 2017)
(Fig. 2.1., top right) and the NU-Spidercam in Nebraska, USA (Bai et al. 2019)
(Fig. 2.1. bottom right). The main advantage of large-scale fixed robotic HTPP plat-
forms is the ability to quickly move a heavy sensor payload above plants with high
positioning accuracy and repeatability. The sensor carrier can move between crop
rows, whereas mobile ground platforms must travel out of a crop row before entering
the next. Once established, the gantry and cable-suspended systems are unlikely to
be relocated. For research programs that involve genotype-environment interactions
such as plant breeding, experiments are replicated at multiple field locations, which
makes using the large-scale platforms impractical. The extremely high costs limit
them to only a handful of research institutes.
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2.2.2 Mobile Platforms

The design of an infield ground-based mobile robotic HTPP platform depends more
on the space available for the platform to travel and for the sensors to capture the
regions of interest. A mobile robotic HTPP platform can travel in the field with
respect to the crop rows in two fashions, portal and between-rows. Most mobile
robotic HTPP platforms adopt the portal design, which can be seen asmobile gantries
that straddle one or multiple rows or plots. Some recent robots employ the between-
rows design, traveling between two adjacent crop rows. Tall plants and narrow row
spacing can pose challenging constraints to the portal type and the between-rows
types, respectively.

High-clearance agricultural vehicles (e.g., tractors, sprayers, etc.) can sustain long
hours of operation and carry heavy payloads. They naturally serve as convenient
bases that can be retrofitted to robotic systems. Hence, we briefly review agricultural
vehicle-based HTPP platforms. Commonly, top-viewing sensors are mounted on a
boom or a frame rigidly attached to the vehicle (Fig. 2.2 top left). Such a configura-
tion was used for phenotyping wheat (Barker et al. 2016; Deery et al. 2014; Madec
et al. 2017; Pérez-Ruiz et al. 2020), cotton (Andrade-Sanchez et al. 2014; Jiang
et al. 2018), canola (Bayati and Fotouhi 2018), corn (Peshlov et al. 2017) and early-
stage sorghum (Wang et al. 2018). Alternatively, Busemeyer et al. (2013) developed
the BreedVision, a custom sensing implement that was pulled by a high-clearance
tractor for wheat phenotyping (Fig. 2.2 bottom right). The higher the ground clear-
ance is, the larger the footprint of the vehicle is needed to maintain stability. For
extremely tall plants like biomass sorghum, Murray et al. (2016) reported a large
custom-built portal vehicle (Fig. 2.2 bottom center). Kicherer et al. (2017) retrofitted
a grape harvester that can straddle a trellis with side-viewing hyperspectral and
RGB stereo cameras for phenotyping of grapevines and berries. A driver is typically
required to operate an agricultural vehicle-based HTPP platform, which makes the
system semi-automated. Integrating a commercial off-the-shelf auto-steer module

Fig. 2.2 Agricultural vehicle-based infield high-throughput plant phenotyping platforms
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can further enable fully automated field-based HTPP. Bao et al. (2019a) retrofitted
a utility tractor with an auto-steer system as an automated platform for side-view
stereo imaging of sorghum plants (Fig. 2.2 bottom left). In addition to conventional
agricultural vehicles, all-terrain vehicles (ATVs) are often used for crop scouting
purposes due to their relatively low footprint and ease of transportation. The top
right picture in Fig. 2.2 illustrates an ATV-based, multi-row corn stand analyzing
system that uses a side-viewing proximity sensor array for corn stand counting and
mapping (FieldRobo LLC, IA, USA).

Mobile robot-based HTPP platforms aim to automate sensor data acquisition
without human intervention. Removing the human factor can potentially lead to
highly repeatable and highly objective HTPP. BoniRob (Klose et al. 2010; Ruck-
elshausen et al. 2009) was the earliest robot developed for infield individual plant
phenotyping of corn and wheat plants (Fig. 2.3 top right). In essence, it is a high-
clearance four-wheel-driving four-wheel-steering rover. Each independently steered
wheel is connected to the chassis via an articulated arm, enabling an omnidirec-
tional drive mechanism and variable track gauges. The drivetrain of BoniRob is
hydraulically powered. Similar mobile robotic HTPP platforms were later devel-
oped, i.e., Ladybird (Underwood et al. 2017) and Thorvald II (Grimstad and From
2017). Unlike BoniRob, both Ladybird and Thorvald II (Fig. 2.3 top left) used elec-
tric motors. But the three robots share a key design principle, an identical steer and

Fig. 2.3 Ground robot-based high-throughput plant phenotyping platforms
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drive unit for each wheel, which enables highly flexible maneuvers such as crabbing
and zero-radius turning. Like powerful high-clearance agricultural vehicles, these
large phenotyping robots can handle rough terrains and carry heavy payloads.

For tall plants such as corn and sorghum, side-view sensing can capture informa-
tion that is occluded from the top-viewing angle. Although the large high-clearance
robots can support side-view sensing with additional vertical sensor rigs, it becomes
more andmore challenging in terms of feasibility and crop damage as the plants grow
taller and taller. In contrast, small robots that can navigate between crop rows are
better suited in such cases due to their superiormaneuverability, flexibility, and porta-
bility. Commercial off-the-shelf all-terrain unmanned ground vehicles (UGV) are
convenient bases for developing mobile between-row robotic platforms. Shafiekhani
et al. (2017) developedVinobot based on aHuskyUGV(ClearpathRobotics,Ontario,
Canada) for phenotyping corn plants (Fig. 2.3 bottom left). A robot armwas installed
on the UGV to position a stereo camera for 3D plant reconstruction. Ideally, the robot
should fit in the standard 0.76-m row spacing. However, Vinobot operates in at least
1.1-m row spacing due to the width of the Husky UGV. This is a trade-off when
adopting a general-purpose UGV as an HTPP platform because the design may not
be optimized for the narrow row spacing and the crop species. Hence, many research
teams designed their mobile robotic phenotyping platforms for their specific crop
species andfield conditions. For bioenergy sorghumphenotyping, (Young et al. 2019)
reported a tracked robot with a high sensor mast (Fig. 2.3 bottom right). The chal-
lenges with bioenergy sorghum phenotyping are extremely tall plants (e.g., >3 m),
dense canopies, and tillers. A stereo camera was mounted at the top of the mast (up
to 3.6 m) for measuring plant height and a Time-of-Flight (ToF) depth camera at the
base of the tower for measuring stalk diameter. No sensors were placed between the
panicles and the bottom sections of the stems because the dense canopies and the
narrow row spacing (i.e., 0.76 m) caused heavy occlusions. Gao et al. (2018) devel-
oped a similar tracked robot that travels between rows of soybean plants except that
the sensor tower was far shorter. TerraSentia (EarthSense Inc, IL, USA) is a small
wheeled robot equipped with a LiDAR and gimbaled side-viewing RGB cameras
for general phenotyping of row crops such as corn and soybean (Zhang et al. 2020).
The small between-rows mobile robots mostly employ a differential steering mech-
anism that enables zero-radius turning (Fig. 2.3 bottom center). This design can
reduce the complexity and cost of construction. Meanwhile, the differential steering
is not as efficient as the Ackermann steering used by agricultural vehicles or the
four-wheel-steering of the large robots mentioned above.

Small robots are best suited for even terrains and well-managed fields without
excessive weeds due to the low ground clearance. The low payload of small robots
can be a limiting factor if there is a need for carrying multiple large sensor modules
with multiple viewing angles and even for performing plant manipulation. Mueller-
Sim et al. (2017) developed a four-wheel-drive, differential-steering robot Robotanist
for bioenergy sorghum phenotyping (Fig. 2.3 bottom center). A tall mast reaching
1.8 m was rigidly mounted on the vehicle to support a real-time kinematic global
positioning system (RTK-GPS) module and a pushbroom LiDAR at the top due to
the extreme plant height (i.e., over 4 meters). GPS signals and radio communication
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signals can be weakened if the antennas are under the canopy. The autonomous
navigation relied on the RTK-GPS at the top of the mast and a forward-facing ToF
depth camera at the front of the vehicle. The ToF depth camera captured the ground
and the bottom sections of the two rows of plants, enabling local navigation. A stereo
camera with a high-intensity strobe light was mounted at the rear of the vehicle for
stalk detection and stalk diameter estimation. Another unique feature of Robotanist
was a stereo vision-guided robot manipulator that can grasp a stalk and measure its
strength.

2.3 A Case Study

2.3.1 Development of Phenobot 3.0, an Autonomous Ground
Vehicle for Field-Based HTPP

Due to superior autonomy and portability, mobile ground robots have greater poten-
tial to become a widely adopted tool for field-based HTPP. The Iowa State Univer-
sity (ISU) PhenoBot Project is a good illustration of the development process of an
autonomous ground vehicle for field-based plant phenotyping. The ISU PhenoBot
was designed to traverse between corn rows and carry a sensor package mounted on
the robot so that phenotypic data of corn plants can be acquired across fields. This case
study is based on the dissertation work by Gai (2020) on PhenoBot 3.0. This latest
PhenoBot version is capable of self-navigating between corn rows with conventional
row spacing of 0.76 m by featuring a narrow body design and a central articulated
steering mechanism (Fig. 2.4). The telescoping sensor mast has an adjustable height
between 2.1 and 3.7 m. Additionally, the roll angle of the sensor mast was actively
controlled tomaintain vertical in the presence of the uneven ground surface.Multiple
PhenoStereo cameras (Xiang et al. 2020) weremounted on the sensor mast to acquire
close-range, side-view stereo images of the two rows of plants. The motorized tele-
scoping mast and the multi-sensor configuration enable the robot to simultaneously
imageplant sections at different heights.Various organ-level traits such as brace roots,
stalks, ears, leaf angles, and tassels/panicles can be imaged for corn and sorghum
plants at different growth stages.

During the mechanical design process, different design requirements including
structural strength, parts machinability, and Ingress Protection rating were carefully
evaluated so that the manufacturing process can be easily scaled up to produce
multiple units. The robot is reliable enough to operate in the field. Apart from the
mechanical design, robot navigation and image post-processing are two critical func-
tional modules. Efforts were made during the software development of these two
modules to ensure that the systems have sufficient robustness against different envi-
ronments and different plant conditions. Different techniques were employed during
the development process.
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Fig. 2.4 Illustration of Phenobot 3.0. PhenoBot 3.0 is an articulated steering vehicle with a self-
balancing, telescoping sensor mast. Multiple PhenoStereo sensors are mounted on the sensor mast
and attached to the back of the vehicle. Its navigation sensing system includes a GPS module and
a color camera at the top of the sensor mast, an IMU module at the bottom of the sensor mast, an
IMU module and a ToF camera in the front section of the vehicle, and wheel encoders

2.3.1.1 Navigation System Development

The navigation system aims to guide the PhenoBot 3.0 between the corn plant rows,
keeping it close to the center of the twocrop rows.As for the dataflowof the navigation
system (Fig. 2.5), data from multiple navigation sensors were fused for localizing
the robot in the field map. And the robot was driven by a path tracking algorithm
to correct the position and heading errors relative to the central line between two
adjacent crop rows. Finally, the motions of individual motors were controlled based
on the kinematicmodel of the robotic rover. Such a localization-and-tracking strategy
was employed bymany robotic navigation systems (Li et al. 2009;Mueller-Sim et al.
2017; Young et al. 2019).

Robot localization:

For robots traversing crop rows, accurate estimations of robot pose (i.e., position
and orientation) and motion (i.e., speed and acceleration) are critical to avoid crop
damage, especially for narrow crop rows. Various position and motion sensors are
available for localization, but different information is delivered due to the different
working principles. An RTK-GPS unit can measure the global position of a robot
in the Universal Transverse Mercator (UTM) coordinate system with a centimeter
accuracy (Nagasaka et al. 2009). A compass sensor provides absolute heading infor-
mation by measuring the magnetic field of the earth. An inertial measurement unit
(IMU) sensor is a motion sensor that can track change in position, speed, and heading
over time in a local frame. The data from rotary encoders on robot wheels along with
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Fig. 2.5 The diagram of the navigation control system of PhenoBot 3.0

the robot’s kinematic model can be used to calculate a robot’s pose and motion,
which is referred to as wheel odometry.

To improve the robustness of robot localization, multiple localization sensors are
usually used together rather than relying on a single sensor. Although the sensorsmay
provide redundant data, sensor fusion techniques such as Extended Kalman Filter
(EKF) (Hoshiya and Saito 1984) can be used to improve the accuracy and reliability
of robot localization. And by referencing the map of the crop rows, the heading and
the lateral position relative to the crop rows can be calculated and used to drive the
robot.

Another strategy for robot localization within a crop field is visual odometry,
which employs computer vision to detect and locate crop rows in real-time images
or 3D point clouds, and inversely estimate robot position relative to crop rows. This
technique applies to applications where global localization is denied or a field map
is not available.

In the PhenoBot 3.0 navigation system, the sensors for explicit robot localization
include an RTK-GPS unit mounted at the top of the sensor mast and a forward-facing
ToF depth camera. The RTK-GPS unit measures the global location along crop row
direction, while the ToF camera provides local 3D environment sensing so that the
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robot is constantly aware of its location relative to the two corn rows on the left and
right sides. Motor encoders and an IMU were used for vehicle dead-reckoning and
heading tracking. Figure 2.6 illustrates the sensor fusion method of PhenoBot 3.0.

Path tracking:

A path tracking algorithm is responsible for determining the appropriate actuation
of the robot based on the localization results of the robot to follow a pre-defined
or dynamically planned path. Many algorithms were developed and implemented
for robotic vehicles operating in the field. Some of them are error-driven feed-back
control algorithms, which use the tracking errors at current and previous timestamps
to control the steering motion, such as proportional-integral-derivative (PID) control
Linear Quadratic Regulator (LQR) control, Fuzzy logic control and sliding mode
control. PID control is used in many control applications (Dong et al. 2011; Luo
et al. 2009; Malavazi et al. 2018; Underwood et al. 2017). It has a simple structure
where the control command is calculated as a weighted sum of the errors, the integral
of, and the derivative of the error. However, it has requirements for the simplicity and
controllability of the systemmodel. LQR is an optimal controlmethodwhich operates
a dynamic system at minimum cost. It requires a relatively reliable prior knowledge
about the dynamic system to achieve high-performance (Olalla et al. 2009). Fuzzy
logic is a more intelligent algorithm that allows human knowledge to be integrated as
a set of linguistic expressions. It is widely used for steering control due to simplicity

Fig. 2.6 The sensor fusion diagram for the state estimation of PhenoBot 3.0. The visual odometry
is acting as a redundant source to improve the system robustness
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and effectiveness (Xue et al. 2012). Sliding mode control is a robust algorithm in
which the control input was switched based on the position of the robot states relative
to a specified “sliding surface” in the state space. The surface is designed based on
the control objective and the robot model, and the robot states are gradually “sliding”
to the surface. The algorithm was used in many agricultural navigation applications
(Eaton et al. 2008; Tu et al. 2019) due to its high controllability and insensitivity
to the model uncertainty and disturbances (Liu and Wang 2011). Another category
is the feedforward control, which requires the kinematic or dynamic model of the
robot to predict the dynamic response of the system then give the corresponding
adjustments. Pure pursuit is a common and effective geometric algorithm mainly for
non-holonomic vehicles. It calculates the position and heading errors by comparing
with a set point in the path at a certain distance ahead of the robot. And then the
algorithm calculates an arc path for the robot to join the path at the set point. The
maximum curvature of the path was constrained by the robot steering capability.
Because the algorithm does not require the derivative terms of the robot states, it
is computationally simple and easy to implement. The algorithm was successfully
implemented and validated in many applications (Mueller-Sim et al. 2017; Rains
et al. 2014; Zhang et al. 2019).

Model Predictive Control (MPC) refers to a set of optimization-based feed-
forward control algorithms,which aremore computationally demanding compared to
the algorithms mentioned above. The basic concept of MPC is to use a systemmodel
to forecast system behavior and optimize the forecast to find the best control deci-
sion at the current time. Some variants of MPC such as Nonlinear Model Predictive
Control (NMPC) are able to handle constraints, process nonlinearity, uncertainty, or
time-delay, thus leading to improved performance and robustness.MPCswere imple-
mented on various autonomous agricultural vehicles and achieved good performance
during tracking both straight paths and complex paths (Backman et al. 2012;Kayacan
et al. 2018; Utstumo et al. 2015; Zhang et al. 2020). In addition, some optimization-
based algorithms such as Timed Elastic Band (TEB Rösmann et al. 2017) were also
capable of planning collision-free or space-optimal paths by including a collision or
space term in the optimization cost function. These optimization-based algorithms
are suitable for critical scenarios during navigation (e.g., head-landing turning) to
avoid collisions and adapt to limited space.

The navigation system of PhenoBot 3.0 adopted the LQR, Pure pursuit, and the
Time Elastic Band (TEB) algorithms. The LQR and Pure pursuit algorithm handled
path tracking in normal conditions, while the TEB algorithm was explicitly used for
dynamically path planning for headland turning when the space is limited.

Vision-based navigation:

Vision-based navigation can be an alternative to the GPS-based path tracking naviga-
tion when the GPS-based localization is denied, or a pre-defined path is not available.
In field-based navigation, the strategy is to follow crop rows by identifying the rows
using cameras and accordingly steering the robot to keep the robot centered. Two
sensor setups are widely adopted in field-based navigation applications. One is using
a top-view above-canopy sensor and another a front-view under-canopy sensor.
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When using an above-canopy vision sensor, multiple crop rows can be observed
at once in the top-view. Most row detection algorithms focus on linear features in the
images formed by the crop rows. The most commonly used method for identifying
crop rows in the images is the Hough transform (Slaughter et al. 2008). The Hough
transform is a computationally efficient procedure for detecting discontinuous lines
or parametrical curves in images, and its applications for crop row detection were
reported in a number of studies (Abdulsalam et al. 2016; Bossu et al. 2006; Choi et al.
2015; Winterhalter et al. 2018). Other algorithms include linear regression (Benson
et al. 2003) and green pixels accumulation (García-Santillán et al. 2018; Li et al.
2020). Furthermore, some applications also fuse local odometry information for row
detection using particle filters (Blok et al. 2019; Grisetti et al. 2007).

Row detection algorithms using under-canopy sensors were mainly applied on
small robots operating under canopies of tall row crops such as corn and sorghum, or
robots operating between tree rows in orchards.When a robot travels under canopies,
only two adjacent rows are observable at a time. When using a 2D color camera, the
pixels of plants and soil were segmented in the images, and their boundaries were
extracted to estimate the position and the direction of the adjacent crop row.Yang et al.
(2018) proposed an algorithm to detect the centerlines ofmaize rows by extracting the
base of plants. Compared with the features extracted in 2D color images, 3D features
are less prone to varying ambient lighting conditions. Therefore, depth sensors such
as a LiDAR sensor and a Time-of-Flight depth camera were often adopted in field-
based navigation applications (Higuti et al. 2019; Mueller-Sim et al. 2017). In these
applications, the general strategy was to fit two parallel lines or planes representing
the crop rows in the point cloud generated from depth sensors. Fitting algorithms
such as least squares, RANSAC (Fischler and Bolles 1981), and PEARL (Isack and
Boykov 2012) were applied for fitting the model of parallel lines or planes.

A top-view camera and an under-canopy ToF camera were both equipped on
PhenoBot 3.0 and are designated for corn plants at earlier growth season and later
growth season, respectively (Fig. 2.7). With the row detection results, the current
row tracking errors including the lateral position deviation and the heading deviation
relative to the row centerlineswere determined. ALinear-Quadratic-Gaussian (LQG)
controller was applied to steer the robot to correct the tracking error for in-row
navigation. The LQG controller combines a Linear-Quadratic Regulator (LQR) with
a Kalman filter (a linear-quadratic state estimator), which takes the noise in the linear
system and the measurement process into consideration.

2.3.1.2 System Implementation and Simulation

ROS-based control system architecture:

ROS (RobotOperatingSystem)was used to integrate different functional processes in
the control system of PhenoBot 3.0. ROS is an open-source middleware that provides
a framework for connecting many different software components (i.e., ROS nodes)
of a complex robotic application. ROS manages a graph-like network of different
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Fig. 2.7 Vision-based crop row detection methods for PhenoBot navigation. Left: row detection
using a top-view camera. Crop rows were detected as parallel lines in the 2D color image. Right:
row detection using an under-canopy ToF camera. Crop rows were detected as parallel planes in
the 3D point cloud

processes, and the processes are loosely coupled using communication protocols
defined by ROS. These protocols were designed for different requirements, including
synchronous request/response communication over “service,” asynchronous data
streaming over “topics,” and shared parameter storage named “parameter server”
(Koubâa 2019).

The control program of PhenoBot 3.0 consisted of several modules (i.e., ROS
nodes), including hardware control, robot localization, robot navigation, andmission
planning. The hardware control module controls each individual motor by listening
to the robot movement commands according to the robot kinematic model. The
robot localization module reads the sensor outputs from different navigation sensors,
including the encoders, the IMU, theGPS unit, and the vision sensors, then calculates
the current position and direction in both the vehicle local coordinate frame and the
UTM coordinate frame. The robot navigation module plans and computes motion
commands to follow a series of paths to specific targets during the mission. The
mission planning module creates plans for accomplishing user-specified tasks such
as traversing the crop rows or navigating to a certain location in the field. With
the modules above, a “graph” of ROS nodes was established in the control system
(Fig. 2.8).

Robot simulation:

Simulation technology and evaluation within virtual environments can provide
frameworks to test and evaluate the functionality and performance of the devel-
oped systems in dynamic scenarios, therefore accelerating the development process.
Various types of simulation software such as Gazebo (“Gazebo,” n.d.), V-REP
(Rohmer et al. 2013), andARGos (Pinciroli et al. 2012) are available andwere proven
capable of simulating field environments for field robotic system development.

The Gazebo simulator was developed specifically for simulation of robotic
systems. It is widely used for robot simulation as it easily interfaces with ROS, which
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Fig. 2.8 The ROS node network of the PhenoBot 3.0 control system when working in GPS-based
path tracking mode. The ellipses represent ROS nodes including sensor nodes (blue), localization
nodes (red), a navigation node (purple), and a motion control node (green). The rectangles represent
the ROS message topics for data interchanges between nodes. “/tf” is a series of messages tracking
the transformations of different coordinate frames related to the robot

enables the development of software in the context of testing the developed codewith
a simulated robot and a virtual environment. Gazebo features a time-efficient phys-
ical engine to simulate the interaction between the robot and the environment. The
descriptions of the robot and the environment are input through an XML file which
contains the physical properties and geometry parameters that describe the bodies of
the robot and the objects in the environment.

When usingGazebowith ROS, Gazebo loads a series of ROS plugins, which turns
Gazebo into a ROS node. The ROS plugins use Gazebo API to simulate sensors,
actuate motors, and provide interfaces to dynamically re-configure parameters in
the simulation. The rest of the ROS nodes for robot control can be migrated into the
real-world robotwith little extra effort after being verified and tuned in the simulation.

Gazebo was used to simulate the PhenoBot in a virtual corn field for debugging
and validating the functionality of the control algorithms. In the simulation, the robot
and the world were modeled into bodies and joints, based on the minimum degree-
of-freedom requirement of the simulation. In the case of PhenoBot, the rover with
differential gears and the articulated body design was simplified to a 2D bicycle
model. The navigation sensors introduced above were included in the navigation
system and were also simulated in the Gazebo software. In the virtual environment,
a realistic corn plant model was duplicated into a plot, a crop row, and the entire corn
field. The virtual ground was made up of an uneven surface, which aimed to simulate
real-world soil conditions. The uneven virtual ground also enabled the simulation of
the mast balancing on a tilted vehicle body as the vehicle moved through the field.

The simulation of PhenoBot 3.0 in Gazebo was carried out in several steps. At
first, the robot model and the simulated sensors were verified by using ROS visual-
ization tools. Specifically, RViz, which is a visualization tool in ROS, was used to
inspect the robot model, and the sensor output. Then, the developed ROS programs
were attached to the Gazebo simulation environment and each individual module
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Fig. 2.9 Simulation of a PhenoBot 3.0 entering a virtual corn field in Gazebo. The robot pose, the
map, the planned trajectory and the sensor output are displayed on the Rviz-based control panel on
the bottom right

was tested. The robot hardware control module was tested by inspecting the robot
movement with a user-specified speed command. As for the localization module,
the parameters in the module were tuned to achieve the best accuracy and stability
for robot pose estimation. The navigation module was validated by observing the
performance of robot navigation behaviors, such as path planning, path following,
and obstacle avoidance gave a virtual scene and a target pose. Finally, the mission
planning module was attached to the ROS network, and the overall performance of
the integrated navigation system with all modules active was evaluated (Fig. 2.9).

2.3.1.3 Verification by Field Tests

After the development and evaluation in the simulation environment, the perfor-
mance of the robot navigation system was finally tested in the field. Field tests
were conducted at Iowa State University Agricultural Engineering and Agronomy
Research Farm located in Boone, Iowa in 2020. After verifying the functionality of
each module, different navigation strategies were tested and evaluated in the field.
For instance, the GPS-based path tracking was evaluated by operating on a patch of
grass field with compacted and uneven terrain, which is worse than the conditions
of most fields. The path to follow during the experiment was defined as a series of
cubic splines. The path is composed of straight path sections as the centerlines of the
crop rows, c-shape turn path section, and bulb turn path sections for the transition
between crop rows. These path sections are the common elements in paths for field-
based operations. The path tracking lateral position error was measured for different
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Fig. 2.10 A reference path and the robot trajectory in the field test using Pure Pursuit Control
(PPC) algorithm for GPS-based path tracking

tracking algorithms by comparing the GPS-based localization with the referenced
path.

The field results demonstrated that PhenoBot 3.0with the designed control system
is feasible for navigation in the field. The robot is capable of following standard
30′′ crop rows using both GPS-based tracking (Fig. 2.10) and vision-based row
following with minor crop damages (Lateral error less than 8 cm for 90% of the
cases). However, the performance of the navigation control system is still challenged
by the semi-structured environment in the field, including the uneven terrain, variable
plant shapes, and the weed infection. The reliability and performance of field-based
navigation control can further be improved.

2.4 Sensors

The process that transforms raw sensor data intomeaningful phenotypic data is essen-
tially machine perception. Plant traits can be quantified with sensing technologies
at different levels of integration (i.e., plot, plant, or organ). Plot-level traits are often
generic and can be applied to a wide range of crop species and crop growth stages.
Such traits include plant morphological measurements (e.g., canopy height, canopy
width and leaf area) and plant physiological indicators (e.g., vegetation indices and
canopy temperature), which require low-level machine perception. All plot-level
traits can be adopted as plant-level traits if the sensor data of individual plants can
be delineated, namely plant segmentation. Plant segmentation itself also enables



30 Y. Bao et al.

an important plant-level trait, stand count. Other plant-level traits are based on the
measurement of a particular plant organ. In the case of cereal crops, for instance,
plant height is measured from the ground to the flag leaf of a plant before the panicle
becomes visible or to the panicle apex afterward. Since one plant only has one panicle
and one flag leaf, machine perception of such special organs enables plant-level trait
characterization. Stem diameter is another example of the plant-level trait. If the
plant of interest can grow multiple organs of the same type (e.g., leaves, branches,
internodes, flowers, fruits, bean pods, corn ears, cotton bolls, grape berries), accu-
rate machine perception of these organs allows for organ-level phenotyping and lays
the foundation for higher levels of integration. Due to the small sizes and occlusion
issues in the crop fields, machine perception at the organ level remains a challenging
research area. Leaf disease assessment is another type of organ-level trait, which can
be based onmulti- or hyper-spectral analysis or visual perception. Some plant organs
are components of larger plant organs, for instance, the spikelets on a wheat spike.

The majority of sensors used in HTPP are imaging-based. A thorough review of
imaging techniques for plant phenotyping was given by Li et al. (2014). Five key
imaging techniques were identified: visible imaging, fluorescence imaging, thermal
imaging, spectroscopic imaging, and LiDAR. Visible imaging has been used to char-
acterize various plant morphological and architectural traits of leaf, stem, panicle,
root, and seed (Brichet et al. 2017; Bucksch et al. 2014;Miller et al 2017; Zhang et al.
2017). Fluorescence imaging is typically used to measure photosynthesis and plant
stress response (Bresson et al. 2015). Thermal imaging can measure surface temper-
ature, which is related to stomatal conductance and water stress (Buitrago et al. 2016;
Struthers et al. 2015). Spectroscopic imaging such as hyperspectral imaging can indi-
cate water and health statuses of leaf and canopy (Ge et al. 2016; Liang et al. 2017;
Pandey et al. 2017). LiDAR is mostly used to estimate canopy height, leaf surface
area, volume, and biomass (Greaves et al. 2015; Madec et al. 2017; Sun et al. 2017).
In addition to imaging sensors, other sensors often provide an average response in
the field of view. Such sensors include ultrasonic and laser distance sensors, NDVI
spectrometers (e.g., Crop Circle), and infrared radiometers.

2.4.1 Side-View Versus Top-View Imaging

Ground-basedHTPPopensmore possibilities of sensor viewing angles in comparison
to its aerial counterpart. For short crops, the majority of HTPP systems employ a
top-view imaging strategy. Top-view imaging is efficient and effective in quantifying
plot-level traits such as NDVI, LAI, and leaf temperature. However, for some tall
crops, imaging from a side-viewing angle can capture information that cannot be
accessed by top-view imaging due to occlusion. For instance, imaging cereal crops
(e.g., wheat, corn, and sorghum) from the side can reveal plant architecture traits such
as plant height (Busemeyer et al. 2013; Montes et al. 2011), biomass (Busemeyer
et al. 2013; Montes et al. 2011), stem diameter (Bao et al. 2019a; b), and leaf angle
(Bao et al. 2019b). In addition, a light curtain can be used to generate side-view binary
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images of crop rows to estimate plant height and biomass (Busemeyer et al. 2013;
Montes et al. 2011). Another useful application of side-view imaging was sensing
plant population and inter-plant spacing. A push-cart systemwas developed to detect
stem lines for early-stage corn plants using side-view 3D imaging by Nakarmi and
Tang (2012, 2014). Compared to earlier studies using top-view imaging (Jin and
Tang 2009; Shrestha et al. 2004; Shrestha and Steward 2003, 2005; Tang and Tian
2008a, b), the plant architecture of each stand was better exposed in the side-view
images.

2.4.2 PhenoStereo—A Case Study of Plant Organ
Phenotyping by Computational Perception

Sub-canopy phenotyping can provide important agronomic traits such as plant count,
stem diameter, plant height, fruit count, and light interception (Baweja et al. 2018;
Gage et al. 2019;Mueller-Sim et al. 2017;Nellithimaru andKantor 2019; Zhang et al.
2020). It also poses unique challenges to off-the-shelf imaging sensors regarding
short working distance and low light conditions. Stereo vision in synchronization
with a high-intensity strobe light has shown promising potential for sub-canopy
high-resolution RGB and depth (RGB-D) imaging, which enabled fruit counting
(Pothen and Nuske 2016; Wang et al. 2013) and stem diameter estimation (Baweja
et al. 2018). Here we briefly report the development and evaluation of such a stereo
imaging module named PhenoStereo (Fig. 2.1) for sub-canopy plant architecture
phenotyping. PhenoStereo featured a self-contained embedded design, which made
it capable of capturing images at 14 6-megapixel stereoscopic frames per second.
The integration of strobe lights enabled the application of the PhenoStereo under
various environmental conditions (i.e., direct sunlight, backlighting, shadow, and
wind). The PhenoStereo mainly consisted of a developer kit, two RGB cameras,
a printed circuit board (PCB), and a set of LED strobe lights. The developer kit
includes a Jetson TX2 embedded platform (NVIDIA, California, USA), an Elroy
carrier board (Connect Tech Inc., Ontario, Canada), and other accessories on the
carrier board. Jetson is able to simultaneously take image pairs from the stereo camera
through a high-speed interface (PCIe) and save them to a solid-state drive. The stereo
camera has a horizontal view angle of 85.8° and a vertical view angle of 63.6°. The
customized LED strobe lights were integrated to overcome lighting variation and
enabled the use of an extremely high shutter speed to overcome motion blurs. An
electronic circuit was designed to synchronize and trigger the camera pair and the
strobe lights. By using the Robot Operating System (ROS) JavaScript Library, a web-
based user interface was developed to control the cameras and visualize the images.
The interface allows a user to adjust camera parameters (e.g., exposure time, white
balance, etc.), send trigger commands, and view live images on a smartphone/laptop
browser (Fig. 2.11a). The live images and commands are published over a local area
network using Robot Operating System (ROS).
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Fig. 2.11 PhenoStereo for sorghum stem diameter phenotyping. a PhenoStereo is mounted on a
small ground robot and can be controlled on mobile devices via a web interface. b The image
processing pipeline for sorghum stem diameter estimation. A Mask R-CNN model was used to
detect individual stems from original RGB images. The reconstructed point cloud of a selected
stem section was projected onto the x–y plane, where a circle was detected to quantify the stem
diameter. c Correlation between system-derived stem diameter and ground truth

Stem diameter of a sorghum plant is an important trait for stalk strength and
biomass potential evaluation but has been identified as a challenging sensing task
to automate in the field due to high planting densities with heavy tillering (i.e.,
secondary plants originated from the base of a primary plant). To that connection,
PhenoStereo was used to acquire a set of sorghum plant images and an automated
point cloud data processing pipelinewas developed to automatically extract the stems
and then quantify their diameters via an optimized 3Dmodeling process (Fig. 2.11b).
The pipeline employed a Mask Region Convolutional Neural Network (He et al.
2017) for detecting stalk contours and a Semi-Global Block Matching algorithm
(Hirschmuller 2007) for reconstructing 3Dmodels. The 2Ddetectionswere projected
onto 3D point cloud to segment individual stems. After that, each stem was modeled
as a cylinder and circle fitting was carried out on the projected point cloud of the
selected stem section. The correlation coefficient (r) between the image-derived stem
diameters and the ground truth measurements was 0.97 with a mean absolute error
(MAE) of 1.44mm (Fig. 2.11c), which outperformed any previously reported sensing
approaches. These results demonstrated that a properly customized stereo vision
system can be a highly desirable sensing method for field-based plant phenotyping
using high-fidelity 3D models reconstructed from stereoscopic images. With the
proving results from sorghum plant stem diameter sensing, this proposed stereo
sensing approach can likely be extended to characterize a broad spectrum of plant
phenotypes such as leaf angle, ear height, and tassel shape of corn plants and seed
pods and stem nodes of soybean plants.

2.5 Summary

In this chapter, we presented an updated review of infield ground-based roboticHTPP
systems. Additionally, we described the development and evaluation of PhenoBot



2 Field Robotic Systems for High-Throughput … 33

3.0 and PhenoStereo as a case study for corn plant phenotyping. Our goal is to facil-
itate the design process of any new robotic HTPP systems for specific applications.
Based on the rapid recent advancements in robotics, sensors, andAI, we envision that
autonomous, compact, mobile robots or robot fleets are more likely to become the
“boots on the ground” for assessing crop performance in the field. The commercial-
ization of legged robots such as the Spot from Boston Dynamics could provide new
possibilities for reliable mobility in rough crop fields and actively controlled sensor
deployment that maximizes capturing of useful information. On the other hand, AI
is beginning to shift the paradigm of phenotypic traits extraction from sensor data.
“Hand engineered” algorithms are being surpassed by deep learning algorithms that
can automatically learn hierarchical feature representation in rawdata and the domain
knowledge of a phenotyping task. We believe that AI-powered machine percep-
tion will eventually enable the integration of knowledge about plants and “artificial
super vision” (i.e., fusion of different sensing technologies) for high-throughput plant
phenotyping.
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Chapter 3
Cable Suspended Large-Scale
Field Phenotyping Facility
for High-Throughput Phenotyping
Research

Geng (Frank) Bai and Yufeng Ge

Abstract Field-based high-throughput phenotyping (HTP) research has evolved
rapidly in recent years. Various HTP platforms are developed with the aim of
improving the phenotyping efficiency for plant breeding. To the best of our knowl-
edge, field HTP systems, which have been widely integrated into breeding research,
have not been reported yet. In this chapter, we started explaining why researchers
are doing this research and briefly introduced the state of arts of the development
of different types of field HTP systems. A general comparison between large-scale
ground systems, ground vehicles, and aerial platforms was also carried out based on
their pros and cons. Then,we introduced a cable suspended large-scaleHTP facility at
theUniversity ofNebraska-Lincoln, which has been used as a core research facility to
explore different research frontiers in field HTP research. The integration of the hard-
ware and software, the information of onboard instruments, and its unique features
were described. We also showed several innovative datasets captured by the system
at high spatial and temporal resolutions. Phenotypic parameters at canopy and leaf
levels can be retrieved from these datasets, which would deepen our understanding of
the interactions between genetics, phenomics, and the growing environment. At last,
we end this chapterwith a concise summary and truly believe that all relevant research
progress in this field will incubate new generations of field HTP systems, which
could dramatically increase the efficiency of field phenotyping for plant breeding at
an unprecedented scale.
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3.1 Introduction

Undoubtedly, improving crop yield and quality through plant breeding plays a
significant role in feeding the increasing global population with declining resources,
vulnerable environment, and changing climate (FAO 2018). High throughput plant
phenotyping, as an emerging research field, has developed rapidly with the aim
of relieving the efficiency bottleneck of conventional phenotyping work in plant
breeding (Pieruschka and Schurr 2019). Numerous phenotypic parameters can be
quantitated by new phenotyping systems using modern sensor technologies in the
lab, greenhouse, and field environments.

Field phenotyping is a vital component to select the best breeding lines, and it
is conventionally done by breeders using portable tools while trying out different
phenotyping systems developed by collaborators. The traditional phenotyping work
is labor-intensive, and results can be subjective due to the systematic bias introduced
by human observers (Bai et al. 2018). Furthermore, the throughput of the traditional
phenotyping methods has become the rate-limiting factor of the entire plant breeding
cycle with the development of the high-throughput genotyping tools (Furbank and
Tester 2011). Modern sensor packages with data processing algorithms have been
developed to estimate phenotypic parameters, including plant growth rate, height,
flowering, andmaturity date, lodging, tolerance to abiotic and biotic stresses (Li et al.
2014;Zhang andZhang2018). Figure 3.1 illustrates the undergoing transitionofField
Plant Phenotyping (FPP) from traditional manual phenotyping to fully automated
systems.

Field HTP systems can measure different phenotypic parameters at the canopy
level. For example, the dynamics of the vegetation coverage, average height, color
distribution, and vegetation indices can be measured on a daily or weekly basis.
Although plant scientists use plot-averaged parameters to screen breeding lines,
more detailed information could be retrieved if the HTP systems can carry out
the leaf-level measurement. However, it is still challenging to accurately measure

Conventional FPP methods Current HTP FPP systems Future HTP FPP systems

• Low throughput
• Limited data volume
• Labor intensive
• Result can be subjective

• Good performance for specific task
• Large data volume
• Breeders started trying out
• Costly/not automatic/not accurate

• Completely replace labor
• Accurate measurement
• Affordable 
• Fully automatic

Fig. 3.1 The transition from conventional field plant phenotyping to future systems
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phenotypic parameters at the leaf level in the field condition with accuracy and
high spatiotemporal resolution. The environmental factors like wind disturbance,
changing incoming solar radiation, and repeatable positioning of sensors are the
main constraints.

Field HTP systems can be categorized into ground-based large-scale facilities
and mobile platforms. Table 3.1 lists the pros and cons of large-scale ground
systems, ground vehicles, and aerial platforms. Themost common field HTP systems
include movable ground and aerial systems. On one hand, ground vehicles usually
have a superior payload capacity for onboard instrumentation and power supplies,
comparing to the aerial platforms, ranging from low-cost manually pushed carts to
specifically designed fully automated field robots (Andrade-Sanchez et al. 2013;
Wendel and Underwood 2016). On the other hand, aerial platforms have the highest
phenotyping throughput and full-season field accessibility (Li et al. 2019; Shi et al.
2016). The large-scale ground system could play a vital role in testing different
sensor combinations under different working conditions due to its advantages of
sensor payload, battery life, positioning accuracy. However, the cost of the large-
scale system usually is much higher than that of mobile platforms (Kirchgessner
et al. 2017).

A Large-scale field HTP system has the capacity to carry out data collection
at unprecedented spatiotemporal resolutions with high repeatability without field
disturbance. Also, it could be used to test new sensormodules and newdata collection
protocols by leveraging their superior performance. In the following,wewould like to
introduce a large-scale field phenotyping system,NU-Spidercam, at theUniversity of
Nebraska-Lincoln. An overview of the facility regarding its design and development
is first provided, followed by the different datasets at canopy and leaf levels with
finer spatial and temporal resolution.

Table 3.1 Pros and cons of
different field HTP systems

Aspects Large-scale
ground system

Ground
vehicle

Aerial
platform

Payload Good Good Limited

Power supply Good Good Limited

Measurement
repeatability

Good Limited Limited

Full-season
accessibility

Good Limited Good

Automation of
data collection

Good Good Good

Stationary
measurement

Good Limited Limited

Coverage area Limited Good Good

Affordability Limited Good Good
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3.2 System Introduction

The main components of the facility include a multi-winch system, a sensing plat-
form, a control station, a subsurface drip irrigation system, and an on-site weather
station. A more detailed description of NU-Spidercam could be found in (Bai et al.
2019). The sensing platform could be moved to any location in the 0.4-ha scanning
area with a clearance over 9 m. The accurate motion control system enables the
fast and precise movement of the platform with a maximum speed of 2 m/s and an
estimated accuracy of ± 5 cm. A maximum of 30 kg of sensor packages could be
mounted on a 2Dgimbal frame at its lower partwith Pan andTilt flexibility. Figure 3.2
shows the details of the sensing platform and the GUIs (Graphic User Interfaces)
of the control software. The onboard instruments include a multispectral camera, a
LiDAR, a thermal infrared camera, a spectrometer-fiber system, and a hyperspec-
tral camera. Table 3.2 shows the raw datasets collected using these instruments and
their potential applications. Modern sensors have been extensively investigated in
plant phenotyping, and new sensing technologies are being constantly applied in
this research area (Fahlgren et al. 2015; Li et al. 2014; Paulus 2019). Optic sensors
have the advantage for rapid and non-destructive sensing. Besides, cameras with
imaging capacity could provide data with high spatial resolution than non-imaging
sensors. Spectral reflectance of crops from visual, near-infrared, and thermal infrared
wavelengths have been well studied and different phenotypic traits were applied
or developed to help breeders monitor the crop performance. With the technology
advancing, the hyperspectral camera shows the potential to outperform most of the
cameras combined. Also, sensors like Light Detection and Ranging (LiDAR) are
widely used for specific phenotypic traits.

(a)
(c) 

(b)
(d)

Mul�spectral camera
Thermal IR camera
Downlooking op�cal
fiber cable

LiDAR
Hyperspectral camera

Fig. 3.2 Hardware and software integration of NU-Spidercam. a sensing platform; b Interactive
GUI of the control software; c onboard instrument; d GUI for real-time feedback of the control
software
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Table 3.2 Onboard sensors of NU-Spidercam and the potential applications

Sensor type Raw dataset Parameters/applications

RGB and multispectral camera Images at Red, Green, Blue,
and Near-infrared spectral
bands

Vegetation coverage
Average canopy NDVI
Average soil NDVI
Canopy structure parameters

Thermal infrared camera Temperature matrix Average canopy temperature
Average soil temperature

Spectrometer Reflectance spectra Broad-band vegetation
indices
Narrow-band vegetation
indices

LiDAR 3D point cloud Average canopy height
Canopy structure parameters

Hyperspectral camera Hyperspectral image cube Reflectance spectra and
vegetation indices at the leaf
level

3.3 Example Results

3.3.1 Data Delivery Pipeline

The data delivery pipeline is an essential part of NU-Spidercam,which enables scien-
tists to carry out further data analysis with no delay. Figure 3.3 illustrates the high-
level data delivery pipeline of NU-Spidercam (Bai et al. 2019). Datasets from the
onboard cameras, spectrometer, and on-site weather station are processed individu-
ally and integrated into a data sheet to be delivered to facility users. A flowchart of the
image processing work is shown in Fig. 3(a). The automatic segmentation of the crop
from the soil background was realized using the multispectral images. Image regis-
tration between multispectral and thermal infrared images enabled the crop segmen-
tation of the thermal infrared image. Then, parameters related to canopy coverage
and temperature were extracted. More technical details about the data processing
could be found in (Bai et al. 2019).

3.3.2 Estimation of Vegetation Growth at Canopy Level

Numerous studies have been carried out tomonitor the dynamics of vegetation growth
using different plant phenotyping systems. Generally, ground and aerial vehicles
are capable of measuring canopy coverage rate, canopy height, and color-based
parameters at high spatial resolution (Bai et al. 2016; Sankaran et al. 2015; Shi et al.
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Fig. 3.3 The high-level flowchart of the data processing of NU-Spidercam, including data collec-
tion, processing, and delivery. a illustrates there are image, spectral, and weather datasets; b shows
a snapshot of the dataset delivered to facility users along with the raw dataset

2016; Yang et al. 2017). The onboard sensor package of NU-Spidercam has been
used to monitor canopy growth in a similar fashion with a slightly higher temporal
resolution.

