
Chapter 9
Almost Periodic Functions with Values in
a Non-locally Convex Space

In this section, (X,+, ·, || · ||) will be a p-Fréchet space with 0 < p < 1 (over the
field � = R or C). Also, denote D(x, y) = ||x − y||.

Similarly to [22], p. 137, a trigonometric polynomial of degree ≤ n with
coefficients (and values) in the p-Fréchet space X, is defined as a finite sum of

the form Tn(t) =
n∑

k=1

cke
iλnt , where ck ∈ X, k = 1, . . . , n.

Also, recall that f : R → X is said to be continuous on x0 ∈ R if ∀ε > 0, there
exists δ > 0 such that ||f (x) − f (x0) || < ε, whenever x ∈ R, |x − x0| < δ. From
the triangle inequality satisfied by the p-norm || · ||, it easily follows the inequality
| ||x|| − ||y|| | ≤ ||x − y||, which immediately implies that if f is continuous in
x0 as above, then the real-valued function ||f (t)|| is also continuous at x0.

1 Definitions and Properties

In this section, starting from a Bohr-kind definition for the almost periodicity, we
develop a theory of almost periodic functions with values in a p-Fréchet space,
0 < p < 1, similar to that for functions with values in a Banach space.

The following three points in Definition 3.1 represent the basic concepts in the
theory of almost periodic functions with values in the p-Fréchet space X.

Definition 9.1 Let f : R → X be continuous on R.

(i) We say that f is almost periodic if ∀ε > 0, there exists l (ε) > 0 such that any
interval of length l (ε) of the real line contains at least one point ξ with

||f (t + ξ) − f (t) || < ε, ∀t ∈ R.
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(ii) We say that f is normal if for any sequence Fn : R → X of the form Fn (x) =
f (x + hn), n ∈ N, where (hn)n is a sequence of real numbers, one can extract
a subsequence of (Fn)n, converging uniformly on R (i.e. ∀ (hn)n, ∃ (

Fnk

)
, ∃F :

R → X (which may depend on (hn)n), such that lim
k→∞ ||Fnk (x)−F (x) || = 0,

uniformly with respect to x ∈ R).
(iii) We say that f has the approximation property, if ∀ε > 0, there exists

some trigonometric polynomial T with coefficients in X, such that ||f (x) −
T (x) || < ε, ∀x ∈ R.

Let us denote AP (X) = {f : R → X; f is almost periodic}. The next two theo-
rems show that AP (X) is a subclass of uniformly continuous bounded functions.

Remark 9.2 We can reformulate 9.1(i), as follows: f : R → X is called almost
periodic if for every ε > 0, there exists a relatively dense set {τ }ε, such that

sup
t∈R

||f (t + τ) − f (t)|| ≤ ε, for all τ ∈ {τ }ε.

Also, each τ ∈ {τ }ε is called ε-almost period of f .

Remark 9.3 Theorems 10.5, 8.5, 8.6, and 8.10 and Remark 8.8 remain valid in p-
Fréchet spaces, 0 < p < 1.

Theorem 9.4 If f has the approximation property, then it is almost periodic.

Proof A function f : R → X is said to be τ -periodic if f (t + τ) = f (t) for all
t ∈ R. Obviously, any trigonometric polynomial with values in X is almost periodic.
This with Theorem 8.6 completes the proof. �	
Remark 9.5 Let us denote AP (X) = {f : R → X; f is B-almost periodic} , and
for f ∈ AP (X), let us define ‖f ‖b = sup {‖f (t)‖ ; t ∈ R}. By Theorem 3.2, we
get ‖f ‖b < +∞. It easily follows that || · ||b is also a p-norm on the space

BC (R, X) = {f : R → X is continuous and bounded on R}.

In addition, since (X,D), where D is defined by D(x, y) = ‖x − y‖, is a complete
metric space, by standard reasonings, it follows that BC(R, X) becomes complete
metric space with respect to the metric Db(f, g) = ||f −g||b, that is, (BC(R, X), ||·
||b) becomes a p-Fréchet space.

Then, Theorems 3.2 and 3.5 show that AP (X) is a closed subset of BC (R, X),
i.e. (AP (X) ,Db) is a complete metric space, and therefore (AP (X), || · ||b)
becomes a p-Fréchet space. By similar reasonings with those in the proofs of
Theorems 6.9 and 6.10 in [22], pp. 142–143 (where we define on Xm the p-norm

||x||m =
m∑

k=1

||xk|| and the metric Dm (x, y) =
m∑

i=1

D (xi, yi), ∀x = (x1, . . . , xm),

y = (y1, . . . , ym) ∈ Xm), we can state the following compactness criterion.
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Theorem 9.6 The necessary and sufficient condition that a family A ⊂ AP(X) be
relatively compact is that the following properties hold true:

(i) A is equicontinuous;
(ii) A is equi-almost periodic;
(iii) for any t ∈ R, the set of values of functions fromA be relatively compact in X.

