Chapter 8 Almost Periodic Functions with Values in a Locally Convex Space

1 Almost Periodic Functions

Definition 8.1 Let $E = E(\tau)$ be a complete Hausdorff locally convex space. A function $f : \mathbb{R} \to E$ is said to be almost periodic if for every neighborhood (of the origin) *U*, there exists a real number $l > 0$ such that every interval [a, a + l] contains at least one point *s* such that

$$
f(t-s)-f(t)\in U, \ \forall t\in\mathbb{R}.
$$

The numbers *s* depend on *U* and are called *U*-translation numbers, or *U*-almost periods of the function *f* .

Remark 8.2 In the case where *E* is a Banach space \mathbb{X} with norm $\|\cdot\|$, Definition [8.1](#page-0-0) can be rewritten as:

 $f : \mathbb{R} \to X$ is said to be almost periodic if for every $\varepsilon > 0$, there exists a real number $l > 0$ such that every interval $[a, a + l]$ contains at least one point *s* such that

$$
\sup_{t\in\mathbb{R}}\|f(t-s)-f(t)\|<\varepsilon.
$$

The numbers *s* are called the *ε*-almost periods of *f* .

Remark 8.3

- (i) From Definition [8.1,](#page-0-0) we observe that for each neighborhood *U*, the set of all *U*-translation numbers is relatively dense in R.
- (ii) It is obvious that every continuous periodic function $f : \mathbb{R} \to E$ is almost periodic.

We now present some elementary properties of almost periodic functions taking values in locally convex spaces.

Theorem 8.4 *If f*, *f*₁, *f*₂ : $\mathbb{R} \to E$ *are almost periodic and* λ *is a scalar, then the following functions are also almost periodic:*

 (i) $f_1 + f_2$; (ii) λf ; *(iii)* \check{f} *defined by* $\check{f}(t) = f(-t)$ *for every* $t \in \mathbb{R}$ *.*

Proof (i) and (ii) are obvious.

Let us prove (iii). Take *U* an arbitrary neighborhood of the origin. By almost periodicity of f, there exists $l > 0$ such that every interval $[a, a + l]$ contains at least a point *s* such that

$$
f(t-s)-f(t)\in U, \ \forall t\in\mathbb{R}.
$$

If we put $r = -t$, we get

$$
\check{f}(r-s) - \check{f}(r) = f(-r+s) - f(-r) = f(t+s) - f(t).
$$

Therefore $\tilde{f}(r - s) - \tilde{f}(r) \in U$ for every $r \in \mathbb{R}$, which proves almost periodicity of \tilde{f} with $-s$ as *U*-translation numbers of \check{f} with $-s$ as *U*-translation numbers.

We will denote by $AP(E)$ the space of all almost periodic functions $f : \mathbb{R} \to E$.

The following two results are easy to prove (cf. [51, 54]):

Theorem 8.5 *Let* $f \in AP(E)$ *. Then* f *is uniformly continuous on* \mathbb{R} *.*

Theorem 8.6 *Let* $f_n \in AP(E)$, $n = 1, 2, \ldots$ *and suppose that* $f_n \to f$ *uniformly* $int \in \mathbb{R}$ *. Then* $f \in AP(E)$ *.*

Theorem 8.7 *If* $f \in AP(E)$ *, then its range* { $f(t) / t \in \mathbb{R}$ } *is totally bounded in E.*

Proof Let U be a neighborhood and V a symmetric neighborhood such that $V +$ *V* ⊂ *U*; let $l = l(V)$ as in Definition [8.1.](#page-0-0) By the continuity of *f*, the set {*f (t) | t* ∈ [0, *l*] is compact in *E*. But in a locally convex space, every compact set is totally bounded; therefore there exists $x_1, x_2, \ldots, x_n \in E$ such that for every $t \in [0, l]$, we have

$$
f(t) \in \bigcup_{j=1}^{n} (x_j + V).
$$

Take now an arbitrary $t \in \mathbb{R}$ and consider $s \in [-t, -t + l]$ a *V*-translation number of the function *f* . Then we have

$$
f(t+s)-f(t)\in V.
$$

Choose x_k among x_1, \ldots, x_n such that

$$
f(t+s)\in x_k+V.
$$

Let us write $f(t) - x_k = (f(t) - f(t + s)) + (f(t + s) - x_k)$. Then we have *f*(*t*) − *x_k* ∈ *V* + *V*, and therefore *f*(*t*) − *x_k* ∈ *U*, or *f*(*t*) ∈ *x_k* + *U*. Since *t* is an arbitrary real number, we conclude that

$$
\{f(t)\mid t\in\mathbb{R}\}\subset\cup_{j=1}^n(x_j+U).
$$

The proof is complete.