Figure 3.4 illustrates the result of the dynamics of the green vegetation throughout
the growing season from four six-row maize plots with two different maturity days
and two planting densities. This preliminary dataset was selected here to show the
ability of the imaging and spectral sensors to distinguish different maturity dates and
planting densities. The assumption was the sensors could capture the difference of
the vegetation growth between planting densities and the difference of senescence
betweenmaturity groups at the late growing season.We also expected to differentiate
the above-ground biomass, which should be closely related to planting densities.
GreenVegetation Pixel Faction (GVPF) andNormalizedDifferenceVegetation Index
(NDVI) were calculated from the raw images and spectral readings collected by the
VNIR camera and the spectrometer on the sensing platform. The image processing
protocol introduced in Fig. 3.3a was adopted to segment the green pixels from the
background for the calculation of GVPF, while NDVI was also calculated from the
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Fig. 3.4 Green Vegetation Pixel Fraction (GVPF) and Normalized Difference Vegetation Index
(NDVI) of four maize plots with two maturity dates (108 and 120 days) and two planting densities
(24,000 and 36,000 plants/acre). a GVPF difference between different planting densities until the
late growing season and GVPF difference between different maturity groups at the late growing
season. b Similar patterns are observed using NDVI except saturation in the middle of the growing
season

equation of spectral reflectance in Fig. 3.3a. The lens of the VNIR camera and the
fiber tip of the spectrometer-fiber system were placed near each other for maximum
overlap of their Field of Views (FOV).

GVPF was found to have a better performance to differentiate the above-ground
biomass and the maturity dates in this experiment (un-published dataset). GVPRs
under low planting densities show lower values than that of high planting densities
consistently throughout the growing season. NDVI calculated from the spectrometer-
fiber system show the potential to indicate the planting densities at the early and the
late season. A reason for the better performance of GVPR values can be that the
image could cover most of the plot area while the standard fiber optics covers a
much smaller area under the same measuring height. The early mature varieties
(M108) in this example show earlier senescence than M120 from all figures based
on the increasing gap between the GVPFs and NDVIs of two varieties at the late
growing season. It should be emphasized that GVPF and NDVI values estimate the
above-ground green vegetation biomass rather than the total above-ground biomass.

Figure 3.5 shows the estimation of the above-ground biomass and canopy height
by the onboard LiDAR. A ratio was calculated from the LiDAR point count of
above-ground vegetation and the total count of the LiDAR points. A similar result
was found in Fig. 3.5 compared to Fig. 3.4, except for a less sharp decrease during
the plant senescence. The result indicates that LiDAR could detect the difference
of the above-ground biomass without excluding the non-green part of the canopy
to a certain degree. The varietal difference made a clear contribution to the height
differencewhile planting density did not. Essential information like the height growth
rate can be further extracted from the dataset. Thus, these parameters could be used
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Fig. 3.5 Relative comparison of above-ground biomass and height measurement by LiDAR for
four maize plots with two maturity dates and two planting densities. a shows an obvious difference
of the above-ground biomass between two planting densities, and also the difference between two
maturity rates when plants were entering the end of the reproduction stage. b shows a constant
difference in canopy height between two maize genotypes after achieving the maximum height

to estimate the above-ground biomass and canopy height across the whole growth
season. We believe that these dynamic curves could provide more insight to plant
scientists about the crop growth at high temporal resolution.

3.3.3 Measurement of Highly Variable Parameters

Some phenotypic parameters are highly influenced by the fluctuating environment,
like solar radiation and air temperature, hourly or even shorter time intervals. Among
these parameters, canopy temperature has been regarded as an indicator of water
stress when combing with environmental parameters (Irmak et al. 2000; Jackson
et al. 1981). Canopy temperature is highly influenced by the surrounding micro-
climatic condition, especially the air temperature and solar radiation. However, the
measurements were usually limited to a single measurement per day (Gonzalez-
Dugo et al. 2015). Thus, the ideal way is to measure canopy temperature at a higher
spatiotemporal resolution in breeding experiments (Bai et al. 2019).

Figure 3.6 shows an example of measuring temperature-related parameters
multiple times in a single afternoon. NU-Spidercam could carry out repeated
measurements for each experiment plot by precisely revisiting the same measure-
ment position multiple times during the day. This dataset was collected on an early
season soybean plot on a sunny afternoon without clouds. Air temperature and radi-
ation flux density, collected from a dedicated weather station next to the scanning
area, were combined with canopy and soil temperature in Fig. 3.6b. The figure shows
that canopy temperature is closely related to the air temperature, while soil temper-
ature was closely related to solar radiation. The most substantial difference between
canopy and air temperature occurred in the early afternoon around local solar noon.
We believe that this kind of data could help researchers to study the interactions
among these parameters at an unprecedented resolution.
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Fig. 3.6 Measurement of the canopy (Tc) and soil temperature (Ts) for a two-row soybean plot
at high temporal resolution with corresponding air temperature (Ta) and Photosynthetically Active
Radiation (PAR). a illustrates the dynamics of Tc and Ts with local time stamps. b combined all
measurements to show the close relationships between parameters. c provides the RGB images of
the target plot with partial canopy coverage, and d is a binary image from crop segmentation with
canopy in white color and bare soil in black color

3.3.4 Canopy Structure Parameters Beyond Height

Canopy height information can be accurately retrieved using different sensors on the
ground and aerial phenotyping systems (Jimenez-Berni et al. 2018;Madec et al. 2017;
Sun et al. 2017; Yuan et al. 2018). However, other canopy structure parameters, like
leaf angle, leaf area, and panicle size, could be critical information for accurately
estimating primary plant physiological activities and yield. High-density LiDAR
scanning and multi-angle imaging are two of the promising technologies to retrieve
the canopy structure properties mentioned above. The stable sensing platform of NU-
Spidercamwith pan-tilt capacity and flexiblemovement pattern provides an excellent
opportunity to explore these measurements.

Canopy structure by LiDAR

More parameters related to canopy structure beyond canopy height have been inves-
tigated using a high-density point cloud fromLiDAR. The parameters include above-
ground biomass and leaf area (Su et al. 2019; Walter et al. 2019), size of sorghum
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panicles (Malambo et al. 2019), segmentation of plant organs (Jin et al. 2019), and
leaf angles (Itakura and Hosoi 2019).

Figure 3.7 shows an example of point clouds generated by the onboard LiDAR
when the sensing platformwasmoving at a constant speed over amaize plot. A denser
point cloud was collected comparing with static scans, especially the density along
the traveling direction of the sensing platform. Figure 3.7a shows the raw point clouds
obtained by the proposed method. Figure 3.7b shows the row centers can be detected
byobserving the peaks andvalleys of the pixel count acrossmultiply rows. Figure 3.7c
indicates that a relative comparison of leaf area index or above-ground biomass
among different genotypes could be realized by comparing the vertical distribution
of the pixel count with considerations of over/under scanning. Figure 3.7d shows
a 0.2 m slice of the point cloud along the travel direction of the sensing platform.
Leaf-level parameters could be extracted from this raw dataset, including leaf count,
leaf angle distribution, etc.

3D reconstruction by multi-angle imaging

3D reconstruction technology is one of the promising tools to extract more structure-
related parameters quantitatively. A few studies used LiDAR and stereo-vision
cameras to estimate the geometric dimension of the top canopy at leaf level under
field conditions (Bao et al. 2019; Malambo et al. 2019).

(a)

(b)

(c) (d)

Fig. 3.7 LiDAR point cloud (a) and its distribution at horizontal (b) and vertical (c) orientations.
(d) indicates that more information at the leaf level could be extracted
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Fig. 3.8 Length estimation of sorghum panicles by 3D reconstruction technology based on multi-
angle RGB imaging (With help of Dr. Abbas Atefi). Figure a–c show an RGB image at one imaging
angle, a snapshot of the generated point cloud, and a snapshot of the mesh file based on the point
cloud. Figure (d) illustrates the length measurement of five sorghum panicles by this method

Multi-angle images were taken above a sorghum plot by moving NU-Spidercam
around the plot, while the onboard RGB camera was always facing the target with a
slanted angle. Figure 3.8 shows a preliminary result, which used multi-angle RGB
imaging data with 3D reconstruction tools (3DF Zephyr, 3DFlow, Italy) to estimate
the panicle length of sorghum plants. No validation data is available for this initial
trial, but the estimated length is within the appropriate range (Malambo et al. 2019).
Morework is needed to improve thequality of the reconstruction result of the sorghum
panicles.

3.3.5 Hyperspectral Imaging

The hyperspectral imager provides a much higher volume of data by combining the
spectral information of the spectrometer and the spatial information of the camera.
It has been applied in indoor HTP systems (Fahlgren et al. 2015; Pandey et al.
2017). It has also been widely used in the remote sensing community on different
platforms, mostly crewed airplanes and satellites, to collect vegetation reflectance for
ecology studies (Wang andGamon2019).With the decrease of the cameraweight and
size, researchers focusing on field plant phenotyping is leveraging the advantages of
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hyperspectral imaging in recent years (Campbell et al. 2018; Virlet et al. 2017). Two
kinds of hyperspectral cameras have been used for field plant phenotyping, namely,
mirror-scanning and push-broom. The mirror-scanning camera can be massive and
heavy, comparing to the already pricy push-broom type. The platform can be static
when using the mirror-scanning camera to capture 2D hyperspectral image because
the motion of the internal mirror replaces the movement of the platform itself. Only
one line of the target is scanned by the push-broom camera at once. Thus, the constant
moving of the platform across the target is necessary to form a 2D image when using
a push-broom camera. The latest publication shows that parameters related to plant
physiological activities could be estimated from the full reflectance spectrum at leaf
level in the field condition (Fu et al. 2020).

Hyperspectral images of twomaize plotswere acquired using a push-broomhyper-
spectral camera while moving the sensing platform of NU-Spidercam at a constant
speed along the crop row. White reference was collected before the measurement
by setting up the reference panel in the one-acre field. Figure 3.9 shows an example
image with the full spectrum of the different components in the image. The sunlit and
shadowed leaves show a significant difference in the reflectance percentage, while
the tassel has a distinctive spectrum pattern. Thus, these images could provide much
more information than multispectral images at the leaf level. There are a few chal-
lenges of using hyperspectral cameras in the field condition close to the canopy. The
moving speed of the sensing platform for this preliminary study was set to 0.1 m/s
or even slower to avoid stretched images. A proper reflectance calibration is also
quite challenging for cloudy days due to the constant fluctuation of solar radiation.
In addition, crop movement by wind could lead to distortion of the image.

(a) (b)

Moving direc�on of the sesing pla�orm are
maclartcepsrepyh

ehtfo
enil

nacS

Fig. 3.9 Example images and spectrum characteristics of vegetation and tassels of a 2-row maize
plot. Figure (a) shows the RGB image of the two-row maize plot extracted from the hyperspectral
data cube. Figure (b) illustrates the full spectrum of the whole plot (Plot), shaded leaf, sunlit leaf,
and tassel
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3.4 Summary and Future Scenarios

In this section, we started with a systematic comparison of field HTP systems,
followed by an introduction of a cable suspended large-scale HTP facility at the
University ofNebraska-Lincoln (NU-Spidercam). The focuswas on showing the new
datasets collected at canopy and leaf levels at high spatial and temporal resolution. A
large number of phenotypic parameters could be retrieved from these datasets for a
deeper understanding of the interactions between genetics, phenomics, and growing
environments.

Large-scale field phenotyping facilities, like NU-Spidercam, have been utilized as
core research facilities to develop different data collection pipelines due to its unique
advantages. We expect that fully automated systems will be designed to replace
most of the conventional phenotyping work in the near future with the continuous
advancement of the instrumentation and data analysis capacity. Advanced sensors
with different data processing methods need to be continuously developed to equip
the sensing platforms to meet this anticipation. Reliable field systems, which can
deliver high-quality data hourly and at leaf-level resolution with an affordable cost,
will be the milestone to realize the fast adoption of field HTP technology by the
breeding community.
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Chapter 4
Structure from Motion and Mosaicking
for High-Throughput Field-Scale
Phenotyping

Hadi AliAkbarpour, Ke Gao, Rumana Aktar, Steve Suddarth,
and Kannappan Palaniappan

Abstract This work presents a 3D-enabled method to register aerial image
sequences. Our approach is based on a novel Bootstrapped Structure-from-Motion
(BSfM) followed by analytical homography reprojection or georegistration. BSfM
is a fast and robust method to recover the 3D exterior orientation of the camera poses
and the scene 3D structure from image sequences. The recovered 3D parameters
are used in an analytical approach to estimate homography matrices that project
the input images onto the dominant ground plane in the scene to produce a global
mosaic of the field and plants. Preliminary experimental results validate the approach
and show satisfactory results suitable for scaling up to support high-throughput field
phenotyping (HTP) for agricultural crop field experiments.

Keywords Structure-from-Motion (SfM) · Video stabilization · Image
registration · Orthorectification · Mosaicking

4.1 Introduction

Population growth and the increasing demand for food production require improved
cultivars adapted for changing environmental conditions and better field manage-
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ment practices at the single plant scale. High-throughput phenotyping (HTP) of
whole plants and organs in vivo in the field using image analysis and machine learn-
ing would enable large-scale data collection at high spatial and temporal resolution
to better characterize and select for desirable plant morphology and physiology-
related traits as part of crop improvement strategies. Remote sensing with unmanned
aerial vehicles (UAVs) provides unprecedented multispectral data and accelerates
the progress of precision agriculture applications such as drought stress detection,
weed detection, yield prediction, and nutrient status assessment. However, it requires
comprehensive image processing to generatemeasurements (Maes and Steppe 2019).
To perform HTP on a large scale, computer vision techniques must advance to take
advantage of the data fromunmanned vehicles. Holman et al. (2016) developed a high
throughput phenotyping method for estimating wheat plant height and growth rate
using aerial imagery collected by RGB cameras mounted on UAVs. Measurements
were extracted from high resolution 3D models generated using Structure-from-
Motion (SfM). Cooper et al. (2017) examined SfM photogrammetry and Terrestrial
Laser Scanning (TLS) for measuring grass above ground biomass (AGB) which can
be used for analysis of natural grassland systems. Metrics obtained from TLS and
3D point clouds produced by SfM were evaluated against destructive measurements
and showed promising performance. Han et al. (2019) evaluated the performance of
various machine learning approaches, including support vector machines (SVMs)
and random forest, for maize AGB estimation using structural and spectral data pro-
vided by UAVs and demonstrated the potential of machine learning methods in this
application. To assist in quantifying plant disease, Stewart et al. (2019) trained a
Mask R-CNNmodel for segmentation of UAV imagery to detect northern leaf blight
(NLB) disease lesions. Their work showed the efficacy of deep learning on UAV data
for high-throughput measurements of plant disease by yielding reasonable detection
results with respect to the ground truth. Ampatzidis and Partel (2019) achieved high
accuracy for tree detection, geolocalization, categorization, tree health indices analy-
sis, and citrus varieties evaluation by utilizing convolutional neural networks onUAV
images. Maimaitijiang et al. (2020) demonstrated that deep neural network (DNN)
can be effectively used for crop yield prediction and provided adaptive performance
across different soybean genotypes.

Local feature extraction and matching are essential components of many com-
puter vision applications such as video analytics, image retrieval, Structure-from-
Motion, and Multi-view Stereo. A basic feature matching pipeline consists of three
stages—detecting local feature keypoints from two images, creating descriptors for
keypoints, and establishing feature correspondences by matching descriptors from
both images. Fortunately, the past few decades have led to tremendous progress in
the development of such feature descriptors and matching techniques. SIFT (Lowe
2004) and SURF (Bay et al. 2006) are good-performing hand-crafted floating-point
features that are widely used. They provide reliable feature matches despite their rel-
atively high computational cost. To improve computational efficiency and target for
real-time applications, several binary feature descriptors were also developed such
as BRISK (Leutenegger et al. 2011), ORB (Rublee et al. 2011), and AKAZE (Alcan-
tarilla et al. 2013). However, high speed approaches compromise the matching accu-



4 Structure from Motion and Mosaicking for High-Throughput … 57

(a) Image Patch (b) SIFT (c) SURF (d) AKAZE (d) ORB

Fig. 4.1 Feature point detection results for a sample image patch (256 × 256 pixels) cropped from
the first frame (4864 × 3648 pixels) in the cotton emergence data sequence 3. 100 feature points
are detected by each method

racy for binary descriptors, especially in challenging scenarios where large scale or
perspective changes exist in the images. Local keypoint detection results by several
state-of-the-art hand-crafted features introduced above are visualized in Fig. 4.1.
Some frequency-based features like a recent DCT-based in Gao et al. (2020)
showed merit in aerial SfM applications. In recent years, many deep learning-based
feature matching methods were proposed to improve upon the hand-crafted fea-
tures (Zagoruyko and Komodakis 2015; Simo-Serra et al. 2015; Balntas et al. 2016;
Tian et al. 2017; DeTone et al. 2018; Ono et al. 2018). The advent of convolutional
neural networks (CNNs) significantly increases the performance of learned features
for applications like matching, image retrieval, object detection, etc. Dusmanu et al.
(2019). However, deep learning-based requires a large amount of training data and its
performance exhibits high variance across different tasks and datasets (Schönberger
et al. 2017). A comprehensive review of different features and their effects on SfM
pipelines is presented in our recent work (Gao et al. 2020).

Problem Statement: A sequence of n ordered images (video) I = {Ii |i = 1 . . . n}
is given as input. The images were captured from an airborne camera observing
a scene while the UAV is flying over it. For each image frame Ii we consider a
camera geometry corresponding to the pose of the camera at time t = i . The pose
(geometry) of i th camera (frame/image) is defined by its orientation Ri ∈ SO(3)
and its location (position) at ti ∈ R

3, jointly denoted as Ci = (Ri , ti ). With no prior
knowledge of the coordinate systems, we assume the pose of the first camera as
our world coordinate system by C1 = (I3×3, 03×1), and seek to estimate the pose
of the remaining “cameras” (image frames) in the sequence expressed in the world
coordinate system. Furthermore, we assume all images were taken by the same
physical camera with a constant focal length.

Our proposed method for camera pose recovery is called B-SfM and its pipeline
is shown in Fig. 4.2. It starts with choosing two frames at the beginning of an image
sequence (video) with a sufficient angular diversity to establish a 3D coordinate
system. Given this 3D coordinate system and sparse set of triangulated 3D points, the
poses of subsequent frames are estimatedusing2D-3Dcorrespondences.Aperiodical
local optimization (local BA) is performed within small window of frames. A robust
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Fig. 4.2 Diagram of the proposed camera pose recovery pipeline. The bootstrapping takes place
first to initialize the system (top block), followed by an incremental pose estimation (bottom block)

global optimization (BA) is applied to larger set of frames during the process to
enforce a global consistency between the recovered camera poses.

The rest of this article is arranged as follows: Feature extraction and correspon-
dence establishment is discussed in Sect. 4.2. Recovering camera poses is introduced
in Sect. 4.3 and our experimental results are presented in Sect. 4.4.

4.2 Correspondence Establishment

SfM begins with the establishment of feature correspondences. Assume a set of
sequential images (video) as input I = {Ii |i = 1 . . . n}, n being number of frames.
On each image a feature extraction method identifies distinguishable image points
(features). The features are ideally unique and invariant to image illumination, rota-
tion, and scale. SIFT, SURF, and AKAZE which were introduced earlier are good
options for this purpose. Some recent Deep Learning (DL) based feature descriptors
have also proved to be good candidates (Dusmanu et al. 2019). Binary features such
as ORB (Rublee et al. 2011) can be also used to gain efficiency with the cost of lower
robustness. Let Fi be the set of features extracted from Ii . Then the set of all features
can be defined as

F = {Fi |Fi ⊂ [1..height] × [1 . . .width]}. (4.1)

Feature matching is the next step after extracting the features. A feature matching
algorithm receives two set of features corresponding to two input images (Ik, Il) and
for each feature in Ik , it search for the best corresponding feature in Il which satisfies
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a distance (or similarity) metric. The set of matched features (correspondences) is
defined as

M = {Mi j |Mi j ⊂ Fi × Fj , i �= j}. (4.2)

One common practice in the literature is to match every frame within an image
dataset to every other frame, however this has computational complexity of O(n2).
Since the image frames in a video are sequentially ordered, one can take advantage
of their temporal coherency and drastically reduce the computational cost for feature
matching [xx TGRS]. Meaning that features of a frame Ii is only matched to the fea-
tures from the next frame in the sequence, I(i+1), resulting in a reduced computational
complexity of O(n). In other words, Eq. (xx) becomes as

M = {Mi,i+1| Mi,i+1 ⊂ Fi × Fi+1}. (4.3)

Thus the point correspondences can be established as a set of feature tracks (concate-
nated pairwise matches) T = {τ j | j = 1 . . .m}, where m is total number of tracks
and a track τ j is defined as

τ j = {x j,i | x j,i ⊂ Fi , i = h j , h j + 1, . . . , h j + γ j − 1}, (4.4)

where h j and γ j , respectively, are the indices of the starting view (frame/camera) and
the length (or number of elements) in track τ j . x j,i represents the 2Dpixel coordinates
of the feature correspondence in view i within track j .

4.2.1 Matching Strategies

There are three common strategies to find matches between two image frames once
their descriptors are built.

Nearest Neighbor Matching: For a keypoint p in the reference image, its feature
descriptor is compared against all the candidate descriptors in the matching image in
terms of L2 or Hamming distance. The best match for p is its nearest neighbor in the
matching image. Nearest neighbor is defined as the feature descriptor that produces
the smallest matching distance with respect to p.

Distance Ratio Matching: This method is an effective feature matching strategy
between a reference image and a matching image (Lowe 2004). It is widely used by
many feature matching approaches including SIFT (Lowe 2004), SURF (Bay et al.
2006), and AKAZE (Alcantarilla et al. 2013). The nearest neighbor of keypoint p is
first determinedusing the schemediscussed in the nearest neighbormatching strategy.
The matching distance of the nearest neighbor is denoted as D1. In addition, the
second nearest neighbor is identified in a similar manner and its matching distance is
denoted as D2. After that, the nearest neighbor distance ratio is computed as follows:
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ρ = D1/D2. (4.5)

The nearest neighbor is identified as thematch for keypoint p if ratio ρ is smaller than
a threshold, e.g. 0.8 for SIFT. Distance ratio matching strategy has proven successful
for reducing the number of false-positive matches caused by ambiguous or repetitive
structures in the image.

Threshold-basedMatching: Similar to nearest neighbormatching and distance ratio
matching, a keypoint p in the reference image is compared against all keypoints in
the matching image using a distance metric. The best match for p is the one whose
matching distance is below a pre-defined threshold. Threshold-based matching is
adopted by some methods such as one of the pioneering works on deep learning-
based features (Zagoruyko and Komodakis 2015). However, one major drawbacks of
threshold-based matching is that the threshold largely depends on the input data and
determining an optimal threshold for a particular type of images can be laborious.

4.3 Camera Pose Recovery

Knowledge about the geometry of camera pose corresponding to each view (frame)
is essential for approaches dealing with 3D information such as multi-view stereo
scene (MVS) 3D reconstruction, navigation, tracking, and 3D-enabled registration.
In airborne imaging systems the pose of the aircraft and sometimes the pose of the
camera are measured via onboard sensors (INS). These measurements are known as
metadata which include the position (by GPS) and orientation (by IMU), together
known as 3D pose. Although the metadata are recorded in UAVs, in majority of
low-end UAVs the precision of the 3D poses are far below to be directly used in
downstream processes (e.g., in registration). In the absence of high-quality camera
pose information in aerial imagery, a common approach is to use a Structure-from-
Motion (SfM) method which tries to estimate the pose of each view in the collection
alongwith estimating a set of sparse 3Dpoints from the scene. Although, the classical
SfM is a well studied problem in computer vision literature, it is still considered a
hard problem and is actively investigated. Some challenges in SfM in plant aerial
imagery include the large image size, high number of views (long sequence of videos)
and difficulty in identifying unique features in the images (due to homogeneous
underlying textures in the scene). Despite these challenges, there are a few advanced
commercial GIS software products that perform well recovering the camera poses
from aerial imagery, however, they lack robustness and speed.

CameraModel:We use a pinhole cameramodel inwhich the homogeneous 2Dpoint
x = [x y 1]ᵀ represents the image of a homogeneous 3D point X = [X Y Z 1]ᵀ on
the 2D camera focal plane and obtained by

x = K [R|t]X, (4.6)
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where R3×3 and t3×1 are the rotation matrix and translation vector from the world
coordinate system to the camera one, respectively. K3×3 in (4.6) defines the camera
calibration (intrinsic) matrix

K =
⎡
⎣

f 0 u
0 f v
0 0 1

⎤
⎦ , (4.7)

f being the camera focal length in pixels and (u, v) is the principal point.

4.3.1 Bootstrapping

In the B-SfM initialization, the goal is to estimate the 2th camera pose C2 using first
two images I1 and I2. In case of a calibrated camera, the geometric relation between
two images I1 and I2 can be expressed by the essential matrix E defined as

E = t2 × R2 (4.8)

and it can be estimated by having a set of feature correspondences between the
two views. Having E one can directly extract rotation matrix R2 and translation
vector t2 (up to a scale factor). The essential matrix enforces the relation between
the corresponding image points x j,1 and x j,2 in I1 and I2 as

x̃ j,2 E x̃ j,1 = 0. (4.9)

The geometric implication of (4.9) is that the feature point x j,2 lies on a line (known
as epipolar line) corresponding to its pair x j,1 determined by the epipolar constraint
(4.9). Note that x̃ represents the normalized image coordinates of x, defined as x̃ =
[u, v]ᵀ

, which can be obtained by multiplying the inverse of the intrinsic matrix
K by the feature coordinates. Nister in Nistér (2004) proposed a method called 5-
point algorithm which requires just five-point correspondences (minimal solution)
between the two images to estimate the essential matrixE. There exist other methods
such as the 8-point method proposed by Longuet-Higgins Longuet-Higgins (1981);
Hartley (1997) that requires minimum of eight noncoplanar point correspondences
between the views to estimate a relative of the essential matrix known as fundamental
matrix. Unlike the 5-point algorithm, the 8-point algorithm does not require camera
calibration. In the case of plant field multi-view analysis, using the 5-point algorithm
is preferred over the 8-point one as it relaxes the requirement of having the points to
be noncoplanar. Once the essential matrix between the two views is estimated, the
rotation and translation components can be extracted by decomposing it as described
in Nistér (2004). Doing so provides four solutions (combinations) of R2 and t2
among which just one is a valid solution. The correct solution can be determined
by triangulating the point correspondences using all four geometrically possible
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solutions and identifying the configuration that provides a physically valid (feasible)
solution by counting the number of the triangulated 3D points which fall into the
front of both cameras.

4.3.2 Robust Pose Recovery

After performing the Bootstrapping, the first two camera coordinates in the sequence
are estimated in an arbitrary reference. Having the matches between the two views,
M1,2, one can estimate their corresponding 3D points using triangulation. Ideally,
all matched 2D points x j,1 and x j,2 define the image coordinates of an identical 3D
point X j in the scene. In other words, if the 3D coordinates of a point like X j is
known, then all its corresponding 2D image points could be computed by projecting
X j onto the i th and j th views using (4.6). In real scenarios, the coordinates of
3D point X j are not available, however, one can estimate it by casting ray passing
through the camera center and the image point in each camera. In a perfect model
(no noise), the two rays cast must intersect at an identical point in 3D which would
be equivalent to X. However, in real scenarios this is not the case and therefore an
optimal solution for X must be estimated. Such a method is known as triangulation
and there are several methods in the literature to perform it, among which we use
the Direct Linear Transformation (DLT) (Hartley et al. 2013). The output of the
triangulation stage is a set of sparse 3D point cloud which all are expressed in the
coordinate system of the first camera. For a next image frame Ii in the sequence,
the goal is to estimate the coordinate system of the camera pose corresponding to
the i th view. There are generally two methods for doing so. One is to keep doing
the bootstrapping on every adjacent view in the scene and then concatenate their
estimated rotation and translation vectors to express them in the coordinate of the
first camera. A problem that has to be solved in this method is to identify the relative
scale factors between the translation vectors estimated between each two pair. This
technique is called pairwise incremental camera pose estimation. Although there are
several methods which use this technique (Schönberger et al. 2016; Mur-Artal et al.
2015), however, for the case of recovering camera poses in a continuous set of frames,
it is more robust if a Perspective-n-Point (PnP)method (Moreno-Noguer et al. 2007)
is used to estimate the subsequent cameras after the bootstrapping. Based on an
existing 3D model obtained from triangulation of the feature matches between the
first two views, a sequential camera pose estimation can be done by incrementally
registers new cameras from 2D-3D correspondences. Using PnP will reduce the
unnecessary computational complexity of essential matrix estimation as it requires
only four correspondences between the image features of the current frame and the
know (previously estimated) 3D points (Gao et al. 2003).
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4.3.3 Optimization by Bundle Adjustment

As mentioned earlier, the 3D points associated with the tracks (for each τ j there
is a 3D point X j assigned to it) are all estimations from the observations (feature
points) using the geometry of involving cameras (views). The camera poses used to
cast the rays and estimate the 3D points in the triangulation process are often highly
imprecise, however, there is a common optimization method called Bundle Adjust-
ment (BA) to improve the estimation. BA refers to the problem of jointly refining
the estimated camera poses and 3D points in an optimal manner using reprojection
error as the quality metric. Given a set of n cameras with initial poses (translations
and orientations) and, m 3D points, BA optimization is defined as a least squares
minimization using the L2-norm or sum-of-squared reprojection errors:

E = min
Ri ,ti ,Ki ,X j

n∑
i=1

m∑
j=1

‖x j i − g(X j ,Ri , ti ,Ki )‖2, (4.10)

where Ri , ti ,Ki are, respectively, the rotation matrix, translation vector, and (intrin-
sic) calibration matrix of the i th camera, X j is the j th 3D point in the scene and
observation x j i is the 2D image coordinates of feature X j in camera i . The mapping
g(X j ,Ri , ti ,Ki ) is the reprojection model defined in (4.6). The reprojection error
basically measures the Euclidean distances between the projection of an estimated
3D point on its corresponding views using the estimated camera poses (rotation and
translation). In an ideal case (noise free), E must be zero, however, this is not the case
due to presence of noise both in the feature correspondences (e.g., low localization
precision) and also in the estimated camera poses. In order to optimize these esti-
mations and mitigate the noise level, Levenberg Marquardt (LM) is the most widely
used solver in BA process (Aliakbarpour et al. 2015, 2017).

4.4 Experiments

We use the Orchard dataset (Li and Isler 2016) which contains images of UMN
Horticulture Field Station taken from a flying drone. The UAV altitude was around
13m with a speed of 1m/s and the video was recorded at 29 fps with the frame size
of 1920 × 1080 resolution. Figure 4.3 shows a few sample frames corresponding to
this dataset. The frames from this dataset are used and their corresponding camera
geometry is recovered using the proposed pipeline, B-SfM.

With nometadata (i.e., GPS and IMUmeasurements), the recovered camera poses
are all expressed with respect to the coordinate system of the first camera in the
sequence. Using the other product of B-SfM, the sparse 3D points, the dominant
ground plane in the scene is estimated (i.e., the plane’s normal and distance to the
world coordinate system). Figure 4.4 right depicts the projection of the borders of
the image frames onto the estimated ground plane. To visualize the quality of the
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Fig. 4.3 A few sample frames from Orchard (Li and Isler 2016) dataset

Fig. 4.4 Epipolar verification between two temporally distant frames that correspond to the same
geolocation. Left-top: frame #32 with a red marked point. Left-bottom: The epipolar line on frame
#56, corresponding to the red marked point in frame #32 (Left-top). Right: The flight trajectory
which has a serpentine pattern. The dotted white circle depicts a geo-spatial area where drone
revisits the same place. The temporally distant frames #32 and #56 fall within this area

recovered camera poses in this experiment, the epipolar line between two sample
views (frames) is plotted in Fig. 4.4 left. The top image in this figure shows an
exemplary point marked by a red dot in frame #56. The corresponding epipolar line
is computed using the recovered came poses and plotted on frame #32 (Fig. 4.4
left-bottom). As shown on 4.4 right, these two image frames are from two sub-
trajectories that revisit the same spot of the scene after a sharp turn at the corner. The
plotted epipolar line for these two sample views which passes through the ground
truth marker (the big red dot in Fig. 4.4 left-bottom) indicates a good quality of the
recovered poses by our algorithmwith a loop closure. More qualitative epipolar plots
are presented in Fig. 4.5 on the same frames showing the difference with and without
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Fig. 4.5 Epipolar verification between two temporally distant frames that correspond to the same
geolocation. Left: frame #56 with a red marked point. Middle: The corresponding epipolar line on
frame #98 corresponding to the red marked point in the left frame (#32). Right: The same epipolar
line but plotted after applying loop closure in the pose estimation. As one can see, the epipolar line
passes through the ground truth point, in this case

a loop closure. As shown, without a loop closure, the drift between the two frames
which are geolocationally apart causes inaccuracy in the recovered camera poses.
For loop closure detection, we utilized the recovered camera poses by our B-SfM
algorithm in thefirst pass, estimate the dominant groundplane using the reconstructed
sparse 3D point cloud, and then project the view frustum on the estimated ground
plane. The feature points between the distant views that have overlaps between their
projected polygons are then matched against each other. This will create some new
short feature tracks and alsomerge some existing tracks (from the first pass). Thenwe
run another optimization for a fast final tuning by enforcing new constraints defined
by the new tracks after loop closure. Our fast pose-based loop closure technique
results in significant improvement on the global consistency of the recovered poses
and mitigates the drift issue which is a common problem in most SfM algorithms.

The recovered camera poses are also used to produce a mosaic of the scene.
Figure 4.6 shows two such mosaics. The one at the left shows a mosaic created when
no loop closure was applied. As one can see, the projection of the apart frames onto
the ground manifest some misalignment due to the drift issue. However, as shown in
Fig. 4.6 right, our fast loop closure technique has significantly improved the quality
of the generated mosaic.

In addition to low-altitude drone aerial imagery datasets, we also run our BSfM
algorithm on some Wide Area Motion Imagery (WAMI) datasets where the images
were captured from much higher altitude. Figure 4.7 shows some exemplary frames
from one of such datasets, with a flight altitude of about 1,500m observing the
downtown area of Albuquerque, NM. Although this dataset has metadata acquired
by an onboard INS system, in our experiments here we have not used them at all. Our
algorithm, BSfM, just took less than 2min to precisely recover the camera poses in
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Fig. 4.6 Mosaic created from geoprojection of the images using the camera poses estimated using
our algorithm. Left: when no loop closure is used, Right: after using loop closure. Themisalignment
(the two white ellipsoid regions) caused by incremental drift on the camera pose estimation on the
left mosaic is addressed on the right mosaic after using loop closure technique

Fig. 4.7 A few sample frames in a high-altitude WAMI dataset corresponding to the downtown of
Albuquerque, NM. The actual image frame sizes are 6600 × 4400 pixels

this dataset. Figure 4.8 top shows the recovered camera coordinates for each frame
(left) and the corresponding sparse 3D point cloud reconstructed (right). An epipolar
line corresponding to ground truth points (marked in red) between two very distant
views within this sequence is plotted in Fig. 4.8 bottom, which indicate a high quality
of the recovered poses.
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Fig. 4.8 Results of applying BSfM on a high-altitude WAMI dataset (Albuquerque downtown,
NM). Top: the recovered camera coordinate frames (left) and the reconstructed sparse 3D points
(right). Bottom: the epipolar line corresponding to a pair of ground truth points (in red) between
two distant views in the sequence (they are zoomed and cropped for better visualization)

4.5 Conclusions

Weproposed a robust and fastmethod, calledBSfM, to recover camera poses in aerial
video sequences and register the views. Its effectiveness in generating a mosaic of
a plant field for high-throughput phenotyping applications was demonstrated. In
addition to the low-altitude aerial datasets, we applied our algorithm on a high-
altitude WAMI dataset, which showed its robustness and precision.
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Chapter 5
Experiences of Applying Field-Based
High-Throughput Phenotyping
for Wheat Breeding

Jared Crain, Xu Wang, Mark Lucas, and Jesse Poland

Abstract High-throughput phenotyping (HTP) is poised to fundamentally trans-
form plant breeding through increased accuracy, spatial, and temporal resolution in
measuring breeding trials. In this chapter, we examine different types of phenotyping
platforms, data management, and data utilization for decision making using HTP in
plant breeding, with case studies from wheat breeding programs. Development of
HTP platforms, both ground-based and aerial vehicles requires evaluating the traits
to be measured as well as the resources available. Data management is a critical
part of the overall research process, and an example data management program is
provided. Finally, examples of HTP use within crop breeding and plant science are
presented. This chapter provides an overview of the entire HTP process from system
conception to decision making within research programs based on HTP data.

Keywords Phenomics · High-throughput phenotyping · Data management ·
Wheat · Plant breeding · Sensors · Unmanned aerial vehicles UAV

5.1 Introduction

Technological advances in DNA sequencing have driven many biological fields,
including plant breeding, from limited genomic resources to an information rich
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science. While the ability to generate genomic data has expanded exponentially
since the early 2000s, the phenotypic information needed to unlock the potential
of data driven breeding has lagged behind and has only begun to evolve into its
own high-throughput, data rich endeavor. Phenotypic data at this scale is needed
to connect the genotype-to-phenotype relationships which has been labeled the G2P
problem (Cooper et al. 2002), and the lack of phenotypic information is often cited as
the bottleneck to plant improvement (Richards et al. 2010), genetics and genomics
studies, including implementation of genomic selection (GS) (Cobb et al. 2013).
Historically, collecting phenotypic data has been laborious, time consuming, and
expensive, with many phenotypic constraints remaining today.

Phenomics has emerged as a suite of technologies to help alleviate the slow rate and
low throughput associated with phenotyping (Furbank and Tester 2011). Phenomics
tools have been used for in field and controlled environments at multiple levels of
plant organization from whole plant canopies to individual leaves. While there is
no standard definition for field based high-throughput phenotyping (HTP), there
is common consensus that HTP must provide cost-effective, accurate, and high-
throughput manner of plant measurements (Furbank and Tester 2011; Cobb et al.
2013). In general, HTP technologies can be characterized by one or several of the
following characteristics: ability to non-invasively measure plants (Reynolds and
Langridge 2016), automation to reduce labor (Cabrera-Bosquet et al. 2012; Cobb
et al. 2013), ability to measure multiple traits, plots, or both simultaneously (Bai
et al. 2016; Barker et al. 2016), and have efficient automated or semi-automated data
processing pipelines (Araus and Cairns 2014; Haghighattalab et al. 2016; Coppens
et al. 2017).

The goal of this chapter is to present an outline for researchers embarking in field
phenomics from conception of HTP platforms through data analysis and breeding
decisions based onHTP application inwheat (Triticumaestivum). Particular attention
will be devoted to developing sound methods that will help researchers achieve
success in incorporating HTP into their breeding programs.

5.2 Current Phenotyping Systems and Considerations

5.2.1 Overview of Platforms

Many different phenotyping platforms have been used in breeding and research
programs. The simplest HTP systems have been hand carried (Crain et al. 2016) or
carts mounted with sensors that are pushed in the field (White and Conley 2013; Bai
et al. 2016; Crain et al. 2016). These systems are often quite affordable, portable, and
have been used throughout the world. Sensor integration and data collection from
vehicles offer an increasing level of complexity and throughput (Busemeyer et al.
2013a; Andrade-Sanchez et al. 2014; Barker et al. 2016). Several large scale, mobile
phenotyping units have been reported in wheat research including systems that can
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measure three plots simultaneously for spectral reflectance, canopy temperature,
and crop height (Barker et al. 2016) and the “Phenomobile” which is equipped with
LiDAR and stereocameras among other systems (Deery et al. 2014). One of the most
autonomous and automated systems that has been used to collect phenotypic data,
interacts with plants by measuring stem strength in sorghum (Mueller-Sim et al.
2017).

In addition to ground-based platforms, many airborne systems have been
described, particularly unmanned aerial vehicles (UAVs). Both fixed wing (plane
type) and rotary wing (helicopters and multicopters) UAVs have been used to carry
color, multispectral, and thermal cameras for field-based phenotyping (Haghigh-
attalab et al. 2016; Shi et al. 2016; Tattaris et al. 2016). Piloted small, airplanes
equipped with hyperspectral cameras mounted for crop observation (Montesinos-
López et al. 2017) have likewise been used for phenotyping, as well as tethered
balloons or aerostats (Jensen et al. 2007).

While ground and airborne systems are usually quite portable, cranes or gantry
systems have been proposed, with the LemnaTech GmbH (Germany) Field Scan-
alyzer being a high-end option. This system incorporates many sensor modules,
infrared, hyper and multispectral, cameras, environmental sensors, and laser scan-
ning systems into a gantry crane system that allows precision movement along three
axes. Wheat research programs at Rothamsted Research Center, UK (Virlet et al.
2017) and Maricopa, AZ, USA (Burnette et al. 2018) have used this system. A
cable suspended phenotyping platform has also been deployed that can cover 1 ha
and carry up to 12 kg in payload (Kirchgessner et al. 2017). In addition, many
commercial smart sensors (i.e., Smartfield™ FIT System, Lubbock, TX and Agrela
Ecosystems™ PheNode, https://www.agrelaeco.com) are field deployable and able
to monitor plant traits in real-time. While these platforms can offer detailed data
from a variety of sensors, they are often limited to small areas that are fixed in size
and location.

While phenomics was initially limited to deliver magnitudes of data beyond hand
measurements, there currently exists numerous HTP platforms that can meet this
problem (Table 5.1). Currently, the challenge is to choose an appropriate system that
can measure desired traits at an affordable cost. For programs embarking on HTP,
researchers should begin by defining the size and scope of the program. The desired
traits to be measured should be identified, and an appropriate measurement device
should be selected, as conclusions will only be valid for what is measured, poten-
tially differing from the stated objectives. Along with time and monetary resources
available to run the phenotyping initiative, programs should consider any specialized
training or licensing, such as a pilot’s license to fly a UAV, that would be required
for safe and legal HTP platform operation.

Matching HTP platform to the anticipated use is critical to obtaining useful data,
Fig. 5.1. For example, if a program is interested in measuring thousands of breeding
plots for canopy temperature, a measurement that is greatly affected by ambient
conditions, aUAVor platformmeasuringmultiple plots at the same timewithin a very
small-time frame would be needed. Additionally, if canopy temperature measure-
ments were to be taken in an area prone to rain or irrigation, a UAV may be the

https://www.agrelaeco.com
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Fig. 5.1 Flowchart for selecting high-throughput phenotyping system that meets experimenters
needs through matching system components with desired trait measurements, resource constraints,
and environmental conditions

only viable option to adequately obtain the data as UAVs would avoid compacting
moist soil or disturbing plants compared to ground-based vehicles. Alternatively, a
ground-based, mobile phenotyping unit may be needed if the desired data included
high resolution imagery of individual plots or plants or the sensors were too heavy for
UAV platforms. For researchers wanting to use phenotyping tools at remote locations
portability of the HTP system should be considered. Carefully, matching the HTP
system to the desired data output will ensure that resources are used as efficiently as
possible and the best results are obtained.
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5.2.2 Overview of Phenotypic Measurements

Data from HTP platforms is used to describe the growth and development of plants
(Fiorani and Schurr 2013; Fahlgren et al. 2015). Many phenological traits have been
measured using non-destructive imaging or sensor techniques such as canopy temper-
ature, stay green, and ground cover (Pask et al. 2012). Often measurements rely
on using various wavelengths of the electromagnetic spectrum from color (400–
700 nm) for RGB (red, green, blue) digital imagery, infrared radiation for spec-
tral indices (700–1000 nm), to hyper spectral (350–2500 nm) for full spectrum
readings (Fahlgren et al. 2015). In addition, light detection and ranging (LiDAR)
and thermal readings using infrared thermometers (IRT) use the electromagnetic
spectrum (Fahlgren et al. 2015).

By carefully choosing sensors to match the desired target, researchers have been
successful in evaluating plant growth. For wheat, Pask et al. (2012) reviewed a
large number of phenotyping techniques including canopy temperature, spectral
reflectance, chlorophyll fluorescence, and direct growth measurements such as plant
height and maturity. These measurements were taken with a variety of point and
image sensors (Sect. 5.2.3.2), to provide information about plant growth and develop-
ment that can inform breeding selection decisions. For example, spectral reflectance
indices and canopy temperature can be used for indirect selection of grain yield in
wheat (Amani et al. 1996; Babar et al. 2006a, 2007).

Image data from RGB and active spectrophotometers have been used for
measuring early plant vigor (Kipp et al. 2014), canopy cover (Mullan and Reynolds
2010), and plant height and lodging (Chapman et al. 2014; Tattaris et al. 2016).
Along with analyzing data at a single time point, temporal plant growth has been
monitored using hyperspectral imaging in Triticale (Triticosecale) and the results
mapped to quantitative trait loci (QTL) controlling biomass accumulation showing
dynamic effects of QTL controlling plant growth (Busemeyer et al. 2013b). Machine
learning algorithms (Yu et al. 2017) have used digital images throughout the growing
season to classify plant growth.

As phenotyping methods improved, researchers have successfully quantified stay
green traits (Lopes et al. 2012; Crain et al. 2017), 3-D canopy architecture (Aasen
et al. 2015), tiller density and crop growth (Du and Noguchi 2017), abiotic (Crain
et al. 2017) and biotic stresses (Shakoor et al. 2017). Imaging technologies have
been used to evaluate other complex traits, such as lodging (Singh et al. 2019), ear
density (Madec et al. 2019), and flowering time (Wang et al. 2019b) in wheat. Many
of these traits provide researchers with opportunities to better understand and select
crop performance.