In what follows, we consider the concept of Bochner’s transform. Thus, Bochner’s
transform of f in BC(R, X) is denoted by B(f ) := f̃ and is defined by f̃ : R →
BC(R, X), f̃ (s) ∈ BC(R, X), f̃ (s)(t) = f (t + s), for all t ∈ R.

The properties of the Bochner transform can be summarized in the following
theorem:

Theorem 9.7 (i) ||f̃ (s)||b = ||f (· + s)||b = ||f̃ (0)||b, for all s ∈ R;
(ii) ||f̃ (s + τ) − f̃ (s)||b = sup{||f (t + τ) − f (t)||; t ∈ R} = ||f̃ (τ ) −

f̃ (0)||b, for all s, τ ∈ R;
(iii) f is B-almost periodic if and only if f̃ is B-almost periodic, with the same set

of ε-almost periods {τ }ε;
(iv) f̃ is B-almost periodic, if and only if there exists a relatively dense sequence

in R, denoted by {sn; n ∈ N}, such that the set of functions {f̃ (sn); n ∈ N} is
relatively compact in the complete metric space (BC(R,X),Db);

(v) f̃ is B-almost periodic, if and only f̃ (R) is relatively compact in the complete
metric space (BC(R,X),Db);

(vi) (Bochner’s criterion) f is B-almost periodic if and only if f̃ (R) is relatively
compact in the complete metric space (BC(R,X),Db).

Proof It is absolutely similar to the proof for Banach space valued functions, see
e.g. [3, pp. 7–9].

Now, we are in position to prove the following sufficient condition for B-almost
periodicity in p-Fréchet spaces, 0 < p < 1. �	
Theorem 9.8 Let f ∈ BC(R,X). Let us suppose that there exists a relatively dense
set of real numbers (sn), such that

(i) the set {f (sn); n ∈ N} is relatively compact in the metric space (X,D) and
(ii) for any n,m ∈ N, the relation

||f (sn) − f (sm)|| ≥ c||f (· + sn) − f (· + sm)||b
holds with c > 0 independent of n,m.

Then, f is almost periodic.

Proof The inequality in statement together with Theorem 9.7, obviously implies

D[f (sn), f (sm)] = ||f (sn)−f (sm)|| ≥ c||f̃ (sn)−f̃ (sm)||b = cDb[f̃ (sn), f̃ (sm)].

Since by hypothesis, the set {f (sn); n ∈ N} is relatively compact in the metric
space (X,D), it has a convergent subsequence (f (s′

n))n, which therefore is a
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Cauchy sequence in the complete metric space (X,D), so it is convergent. The
above inequality implies that (f̃ (s′

n))n is also a Cauchy sequence in the complete
metric space (C(R,X),Db), so it is convergent. Combined with Theorem 3.11(iv),
it follows that f̃ is almost periodic, which combined with Theorem 3.11(iii), implies
that f is almost periodic. The theorem is proved. �	

2 Weakly Almost Periodic Functions

In what follows, we will consider the concept of weakly almost periodicity, at least
in the cases of lp and Hp spaces, 0 < p < 1. Indeed, according to Remark 9.13(1)
in Sect. 2, the dual spaces (lp)∗ and (Hp)∗ are non-null. In addition, since {ei, i ∈
N}, with ei = (δi,n)n ∈ lp, δi,n, Kronecker’s symbol, is a basis in lp (see e.g. [5],
p. 20), and since any e∗

i : lp → R is linear and continuous (see e.g. [5], p. 12,
Theorem 1.8), it easily follows that {pϕ;ϕ ∈ (lp)∗}, with pϕ(x) = |ϕ(x)|, for all
x ∈ lp, defines a sufficient family of seminorms on lp, which evidently induces a
weak topology on lp, namely a locally convex Hausdorff topology on lp.

Also, since according to e.g. [37, p. 35], the point evaluations ϕz(f ) = f (z), z ∈
D, satisfy ϕz ∈ (Hp)∗, for all z ∈ D, again it easily follows that {pϕ(x);ϕ ∈ (Hp)∗}
with pϕ(x) = |ϕ(x)|, for all x ∈ Hp, defines a sufficient family of seminorms on
Hp, which evidently induces a locally convex Hausdorff (weak) topology on Hp.