Remark 8.8 If $f \in AP(E)$ with *E* a Fréchet space, then its range is relatively compact in *E*, since in every complete metric space, relative compactness and totally boundedness are equivalent notions. We conclude in this case that every sequence $(f(t_n))$ contains a convergent subsequence $(f(t_{n_k}))$.

Theorem 8.9 *Let E be a Fréchet space and* $f \in AP(E)$ *. Then for every sequence of real numbers* (s'_n) , there exists a subsequence (s_n) such that $(f(t + s_n))$ is *uniformly convergent in* $t \in \mathbb{R}$.

Proof Let (s_n) be a sequence of real numbers and consider the sequence of functions f_{s_n} : $\mathbb{R} \to E$ defined by $f_{s_n}(t) = f(t + s_n)$, $n = 1, 2, \dots$ Let $S = (\eta_n)$ be a countable dense set in R. By Remark [8.8,](#page-2-0) we can extract from $(f(\eta_1 + s_n))$ a convergent subsequence, since the set { $f(t) / t \in \mathbb{R}$ } is relatively compact in *E*.

Let $(f_{s_1,n})$ be the subsequence of (f_n) which converges at η_1 . We apply the same argument to the sequence $(f_{s_1,n})$ to choose a subsequence $(f_{s_2,n})$ which converges at η_2 . We continue the process and consider the diagonal sequence $(f_{s_n,n})$ which converges at η_n in *S*.

Call this last sequence (f_{r_n}) . Now let us show that it is uniformly convergent on R: that is, for every neighborhood U, there exists $N = N(U)$ such that

$$
f(t+r_n)-f(t+r_m)\in U
$$

for every $t \in \mathbb{R}$, if $n, m > N$.

Consider now an arbitrary neighborhood *U* and a symmetric neighborhood *V* such that $V + V + V + V + V \subset U$. Let $l = l(V) > 0$ as in Definition [8.1.](#page-0-0) Since f is uniformly continuous on R (Theorem [8.5\)](#page-1-0), we can find $\delta = \delta(V) > 0$ such that

$$
f(t) - f(t') \in V
$$

for every *t*, $t' \in \mathbb{R}$ with $|t - t'| < \delta$.

Let us divide the interval [0, l] into ν subintervals of lengths smaller than δ and choose in each interval a point of *S*, obtaining $S_0 = {\xi_1, \ldots, \xi_v}$. Since S_0 is a finite set, (f_{r_n}) is uniformly convergent over S_0 ; therefore there exists a natural number $N = N(V)$ such that

$$
f(\xi_i + r_n) - f(\xi_i + r_m) \in V
$$

for every $i = 1, \ldots, \nu$, and for $n, m > N$.

Let *t* ∈ ℝ be arbitrary and s ∈ $[-t, -t + l]$ such that $f(t + s) - f(t) \in V$. Let us choose $ξ_i$ such that $|t + s - ξ_i| < δ$; then

$$
f(t+s+r_n)-f(\xi_i+r_n)\in V
$$

for every *n*.

Let us write

$$
f(t + r_n) - f(t + r_m) = (f(t + r_n) - f(r + r_n + s)) + (f(r + r_n + s)
$$

$$
- f(\xi_i + r_n)) + (f(\xi_i + r_n) - f(\xi_i + r_m))
$$

$$
+ (f(\xi_i + r_m) - f(t + r_m + s)) + (f(t + r_m + s))
$$

$$
- f(t + r_m)).
$$

Then it appears

$$
f(t+r_n) - f(t+r_m) \in V + V + V + V + V \subset U
$$

if $n, m > N$, which proves the uniform convergence of $(f(t + r_n))$.