The range of traits that could be measured using HTP methods is only limited
to the ability to identify a sensor system that accurately evaluates a desired trait.
For example, over 100 vegetation indices (VIs) have been reviewed by Xue and Su
(2017), and the interest in hyperspectral imaging will probably increase the number
of VIs that are used in crop assessment. Any trait that does not have a strong body of
literature supporting the method of measurement should be carefully verified that the
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protocol method is indeed measuring the trait of interest. For example, significant
correlations between UAVmeasured and ground truth data were observed for growth
stages from stem elongation to late grain fill (Hassan et al. 2018) providing evidence
that the UAV system was providing similar data to ground-based information.

While many traits have been amenable to HTP application, advancing sensor
technology and data analysis methods will most likely lead to more traits being
able to be measured or estimated through non-destructive measures. For research
programs implementing HTP methods, deciding which target traits to measure and
how theywill be assessed is important to obtain optimal results. A common challenge
with HTP is that data collection is often very easy, facilitating building large datasets;
however, these data sets may not answer the questions researchers posited resulting
in inefficient use of resources within research programs.

5.2.3 Overview of Sensors

A typical field-based HTP platform normally incorporates a suite of sensing units,
global navigation satellite system (GNSS) receivers, and a data acquisition system.
Positioning data is used to georeference the HTP observations, effectively linking
the measurement to the experimental unit (Wang et al. 2016). Cameras, IRTs, spec-
trometers, and other sensors that record data form the sensing unit, and provide data
for analysis. The data acquisition system communicates with sensors, GNSS units,
and computers or data loggers to translate sensor data signals into data files. Plot-
level assessment of HTP data requires a combination of these systems working in
harmony to accurately measure and report crop parameters.

5.2.3.1 Positioning Sensors

The GNSS receiver provides the HTP platform with positioning information that is
critical for deriving the phenotypic data sampling time and positions. The GNSS can
also facilitates auto-navigation, though this is not a necessary component of every
phenotyping platform. Suitable GNSS units will provide both Coordinated Universal
Time (UTC) information and the antenna’s geographic position.

Selection of a GNSS unit for field-based HTP should consider many factors, such
as the positioning precision and the sampling frequency. These factors can result in
large differences in cost. For field-based HTP, the positioning precision determines
how accurately the individual measurements can be linked to the experimental units.
More accurate positions can link the individual phenotypic measurements to the
correct plot or even plant which may be especially important for breeding programs
evaluating lines in small-plots. For that purpose, a GNSS with differential correction
which will achieve precision within 10–15 cm is preferred as the minimum level of
precision for typical plots sizes of 1 m× 1 m. As plot size decreases, from standard
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yield plot (~1 m × 3 m) to single rows or single plants, the precision of the GNSS
will need to increase to accurately assign data to the correct plot or plant.

The sampling frequency of the GNSS determines the measurements resolution
in the region of interest (ROI) as well as the maximum moving velocity of the
HTP platform. As the sampling frequency decreases or the velocity of the HTP
vehicle increases, the absolute error of the measurements between the observed
measurement and actual geographic location will increase. Sampling time stamps
can also be used to query the meteorological data, such as solar irradiance, wind
speed, air temperature, and relative humidity from weather stations. These ambient
environmental conditions can be used in conjunction with HTP data to control for
known covariates that may affect data quality. Ensuring sensor specifications across
integrated systems will be compatible with downstream data analysis and is crucial
for creating pipelined analysis that can report in-season or real time results.

In addition to positioning precision and sampling rate, other factors to consider
include the dimension and the weight of the GNSS system as various HTP platforms
have different payload capacity and space to attach the GNSS units. Recently, many
low-cost real-time kinematic (RTK) GNSS have been released into the market, such
as EMLID REACH GNSS (www.emlid.com/reachrs) and TERSUS GNSS (www.
tersus-gnss.com). One important factor when selecting the low-cost RTK GNSS is
the GNSS frequency band. A single-frequency RTK GNSS (i.e., only L1 band) can
only allow precision accuracy when the distance between the base station and the
rover is less than 3 km, therefore, the field scale and the location of the base station
should be examined.

5.2.3.2 Phenotyping Sensors

Remote sensing is the key technology that enables field-based HTP. This includes
proximal sensing close to the canopy (e.g. <2 m). Two common types of phenotypic
data are point-based sensor observations and multi-dimensional data set (i.e., images
and point cloud data) that are determined by the type of sensors utilized. Point-
based sensors usually provide easily derived trait measurements, such as canopy
temperature and VIs. These sensors are relatively low-cost compared to imaging
sensors, and mostly used on ground platforms.

To achieve a higher throughput (i.e., tomeasure several plots at the same time) and
a higher spatial resolution, imaging sensors are becomingmore prominent than point-
based sensors for field-based HTP. Zhang and Zhang (2018) have reviewed most
commonly used imaging technologies for plant HTP. For multi- and hyperspectral
cameras, the number of spectrum bands, the bandwidth, and the overlap between two
consecutive spectral bands should be considered. Multi-spectral generally refers to
sensorswith 4-10 bands,while hyperspectral can often contain hundreds or thousands
of bands. Hyperspectral bands are often narrower in band width than multispectral
cameras. For thermal camera, the measurement resolution (i.e., ±5 °C) needs to
be evaluated to determine if the measurements can reflect the dynamic temperature
variation.

http://www.emlid.com/reachrs
http://www.tersus-gnss.com
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During RGB image acquisition, especially from a moving platform, the shutter
speed, aperture value, and white balance should be set carefully according to the
platform speed, the distance between the camera and the target, and the ambient light
condition. Shutter speed affects the amount of time that the lens is open, allowing
exposure for the image. If a camera is on a moving platform, the shutter speed must
be fast enough that image blur does not occur. Aperture of the lens affects the range
of depth (i.e., on the canopy) where objects can be focused, with narrow aperture
allowing more of the photo to be in focus. Aperture and camera view angle can be
adjusted according to the target and desired data usage. For example, nadir viewmay
be better for imaging crop canopies, while off-nadir view may be better for detecting
flowers and fruit. Controlling ambient light conditions, through external light sources
or shades, will help with the post image processing and maintain accurate white
balance. While vehicle HTP platforms may be able to control light conditions, UAV
platforms often rely on post image processing to control for changes in ambient light
conditions. Consulting camera manuals or photography experts, early in the HTP
process, will help ensure camera settings are appropriate for the HTP platform and
the data can be used to answer HTP objectives.

In addition to defining sensors by point or image data, a second category is active
or passive sensors. Active sensors have their own light source and are not affected by
ambient environmental conditions such as cloud cover. Active sensors often include
the Trimble GreenSeeker (Trimble Inc., Sunnyvalle, CA) and Holland Scientific
CropCircle (Holland Scientific, Lincoln, NE).While passive sources rely on ambient
light, and thus are influenced by changing environmental conditions, they often have
a larger range of measurement options. Most cameras are passive sensors, although
light curtains can be used to eliminate environmental noise (Montes et al. 2011; Buse-
meyer et al. 2013a). For image data, radiometric calibration may help standardize
data sets from fluctuating environmental conditions (Haghighattalab et al. 2016; Shi
et al. 2016; Yang et al. 2017), yet for other sensors like IRT there may be no way
to easily calibrate data if HTP evaluation occur when environmental conditions are
variable or windy. Due diligence of understanding sensors, their mode of action, and
the factors that can affect measurement results will help ensure that the data collected
is tractable for downstream analysis.

Sensor selection should include evaluating field-of-view (FoV), measurement
resolution, and expandability. The FoV determines the amount of area that a sensor
observes when it takes a measurement. Wide FoV may include noise from non-
vegetative targets such as soil, while narrow FoV may not reflect the common plant
trait within a small ROI. When the FoV for a camera or sensor is fixed, the ROI
can be manipulated by the distance that the sensor is from the target, increasing or
decreasing ROI by sensor placement. Taken together, these important consideration
for the ROI must be accounted for a well-functioning HTP system.

Sensor resolution refers to howprecisely a traitmay bemeasured and can influence
if certain dynamic traits can accurately be assessed for genotypic discrimination. For
example, if canopy temperature is expected to have only a few degrees difference
between all genotypes, an IRT with a resolution of±1.00 °C would not as efficiently
differentiate between genotypes as an IRT with a resolution of ±0.25 °C. For all
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cameras, the imaging sensor size is the most important factor in considering camera
resolution. Sensor size determines the effective pixels included in the raw image and
the ground sample distance (GSD). The GSD is the limitation of image resolution
and refers to the distance on the ground between two adjacent pixels. As sensor
size increases or FoV decreases the area included in each pixel decreases, resulting
in higher GSD resolution. While high-resolution is often desired, the higher the
resolution increases sensor cost as well as the volume of data generated increasing
storage and data curating requirements.

Expandability allows sensors to have the potential to provide different measure-
ments based on user needs. For example, the Trimble GreenSeeker provides fixed
spectral bands whereas the Holland Scientific Crop Circle has interchangeable filters
allowing the user to determine which spectral bands to be recorded. The ability to
fine-tune sensor measurements, could allow one sensor system to perform multiple
task.

5.2.3.3 Data Acquisition Systems

Data acquisition systems form the connections between different sensors and imme-
diate data storage. For simple HTP systems, users may not even need to consider
the data acquisition system. For single sensors, such as the Trimble GreenSeeker,
data acquisition occurs automatically, with the user being able to download a final
file of observations. Some UAV platform autopilot systems perform a similar task
by automating image collection by consistent time or space intervals, i.e. every 5 s
an image is collected regardless of UAV or target position. However, as the HTP
systems become more complex, integrating more sensors, users will most likely
have to develop protocols for combining sensor data.

LabView (National Instruments, Austin, TX, USA) has been used on several
phenotyping platforms (Bai et al. 2016; Barker et al. 2016; Crain et al. 2016) as it
has the capabilities to interact with sensors outputting different rates and types of
signals. Computing languages like Python have also been used to interact and record
data from multiple sensors (McGahee 2016). While data acquisition systems may
not be at the forefront of users of already developed HTP systems, users building
their own systems should be aware of potential issues in connecting many and often
disparate sensors. Often the most direct solution is to partner with engineers or
computer programmers that have the requisite skill set to quickly resolve potential
problems.

5.2.4 Future Sensors and Application

Advancing technology may soon make the ability to obtain super high-resolution
and throughput phenotypic data possible with videos (i.e., 6 K video) and satellite
photos (i.e., GSD <10 cm). As these technologies improve, they will become more
popular for field-based HTP. These advances will allow for more high-dimensional



84 J. Crain et al.

phenotypic dataset to be generated through sensor fusion techniques (Jiang et al.
2018). For example, using sensor fusion technologies, a LiDAR point cloud can
be registered with pixel information from cameras (i.e., GeoSLAM Hub and Draw,
https://geoslam.com), which can be used to differentiate plant tissues. In addition,
more advanced sensing techniques, such as radar could be used to collect phenotypic
data underneath plant canopies and X-ray micro computed tomography was used to
reconstructing the wheat grain structure without physically harming the wheat spike
(Hughes et al. 2017).All these novel sensing technologieswill bringmore discoveries
for field phenomics research, while at the same time bring more challenges for data
processing.

5.3 Data Processing

A hallmark of HTP platforms is the ability to produce massive amounts of data. Even
a small HTP system of two sensors reading at 10 Hz can produce over 72,000 data
points per hour, and image-based systems can routinely produce gigabytes of data in
a single flight. While numerous HTP platforms have been proposed and developed,
the ability to handle the inundation of data has often received less attention.While the
exact processing steps may look different for each platform, in general data should
be processed for quality control and trait extraction as soon as possible to check for
potential errors (White et al. 2012).

In the literature, several data management practices are described, but the reported
information is often limited especially from a perspective of long-term storage and
preservation of the data as well as exact methods used. For example, the Field Scan-
alyzer (Virlet et al. 2017) uses proprietary software to manage up to 800 MB of
data that can be collected on a single plot per measurement. Once the raw data is
processed, extracted information such as VIs are then stored in databases which can
be accessed by users. Another example is the ETH field phenotyping platform (cable
system) which uses a MySQL database with different tables to store data sensor
readings, ground truth, and weather data (Kirchgessner et al. 2017). While these two
examples highlight certain aspects of data management, HTP data often has many
steps from data collection to knowledge.

All HTP data requires processing to move from a raw data observation to a value
that can be used inmodeling. Point data is often paired with GNSS information based
on the time of data collection (Barker et al. 2016). Image or multi-dimensional, data
is often more challenging and requires several steps to process raw images into
indices or values. Several processing pipelines have been presented for image data
with the common themes including format conversion and image correction, ortho-
mosaicking, radiometric calibration, followed by data extraction (Haghighattalab
et al. 2016; Shi et al. 2016; Yang et al. 2017).

Regardless of the type of data, the first objective is the correct assignment of
data points or images to a plot to be subsequently used in statistical analysis or
crop models. While GNSS tagging through point data or generation of ortho-mosaic

https://geoslam.com
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image data is nearly universal, the link between where a data point is geographically
located andwhich plot it belongs to is essential. Several plot identifyingmethods have
been utilized in literature. At the most basic level, coordinates for each of the plot
corners can be measured forming a polygon, or polygons can be drawn from ortho-
mosaic photos (Shi et al. 2016). Both of these methods are quite low throughput and
laborious. However, plot delineation only has to be completed one time per season
so the number of plots phenotyped could dictate the time and resources spent on
extracting plot boundaries. Another simple strategy has been to use the rectangular
nature of plots to grid the experimental area to the number of plots, followed by
trimming to insure that bare ground is not included in the plots (Chapman et al.
2014; Haghighattalab et al. 2016). For point data such as VIs, which offers contrast
between green plots and bare alleys simple algorithms to define the start and end of
plots followed by extrapolation of plot size can be used (Crain et al. 2016). In a more
robust method for image data, a classification into plant or non-plant can be used
to segment the image and apply plot identifications (Haghighattalab et al. 2016).
If early season imagery is available, with few artifacts, this method could be very
accurate, but there is the potential need to manually edit misclassifications. Wang
et al. (2016) demonstrated methods to assign HTP point data to plots and delineate
plots based on vehicle heading and sensor position. These methods were applicable
to varying plots sizes and can be used after data collection to quickly georeference
HTP phenotypic measurements to GNSS data.

While much effort has been devoted to extracting values from data and pairing
phenotypic data with plot information for immediate analysis, less effort has been
devoted to how crop phenotypes should be storedwith emphasis on long-term utiliza-
tion. Unfortunately, data standards to store and curate data are often secondary
to phenomics goals of QTL mapping, dissecting traits, or increasing the rate of
genetic gains in crops. Similar to public repositories for DNA data (e.g. Short Read
Archive (Leinonen et al. 2011)) there have been several resources developed for
storing phenomic data; however, at a cost of central repositories (Coppens et al.
2017). Some phenomics data facilities have been built for specific users including
the Phenomics Ontology Driven Data (PODD) for Australian phenomics work (Li
et al. 2010) and the Phenopsis DB for data produced from the PHENOPSIS HTP
platform for Arabidopsis thaliana (Fabre et al. 2011). A more generalized version
has been the Plant Genomics and Phenomics data repository hosted by the Leibniz
Institute of Plant Genetics and Crop Plant Research (Arend et al. 2016). This data
repository is consistent with FAIR (findable, accessible, interoperable, reusable) data
principles (Wilkinson et al. 2016).

While these repositories allow researchers to store data and their associated meta-
data, these databases may not allow for full reproduction of analysis, as many inter-
mediary processing steps or raw data may not be stored. To make research more
reproducible, with the ability to evaluate the data and methods of analysis (Peng
2011), experimenters should consider the entire lifecycle of data from collection to
storage, with particular emphasis on a future vision that could reuse the data. Each
phenomics program will probably look different in terms of exact data curating, but
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storing raw data, backups, extracted traits, and the processes used to develop them,
along with plot information should be included in every data management plan.

5.4 Data Management Example

Maintaining millions of HTP data points for numerous field trials and experiments
each year requires a dedicated effort in terms of both software and personnel actions.
Data management is comprised of a series of tasks that provide the means to vali-
date the integrity of incoming data, standardize data format, and archive data with
sufficient metadata to support reliable backup and retrieval of specific data sets.
The following sections describe and highlight the most import aspects of the data
management tasks and supporting system architecture employed by the Poland Lab
in order to avoid drowning in the deluge of HTP data. This model is built to be
flexible to different HTP platforms, sensors, and experiment types, and should be a
useful reference to scientists pursuing HTP projects.

The data management workflow for UAV-based includes collecting, verifying,
and storing information, Fig. 5.2. After the data has been collected in the field, the
image data sets are uploaded to a central server. After upload, a basic check is made
to verify that all images and associated log files are present in each data set. Since raw
images only have a numeric identifier that is not unique, images are renamed with
date and time information to provide a unique file name for each image. If image
Exchangeable image file format (Exif) metadata does not contain reliable position
data, the images are geo-referenced using information from a trusted external log
file. For each image that was collected during the phenotyping run, the rename and
geo-referencing process generates metadata that is stored in a MySQL (MySQL
Server version 5.6.34. 2016-10-12 Oracle Corporation, Redwood Shores, CA, USA)
relational database with the metadata providing a pointer to the image file. For point

Fig. 5.2 ExampleUAV image datamanagementworkflow fromdata collection to long-term storage
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data generated by ground-based systems, the system is nearly identical, only the
recorded measurements are stored in the database instead of metadata. Finally, the
data sets are backed up to an external network-attached storage (NAS) to provide
protection against data loss on the main high-performance computing (HPC) cluster.

5.4.1 Data Management Architecture

An example of currently implemented data management system architecture for
UAV-based image data is shown in Fig. 5.3. All data sets collected in the field are first
uploaded to the uav_incoming directory. Prior to archiving, the data sets are collated
into a standard format and then moved into the uav_staging directory. A scheduled
task, Python program, is then initiated which archives any data sets found in the
uav_staging directory. Archiving consists of renaming the image files with unique
date and time-based names, updating the database with metadata for each flight and
each image and then moving the updated data set files into the uav_processed folder
where final checks of the archive artifacts are made. Finally, each data set is moved
into a standard archive folder. Scheduled tasks are then invoked to backup both the
database and image files to external (NAS) storage.

Fig. 5.3 UAV image data management system architecture documenting raw data from sensors to
processed and renamed data stored for retrieval
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5.4.2 Database Design

The database has been designed to be highly flexible tomaintain current data, while at
the same time being able to adapt to new sources of data. The goal of the database, is
to create sufficient record of experiments, including data collected, that any user can
completely reconstruct when and where a field experiment occurred, along with all
of the data that was collected allowing for full statistical analysis. The latest iteration
of the database design for HTP data is shown in Fig. 5.4.

While there are many tables that share relationships to link each source of data,
Fig. 5.4, the overarching element is a unique experiment ID. Every experiment main-
tains a unique ID, with most IDs being a combination of year, location, and purpose
of the experiment (e.g. 19-RKY-AM is the 2019, Rocky Ford Association Mapping
experiment). Even if an experiment is planted in multiple years or sites, this naming
convention maintains that each year of the experiment is a unique entity. The experi-
ment ID ismaintained in a table of experiments that records all experiments, location,
planting date, and notes that describe the experiment.While this table can be searched
using keywords, years, or location through SQL commands, it is also small enough

Fig. 5.4 Example of high-throughput phenotyping database schema. Each table is linked to other
tables through relationships (colored column names linked by lines)
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to allow visual inspection to find experiments as needed. Experiment field dimen-
sions and location are defined as a latitude and longitude based spatial object i.e.
an experiment polygon. All geographical coordinates in the database are specified
using latitude and longitude coordinate pairs. MySQL spatial objects such as points
and polygons are utilized to define the position associated with an image or sensor
measurement, as well as the dimensions and location of experiments and plots.

Once an experiment is identified, the experiment ID can be used to find plots IDs
in the plot table. Each plot ID is unique consisting of a combination of year, location,
and plot number. The plot table details each plot in an experiment, the cultivar name
of the plot, row, column, replicate, and block number for statistical analysis. For
plots with HTP data, the plot dimensions and location are defined as latitude and
longitude based spatial objects i.e. plot polygon.

The unique plot ID can then be used to query tables that store hand-measured
phenotypic data, HTP data, and genotypic data. Hand measured phenotype data,
such as grain yield and plant height, are needed to correlate HTP measurements
to standard field practices. The database schema for hand-based phenotype data is
shown in Fig. 5.5 along with experiment and plot tables. The experiment table is
the same as Fig. 5.4, demonstrating how information can be found by utilizing the
experiment ID, and how additional tables, such as a genotype table, can be added to
meet the users need.

Fig. 5.5 Hand-measured phenotype database tables linked to the plot and experiment tables
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The hand-measured phenotype table consist of the entity ID (linking plots to
phenotypes), a trait ID, and the phenotype value or character. Each plot can have
multiple measurements of the same trait or different traits allowing all phenotypic
data to be stored in one table. The trait IDs are unique and described in a trait ID table.
To further standardize trait measurements, crop ontology (Shrestha et al. 2010) terms
can be used to define traits allowing data from different experiments to be shared
using the same measurement protocols.

The trait and phenotype tables (experiment and plot table as another example)
represent a common theme of the database that one table lists a high level human
readable overview of information, while a larger table (plot and phenotype tables)
list all values associated with a database term. This allows users to query the database
from different perspectives. For example, a user could find all data for one specific
experimentwhile another user canfind allmeasurements of grain yield in the database
without concern for the experiments where the data was collected.

The final aspect of the database relating plot information and hand-measured
phenotypes to HTP are a set of tables for HTPmeasurements as illustrated in Fig. 5.4.
To accurately track the sheer volume of data, each collection time of HTP data
receives a unique (data acquisition) run ID in an HTP run (or acquisition) table.
This ID is composed of the date and time of the start of data collection along with
the date and time for the end of data collection. Along with the run ID, the HTP
platform is recorded as it could consist of ground based or aerial platforms. Finally,
the experiment ID that was measured is linked to the run and platform ID. The HTP
run table provides the high-level overview, with experiment ID linking back to the
plot and phenotype tables. The HTP platform ID links to a table that describes the
platform such as a ground based or UAV system allowing one program to operate
many different HTP systems.

While the HTP run table overviews each time of data collection, point and image
data is stored in an HTPmeasurement table. This table lists the HTP run and platform
ID, along with a sensor ID and if the measurement value is within a defined plot,
the corresponding plot ID. The coordinates of the measurement are also listed along
with the UTC time when the measurement was collected. Due to the different types
of data, the actual data value is not stored, but a meta data measurement ID is stored.
This measurement ID can be used to find the value in several different output tables
depending on sensor type. A measurement ID that corresponds to an ultrasonic table
would store the point data as a height measurement. Data from normalized difference
vegetation index (NDVI) sensors are stored in and NDVI table, with tables being
added for different traits or sensor output. For point data, the actual value from the
sensor is stored in the output tables. For image or multi-dimensional data, such as full
spectrum data, the output table consist of the measurement ID, the image or output
file, and the md5sum of the file.

A standard practice of naming the image file consist of adding the date, time,
sensor ID, and original name which prevents any duplicate image names. After a
unique name is added to each image, the images are stored outside of the database,
currently on an HPC cluster. By providing a pointer to the files, rather than storing
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the files themselves, the database can store millions of data points while maintaining
a small size, whereas image data can quickly exceed terabytes of data.

For image data, or other data that requires significant processing time such ortho-
mosaic images, additional tables could be built to store processed data. Advancing
the described database, ortho-mosaic images may be stored in a table like image
data that points to the ortho-mosaic file. Either in the table or associated tables,
the parameters files that were used to make the processed image and the extracted
results could be saved. This would allow a full reconstruction of any published data
to evaluate the methods and results for accuracy.

5.4.3 Data Integrity

Throughout the HTP data processing pipeline, there are numerous built in checks
to maintain data integrity. Some of the checks that are performed are making sure
that point data values are within standard ranges, for example if NDVI values are
above one, the data point is set to missing. For each type of sensor, basic operations
can be used to check the sensor output and remove or flag output that may indicate
sensor or HTP platform problems. For image and file data, the md5sum is calculated
on the original images, and any copied or moved images ensuring that there was no
data corruption. In practice, many of these checks have been added to scripts that run
automatically to download the data from sensor devices, check data integrity, perform
renaming and formatting for the database, uploading information to the database or
appropriate locations, and often reporting the results of the operation to the user. For
programs wanting to use such a system, a first step would be to curate much of the
data using command line tools. Once the process for each particular program is in
place, the command line operations can be incorporated into a scripting language
such a Python to automate the procedures. While developing automated procedures
takes an upfront investment of time, it prevents mistakes that can occur manually
and speeds up the data processing pipeline allowing near real time data analysis.

5.4.4 Data Backups

Data backups are another part of the overall management strategy for HTP data.
Scripts to backup databases as well as new data can be developed to automatically
run every day, or any time interval, limiting the amount of data that could be lost in
a catastrophe. In addition to storing data on an HPC cluster, data is also backed up
to a NAS providing two separate physical locations for data storage. Cloud-based
backup solutions are another potential option to provide reliable off-site archiving
of data for purposes of disaster recovery in the event of massive data loss.
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5.4.5 Laboratory Procedures

Along with data management and processing pipelines, laboratories should also be
keen on making sure users follow documented protocols. Especially for processing
daily HTP measurements, the more standardized protocols can be from file naming
conventions to transferring data from HTP platforms to computer, the easier and
faster downstream data processing can be. Some of the areas where standardization
can work are in file naming at the site of data collection. By using a standardized
file name, scripts can be written to automatically parse the file with minimal human
intervention. In addition to file names, enforcing rules within the database can also
prevent data loss, such as only allowing traits with a defined and valid trait ID to be
added to the database. This prevents a user from simply inputting data that does not
have descriptions of how the data was collected.

5.4.6 Summary

Data processing forms a key part of phenomics and is essential to moving data from
raw measurements on an HTP platform to information that can be used for analysis.
While a single trial or project may be able to be managed in an ad hoc manner;
to fully realize the genetic gains of HTP integrated data systems must be used. By
carefully determining how data should be stored and curated, data collected today
could be viable for analysis years into the future.

5.5 Data and Trait Analysis

High-throughput phenotyping provides users with large volumes of data that can
help plant breeders be more effective, yet the challenge is transforming the data
into decisions. Within the wheat community, there are several examples of deriving
biological insights and breeding decisions from phenotypic data. At the most basic
level, HTP data can be used to correlate to traits of interest, specifically grain yield.
Several studies show significant correlations of NDVI and canopy temperature to
grain yield, with correlations sufficiently high for indirect selection (Crain et al.
2017, 2018; Montesinos-López et al. 2017). Relationships between these two traits
and grain yield have been well established (Ball and Konzak 1993; Amani et al.
1996; Babar et al. 2006b) for various crop growth stages (Pask et al. 2012). For
a breeding program interested in deploying HTP quickly, traits such as NDVI and
canopy temperature for which a large body of literature and methods exist may be
the easiest and fastest route to increasing selection gains. While grain yield can only
be measured at the end of the growing season, the ability to take HTP measurements
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like NDVI and canopy temperature multiple times can provide a more thorough
assessment of a cultivars yield potential.

WhileHTP can be used in only a phenotypic setting, the full power of phenotyping
will found in associating HTP and genotypic data. Combining both dense phenotypic
data and genetic data from next generation sequencing, researchers have the ability to
understand plant dynamics and employ this information in marker assisted selection.
Phenotypic data from HTP can be used for QTL mapping which associates genetic
locationswith a trait of interest. UsingHTPdata that defined crop growth (Busemeyer
et al. 2013b) mapped QTL controlling the biomass accumulation of triticale, with
their results showing that the QTL effect was dependent on time. This dynamic
control of the trait, resulted in one QTL being important early in the growing season,
but having little effect on biomass yield at later times. In addition to wheat, HTP
data from several other crops have been used for QTL analysis including drought
and well-watered cotton (Gossypium hirstrum) to identify genetic regions of abiotic
tolerance (Pauli et al. 2016). In rice (Oryza sativa) Tanger et al. (2017) showed that
many QTL that were identified by hand measurements were highly correlated to
QTLs measured by HTP platforms. These examples highlight the power of HTP to
collect precision data that can be combined with molecular marker data to investigate
the control of quantitative traits.

Genomic selection is another promising area to apply HTP data. In typical GS
settings, a training population that has been both phenotyped and genotyped is used
to develop amodel, and then the model can be used to predict the phenotypic value of
ungenotyped individuals. While most of the gains from GS are the result of reduced
breeding cycle time (Heffner et al. 2010), increasing the accuracy with which plants
are selected would also increase breeding efficiency. While this is an active area
of research two studies show the potential for gains incorporating GS and HTP.
Rutkoski et at. (2016) used multi-trait GS to incorporate canopy temperature and
NDVI as secondary traits into GS models resulting in up to a 70% increase in model
accuracy. Crain et al. (2018) found an average of 12% increase in model accuracy
by combining canopy temperature and NDVI from HTP platforms in GS models.
These approaches combining GS and HTP data show great promise for increasing
accuracy and power for selection in breeding programs.

High-throughput phenotyping provides the ability to collect data at multiple time
points opening new opportunities for longitudinal studies and understanding plant
dynamics over the entire life cycle. While data is often assessed at a single time
point e.g. (Busemeyer et al. 2013b; Pauli et al. 2016; Rutkoski et al. 2016; Crain
et al. 2017, 2018; Tanger et al. 2017), the processes controlling plant growth are
not static, supporting that plant status should be analyzed over time. One method to
analyze the longitudinal data provided fromHTP is functional traitmapping (Ma et al.
2002;Wu and Lin 2006). This approach fits a mathematical model (such as a sigmoid
function) to the data and decomposes the phenotype values into a few parameters that
describe the model. These parameters can then be used for QTL analysis, reflecting
dynamic changes across multiple measurements. Jiang et al. (2019) used spectral
reflectance measurements collected through a mobile, ground based HTP platform
to map nitrogen stress dynamics in wheat. The QTLs identified showed a range of
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response for how wheat responded to nitrogen deficiency throughout the growing
season.

Machine learning may also provide another way to use temporally dependent data
sets. Wang et al. (2019b) used machine learning to classify the date of heading in
wheat by analyzing images with a convolutional neural network. Using information
from the neural network, a model was built that reported heading date within three
days of manual phenotype measurements. Heading date is a common phenotypic
measurementwithin breedingprograms, and the ability to automate thismeasurement
to HTP collection could standardize data collection and reduce the time and effort
associated with measuring this trait.

Data fromHTP platforms has the ability to fundamentally alter the plant breeding
paradigm. At one extreme, the quantity and quality of data that can be collected in-
season would enable breeding programs to grow larger populations, yet selectively
harvest plots or individual plants with desired characteristics. At the other extreme,
HTP data could be used in early generations with GS allowing plants to be selected
years earlier than phenotypic selection. While the most practical and actual applica-
tions of HTP will probably result somewhere between these extremes, the ability to
increase genetic gains will hinge on the ability to analyze data quickly and efficiently.
Programs will need to have resources to quickly analyze data and pipelines must be
developed to handle the flow of data so that results can be reported in-season. If the
data cannot be analyzed in-season the ability to selectively harvest plots (example
above) would not be feasible. Programs wanting to routinely, deploy HTP should be
aware of the significant lead time required to develop a smooth pipeline that can be
used for in-season data analysis and decision making.

5.6 Summary

High-throughput phenotyping is still in its infancy. While there are some arguments
that the promises of HTP have not been realized sufficiently fast (Araus et al. 2018),
in only a decade the field has moved from a few concept HTP platforms to an abun-
dance of different platforms that can be modified for the desired measurements and
deployed at the scale of entire breeding programs. While choosing the correct plat-
form and sensor configurations are import for success, the ability to translate data to
genetic gains includes comprehensive downstream aspects for data management and
analysis. Successful applications of HTP will require teams of individuals (Shi et al.
2016) composed of skills ranging from genetics, agronomy, engineering, computer
science, plant science, and statistics to obtain the most benefit from time and money
invested. While the future of HTP research will continue to advance HTP platform
and sensor development, it is more likely that data analysis and manipulation will be
key to driving gains in plant breeding. By utilizing the latest machine learning and
statistical techniques, researchers will be able to effectively translate raw data into
informed breeding decisions.



5 Experiences of Applying Field-Based High-Throughput ... 95

Acknowledgements This material is based upon work supported by the National Science Foun-
dation Plant Genome Research Program (PGRP) under Grant No. (1238187)—‘A Field-Based
High-Throughput Phenotyping Platform for Plant Genetics,’ the United States Agency for Interna-
tional Development (USAID) Feed the Future Innovation Lab for AppliedWheat Genomics (Coop-
erative Agreement No. AID-OAA-A-13-00051), EArly-concept Grants for Exploratory Research
(EAGER) Grant No. 2019-67013-29008 from the USDA National Institute of Food and Agricul-
ture (NIFA), and NIFA InternationalWheat Yield Partnership Grant No. 2017-67007-25933/project
accession no. 1011391. Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the view of the U.S. Department
of Agriculture.

References

Aasen H, Burkart A, Bolten A, Bareth G (2015) Generating 3D hyperspectral information with
lightweight UAV snapshot cameras for vegetationmonitoring: From camera calibration to quality
assurance. ISPRS J Photogramm Remote Sens 108:245–259. https://doi.org/10.1016/j.isprsjprs.
2015.08.002

Alexis C, Philippe B, Benoit de S, et al (2012) A semi-automatic system for high throughput
phenotyping wheat cultivars in-field conditions: description and first results. Funct Plant Biol
39:914–924. https://doi.org/10.1071/FP12065

Amani I, Fischer RA, Reynolds MP (1996) Canopy temperature depression association with yield
of irrigated wheat cultivars in a hot climate. J Agron Crop Sci 176:119–129

Andrade-Sanchez P, Gore MA, Heun JT et al (2014) Development and evaluation of a field-based,
high-thoughput phenotyping platform. Funct Plant Biol 41:68–79. https://doi.org/10.1071/FP1
3126

Araus JL, Cairns JE (2014) Field high-throughput phenotyping: The new crop breeding frontier.
Trends Plant Sci 19:52–61. https://doi.org/10.1016/j.tplants.2013.09.008

Araus JL, Kefauver SC, Zaman-Allah M et al (2018) Translating high-throughput phenotyping into
genetic gain. Trends Plant Sci 23:451–466. https://doi.org/10.1016/j.tplants.2018.02.001

Arend D, Junker A, Scholz U et al (2016) PGP repository: a plant phenomics and genomics data
publication infrastructure. Database 2016:1–10. https://doi.org/10.1093/database/baw033

Babar MA, Reynolds MP, Van Ginkel M et al (2006a) Spectral reflectance to estimate genetic
variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci
46:1046–1057. https://doi.org/10.2135/cropsci2005.0211

Babar MA, Reynolds MP, Van Ginkel M et al (2006b) Spectral reflectance indices as a potential
indirect selection criteria for wheat yield under irrigation. Crop Sci 46:578–588. https://doi.org/
10.2135/cropsci2005.0059

Babar MA, van Ginkel M, Reynolds MP et al (2007) Heritability, correlated response, and indirect
selection involving spectral reflectance indices and grain yield in wheat. Aust J Agric Res 58:432.
https://doi.org/10.1071/ar06270

Bai G, Ge Y, Hussain W et al (2016) A multi-sensor system for high throughput field phenotyping
in soybean and wheat breeding. Comput Electron Agric 128:181–192. https://doi.org/10.1016/j.
compag.2016.08.021

Ball ST, Konzak CF (1993) Relationship between grain yield and remotely-sensed data in wheat
breeding experiments. Plant Breed 110:277–282. https://doi.org/10.1111/j.1439-0523.1993.tb0
0590.x

Barker J, Zhang N, Sharon J et al (2016) Development of a field-based high-throughput mobile
phenotyping platform. Comput Electron Agric 122:74–85. https://doi.org/10.1016/j.compag.
2016.01.017

https://doi.org/10.1016/j.isprsjprs.2015.08.002
https://doi.org/10.1071/FP12065
https://doi.org/10.1071/FP13126
https://doi.org/10.1016/j.tplants.2013.09.008
https://doi.org/10.1016/j.tplants.2018.02.001
https://doi.org/10.1093/database/baw033
https://doi.org/10.2135/cropsci2005.0211
https://doi.org/10.2135/cropsci2005.0059
https://doi.org/10.1071/ar06270
https://doi.org/10.1016/j.compag.2016.08.021
https://doi.org/10.1111/j.1439-0523.1993.tb00590.x
https://doi.org/10.1016/j.compag.2016.01.017


96 J. Crain et al.

Burnette M, Kooper R, Maloney JD et al (2018) TERRA-REF data processing enfrastructure. In
PEARC’18: Practice & Experience in Advanced Research Computing. ACM, New York, NY,
Pittsburgh, PA, pp 1–7

Busemeyer L, Mentrup D, Möller K et al (2013a) Breedvision - A multi-sensor platform for
non-destructive field-based phenotyping in plant breeding. Sensors (Switzerland) 13:2830–2847.
https://doi.org/10.3390/s130302830

Busemeyer L, Ruckelshausen A, Möller K et al (2013b) Precision phenotyping of biomass accu-
mulation in triticale reveals temporal genetic patterns of regulation. Sci Rep 3:2442. https://doi.
org/10.1038/srep02442

Cabrera-BosquetL,Crossa J, vonZitzewitz J et al (2012)High-throughput phenotyping andgenomic
selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320. https://doi.org/
10.1111/j.1744-7909.2012.01116.x

Chapman S,Merz T, ChanA et al (2014) Pheno-Copter: a low-altitude, autonomous remote-sensing
robotic helicopter for high-throughput field-based phenotyping. Agronomy 4:279–301. https://
doi.org/10.3390/agronomy4020279

Cobb JN, DeClerck G, Greenberg A et al (2013) Next-generation phenotyping: requirements and
strategies for enhancing our understanding of genotype-phenotype relationships and its rele-
vance to crop improvement. Theor Appl Genet 126:867–887. https://doi.org/10.1007/s00122-
013-2066-0

Cooper M, Chapman SC, Podlich DW, Hammer GL (2002) The GP problem: quantifying gene-to-
phenotype relationships. Silico Biol 2:151–64

Coppens F, Wuyts N, Inzé D, Dhondt S (2017) Unlocking the potential of plant phenotyping data
through integration and data-driven approaches. Curr Opin Syst Biol 4:58–63. https://doi.org/10.
1016/j.coisb.2017.07.002

Crain J, Mondal S, Rutkoski J et al (2018) Combining high-throughput phenotyping and genomic
information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11:1–
14. https://doi.org/10.3835/plantgenome2017.05.0043

Crain J, Reynolds M, Poland J (2017) Utilizing high-throughput phenotypic data for improved
phenotypic selection of stress-adaptive traits in wheat. Crop Sci 57:648–659. https://doi.org/10.
2135/cropsci2016.02.0135

Crain JL, Wei Y, Barker J et al (2016) Development and deployment of a portable field phenotyping
platform. Crop Sci 56:965–975. https://doi.org/10.2135/cropsci2015.05.0290

Deery D, Jimenez-Berni J, Jones H et al (2014) Proximal remote sensing buggies and potential
applications for field-based phenotyping. Agronomy 4:349–379. https://doi.org/10.3390/agrono
my4030349

Du M, Noguchi N (2017) Monitoring of wheat growth status and mapping of wheat yield’s within-
field spatial variations using color images acquired from UAV-camera System. Remote Sens 9:.
https://doi.org/10.3390/rs9030289

Fabre J, Dauzat M, Nègre V et al (2011) PHENOPSIS DB: an information system for Arabidopsis
thaliana phenotypic data in an environmental context. BMC Plant Biol 11:. https://doi.org/10.
1186/1471-2229-11-77

Fahlgren N, GehanMA, Baxter I (2015) Lights, camera, action: High-throughput plant phenotyping
is ready for a close-up. Curr Opin Plant Biol 24:93–99. https://doi.org/10.1016/j.pbi.2015.02.006

Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–91.
https://doi.org/10.1146/annurev-arplant-050312-120137

Furbank RT, Tester M (2011) Phenomics - technologies to relieve the phenotyping bottleneck.
Trends Plant Sci 16:635–644. https://doi.org/10.1016/j.tplants.2011.09.005

HaghighattalabA,González Pérez L,Mondal S et al (2016)Application of unmanned aerial systems
for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12:35. https://
doi.org/10.1186/s13007-016-0134-6

Hassan MA, Yang M, Rasheed A et al (2018) A rapid monitoring of NDVI across the wheat growth
cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. https://doi.org/
10.1016/j.plantsci.2018.10.022

https://doi.org/10.3390/s130302830
https://doi.org/10.1038/srep02442
https://doi.org/10.1111/j.1744-7909.2012.01116.x
https://doi.org/10.3390/agronomy4020279
https://doi.org/10.1007/s00122-013-2066-0
https://doi.org/10.1016/j.coisb.2017.07.002
https://doi.org/10.3835/plantgenome2017.05.0043
https://doi.org/10.2135/cropsci2016.02.0135
https://doi.org/10.2135/cropsci2015.05.0290
https://doi.org/10.3390/agronomy4030349
https://doi.org/10.1016/j.pbi.2015.02.006
https://doi.org/10.1146/annurev-arplant-050312-120137
https://doi.org/10.1016/j.tplants.2011.09.005
https://doi.org/10.1186/s13007-016-0134-6
https://doi.org/10.1016/j.plantsci.2018.10.022


5 Experiences of Applying Field-Based High-Throughput ... 97

Heffner EL, LorenzAJ, Jannink JL, SorrellsME (2010) Plant breedingwith genomic selection: gain
per unit time and cost. Crop Sci 50:1681–1690. https://doi.org/10.2135/cropsci2009.11.0662

Holman FH, Riche AB, Michalski A, et al (2016) High throughput field phenotyping of wheat
plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens
8:1–24.https://doi.org/10.3390/rs8121031

Hughes N, AskewK, Scotson CP et al (2017) Non-destructive, high-content analysis of wheat grain
traits using X-ray micro computed tomography. Plant Methods 13:1–16. https://doi.org/10.1186/
s13007-017-0229-8

Jensen T, Apan A, Young F, Zeller L (2007) Detecting the attributes of a wheat crop using digital
imagery acquired from a low-altitude platform. Comput Electron Agric 59:66–77. https://doi.
org/10.1016/j.compag.2007.05.004

Jiang L, Sun L, Ye M, et al (2019) Functional mapping of N deficiency-induced response in wheat
yield-component traits by implementing high-throughput phenotyping. Plant J 97:1105–1119.
https://doi.org/10.1111/tpj.14186

JiangY,LiC, PatersonAH, et al (2018)Quantitative analysis of cotton canopy size in field conditions
using a consumer-grade RGB-D camera. Front Plant Sci 8:1–20. https://doi.org/10.3389/fpls.
2017.02233

Kipp S, Mistele B, Baresel P, Schmidhalter U (2014) High-throughput phenotyping early plant
vigour of winter wheat. Eur J Agron 52:271–278. https://doi.org/10.1016/j.eja.2013.08.009

Kirchgessner N, Liebisch F, Pfeifer J (2017) The ETH field phenotyping platform FIP : A. 1347–
1351. https://doi.org/10.1071/FP16165

Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res
39:2010–2012. https://doi.org/10.1093/nar/gkq1019

Li Y-F, Kennedy G, Davies F, Hunter J (2010) PODD: an ontology-driven data repository for
collaborative phenomics research. In: Chowdhury G, Koo C, Hunter J (eds) The Role of Digital
Libraries in a Time of Global Change. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 179–
188

Lopes MS, Reynolds MP, Jalal-Kamali MR et al (2012) The yield correlations of selectable phys-
iological traits in a population of advanced spring wheat lines grown in warm and drought
environments. F Crop Res 128:129–136. https://doi.org/10.1016/j.fcr.2011.12.017

Ma CX, Casella G, Wu R (2002) Functional mapping of quantitative trait loci underlying the
character process: a theoretical framework. Genetics 161:1751–1762

Madec S, Jin X, Lu H et al (2019) Ear density estimation from high resolution RGB imagery using
deep learning technique. Agric For Meteorol 264:225–234. https://doi.org/10.1016/j.agrformet.
2018.10.013

Mcgahee K (2016) Image-based mapping system for transplanted seedlings. Dissertation Kansas
State University. Kansas State University

Montes JM, Technow F, Dhillon BS et al (2011) High-throughput non-destructive biomass determi-
nation during early plant development in maize under field conditions. F Crop Res 121:268–273.
https://doi.org/10.1016/j.fcr.2010.12.017

Montesinos-López OA, Montesinos-López A, Crossa J et al (2017) Predicting grain yield using
canopy hyperspectral reflectance in wheat breeding data. Plant Methods 13:4. https://doi.org/10.
1186/s13007-016-0154-2

Mueller-Sim T, Jenkins M, Abel J, Kantor G (2017) The Robotanist: a ground-based agricultural
robot for high-throughput crop phenotyping. In: In IEEE International Conference on Robotics
and Automation (ICRA). Singapore, Singapore

Mullan DJ, Reynolds MP (2010) Quantifying genetic effects of ground cover on soil water
evaporation using digital imaging. Funct Plant Biol 37:703–712. https://doi.org/10.1071/FP0
9277