Definition 9.9 Let X = lp or X = Hp with 0 < p < 1. A function f : R → X

is called weakly almost periodic, if f : R → X is continuous and almost periodic,
considering X endowed with the (weak) locally convex topology as above (see e.g.
[2, pp. 159–160], or [7, 8]).

Remark 9.10 Obviously that Definition 9.9 has no sense for the p-Fréchet space
Lp[0, 1], 0 < p < 1, whose dual is {0}.
Theorem 9.11 Let X = lp or X = Hp, 0 < p < 1. The necessary and sufficient
condition that the function f : R → X be weakly almost periodic is that for any
ϕ ∈ X∗, the numerical function h : R → R, defined by h(t) = ϕ[f (t)], be almost
periodic.

Proof It is similar to the proof for Banach space-valued functions (see Theo-
rem 6.1.7, p. 160 in [2]). �	
Theorem 9.12 Let X = lp or X = Hp, 0 < p < 1. The necessary and sufficient
condition that the function f : R → X be almost periodic is that f be weakly
almost periodic and that f (R) be relatively compact.

Proof Since for any ϕ ∈ X∗ and all t, τ ∈ R, we have

|ϕ[f (t + τ)] − ϕ[f (r)]| ≤ |||ϕ||| · ||f (t + τ) − f (t)||1/p,
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the usual (strong) almost periodicity and continuity of f immediately imply that f

is weakly almost periodic and weakly continuous. This together with Theorem 3.6
immediately proves the necessity of theorem.

To prove the sufficiency, we would need the analogue for p-Fréchet space of the
following result of Philips for Banach space (see the proof of Theorem 6.18, pp.
160–161 in [2]): from any bounded sequence (ϕn)n in X∗ defined on a relatively
compact subset A ⊂ X, one can extract a convergent subsequence on A. �	
Remark 9.13

(1) In the case when X is a p-Fréchet space endowed with the p-norm || · ||, 0 <

p < 1, in [3, p. 102] (see also [1, p. 158]), the integral was introduced as
follows. First, for a = a0 < a1 < . . . < an = b, a partition of [a, b], a step

function on [a, b] is of the form s(x) =
n−1∑

k=0

yk ·χ[ak,ak+1)(x) (where χ[ak,ak+1) is

the characteristic function of [ak, ak+1) and yk ∈ X, k = 0, 1, . . . , n − 1), and

its integral on [a, b] is defined by
∫ b

a
s(x)dx =

n−1∑

k=0

yk(ak+1 − ak). Then, since

any continuous function f : [a, b] → X is uniformly continuous on [a, b], it
is easy to show that it is the uniform limit on [a, b] of the sequences of step
functions sn(x), n ∈ N defined by

sn(x) =
n−1∑

k=0

f (ak) · χ[ak,ak+1)(x), ak = a + k
b − a

n
, k = 0, 1, . . . , n − 1,

and the integral of f will be defined by
∫ b

a
f (x)dx ∈ X, where

lim
n→∞

∥∥∥∥
∫ b

a

f (x)dx −
∫ b

a

sn(x)dx

∥∥∥∥ = 0.

(It is easy to see that the above
∫ b

a
f (x)dx does not depend on the sequence

of step functions uniformly convergent to f .) Unfortunately, the fundamental
theorem of calculus stated in [3, Theorem 2, pp. 104–105] (see also [10], pp.
161–162) seems to be not valid in general, since for a continuous function f :
[a, b] → X, for the integral F(t) = ∫ t

a
f (x)dx, we have

∥∥∥∥
F(t + h) − F(t)

h
− f (t)

∥∥∥∥ =
∥∥∥∥∥

∫ t+h

t
[f (x) − f (t)]dx

h

∥∥∥∥∥ ,

but we do not get, in general, the estimate
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∥∥∥∥
∫ t+h

t

[f (x) − f (t)]dx

∥∥∥∥ ≤ |h|p||f (u) − f (t)||,

with u between t and t + h, as claimed in [10], p. 162 (which would imply that

lim
h→0

∥∥∥∥
F(t + h) − F(t)

h
− f (t)

∥∥∥∥ = 0). As a first consequence, it follows that

the implication “f ′ uniformly continuous and f B-almost periodic imply f ′
B-almost periodic” does not hold, although in the case of Banach space-valued
functions, it is valid (see e.g. [3, Theorem VI, p. 6]).