We are now ready to establish the following important result called also the **Bochner's criterion**:

Theorem 8.10 *Let E be a Fréchet space. Then* $f \in AP(E)$ *if and only if for every sequence of real numbers* (s'_n) , there exists a subsequence (s_n) such that $(f(t + s_n))$ *converges uniformly in* $t \in \mathbb{R}$ *.*

Proof The condition is necessary by Theorem [8.9.](#page-2-1)

Now we need to prove that it is sufficient. Suppose by contradiction that $f \notin$ $AP(E)$. Then there exists a neighborhood U such that for every real number $l > 0$, there exists an interval of length *l* which contains no *U*-translation number of *f* , or there exists an interval $[-a, -a + l]$ such that for every $s \in [-a, -a + l]$, there exists $t = t_s$ such that $f(t + s) - f(t) \notin U$.

Let us consider s_1 ∈ R and an interval (a_1, b_1) with $b_1 - a_1 > 2|s_1|$ which contains no *U*-translation number of *f*. Now let $s_2 = \frac{(a_1 - b_1)}{2}$; then $s_2 - s_1 \in (a_1, b_1)$ and therefore $s_2 - s_1$ cannot be a *U*-translation number of f.

Let us consider another interval (a_2, b_2) with $b_2 - a_2 > 2(|s_1| + |s_2|)$, which contains no *U*-translation number of *f*. Let $s_3 = \frac{(a_2-b_2)}{2}$; then $s_3 - s_1$, $s_3 - s_2$ (a_2, b_2) and therefore $s_3 - s_1$ and $s_3 - s_2$ cannot be *U*-translation numbers of *f*.

We proceed and obtain a sequence (s_n) of real numbers such that no $s_m - s_n$ is a *U*-translation number of *f* , that is

$$
f(t+s_m-s_n)-f(t)\notin U.
$$

Putting $\sigma = t - s_n$, we get

$$
f(\sigma + s_m) - f(\sigma + s_n) \notin U. \tag{1.1}
$$

Suppose there exists a subsequence (s'_n) of (s_n) such that $(f(t + s'_n))$ converges uniformly in $t \in \mathbb{R}$. Then for every neighborhood V, there exists a natural number $N = N(V)$ such that, if *n, m > N* (we may take *m > n*), we have

$$
f(t+s'_m) - f(t+s'_n) \in V
$$

for every $t \in \mathbb{R}$. This contradicts [\(2.1\)](#page-5-0) and so establishes the sufficiency of the condition.

The proof is complete.

Theorem 8.11 *Let* $f \in AP(E)$ *. Then the following hold true:*

 (f) *Af* (f) ∈ *AP* (E) *for every linear bounded operator A on E*. *(ii)* $vf \in AP(E)$ *where* $v : \mathbb{R} \to \Phi$ *is almost automorphic.*

Proof Trivial, cf for instance [51, 54]. □

Using the Bochner's criterion, one can easily prove the following:

Theorem 8.12 *Let E be a Fréchet space and* $f_1, f_2 \in AP(E)$ *. Then the function* $F: \mathbb{R} \to E \times E$ *defined by* $F(t) = (f_1(t), f_2(t))$ *is also almost periodic.*

Corollary 8.13 *Let* $f_1, f_2 \in AP(E)$ *where E is a Fréchet space. Then for every neighborhood U, f*¹ *and f*² *have common U-translation numbers.*

Proof Let *U* be a neighborhood in *E*. Then by Theorem [8.12](#page-4-0) the function $f(t) =$ $(f_1(t), f_2(t)) \in AP(E \times E)$. Consider now *s* a *U*-translation number of *f*; then *f* (*t* + *s*) − *f* (*t*) ∈ *U* × *U* for every *t* ∈ ℝ, and therefore $f_i(t + s) - f_i(t) \in U$, $i = 1, 2$ for every $t \in \mathbb{R}$, *s* is a *U*-translation number for *f*₁ and *f*₂. 1, 2 for every $t \in \mathbb{R}$. *s* is a *U*-translation number for f_1 and f_2 .

Theorem 8.14 *Let E be a Fréchet space. Then AP (E) is also a Fréchet space.*

Proof Consider $BC(\mathbb{R}, E)$ the linear space of all bounded and continuous functions $\mathbb{R} \to E$ and denote by (p_n) , $n \in \mathbb{N}$, the family of seminorms which generates the topology of *E*. Without loss of generality we may assume that $p_n \leq p_{n+1}$, pointwise for $n \in \mathbb{N}$. Define

$$
q_n(f) = \sup_{t \in \mathbb{R}} p_n(f(t)), \ n \in \mathbb{N}.
$$

Obviously (q_n) forms a family of seminorms on $BC(\mathbb{R}, E)$. Moreover, it is clear that $q_n \leq q_{n+1}$ for $n \in \mathbb{N}$. Define the pseudonorm

$$
|f| := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{q_n(f)}{1 + q_n(f)}, \quad f \in BC(\mathbb{R}, E).
$$

Obviously $BC(\mathbb{R}, E)$ with the above defined pseudonorm is a Fréchet space. It is also a closed linear subspace of $BC(\mathbb{R}, E)$. This completes the proof.