Pask A, Pietragalla J, Mullan D, Reynolds MP (2012) Physiological breeding II: a field guide to
wheat phenotyping. Mexico City, Mexico

https://doi.org/10.2135/cropsci2009.11.0662
https://doi.org/10.3390/rs8121031
https://doi.org/10.1186/s13007-017-0229-8
https://doi.org/10.1016/j.compag.2007.05.004
https://doi.org/10.1111/tpj.14186
https://doi.org/10.1016/j.eja.2013.08.009
https://doi.org/10.1071/FP16165
https://doi.org/10.1093/nar/gkq1019
https://doi.org/10.1016/j.fcr.2011.12.017
https://doi.org/10.1016/j.agrformet.2018.10.013
https://doi.org/10.1016/j.fcr.2010.12.017
https://doi.org/10.1186/s13007-016-0154-2
https://doi.org/10.1071/FP09277


98 J. Crain et al.

Pauli D, Andrade-Sanchez P, Carmo-Silva AE, et al (2016) Field-based high-throughput plant
phenotyping reveals the temporal patterns of quantitative trait loci associated with stress-
responsive traits in cotton. Genes|Genomes|Genetics 6:865–879. https://doi.org/10.1534/g3.115.
023515

Peng RD (2011) Reproducible resarch in computation science. Science (80) 334:1226–1227
Reynolds MP, Langridge P (2016) Physiological breeding. Curr Opin Plant Biol 311:1162–171.
https://doi.org/10.1016/j.pbi.2016.04.005

Richards RA, Rebetzke GJ, Watt M et al (2010) Breeding for improved water productivity in
temperate cereals: Phenotyping, quantitative trait loci, markers and the selection environment.
Funct Plant Biol 37:85–97. https://doi.org/10.1071/FP09219

Rutkoski J, Poland J, Mondal S et al (2016) Canopy temperature and vegetation indices from high-
throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in
wheat. Genes|Genomes|Genetics 6:2799–2808. https://doi.org/10.1534/g3.116.032888

Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding
andmonitoring of diseases in the field. Curr Opin Plant Biol 38:184–192. https://doi.org/10.1016/
j.pbi.2017.05.006

Shi Y, Thomasson JA, Murray SC et al (2016) Unmanned aerial vehicles for high-throughput
phenotyping and agronomic research. PLoS One 1–26. https://doi.org/10.5061/dryad.65m87

Shrestha R, Arnaud E, Mauleon R et al (2010) Multifunctional crop trait ontology for breeders’
data: field book, annotation, data discovery and semantic enrichment of the literature. AoB Plants.
https://doi.org/10.1093/aobpla/plq008

Singh D, Wang X, Kumar U et al (2019) High-throughput phenotyping enabled genetic dissection
of crop lodging in wheat. Front Plant Sci 10:1–11. https://doi.org/10.3389/fpls.2019.00394

Susko AQ, Gilbertson F, Heuschele DJ et al (2018) An automatable, field camera track system
for phenotyping crop lodging and crop movement. HardwareX 4:1–13. https://doi.org/10.1016/
j.ohx.2018.e00029

Tanger P, Klassen S, Mojica JP et al (2017) Field-based high throughput phenotyping rapidly
identifies genomic regions controlling yield components in rice. Sci Rep 7:1–8. https://doi.org/
10.1038/srep42839

Tattaris M, Reynolds MP, Chapman SC (2016) A direct comparison of remote sensing aproaches
for high-throughput phenotyping in plant breeding. Front Plant Sci 7:1131. https://doi.org/10.
3389/fpls.2016.01131

Virlet N, SabermaneshK, Sadeghi-Tehran P,HawkesfordMJ (2017) Field Scanalyzer: an automated
robotic field phenotyping platform for detailed crop monitoring. Funct Plant Biol 44:143–153.
https://doi.org/10.1071/FP16163

Wang X, Amos C, Lucas M, et al (2019a) Small plot identification from video streams for
high-throughput phenotyping of large breeding populations with unmanned aerial systems. In:
Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping
IV. International Society for Optics and Photonics, p 110080D

WangX,ThorpKR,White JW, et al (2016)Approaches for geospatial processingoffield-basedhigh-
throughput plant phenomics data from ground vehicle platforms. Trans ASABE 59:1053–1067.
https://doi.org/10.13031/trans.59.11502

Wang X, Xuan H, Evers B, et al (2019b) High-throughput phenotyping with deep learning gives
insight into the genetic architecture of flowering time in wheat. Gigascience 8:. https://doi.org/
10.1093/gigascience/giz120

White JW, Andrade-sanchez P, Gore MA et al (2012) Field-based phenomics for plant genetics
research. F Crop Res 133:101–112. https://doi.org/10.1016/j.fcr.2012.04.003

White JW, Conley MM (2013) A flexible, low-cost cart for proximal sensing. Crop Sci 53:1646–
1649. https://doi.org/10.2135/cropsci2013.01.0054

Wilkinson MD, Dumontier M, Aalbersberg IjJ, et al (2016) The FAIR Guiding Principles for
scientific data management and stewardship. Sci data 3:1–9

WuRL, LinM (2006) Opinion - functional mapping - how tomap and study the genetic architecture
of dynamic complex traits. Nat Rev Genet 7:229–237. https://doi.org/10.1038/nrg1804

https://doi.org/10.1534/g3.115.023515
https://doi.org/10.1016/j.pbi.2016.04.005
https://doi.org/10.1071/FP09219
https://doi.org/10.1534/g3.116.032888
https://doi.org/10.1093/aobpla/plq008
https://doi.org/10.3389/fpls.2019.00394
https://doi.org/10.1016/j.ohx.2018.e00029
https://doi.org/10.1038/srep42839
https://doi.org/10.3389/fpls.2016.01131
https://doi.org/10.1071/FP16163
https://doi.org/10.13031/trans.59.11502
https://doi.org/10.1016/j.fcr.2012.04.003
https://doi.org/10.2135/cropsci2013.01.0054
https://doi.org/10.1038/nrg1804


5 Experiences of Applying Field-Based High-Throughput ... 99

Xue J, Su B (2017) Significant remote sensing vegetation indices: A review of developments and
applications. J Sensors. https://doi.org/10.1155/2017/1353691

Yang G, Liu J, Zhao C et al (2017) Unmanned aerial vehicle remote sensing for field-based crop
phenotyping: current status and perspectives. Front Plant Sci 8:1111. https://doi.org/10.3389/fpls.
2017.01111

YuK,KirchgessnerN,GriederC et al (2017)An image analysis pipeline for automated classification
of imaging light conditions and for quantification of wheat canopy cover time series in field
phenotyping. Plant Methods 13:1–13. https://doi.org/10.1186/s13007-017-0168-4

Zhang Y, Zhang N (2018) Imaging technologies for plant high-throughput phenotyping: a review.
Front Agric Sci Eng 5:406–419. https://doi.org/10.15302/j-fase-2018242

https://doi.org/10.1155/2017/1353691
https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.1186/s13007-017-0168-4
https://doi.org/10.15302/j-fase-2018242


Chapter 6
High-Throughput Phenotyping (HTP)
and Genetic Analysis Technologies Reveal
the Genetic Architecture of Grain Crops

Wanneng Yang, Xuehai Zhang, and Lingfeng Duan

Abstract Both functional genomics studies and crop breeding have reached the
large-scale and high-throughput stage. However, compared with the rapid progress
in sequencing technologies, the traditional measurement of crop traits is still labor
intensive and inefficient. To address this issue, several phenotyping platforms and
freely available phenotyping techniques have been developed in recent years. In this
chapter, we discuss phenotyping research for important grain crop traits using multi-
disciplinary technologies and then introduce some pioneering work on combining
high-throughput phenotyping and quantitative trait locus (QTL)mapping or genome-
wide association study (GWAS) to uncover the genetic information of various traits
in grain crops. In addition, by addressing some key issues in bridging phenotype-
genotype gaps, we hope to provide useful information and alternative phenotyping
solutions to crop scientists.Webelieve that such endeavors in high-throughput pheno-
typing will accelerate crop genetic improvement, such as drought resistance and
increased yield.
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6.1 Introduction

With the rapid progress in sequencing technologies, genome projects for certain
important grain crops, such as rice (Goff et al. 2002) andmaize (Schnable et al. 2009),
have been accomplishedwith the generation of accurate and large genomemaps.With
such large-scale sequencing data, the next challenge is to dissect genes controlling
important crop traits, i.e., crop functional genomics, which requires not only robust
genome sequencing tools but also high-throughput phenotyping technologies. In
addition to crop genetic studies, crop breeders also seek to identify the best progeny
in a large number of lines using high-throughput and reliable phenotyping in the field
(Araus and Cairns 2014).

‘Plant phenomics’ has been defined as the non-destructive and accurate acqui-
sition of high-dimensional phenotypic data on an organism-wide scale throughout
plant development (Houle et al. 2010) and is no longer a new term. ‘Plant pheno-
typing’, a buzzword in recent years, refers to the set of methodologies and protocols
which measure plant growth traits from organs to the canopy (Fiorani and Schurr
2013). In recent years, many high-throughput phenotyping (HTP) facilities have
been constructed, with a strong effort to promote this field of study, such as genetic
improvement, genome selection, and assistant breeding.

In this chapter, we first introduce phenotyping research of important crop traits,
including shoot traits and root system architectures (in greenhouse and in field), yield
and quality-related traits. Next, we introduce some pioneering work combining high-
throughput phenotyping with quantitative trait locus (QTL) mapping or genome-
wide association study (GWAS) to reveal the genetic basis of these traits. For most
crop scientists, the development of a high-throughput phenotyping facility requires
multidisciplinary teamwork and is a challenging project (Yang et al. 2013). Thus,
in this chapter, by addressing phenotyping studies and the key points in bridging
phenotype-genotype gaps, we hope to provide useful information and alternatives
for crop scientists and benefit crop genetic improvement.

6.2 High-Throughput Phenotyping in Controlled
Environments

6.2.1 Automated Phenotyping Platforms in Greenhouse
Conditions

Significant developments have been made in developing automated phenotyping
platforms employed in growth chambers and greenhouses over the last few years.
Granier et al. used an automated platform, named PHENOPSIS, to phenotype traits
under water deficit conditions inArabidopsis thaliana (Granier et al. 2006). For rapid
optical phenotyping of seedling leaf area and relative growth rate, GROWSCREEN
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was also established and used to quantify the dynamics of seedling growth acclima-
tion under altered light conditions (Walter et al. 2007). Combining chlorophyll fluo-
rescence imaging and automated plant growth analysis, GROWSCREEN FLUORO
allows simultaneous phenotyping of leaf growth and chlorophyll fluorescence in
Arabidopsis thaliana and other rosette plants with a throughput of approximately
60 plants per hour (Jansen et al. 2009). To dissect ‘yield-enhancement’ genes from
a plethora of transgenic cereal materials, a phenotyping platform, TraitMill, was
developed by CropDesign (Reuzeau et al. 2010). TraitMill can be used to screen
plants weekly and count and weigh seeds after harvest and determine phenotypic
traits (aboveground biomass, plant height, total number of seeds, total number of
filled seeds, total weight of seeds and harvest index) that, combined with genotypic
data, were analyzed to identify genes that improve the yield of cereals. Incorpo-
rating color imaging, X-ray computed tomography (CT), automatic controls, and
computers, the joint group from Huazhong Agricultural University and Huazhong
University of Science and Technology (Wuhan, China) has been developed as a high-
throughput rice phenotyping facility (HRPF, Fig. 6.1), which was used to monitor
4 morphology-related traits, 2 biomass-related traits, and 9 yield-related traits. Both
the quantitative evaluation of the performance and the construction details of the
HRPF were discussed, and its maximum throughput was reported to be 1920 pot-
grown rice plants per day out of a greenhouse capacity of 5472 pots (Yang et al.
2014). Another highly intelligent phenotyping robot, GROWSCREEN-Rhizo, was
capable of imaging plant roots and shoots simultaneously, and the throughput of the
setup was 60 rhizotrons per hour out of a total capacity of 72 rhizotrons (Nagel et al.
2012).

6.2.2 RGB Imaging, 3D Imaging and Modeling for Crop
Shoot Traits

Several modern optical imaging technologies have been utilized in plant pheno-
typing. Visible light imaging (RGB imaging) of plants enables measurement of plant
morphological traits in a non-destructive manner and therefore makes it possible to
measure dynamic shoot growth. The technical difficulty lies in developing imaging
processing and data analysis algorithms to extract useful information from the RGB
images. Plants with mere overlapping problems, such as Arabidopsis, are generally
imaged from above for the evaluation of biomass or leaf area (Walter et al. 2007;
Fabre et al. 2011). Side view images from two perpendicular angles and an image
from above are used for cereal crops because the leaves overlap in cereal crops,
especially when the plants grow older (Honsdorf et al. 2014; Petrozza et al. 2014;
Hairmansis et al. 2014). The biomass can be predicted using the projected shoot area
with three images and linear models, but the accuracy of the predictive model for



104 W. Yang et al.

Fig. 6.1 The high-throughput rice phenotyping facility (HRPF) in Huazhong Agricultural
University, China: a greenhouse for rice cultivation; b cultivation unit and transportation unit
with two automatic guided vehicles (AGV); c inspection chamber; d acquired RGB images of rice
growth; e acquired RGB images of maize growth; f acquired RGB images of rapeseed growth;
g 2D reconstructed rice tillers by micro-CT; h 3D reconstructed rice tillers by micro-CT; i acquired
hyperspectral images of one rice plant (400–1000 nm); j new loci were dissected with a combination
of novel phenotypic traits and genome-wide association study (GWAS). (Figure 6.1a–j are courtesy
of Wanneng Yang, Huazhong Agricultural University, China)

biomass may decline when cereal plants produce more multiple shoots and over-
lapping leaves. However, adding the growth date (Golzarian et al. 2011) or new
morphological features (Yang et al. 2014) to the model can improve its accuracy.

Plant growth monitoring over a period of plant development by visible light
imaging enables assessment of the sum of stress response mechanisms, which offers
the possibility to tease apart these responses, such as leaf rolling of drought stress
in rice (Duan et al. 2018). Meanwhile, rapid visible light imaging allows growth
measurement of large populations and therefore enables the use of a genetic approach
to identify the genes responsible for variation under abiotic stress. Visible light
imaging can also provide information on plant color, thus allowing quantification
of senescence arising from biotic stress, such as pathogen infections (Rajendran
et al. 2009).
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Because of its lowcost, ease ofmaintenance and fast imaging, visible light imaging
technology has become the most widely used imaging technology in plant pheno-
typing. The plant architecture (the plant shape in three dimensions), which provides
information on the adaption of a plant to environmental conditions, is a key parameter
of a plant’s phenotype.Moreover, the plant architecture conveysmeaningful informa-
tion concerning the developmental stage of the vegetation period or yield-producing
parameters. 3D reconstruction from multiple images acquired by RGB cameras is
a good choice (Paproki et al. 2012). However, it requires a considerable amount of
post-processing. Laser scanning provides a satisfying resolution and accuracy and
is another convenient technique for acquiring the 3D geometry of plant architec-
ture. Current applications of 3D laser scanning include the measurement of biomass
(Keightley and Bawden 2010) and the root volume of trees (Wagner et al. 2011)
and growth monitoring for barley plants (Paulus et al. 2014). Compared with the 3D
reconstruction method, the cost of laser scanning is relatively high. A recent work
demonstrated that by carefully selecting a low-cost sensor, it is possible to substitute
an expensive laser scanner in many plant phenotyping tasks (Paulus et al. 2014).

6.2.3 Crop Root System Architecture

Roots are crucial organs that directly provide nutrients and water to crops and impact
the crop yield; thus, rapid phenotyping of crop root system architecture (RSA) is
essential for crop scientists (de Dorlodot et al. 2007). One feasible solution is to
implement color cameras to phenotype the RSA in a transparent growth medium,
such as gellan gum in a glass cylinder (Topp et al. 2013). TheRhizoChamber-Monitor
(Fig. 6.2), which includes an automatic imaging system, an irrigation system and
an image analysis pipeline, is developed to extract root growth traits, such as the
dynamics of length and diameter (Wu et al. 2018). Another alternative is to use
aerated nutrients in a transparent plexiglass rhizobox (Courtois et al. 2013). Indeed,
using 3D in vivo imaging of rice in a gellan gum medium and the free software
pipeline, GiARoots (Galkovskyi et al. n.d.), 25RSA traits (2Dor 3D)were identified,
and these relevant quantitative phenotypes can benefit from the genetic dissection
of the RSA. However, these methodologies have several pitfalls, such as the lack of
consideration of microbial interactions, soil structure and mechanical impedances,
and the identification of the natural RSA under soil conditions is urgently needed.
One solution is to screen 2D root images of plants grown in transparent soil-filled
containers. A highly intelligent root phenotyping robot, GROWSCREEN-Rhizo, was
developed to image plant roots and shoots simultaneously, and the throughput of the
setup was 60 rhizotrons per hour out of a total capacity of 72 rhizotrons (Nagel et al.
2012).

Roots are notoriously difficult to phenotype in the soil. X-ray CT is capable of
detecting the inner structure of an object; thus, it could be a promising solution to
recover 3D root architecture in soil environments (Fig. 6.2d). Equipped with a high-
resolution X-rayµCT system, robust software using RooTrak (Mairhofer et al. 2012)
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Fig. 6.2 Root phenotyping in field and lab: a integrated methods for quantifying 3D maize root
architecture in field using field sampling and a reconstruction algorithm; bRhizoChamber-Monitor:
a robotic platform to determine root growth in transparent polycarbonate (PC) panels; c an example
of time-course images of a cotton root system (Fig. 6.2a–c are courtesy of Jie Wu, Nanjing Agri-
cultural University, China); d 3D root detection in soil using X-ray CT (Fig. 6.2d is courtesy of
Xuecheng Zhou, South China Agricultural University, China)

visual tracking was developed to distinguish both gravitropic and plagiotropic root
branches and recover the full range of RSA (Mairhofer et al. 2013). RooTrak was
also shown to extract both coarse and fine roots (the resolution was up to 24 µm) in
different soil textural types. In addition, soil pore architectures can also be imaged
in vivo to explore the interactions between RSA and soil compaction (Tracy et al.
2012). Unlike the purpose of using X-ray CT in clinical applications (such as recon-
structing human tissues with high resolution for a better diagnosis), the ultimate
purpose of root phenotyping is to provide more digital traits with high throughput
and high reliability. Thus, in our opinion, reducing the time and cost of CT scan-
ning and RSA trait extraction and automating the entire CT scanning procedure will
promote the inspection of RSAs with micro-CT at a high-throughput level. X-ray
CT was also applied for the phenotyping of multi-tiller plants (such as rice plants)
(Wu et al. 2019).

6.2.4 Novel Sensors for Physiological Traits

Thermal infrared imaging (IR) provides information on the temperature of leaves
or plants. Because the rate of transpiration or evaporation from the leaf is a major
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determinant of leaf temperature, thermal imaging is also appropriate for screening
plants for variation in stomatal conductance, especially under laboratory conditions
(Jones et al. 2009). IR serves as a useful tool in the diagnosis and quantification of
plant responses to water stress. Near infrared (NIR) imaging is a promising tech-
nology for measuring plant water content. However, NIR is now most widely used
to calculate classical vegetation indices using NIR reflectance ranging from 850 nm
to 1200 nm. NIR imaging using NIR cameras still remains in the technical develop-
ment stages. Themain factors that hinder the popularization of NIR cameras are their
high price and relatively low spatial resolution. Kobori and Tsuchikawa used an NIR
camera to image individual leaves of Ligustrum japonicumwith highly varyingwater
contents, but the sensitivity of the setup to subtle differences in plant water content
needs to be further confirmed (Kobori and Tsuchikawa 2009). Fluorescent imaging
enables measurement of differences in the maintenance of photosynthetic function
under stresses, such as salt and drought stress, before the reduction in plant growth
can be detected (Baker 2008). However, fluorescence imaging using 2D fluorescence
cameras is still restricted to Arabidopsis or other rosette plants. To extend its applica-
tion to larger plants with different shoot geometries, substantial improvements such
as advanced 3D reconstructions are needed. Fluorescence imaging is also capable
of determining leaf area, and measurements over time can be used to calculate the
growth rate (Barbagallo et al. 2003).

Hyperspectral reflectancemeasurement allows the identification of spectral signa-
tures related to plant stress levels and other plant growth characteristics. Hyperspec-
tral imaging using a camera provides both spectral and spatial information and was
used to measure the biomass of individual rice plants (Feng et al. 2013). Another
interesting study combined magnetic resonance imaging (MRI) and positron emis-
sion tomography (PET) to reveal the dynamic changes in plant structures and func-
tions such as growth and carbon allocationwithin complex root systems (Jahnke et al.
2009). However, because of the high cost and relatively long imaging time, MRI and
PET are not appropriate for screening large plant populations at high frequency and
high throughput. Furthermore, MRI is particularly sensitive to the moisture content
of the sample and the presence of paramagnetic ions.

6.2.5 Key Points in Designing Phenotyping Experiments
in Greenhouse Conditions

Design of greenhouse experiments is an important step in achieving a phenotype-
genotype map. Using smaller blocks or adjusting for microclimate differences in
the greenhouse would be better than relocating plants during an experiment (Brien
et al. 2013). In our opinion, for some experiments, such as for drought resistance
or yield improvement studies, growing and testing plants in a movable shelter (with
climate similar to the outdoors) would be better than experiments in an environment-
controlled greenhouse,whichwill bringmore unwantedmicroclimate differences. To
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measure certain physiological traits (such as canopy temperature) that are suscep-
tible to environmental variation (such as air temperature and wind speed) (Jones
et al. 2009), moving the camera and keeping the plants stationary would be better
than transporting the plants to the inspection chamber via a long belt conveyor.
Besides, construction difficulties and costs may be reduced. Normally, individual
pot-grown plants are transported via conveyor to a stable imaging chamber, which
benefits the image analysis. However, when measuring some physiological traits
easily influenced by environments or inspecting large plants that are inconvenient to
move, moving the sensors would be preferable. Moreover, plant phenotypes are the
result of the interaction of genotypes and the environment. Therefore, environmental
monitoring during the experiments is vital and should receive the at least the same
amount of attention as the traits that are measured.

In addition, there are some other essential factors in the design of phenotyping
experiments, such as a flexible image analysis pipeline (Hartmann et al. 2011), a
meticulous experimental setup (Poorter et al. 2012) and even the choice of the proper
pot (or growth container) (Poorter et al. 2012). Another consideration is the manage-
ment of the huge amount of image data from multioptical sensors. The use of the
open-source image analysis pipeline (HTPheno) (Hartmann et al. 2011) and inte-
grated analysis platform (IAP) (Klukas et al. 2014) should be encouraged. In addi-
tion to commercial solutions and some specific software, IAP offers freely available
data management and data processing for different images of several species (maize,
barley and Arabidopsis) and allows users to extend the functions of IAP by adding
new algorithms in terms of plug-ins.

6.3 High-Throughput Phenotyping in Field Conditions

6.3.1 Why Field Phenotyping Is Urgently Needed

Field phenotyping and greenhouse phenotyping are applied for different goals, and
there are several differences between greenhouse versus field experiments. First,
compared with controlled environments in greenhouses or laboratories, field condi-
tions are notoriously heterogeneous. In addition, somefield environmental factors, for
example, the soil environment, are difficult to simulate under controlled conditions,
yet they are significant in plant growth and development. For instance, the amount of
nutrients and water available to plants grown in pots is considerably smaller than in
the field because of the smaller volume of soil available to roots within a pot (Poorter
et al. 2012). In addition, plants constitute a canopy in the field instead of growing
individually in pots, which will influence the light absorption and growth architec-
ture and requires different strategies for image acquisition and image analysis. Thus,
phenotyping results from controlled environments are difficult to extrapolate to the
field.
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6.3.2 Current Phenotyping Tools for Field Conditions

In recent years, remote sensing by unmanned aerial vehicles, including ground-based
field phenotyping at the plot level or single-plant level with higher spatial resolu-
tion has been widely applied in crop breeding (Maes and Steppe 2018). Effective
field phenotyping at the plot level involves the incorporation of several low-cost
commercial sensors on a field vehicle, such as a sonar sensor to extract canopy
height, an infrared radiometer sensor to obtain canopy temperature, and a multi-
spectral sensor to measure canopy reflectance, and biomass can be estimated by
combining canopy reflectance and height (Sanchez et al. 2014). Moreover, to acquire
more traits with high spatial and spectral resolution, RGB color imaging and hyper-
spectral imaging can also be added to the moving field-scan phenotyping platform.
However, these imaging techniques are susceptible to variable environmental condi-
tions, such as changing sunlight. One smart solution is to fix these imaging sensors on
a black moving chamber carried by a vehicle, as is done with the BreedVision system
(Busemeyer et al. 2013). Equipped with multisensors and specific trait calibrations,
novel field-based phenotyping can nondestructively measure plant traits, including
plant height, tiller density, grain yield, moisture content, leaf color, lodging and dry
biomass, at an operating speed of 0.5ms−1. Using the novel traits obtained by Breed-
Vision, the genetic variation in biomass accumulation was dissected, with the poten-
tial to reveal the dynamic genetics of complex traits (Busemeyer et al. 2013). In the
Chinese Academy of Sciences, Guo’s group developed a series of field phenotyping
solutions to extract plant architecture and leaf traits in the field using lidar and other
optical sensors, which can be loaded with mobile monitoring tools, mobile moni-
toring vehicles, unmanned ground vehicles (UGVs) and unmanned aerial vehicles
(UAVs) (Fig. 6.3) (Jin et al. 2018).

To extract the root architectural traits in a few minutes in the field, Shovelomics,
a high-throughput and labor intensive root phenotyping method (requires root exca-
vation and rinsing) was proposed (Trachsel et al. 2011). A commercial portable root
scanner (CI-600, CID Bio-Science Inc., USA) can provide a high-resolution color
image of roots in the soil; however, the screening field of view is limited (21.59 cm×
19.56 cm), and the procedure is so inconvenient (clear tubes must be installed prior
to inserting the imaging sensor) that it can hardly be applied in high-throughput
screening of full-view RSA. In the future, non-destructive full-view screening of
root growth in the field will be one of the biggest challenges in plant phenotyping,
which will require the breakthrough of novel imaging techniques.

6.3.3 Flexible Phenotyping Techniques in Field Conditions

To further promote ground-based field phenotyping, some low cost and feasible
methodologies should be popularized. One prospect is to carry a mobile phone
equipped with a color camera and to use corresponding image calibration (with a



110 W. Yang et al.

Fig. 6.3 Field phenotyping tools for crops: a mobile monitoring tool; b mobile monitoring
vehicle; c unmanned ground vehicle (UGV); d unmanned aerial vehicle (UAV); e the individual
segmented results of maize plant analysis from terrestrial lidar data using deep learning; f group
data registered from six scanning stations for maize growth, and three representative maize plants
of the three growth stages (jointing stage, heading stage, and ripening stage) are shown in the right
corner. (Figure 6.3a–f are courtesy of Qinghua Guo, Chinese Academy of Sciences, China)
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standard color card), a robust image segmentation algorithm, and traits for calculating
the algorithm to extract the quantitative traits of growth status or disease response for
crops. Combined with machine learning, a smartphone application was developed to
detect several leaf diseases, including Cercospora leaf spot, rust and bacterial blight
in sugar beet, and the distinguishing accuracy of the smartphone system was shown
to be better than the accuracy of experts (Hallau et al. 2018). If the calculating ability
of mobile phones is not satisfactory and the connection speed of wireless networks is
fast enough, delivering the captured images to a workstation with a wireless network
could be an alternative for image analysis. In addition, free-access databases of plant
image analysis software, which can expediently guide crop researchers to identify
solutions, are also recommended (Lobet et al. 2013). Another innovation is the small
agri-robot, named Prospero, which functions like an ant (http://www.cropscience.
bayer.com/Magazine/Ripe-for-Robots.aspx) to replace skilled workers in caring for
crops and may someday measure and record crop phenotypic traits, which will alter
our understanding of crop development.

6.4 High-Throughput Phenotyping for Crop Yield
and Quality

Improvements in crop yield and quality are the ultimate goal of crop breeding and
crop research. In recent years, crop functional genomics has entered a large-scale
and high-throughput stage, and thus, high-throughput evaluation of crop yield and
quality is urgently needed (Zhang andWing 2013). Some open-source image analysis
software for grain characteristics or panicle traits has been encouraged by utilizing
a low-cost flatbed scanner or digital camera. SmartGrain is a free-use software to
extract seed size and seed shape but not color-related traits (Tanabata et al. 2012).
GrainScan could be a significant supplement for the rapid measurement of grain size
and color (Whan et al. 2014). Following the manual processing of rice panicles, P-
TRAP and PANorama are recommended as flexible tools to quantify several panicle
traits with good accuracy (AL-Tam et al. 2013; Crowell et al. 2014).

Some research has demonstrated that integrated and fully automatic facilities can
be developed for achieving yield trait scoring or grain quality evaluation (Fig. 6.4).
The integrated SEA (Seed Evaluation Accelerator) facility, for example, can auto-
matically thresh rice panicles, score yield traits, and pack filled spikelets, with a
capability of up to 1440 plants per day and a mean absolute percentage error of less
than 5% (Duan et al. 2011). To improve the measuring efficiency of ear traits, a
high-throughput phenotypic method for maize ear was proposed, which obtains the
panoramic image of a corn ear and total kernels, number of ear rows and kernels per
row, and the efficiency of image acquisition is 15 ears per minute (Du et al. 2018).
To inspect rice quality, another automatic inspection facility incorporating some
optical sensors was established to extract parameters such as the protein content
and moisture content (Kawamura et al. 2003). In the future, decreasing the cost of

http://www.cropscience.bayer.com/Magazine/Ripe-for-Robots.aspx
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Fig. 6.4 High-throughput phenotyping for yield-related traits inChina: a first generation yield
traits scorer for yield-related traits using bimodal imaging (linear RGB and X-ray scanning); b SEA
facility: an integrated phenotyping machine to extract yield-related traits, which mainly contains
automatic threshing unit, automatic inspection unit and packing-weighing unit; c the panicle image
acquired with X-ray scanning to identify and count filled/unfilled spikelet number; d prototype of
a yield traits scorer (YTS) using linear RGB scanning; e software interface of YTS; f segmented
spikelet images using YTS (Fig. 6.4a–f are courtesy of Wanneng Yang, Huazhong Agricultural
University, China); g prototype of yield traits scorer for maize ear; h the scanned panoramic surface
image of corn ear; i segmented results of corn ear (Fig. 6.4g–i are courtesy of Xinyu Guo, Beijing
Research Center for Information Technology in Agriculture, China)

these novel photonics-based inspection techniques, improving their reliability, and
providing more novel traits that are difficult to inspect manually could promote the
popularization of these integrated tools and benefit more crop research groups.
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6.5 High-Throughput Phenotyping and Genetic Mapping

6.5.1 Genetic Study Using Traditional Phenotyping: Rice
as a Case Study

Green super rice (GSR) was first proposed by Qifa Zhang 10 years ago and should
possess resistance to multiple insects and diseases, high nutrient efficiency, and
drought resistance, reducing greenhouse gas emissions (Zhang 2007). To achieve
this goal as soon as possible, it is important and necessary to better understand,
manage and utilize the existing genes for resistance to diseases and insects, N-
and P-use efficiency, drought resistance, grain quality, and yield. Before 2000, only
approximately 130 genes were cloned in total. Hereafter, the number of cloned genes
has gone up each year, especially after the draft sequence of the rice genome was
released in 2002, and an increasing number of genes governing agricultural traits
were isolated and functionally characterized, reaching 100 genes in 2005. By the
end of 2007, a total of 3000 genes were well characterized through various tradi-
tional approaches (Yao et al. 2018) and have potential applications in breeding GSR.
The cloned genes are involved in a wide variety of phenotypic traits. These traits
were obtained by traditional phenotyping methods and can be classified into five
categories: yield (number of panicles, number of grains per panicle, grain weight,
plant architecture), grain quality (appearance/eating/nutritional quality), fertilizer
efficiency (efficient nitrogen/phosphorus use), insect and disease resistance, and
habitat adaptability (drought/flood/cold/heat resistance) (Zuo and Li 2014; Li et al.
2018; Meng et al. 2019). With the rapid development of high-throughput sequencing
technology, digital genebanks (genotypic data) are easily and accurately obtained by
all kinds of sequencing technologies. However, phenotyping is a serious bottleneck
in functional genomics. Additionally, linking digital genebanks to phenotypes in a
high-throughput format is of critical importance for rapid identification of new allele
combinations suitable for the development of GSR cultivars. Thus, phenotypic data
generated from various high-throughput phenotyping platforms (such as a facility,
greenhouse or tractor gantry or drone in field) are necessary for mining new genes
that could be used in ‘Omics’-based strategies to develop GSR in the future (Wing
et al. 2018).

With the rapid development of high-throughput sequencing technology, conven-
tional quantitative trait locus (QTL) mapping based on linkage and genome-wide
association studies (GWAS) based on linkage disequilibrium (LD) have been proven
to be two powerful tools that are complimentary to each other in dissecting the genetic
basis of complex traits in crops. In addition, many genes governing important traits
have been cloned in crops. However, the fact that traditional crop phenotype detec-
tion methods are labor intensive, low-throughput in capacity, time consuming, costly
and frequently destructive to plants still remains a limiting factor and is far behind
the development of other omics studies, such as genomics (Chen et al. 2014).
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6.5.2 Genetic Study Using High-Throughput Phenotyping

To solve this bottleneck and accelerate the development of functional genomics, in
recent years, some research teams around the world have developed several high-
throughput precision phenotype platforms or technologies to improve phenotyping
efficiency. Based on these platforms or phenotyping technologies, some traits were
phenotyped at the microscopic level to the whole plant level under normal and stress
conditions that can be categorized as shoot apical meristem (SAM)morphology, root
phenotyping traits, plant morphological traits, leaf architecture traits, color traits,
biomass or yield-related traits, growth-related traits and so on. Meanwhile, many of
these traits have been used in growth modeling, yield or biomass prediction, genetic
mapping, genomic selection or machine learning. In particular, QTL mapping and
GWAS have been conducted with many traits obtained in several crops (Table 6.1),
including barley (Honsdorf et al. 2014), rice (Wu et al. 2018), triticale (Jin et al.
2018), wheat (Klukas et al. 2014; Rasheed et al. 2014), and maize (Zhang et al.
2017; Leiboff et al. 2015). Some major achievements in combining high-throughput
phenotyping and genetic mapping in grain crops will be introduced in this section.

At the microscopic level, maize seedling shoot apical meristem (SAM) morpho-
logical traits (shape and size) were extracted using a high-throughput image-
processing pipeline. In addition, GWAS and QTL mapping of the SAM morpholog-
ical traits were conducted in an association panel and a backcross (BC) population,
respectively. The results illustrate that the microscopic seedling SAM is a predictor
for adult phenotypes and genes associatedwith SAMmorphometric variation that not
previously predicted contribute to regulating SAM size (Leiboff et al. 2015; Leiboff
et al. 2016).

For root phenotyping, Topp et al. identified 89 univariate QTLs and 5major multi-
variate QTLs associated with 25 root-related traits using semiautomatic in vivo 3D
imaging and a digital phenotyping pipeline in a rice linkagemapping population (Wu
et al. 2018). In addition, 15 rice root traits obtained from a root photography system
were used in a GWAS and 19 and 78 significant associations were found at P<1e-05
and P<1e-04, respectively. It should be noted is that most associations were detected
for the number of deep roots and deep root mass, whereas no associations were found
for total root biomass and deep root proportions (Courtois et al. 2013). In Brassica
napus, a high-throughput root phenotyping method was also used to phenotype root
architecture-related traits under high phosphate (Pi) and low Pi conditions and to
identify QTLs controlling these traits (Shi et al. 2013).

For leaf phenotyping, two genetic mapping works for leaf traits in rice and maize
were performed in cooperation ofNationalKeyLaboratory ofCropGenetic Improve-
ment at HuazhongAgricultural University. They performed aGWAS for 29 leaf traits
related to leaf size, shape, and color at three growth stages using a self-designed high-
throughput leaf scoring (HLS) system on a panel of 533 rice accessions and identified
73, 123 and 177 new loci for traits associated with leaf size, color and shape, respec-
tively. Interestingly, 9 loci containing known leaf-related genes were also detected
(Yang et al. 2015). In addition, 22 leaf architecture traits of a maize recombinant
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inbred population (RIL) at each of 16 time points were obtained and mapped to the
QTLs governing these traits via linkage analysis (Zhang et al. 2017). In addition,
novel traits have proven to play important roles in predicting digital biomass accumu-
lation or as indicators of final yield prediction and an ideal plant type concept based
on phenotypic traits in the early growth stage has been proposed, which provided
a new strategy for breeders to optimize plant architecture towards an ideotype in
breeding maize or other crops (Zhang et al. 2017).

Yield improvement is a central goal of breeding formost grain crops. Thus, dissec-
tion of the genetic bases of yield and its component traits will aid in understanding the
genetics and molecular characteristics of yield traits and accelerating crop genetic
improvement. In fact, most genetic mapping studies with high-throughput pheno-
typing focus on agronomic and yield-related traits under normal or abiotic stress
conditions. For agronomic and yield-related traits, PANorama was used to pheno-
type inflorescence architecture-related traits and 49 panicle phenotypes, and then
GWAS and QTLmapping was performed to test the biological validity of these traits
(Crowell et al. 2016). QTL mapping with SmartGrain software in rice and GWAS
with digital image analysis in synthetic hexaploidwheatwas performed to understand
the genetic control of grain morphology (Tanabata et al. 2012; Rasheed et al. 2014).
In bread wheat (Triticum aestivum L.), by integrating functional mapping and high-
throughput phenotyping data of yield-component traits under N deficient conditions,
several QTLs were detected as determining the pattern and magnitude of response
to low N stress and normal N supply throughout the wheat life cycle (Jiang et al.
2018). Additionally, the biomass of 252 maize inbred lines was obtained using the
IPK (Leibniz Institute of Plant Genetics and Crop Plant Research) automated nonin-
vasive plant phenotyping system at four time points; 12 main effect marker-trait
associations by GWAS and four additional marker loci affecting growth dynamics
using nonparametric functional mapping and multivariate mapping approaches were
detected (Muraya et al. 2017).

For the study of abiotic stress, many drought or salinity tolerance QTLs in grain
crops can be detected based on these phenotype platforms and novel image-based
traits (Table 6.1). For example, 44 drought tolerance (DR) QTLs were found in a set
of 47 six-week-old wild barley introgression lines with a LemnaTec 3D Scanalyzer
(Honsdorf et al. 2014). Using the LemnaTec 3D Scanalyzer, QTLmapping related to
biomass, leaf area, growth (rate) and transpiration in a wheat RIL population under
water stress was performed and 20 QTLs for these traits were identified (Parent et al.
2015). In another study, GWAS was conducted on plant growth and transpiration
traits in a rice association panel under salinity stress, and several significant loci and
candidate genes underlying these QTLs were found (Al-Tamimi et al. 2016). Under
theHRPF (high-throughput rice phenotyping facility) andHLS (high-throughput leaf
scoring), GWAS and linkage analysis on 51 image-based traits (i-traits) and tradi-
tional DR traits were carried out in 507 rice diverse accessions and arice biparental
mapping population (Guo et al. 2018). In total, 470 association loci were identified
for i-traits and traditional DR traits, and 443 loci (94%) were identified using i-traits.
More importantly, 69 i-trait locus associations were identified by both GWAS and
linkage analysis of the biparental population. A DR gene, OsPP15, its role in DR
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was confirmed by transgenic experiment, which proved that a combination of HTP
and genetic mapping provides a powerful method for mining causal genes for DR
(Guo et al. 2018).

Furthermore, several other studies identified many loci governing different agro-
nomic and yield-related traits through GWAS or linkage analysis in different grain
crops based on different phenotype platforms (Table 6.1). Under field conditions,
Busemeyer et al. developed a phenotyping platform to study dynamic changes in
biomass in triticale and then performed GWAS to understand the complex dynamic
regulation of biomass (Busemeyer et al. 2013). Combining a high-throughput rice
phenotyping facility (HRPF) and GWAS for 15 important traits (including biomass-
related traits and yield-related traits) in rice, some new significant traits not amenable
to traditional phenotyping (e.g., plant compactness, digital biomass, leaf rolling, and
stay-green) were analyzed, and several significant loci were detected (Yang et al.
2014). Additionally, 1540 hyperspectral features of the same rice association panel
at the whole plant level during tillering, heading, and ripening stages were obtained
using a high-throughput hyperspectral imaging system (HHIS), and 989 significant
loci were identified by GWAS (Feng et al. 2017).

6.6 High-Throughput Phenotyping and Genome Selection

Genome selection (GS) was first reported in cattle breeding, and it has been proven
that selection based on genetic values predicted from markers can substantially
increase the rate of genetic gain in animals and plants. However, building an accurate
prediction model based on a dataset of individuals or lines that have been genotyped
and phenotyped is necessary for GS (Meuwissen et al. 2001). In short, GS is actu-
ally using genome-wide markers and statistical modeling to select complex traits.
As the cost of sequencing has decreased in recent years, GS has been widely used
in plant breeding. Its advantage is to predict how a plant will perform before it is
field-tested. Two factors, a training set and a validation set, need to be considered in
GS. In detail, first, the ‘training set’ is genotyped and phenotyped, then the ‘training
set’ is used to create the GS prediction model, and last, only genotypic information
from the breeding material or remaining lines (the validation set) is then fed into the
model to calculate genomic estimated breeding values (GEBV) for the validation set;
prediction accuracy of the model is determined after comparison with the actual data
(Heffner et al. 2009). When building an effective prediction model, a large dataset,
including a large number of markers and traits, is needed. With the development of
next generation sequencing technology, molecular markers are easily and accurately
obtained by all types of sequencing technologies. However, phenotyping is a serious
bottleneck in building an accurate model.

In coming years, phenotypic data collected with high-throughput phenotype plat-
forms will have great potential in enhancing GS in grain crops. For example, an
unmanned aerial vehicle (UAV) carrying different remote sensing units (RGB, near-
infrared, green and blue (NIR-GB) camera) has been used for obtaining sorghum
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plant height (PH) data that is used in different genomic predictionmodels. The results
tell us that genomic prediction models were almost identical and that UAV remote
sensing could replace traditional measurements in genomic prediction modeling.
UAV remote sensing will be an indispensable tool in genomics-assisted plant
breeding because it can increase the throughput of phenotyping and decrease its cost
(Watanabe et al. 2017). In awheat GS study, the authors found that without correcting
for days to heading, secondary traits could increase accuracies for grain yield by 70%
in genomic prediction models, on average. However, the accuracy of the model could
increase slightly when considering replications or days to heading. In this study, we
learned that secondary traits obtained with high-throughput methods could be used
in genomic prediction to improve prediction accuracy (Rutkoski et al. 2016). More-
over, the International Maize and Wheat Improvement Center (CIMMYT) obtained
dynamic high-throughput phenotyping (HTP) data of 1170 advanced wheat lines
in two environments, drought in 2014 and 2015 and heat in 2015 (Watanabe et al.
2017). Combining 2254 genotyping-by-sequencing (GBS) markers with over 1.1
million phenotypic observations for GS, several GS methods were investigated to
best model the phenotypic information and HTP traits improved model performance
and increased selection accuracy. The results indicate thatGS strategies are a tractable
way for plant breeders to increase the rate of genetic gain and select superior higher
yielding crop varieties more efficiently (Crain et al. 2018).

It is imperative to understand the biological meaning and genetic basis of new
traits measured by multidisciplinary phenotyping technologies instead of traditional
phenotyping in the future. However, high-throughput phenotyping has not been suffi-
ciently successful for achieving gene loci discoveries, genomic selection (GS), and
machine learning (ML), and the following issues should be considered. (1) Reliable
phenotypic traits: high-throughput phenotyping does not mean full-automation, so
proper pipeline checking is necessary, which means every piece of phenotypic data
should be checked before GWAS, linkage analysis, GS or ML. (2) Proper mapping
population: Population sometimes has more of an effect than novel phenotyping
tools on gene discovery. (3) Sample size: Appropriately mapped populations usually
have more statistical power in detecting loci or genes with true position; however,
sample size is influenced by the throughput capacity and operational efficiency of
phenotyping platforms. At present, it is difficult to complete the phenome of a large
population, such as a nested association mapping (NAM) population, random-open-
parent association mapping (ROAM) population or multiparent advanced generation
intercross population (MAGIC) (Xiao et al. 2017). (4) Strict environmental control:
Unwanted environmental variation alters phenotypic traits and leads to false-negative
or false-positive QTL mapping or GWAS.