(2) One could also adopt the more particular definition (of Riemann-type) for the
integral on [a, b] of a function f : [a, b] → X, as unique limit of all the

Riemann sums
n−1∑

k=0

f (ξk)(ak+1 − ak), with ξk ∈ [ak, ak+1]. Unfortunately, for

this kind of integral too, the property ||λx|| = |λ|p||x||, where 0 < p < 1,
produces a bad estimate for the difference between the Riemann sums attached
to two functions f, g : [a, b] → X, namely

∥∥∥∥∥

n−1∑

k=0

f (ξk)(ak+1 − ak) −
n−1∑

k=0

g(ξk)(ak+1 − ak)

∥∥∥∥∥

≤
n−1∑

k=0

(ak+1 − ak)
p ‖f (ξk) − g(ξk)‖

�≤
n−1∑

k=0

(ak+1 − ak)||f (ξk) − g(ξk)||

(in fact, since 0 < p < 1, for ak+1 − ak ≤ 1, we have (ak+1 − ak)
p ≥ (ak+1 −

ak), which is the case for n sufficiently large). This fact that has the similar
effect as for the first integral, namely the fundamental theorem of calculus for
this second integral also does not hold.

(3) From Remarks 9.13(1) and (2), it is evident that for a continuous f : [a, b] →
X, the inequality

∥∥∥∥
∫ b

a

f (t)dt

∥∥∥∥ ≤
∫ b

a

||f (t)||dt

does not hold.

Now, if we introduce (as in the case of Banach space-valued functions) the mean
value

M (f ) = lim
T →+∞

1

T
·
∫ T

0
f (t) dt ∈ X ,



3 Applications 109

where the limit is considered in the metric space (X,D) (i.e. there exists M (f ) ∈ X

with lim
T →+∞ D

(
M (f ) ,

1

T
·
∫ T

0
f (t) dt

)
= 0), then because of Remark 9.13, it

seems that M(f ) does not exist for any f ∈ AP(X), since in the proof for the case
of Banach space-valued functions, the inequality mentioned in Remark 9.13(3) is
essential. This has as an effect the fact that, in general, one cannot attach Fourier
series to a function f ∈ AP(X) and the fact that the almost periodicity of f does
not imply the approximation property mentioned in Definition 3.1(iii).

(4) In [6], a theory of the semigroups of linear and continuous operators is
developed. As one of the applications, it was obtained that the initial value
problem in the p-Fréchet space X, 0 < p < 1,

du(t)

dt
= A[u(t)], t ≥ 0, u(0) = x ∈ X

(where A : X → X is linear and continuous) has as the unique solution u(t) =
T (t)(x), with T (t)(x) = lim

n→∞

(
I − t

n
A

)−n

(x), the limit being in the p-norm

in X. On the other hand, taking into account Remarks 9.13(1) and 9.13(2), it
follows that the inhomogeneous Cauchy problem

du(t)

dt
= A[u(t)] + f (t), t ≥ 0, u(0) = x ∈ X,

in general, seems to not have mild solution, in the sense that, even if we can
define it as usual, it does not satisfy the differential equation.

(5) It is easy to construct almost periodic functions f : R → X for which there
exists M(f ) and the fundamental theorem of calculus holds. Indeed, any f of
the form c · g, where c ∈ X and g : R → R is almost periodic, satisfies these
two requirements.

Remark 9.14 The results in this section are contributions from Gal and
N’Guérékata [30].

3 Applications

Firstly, we illustrate the idea of propagation of almost periodicity from the input
data to the solutions of a simple differential equation in a p-Fréchet space (X, || · ||).
In this sense, we present the following.

Theorem 9.15 Let f : R → R be a usual almost periodic function and c ∈ X.
Then, the function y : R → X given by
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y(t) = c ·
∫ t

−∞
eu−t f (u)du, t ∈ R,

is B-almost periodic and satisfies the differential equation

y′(t) + y(t) = c · f (t),

for all t ∈ R.
Here, y′(t) is defined as usual, that is, the limit in the metric D(x, y) = ||x −y||,

given by

y′(t) = lim
h→0

y(t + h) − y(t)

h
.

Proof Let us denote F(t) = ∫ t

−∞ eu−t f (u)du, t ∈ R. By the classical theory, F is
a usual almost periodic function. Then, by

||c · F(t) − c · F(t + τ)|| = |F(t) − F(t + ξ)|p · ||c||,

it is immediate that y(t) = c · F(t) is B-almost periodic in the sense of
Definition 3.1(i).

Since

F ′(t) = f (t) −
∫ t

−∞
eu−t f (u),∀t ∈ R,

it easily follows that y′(t) = c ·
[
f (t) − ∫ t

−∞ eu−t f (u)du
]

and that y(t) satisfies

the differential equation, which proves the theorem. �	
Bibliographical Notes The materials in this chapter are due to Gal and
N’Guérékata [30]. As one can see, there are some open problems that need further
investigations.
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