2 Weakly Almost Periodic Functions

Definition 8.15 Let *E* be a complete Hausdorff locally convex space. A weakly continuous function $f : \mathbb{R} \to E$ is said to be weakly almost periodic if the numerical function $F(t) = (x^*f)(t)$ is almost periodic for every $x^* \in E^*$ the dual space of *E*.

We will denote by $WAP(E)$ the set of all weakly almost periodic functions $\mathbb{R} \to E$.

Remark 8.16

- (i) Every weakly almost periodic function is weakly bounded.
- (ii) Every almost periodic function is weakly almost periodic.

Theorem 8.17 *Let* $f \in WAP(E) \cap C(\mathbb{R}, E)$ *. Assume that the set* $\{F(t) \mid t \in \mathbb{R}\}$ *be weakly bounded where the function* $F : \mathbb{R} \to E$ *is defined by* $F(t) = \int_0^t f(s) ds$. *Then* $F \in WAP(E)$ *.*

Proof We first observe that the integral exists in *E* since *f* is (strongly) continuous on ℝ. Take x^* ∈ E^* , so $x^* f$ ∈ AP (ℝ). By the continuity of x^* , $(x^*F)(t)$ = x^* $\int_0^t f(s)ds = \int_0^t (x^*f)(s)ds$ which is bounded by assumption and so is almost periodic. The Theorem is proved.

Theorem 8.18 *Let E be a Fréchet space and* $f : \mathbb{R} \to E$ *. Then* $f \in AP(E)$ *if and only if* $f \in WAP(E)$ *and its range is relatively compact.*

Proof The condition is necessary by Remarks [8.8](#page-2-0) and [8.16.](#page-5-1) Let us show by contradiction that it is sufficient.

Suppose there exists $t_0 \in \mathbb{R}$ such that f is discontinuous at t_0 , so we can find a neighborhood U and two sequences of real numbers (s'_n) and (s''_n) such that

$$
\lim_{n \to \infty} s'_n = 0 = \lim_{n \to \infty} s''_n
$$

and

$$
f(t_0 + s'_n) - f(t_0 + s''_n) \notin U, \ \forall n \in \mathbb{N}.
$$
 (2.1)

By the relative compactness of $\{f(t) \mid t \in \mathbb{R}\}$, we can extract (r'_n) and (r''_n) from (s'_n) and (s''_n) respectively, such that

$$
\lim_{n \to \infty} f(t_0 + r'_n) = a_1 \in E
$$

and

2 Weakly Almost Periodic Functions 85

$$
\lim_{n \to \infty} f(t_0 + r_n'') = a_2 \in E.
$$

Consequently, $a_1 - a_2 \notin U$ by [\(2.1\)](#page-5-0), and using the Hahn–Banach Theorem (Proposition 1.41 Chap. 1), we can find $x^* \in E^*$ such that $x^*(a_1 - a_2) \neq 0$, hence $x^*(a_1) \neq x^*(a_2)$. By the continuity of x^* , we have

$$
x^*(a_1) = \lim_{n \to \infty} (x^* f)(t_0 + r'_n) = \lim_{n \to \infty} (x^* f)(t_0 + r''_n) = x^*(a_2)
$$

which is a contradiction. So we conclude that f is continuous on \mathbb{R} .