6.7 Conclusions

In recent years, plant phenomics has become an important discipline, and many
high-throughput plant phenotyping methodologies have been developed to benefit
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crop functional genomics and breeding. Using high-throughput techniques not only
acquires phenotypic traits at different time points but can also detect dynamic devel-
opment at those time points, which could be used to uncover the genetic architecture
of complex traits (shown in Fig. 6.5). With genetic analysis tools (e.g., GWAS,

Fig. 6.5 The combination of phenotypic traits and genetic analysis tools. Some significant
traits (cannot be obtained by traditional phenotyping, e.g., plant compactness, grain projected area,
3D RSA in the soil) can be analyzed with novel photonics-based techniques. Moreover, using
high-throughput techniques can acquire both phenotypic traits at different time points and dynamic
development at those time points



6 High-Throughput Phenotyping (HTP) … 123

linkage analysis, PheWAS (Denny et al. 2013)), more loci or genes with important
function could be dissected with a combination of novel traits, which cannot be
obtained by traditional phenotyping. In the future, low-cost phenotyping platforms
andopen-source image analysis networks should be encouraged andpromoted,which
calls for cooperative efforts between international plant phenotyping communities.
For this purpose, an international plant phenotyping network (IPPN) has been orga-
nized (http://www.plant-phenotyping.org) and supports the development of concepts
and technologies in plant phenotyping through interactions between major pheno-
typing centers. We believe that high-throughput phenotyping and plant phenomics
will provide new insight for dissecting certain complex traits, such as those regu-
lating abiotic stress responses and yield and will benefit crop genetic improvement
and the next Green Revolution.
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Abstract Soybean [Glycine max (L.) Merr.] breeders and geneticists routinely eval-
uate thousands of plots per year in order to characterize various accessions and
breeding populations for a multitude of traits, for example, morphological, phys-
iological, abiotic and biotic stress, plant organs, and seed composition. Most of
these trait evaluations require experienced raters to spend countless hours, recording
phenotypes for each genotype in different filial generations. Plant breeders strive
to work with increased population sizes, and improved accuracy of selection to
increase the response to selection. These requirements have motivated the devel-
opment of high-throughput phenotyping (HTP) methods and associated tools (i.e.,
hardware) and software solutions. This chapter consists of several topics related
to HTP, including sensors, unmanned aerial systems, and ground robots, as these
are important components of plant phenotyping in the new technological era. The
advances in image-based analysis and machine learning methods have accompanied
the improvements in phenotyping capabilities, both aerial and ground. This chapter
includes the current state of the art in types of sensors, aerial, and ground-based
HTP, in conjunction with machine learning-based analytics, particularly for physio-
logical and morphological traits, abiotic and biotic stresses, and root-related traits.
Advances in the integration of HTP with crop modeling are provided. Finally, the
complementary relationship between HTP and genomic studies is explained with
pertinent examples.
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Keywords Phenomics · Sensors · Unmanned aerial systems · Ground robots ·
Machine learning · Crop modeling · Plant stress
Plant breeding can benefit from advances in phenotyping, with a better understanding
of genetic architecture and the ability to integrate new insights and traits in improved
lines. Depending on the region and market segment targeted by the breeder, this may
encompass a broad range of traits including economic yield, agronomic, disease
and insect resistance, herbicide tolerance, responses to abiotic factors such as water
stress (drought or flooding), salt tolerance, seedling chill tolerance, and seed compo-
sition. With the advent of new sensors and carrying platforms (aerial and ground),
remote and proximal sensing of plants and their parts have improved rapidly. These
advances have opened up new avenues, while improving existing approaches for a
number of practitioners, including plant breeders, agronomists, pathologists, physi-
ologists, and farmers. Optical sensors and cameras are being deployed, enabling the
logging of orders of magnitude moremeasurements, as well as realizing the ability to
capture time-dependent changes throughout the growing season on large collections
of genotypes (i.e., phenomics).

We define the use of sensors or other tools to rapidly phenotype plants with
some automation as “high-throughput phenotyping”or HTP. While the term HTP
can often be misinterpreted due to a lack of standardization for its classification as
“High-Throughput”; for the purpose of this chapter, HTP is considered to encompass
all situations (platforms-sensors-output combinations) where data collection is faster
than done by a human acting alone. In addition toHTP-enabled selection for breeding
decisions; by tracking the progression of phenotypes throughout the growing season,
genetic underpinnings of developmental pathways are becoming clearer. With each
additional trait that can be measured by proxy using sensors, more informed selec-
tions can be made. Given the long history of many plant selections based on visual
appearance, image-based phenotyping has gained prominence for HTP applications.
Using traditional RGB cameras, attached to ground-based systems or unmanned
aerial systems (UAS), many traditionally measured traits are now collected digitally.

The adoption rate of HTP methods is affected by costs, ease of use, measurement
accuracy, and correlation with traits of interest. The cost of these systems appears to
be on a downward trend, easing the financial burden. Continual efforts are ongoing
to improvemeasurement accuracies and establish trait correlations with new sensors.
For example, multispectral and hyperspectral sensors provide an opportunity to focus
on phenes of interest with increased insights on traits.

This chapter is split into nine research topics relevant to HTP, with a primary
emphasis on field-based phenotyping.
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7.1 Sensors in HTP

HTP sensors can be classified based on the source of the radiation detected (active or
passive), the portion of the electromagnetic spectrum used, and further subdivided
by the type of data that is returned (e.g., image or digital value). Both active and
passive sensors measure reflected energy. The former type emits energy that is then
detected, while the latter relies on solar radiation reflected off an object (Barmeier
and Schmidhalter 2017). Popular active sensors used in HTP, such as LiDAR and
ultrasonic sensors, are useful for generating 3D point clouds, which can be used for
extraction of canopy architecture (Conn et al. 2017), plant height (Wang et al. 2018),
and above-ground biomass (Pittman et al. 2015). Passive sensors consist of multi-
spectral, hyperspectral, RGB (red, green, blue), fluorescence, and thermal infrared.
Spectral sensors generate phenotypic trait information by leveraging the relationship
between measured reflectance from a canopy or other plant tissue with many physi-
ological traits that control the observed phenotypic response. Physiological traits are
derived from reflectance values of regions of the electromagnetic spectrum (Parmley
et al. 2019; Nagasubramanian et al. 2018), and vegetation indices that are associated
with biochemical processes in the plant (Xue and Su 2017). RGB cameras are afford-
able and scalable sensors that have been used extensively in research for measuring
canopy cover (Parmley et al. 2019; Yu et al. 2016; Xavier et al. 2017), above-ground
biomass (Ballesteros et al. 2018), stress detection (Naik et al. 2017), disease scoring
(Nagasubramanian et al. 2018; Naik et al. 2017; Dobbels and Lorenz 2019), and
many other purposes. Gas exchange sensors used for measuring water use efficiency
and photosynthetic capacity have seen limited application in HTP screening due to
their limited throughput capacity. However, a recent study identified a wide range of
genetic variability and correlation with seed yield (Lopez et al. 2019).

The main types of sensors used in HTP include the following:

• RGB cameras—RGB (Red, Blue, Green channel filters) cameras are typically
the most inexpensive sensors and are the most popular. The benefits of an RGB
camera include high resolution, and are usually easy to mount and incorporate
onto a UAS (commonly referred to as a drone), especially if they are made by
the same company as the UAS manufacturer. A drawback of the RGB camera is
the lack of information in the near-infrared spectrum, which can provide valuable
plant health information (Chaerle and Van Der Straeten 2001). Some of the traits
that can be captured include height, stand counts, canopy coverage, biotic and
abiotic stress symptoms, and visible spectrum computed reflectance indices. In
maize (Zea mays L.), early-season plant counts using RGB imagery have been
shown to be effective tools (Gnädinger and Schmidhalter 2017), but soybean
stand counts have not been reported utilizing similar methods; however, it is not
a limitation of the technology. Detection and quantification of iron deficiency
chlorosis in soybean plants using RGB imagery taken from a UAS has proved
to be an effective way to screen a large number of genotypes for susceptible and
resistant lines in a breeding program (Dobbels and Lorenz 2019). Maturity date
has also been estimated using an RGB camera (Narayanan et al. 2019).
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• Multispectral cameras—these have 3 to 10 bands are typically not continuous,
and have a wide spectral range. The benefit of these cameras is that they contain
the visible light spectrum, which allows them to calculate the traits produced from
an RGB camera, but they also contain bands in the near-infrared region (NIR),
which can provide more information on overall plant health through the use of
indices, such as the normalized difference vegetation index (NDVI). A multi-
spectral camera was used for maturity date estimation (Zhou et al. 2019). Several
manufacturers are now selling customizable multispectral cameras catering to
individual needs.

• Hyperspectral cameras (image based)—these are similar tomultispectral cameras
in that they contain both visible and NIR bands, but the difference is that hyper-
spectral cameras capture reflectance data for a large number of continuous narrow
bands (Yang et al. 2017). Much of hyperspectral imaging in soybean has been lab-
or ground-based phenotyping for early disease detection (Nagasubramanian et al.
2018, 2019; Hatton et al. 2018). Hyperspectral data cubes have the advantage of
generating a continuous spectrum of bands which can be studied to determine
what bands provide the most valuable information for a given trait of interest,
but this advantage can also represent a challenge given the data size that can
be collected using UAS and the additional data processing requirements. At this
time, UAS-mounted hyperspectral phenotyping in soybean is in a nascent stage,
but has been shown to be effective in other plant species. For example, hyper-
spectral imagery from a UAS was used to map insect damage in Norway spruce
(Näsi et al. 2015). Spectroradiometers have been routinely used in soybean for
plant health estimation (Kovar et al. 2019), and even insect quantification (Alves
et al. 2019), but these have not yet been used with a UAS or automated ground
robot.

• Thermal imaging cameras—these cameras measure the heat that radiates from
an object. They have been useful for monitoring canopy temperature in soybean,
which can be correlated with tolerance to heat and drought stress (McKinney et al.
1989). Also, thermal imaging cameras have been used to characterize cultivar
differences in resistance to sudden death syndrome (caused by Fusarium virguli-
forme) in soybean (Hatton et al. 2018). Thermal imagery is prone to give erroneous
output if the height of the UAS, and weather conditions such as cloud cover and
wind speed are not constant.

• LiDAR—it uses lasers to create dense 3D point clouds that can be used to
track object geometries. Ground-based phenotyping has been accomplished with
LiDAR, and has been capable of tracking plant height over time (Friedli et al.
2016). Elevation mapping using LiDAR collected via satellite data has also been
successful (Gelder 2015), but small-sized LiDAR instruments mountable on UAS
are new and not well researched. However, in forest mapping, good correla-
tions with field inventory measurements have been reported using a UAV-LiDAR
system (Wallace et al. 2012). It is expected that in coming years this technology
will gain wider usage in soybean.
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A multitude of sensors are available for HTP applications (Mahlein 2016);
however, their usefulness depends on versatility, veracity to trait correlation,
affordability, and throughput.

7.2 UAS-Based HTP

There are two commonly used platforms forUASphenotyping: fixed-wing andmulti-
rotor drones.While satellite-based phenotyping has been utilized (Mfuka et al. 2019),
the focus of this section will be on UAS. It seems that for research purposes in agri-
culture, multi-rotor drones are preferred, but for commercial agricultural mapping,
fixed-wing aircraft may have an advantage. The benefits of multi-rotor drones over
fixed-wing include vertical take-off and landing, usually lower purchase cost, higher
payload capacity, and typically have the ability to customize payloads more easily.
The disadvantages are that they typically have reduced “in-air” flight times because
they have to generate all of their own lift, and are less stable in high wind speeds.
To make up for shorter flight times, additional batteries are used for swapping (and
re-charging) when flying for longer durations. Larger sized multi-rotor drones can
help make up for stronger winds; however, for field-based phenotyping, high wind
speeds create image processing challenges particularly image reconstruction due to
moving plant organs. The fixed-wingUAS advantages and disadvantages are inverted
compared to multi-rotor drones, as these have long flight times and are more stable
at higher wind speeds. The disadvantages include a larger area needed for take-off
and landing; higher costs; and for small fields, lower efficiency because they require
more space tomake turns in the flight pattern (DroneDeploy 2017). Researchers using
UAS-based phenotyping carefully select the most appropriate sensors based on the
trait of interest. The most commonly used sensors on UAS are RGB (i.e., digital
camera), multispectral (generally more than three bands or filters), hyperspectral
(generally more than 10 bands or filters), thermal imaging, and Light Detection and
Ranging (LiDAR), as described earlier.

For new entrants in UAS-based phenotyping, several aspects are important to
know. For obtaining high-quality images, Ground Control Points (GCPs) must be
taken at Real-Time Kinematics (RTK) level accuracy (Do more GCPs equal more
accurate drone maps? In: Pix4D [Internet]. 5 Nov 2018). GCPs should capture the
variation in elevation and terrain across the area to be phenotyped (Oniga et al. 2018).
Generally, four GCPs at the corner of fields and an additional point in the middle
of the field increase vertical accuracies of reconstruction, but more GCPs may be
required depending on field size. Sufficient GCPs are included to allow the stitching
software to create a highly accurate reconstruction of the map, especially for time-
series analyses. This ensures that when producing spatial files for plot extraction, the
same files for each time point are used. If these are not included, the accuracy of the
orthomosaic images may be slightly different each time reconstruction is completed.

Orthomosaic images are commonly used when utilizing UAS imagery, as they
help to reduce data size and ease the visualization of the field of interest. Orthomosaic
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images rely on point matching, which is somewhat of a black box process, so using
the same dataset can lead to slightly different reconstructed images. In the absence
or near absence of canopy movement at the time of data capture, reconstructions
should be very similar; however, if imaging is done when substantial canopy move-
ment is occurring, less reliable reconstructions are accomplished, i.e., outputs ghost
plant leaves. After orthomosaic construction, plot extraction is completed and image
processing is accomplished using the user-chosen software. Many applications with
some human supervision have been developed that are capable to extract individually
labeled plots, and usually provide some basic traits such as plant canopy extraction
and coverage (Khan and Miklavcic 2019; Haghighattalab et al. 2016; Tresch et al.
2019). Efforts are ongoing to completely automate plot extraction from orthomosaics
in plant sciences.

Most image processing software will output a 3D point cloud of an imaged field
along with an orthomosaic, and a digital surface map. The 3D point cloud is similar
to the type of data received from LiDAR, but does not have return values that can
help determine the type of material being sensed. These files tend to be large, and
not as dense as LiDAR data, because it is using structure frommotion, which utilizes
multiple camera angles of the same plant to reconstruct multiple 2D images into a
3D image. Digital surface maps are smaller files than point clouds, but also represent
the height at a given spatial point, which is done by using the pixel value to represent
the height. While UAS can capture several plant traits, few trait measurements or
estimations are not feasible when usingUAS due to occlusion or angle of view. These
include many soybean disease traits that require “in the canopy” evaluations (Coser
et al. 2017; Moellers et al. 2017), where disease symptoms are expressed on stems
and petioles.

7.3 Ground-Based HTP

Precision agriculture has been greatly influenced by agricultural machinery specifi-
cally designed for row crop application, and more recently, these use local and global
sensors for autonomous driving to improve on-farm production (R Shamshiri et al.
2018). Tractor-mounted sensors can improve throughput, but repeated phenotyping
across the field comes with a serious cost of soil compaction that can lower yield and
increase flooding tendencies (Batey 2009; Nawaz et al. 2013). Lightweight mobile
phenotyping platforms capable of carrying multiple sensors have been constructed
to alleviate the compaction factor and increase the rate of data collection (Gao et al.
2018; Crain et al. 2018). These mobile phenotyping platforms increase throughput
while maintaining the accuracy of phenotyping. However, the current challenges
in developing mobile robotic field phenotyping units for soybean include a lack
of full autonomy and few software solutions that enable easy on-board real-time
decision-making.

Researchers are making strides in developing ground-based robots or rovers
(running in between canopies) to collect field data; however, limited studies have
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been reported in soybean. Riera et al. (2020) utilized ground robots and devel-
oped a multi-view image-based soybean yield estimation framework utilizing Deep
Learning (DL) architectures. A diverse collection of soybean accessions were pheno-
typed using RGB camera on ground robots that were run on breeding experiments.
The DL methods were successfully deployed to isolate individual plants from the
background and neighboring plants, and for pod counting estimate seed yield, as
well as rank soybean genotypes for application in breeding decisions (Riera et al.
2020). In non-soybean examples, two methods (vision, vision + LiDAR) success-
fully measured sorghum stem width in a cluttered field environment and were then
tested and amended formaize and hemp (Choudhuri andChowdhary 2018).Aground
robot with LiDARwas used to produce a 3D reconstruction ofmaize fields in order to
extract plant architecture and biomass trait information (Gage et al. 2019). A multi-
agent strategy combining a team of “weeder bots” to locate and mechanically control
weed pressure in the field increased system performance (McAllister et al. 2019).
In soybean, researchers reported a collaborative multi-robot system for phenotypic
collection using lightweight robots and a saliency-driven informative path planning
technique for navigation (Gao et al. 2018).

Ground rover-based phenotyping is built on proximal, non-destructive, and non-
invasive approaches that sense visible/near-infrared radiation (reflected or trans-
mitted) and far-infrared radiation (thermal radiation) emitted by the crop. Although
ground rover -based HTP is more time-consuming than UAS, higher phenotypic
resolution can be obtained. In current practice, available mounts for these sensors
can be stationary towers, customized platforms, vehicles, or rovers.

• Stationary Tower/Gantry System: The advantage of stationary towers or a gantry
system is that they can be quite robust, making them ideal choices for larger
payloads and adverse atmospheric conditions.Kirchgessner et al (2016) achieved
this by developing a cable-suspended field phenotyping platform, equipped with
a point spectrometer, RGB camera, modified three-band NDVI camera, 40 band
spectral image camera (16Visible, 25 NIR), thermal camera, and a terrestrial laser
scanner. Sensors were positioned 2–5 m above the canopy for high-resolution
phenotyping. The system was deployed in soybean for monitoring canopy cover,
canopy height, and traits related to thermal and multispectral imaging. However,
the disadvantage of using towers is that they are restricted to a given field site and
generally on their own, non-HTP.

• Manual Cart: A more lightweight proximal sensing cart or a manual cart with a
multi-sensor system has been used for phenotyping. They cost less tomanufacture
and are often constructed in a narrow wheeled manner, which can cause minimal
soil and crop disturbances. They are also highlymaneuverable and can be designed
to accommodate specific crop heights and row spacings. The system made by Bai
et al. (2016) had five sensormodules (ultrasonic distance sensors, thermal infrared
radiometers, NDVI sensors, portable spectrometers, and RGB web cameras) to
measure crop canopy traits. Geo-referencing was accomplished using a Global
Positioning System (GPS) device. Two environmental sensors (solar radiation and
air temperature/relative humidity sensors) were also integrated into the system.
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While high-resolution and extensive sensors provide advantages; as with any
manually intensive operation, this method is slow and prone to operator errors
and fatigue, which can affect data quality.

• Customized Tractor: When it comes to maneuverability, sensor-equipped trac-
tors are advantageous over stationary mounted systems. A tractor equipped
with a boom system allows for the precise positioning of sensors. In Barker
III et al. (2016), the frame included up- and down-welling optical fibers, GPS
antenna, infrared thermometer, pyranometer, quantum sensor, and down-looking
digital camera. Phenotyping was done for foliar pigment contents (chlorophyll,
carotenoids, and anthocyanins), green vegetation cover, fraction of absorbed
photosynthetically active radiation, green leaf area index (LAI), green leaf
biomass, total canopy chlorophyll content, and gross primary production. Using
a tractor in such a manner can cause soil compaction. If sensors are mounted for
use as a top view, it precludes in-between canopy trait measurements. Also, trac-
tors are generally not amenable for later crop growth stages in between the row
phenotyping without changing tires or damaging plants in the rows of movement.

• Motorized and Autonomous Robot: The most flexible ground-based HTP are
motorized or autonomous. The emerging robotic systems are autonomous, work
on demand (even at night), and can be equipped with multiple sensors enabling
multiple traits phenotyping simultaneously. Gao et al. (2018) fabricated and
deployed an all-terrain lightweight robot to capture images to phenotype foliar
diseases, flowers, pods, etc. of soybean. It was equipped with RGB cameras
(field of view 78 degrees) and RTK-GPS that provided centimeter accuracy and a
differential GPS to facilitate better navigation under dynamic, heterogeneous field
conditions, and crop status. To overcome the issue of coverage (by a single rover),
a swarm of lightweight robots was deployed and connected wirelessly to a central
hub guiding the path and action of the robots via a pre-programed algorithm.

While ground robots have been developed (Gai et al. 2019; Birrell et al. 2019),
the use of robotics for agricultural row crop research and production is still in its
infancy, but rapidly gaining prominence. For successful robotic-based HTP, sturdy
construction of software and hardware capable of adaptability to multiple infield
situations and environments such as crop type, lighting, rain, mud, and debris is
needed.

Plant breeders utilize both aerial- and ground-based systems for data capture,
leading to plant breeding decisions (Fig. 7.1).

7.4 Use of Machine Learning in HTP

High-through put phenotyping creates a data deluge requiring sophisticated data
analytics methods. Machine learning (ML) and deep learning (DL) algorithms are
promising approaches for faster, more efficient, and better analytics for meaningful
insights (Fig. 7.2). Machine learning methods are adept in extracting patterns and
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Fig. 7.1 Plant breeder taking field notes which can be complemented with, or independently
collected using pushcart, ground robots, and an aerial system

Fig. 7.2 Illustration of some of the commonly used imaging, machine learning, and deep learning
techniques used for plant phenotyping tasks



7 High-Throughput Phenotyping in Soybean 139

features from a large corpus of data, inherent fromHTP platforms. Machine learning
has brought rapid improvements in the ability to identify, classify, quantify, and
predict traits (Singh et al. 2016, 2018, 2020). Machine learning requires a training
dataset as an input to create the desired output. The size and features extracted from
the dataset need to be customized for each ML algorithm. Hence, the dataset plays
an important role in phenotyping using ML. Generally speaking, DL models require
large amounts of labeled data; however, to overcome this challenge, active learning
algorithms have been proposed that reduce the amount of labeling to achieve good
predictive performance (Nagasubramanian et al. 2020).

For more details on ML and DL tools in plant phenotyping, refer to (Singh et al.
2016, 2018, 2020). These reviews provide practitioner guides on the implementation
of ML and DL tools.

Trait Extraction: Plant traits can be measured using three different main
approaches. (A) Manual phenotyping is utilized in the absence of robust plat-
forms including imaging devices and computing nodes. This method is time-
consuming, costly, inconsistent, and generally involves destructive sampling. (B)
Semi-automated phenotyping: this came into fruition due to collaborations between
plant scientists, engineers, and computer scientists that created different interactive
applications to enable trait measurements. Examples of such software include Aria
(Pace et al. 2014), DIRT (Das et al. 2015), and GiaRoot (Galkovskyi et al. 2012)
among other phenotyping applications. Although these computer vision programs
are not crop species specific, user intervention is needed to measure traits (Merchuk-
Ovnat et al. 2019; Zhou et al. 2019). (C) Fully automated plant phenotyping requires
robust image processing and/or ML algorithms to measure traits (Ghosal et al. 2018;
Ubbens and Stavness 2017).

Image processing: Researchers designed and implemented algorithms using
image processing tools to measure different plant traits (Pace et al. 2014; Zhou
et al. 2019; Gage et al. 2017; Ma et al. 2019). Segmentation, classification, feature
extraction, skeletonization, graph-based algorithm, and morphological operation are
the most popular tools that researchers have used to measure traits.

Machine Learning in soybean phenotyping: Diverse examples exist on the
ability of ML algorithms and applications in soybean. Some of the commonly
used regression-based methods used in soybean phenotyping applications include
linear regression, logistic regression, stepwise regression, ridge regression, partial
least squares regression, elastic net regression, piecewise regression, tree regres-
sion, and Gaussian process regression. Some of the commonly used classification
methods for soybean phenotyping applications include Naive Bayes classifier, deci-
sion trees, random forests, K-nearest neighbor, linear discriminant analysis, quadratic
discriminant analysis, support vector machines, and extreme learning machine.

Deep learning in soybean phenotyping: Machine learning algorithms were a
promising approach for deriving useful information from plant phenotype data.
Recent advancements in automation, computation, and sensor technology have
enabled the collection of high-resolution phenotype data across a large geograph-
ical area with high temporal resolution. This deluge of data has made it possible to



140 A. K. Singh et al.

apply Deep Learning (DL) algorithms successfully in a wide variety of plant pheno-
typing tasks. With an increase in annotated training data, DL algorithms were able to
perform better than traditionalML algorithms for many plant phenotyping problems.
For example, plant disease classification is one of the challenging phenotyping tasks
in which deep learning methods like Convolutional Neural Networks (CNN) have
achieved success (Singh et al. 2018). DLmethods have also achieved state-of-the-art
performance in complex image-based plant phenotyping problems like root and shoot
feature identification and localization (Pound et al. 2018). Multilayer Perceptrons
(MLP), CNN, Recurrent Neural Networks (RNN), and Long Short-Term Memory
(LSTM) are some of the deep learning models commonly used in soybean pheno-
typing applications. Current active areas of investigations include super-resolution,
dehazing, and spectral reconstruction,whichwill advance the phenotype-based infor-
mation from sensors (Arad et al. 2018; Shoeiby et al. 2019). Table 7.1 includes some
of the research papers whereML- and DL-basedmethods have been used in soybean.

7.5 HTP for Physiological and Morphological Traits

The pursuit to improve the rate of genetic gain in crop species by plant researchers
requires disentangling the underlying mechanisms involved in the observed pheno-
type. The aim of this is to: (a) assemble a relationship matrix of the underlying
physiology and morphological traits with the trait of interest, (b) identify genetic
drivers of such traits, and (c) leverage the aforementioned points to optimize the
breeding or research workflow. Researchers are often focused on complex quanti-
tative phenotypes measured sparsely during the growing season (e.g., seed yield,
biomass accumulation, seed quality), and thus have little information on the frame-
work of physio-morphological traits underlying the traits of interest. Several barriers
have prevented past research into these traits as they can be difficult to quantify,
require destructive sampling, expensive to collect, or were previously unable to be
collected in an analog era. With advancements made in modern sensor technology
and HTP, these bottlenecks are beginning to be removed, empowering researchers
with high-dimensional data on physio-morphological processes on a spatio-temporal
scale. This is enabling scientists to gather a full perspective of a phenotype to develop
an understanding of the complex trait-of-traits interactions controlling important
agronomic and quality traits, in turn enabling HTP-influenced breeding outcomes.

The adoption of HTP practices in plant breeding can be attributed to the
simultaneous improvements in sensor technology, deployment platforms, and data
processing techniques and capabilities. The pace of new sensor technology has
allowed the adoption of these sensors for greenhouse, growth cabinet, and field-
based measurements as broadly demonstrated in past research (Das Choudhury et al.
2019; Araus et al. 2018). An expanding area of research in soybean has been to
use phenomic data for yield prediction during the growing season. Initial research
has shown moderate-to-high levels of yield prediction using an RGB camera to
estimate canopy coverage (Parmley et al. 2019; Yu et al. 2016; Xavier et al. 2017;
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Table 7.1 Examples of studies that reported ML/DL methods for the study of soybean traits

ML/DL architecture Trait studied References

Linear regression and logistic
regression

Soybean flowering date using
temperature and photoperiod

Sinclair et al. (1991)

Logistic regression Predict sclerotinia stem rot
(Sclerotinia sclerotiorum) using
weather information

Mila et al. (2004)

Stepwise regression Soybean rust epidemic; Predict
soybean yield from
hyperspectral image reflectance
values

Yang et al. (1990), Jang
et al. (2006)

Ridge regression Identify phenological variables
associated with soybean yield

Williams et al. (1979)

Partial Least Squares
Regression (PLSR)

Drought stress using
hyperspectral fluorescence
imaging

Mo et al. (2015)

Elastic net regression Predict soybean plant resistance
to Phytophthora sojae using
phenotype, genotype, and gene
expression data

Loh et al. (2011)

Segmented regression Effect of liming on soybean
yield

Shuai et al. (2003)

Convolutional Neural Network
(CNN)

Soybean Root phenotyping Falk et al. (2020)

Multivariate regression tree Effectiveness of phosphorous
application

Zheng et al. (2010)

Gaussian process regression Select the most useful spectral
bands for chlorophyll content
and green Leaf Area Index
(gLAI)

Verrelst et al. (2016)

Random Forest (RF), Support
Vector Machine (SVM)

LAI using UAV-based
hyperspectral remote sensing

Yuan et al. (2017)

Naive Bayes classifier,
Gaussian mixture clustering

Isolating weeds in soybeans
using features extracted from
RGB images

De Rainville et al. (2014)

Decision tree Model soybean productivity
using weather data

Veenadhari et al. (2011)

Classification and regression
tree

Yield variability due to
phosphorus application rates
under drought conditions

Zheng et al. (2009)

K-Nearest Neighbors (K-NN)
classifier

Brown spot and frogeye leaf
spot using mobile phone-based
RGB images

Shrivastava and Hooda
(2014)

(continued)
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Table 7.1 (continued)

ML/DL architecture Trait studied References

Linear Discriminant Analysis
(LDA)

Detection of pitted morning
glory weed using hyperspectral
reflectance signals

Koger et al. (2003)

LDA Identification of symptomatic
soybean seeds on features
extracted from RGB images

Ahmad et al. (1999)

Saliency Maps, SmoothGrad,
Guided Backpropagation,
Deep Taylor Decomposition,
Integrated Gradients,
Layer-wise Relevance
Propagation, and Gradient
times Input

Diseases—interpretability of
ML models

Nagasubramanian et al.
(2020)

LDA and Quadratic
Discriminant Analysis (QDA)

Detection of Callosobruchus
maculatus (F.) infestation

Chelladurai et al. (2014)

Local descriptors and Bag of
Visual Words model (BOVW)
with SVM

Detecting mildew and rust Pires et al. (2016)

Extreme Learning Machine
(ELM)

Variety classification from
remote sensing-based
hyperspectral images

Moreno et al. (2014)

SVM, K-NN, and Probabilistic
Neural Network (PNN)

Classification of six types of
soybean diseases

Shrivastava et al. (2017)

Hopfield network and
perceptron

Classification of individual
leaflet shapes

Oide and Ninomiya (2000)

PLSR Seed damage due to weather,
frost, sprout, heat, and mold
using the reflectance data

Wang et al. (2004)

Long Short-Term Memory
(LSTM)

Yield prediction across multiple
years and locations

Shook et al. (2020)

Spectral Angle Mapper
(SAM), Minimum Euclidean
Distance (MED) and Fisher’s
linear likelihood

Detection of weed species using
UAV-based multispectral
images

Gibson et al. (2004)

Adaboost, K-NN, J48, NB, RF,
and Sequential Minimal
Optimization (SMO)

Prediction of soybean foliar
diseases from UAV RGB images

Castelão Tetila et al. (2017)

CNN (GoogLeNet) Classify 79 diseases (9 diseases
from soybeans) in 14 plant
species(Arnal Barbedo 2019)

Arnal Barbedo (2019)

CNN (AlexNet, VGG, and
ResNet)

Predicting soybean defoliation da Silva et al. (2019)

CNN (Inception-V3, ResNet,
VGG, and Xception)

Identify soybean leaf disease
from UAV images

Castelão Tetila et al. (2019),
Amorim et al. (2019)

(continued)
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Table 7.1 (continued)

ML/DL architecture Trait studied References

Deep Gaussian process County-level soybean yields
using satellite data

You et al. (2017)

3D-CNN Soybean yield prediction using
satellite data

Terliksiz and Altýlar (2019)

CNN/Fourier transforms Root trait architecture traits Falk et al. (2020)

CNN (AlexNet) Weed detection using
UAV-based images

dos Santos Ferreira et al.
(2017), Tang et al. (2017),
Sivakumar (2019), Etienne
(2019)

Autoencoder Segment and count soybean cyst
nematode eggs

Akintayo et al. (2018)

Single Shot Detection (SSD) Stomatal density Sakoda et al. (2019)

RetinaNet, U-Net Soybean nodule counts and
localization

Jubery et al. (2020)

CNN Estimate number of seeds in
soybean pods

Uzal et al. (2018), Li et al.
(2019)

CNN (SegNet) Segmentation of root traits Wang et al. (2019)

LSTM Soybean crop yield prediction
using satellite images

Wang et al. (2018)

CNN (DeepLabv3+) Soybean leaf coverage
estimation from UAV images

Keller et al. (2018)

3D-CNN Early detection of disease
utilizing hyperspectral imaging

Nagasubramanian et al.
(2019)

RF Seed yield prediction using
phenomic predictors

Parmley et al. (2019)

RF/genetic algorithm Seed yield Parmley et al. (2019)

Hoyos-Villegas et al. 2014; Maimaitijiang et al. 2017). However, researchers are
beginning to rely on multi-sensor platforms to capture a spectrum of physiolog-
ical traits. Recent studies used information on multiple physiological traits collected
throughout the growing season to assemble yield prediction models (Parmley et al.
2019; Maimaitijiang et al. 2017). A major finding from both studies revealed that
high levels of yield prediction can be achieved when multiple sources of data are
included throughout the growing season. It is important to point out that while these
studies have demonstrated their utility to predict yield during the growing season,
little research has been conducted on how these approaches can be used to optimize
breeding pipelines. These studies, while including temporal scale, had time-series
sparsity. This is expected to change as more rapid ways of data capture and analytics
become routine.

A combination of ground-based and UAV imaging to measure canopy coverage
at multiple time points throughout the growing season using the SoyNAM panel
(Xavier et al. 2017) identified quantitative trait loci (QTL) for increased canopy
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coverage, which is positively correlated with seed yield and may help with early-
season weed suppression. Parmley et al. (2019) collected canopy-level traits such as
canopy temperature, area, and reflectance through a broad range of wavelengths in
order to phenotype a diverse soybean collection. Their results showed the potential
for using high-throughput canopy measurements to capture useful data related to
genotype-specific differences in water status, heat tolerance, chlorophyll concentra-
tion, and canopy size, each of which can be used to assist in selections within a
breeding program at a low cost, with rank correlations as high as 0.6–0.8, depending
on growth stage. Bai et al. (2016) used a ground-based multi-sensor approach to
measure height, NDVI, temperature, reflectance, and canopy coverage throughout
the growing season to examine well-watered versus drought plots in soybean. Early-
seasonmeasurements weremore correlated due to the effect of canopy closure differ-
ences, with maturity effects at the end of the season causing a clear drop in measure-
ments such as NDVI and evaporation. Differences in plant height throughout the
growing season were found.

Vegetation indices (VIs) computed from hyperspectral reflectance wavebands
have been associated with yield using different statistical methods (Parmley et al.
2019; Maimaitijiang et al. 2017). For example, Multiple Linear Regression (MLR),
Partial Least Squares (PLS), and ML algorithms (i.e., random forest, artificial neural
network) have been used in the selection process of vegetation indices importance
and yield prediction. Christenson et al. (2016) selected significant wavebands from
the spectrum using the PLS method and then computed different VIs (NDVIs).
Authors found associations between the different NDVIs computed and soybean
yield using MLR. Machine learning algorithms (i.e., random forest) have also been
used for the prediction of soybean seed yield using VIs as predictors. Among the
VIs, the Vogelmann Red Edge Index 2 (VREI2) had the largest correlation with
seed yield during the two measured soybean growth stages (rg–−0.75) (Parmley
et al. 2019). These phenotypic measurements were taken with a human-operated
sensor; however, the potential of integration with UAS or a ground-based pheno-
typing system is promising. Fused data from multi-satellite imagery have also been
used to compute VIs for yield associations where a simple linear regression between
two VIs, the Normalized Difference Vegetation Index (NDVI) and the Enhanced
Vegetation Index (EVI2), and soybean yield was reported (Gao et al. 2018). More-
over, a combined use of different sensors has been implemented for the prediction of
different crop biophysical and biochemical variables. Multispectral and thermal data
fusion provided an estimate of nitrogen concentration and chlorophyll a content with
RMSE of 9.9% and 17.1%, respectively, whereas the estimation of chlorophyll a +
b content was obtained by fusion of information from three sensors (RGB, thermal,
and multispectral) with an RMSE of 11.6% (Keller et al. 2018). RGB and thermal
fused data was the best predictor of LAI, while multispectral and thermal data fusion
were the best predictors of biomass (Keller et al. 2018). In the same study, it was
determined that the Extreme Learning Machine-based Regression (ELR) technique
performed better than Partial Least Squares Regression (PLSR) and Support Vector
Regression (SVR) for the estimation of these crop variables.
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7.6 HTP and Crop Modeling

Phenotypic evaluation (e.g., seed yield) of newvarieties involves biological complex-
ities emerging from genetic by environment interactions that challenge our ability
to develop accurate predictions in a new testing environment. At the core of this
challenge is the large uncertainty in the variables that define the new environment,
which might differ substantially from the previously observed environment. This
need for extrapolation has been realized with variable success through the use of
comprehensive dynamic mathematical descriptions of crop behavior and the inter-
action with the soil and atmosphere environment. These mathematical descriptions,
known as “crop simulation models,” have been used to predict the agronomic perfor-
mance of genotypes under diverse environmental conditions. These crop simulation
models require daily inputs of meteorological data and soil characteristics to inte-
grate and describe the basic processes of crop growth and development. Crop models
also require crop- and cultivar-specific coefficients, for example, Radiation Use Effi-
ciency (RUE), maximum number of leaves or leaf expansion rate, and calculate state
variables (e.g., Leaf Area Index) for predicting the final output (e.g., above-ground
biomass or seed yield). Accurate yield prediction requires a careful parameterization
of genetic coefficients and high-quality weather and soil environment descriptions.
Several authors have proposed that HTP and statistical models can complement and
improve crop simulation models and as a result yield prediction, making them an
effective tool in decision-makingwithin plant breeding programs (Moulin et al. 1998;
Betbeder et al. 2016; Jin et al. 2018).

Data assimilation is a method that aims to integrate, both in space and time,
canopy state variables which can be derived from field observations or remote sensed
data for optimizing crop models (Jin et al. 2018). In general, this process involves
calibration, forcing, and updating and the final product is a combination of obser-
vations, remotely sensed data, and crop simulation models which borrow strength
from the different sources of information. As an example, LAI and biomass crop
state variables from satellite images were integrated into a crop simulation model
to improve the prediction accuracy of soybean yields (Betbeder et al. 2016). LAI
retrieval from hyperspectral data was evaluated using different statistical regres-
sion models (RF, ANN, and SVM) and compared using PLS regression (Yuan et al.
2017). Similarly, vegetation indices were extracted from complex multi-sensors data
that were combined (fused) to model and predict LAI and biomass (Maimaitijiang
et al. 2017). Prediction of crop state variables was conducted using PLSR, SVR, and
ELR techniques. The importance of crop-specific VIs associated to LAI predictions
was assessed and best-fit relationships were evaluated between the VIs and LAI for
soybean and maize, with an algorithm that identifies and ranks potential regression
models (Eureqa) was developed (Nguy-Robertson et al. 2012).

The application of high-throughput measurements for estimating crop model
genetic parameters is also another application of phenomics to facilitate the use
of crop simulation models (Fig. 7.3). Usually, estimating genetic parameters for a
large group of genotypes or large breeding populations is amajor limitation to the use



146 A. K. Singh et al.

Fig. 7.3 Diagram showing the connection between high-throughput phenotyping (HTP) and the
prediction of the genotype by environment by management interaction mediated by the use of
statistical models and ML and/or crop simulation models. Both approaches can be used in tandem
(illustrated by the bridge connecting them)

of crop growth models in breeding. The relationship between RUE (a crop-specific
parameter) and photochemical reflectance index in soybean leaves has been reported
(Inoue and Peñuelas 2006). Incorporating this reflectance index in a high-throughput
framework might be a possible alternative to retrieve RUE in a large set of geno-
types. Other examples of the link between phenomics and crop modeling are the use
of hyperspectral information to estimate water use efficiency (Thorp et al. 2018),
and the development of phenotyping platforms and managed stress environments to
estimate variety-specific parameters such as leaf expansion and transpiration rates
(Gosseau et al. 2018). These last two examples were focused on species other than
soybean; however, there is no impediment to expand these approaches to soybean
breeding.

The use of HTP for the direct estimation of yield, LAI, and biomass has been
well documented for soybean. However, the assimilation of intermediate crop state
variables (i.e., LAI, biomass) into crop simulation models for soybean yield predic-
tion is less studied. Similarly, little information is available on the use of HTP for
retrieval of variety-specific coefficients and incorporating this information into crop
simulation models is a crucial and limiting step to generalize the use of models
for agronomic and breeding efforts. In addition, the estimation of parameters using
HTP at large scale and high resolution has enormous potential for selection of culti-
vars in soybean breeding efforts. Predictions of soybean seed composition together
with yield predictions could drive selection based on the Estimated Processed Value
(EPV), which takes into account soybean meal and oil relative prices and, together
with yield, incorporates an end-user and economic component for cultivar selec-
tion or for farmer management decisions before harvesting. Finally, the use of HTP
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for soybean output traits such as seed composition will advance breeding efforts to
develop higher yielding and high protein cultivars.

7.7 HTP of Soybean Stress-Related Traits

In field production, biotic and abiotic factors such as plant disease, insects,weeds, and
unpredictable environmental conditions can limit production output. In the United
States, it is estimated that disease (including SCN) alone impacts crop yield up to
11% on average each year, not including insects, weed pressure, poor environmental
conditions, or nutrient deficit and water stress (Hartman et al. 2015). It was estimated
that diseases costNorthAmerican soybean producers on average 5.2 billion each year
from 2010 to 2014 (Allen et al. 2017). Other studies have emphasized that higher
producing regions are more vulnerable to disease loss (Bandara et al. 2019). Farmers
and researchers alike strive to limit the effect of these negative impacts by improving
crop varieties and introducing management strategies to produce the highest yield
and quality product possible.

Plant phenotyping is an integral part of developing genetic material resistant or
tolerant to stresses. Visual ratings based on varied scales are common for research
trials and field scouting to record the presence and severity of a particular stress.
However, a reliance on human labor for stress identification and severity measure-
ments leads to a few issues, including subjectivity and a lack of scalability. Quality
of visual ratings suffer from human error due to inter- and intra-rater variation, expe-
rience level, field conditions, inherent bias, and fatigue, (Bock et al. 2010). Visual
ratings can also vary in accuracy, speed, precision, agreement, and reliability. With
the amount of lines thatmust be tested in breeding programs and the extensive acreage
in production, it becomes a necessity to have a higher throughput solution to evaluate
the impact of stress on soybean and image-based output to reduce rater variability.

High-throughput phenotyping methods have been developed for a wide range of
stresses in soybean including herbicide injury, nematodes, nutrient deficiencies, and
bacterial and fungal pathogens in multiple testing environments to help speed up
the processes in phenotyping for plant stress (See examples in Table 7.1). Machine
learning (Singh et al. 2016), especially DL methods (Singh et al. 2018), have shown
extensive promise in handling and extracting detailed information from the expansive
data provided by HTP systems (Singh et al. 2020).

Early identification of stress symptoms in the field can be beneficial to stress miti-
gation to promote early decision-making. These have been reported using hyperspec-
tral cameras. Using two separate approaches, ML and deep learning methods, early
symptom development of charcoal rot was identified on the interior of the soybean
stem from plants grown in the greenhouse (Nagasubramanian et al. 2018, 2019).
Application of these findings could save time in rating for charcoal rot severity
in soybean by eliminating the need for cutting the stem open to examine interior
lesions. Band selection, as demonstrated in the study (Nagasubramanian et al. 2018),
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would streamline data collection and analysis by removing confounding hyperspec-
tral bands, while the second related study provided saliency-based maps giving user
confidence in interpretability (Nagasubramanian et al. 2019). An HTP approach
for disease detection involved hyperspectral data collection in the field on a tractor-
mounted system and through a handheld system to detect pre-visual foliar symptoms
of Fusarium virguliforme (causal pathogen of sudden death syndrome) infection in
soybean (Herrmann et al. 2018). These studies demonstrate the ability of extended
hyperspectral wavelengths to detect pre-visual disease symptom development in
greenhouse and field studies and show great promise for early disease mitigation
that could be transferred to other stresses and in other crops.

Large-scale datasets have also helped fuel the data analytics innovation in plant
stress trait phenotyping.One study utilized the publicly available PlantVillage dataset
of over 54,000 digital images of both healthy and diseased leaves in order to develop
a deep learning CNN solution to identify 14 crop species and 26 diseases (Hughes
and Salathe 2015; Mohanty et al. 2016). Deep-CNN has also been implemented with
a dataset of over 25,000 RGB soybean leaf images to identify eight soybean stresses,
including nutrient deficiencies, fungal diseases, bacterial diseases, and herbicide
injury (Ghosal et al. 2018). This study went one step further to develop an explain-
ability model mapping the features of the leaves that were used for stress identifica-
tion, removing the mystery and suspicion surrounding many “black box” ML tech-
niques. Furthermore, this method was employed on canopy images under different
illumination conditions showing the potential of transfer learning to increase the
flexibility of ML algorithms (Ghosal et al. 2018).

In the field, weeds are a major issue in crop production. Researchers developed a
portable hyperspectral imaging system and analysis protocol for successful segmen-
tation between soybean and weed species in field images, enabling weed control
(Suzuki et al. 2008). Advancements in phenotyping are needed in the field as well
as in lab settings. For example, in working with Soybean Cyst Nematode (SCN),
egg counts must be quantified under a microscope to determine the severity level
of SCN in a field soil sample, in soil-mix from greenhouse experiments, or even of
eggs removed from soybean roots to determine colonization severity and plant resis-
tance. Implementation of deep learning and RGB imaging has created a framework
capable of counting these microscopic eggs to a high degree of accuracy (Akintayo
et al. 2018). This relieves experienced scientists from the time-consuming monotony
of manually counting eggs under a microscope. One notable nutrient deficiency in
soybean called Iron Deficiency Chlorosis (IDC) is caused by a lack of usable iron in
the soil. Zhang et al. (2017) utilized computer vision andML to translate RGB images
of a diverse set of plant canopies into a numerical rating scale and subsequently used
the ratings for Genome-Wide Association Studies (GWAS)-based QTL discovery
(Zhang et al. 2017), proposing that rapid data collection through smart technologies
can improve the rate of uncovering the genetic architecture and detecting QTL for
breeding applications. Their work was built on a related study that combined image
capture, image processing, and classification workflow into a real-time phenotyping
smartphone app for IDC severity rating in the field that could be used by farmers and
researchers alike to increase the repeatability of disease ratings (Naik et al. 2017).
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Future implementation of this workflow on a ground vehicle or UAS supports HTP
(Dobbels and Lorenz 2019).

Future work on stress-related traits and HTP-ML integration will benefit greatly
from the application of high-quality and durable hyperspectral cameras (snapshot
types) on UAS platforms for rapid data collection and early identification and miti-
gation of stress. Band selection will promote efficient use of computing resources.
Finally, collaborative platforms and improved transfer learning will speed the devel-
opment of high-quality, flexible ML algorithms trained to handle diverse datasets for
real-life applications.

7.8 HTP for Root Traits

Roots provide the basis for primary and secondary nutrient uptake for plants. In addi-
tion to water acquisition and structural integrity, they play a critical role in the plant’s
growth and development. Yet, due to their complexity and difficulty to phenotype,
they have often been neglected in research and in breeding. Until recently, few HTP
methods had been developed to enable the evaluation of root traits. Additionally,
recent developments in phenotyping (imaging, sensors, and automation) and appli-
cation of image processing/ML-based methods have led to an increasing number of
root phenotyping platforms. An ideal HTP system will be cost-effective and opti-
mally use non-destructive methods to provide phenomic root growth data across
a time series to use in genomics and plant breeding, with increased accuracy and
efficiency than manual measurements. The possibility to combine improvements in
above ground and root traits opens up exciting opportunities to develop high yielding
and more resilient cultivars.

While HTP for above-ground phenotyping can deploy ground robots, drones, or
even satellites, data acquisition below ground still ranges in breadth from traditional
manual root extraction with shovels (shovelomics) (Trachsel et al. 2011; Burridge
et al. 2016), ground-penetrating radar (Delgado et al. 2017), to expensive X-ray CT
scanning (Jiang et al. 2018). Shovelomics is the primary root extraction method
from soil; however, it is extremely labor-intensive, destructive, and not feasible for
large experiments. Root traits have been evaluated in trash cans to simulate field
trials (Hohmann et al. 2016), walk-in-field rhizotrons (Svane et al. 2019; Eberbach
et al. 2013), blue paper evaluations (Atkinson et al. 2015), and even transparent soil
(Ma et al. 2019). Moving toward high-throughput systems such as transparent soil
imaging is non-destructive, and provides an opportunity to observe growth response
with images collected across multiple time points (Ma et al. 2019).

Examples of root phenotyping studies include controlled (Rellán-Álvarez et al.
2015; Clark et al. 2011; Piñeros et al. 2016), semi-controlled (Zhao et al. 2004; Topp
et al. 2013; Weaver and Frederick 1974), and field environments (Fenta et al. 2014;
Abdel-Haleem et al. 2011; Ao et al. 2010) (Table 7.2).

Controlled environment approaches include both inexpensive cameras, capturing
root growth on germination paper and agar plates, and integrated systems built using
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Table 7.2 Comparison of current root analysis methods

Factor\scale Lab based Greenhouse-based Field based

Throughput High Medium Low

Software Many Available Available Few Available

System Automated Semi-automated Primarily manual

Overall costs Cheap -> Expensive Affordable -> Expensive Expensive

Yield relevance Low Medium High

Labor requirement Low Medium Medium -> High

Automation Available Possible In development

Examples: Germination Paper Transparent Pots Shovelomics

Agar Plate Rhizotrons Minirhizotrons

Transparent Soil X-Ray CT Soil Cores

Hydroponics PVC Tubes Excavation

transparent soil (Downie et al. 2012;Lind et al. 2014). Studies conducted in controlled
environment have advantages of scale, throughput, and reduced data noise while
providing increased cost efficiency. However, these approaches do not have high
conformity to field-based experiments. Semi-automated systems using desktop scan-
ners have been adapted to inexpensive germination paper-based platforms. Hydro-
ponics and aeroponic solutions allow for easy root observation; however, these lack
representation of soil-based morphological structure. To augment the hydroponic
approach, 3D printed plastic scaffolds were designed, allowing the root system to
retain its morphology. Additionally, 3D root reconstruction in rice was conducted in
a glass cylinder of gel-based media through the capture of multiple images (Clark
et al. 2011). Transparent imaging is non-destructive with the advantage of capturing
images at multiple time points, providing an opportunity to observe growth response
and can somewhat simulate select field conditions (Clark et al. 2011; Lind 2018).
Hydroponic root-scaffold systems have characterized root growth rates and structure
in multiple crops with promising results (Piñeros et al. 2016). The current state-
of-the-art approaches are advancing but not completely bridging the gap between
controlled and field experiments. Improved methods and tools are needed to help
provide a stronger correlation between lab-based and field experiments.

Semi-controlled environment studies bring advantages of scale, throughput, and
data noise reduction through reduced soil heterogeneity and provide some balance
with agronomic relevance. Greenhouse-based platforms using sand, soil, or other
artificialmaterial grown in pots or tubes allow for easy root removalwhile often sacri-
ficing the structural morphology of the Root SystemArchitecture (RSA) (Manavalan
et al. 2010). Recently, root structure morphology has been captured using advanced
3D imaging approaches, for example, X-ray Computed Tomography (CT) ,Magnetic
Resonance Imaging (MRI) (Rascher et al. 2011), and Positron Emission Tomography
(PET) (Nagel et al. 2009). These 3D advances have increasing optimism to capture
root system architecture non-destructively in an opaque environment. Tomographic
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imaging technology is improving as research is underway to enhance the resolution
and speed of these scans; however, such research is still in its infancy. The shortcom-
ings of these technologies are the high-cost, low-throughput, immobile equipment, a
need for specialized technicians, loss of information, and lower resolution (Metzner
et al. 2015).

Field environments are used when agronomically relevant measurements of traits
of interest are desired. However, they come with increased labor costs, difficulties
associated with image and data capture (Atkinson et al. 2018), and reduced quality
as plants and morphological features are often destroyed upon extraction. Original
approaches include digging a trench adjacent to the plant, removal of the root from
the soil (shovelomics) (Trachsel et al. 2011), and soil coring (Wasson et al. 2016).
In another approach, transparent subterranean tubes buried at an angle in the soil
require roots to intersect with the tube, which allows for non-invasive and repeated
imaging (Majdi 1996). Scanners are placed inside the tube to identify the intersecting
roots before being evaluated by software such as WinRhizo TRON. This approach
requires a larger number of buried tubes to acquire an accurate estimate of rooting
(Dupuy et al. 2010). Mechanistic solutions such as peanut, potato or tree diggers,
underhoes, and tree spades have been tested with a general reduction in root quality
being sacrificed for root quantity (Abdel-Haleem et al. 2011).

Automated sensor-to-plant systems for root phenotyping are limited, while
manual systems such as minirhizotrons are not high throughput since numerous
transparent subterranean tubes are required to achieve accurate phenotyping and
their installation is not automated (Majdi 1996). Alternative sensor-to-plant systems
include the use of desktop scanners connected in parallel to a single computer (Adu
et al. 2014), or customized plant sensors in field (Benfey 2017). However, these
require more space, cost, technical knowledge/expertise, and are generally not scal-
able or high-throughput. RootTracker, an electric plate equipped with tactile sensors,
can monitor root touch in the field across a temporal growing season (Benfey 2017).
Leaf elemental accumulation for deep roots (LEADER) evaluates deep rooting in
cultivars in a short amount of time by comparing the elemental gradients of the soil
with leaf measurements to determine root depth (Lynch and Hanlon 2019). X-ray
Computed Tomography (CT) imaging within a high-throughput system has led to
successful imaging of roots through solid (Turface®, sand and soil) media using pots
grown in the greenhouse (Mairhofer et al. 2012; Paya et al. 2015). Coupling CT tech-
nology with budding high-throughput laboratory automation can merge large-scale
genetic studies of root architecture and growth analysis in solid media with moderate
affordability. As these lab-based methods become more field-like (soil or soil-like
media, larger pots, increased duration of growth), researchers will be able to stan-
dardize the accuracy and precision, leading to increased field relatability. Frontier
methods such as transparent media (gel), despite restricting root growth and oxygen
availability, have generated positive root phenotyping results (Nagel et al. 2009; Iyer-
Pascuzzi et al. 2010; Fang et al. 2009). Simpler, faster, and more affordable methods
that can achieve similar correlation accuracies as those attained by X-Ray CT and
other advanced methods are needed.
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While advances in phenotyping and analytics of canopy-based traits is rapidly
improving and increasing, root-related trait advances are still lacking primarily due
to the lack of spatio-temporal limitation associated with root and related trait pheno-
typing. Therefore, studies need to be undertaken that attempt to link root-related
traits and their direct role and influence on plant and crop yield. More importantly,
there is a need for collective research efforts to build “true” HTP platforms for
root studies, including sample acquisition, imaging/sensing, and trait extraction in a
well-integrated pipeline. One of themost pressing needs is to develop automated root
sampling methods with minimal organ damage from field studies. The optimal root
phenotyping platform will include considerations for data quantity, quality, agro-
nomic relevance, and applicability. Continual advances in hardware and ML-based
methods and analytics are showing promise in root research involving phenotyping
at higher throughput.

7.9 HTP Complementing Genetic Studies

Plant genetic studies have gone through a rapid transformation due to next-generation
sequencing techniques enabling high-throughput genotyping that allows fast and
accurate marker genotyping at a high density. These advances need to comple-
ment the rapid collection of robust phenotypic data with sufficient resolution for
effective use of genomic data. High-throughput phenotyping using UAS and ground
robotic systems followed by ML algorithms are transforming our understanding of
phenotyping and ismaking a profound impact on genomic studies (Singh et al. 2016).

Collecting sufficient robust phenotypic data is themajor challenge in plant genetic
studies. Researchers can easily genotype a large number of individuals through a
single nucleotide polymorphism (SNP) array, genotyping-by-sequencing (GBS), or
re-sequencing analysis based on resource availability (Elshire et al. 2011; Song et al.
2013; Lijavetzky et al. 2007). Genotypic profiles are constant across different plant
growth stages, with no need to test repeatedly. In contrast, phenotypic profiles are
dynamic and vulnerable to environment changes. Phenotyping has to be conducted
repeatedly over different environments, or at different crop growth stages to ensure
meaningful statistical analysis and answer-specific genetic questions. The situation is
exacerbated due to the need for large population sizes for most quantitative genetic
studies. The literature is rapidly expanding on the advancements of phenotyping
capabilities, but there is still a mismatch with the utilization of temporal phenotypic
information for soybean genetic studies. It is promising to identify the dynamic
profile of genomewide loci for crop development through HTP. The temporal QTL
may shed light on the gene expression regulation, such as shut down or turn on at
specific growth stages.

Jubery et al (2017) explored the diversity and inheritance of soybean canopy
shape-related parameters through canopy image-based phenotyping of 446 diverse
germplasm lines (Jubery et al. 2017). The author outlined and quantified soybean
canopy shape descriptors by using Elliptical Fourier Transformation to study
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extracted novel traits that are important but hard to measure through traditional
phenotyping methods. In another study of soybean IDC, GWAS were carried out
with both ML-generated score (ML score) and severity. It verified a major QTL for
IDC on chromosome 3 in soybean (Zhang et al. 2017; Assefa et al. 2020). These
studies illustrate the advantages of high-throughput image phenotyping in improving
genomic study in soybean.

HTP provides high-quality phenotypic data for genomic prediction (GP) model
development and improvement. Genomic prediction requires reliable phenotypic
data to develop robust models. The accurate estimates of genome-wide effects, by
default Genomic Estimated Breeding Value (GEBV), mainly rely on the accuracy
of phenotypic data of the training population. Most GP models incorporate marker
and/or pedigree information only, but not secondary traits information. HTP can
evaluate secondary traits related to the target trait for potential integration into the
prediction model and enhanced GP accuracy. Prediction models involving secondary
traits can take advantage of correlations between traits (Zhang et al. 2017; Jia and
Jannink 2012). Zhang et al. (2017) conducted GP for soybean resistance to IDC
using ML score and severity. The GP model with genome-wide SNPs only had a
prediction accuracy of 0.44 and 0.37 for the ML score and severity, respectively.
The prediction accuracies were increased to 0.55 and 0.51 by adding the models
with SPAD values as a covariant, which is a non-destructive measurement of leaf
chlorophyll concentrations and is highly related to leaf chlorosis. HTP provides great
opportunities to improve GP by including multiple traits into prediction models.
In wheat, researchers have illustrated that a GP+HTP model with HTP traits as
covariates provided equal or better prediction accuracy than the general GP model
across three environments (Crain et al. 2018; Sun et al. 2019). HTP enables screening
large training populations withmulti-location tests, and ensures the accurate estimate
of genotypic effects. Integrating HTP with GP is expected to improve the prediction
accuracy and becomes more routine for breeding applications.

Amajor hurdle of collecting accurate phenomic data on awide range of physiolog-
ical traits has been alleviated by HTP, allowing for genomic studies to be conducted
to identify associated genomic regions. A recent study by Kaler et al. (2018) identi-
fied associated genomic regions with canopy temperature, an important physiolog-
ical trait associated with seed yield, and proposed that similar studies can be used
to pyramid favorable alleles for other physiological traits. Similar genomic studies
have been conducted using other HTP data for canopy coverage (Xavier et al. 2017;
Kaler et al. 2018), canopy wilting (Kaler et al. 2017), photosynthetic capacity, water
use efficiency (Lopez et al. 2019), and chlorophyll traits (Dhanapal et al. 2016). As
researchers continue to identify the underlying genomic regions associated with the
control of physiological processes (Shook et al. 2021), breeders will have the ability
to integrate this information into selection decisions, and future crosses to assemble
optimized genetic combinations.
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7.10 Conclusions

HTP is rapidly becoming prominent in plant sciences, breeding, crop production, and
precision agriculture (Singh et al. 2021). Technology advances in payloads (aerial
and ground) and sensors (distal and proximal) along with data analytics (ML) are
significantly improving HTP capabilities and the entire pipeline. Data analytics is
fundamental to the success of HTP pipelines.WhileHTP is expected to see continued
growth, it is important to note that HTP is a tool in a practitioner’s toolbox. Sophis-
ticated engineering solutions do not supersede the need for proper experimentation
and appropriate choice of methods and tools that are context specific. Extensive vali-
dation and continual community effort are needed for proper and meaningful HTP
implementation. “One common solution for all situations” may not be feasible. HTP
can alleviate concerns of labor requirements for complex traits, remove or minimize
inconsistencies in measurement, and improve our ability to collect more relevant
data in a timely manner. Rapid adoption of these techniques within both the public
and private sectors is facilitated by the ability to compare these measurements to
ground truth data giving user confidence. Collaborations among different disciplines
are needed to realize the potential offered by HTP.
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High-Throughput Phenotyping in Potato
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Abstract Increasing tuber yield, yield stability, biotic and abiotic stress resis-
tance/tolerance, and improving nutritional quality characteristics are the important
goals of potato breeding. Traditional phenotyping methods are comparatively lesser
efficient than the high-throughput plant phenotyping (HTP) platforms for screening
of elite genotypes. HTP platforms are image-based, non-destructive procedures that
employ a series of electromagnetic-radiation wavelength bands and sensed by high-
resolution cameras by visible and hyperspectral images and thermal sensors for
capturing plant responses to environmental stimuli. Efficient HTP techniques are
essential to develop new improved potato varieties for multiple traits like high yield
potential, tuber quality traits, resistant to disease and pests, and abiotic stress (heat,
drought, and nutrient use efficiency) to combat under climate change scenario. We
speculate application of HTP with aeroponic culture for precised phenotyping for
above- and underground plant parts in potato. For precision trait phenotyping, aero-
ponic-HTP technologies would be a good application for nutrient-based experi-
ments and other traits as well, whereas HTP in soil-based pot cultivation would
be promising technologies for investigation of heat and drought stress tolerance, and
other biotic/abiotic stresses including tuber quality parameters. Besides, HTP appli-
cation also uses RGB camera mounted with unmanned aerial vehicles for field trail
studies. The purpose of this chapter is to present applications of HTP in potato could
enhance selection efficacy for next-generation potato breeding.
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8.1 Introduction

Potato (Solanum tuberosum L., 2n= 4x= 48) is the fourth most important food crop
of the world after rice, wheat, and maize. Its annual production worldwide is more
than 388 million tons (FAOSTAT 2017). Cultivated potato is a tetraploid and highly
heterozygous crop which has the major application for food, feed, and industrial use.
To meet the food demand of 9.1 billion population by 2050, a sustainable increase in
food production is necessary (FAO 2009). Potato improvement through conventional
breeding limited due to its tetrasomic inheritance and precised trait phenotyping
(Muthoni et al. 2015). A conventional potato breeding program uses out-crossing
and followed by subsequent phenotypic recurrent selection for a series of generations
to identify desired traits (Bradshaw and Mackay 1994). Generally, large breeding
populations are generated and further screened them through different field trials
to screen superior phenotypes, thus reduce the population number, whereas on the
other side increases the number of plants of each genotype (Bradshaw and Mackay
1994). During conventional breeding genotypes with desired phenotypic traits are
identified to use them as parents in crossing program to generate new improved
breeding lines (Bradshaw et al. 2007). These populations are then further screened
over a series of clonal generations to get clones with desired traits, and this process
takes more than 10 years (Bradshaw et al. 2007). About 40 traits are considered
during the process of screening for improved variety identification (Gebhardt 2013).
So, it is a very mammoth task to handle a huge population size and screen them for
desirable traits. As conventional potato breeding is quite slow, laborious, and could
be erroneous, there is need to utilize high-throughput phenotyping platform that
can screen thousands of breeding populations in short time and thus accelerate the
potato breeding. Increasing the genomics information puts pressure on the breeders
to provide rapid and accurate phenotypic analysis. Precise and efficient phenotypic
platform is important for potato breeders to develop new improved varieties. Various
breeding techniques such as marker-assisted selection, quantitative trait loci (QTL)
mapping, mutants population analysis, and association mapping require assistance
of proper trait phenotyping. Manual collection of huge phenotypic data is laborious,
time-consuming, erroneous, and requires a lot of man power. It is very difficult to
manage and analyze this huge dataset. Thus, the major challenge for phenotyping
is to develop tools that can collect, manage, access, organize, integrate, and analyze
huge phenotypic dataset of breeding program. New advanced imaging techniques
and bioinformatics/computational tools are now available that assist high-throughput
phenotyping.

Various traits have been reported to be associated with biotic and abiotic stress
tolerances; however, very few of them are used for screening a large pool of
germplasm by traditional methods (Reynolds and Langridge 2016). Current pheno-
typing approaches are expensive, laborious, slow, and mostly destructive, and permit
to study a fewparameters at a time (Cobb et al. 2013;Virlet et al. 2017). Advancement
in crop improvement techniques is necessary for plant breeders, biotechnologists,
and geneticists to meet the world’s increasing food production demands and tackle
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abiotic and biotic stresses (Godfray et al. 2010; Sankaran et al. 2015). These non-
destructive high-throughput phenotyping technologies are focusing on various traits
that directly or indirectly showplant water content, chlorophyll content, biomass, and
growth potential (Andrade-Sanchez et al. 2014) and also offer a new dimension that
increase precision, speed, and analysis of captured data (Furbank and Tester 2011).
Development of high yielding potato cultivars with improved tolerant to biotic and
abiotic stresses required precise phenotyping for various morphological, structural,
physiological, biochemical, andmolecular traits (Zia et al. 2017). Therefore, breeders
must be assisted by high-throughput phenotyping for functional analysis of specific
genes, forward and reverse genetic studies, and generation of new improved vari-
eties with desired traits. Thus, breeders can manage many trials in different growth
conditions with use of different lines in mapping populations, breeding populations,
mutant populations, and germplasm pool. Further advancement in high-throughput
and accurate phenotyping, modeling, and association with potato breeders is major
challenge particularlywhen developing newpotato varieties and target environments.

8.2 High-Throughput Phenotyping (HTP) Platform

HTP platforms have been applied for non-destructive analysis of whole plant system
in different crops under controlled or field conditions,which utilize advanced automa-
tion and robotics, imaging (2D, 3D) techniques, unique sensors, and hardwares
and softwares to monitor various traits of plant growth and development (Table
8.1) (Prashar et al. 2013; Zia et al. 2017). HTP is based on the automated real-
time measurement of plant growth and developmental stages, and physiological
and biochemical responses in smart glasshouses (or field conditions by unmanned
aerial vehicles) equippedwith imaging system. The visible imaging systemmeasures
phenotypes like plant growth rates, biomass accumulation, architecture, canopy,
phenology, pathogen lesion area, senescence and chlorophyll content, etc. Whereas
hyperspectral imaging system allows measurements of internal traits such as sugar,
starch, protein, moisture content, and several stress-related parameters (Slater et al.
2017). HTP platforms take multiple images at various time intervals at different
wavelengths to generate data for software-based analysis. These imagery data is
processed into a desired readable format using image analysis software. HTP plat-
forms utilize application of visible light imaging system for estimation of various
traits such as phenology, senescence, shoot biomass, plant height, leaf area, germina-
tion rate, flowering time, yield contributing traits, growth-related parameters, disease
and pest symptoms (Backhaus et al. 2010; Clark et al. 2011; Li et al. 2014; Sugiura
et al. 2016), thermal imaging for analyzing leaf/canopy temperature, leaf senescence,
transpiration rate, heat dissipation, pathogen and disease detection (Jones et al. 2009;
O’Shaughnessy et al. 2011; Li et al. 2014), fluorescence imaging for analyzing photo-
synthesis status of non-photochemical quenching (NPQ), plant health, shoot archi-
tecture drought, and heat stress (Burling et al. 2010; Brabandt et al. ; Tatagiba et al. ).
Near-Infrared (NIR) hyperspectral andmultispectral imaging techniques are used for
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analyzing leaf area index (LAI), transpiration rate, water content, normalized differ-
ence vegetation index (NDVI), heat dissipation, plant health status, nutrient status,
and photosynthetic efficiency (Pask and Pietragalla 2012; Busemeyer et al. 2013;
Monneveux et al. 2013; Yol et al. 2015). 3D laser imaging is mostly used for assess-
ment of root system architecture (RSA) (Yol et al. 2015). There are various image
analysis software programs for high-throughput phenotyping, namely, LAMINA,
LEAFPROCESSOR, RootReader2D and 3D, PlaRoM, LeafAnalyzer, Gia-Roots,
GROWSCEEN 3D, LemnaTec 3D Scanalyzer, and TraitMill (Cobb et al. 2013).
Study in Australia shows application of HTP technologies in field-grown crops
applyingLiDAR,multispectral andhyperspectral sensors, thermal sensors, ultrasonic
sensors, data loggers, and RTK-GNSS receivers (Slater et al. 2017). Another new
application of HTP demonstrates use of RGB camera coupled with unmanned aerial
vehicles (UAV) for detection of late blight disease in potato (Chawade et al. 2019).
Taken together, HTP technologies have been successfully applied in various crops
for automated precision phenotyping to assist crop breeding (Table 8.1). Although
successful application in potato is still limited till now but there is likely chances to
speed up the potato breeding using HTP in future.

8.3 Application of HTP Platform in Potato Breeding

8.3.1 Target Traits

Breeding of potato is a difficult task because of its autotetraploid and heterozy-
gous nature as over 40 different traits are measured while development of a new
potato variety and also there are many market-specific and consumer-driven charac-
ters as well (Gebhardt 2013). These traits can be categorized into different groups
like tolerance to biotic and abiotic stresses, yield-related traits, and nutritional and
tuber quality features. For example, there are a number of breeding objectives under
Indian conditions like early bulking and short duration, tolerance to high tempera-
ture and drought stresses, nutrient use efficient, resistance to diseases (late blight,
viruses, bacterial wilt, etc.), and pests (aphid, white fly, mite, tuber moth, potato
cyst nematode, etc.). Tuber quality traits are very much important for consumer and
processing industry such as tuber dry matter content, storage behavior and keeping
quality, nutritionally rich (Fe and Zn), and tuber traits (shape, size, and color), and
processing traits like low reducing sugar. Most target traits like yield, tuber number,
tuber size, specific gravity, and processing quality in potato are mainly influenced by
genotype, environment, and interaction. As a result, more than 10 years needed for a
conventional breeding program to select genotypes across several clonal populations
in addition to many suitable sites for a variety of required traits (Gebhardt 2013).
Hence, traits phenotyping based on HTP is essential for rapid potato breeding.
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8.3.2 HTP for Traits Phenotyping

8.3.2.1 Plant Phenotype

HTP technologies have been deployed in various crops such as Arabidopsis, rice,
wheat, maize, soybean, legumes, beans, tomato, and sugar beet, and recently we
have applied in potato also (Fig. 8.1). To develop high yielding improved potato
cultivars with tolerance to various biotic and abiotic stresses, enhanced nutritional
profile, nutrient use efficiency, andmarket-specific traits require precise phenotyping
of variousmorphological, physiological, structural, biochemical, andmolecular traits
for marker or genomics-assisted breeding (Zia et al. 2017). Potato phenotyping has
been reported under drought stress conditions by Monneveux et al. (2013) and
Wishart et al. (2014). High-resolution aerial imaging system has been used as a
high-throughput phenotyping technology for estimation of crop emergence in potato
(Sankaran et al. 2017; Li et al. 2019). In potato, the frequent high-throughput pheno-
typing of plant growth and biomass accumulation using digital images of experi-
mental fields would assist to detect a fast growing and early vigor genotypes which
would be helpful in breeding for early maturing varieties. Earlier it could be very

Fig. 8.1 High-throughput phenotyping platform for trait-specific potato breeding
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difficult to manually measure these traits in a large pool of genotypes. This pheno-
typing approach could be utilized to detect foliar disease and pest symptoms, and
also their level of infestation, time of arrival in potato field. This information could
be used for effective management of disease and pest menace by designing package
for control. Also, this phenotyping will assist to screen out susceptible genotypes in
disease/pest resistance breeding program. Future advancement in sensor technology
could also enable to unravel the underground traits like stolon and tuber initiation,
and their growth and development. These traits could not be evaluated manually. Use
of high-throughput phenotyping at harvesting stage will help to assess tuber charac-
teristics, viz., tuber shape, size, skin color, texture, and number, and this information
will be used to predict performance of each genotype in terms of yield and tuber distri-
bution. Hyperspectral and multispectral imaging could be used to assess the tuber
quality parameters, viz., carbohydrate, starch, protein, reducing sugar, and water
content which are important for cooking performance. High-throughput visible near-
infrared (NIR) and infrared (IR) range imaging of potato under controlled conditions
are shown in Fig. 8.2.

8.3.2.2 Canopy Cover

Crop emergence and canopy cover are considered as important physiological traits
for cultivar screening and nutrients management in potato. These traits are important
for potato variety screening, field management, and prediction of yield (Spitters and
Schapendonk 1990). Traditional manual assessment of these traits is laborious, time-
consuming, and subjective as compared to high-throughput phenotyping.Many traits
associated with potato emergence (uniformity and emergence rate) play important
roles in screening of varieties, field management practices, and prediction of yield
(Moran et al. 1997). These traits can be affected by various factors like potato seed
quality, dormancy period, water deficit stress, nutrient deficiency, and soil tempera-
ture (Dyson and Watson 1971; Onder et al. 2005). Consistent monitoring of traits is
important for efficient crop management. Crop canopy is one of the most commonly
used traits for estimating crop canopy structure using remote sensing technology at
the early stage of crop growth (Moran et al. 1997). Amount of sunlight interception is
determined by crop canopy cover and thus affects photosynthetic efficiency. In crop
breeding and precision agronomy, emergence rate and uniformity are crucial for field-
scale phenotyping. Crop emergence is conventionally estimated by time-consuming
and laborious manual counting practice, while canopy cover is assessed by subjec-
tive and inaccurate manual scoring method (Li et al. 2019). The repeatability and
reproducibility of these manual assessment techniques are very low, and it is very
difficult to execute these practices in thousands of trial plots of large agronomical
and breeding experiments (Duan et al. 2017).

A non-destructive observation and phenotyping of individual plants in pot can
be done using high-throughput phenotyping platform under controlled conditions.
But, there are some bottlenecks to correlate results of controlled conditions with the
field conditions. Potato crop possesses a large canopy and shows restricted growth
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Fig. 8.2 High-throughput potato imaging using LemnaTec Phenomics platform. Visible range
imaging side (A) and top (B) view; Near-Infrared imaging side (C) and top (D) view, Infrared
imaging side view (E, F)

and development in pots under controlled condition. Thus, there is need to develop
a highly automated and non-destructive high-throughput platform for field condi-
tion. As breeding and genetic analysis of most crops comprising potato is gener-
ally carried out under natural environment, the field phenotyping approach provides
better understanding of crop behavior (Prashar et al. 2013). A fully automated, high-
throughput fixed site phenotyping platform, Field Scanalyzer, have been developed;
it is equipped with multiple imaging sensors for non-destructive observation of plant
growth and development (Sadeghi-Tehran et al. 2017; Virlet et al. 2017). The infor-
mation generated by Field Scanalyzer may be utilized by potato breeders to screen
large set of germplasm based on desired physiological and morphological traits. In
potato, infrared thermography (IRT) was used to estimate stomatal conductance and
canopy temperature (Prashar et al. 2013). Even under well-watered condition, the
potato genotypes showed significant differences in canopy temperature. There was
a negative correlation between canopy temperature and tuber yield (Prashar et al.
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2013). These observations can be utilized to identify SNP (single nucleotide poly-
morphism) that control stomatal conductance and canopy temperature (Zia et al.
2017). Estimation of canopy temperature using thermal imagery was used to assess
severity of water stress in maize (Han et al. 2016). Thus, stomatal conductance and
canopy temperature traits can be used to screen potato germplasm for drought stress
tolerance breeding.

The camera sensor phenotyping approach has been used to monitor green canopy
coverage of potato and its correlation was established with fresh plant biomass and
LAI (Dammer et al. 2016). Relative vegetation index (ratio of reflectance at 800
nm/650 nm) and NDVI (normalized difference vegetation index) ([reflectance at
800 nm − reflectance at 650 nm]/[reflectance at 800 nm + reflectance at 650 nm])
were used to estimate leaf area index and biomass in potato (Schafleitner et al. 2007).
It will be used to detect disease occurrence, severity and level of infestation, and
also provides information to develop disease forecasting models and management
practices (Zia et al. 2017). Thus, potato breeders can utilize this approach to identify
biotic stress-tolerant (late blight of potato) genotype.

8.3.2.3 Biotic and Abiotic Stress-Related Traits

There is ample use of chemical fertilizers and pesticides to improve potato yield,
which leads to potential economic waste and environmental pollution (Liang et al.
2018). Strategies for optimization of nutrient doses are required for potato culti-
vation. Heat and drought stress tolerance and nutrient use efficiency are the major
abiotic factors in potato, which are complex phenomenon governed by various physi-
ological, biochemical, and molecular factors. Among the biotic factors, diseases like
late blight, viruses, bacterial wilt, and storage disease, and pests like aphid, white
fly, mites, potato cyst nematodes, etc. are the devastating causes of yield losses in
potato. Application of HTP could be possible to phenotype the traits for these above
diseases pests. In potato, abiotic stress experiments are easily possible under HTP
platforms under normal pot conditions by manipulation of temperature and photope-
riod regulation for heat stress, soil water (moisture) control for drought stress, and
nutrients doses for nutrient use efficiency studies. Moreover, HTP facility needs to
be standardized for biotic stress studies, where challenge inoculations of pathogens
or pests are applied to measure resistance/tolerance in plants that can be investigated
by HTP imaging systems. The recently introduced high-throughput phenotyping
technique provides advanced tools for precision screening by incorporation of inno-
vative screening strategies that can assist the selection and pyramiding of drought-
responsive genes appropriate for specific environmental conditions. Several methods
for assessment of drought tolerance are available and used in cereal crops, and that
could be also applicable to potato. These methods comprise fluorescence, thermom-
etry, and reflectance. Chlorophyll fluorescence imaging provides a reliable technique
for the study of changes in photosynthesis rate of potato under water deficit stress
(Anithakumari et al. 2012), whereas the ratio of Fv and Fm and the differences in the
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canopy temperature may be used to screen drought tolerance among potato geno-
types (Prashar et al. 2013; Prashar and Jones 2014). Multispectral imaging has been
used for determination of chlorophyll content in potato leaves (Borhan et al. 2004). In
case of potato, genotypes with higher canopy temperature under irrigated conditions
were more tolerant to drought stress as compared to genotypes with lower canopy
temperature (Stark et al. 1991). Reflectance indices, calculated from the visible and
near-infrared light reflected by vegetation, have been used in several crops to esti-
mate biomass and changes in leaf water content (Ullah et al. 2014). These indices
have proved accurate to assess drought-associated traits.

8.3.2.4 Root System Architecture

Roots are an important underground plant part because plant’s performance mainly
depends on the healthy root system, thus root phenotyping is as important as shoot
phenotyping (Wasaya et al. 2018). Root system architecture is largely associated
with drought tolerance and nutrient uptake as compared to above-ground plant parts,
and plays important role in maintaining crop yield under drought stress (Gupta et al.
2012). A non-invasive and non-destructive phenotyping techniques warrant special
attention to more accurate assess of the response of various traits under drought
condition. Different techniques have been developed for root phenotyping under
controlled as well as field conditions. Root growth, development, architecture, and its
functionality under water deficit stress must be the part of potato breeding programs
(Iwama 2008). In situ root imaging technique is used to study root system in several
crops and in potato also (Richner et al. 2000). Han et al. (2016) successfully used X-
ray Computed Tomography (CT) technique to extract the architecture of first-order
potato roots. Magnetic resonance imaging (MRI) technique can be used to assess
root system architecture in early stages of potato development (Monneveux et al.
2013). Several root characters, i.e., morphological plasticity, primary root length,
length and number of lateral roots, crown root number, root tip diameter, root hair
density, root angles, root tissue density, and gravitropism help the plants to adapt and
respond under various stress conditions and they might be important for improving
water use efficiency in crop species (Fenta et al. 2014; Wasaya et al. 2018). Root
phenotyping techniques comprise some degree of automation with imaging, image
analysis, and processing. Various Imaging and its analysis techniques/software have
been used as reliable tools for root phenotyping and they include WinRhizo, Smart
Root, EZ-Rhizo, Image J, Root System Analyzer, Root Nav, IJ_Rhizo, and Root
Trace (Wasaya et al. 2018).

8.3.2.5 Aeroponic Culture

Aeroponic is a soil-less crop cultivation system where nutrient solution is supplied
throughmist form to the plant roots under controlled chamber. Aeroponic technology
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has been applied mostly for production of healthy minitubers. Application of aero-
ponic in seed potato production is recent in India and a few more; however, a decade
back it was limited to countries like China and Korea for the commercial produc-
tion of potato quality seeds. Nowadays, aeroponic is being applied in most parts of
the potato-growing countries. Thus, aeroponic is an important technique of soil-less
culture under controlled conditions for healthy quality seed potato production. Here,
we have standardized phenotyping by manual method (semi-automated for nutrient
supply) of potato for various plant parts like roots, shoots, and stolons under aero-
ponic (Tiwari et al. 2018, 2020d). Further, genomics approaches could be applied
to study genes controlling nitrogen use efficiency in potato under controlled supply
of nutrients (Tiwari et al. 2018, 2020a,b,c) (Fig. 8.3). Our recent studies indicate
that aeroponic can be applied for screening of genotypes by measurement of root-
and shoot-related traits and genes discovery. This technology allows dissection of
full root system architecture of plants for various traits related to root, stolon, and
minitubers. Further, it has advantages of year the round cultivation of potato and
independent from crop season. Moreover, temperature and photoperiod are the key

Fig. 8.3 Precision phenotyping in potato under aeroponic culture
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environmental cues determining potato tuberization, which can be regulated under
fully controlled environmental conditions (i.e., automated phenotyping platform or
HTP). Further, data generated from aeroponic-HTP systems could be analyzed on
similar pattern like earlier. Until now, HTP is mostly applied through pot culture
experiments in various crops. Hence, here with the advancement in technologies,
we propose that aeroponic could be integrated with HTP platform combined with
multiple imaging systems and sensors for real-time monitoring of plant phenotypes.
This would assist in measurement of above-ground parts (shoot/leaves/foliage) and
underground parts (roots, stolons, and tubers) for a wide range of traits such as
abiotic stresses like nutrient, heat and drought, and biotic stresses like disease and
pests. This aeroponic-HTP platformwould be a novel discovery for precision pheno-
typing in potato. In particular, nutrient stress-related study could be easily designed
in aeroponic where amount of macro- and micro-nutrients can be monitored in the
solution. Nevertheless, integration of aeroponic with HTP platforms would require
designing of technologies equipped with imaging systems for whole plant image
capture at different growth and developmental stages including tubers, and further
data recording and analysis system.

8.4 Advantages of HTP

Application of HTP in potato breeding allows following advantages as schematically
presented in Fig. 8.4 and summarized here:

• Automated traits phenotyping: Ease of traits phenotyping by HTP platform with
automatic, non-invasive, non-destructive imaging coupled with UAV and analysis
using advanced computing tools. HTP is integrated with various automated tools,
sensors, imaging sensors, and camera for automatic image capture and their anal-
ysis using in-built software tools. Comparative analysis of crops by quantitative
measurements of plant performance under controlled HTP and filed conditions
could be done.

• High accuracy: With the advanced integrated technologies, HTP allows rapid and
accurate screening of large set of genotypes for desired traits based on foliage and
roots traits and less cumbersome than manual methods.

• High precision: Precise observation of complete plant life cycle and recording
information at various time intervals in potato. Measurements are important at
various growth stages like plant emergence, canopy cover, stolon initiation, tuber
formation and growth, tuber bulking, and finally tuber harvest.

• High selection efficiency: Plant performance and phenotypic trait selection
efficiency are greatly influenced by various environmental factors. The envi-
ronmental influenced variations in traits can be assessed efficiently by high-
throughput phenotyping techniques than traditional methods, thus improving
selection efficiency (Sankaran et al. 2015; Virlet et al. 2017).
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Fig. 8.4 Applications of high-throughput phenotyping in potato breeding

• Genomics-phenomics research advancement: HTP has capacity to deliver
genomics and phenomics research advancement in less time with accurate and
precise traits phenotyping for speed breeding of potato. This technology facili-
tates genes and markers discovery for development of new potato varieties with
desired traits in less duration and reduces breeding cycles.

8.5 Conclusions

In the present genomics era, HTP is becoming high priority research area due to
its automation, precision, sensitivity, accuracy, repeatability, and reproducibility.
Advanced plant breeding is a key factor to address the worldwide food secu-
rity issue keeping in mind climate change, water scarcity, and diminishing land.
High-throughput phenotyping in combination with advanced breeding approaches,
viz., genomic selection, marker-assisted selection, QTL mapping, genotyping by
sequencing, and genome editing are being used as next-generation breeding strate-
gies for crop improvement. In potato, HTP using digital images at regular intervals
of plant growth would enable early selection of genotypes with desirable traits. This
high-throughput phenotyping could detect foliar diseases with different lesion areas
using multispectral, hyperspectral, and thermal sensors on aerial vehicles without
manual intervention. Further, these sensors are equipped to measure underground
plant parts like tuber initiation, tuber characters (shape, size, number, color, etc.),
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and quality traits (starch, reducing sugar, and moisture content). Moreover, RGB
camera combined with UAV would be potential application of HTP in field trials.
Suchmethods should maximize reproducibility and reliability of phenotyping exper-
iments for enhancing precision in quantifying variation of plant trait expression. In
order to do so, it is important to quantify features of both the plant and its growth
environment that allows expression of desired trait. High-throughput genotyping
and phenotyping can assist in faster, cheaper, and more effective potato breeding
and also useful to capture genetic variation for several traits in breeding programs.
For precisely extracting the desired information about the potato plant phenotype
from these techniques, protocols need to be optimized for monitoring plant growth.
Application of HTP techniques outlined in this chapter provides a roadmap for future
rapid improvement in potato breeding. However, for maximum utilization of such
HTP platforms, screening protocols should be standardized for different crop species
and under different stress conditions.
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Chapter 9
High-Throughput Crop Phenotyping
Systems for Controlled Environments

Jianfeng Zhou, Jing Zhou, Heng Ye, and Henry T. Nguyen

Abstract Increasing crop production through genetic improvements and crop
breeding programs is a key solution for the expected food crisis in 2050. Crops with
improved traits of high yield potential and resilience to biotic and abiotic stresses
due to adverse environments can be developed at a faster speed by integrating crop
genotypic data with phenotypic data. While the efficiency of breeding programs is
limited by unpredictable environmental conditions in field conditions, facility with
controlled environments and emerging technologies can provide a better alternative
for the fast development of new crop varieties. This chapter introduces the high-
throughput phenotyping systems used in controlled environments and their poten-
tials to be used for fast characterization of plant traits. Various styles of automated
phenotyping platforms are summarized and their features are compared to provide a
vision on how to select such systems. The chapter also provides an introduction of
some typical sensors that are typically used by researchers and commercial sectors
for plant phenotyping in controlled environments. At the end of the chapter, a case
study is provided to demonstrate how low-cost and automated plant phenotyping
systems can be developed to suit customized studies. Methods of hardware develop-
ment, data analysis, and results are discussed to show case the application of such a
low-cost system. A vision of next-generation autonomous crop phenotyping system
is provided too.
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9.1 Introduction

By 2050, the global population is expected to reach 9.8 billion (Hincks 2018) and
the current arable land is decreasing due to climate change, urbanization, soil degra-
dation, water shortages, and pollution (Breene 2018). Food demand is expected to
be 60% higher than it is today, resulting in a potential crisis in global food secu-
rity. Crop breeding is a promising solution to the food crisis by developing new
crop varieties with improved traits, including high yield potential and resilience to
biotic and abiotic stresses due to adverse environments (Staton 2017). The rapid
and continuous changes in climatic conditions increase the frequency of extreme
weather including altered precipitation patterns and occurrence of drought and flood
in the agricultural areas (Lesk et al. 2016). The U.S. National Climate Assessment
conducted by the National Aeronautics and Space Administration (NASA) shows
that the heavy precipitation events have increased by 42% in midwestern states and
55% in northeastern states from 1958–2016 (NASA 2019). Meanwhile, drought has
been identified as one of the critical restraints for crop production (Marvel et al.
2019), and crops such as soybean have had a ~40% reduction in yield as a result
of drought (Lesk et al. 2016). The frequent extreme weather significantly threatens
crop production and global food security (Boyer et al. 2013). There is a pressing
need to use the latest technological advances such as Artificial Intelligence (AI) to
develop stress-resilient crops (i.e., soybean, corn, rice, maize, and others) to sustain
agricultural production under unfavorable weather conditions.

Conventional crop breeding methods rely on field evaluations in multiple seasons
and multiple locations based on statistical methods and experimental design. These
conventional methods improve selection effort; however, they are time-consuming
and rely on trial-and-error (one cycle per year, 6-12 breeding cycles for one variety),
labor-intensive (mainly rely on people to conduct physical experiments, manage in
field operations, and evaluate crop growth conditions,) and too slow to meet the
expected yield gains (Breseghello and Coelho 2013). Natural environment is highly
variable, which significantly affects the stability of the expression of quantitative
traits in plants. Based on previous reports on quantitative trait studies, more than 40%
of the total phenotypic variations were usually explained by their environmental vari-
ations in field conditions (Weinig and Schmitt 2004). As crop phenotypes are interac-
tions of their genotypes and environment factors, controlled environments, compared
to field conditions, offer uniform growing conditions by controlling microclimate in
a certain area and reduce the environmental effects to single factors, e.g., salty,
drought, or flooding, to avoid the co-occurrence of these factors and to achieve more
efficient and optimal crop breeding (Katsoulas et al. 2016). For example, modern
greenhouses are set up for accurately controlled environments, such as temperature,
light, humidity, and uniformity of soils, which allows us to minimize environmental
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complexities and focuses exclusively on genetic effects. In addition, experiments
can be conducted year-round in the greenhouse compared to only one season in the
field advantaging greenhouse in achieving our research and breeding goals in a much
shorter period. Therefore, it is important to conduct experiments in a modern green-
house for accurate research and breeding. For example, Bayer, one of the largest seed
companies in the world, has just invested more than $100 million to build a 7-acre
greenhouse facility in Marana, AZ to enhance their breeding programs (Gardner
2020). Meanwhile, the University of Missouri invested $28.2 million to build a
new greenhouse in 2019 to boost its research in crop breeding and genetics. Plant
growth facility, including greenhouses, offers good opportunities to apply emerging
technologies to accelerate crop breeding.

Recently plant breeders have started using high-resolution genome information
for germplasmcharacterization and genetic dissection ofmajor agronomic and stress-
resilience traits. Along with the development of next-generation and cost-effective
sequencing platforms, the speed of plant genome sequencing has been accelerated
significantly. The top-of-the-line breeding programs need to utilize inexpensive,
genome-wide data coupledwith powerful algorithms that overcome limitations of the
conventional methods and allow us to start breeding on predicted instead ofmeasured
phenotypes (Wallace et al. 2018). One of the 10 big ideas identified by U.S. National
Science Foundation (NSF) is to address the issue of “our inability to look at an
organism’s genetics and environment and predict its observable characteristics or
phenotype”.

In the past few years, High-Throughput Phenotyping (HTP) approaches have been
used for the fast measurement of plant traits in controlled environments. Efforts have
been made by both academic and industrial sectors toward developing HTP systems
under controlled environments to adapt various kinds of crops for different breeding
purposes. For example, the GROWSCREEN FLUORO developed by Jansen et al.
(2009) was used to detect the stress tolerance in rosette plants based on traits of
leaf growth and chlorophyll fluorescence. The Phenovator designed by Flood et al.
(2016) is capable of screening more than 1000 Arabidopsis plants for the measure-
ments of photosynthesis, growth, and multispectral reflectance multiple times per
day. The Scanalyzer HTS and three-dimensional (3D) system by LemnaTec GmbH
were adopted bymany studies to analyze plant leaf chemical properties (Pandey et al.
2017) and measure the diurnal patterns of leaf hyponasty and leaf size (Dornbusch
et al. 2012).

High-throughput phenotyping platforms in controlled environments have been
built and utilized in studies for various crops, such as Arabidopsis (De Diego et al.
2017), rice (Al-Tamimi et al. 2016), soybean (Zhang et al. 2017a; Zhou et al. 2018a),
wheat (Zhang et al. 2017b), and maize (Brichet et al. 2017). These studies mainly
focused on measuring the temporal variations of crop growth and quantifying their
genetic responses under biotic and abiotic stresses. Image features are commonly
used to replace manual measurements and improve the efficiency of data collection
(phenotyping) in crop studies (An et al. 2017; Horgan et al., 2015), combined in
genomic analyses, e.g., Genome-WideAssociation Studies (GWASs) or Quantitative
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Trait Loci (QTLs) mapping to evaluate genetic variations in crops (Atieno et al.
2017; Yang et al. 2014; Zhang et al. 2017b) or predict crop performance under target
environments (Fahlgren et al. 2015; Hairmansis et al. 2014).

Controlled environments in Plant Science usually refer to an enclosed area with
certain environmental parameters controlled, such as temperature, humidity, light
condition, and CO2 level. Some examples of such facilities include greenhouses,
growth chambers, climate room, and nursery room, which are widely used to study
plant responses to controlled environmental conditions. Comparing to field condi-
tions, controlled environments have a limited area (dimensions), protected regions,
and well-equipped facility, which allow easy implementation of automated pheno-
typing systems. Automated plant phenotyping systems in controlled environments
generally consist of sensors, automated control systems, data processing, manage-
ment system, and computation software to accomplish an automated data collection
in crop traits in a high-throughput manner. The experimental results from controlled
environments usually will be tested and validated in field conditions. One example of
modern automated phenotyping systems is shown in Fig. 9.1 that consists of hardware
(phenotyping platform) and an advanced data processing pipeline. In this chapter,
current high-throughput plant phenotyping systems in controlled environments and

Fig. 9.1 Example of an overhead platform with ceiling mounted track system (top) and stitched
image from sequential images taken by a Red, Green, and Blue (RGB) camera with a yellow dotted
line as the pre-defined path (bottom)
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sensors used in such systems to quantify plant traits were summarized. In addition,
a case study was included at the end of this chapter to explain how high-throughput
phenotyping systems have been applied in crop breeding programs.

9.2 Automated Platforms for High-Throughput Crop
Phenotyping Systems

The automatedplatforms for high-throughput cropphenotyping systems in controlled
environments can be divided into two types according to the relative movement
between sensors and plants, i.e., “sensor-to-plant” and “plant-to-sensor”. In Sensor-
to-Plant (STP) systems, plants are in fixed positions while sensors are moved to
approach plants. On the other hand, in Plant-to-Sensor (PTS) systems, plants are
brought to sensors that are in a fixed location. The STP systems do not require
complicated conveyor systems to transfer plants and have sufficient freedoms in
system design; therefore, the STP systems are more commonly used in customized
systems. However, the STP systems are less efficient than the PTS systems in terms
of accommodation capacity for plants and time cost for screening individual plants.
Therefore, the PTS systems have the advantage of being suitable for large-scale,
highly automated, and non-destructive plant phenotyping; however, they usually
require a large investment in facilities, hardware, and software.

9.2.1 Sensor-To-Plant (STP) Phenotyping Systems

TheSTPphenotyping systems are suitable for situationswhen plants are not preferred
to move during the growth period. Some scenarios include plants growing in one
testbed with treatments in water solution (Zhou et al. 2018b,2020b) and plants in
large growth tubes for root observations (Ye et al. 2018a; b). Some other scenarios
include the most traditional greenhouse setup with fixed testbeds, lights, and irriga-
tion systems that are easily modified. In general, STP phenotyping systems are more
flexible and easier to be adapted in existing plant growth facilities. The STP systems
canbedivided into three types, i.e., overheadplatforms, groundplatforms, and robotic
systems. The overhead platforms move above plant canopies using rail track systems
that are mounted on the ceiling or support by frames (An et al. 2016; Jansen et al.
2009; Zhou et al. 2018b). The ground platforms are operated on ground-based tracks
(Polder et al. 2009), and the robotic systems offer free movement to sensors to mimic
human activities (Scharr et al. 2014; Lu et al. 2017).
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9.2.1.1 Overhead Platforms

Overhead platforms are the most widely used platforms in STP than the other two
types (ground and robotic), especially for customized systems. The overhead plat-
forms move sensors above plant canopies and capture their top view images with
desired distances. One example of the overhead platforms is shown in Fig. 9.1, which
consists of a sensor system, a track system (in x-, y-, and z-axis directions), a control
system (to control the movement of the sensors on the tracks), and a lighting system.
As the core component of a phenotyping system, the sensor system integrates non-
contact sensors (e.g., cameras and LiDAR), controllers, and other accessories (e.g.,
power sources). Sensors are controlled using their integrated firmware or external
controller to collect data periodically or continuously. The collected data could be
directly stored to their onboard storage (e.g., SD card) or transmitted to external hard
drives through a wireless network. Track systems usually consist of sliding tracks,
rollers, belts or chains, and motors to move sensors to desired locations or following
pre-defined moving paths.

There are two different operationmodes of sensors in the overhead STP platforms,
i.e., stop-and-go and continuously scanning. In the stop-and-gomode, sensors collect
data at still conditions, i.e., sensors are driven to and then stop at pre-defined positions.
The stop-and-go mode is particularly suitable for scenarios when particular light
conditions are required for imaging. For example, images are taken under low light
conditions in which sensors are required to stay still for a long-time exposure. Some
examples include imaging small-scale plants growing in leaf discs or small pots
(Jansen et al. 2009). Fluorescence imaging is another special application of the stop-
and-go mode since lights have to be blocked for the dark adaptation for plants during
the short period of imaging (Biskup et al. 2009).

On the other hand, in the continuously scanningmode, sensors takemeasurements
(images) at a constant interval while they are moving along a pre-defined path. The
path is usually defined in a serpentine shape along the x- and y-axis to cover the
whole area of plants. The top image in Fig. 9.1 illustrates one exemplar architecture
of a continuously scanning platform (Zhou et al. 2018b), where the yellow dot lines
in the bottom image show the path commonly defined for cameras in this mode.
Compared to the stop-and-gomode, continuous scanninghas the advantages of higher
data acquisition efficiency and the ability to obtain 3D geometric information (plant
height, plant volume, etc.) using stereovision (Moons et al. 2010) or Structure from
Motion (SfM) (Snavely et al. 2006) techniques. The SfM is one of the most widely
used stereovision methods in many automatic phenotyping systems (Zhang et al.
2016; Zhou et al. 2018b), which reconstructs 3D structures of plants by extracting
and matching feature points from two-dimensional (2D) images. The 2D images are
usually taken by Red, Green, and Blue (RGB) cameras (due to their high image
resolution) continuously following the pre-defined path with certain image forward
and side overlaps. The popularity of SfM is due to the development of commercial
software, such as Agisoft PhotoScan (Agisoft LLC, Russia) and Pix4D Mapper
(Pix4D, Lausanne, Switzerland) that have integrated this method into a completed
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process, increasing the accessibility and manipulability of users who are even not
familiar with those techniques.

9.2.1.2 Ground Platform

Ground platforms use a ground-based track system to support and move sensor
systems to desired positions for continuous or scheduled data collection. Their sensor
systems can be positioned on top of plant canopies for shooting nadir-view images
or vertically for side-view images. Compared to the overhead platforms, the height
of sensor systems can be adjustable within a certain range on the ground platforms
allowing flexible setups for plants with different sizes from as small as rosette plants
(Pereyra-Irujo et al. 2012) to as large as grow-up wheat or even corn (Horgan et al.
2015). Crop architecture features (e.g., dimension and angle of stems and leaf) can
also be revealed with side-view images. Some other advantages of ground platforms
include that the ground track systemcan be easilymodified or extended and the sensor
systems are allowed to carry more and heavy devices. However, ground platforms
need additional installation space and may need more modifications to install such
systems in the existing greenhouse.

9.2.1.3 Robotic Platform

Robotic platforms here exclusively refer to standalone robotic systems that are not
based on track systems described above, including robotic arms, autonomous robots,
and others. Robotic systems are able to mimic human actions to take measurements
of single plants but on a larger scale than manual operations. Depending on the
integrated sensors, information of plant architecture (e.g., plant height, leaf area,
angle), physiological characteristics based on spectral reflectance (e.g., normalized
difference vegetation index or NDVI), fluorescence, and temperature can be acquired
in real time. Detailed crop architecture and morphological features of single plants
can be obtained, such as each single leaf area, angles between leaves and stem,
leaf incline angles, stem width and height, and volume convex hull. However, data
acquisition and processing time spent on single plants might be significantly higher
than other systems. Figure 9.2 shows a robotic system developed in Iowa State
University that can perform multi-type tasks of measurements on crops in different
growth chambers.

9.2.2 Plant-To-Sensor (PTS) Phenotyping System

Plant-to-sensor platforms are designed as (imaging) sensor stations that include one
or multiple sensors in an enclosed area with active lights and an automation system.
The PTS platforms consist of an automated converter system that transfers single
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Fig. 9.2 A robotic system consists of an unmanned ground vehicle, a six-axis robotic arm, and a
sensing unit at the end of the arm. There are multiple sensing units are integrated to take multiple
measurements simultaneously (Bao et al. 2019)

plants or plant pots to the sensor stations for taking measurements. The architecture
and components vary for different PTS platforms developed by commercial sectors
and research groups, which have many different capacities to handle a different
number of plants from hundreds to thousands and various sizes of plants from single
small-size plants (e.g., Arabidopsis, Junker et al. 2014) to midsize (e.g., sorghum,
Neilson et al. 2015) or large-size plants (e.g., maize, Ge et al. 2016).

There are some advantages of PTS comparing to STP systems. First, sensors
are housed in enclosed areas providing ideal environments for taking imagery data,
such as controlled and uniform light conditions and clean background. For example,
hyperspectral imaging systems have critical requirements for lights (full spectral,
sufficient intensity, and uniform) (Lu et al. 2020) that are hard tomeet in STP systems.
Secondly, plants are transported to different locations of the growing facility during
their life cycle, which may reduce the microclimate impacts due to the non-uniform
light condition, temperature, and orientations to light (Ma et al. 2019a).Other benefits
may include high security to sensor systems, easy installation, and highly automated
and integrated systems.

Various kinds of sensors can be installed at any desired position in a sensor station
to take the top- or side-view images of single plants. The sensor station is usually
a closed chamber with controllable environments. Completely dark conditions can
be applied as well as illuminations in certain ranges of spectrum wavelength, if
necessary. Therefore, imaging environments in these platforms are favorable to all
kinds of sensors due to the light conditions and smooth movements, especially to
hyperspectral cameras. Applications of these platforms include the study of water
use efficiency (Junker et al. 2014), diagnose of biotic and abiotic stresses (Atieno
et al. 2017; Tschiersch et al. 2017), estimation of plant traits related to yield gain
(Minervini et al. 2017), and modeling plant growth (Pradal et al. 2017).

Except for imaging plant shoots that are available in most of the automatic pheno-
typing systems, roots imaging can be achieved by replacing the traditional plant pots
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with rhizotrons. Rhizotrons are laboratory constructed containers in order to study
the root development of different crop cultivars under different conditions. They
are typically equipped with a central corridor with viewing windows into the soil
profiles on either side (Busch et al. 2006). Nagel et al. (2012) integrated rhizotrons
to a commercial PTS platform by Maschinenbau Kitz GmbH (Troisdorf, Germany).
This imaging platform enables imaging simultaneously plant shoot and root systems
up to 60 rhizotrons per hour.

Currently, a number of PTS systems that have been developed by commercial
sectors are available on the market with the price from hundreds of thousands to
millions of dollars. One of the most popular PTS system providers is LemnaTec
(LemnaTec GmbH, Aachen, Germany), which is able to acquire characteristics of
plants using hyperspectral, fluorescence, thermal, multispectral, and RGB imagery.
They have been utilized in studies ofwater use efficiency; stress diagnoses; estimation
of biomass, nutrition, or production; and evaluation of root system development for
crops likemaize, soybean, Arabidopsis, and sorghum (Junker et al. 2014; Parlati et al.
2017; Tschiersch et al. 2017). There are similar commercial products available on
the market, such as the Plant Accelerator by the Australian Plant Phenomics Facility
in Australia and the Montpellier Plant Phenotyping Platforms by French National
Institute for Agricultural Research in France.

9.3 Sensors

Sensors used in high-throughput crop phenotyping systems are primarily non-contact
optical sensors that take non-invasive measurements of physical, chemical, and
biological characteristics of plants. In general, the sensors primarily sense objects
based on their radiation or spectral reflectance of natural or artificial light. When
incident radiation (light source or natural light) hits the surface of an object, the
radiation will either be absorbed, transmitted, or reflected (Lillesand et al. 2004).
The reflected radiation can be expressed as the Electromagnetic Spectrum (EMS)
with a range of wavelengths (Fig. 9.3). Different ranges of wavelength (waveband)
are denoted to different names such as visible region (400–700 nm), near-infrared

Fig. 9.3 Electromagnetic Spectrum (EMS) scheme (nm)
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(NIR, 700–1,000 nm), short-wave infrared (SWIR, 900–2,500 nm), and long-wave
infrared (LWIR, 7.5–14 µm) (Silván-Cárdenas et al, 2015).

When light interacts with a plant, it comes to a distinct set of physical processes,
namely reflection, transmission, and absorption. A part of the incoming light is
reflected from the surface of the plant, and after internal backscattering, some light
is absorbed by plant tissue and another part of the light is transmitted through the plant
tissue (Vogelmann 1993). In addition, there is an internal scattering of the reflected
and transmitted light involved while it interfuses the plant tissue. The portion of
incoming light that is reflected, transmitted, or absorbed varies with the wavelength
of the incoming light and depends on the structural and chemical composition of a
plant (Knipling 1970; Woolley 1971), which makes a spectral characteristic profile
of plants associated with the structure of the leaf surface and the composition of the
plant tissue (Vogelmann and Gorton 2014). Figure 9.4 shows an example of a typical
curve of spectral reflectance characteristics of plant leaves. Plant pigments, such
as chlorophyll, carotenoids, or anthocyanins, have well-known absorption patterns
in the visible range of the EMS (Blackburn 2006). When a plant is subjected to
stresses, such as drought, flooding, andpathogen,metabolic processes and the cellular
structure of a plant change. This leads to an altered spectral profile of the plant and
provides a possibility to detect plant diseases through observation of the plant’s
spectral characteristics (Bock et al. 2010; Mahlein et al. 2012). The spectral profile
of plants may also offer a new way to quantify the genetic variations of crops due to
target stress, which may be used to select crops with desired traits.

There are a large variety of sensors used in different research, and advanced
sensors are emerging with the advance of technologies. This section summarizes

Fig. 9.4 Spectral reflectance characteristics of leaves in the range of visible to short-wave infrared
wavelength. Different lines show the crops under different nitrogen concentrations
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some commonly used camera systems, including visible light (RGB) camera, spectral
imager, fluorescence camera, infrared (IR) thermal camera, and time-of-flight (depth)
camera.

9.3.1 Visible Digital Camera

Visible digital cameras are able to capture images in three bands of reflectance light
of objects that are in the visible range of spectra (400–700 nm), namely red, green,
and blue, also referring as RGB cameras. The RGB camera is the most widely used
type of imaging sensor in crop phenotyping due to the features of low cost, high
resolution, user-friendly operation, light weight, and adaptability to the working
environment (Yang et al. 2017b). In the research of crop phenotyping, RGB cameras
have been used to capture color information from plant root (Nagel et al. 2012),
shoot (Honsdorf et al. 2014), and canopy (De Diego et al. 2017) and measure 2D
geometric information (e.g., length of root, shoot, and area of leaf and canopy)
(Lee et al. 2018). Additionally, 3D geometric information of plants can be obtained
through reconstructing Digital Elevation Models (DEMs) based on 2D images using
stereovision methods (Zhou et al. 2018b). The information of plant 3D architecture
can provide many crop traits, such as a number of stems, angle of stems, and leaves
that are not easy to acquire in conventional breeding programs, and shows great
potential to precisely quantify the genetic variation of plants due to abiotic and biotic
stresses (Zhou et al. 2018a).

9.3.2 Spectral Cameras

Visible cameras measure the spectral reflectance of objects in the visible range of
400–700 nm, which limits the ability to discover the spectral response of crops in the
infrared spectral range that is “invisible” to human eyes. It has been found that the
leaf of crops can reflect more spectral light in NIR than visible light, whichmakes the
reflectance intensity of NIR light much stronger than that of visible light (as shown
in Fig. 9.4). Currently, the most commonly used spectral features are reflectance
in the spectra range of 400–2,500 nm, usually called visible-NIR or VNIR, due to
the limitation in instruments. It can be seen from Fig. 9.4, spectral reflectance to
vegetation at the NIR range is the highest in the VNIR spectra, and the difference in
crops has been signified in this range. To signify the difference in spectral reflectance
features of plants at different treatments, multiple spectral bands can be integrated
to develop different vegetation indices (e.g., NDVI) (Humplík et al. 2015) or build
predictive models using machine learning techniques (Zhou et al. 2018a). Spectral
cameras can be divided into two categories according to the number of discrete
wavebands or channels, i.e., multispectral camera and hyperspectral camera.
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9.3.2.1 Multiple Spectral Cameras

Multispectral cameras generally refer to the type of spectral cameras that are able to
capture images with two to fit discrete wavebands in the VNIR range (Humplík et al.
2015). The spectral wavebands are selected based on research results that show effec-
tiveness in representing important crop traits. Some widely used wavebands include
blue (450–520 nm), green (520–600 nm), red (630–690 nm), red edge (700–730 nm),
and NIR (760–900 nm) (Hunt et al. 2013; Thenkabail and Lyon 2016). Depending
on the waveband width (number of wavelengths) of every single channel, spectral
cameras can also be divided into narrowwaveband (e.g., 2–20 nm) or broadwaveband
(more than 50 nm) cameras (Hunt et al. 2005). For example, the multispectral camera
Micasense RedEdge-M (Micasense, Seattle,WA, USA) consists of five narrow spec-
tral bands of blue (475 nm center, 32 nm bandwidth), green (560 nm center, 27 nm
bandwidth), red (668 nm center, 14 nm bandwidth), red edge (717 nm center, 12 nm
bandwidth), and NIR (842 nm center, 57 nm bandwidth). The narrow-band spectral
cameras are usually more accurate to pick up the difference of spectral signature for
different plants, but more expensive than broad-band spectral cameras.

To signify the spectral reflectance signal, vegetation indices are calculated using
multiple bands, such asNDVI,NormalizedDifferenceRedEdge (NDRE,Barnes et al.
2000), and Photochemical Reflectance Index (PRI, Gamon et al. 1997). Vegetation
indices have been widely used to quantify the difference of plants under different
treatments and predict more complex crop traits, such as crop health condition, leaf
chlorophyll content, and yield (Zhang et al. 2017a; Zhou et al. 2018a, 2020a).

9.3.2.2 Hyperspectral Camera

More powerful “multispectral cameras” are hyperspectral cameras that include more
than 50 narrow wavebands in the range of 400–2,500 nm (Li et al. 2014). There are
two different types of hyperspectral cameras based on their data collection methods,
i.e., pushbroom (line scanning) hyperspectral cameras and snapshot (snapshotting)
cameras. Pushbroom hyperspectral cameras consist of a line of spectroscopic sensors
that acquire images using a line-by-line scanning method when the cameras are
moving above the scene. On the other hand, a snapshot hyperspectral camera consists
of a matrix of spectroscopic sensors that are able to acquire images of a sense
without moving the camera. Pushbroom hyperspectral cameras usually have more
narrow-band spectral wavebands or higher spectral resolution of narrow wavebands
comparing to the snapshot cameras. However, pushbroom cameras require stabilized
mounts and smooth movements to ′′reconstruct′′ the image, which becomes a limi-
tation for scale-up research. In addition, a consistent artificial light source is always
needed to provide extra light for hyperspectral cameras. It should be noticed that
PTS platforms are preferable for pushbroom hyperspectral imaging as the camera is
fixed to reduce movements, and translation stages for plants can be easily designed
to provide a consistent speed and smooth movements.
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The power of hyperspectral cameras is the large amount of acquired narrow-
band spectral information of crops that provide more information of chemical and
physiological information and provide the potential of applying advanced big data
processing and analytical technologies, such as machine and deep learning. Appli-
cations of using hyperspectral cameras are mainly on plant photochemical and phys-
iological features (Pandey et al. 2017; Yang et al. 2017a), health status (Knauer et al.
2017; López-Maestresalas et al. 2016), and biomass/yield estimation (Liang et al.
2018). Current hyperspectral imagers are primarily using 50–270 narrow spectral
bands of VNIR (400–1,100 nm) due to the cost. Adding a Short-Wave Infrared
spectral imager (SWIR, 900-2,500 nm) may greatly improve the spectral range
and capacity of research; however, SWIR imaging sensors are made of indium
gallium arsenide (inGaAs) and usually heavy and expensive. The SWIR bands have
a minimum amount of atmospheric disturbance or noise and distinguished ability to
separate different ground materials thereby helping in feature extraction accurately
(Swathandran and Aslam 2019). Studies have shown great potential in quantifying
plant response to different stresses usingVNIR cameras (Rascher et al. 2011; Thomas
et al. 2017; Yuan et al. 2014). The SWIR channel shows specific reflectance for vege-
tation water content and soil moisture (Everitt et al. 1989; Jacquemoud and Baret
1990; Tucker 1980; Ustin 2004). The most important applications of the SWIR
include agricultural management by assessing the crop stress by the reflectance of
different pigments in the leaves alongwith cropmoisture estimation andmapping and
quantifying the crop residue and predicting the quality of the soil (Galloza et al. 2013;
Hively et al. 2018; Serbin et al. 2009). With regard to the spectral reflectance differ-
ences ofmoisture absorption properties, various drought indices using the backscatter
energy fromNIR and SWIR channels have been formulated for estimating vegetation
water content using satellite remote sensing (Ji et al. 2011; Vescovo et al. 2012;Wang
and Qu 2007), which may serve as reliable indicators for crop drought stresses, and
potentially to be used in selecting drought-resistant varieties.

9.3.3 Chlorophyll Fluorescence Imaging Sensor

Chlorophyll fluorescence of plants is the light re-emitted by chlorophyll molecules
during the returning from excited to non-excited states (Maxwell and Johnson
2000). The yield of chlorophyll fluorescence depends on the efficiency of converting
absorbed light to fluorescence. For normal and healthy plants, a major part of light
absorbed by chlorophyll molecules is used for photosynthetic quantum conversion,
and only a small proportion is de-excited via emission as heat or as red and far-red
chlorophyll fluorescence.However, the ability of the photosynthetic quantum conver-
sion declines for plants under stresses, with a concomitant increase in red and far-red
chlorophyll fluorescence (Lichtenthaler and Miehé 1997). Therefore, the analysis of
chlorophyll fluorescence re-emitted from plant leaves can release information about
plant health status and has been used as an important tool in plant research (Halbritter
et al. 2020).
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Fluorescence imaging sensors (cameras) are used to capture the re-emitted propor-
tion of irradiation in a short wavelength such as Ultraviolet (UV) light (wavelength
ranges from 340 to 360 nm) by plants (Li et al. 2014). Recently, a high-resolution,
UV Laser-Induced Fluorescence (LIF) imaging system was developed to image all
four fluorescence bands: blue, green, red, and far-red (Ortiz-Bustos et al. 2016). The
inverse relationship between photosynthetic performance and chlorophyll fluores-
cence analysis has made a large contribution to the understanding of photosynthesis
and electron transport reaction.

A fluorescence sensing system usually consists of one or more Charge-Coupled
Device (CCD) cameraswith filters to capture fluorescence signals (Wang et al. 2018).
Active light sources, such as pulsed lasers, pulsed flashlight lamps, or Light Emit-
ting Diodes (LEDs), provide irradiation in certain wavelengths (Baker 2008). The
Pulse Amplitude Modulated (PAM) fluorometry method by Schreiber et al. (1986)
is adopted in practical applications. In this method, a short (e.g., 1 µs) pulse of light
(also called a dark adaptation) is imposed on a targeted object. Following the dark
adaptation, the minimum fluorescence value (Fo) of the object can be measured. The
object is then exposed to a saturating pulse of light so that the maximum amount of
fluorescence (Fm) can bemeasured. The difference between these two extreme values
is the variable fluorescence (Fv). Fv/Fm provides ameasure of a certain photochemical
efficiency which has been successfully related to plant status in many studies.

This proportion depends on the plant’s metabolic capacity and is highly sensitive
for plant photosynthetic activity yielding parameters closely related to photosynthetic
functions (Serôdio et al. 2018). Therefore, fluorescence imaging is commonly used
to detect stress symptoms induced by pathogen attack (Chaerle et al. 2007), monitor
stress responses (Baker, 2008), and measure physiological phenomena relating to
photosynthesis and metabolism and growth-related traits (such as the leaf area)
(Baker and Rosenqvist 2004; Lenk et al. 2006).

To reach the needs of the dark adoption and light saturation, phenotyping platforms
for fluorescence sensing have to provide controllable ambient light conditions to
plants. Therefore, PTS platforms with enclosed imaging unit and illuminating light
(Junker et al. 2014; Parlati et al. 2017) are the most suitable for sensing large- or
medium-size plants, and overhead STP platforms are for small-scale plants (Biskup
et al. 2009).

9.3.4 Thermal Infrared Cameras

Thermal infrared cameras capture the long-wave infrared radiation (7.5–14 µm) of
the EMS emitted from crops and convert such radiation to an electrical signal (Jones
2004). Leaf temperature measurement using thermal IR sensing is primarily used to
study plant water relations and specifically stomatal conductance because a major
determinant of leaf temperature is the rate of evaporation or transpiration from the
leaf (Jones 2004). During evaporation, a substantial amount of energy is required
to convert liquid water in leaves to water vapor, and this energy is then taken away
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Fig. 9.5 Different models of
Time-of-Flight sensors

from the leaves resulting in a cool surface. When a plant experience abiotic or biotic
stresses, the transpiration rate will change and as well as the temperature. Hence,
thermal cameras are useful in detecting this kind of water-related stress (Balota and
Oakes 2017). For example, canopy temperature depression which is calculated as the
temperature difference between the canopy and the surrounding air was found being
highly correlated with the canopy water mass, and it was used to capture response
levels induced by stress treatments (Ludovisi et al. 2017).

9.3.5 Time-of-Flight Sensors

A Time-of-Flight (ToF) sensor is a range system that employs ToF techniques to
resolve the distance between the sensor and the subject by measuring the round
trip time of an artificial light signal provided by a laser or an LED (Lindner et al.
2010). The ToF ranging technology has been used in robotic systems, automation,
and computer vision technologies for object detection, distance ranging, and 3D
modeling (Lu et al. 2017). In crop phenotyping, ToF sensors are majorly used as a
tool to directly measure the 3D architecture of plants (Busemeyer et al. 2013; Paulus
2019). Commonly used ToF sensors in crop phenotyping include Light Detection
and Ranging (LiDAR) (Paulus et al. 2014), ultrasonic sensors (Fricke et al. 2011),
Microsoft Kinect v2 (Ma et al. 2019b), and ToF cameras (Chaivivatrakul et al., 2014),
which are used to quantify plant height, build the 3D structure, and estimate biomass
or yield (Fig. 9.5).

LiDAR sensors measure the distance between objects and the sensors by actively
emitting laser lights (600–1,000 nm) toward the objects and recording the reflected
laser points by the objects. 3D point clouds representing the spatial structures of the
objects can be generated by scanning objects at multiple viewpoints and merging the
laser points based on the positions where they are collected.Morphological measure-
ments such as plant height, stem height, leaf angle distribution, and leaf area density
can be quantified and extracted, which are helpful in characterize plant growth. With
the flexible degrees of freedom, the robotic STP platforms are extensively adopted
for phenotyping small-scale plants in controlled environments to provide multiple
scanning positions of laser scanning devices (Paulus et al. 2014; Wang et al. 2017).
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9.4 Low-Cost and Customized Crop HTP System

Commercial crop phenotyping platforms are usually designed for generic applica-
tions to cover various applications.Although customized designs can be provided, the
cost would be too high for most research groups, especially for early-stage research
projects. The following case study introduces a low-cost and automated STP pheno-
typing system designed for an established greenhouse that has limited space and
resources to install a complex phenotyping system. As shown in Fig. 9.6, the plat-
form consisted of a frame (7.3 m × 1.7 m) built by two sets of aluminum sliding
tracks (STA-BP250, SpokaneHardwareSupply, Spokane,WA,USA), steppermotors
(23HS30-2804S, StepperOnline, Nanjing, China), timing belts, motor pulleys, limit
switches (MX-11, Sparkfun Electronics, Boulder, CO, USA), DC power supplies
(Model S-360–12, Amazon.com, Seattle, WA, USA), and a camera holder. The
camera holder is a rectangle frame (400 mm × 150 mm) built by aluminum solid
angles, and cameras can be fixed to the frame. The camera holder was driven along
a y-sliding track (horizontal) by a stepper motor through timing belts. The y-sliding
track was attached to an x-sliding track (vertical) using four ball-bearing sliders and
was driven by another stepper motor that was mounted directly to the greenhouse
ceiling. Two sets of sliding tracks and driving systems allowed the camera holder to
move at desired speeds and patterns in two perpendicular directions.

Sequential imagery data collected by the system are processed with three major
steps, i.e., pre-processing to build orthomosaic images and DEM, image processing
to extract image features of single plants, and data analysis to quantify plant traits
(phenotypes). Commercial software, such as Agisoft and Pix4D, was used to process
sequential images to simplify the procedure of data pre-processing. Both software
packages are able to develop orthomosaic images and DEM based on the principle
of SfM. Followed the pre-processing is to develop customized image processing
algorithms to segment (separate) each plant from orthomosaic images and DEM,
which are used to extract temporal high-dimensional data sets of each plant, such as
2D and 3D image features, color, spectral reflectance, and temperature, depending

Fig. 9.6 Illustration of the architecture of a low-cost and customized automated plant phenotyping
platform. The left figure shows the details of the system and the right figure shows an example of
the setup for a study of soybean salinity stress in a greenhouse
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on the type of camera used. High-dimensional data sets are used to develop predic-
tion models for desired crop traits (e.g., salt tolerance, drought tolerance) based on
advanced machine learning and deep learning algorithms.

The automated phenotyping platform can be used in different studies to capture
dynamic (temporal) responses of plants to abiotic and biotic stresses. Various image
features can be extracted to quantify the variation of plants due to environmental
stresses. The system is able to track plant growth (structural variations, such as
height, canopy size) and quantify physiological and chemical characteristics (e.g.,
leaf chlorophyll content, spectral reflectance) that can be used to rate their tolerance
to abiotic and biotic stresses. The following case study is regarding an application of
a customized phenotyping system developed at the University of Missouri, where a
consumer-grade digital camera (SX410, Canon U.S.A., Melville, NY) was used to
quantify the genetic variation of soybean due to salinity stress. The system setup is
shown in Fig. 9.6. Crops under salinity stress have reduced growth rate, plant height,
shoot biomass, and ultimately reduced yield.Meanwhile, changes in ion level in plant
shoots and leaves due to salinity may cause variations in leaf chlorophyll content,
reflectance, and temperature. Quantification of variations in those stress symptoms
is the key to developing soybeans with high salt tolerance and understanding the
underlying mechanism regulating salt tolerance in plants.

The measurement accuracy in geometric dimensions of the system was firstly
evaluated by comparing sensor estimation in dimensions with manual measurements
of artificial objects. Figure 9.7 shows the estimated dimensions in height (vertical
distance between the top and the base) and width (the horizontal length of edges
at the top or base) of the artificial objects. It can be seen that the errors (standard
deviation) in the horizontal direction were 1.4 mm and 1.2 mm at the base and top
surfaces of the artificial object, while the error was 1.9 mm in the vertical direction
(height).

An automated image processing pipeline was developed for images collected by
the system, including background removal, plant separation, and feature extraction.
Figure 9.8 shows the images of three soybean plants automatedly processed from
the first day after emerging (DAE) to the 23rd day and their height and shoot area

Fig. 9.7 Measurement accuracy in geometric dimensions on artificial objects. a Illustration of real
dimensions in artificial objects, b 3D dense point cloud of an artificial object, and c Measurement
accuracy in the horizontal and vertical direction
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Fig. 9.8 Soybean traits automatically acquired using the HTP system. a Height and shoot area of
three soybean plants throughout their lifespan. b, d, and f are the top and front views of the plants.
c, d, and g are the front view of the plants

extracted from images. The curves in Fig. 9.8a were able to not only track the growth
(height and shoot area) of individual plants, but also quantify their difference that
might be used to determine their level of resistance to salt stress.

A list of image features were extracted for the soybean plants throughout their
lifespan to quantify their dynamic responses to salinity stress. The image features
were first used to estimate leaf chlorophyll content that is one of the widely used
traits in salt tolerance studies. The leaf chlorophyll was measured manually using a
chlorophyll meter (Konica Minolta SPAD-502, Tokyo, Japan) on the 4th day after
treatment. The correlation between the manual measurements and the estimated
values is shown in Fig. 9.9a, indicating that the leaf chlorophyll content can be
explained up to 85% with an average error of 0.6.

To quantify soybean tolerance under salinity stress, a Salt Tolerance Rating (STR)
for each soybean line was scored by an expert at the end of the experiment (around
two weeks). The STR scale was classified into five grades from 1 to 5, where 1 = no
apparent chlorosis, 2 = slight (25% of the leaves showed chlorosis), 3 = moderate
(50% of the leaves showed chlorosis and some necrosis), 4 = severe chlorosis (75%
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Fig. 9.9 Quantify soybean responses to salinity stress a The correlation between leaf chlorophyll
measurements and estimated values using seven Partial Least Square (PLS) components. b The
agreement between the image-based and visual Salt Tolerant Rate (STR) using five PLS components

of the leaves showed chlorosis and severe necrosis), and 5 = dead (leaves showed
severe necrosis and were withered). The potential of estimation of STRwith multiple
image features was also tested using the PLS regression, and the results are shown
in Fig. 9.9b, indicating that 95% of STR could be explained by the image features.

9.5 Summary and Future Vision

Breeding crops in the controlled environment is gaining attention from industry and
academic sectors because of the high efficiency and advantages of the controllable
environment and treatments comparing to the field conditions. Thanks to the high-
throughput phenotyping technology, now researchers and breeders can collect high-
temporal and high-resolution data using emerging sensors that can be used to predict
crop traits (predictive phenotypes). Recently plant breeders have started using high-
resolution genomic information for germplasm characterization and genetic dissec-
tion of major agronomic and stress-resilience traits. Along with the development
of cost-effective genotyping platforms, the speed of next-generation plant genome
sequencing has also been accelerated. The top-of-the-line breeding programs need
to utilize inexpensive, genome-wide data coupled with powerful algorithms that
overcome limitations of the conventional methods and allow us to start breeding
on predicted instead of measured phenotypes. The big data of crop phenotypes are
expected to integrate with crop genotypic data to overcome the current barriers in
fast crop breeding.

Based on the success in applying image-based phenotyping to crop breeding and
genetics, we are visioning that a next-generation plant phenotyping system will be
an autonomous system that can scale up our current research capacity and provide



202 J. Zhou et al.

Fig. 9.10 Illustration of vision of next-generation autonomous phenotyping system in controlled
environments. It consists of a robotic imaging system to acquire images of plant root and shoot,
which can be analyzed and used to train machine learning algorithms. Genetic analysis, genetic
selection, and field studies will be used for further validation of selected crop traits

an innovative phenotyping paradigm. As shown in Fig. 9.10, an autonomous pheno-
typing system may consist of a robotic imaging system; an image processing and
analysis pipeline; and a set ofmachine learning algorithms, genetic analyses, andfield
evaluations to validate the new knowledge established from the system. The robotic
imaging system will collect images of plant shoots and roots, and rigorous image
analysis will quantify image features, such as Root System Architecture (RSA),
shoot 3D structure, and spectral and thermal characteristics (descriptive phenotypes).
Machine learning algorithms will use experimental and numerical images to predict
latent crop traits (predicative phenotypes) that are used in genetic analyses to iden-
tify functional gene loci associated with crop stress resistance. Field experiments
will be used to evaluate the selected new breeding materials and the reliability of
crop traits. The transition from ′′human-in-the-loop′′ to ′′human-out-of-the-loop′′ will
occur gradually with AI-based expert system learning from human and knowledge
base, leading to autonomous phenotyping (prescriptive phenotyping). Each of these
phases of research will occur progressively and represent a significant contribution
toward autonomous plant phenotyping and toward understanding the fundamental
mechanisms governing the response of plants to environments.
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Chapter 10
Phenotyping Root System Architecture,
Anatomy, and Physiology to Understand
Soil Foraging

Larry M. York

Abstract Increasing plant resilience in the face of climate change is a major chal-
lenge for the next century. At the same time, combatting environmental pollution
from fertilizer use in agriculture is necessary. Optimized root systems would allow
crops to withstand drought and to more efficiently use fertilizer, which in turn would
drive plant growth and yield performance. Because roots are difficult to access in
the soil, they are difficult to measure, or phenotype. This “phenotyping gap” is a
major impediment to research seeking to understand how roots forage and influence
crop performance. At the same time, even known important root traits, or phenes, are
difficult to incorporate into crop breeding programs that rely on selection pressure
towards beneficial phene states. However, progress in root phenotyping has been
made with accessible tools available now for root system architecture. Root anatomy
and physiology are the new frontiers for high-throughput phenotyping of crop roots.
This chapter highlights the most practical methods to use for field root phenotyping,
with a focus on how these methods could be combined to phenotype multiple root
phenes sequentially. Dense root phene datasets would allow statistical insights to
be made for understanding how root phene integration is important for crop perfor-
mance. These methods are ready to use today, so the way forward to address the
“phenotyping gap” to understand and breed for root phenes is clear. We have to get
in the field, get our hands dirty, dig harder, and dig deeper.

Keywords Breeding · Nutrients · Phenomics · Rhizosphere · Uptake ·Water

10.1 Introduction

The population of Earth may increase to nine billion people by 2050 which would
require increasing agricultural production by at least 60%, but by as much as 100%
due to increasing livestock consumption per capita (Grafton et al. 2015). Planting
more land area with crops is not a sustainable way due to fragmentation of natural
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ecosystems (Pretty 2008). Increasing fertilizer use is also not sustainable because of
the resulting water and atmospheric pollution (Jenkinson 2001). At the same time,
climate models predict that water will become more and more scarce over the next
decade, and that more farming land will be drought-stressed (Nezhadahmadi et al.
2013). Therefore, increasing the ability of crops to capture nutrients and soil from
water to efficiently produce yield while minimizing pollution is imperative.

Roots serve as the interface between the plant and the complex soil environ-
ment with key functions of water and nutrient extraction from soils (Lynch 1995;
Meister et al. 2014). Root system architecture (RSA) refers to the shape and spatial
arrangement of root systems within the soil, which plays an important role in plant
fitness, crop performance, and agricultural productivity (Lynch 1995; York et al.
2013; Rogers and Benfey 2015). RSA is shaped by the interactions between genetic
and environmental components, and influences the total volume of soil that roots
can explore (Rogers and Benfey 2015). Many root phenes (or elemental units of
phenotype Lynch 2011; Pieruschka and Poorter 2012; York et al. 2013) shape the
final RSA, including the number, length, growth angle, elongation rate, diameter,
and branching of axial and lateral roots (Bishopp and Lynch 2015). Understanding
the contribution of RSA phenes to crop performance is of key importance; however,
it only gives part of the story.

While root system architecture determines where roots are located in the soil, less
will be known about what the roots are doing. Root cross-sectional anatomy refers
to the microscopic organization of cells into tissues of various functions (Wachsman
et al. 2015). Roots can be thought of as living pipes divided into the cortex as an
outer ring, which contains most of the living cells, and the stele in the center which
contains the vascular bundle. Water and nutrients must travel from outside the root,
across the cortex, and into the xylem within the vascular bundle to be transported
to the leaves. Therefore, root anatomical phenes are central to understanding water
flow, nutrient uptake, root carbon costs, and root associations with microorganisms,
such as mycorrhizal fungi.

Finally, the most obscured root phenes are physiological and flux based. These
are rarely measured in root research, and have been studied in “high-throughput”
scenarios even less. Root respiration is a measure of root CO2 released due to the
metabolic activity of the roots (Jaramillo et al. 2013). Root nutrient uptake rates are
the speed at which a localized area of root can acquire nutrient ions from solution,
whether in soil or hydroponics (Griffiths and York 2020). Last, exudation rates and
relative abundance provide the abundance and types of compounds that roots release
into the rhizosphere in order to mobilize nutrients and interact with soil microbes
(Walker et al. 2014). Root physiological phenes represent a vast, untapped frontier
for root research with direct importance for agricultural frontiers such as soil health.

Roots grow in the soil so are difficult to study (Eshel and Beeckman 2013).
Because of this difficulty, the genetic and functional basis of root phenes lags behind
aboveground phenes (Topp et al. 2016). Conceptually, progress is being made in the
ecology of root traits (Freschet et al. In Press a), but phenotyping remains a major
bottleneck in research and a lack of efficient methods for collecting root phenotypic
data is limiting progress in using RSA for genetic studies and breeding (Das et al.
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2015; Kuijken et al. 2015). To address this “phenotyping gap,” there has been a shift
to image-based phenotyping for enabling relatively high-throughput and accurate
measurements of roots. Many of the platforms use 2D imaging with cameras, and
involve the use of seedlings on agar plates, germination paper, or fabric cloth in
bins (Kuijken et al. 2015). Several recent reviews cover the range of root pheno-
typing methods available (Kuijken et al. 2015; Paez-Garcia et al. 2015; Topp et al.
2016; Atkinson et al. 2019; Tracy et al. 2019), and Tracy et al. (2019) nicely high-
light successes of root phenotyping in crop breeding. Readers are also encouraged
to review a new root phene handbook that covers a suite of root measures as well
their ecological significance (Freschet et al. In Press b), but does not focus on high-
throughput phenotyping. Despite the usefulness of controlling environmental param-
eters for characterization of root phenotypes, this chapter focuses on methods that
could be applied to field-grown plants.

10.2 Root System Architecture

Weaver and colleagues (Weaver 1925; 1926) excavated, drew, and photographed root
systems nearly a century ago (Böhm 2012). Over the past decade, root crown pheno-
typing (York 2018) has become popular for field-grown plants because it combines
field relevance with high-throughput capacity. Root crown phenotyping involves
excavating the top portion of the root system (the root crown), cleaning the roots,
and measuring phenes, using a variety of means. Root crown phenes, including root
number (York et al. 2013; Gao and Lynch 2016; Slack et al. 2018) and growth angle
(Wasson et al. 2012; Trachsel et al. 2013; York et al. 2015; Slack et al. 2018), have
been reported to relate to aboveground production. Root crown phenotyping was
popularized as “shovelomics” byTrachsel et al. (2011) using visual scoring. The term
“shovelomics” is widely used, but debate exists whether it only refers to methods
based on root crown washing and visual scoring in maize (Zea mays L.) or to other
protocols. Therefore, “root crown phenotyping” is proposed for more general use.
Root crown phenotyping has been used to investigate the roots of soybean (Glycine
max L.), common bean (Phaseolous vulgaris L.), cowpea (Vigna unguiculata L.),
wheat (Triticum aestivum L.), and maize (Zea mays L.) crops (Trachsel et al. 2010;
Colombi et al. 2015; York et al. 2015; York and Lynch 2015; Burridge et al. 2016;
Maccaferri et al. 2016; York et al. 2018; Le Marié et al. 2019).

Image-based root crown phenotyping was first developed by Grift et al. (2011)
formore reliablemeasurements and increased throughput. Image-based phenotyping
requires acquiring an image of the root crown, followed by image analysis. Image
analysis generally first starts with identifying the object of interest in an image in a
process known as segmentation. Successful segmentation is essential for all down-
stream analysis that provides computed phenes, and therefore acquiring the right
image is crucial. Features of a good starting image include high contrast of the
root with the background and homogenous lighting conditions (Fig. 10.1). Current
root crown image analysis options include DIRT (digital imaging of root traits) that
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Fig. 10.1 Even images that appear good quality by eye may not be suitable for reliable image
analysis. Panel A shows the original color image with a wheat root crown on a black background,
while B shows a segmentation that highlights possible problems. As seen in A, even within the root
crown, self-shading and dark pigmentation prevent successful segmentation of all roots and stems
(1), and a barely perceptible light intensity gradient (2) in the background also interferes. These
challenges are completely solved by using a backlight, with a raw image of the root crown silhouette
from the RhizoVision Crown platform shown in C with successful segmentation and analysis using
RhizoVision Explorer in D. Getting the right image quickly and reliably is a crucial underpinning
of phenotyping

requires uploading images to a cloud-based computational framework (Bucksch et al.
2014; Das et al. 2015) and REST (Root Estimator for Shovelomics Traits) that relies
on proprietaryMATLABsoftware (Colombi et al. 2015). TheDIRT imaging protocol
is designed to relax imaging conditions, but leads to the types of segmentation chal-
lenges presented in Fig. 10.1, and use of the cloud-based system can be slow and
tedious.More recently, the RhizoVision Crown platformwas developed as a state-of-
the-art platform for root crown phenotyping that optimized every step of the process
using a custom imaging unit, imaging software, and analysis software (Seethepalli
et al. 2020). Root crowns are placed into the imaging unit with a clip-and-replace
method in front of a Light-Emitting Diodes (LED) backlight such that the root crown
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silhouette is captured by a monochrome camera resulting in nearly segmented raw
images as shown in Fig. 10.1. The imaging software allows image acquisition to be
trigged by barcode scanner, such that images are savedwith the appropriate file name.
While the original paper introduced RhizoVision Analyzer for analysis, this soft-
ware has been greatly extended as RhizoVision Explorer (https://doi.org/10.5281/
zenodo.3747697) for interactive, fast, and reliable root image analysis that works
on Windows computers (Seethepalli and York 2020). Generally, analysis would be
expected to be finished usingRhizoVisionExplorer before even uploading imagefiles
to a cloud-based platform would be completed. RhizoVision Explorer was shown to
be very accurate for measurements of root length, diamter, surface area, and volume
using, whereas the commerical WinRhizo subtantially underestimated root volume
(Seethepalli et al. 2021). Due to the use of barcodes and the output of the analysis
software including the filenames, these data files can be ingested directly into data
analysis scripts. Therefore, the RhizoVision Crown platform encourages several best
practices for phenotyping to facilitate root research.

Still, root crown phenotyping is limited to only the upper portion of the root
system, and while its properties have been shown to relate to deeper root measures
(Trachsel et al. 2013), there is no substitute for sampling deep roots directly. Other
field root phenotyping methods include minirhizotrons and soil coring, which both
require a large amount of physical labor and setup time (Johnson et al. 2001; Böhm
2012; Wasson et al. 2016). Minirhizotrons require inserting clear acrylic tubes into
the ground so that cameras can be inserted periodically to acquire images of roots
growing along the face of the tube with the soil as a background. Inserting the tubes
can be facilitated with machinery, and acquiring the images is relatively simple.
However, a major bottleneck has been actually analyzing the images, which has
generally been accomplished by manually tracing roots in software. However, in
just the past couple years machine learning has been applied to successfully segment
roots from the complex, soil backgrounds in minirhizotron images, so this bottleneck
may be partially alleviated in the near future (Wang et al. 2019; Smith et al. 2020;
Xu et al. 2020). Another new software facilitates manual annotation of roots, but
importantly also the tracking for roots over time to provide birth and death rates
(Möller et al. 2019). If automated segmentation could be coupled with automated
time-series tracking of root population demography, then the field of root biology
would be transformed. More recently non-destructive root phenotyping methods
such as ground penetrating radar and electrical resistance tomography have shown
promise; however, both techniques only provide indirect assessments of root length,
do not provide RSA features, and have not been shown to be ready for reliable, large-
scale use (Garré et al. 2013; Liu et al. 2018). Soil coring involves inserting metallic
tubes into the ground to extract soil columns of 2–5 cm in diameter and 50–200 cm
in depth. Typically, the soil core is divided into increments of equal length, roots are
washed out, scanned, analyzed, and reported as root length distribution with depth
(Burridge et al. 2020). Arguably, the type of information provided by soil coring is
the “holy grail” of field root phenotyping, and so methods that increase throughput,
data density, and method reliability will be game-changers.

https://doi.org/10.5281/zenodo.3747697
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10.3 Root Anatomy

Root cross sections are readily observed by simply cutting a root in two, and have been
extensively studied in root developmental biology. In the context of crop breeding,
there are two major considerations for the importance of root anatomy (Fig. 10.2).
Root construction and metabolic costs will both be influenced by the size of the
cortical tissue (Jaramillo et al. 2013), which itself can be further divided into number
and size of cortical cells with independent influence on metabolic cost (Chimungu
et al. 2014a, b). Axial water flow is also an important component of plant–soil
water relations, which is driven by the number and area of xylem vessels in the root
(Passioura 1988). Sampling of root sections for anatomical phenotyping can be done
in the field, using the same root crowns already excavated for architectural analysis.
Generally, root sections should be sampled from the same root class and root type,
such as second whorl nodal roots in monocots or first-order lateral roots in dicots
(Burton et al. 2013) based on prior knowledge or preliminary studies. Short root
sections a few centimeters in length can be excised and stored in 70% ethanol within
labeled 1.5 ml tubes and stored for approximately 1 year in a refrigerator.

Anatomical imaging can be achieved in a variety of ways. Hand-sectioning
involves using a razor blade to cut thin slices of roots to place on microscope slides.
Roots can also be embedded and cut with a microtome for consistency. Atkinson
andWells (2017) describe a three-dimensional (3D)—printed block in which several
roots can be embedded in agar in order to cut simultaneously on a microtome, and
then imaged using various stains and fluorescence. Laser ablation tomography (LAT)
represents a major advance by using a pulsed laser to ablate the root surface and a
motorized stage to move the root surface into the imaging focal plane (Strock et al.
2019). By use of an ultraviolet (UV) laser, the root surface autofluoresces while

Fig. 10.2 In panel A, a root cross section from switchgrass sectioned with a vibratome and imaged
with a BioTek Lionheart microscope using fluorescence (imaged by Marcus Griffiths). In B, this
same cross section is shown in white with areas drawn on major features. Total cortex and stele
areas, along with their ratio, are commonly used, but can be refined. Average xylem vessel area,
number of xylem vessels, and total xylem area relate to water relations, while living cortical area
that is cortex area minus aerenchyma area gives a good indicator of metabolic costs
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ablated, and this light is captured by a camera to generate a high-contrast image. As
with root crown imaging, a researcher should take great care in optimizing an imaging
protocol to generate clear, high-contrast anatomical images to facilitate downstream
analysis.

A minimum set of relevant anatomical features would include cortex area, stele
area, the number of xylem vessels, and the average xylem vessel area (see Fig. 10.2).
These could be derived quickly from manual measurements in ImageJ (Schneider
et al. 2012). Several semi-automated or automated tools have been developed for
root anatomical phenotyping (Burton et al. 2012; Pound et al. 2012; Lartaud et al.
2014). Themost successful may be RootScan, designed for use with the LATmethod
(Burton et al. 2012). This software provides very detailed analysis including cortical
cell number, cortical cell area, aerenchyma area, xylem areas, and xylem number,
amongmany others. However, the software suffers for specificity to the target species
common bean and maize, and therefore more generalizable imaging and image anal-
ysis solutions are needed in order to integrate root anatomical phenotyping into
research programs more routinely.

10.4 Root Physiology

Root physiological phenes that directly measure the influence of the root on the
environment through gas, nutrient,, or exudate flux are an important frontier for root
biology. Specific root respiration is a measure of both root metabolic burden and also
of root activity (Lynch 2015). Root respiration can be measured on samples quickly
excised from excavated root crowns and placed in closed loops of an infrared gas
analyzer for time-series measurement of CO2 accumulation, from which a curve is
fit to derive total respiration (see Fig. 10.3). These respiration measurements are
standardized by fresh mass, dry mass, or scanned root length or volume for the
measured sample. Root respiration is an important integrator of root anatomical
phenes that affect metabolic burden, and is arguably faster and easier to measure than
anatomy.Recently, specific root respirationwas found to be heritable inwinterwheat,
and genetic mapping of the phene using a diversity panel discovered several gene
candidates that possibly explain this variation and that could be used for selecting
crops with lower root metabolic burden (Guo et al. In Press).

Root nutrient uptake is a critically understudied area of root biology, as reviewed
by Griffiths and York (2020). Recently, 24 lines representing maize diversity were
phenotyped for multiple nutrient uptake using nutrient solution depletion methods,
and demonstrated substantial genetic variation that could potentially be used for plant
breeding (Griffiths et al. 2021). Measuring root uptake in the field may be possible
by placing excised roots in small volumes of nutrient solution with known starting
concentrations, or by using stable isotopes such as 15 N as nitrate. While difficult
to scale up, microdialysis could be used for confirmation of uptake abilities in situ
with roots in soil (Shaw et al. 2014).
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Fig. 10.3 Next-generation root phenotyping from parallel phenotyping streams in the field. A
root crown is excavated, cleaned, and imaged. Immediately a representative root (or several) is
measured for a physiological function, like respiration, and then cold stored in 70% ethanol until
root anatomical phenotyping occurs

Root exudation represents another important flux out of roots, yet little is known
about genetic variation within or among species. However, there are a few reports of
genetic mapping of exudation, for example, for acid exudation in common bean (Yan
et al. 2004). Feasibly, exudate profiles including type and relative abundance could be
measured from the same solutions as nutrient depletion above. Even quantifying the
total carbon output of the root would be important for understanding the plant carbon
balance as well as the potential for rhizodeposition and priming of the rhizosphere
(Vranova et al. 2013).

10.5 Root Functional Phenomics and Phene Integration

Functional phenomics has recently been proposed as a new field that combines
elements of physiology, phenotyping, and breeding to both increase understanding
of fundamental plant processes and to use this understanding for trait-based, or
ideotype, breeding (York 2019). Functional phenomics relies on a pipeline begin-
ning with ideotype development, followed by phenotyping platform construction,
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screeningmapping populations, phenomic data analysis to link trait variation to func-
tion, detailed physiological work to uncover mechanisms, and simulation modeling.
The knowledge gained feeds back to informing ideotype development and active
use of traits of interest in breeding programs using the phenotyping platforms. This
cycle is proposed to be central to how molecular biologists, physiologists, computer
scientists, and breeders will solve this century’s great agricultural challenges. By
combining root phenotyping methods and utilizing the same germplasm, crop scien-
tists can make phenotyping more efficient by reducing experimental redundancy.
These efficiencies could include expanding collaboration and will be important to
accelerate breeding gains.

Onemajor flawofmany root studies is that either only a single root trait is reported,
or evenmultiple are reported but nomeasurements of shoot traits are provided. Shoot
mass and nutrient content are both very relevant metrics to include in crop studies
along with root phenes. Recently, phenotyping of RSA and xylem anatomical traits
was used to show how two legume species formed functional groups with differential
plant performance in drought stress using multivariate clustering methods (Strock
et al. 2021). This type of study should become the norm rather than the exception
for phene integration (York 2019). Efficient phenotyping platforms using teams of
collaborators could measure all the root phenes described in this chapter in the field
by using sequential sample processing (Fig. 10.3). While non-destructive and 3D
imaging technologies remain the long-term goals for root biology, in the short term
even greater strides will be made by optimizing methods that can already be used in
high throughput for field-grown roots. Enabling root researchers around the world
with tools that democratize root biology will transform crop breeding.

10.6 Summary and Future Prospects

This chapter highlights phenotyping methods that can be used in the field now
to greatly increase understanding of crop root biology. There are many additional
methods to use in the greenhouse and lab that are not discussed to encourage crop
scientists and breeders to go to the field directly. While most writing on roots high-
lights the laborious and time-consuming nature, the methods that are outlined here
are possible to use on entire genetic mapping populations in hundreds or even thou-
sands of plots. Innovations that increase throughput, measurement accuracy, and ease
of data collection will allow further progress in field root research. While progress
has been made on the study of roots in isolation, root phenes can only be understood
in the context of other phenes, including the shoot’s, and also with respect to plant
ecology. Root phene integration and functional phenomics will require simultaneous
phenotyping of multiple root phenes. Therefore, the root “phenotyping gap” will be
addressed by taking standard protocols to the field and getting our hands dirty. To
realize the potential of roots for transforming agriculture, we have to dig harder and
dig deeper.
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Chapter 11
Got All the Answers! What Were
the Questions? Avoiding the Risk
of “Phenomics” Slipping
into a Technology Spree

Vincent Vadez, Jana Kholova, Grégoire Hummel, and Uladzimir Zhokhavets

Abstract For many crops, the genomics revolution has given hope that breeding
would become easier, faster, and more efficient. Relevant phenotyping is now the
main bottleneck and new technologies provide opportunities for easier, faster, more
sensitive, andmore informative phenotyping.However, the phenotyping agendamust
be driven by scientific questions rather than by a technological push, especially
for complex constraints, such as drought. In this chapter, we provide a viewpoint
on phenotyping and what it should take into account. Phenotyping is a full-fledge
research effort, calling for a multidisciplinary effort between technology providers
and several research disciplines, and which needs to address the issue of linking
scales. Two phenotyping platforms are described; a lysimetric platform (LysiField)
to assess the patterns of plant water use and relate these to grain yield, and an
imaging platform (LeasyScan) to characterize crop canopy traits responsible for
water savings. In both cases, the chapter discusses the thought process and the
hypotheses around key traits for drought adaptation that were put in the develop-
ment of these platforms. The chapter concludes with perspectives on the integration
of high-throughput phenotyping (HTP) technology with breeding, starting with an
analysis of the cost as a prerequisite to decide on its usage and adoption in breeding.
It takes a few examples of current opportunities in the domain of imaging, trying
to bring closer together what the technology can bring and what breeding pragmat-
ically needs. In conclusion, while new technologies provide opportunities to make
phenotyping easier, faster, better, cheaper, the risk of becoming the end that justifies
the means can be avoided by driving the technology with research questions, made
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possible through a cross-discipline approach between genetics, breeding, modeling,
engineering, physiology, and statistics.

Keywords Multi-discipline trait · Drought · Breeding · Genetic gain ·
Transpiration

11.1 Introduction

Although we know more and more about the ”genotype,” obtaining information on
the ”phenotype’ remains a challenge due to the complexity of biological systems
and the requirement for physical measurement of plant traits that are difficult to
perform quickly. Obtaining phenotypic information that is relevant, accurate, fast,
repeatable, and manageable in large numbers has been, and will remain, a basic
challenge of any breeding program. There is also a need, and may be an opportunity
with new technologies, tomove away from the very “integrated” phenotypes that have
been the bulk of phenotyping so far (e.g., yield, biomass, height) towards the causal
building blocks of these integrated phenotypes. In the past few years, a revolution in
plant phenotyping is taking place and technological progress has made possible an
increase in the throughput and precision of phenotyping. We argue that the current
phenotyping revolution while creating fantastic opportunities to capture phenotypic
traits quickly and non-destructively, is also running the risk of becoming driven by the
technology itself, rather than being driven by research questions around the critical
plant traits to phenotype. This chapter analyzes the opportunities and challenges
facing this phenotyping revolution, presents two phenotyping platforms that break up
phenotypes in smaller building blocks, and addresses the link to breeding applications
and forthcoming opportunities.

The first section is a viewpoint on the principles that should be applied to plant
phenotyping. At present, phenotyping is seen as a tool to generate data for the
breeding community. Contrary to this view, we argue that phenotyping is a full-
fledged scientific approach that requires a careful analysis of the traits to bemeasured
and their relevance for the targeted constraint (especially for complex traits). This
calls for a multidisciplinary approach if “phenomics” is to be relevant for crop
improvement, a view that is shared bymany others (e.g., Deery et al. 2014;White and
Snow 2012; Araus and Cairns 2014). In this section, we discuss the fact that some
phenotypes are “consequential” (for instance, staygreen),whereas others are “causal”
(for instance, leaf developmental traits). This section then explores the challenges
and opportunities of linking information at different levels of plant organization,,
i.e., from either specialized phenotyping platforms, targeting predominantly traits at
a lower level of plant organization, up to thefield for agronomic trait phenotyping.The
issue of scale in phenotyping is addressed by bringing up crop simulation modelling
as an integration tool to bridge these scales, advocating linkages between trait-based
and field-based evaluations of genotypes (Chapuis et al. 2012).
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The following section presents the LysiField and LeasyScan platforms. The Lysi-
Field platform is a lysimeter platform that measures plant water use over the entire
cropping cycle, instead of measuring roots per se, with a throughput of about 500–
600 cylinders weighted per day since it remains a manual operation. The LeasyScan
platform is a three-dimensional (3D) laser scanning system that generate 3D images
fromwhich several canopy features are extracted, like the leaf area, and that includes
a lysimeter component for an automatic pot weighing to assess plant transpiration.
This section will detail the thought process and research questions that led to the
development of LysiField, how these research questions have shaped how the plat-
form stands (Vadez et al. 2014). It then goes on describing how the knowledge gained
from LysiField generated new research questions that have led to the development
of another phenotyping platform (LeasyScan) to measure traits at a lower level of
biological organization (crop canopy traits) more quickly and precisely. This section
presents the principles of the scanning operation plant transpiration in situ. Scans
are obtained at a high rate (approximately 2500 plots scanned per hour) on several
parameters per plant, while tray weights are polled every 15′. Data management then
becomes a major challenge (Cobb et al. 2013) and a description is given of the data
handling process. This section presents the web-based interface that is used to visu-
alize the data, and the datamanagement tools are used to query data from the database
and initiate the data analysis. We also discuss critical planning aspects during the
development of a phenotyping platform such as the need to test the technology prior
to acquisition and the need for a close user-provider relationship during and after the
development of platforms.

The last section addresses phenotyping costs, and how this becomes a critical
factor in the adoption of modern and technology-intensive methods in the breeding
process. This section also presents a few examples using imaging technology to
mirror what the technology can provide and what the immediate needs of breeding
programs are.

11.2 Phenotyping: Basic Principles

11.2.1 Phenotyping is a Research Approach

Understand the basic biological and physiological processes behind phenotypes
is critical, especially for complex phenotypes. For instance, canopy temperature
measurements can be used as a proxy phenotype for the transpiration capacity of
genotypes. However, done at a late stage in a crop exposed to drought, this transpi-
ration capacity could reflect: (i) the capacity to extract water from deep soil layer
thanks to deeper rooting, or (ii) the fact that there is water remaining in the soil
profile. In turn, the latter could be the consequence of a slower water use at earlier
stages and have different causes, including (ii-a) a smaller leaf canopy size; and/or
(ii-b) a lower canopy conductance under certain conditions. A smaller canopy size
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could come from reduced tillering or branching, a lower leaf number, a smaller
leaf or leaflet size. This example illustrates how a phenotype can be explained by
a cascade of possible other phenotypes reflecting biological processes underneath.
Similarly, the expression of a staygreen phenotype is actually the consequence of
several phenotypes having contributed to differences in plant water use much earlier
(Borrell et al. 2014). The concept of “phenes,” i.e., the phenotypic equivalent of genes
(Lynch and Brown 2012), representing building blocks of more complex pheno-
types, with a cause/consequence order between phenes measured at different levels
of plant organization, reflects the difficulty and complexity of choosing the “right”
phene (Fig. 11.1). As such, several “causal” phenes could influence a “consequen-
tial” trait (for instance, tillering and leaf size on staygreen (Borrell et al. 2014)), or
how phene-to-phene interactions could influence a “consequential” trait (e.g., leaf
size and leaf thickness effect on transpiration rate (Kholova et al. 2012), in a similar
manner than pleiotropy and epistasis in genetics. We think there is no alternative to
carefully ordering the cause-consequence structure of phenes to make phenotyping
relevant and useful to genetics and breeding. Therefore, phenotyping is not only
about generating trait data using well-set protocols, it is truly a scientific approach
that involves the deciphering of complex biological cause/consequence relationships
in a phenotype.
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11.2.2 Research-Driven, not Technology-Driven
Development of Phenotyping Platforms

In the past decade, the capacity to image plants has progressed dramatically. This
includes simple digital measurement with RGB (Red-Green-Blue) cameras, more
specific measurement of temperature with Infrared (IR)-cameras, more complex
multi-spectral sensors including the simpler versions to assess vegetative index (e.g.,
Normalized Difference Vegetation Index (NDVI)), and highly complex hyperspec-
tral or fluorescence measurements. The revolution in phenotyping tools offers both
a terrific opportunity and also a major challenge. The opportunity is to extract infor-
mation from genetic material on “phenotypes” that are non-visible to the human eye,
visible but too complex to bemeasured from simple observations, or new phenotypes
that were not considered before. However, the risk is of losing perspective on the
target phenotype in favor of the many phenotypes that can be acquired and may be
unrelated to the target phenotype.

11.2.3 People-Skills, Cross-Discipline Interactions

Phenotyping is also a cross-road where technology providers, physiologists, pathol-
ogists, geneticists, breeders, data analysts, statisticians, and others, come to interact.
It calls for a multidisciplinary effort. For instance, scientists working in the area of
stomata patchiness (stomata at the leaf level are regulated by patches that are inter-
connected) have provided evidence of a close relationship between these processes
and those in computation (Peak et al. 2004), and this was only possible because
biologists interacted with computer scientists. Linking phenomics information to
genomics is a first step as we learn more about “phenes.” However, there is much
to be done to make this link workable and useful, first in terms of data format, suit-
able databases, meta-data informing trials, ontologies, and statistical tools to analyze
complex data (Cobb et al. 2013) or multi-trait analysis (Brown et al. 2014; Korol
et al. 2001). Linking these dimensions goes beyond finding a technical fix to connect
these spheres of information: It is about co-designing the linkages across disciplines
and their technical features so that the linkage can be truly functional, leading to
new and relevant knowledge. For instance, designing marker-trait analysis that takes
into account environmental conditions as a covariate, or discussing population size
beforehand to avoid logistical constraints of phenotyping populations larger than,
say, 500 individuals, or defining what precision is needed in the measurements. Last
but not least, a very close and iterative interaction between technology suppliers and
biologists is needed to ensure the phenotyping platforms/sensors truly address the
phenotyping needs.
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11.2.4 An Issue of Scales: Combining Platform-
and Field-Based Phenotyping

Earlier, we discussed the importance of deciphering phenotypes at different levels of
biological organization, and then of structuring phenotypes into cause-consequence
relationships. This is where specialized platforms have a role to play, in assessing the
variation for critical causal traits and harnessing the genetics of these building blocks.
Because such platforms cannot be developed in all breeding programs, there is a need
to have a connection between platform-based trait phenotyping that the breeder can
access in a simple and high-throughput manner and field-based phenotyping. The
connection between trait and field phenotyping can also be established when traits
can be measured in the field itself by imagery sensors, and then linked to agronomic
assessment, e.g., grain or stover yield, in a network of testing locations. A few recent
papers describe a number of such applications for trait phenotyping in the field
(Araus andCairns 2014;White et al. 2012;Deery et al. 2014), including tractor-based
supporting devices and airborne devices. For instance, genotypic differences in the
response of leaf expansion to vapor pressure deficit (VPD) (e.g., Welcker et al. 2011)
could be proxied by NDVI measurements in the field. In this case, NDVI assessment
in the fieldwould integrate over time the cumulative effects of a physiological process
that can be measured in a specialized platform. These applications also need to
monitor the degree of causality/consequence of the different phenotypes that are
measured (Fig. 11.1). The next step as we move up in the degree of plant integration
is to establish links with agronomic assessments, where it can be tested in which
environment a given trait, measured in a specialized platform, would have an effect
on yield. Taking again the example of the sensitivity of leaf expansion to high VPD,
it was shown that this trait was correlated to the drought sensitivity index measured
in the field (Chapuis et al. 2012). In short, there is a great prospect for using the
information from specialized platforms to inform and enrich field-based phenotyping
application and use these traits in selection (see Fig. 11.2).

11.2.5 Linking Phenotyping to Crops Simulation modeling

Once traits benefitting crops under certain water stress patterns have been identified,
testing their effects of traits via experimental means is restricted to a few traits at a
time and a few environmental and climatic scenarios. In addition, the complexity in
the resulting phenotypes originates from the interaction among traits and from their
interactions with the environment (Buckler et al. 2009; Schuster 2011). This is where
cropmodels can serve to “integrate” complex behavioral/developmental processes of
plants that are all related through water need/use (Fig. 11.2). Models that are suitable
for this must contain algorithms that reflect observable and quantifiable biological
observations (Sinclair and Seligman 2000; Hammer et al. 2010). This is only then
that models can be sensitive to changes in the conditions and can accurately predict
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Fig. 11.2 Schematic linkage relationships between disciplinary effort toward crop improvement.
The left part of the schemadealswith trait dissectionvariability (blue), andhowspecificplatforms are
designed to phenotype for critical traits at a large scale. The top left graph displays genetic variation
for a water-saving trait (Kholova et al 2010). The bottom right picture presents the LeasyScan
platform (Vadez et al. 2015). The central part of the schema represents the interface with crop
simulation and genetic analysis (black). The top central map represents the yield increase arising
from the modification of a genetic trait, displayed in form of model output in 1° latitude × 1°
longitude averaged across 50 years of weather information (Vadez et al. 2017). The right part of
the schema are the field applications of phenotyping (green), where consequential phenotypes are
measured along with agronomic traits. The top right picture represents the expression of a staygreen
phenotype in sorghum lines introgressed with a staygreen QTL. The bottom right pictures represent
different possible applications to field phenotyping. The different arrows represent the main linkage
relationships between disciplinary domains and indicate the type of actions needed tomake the links
functional

effects. There is now convincing evidence that crop models are relevant to guide
breeding targets (Kholová et al. 2014; Vadez et al. 2012; Reynolds et al. 2018).
Using a mechanistic crop model, Soltani and colleagues (1999) showed that an early
decline in leaf expansion and transpiration upon soil drying in chickpea led to about
5% yield increases under water stress conditions. Therefore, these traits had a limited
interest where they were tested and did not justify an investment in breeding. In
another study with chickpea, a rapid root growth rate decreased yield by an average
of 5%, whereas an increase in the depth of root water extraction by 20 cm increased
yield by an average of 10% (Vadez et al. 2012). This example shows the efficacy
of a model for comparing genetic options, before deciding what to possibly invest
in. In the last example in sorghum, the capacity to restrict transpiration under high
VPDwas simulated and showed yield advantage in all situations where it was tested,
yet with higher effect in zones facing severe water stress (Kholová et al. 2014). The
modeling approach is powerful because it is now possible to simulate the effects of
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certain Quantitative Trait Loci (QTLs) on yield, based on the percentage effect of
a given QTL on particular traits (Chapman et al. 2003; Welcker et al. 2007; Chenu
et al. 2009; Cooper et al. 2009). We believe that investment in HTP platforms could
be guided by prior crop simulation of the value of the trait that is targeted in these
platforms.

11.3 Phenotyping Platforms

11.3.1 Lysimetric System to Assess Plant Water Use

Roots are intuitively basic for crops and especially for the adaptation of a crop
to water deficit because nutrients and water are absorbed through them. However,
they are difficult to work with (Vadez 2014). For water stress research, the root
capacity to extract water was the basis of the idea to develop a lysimeter-based
system (Vadez et al. 2008, 2014), in which consecutive weighings of lysimeters
provide data on plant water extraction to support transpiration at different times
(Fig. 11.3). Because the goal was to measure water use in crops grown under field
conditions (something that is difficult to do precisely in the field) and with a high
throughput, certain basic principles had to be followed. The platformwas set outdoors
and the tubes were designed and placed so that soil volume and surface area were
similar to field population densities. Therefore, two types of tubes were developed to
cater for different crops: Small lysimeters (1.2 m length and 20 cm diameters) were
designed for crops sown at approximately 20 plant m−2 like chickpeas (Zaman-Allah
et al. 2011b), whereas the large lysimeters (2.0 m length and 25 cm diameters) were
designed for crops sown at approximately 10 plant m−2 (Vadez et al., 2011, 2013a).
Lysimeterswere also treated asmicro-plots and kept undisturbed fromone crop to the
next, following a field-like rotation, alternating either experimental or fallow crops.

Fig. 11.3 Overview of the
lysimetric platform at
ICRISAT (LysiField),
showing the large tubes
(25 cm diameter, 2.0 m
length), which are set in
trenches and allow a planting
density of about 10 plant
m−2. A pigeon pea crop is
seen on the left trench and a
sorghum crop in the central
trench
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The lysimetric platform was originally designed to screen genotypes for the
capacity to extract water from the soil profile, instead of measuring roots. Genetic
variation for total plant water extraction was found in all species that were tested
(for a review see Vadez et al. 2014). However, the range of variation (30% among a
subset of the sorghum reference collection) was not related to yield differences under
stress conditions. The relationship between water extraction during the grain filling
period and grain yield under stress conditions was much more critical (see Vadez
et al. 2014 for a review), e.g., in pearl millet (Vadez et al. 2013a) chickpea (Zaman-
Allah et al. 2011b) or peanut (Ratnakumar et al. 2009). For at least three crops,
the availability of water during the grain filling period was not related to a higher
capacity to extract water, but to earlier water-saving under non-stress conditions.
For instance, tolerant chickpea genotypes had a smaller leaf canopy at the vege-
tative stage (Zaman-Allah et al. 2011a). Tolerant peanut genotypes also developed
a smaller leaf canopy (Ratnakumar and Vadez 2011) and tolerant pearl millet had
both a lower canopy conductance and the capacity to further reduce the conductance
under high VPD conditions (Kholova et al. 2010). There have been similar findings
in other crops such as cowpea (Belko et al. 2012) and sorghum (Borrell et al. 2014).
In short, even if the cylinders were weighted only about once a week, the lysimetric
system provided sufficient precision to pinpoint small but critical differences in the
patterns of plant water use. From then on, the focus shifted towards traits that explain
these small water use differences and influence the rate at which a crop uses the soil
profile’s moisture, including (i) canopy size and dynamic of canopy development;
(ii) canopy conductance; and (iii) canopy conductance under high VPD (see a review
in Vadez et al. 2013b). In other words, specific patterns of plant water use were a
“consequential phenotype,” and further attention shifted to the “causal phenotypes,”
which required a different type of measurement (see Fig. 11.1 for an example in
chickpea).

11.3.2 The LeasyScan Platform: 3D Scanning Plus
Transpiration Assessment

11.3.2.1 Description

LeasyScan’s principle is to have a continuous and simultaneous monitoring of plant
water use and leaf canopy development. In brief, the platform is using a set of scanners
(PlantEye, Phenospex,Heerlen,Netherlands)which aremoved above the plants using
a carrier device and generate 3D point clouds of the crop canopy, fromwhich the leaf
area and several other plant parameters are extracted after a segmentation process
of the 3D data cloud (Fig. 11.4). Validation of scanned leaf area versus observation
has been successfully done before acquiring the equipment and has been re-validated
later onwhileworking onhigher planting densities (Figs. 4 and 5 inVadez et al. 2015).
Leaf canopy development traits that influence plant water use are a combination of
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Fig. 11.4 Overview of the LeasyScan platform at ICRISAT. A groundnut crop is seen on side strips.
The central strip shows the installation of load cells to allow the continuous weighing of the pots.
Eight scanners (small white boxes) can be seen, attached to an irrigation boom that travels over the
crop, on top of a center and two side walls. The central metal box has a key role to ensure a steady
platform movement

(i) vigor, i.e., how quick the canopy develops; and (ii) size, i.e., how large a canopy
develops (Fig. 1 of Vadez et al. 2013b).

The PlantEye sensor projects a very thin laser line in the near infrared (NIR)
region of the light spectrum (940 nm) on plants and captures the reflected light with
an integrated complementary metal oxide-semiconductor (CMOS)-camera. Since
most of the light is reflected from plants, the device can operate day and night. All
artifacts from sunlight or background noise are automatically removed with inter-
graded optical- and algorithm-based sunlight filters. During the scanning process,
the scanner linearly moves over the plants and generates 50 height profiles/s, those
are then automatically merged into a 3D point cloud with a resolution of around 0.8
× 0.8× 0.2 mm into the xyz-direction, respectively. The measurements are triggered
and stopped via mechanical barcodes (metal plates 20 mm × 50 mm) positioned on
the platform. PlantEye computes a diverse set of plant parameters on the flight by
meshing neighboring points with a nearest neighbor search. From this triangle mesh
a subsequent surface triangulation algorithm computes 3D leaf area (which is the
area of the leaf independently of its position and orientation in the 3D space and
relative to the sensor), plant height, leaf angle distribution within a second.

At the LeasyScan platform, the scanners are pre-set to image an area of 65 cm
width and a length of either 40 or 60 cm. The volume in which the 3D image is
generated is then a cuboid of 65 × 40 × 100 cm or 65 × 60 × 100 cm. Each
scanning unit is referred to as a “sector.” Every 12 consecutive sectors constitute
a “field.” Sector-wise binning of data point clouds is performed using a system of
barcodes every 5 m (12 times 40 cm + 20 cm gap or 8 times 60 cm + 20 cm gap)
to re-set the scanner position in height and length. As in the lysimetric facility, our
choice was to remain as close as possible to the field conditions where plants are
cultivated in each sector at a density similar to the field (for instance 24–32 plant m−2
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chickpea or 16 plant m−2 for pearl millet or sorghum). The scanners are mounted on
top of an irrigation boom, which is electronically controlled to be fully automated
and speed-controlled. At a movement speed of 3 mmin−1, eight scanners are capable
of scanning 4800 sectors (the name of an experimental unit) in slightly <2 h.

These parameters can be visualized through a web-based software interface
(HortControlR), which allows the selection of sectors and performs basic grouping
functions to assess how the experiment is progressing. In addition, the platform is
equipped with a set of 12 environmental sensors (Campbell Scientific, Logan, Utah,
USA) that continuously monitor relative humidity (RH%) and temperature (T°C),
integrating values every 30 min, one light sensor, one wind sensor. Each scanner is
wirelessly connected to a local area network (LAN) through which the analyzed data
are downloaded onto a server, along with the 3D images. 3D images can be reused
at any time; for example, to re-calculate new parameters based on a new algorithm
for additional plant traits or for better-optimized scanning software. Therefore, the
scanning images become a repository of plant measurements that can be reused at a
later date. An important factor to decide on the scanning system was to understand
the signal-noise ratio for our targeted phenotype (leaf area), and then check not only
the resolution of the sensor itself but also the noise of the environment, e.g., wind,
diurnal rhythm of leaves, rain, reflection.

11.3.2.2 Integration of Canopy Growth with Plant Transpiration

A basic necessity in the development of the LeasyScan platform was to combine the
measurements of leaf development parameters (which can be encapsulated in “vol-
umetric growth”) with a continuous assessment of plant transpiration (or “massic
growth” considering transpiration as a proxy for photosynthesis), to obtain a contin-
uous measurement of the canopy conductance and shift from earlier destructive
measurements (Kholova et al. 2012). In earlier studies, a low canopy conductance
under high VPD was closely related to terminal drought stress adaptation in several
crops (see a review in Vadez et al. 2014), but this phenotype depended on time-
consuming leaf area measurements, especially in a crop like chickpea (Zaman-Allah
et al. 2011b). One part of that phenotype, the leaf area, is described above. The other
part of that phenotype, plant transpiration, is typically measured manually by gravi-
metrically determining transpiration (e.g., Zaman-Allah et al. 2011b). Using scales
(also called load cells) then allowed to have a continuous weighing of the pots,
avoiding time-consuming weighing of pots. Notably, in the development of this plat-
form, we also sought the possibility to study intra- or inter-specific variations in
crop water loss during the night (following recent results in wheat (Schoppach et al.
2014)), the interaction between water use and the 3D architecture of the crop canopy,
possible relationships between leaf movements during the day (especially in legumes
or, for example, in Arabidopsis (Dornbusch et al. 2012)), patterns of plant water use
during the day, and of course the interplay between volumetric (leaf area dynamics)
and massic (transpiration) growth.
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The scales (PSX Rugged Scale 50, Phenospex, Heerlen, Netherlands) that were
initially used had a capacity of 50 kg, with 0.02% accuracy. The accuracy of these
temperature-corrected scales (−10 °C and +40°C range) was tested under artificial
rapid increase in temperature (14°/h, i.e., much above our experimental conditions)
and showed that the error remainedwithin the stipulated0.02%error range.The scales
provided a reading with a 0.02% precision every second and these were integrated
over one hour, giving readings with a precision of 0.1 g. An initial prototype of scale
was developed where the frequency of measurements was limited to one every hour.
After validation that key phenotypes like the capacity to restrict transpiration under
high VPD could be measured (see Fig. 11.9 in Vadez et al. 2015), 1500 load cells
were installed, each with a 150 kg capacity (Fig. 11.4). This increased capacity now
allows to grow plants on large trays (60 cm × 40 cm × 30 cm, length-width-height)
containing about 90 kg of soil and allowing to grow several plants in conditions that
mimics the field. It also allows to irrigate at less frequent intervals, yet maintaining
plants away from water stress.

11.3.2.3 Data Generation, Storage, and Visualization in HortControl

Scanning takes place every 2 h so that about 50,000 scans are captured every day and
about 10 traits are calculated for each scan. This is in addition to the environmental
data that are measured every minute. With regards to load cells, these are polled by
a micro-processor every half-second and these data are integrated and loaded on the
database every 15 min so that each load cell delivers 96 data points every day. All
data gathered fromPlantEye sensors, scales, and associated climate sensors are stored
in a central PostgreSQL database. The data can be accessed and visualized with the
web-based HortControl software that allows to follow up the progress in the different
parameters that are measured. The three types of data collected in the platform, i.e.,
scan, weight, climate, are not collected at the same frequency. Therefore, the data are
downloaded independently. R-scripts have then been developed to aggregate data at
a time scale suited for all three types of data (Kar et al. 2020a). HortControl is used
as a data visualization tool to monitor the experiment, for instance, to ensure scan
data are properly computed, or possibly to detect load cell errors. In particular, the
3D image of any sector at any time during the experiment can be called for quality
control, which is particularly useful to pinpoint possible outliers (for example, in
case of sector to sector overlapping or other unexpected disturbance). It also allows
the simultaneous plotting of the environmental conditions to the parameter evolution,
for instance, to qualitatively estimate reasonable wind thresholds in each species.

11.3.2.4 Database Access, Processing, and Analysis

One major challenge of this platform, and of any high-throughput platform, is the
analysis of the data. This issue was discussed at length in a recent review (Cobb et al.
2013). At the same time, well-documented datasets represent a potential treasure
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trove to investigate plant growth processes on a large scale (for example, in meta-
analysis (Poorter et al. 2010)). In that regard, we focused on linking measurement
data with the most critical environmental parameters affecting plant growth (i.e.,
temperature, relative humidity, and light). It is also critical to have detailed meta-data
accompanying the datasets if they are to be re-used in the future.

Processed data (e.g., leaf area) can be downloaded from a function in HortCon-
trol. These data are queried from the database via an R-command library interface
working at the back-end (R, version 4.2.1, the R foundation) (Fig. 11.5). Among
the essential features of the library is a process for smoothing data and for filtering
the data to reject outliers. For instance, wind affects the quality of the 3D images.
Data obtained when the wind is too high to have useful information (from shaky
images) should be filtered out. The scanning data are tagged to the timing of each
scan so that the time stamp can be linked to the environmental data provided. A data
pre-processing and analysis pipeline has now been recently developed (Kar et al.
2020b) for scanning data, which allows to apply filters on raw data towards outlier
detection, to input missing data, to choose for an optimal time window for geno-
type discrimination, and for spatially adjusting data. A similar pipeline has been
developing to extract features from the transpiration profiles coming from the load
cells and that characterize the transpiration response to high VPD conditions (Kar
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et al. 2020a). We are also planning to develop an alternative time stamp, right from
the ”R’ interface, calculated from the temperature conditions and based on either
thermal time or equivalent time at 20° (Parent et al. 2010). This feature would allow
us to compare growth traces across experiments and analyze environmental effects
on canopy development, independent of temperature effects. In this way, the analysis
will increasingly become an exercise of statistical treatment of massive data series.

11.4 Cost of HTP Methods and Their Linkage to Breeding
Efforts

11.4.1 Cost of HT Phenotyping

While new technologies offer precision and throughput, technology cost is an
important decision factor. High-throughput phenotyping could directly contribute to
breeding efforts but the choicemade by breeders to adopt or not a givenHTPapproach
will often/always be driven by a cost consideration. The “breeder’s equation” is as
follow:

�Gyear = i ∗ r ∗ σ
/
L

where�Gyear is the genetic gain per year, i is the selection intensity, r is the selection
accuracy (or the heritability), σ is the genetic variance for the desired trait, and L
is the length of one generation. The cost of achieving a given �Gyear per unit of
phenotyping cost would then be

�Gyear∗$ = i ∗ r ∗ σ
/
L ∗ C

where C is the phenotyping cost per progeny. Breeding being a numbers’ game,
optimizing this ratio can be done in several ways where HT phenotyping has a role
to play:

• The coefficient ”r’ proxies the accuracy of the trait. Breeders would always ask if
a given trait is more accurate that those they measure already such as yield. Let’s
assume a trait is a good predictor of an increased yield, it could be given priority
over yield assessment if its heritability was higher than yield heritability, provided
its cost is not prohibitive. One could assume that the decision would depend on
the ratio r/C. A heritability doubled by a HTP method would afford an increase
in cost per progeny of a similar magnitude.

• The coefficient ”i’ here becomes important because it concerns the throughput at
which phenotyping efforts are made. Let’s assume here again a trait that is a good
predictor of an increased yield. Its advantage could be in the fact that thousands
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of progeny lines could be tested, instead of only a smaller number of lines that
can be tested for yield. Therefore, any HTP method that could cater for a large
number would allow to dramatically increase the selection accuracy. Here also
the cost factor determines the choice within the boundaries of the i/C ratio.

• Finally, the coefficient ”σ ’ could be concerned in caseswhere there is large genetic
variance for a given trait. A genetic variance for a given trait that is larger than the
genetic variance for yield would potentially favor this trait over yield, provided
that there is also a close association between this trait and yield under relevant
scenarios.

11.4.2 Integration of HTP Methods into Breeding

This effort is a mix of being pragmatic while seeking the advantage of new technolo-
gies. Technology developer often propose high-end solutions while breeders want
simple tools, easy to use, and cheap. So, efforts are needed to connect these two
domains. Here, a few examples of existing cases showcase a possible fit between the
“offer” from the HTP standpoint and the “demand” from the breeding side.

Drone/ remote sensing imaging—HTP methods at the service of yield trial quality
control—The use of drone imaging to acquire plant features that would be otherwise
difficult or simply impossible to acquire has grown exponentially (Potgieter et al.
2016). Except for few programs the use of drone in routine breeding still remains
at a research phase, although opportunities exist that would bring a lot of benefit.
The first among these would be the use of drone imaging to support the quality
control of plot measurements. Indeed, breeding networks in the National Agriculture
Research Systems (NARS) could benefit from imaging technology to quickly assess
the quality of testing fields. For instance, by measuring plant counts and ensuring
these are in accordance with targeted density, or by measuring NDVI around canopy
closure to ensure homogeneity in the plots. This information could be used to remove
heterogeneous plots or parts of the field in the analysis and it would increase the
accuracy of the evaluations. Quality standards during data acquisition will be needed
to ensure the quality of drone images. For breeding programs to have an easy access to
drone technology, data processing and analysis pipelinewill also be needed, allowing
breeding programs to easily load their images and receive data with a rapid turnover
time to be part of the selection decisions. Then onlymore sophisticatedmeasurements
can be taken from the research stage to the scale of a breeding program. Additional
such traits could be yield estimates (Guo et al. 2018), or indices that reflect on the crop
development, functioning and efficiency with indices reflecting light interception,
radiation use efficiency.
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11.4.3 Quality Analysis

NIRS spectroscopy is being routinely used in the assessment of quality in grain and
in stover. NIRS measurement currently take place in the lab using benchtop NIRS
equipment inmost cases.NIRSprobes can also bemounted on combine harvesters, as
is done in the private sector formajor crops likemaize. There is also an opportunity to
insert NIRS probes in smaller harvesting equipment like the Harvest Master (Juniper
System Inc, Logan, UT, USA). Different portable NIRS now exist and start being
tested for a direct evaluation of quality in the field (Blummel, pers. Comm.). Raman
spectroscopy is also appearing as a new opportunity technology, complementary to
NIRS in the domain of quality analysis (Altangerel et al. 2017). X-ray fluorescence
(XRF) equipment are used to measure mineral content of grain such as Fe or Zn,
which are important but deficient component of the diet of poor rural populations of
Africa and Asia.

For many breeding programs of the public system in crops others than the main
commercial commodities like maize, wheat, or rice, breeding for quality to respond
to a market or consumer demand, or to address a nutritional issue, imply a major
shift in what is being evaluated. While the technologies above are available, they
are still largely disconnected from the breeding process pipeline. That is, agronomic
traits are measured at harvest while quality traits are measured after harvest, often
too late to be taken into consideration in breeding selection decisions. Therefore,
efforts here are needed to streamline the assessment of quality with the usual traits,
allowing the combination of the probes above in the breeding process, here also
accounting for time and cost of including these additional sensors and of making
additional measurements. It requires the re-designing of harvesting pipelines, the
possible re-development of harvesting tools including quality probes.

11.5 Conclusion

While new technologies provide opportunities to make phenotyping easier, faster,
less expensive, and more informative, they also run the risk of becoming the end
that justifies the means. We can avoid this by driving the technology with research
questions, made possible through a cross-discipline approach between genetics,
breeding, modeling, engineering, physiology, pathology, data management, and
statistics. Combination of trait-based phenotyping targeting “building blocks” of
critical phenotypes (phenes) to field-based phenotyping for capturing these traits or
their consequences holds great promise to generate relevant phenotyping information
to breeding programs and match up the load of genomic data available for finding
genes behind the phenes. Last but not least, the cost of these HTP technologies has
to be taken into consideration if these are to be used in breeding pipelines.
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