To prove the almost periodicity of *f* we need the following:

Lemma 8.19 *Let E be a Fréchet space and* $\phi \in AP(E)$ *. Let* (s_n) *be a sequence of real numbers such that* $\lim_{n\to\infty} \phi(s_n + \eta_k)$ *exists for each* $k = 1, 2, \ldots$ *where the set* (η_k) *is dense in* \mathbb{R} *. Then the sequence* $(\phi(t + s_n))$ *is uniformly convergent in* $t \in \mathbb{R}$ *.*

Proof (of Lemma [8.19\)](#page-6-0) Suppose by contradiction that $(\phi(t + s_n))$ is not uniformly convergent in $t \in \mathbb{R}$. Then there exists a neighborhood *U* such that for every $N =$ 1, 2, ... there exists n_N , $m_N > N$ and $t_N \in \mathbb{R}$ such that

$$
\phi(t_N + s_{n_N}) - \phi(t_N + s_{m_N}) \notin U.
$$

By the Bochner's criterion (Theorem [8.10\)](#page-3-0), we can extract two sequences $(s'_{n_N}) \subset$ (s_{n_N}) and $(s'_{m_N}) \subset (s_{m_N})$ such that

$$
\lim_{N \to \infty} \phi(t + s'_{n_N}) = g_1(t) \text{ uniformly in } t \in \mathbb{R}
$$

and

$$
\lim_{N \to \infty} \phi(t + s'_{m_N}) = g_2(t) \text{ uniformly in } t \in \mathbb{R}.
$$

Let *V* be a symmetric neighborhood such that $V + V + V \subset U$. Then there exists $N_0 = N_0(V)$ such that if $N > n_0$, we have

$$
\phi\left(t_N + s'_{n_N}\right) - g_1(t_N) \in V
$$

and

$$
\phi\left(t_N+s'_{m_N}\right)-g_2(t_N)\in V.
$$

We deduce that $g_1(t_N) - g_2(t_N) \notin V$, otherwise we should have

$$
\phi\left(t_N + s'_{n_N}\right) - \phi\left(t_N + s'_{m_N}\right) \in U
$$

which contradicts (2.1) .

Indeed if $g_1(t_N) - g_2(t_N) \in V$, then by writing

$$
\phi(t_N + s'_{n_N}) - \phi(t_N + s'_{m_N}) = \phi(t_N + s'_{n_N}) - g_1(t_N) + g_1(t_N) - g_2(t_N) + g_2(t_N) - \phi(t_N + s'_{m_N})
$$

we obtain

$$
\phi(t_N + s'_{n_N}) - \phi(t_N + s'_{m_N}) \in V + V + V \subset U.
$$

Thus we have found a symmetric neighborhood *V* with the property that if *N* is large enough, there exists $t_N \in \mathbb{R}$ such that

$$
g_1(t_N)-g_2(t_N)\notin V.
$$

But this is impossible, because if we take a subsequence (ξ_k) of (η_k) with $\xi_k \to t_N$, then we would obtain

$$
\lim_{N \to \infty} \phi\left(\xi_k + s'_{n_N}\right) = \lim_{N \to \infty} \phi\left(\xi_k + s'_{m_N}\right)
$$

for every *k*.

Therefore $g_1(\xi_k) = g_2(\xi_k)$ for every k. By the continuity of g_1 and $g_2, g_1(t_N) =$ $g_2(t_N)$, thus $g_1(t_N) - g_2(t_N)$ belongs to every neighborhood.

The lemma is proved.

Proof (of Theorem [8.18](#page-5-2) (continued)) Consider a sequence of real numbers *(hn)* and a sequence of rational numbers (η_r) . By the relative compactness of $\{f(t) \mid t \in$ \mathbb{R} , we can extract a subsequence (h_n) (we do not change the notation) such that for each $r = 1, 2, ...$

$$
\lim_{n\to\infty} f(\eta_r + h_n) = x_r
$$

exists in *E*. Now the sequence $(f(\eta_r + h_n))$ is uniformly convergent in η_r , or we could find a neighborhood *U* and three subsequences $(\xi_r) \subset (\eta_r)$, $(h'_r) \subset (h_r)$, and (h''_r) ⊂ (h_r) with

$$
f(\xi_r + h'_r) - f(\xi_r + h''_r) \notin U.
$$
 (2.2)

$$
\Box
$$

By the relative compactness of $\{f(t) \mid t \in \mathbb{R}\}$, we may say that

$$
\lim_{r \to \infty} f(\xi_r + h'_r) = b' \in E
$$

$$
\lim_{r \to \infty} f(\xi_r + h''_r) = b'' \in E.
$$

Then, using (2.2) , we get

$$
b'-b''\notin U.
$$

By the Hahn–Banach Theorem, there exists $x^* \in E^*$ such that

$$
x^*(b') \neq x^*(b'').
$$

Now $x^* f \in AP(\mathbb{R})$, therefore it is uniformly continuous over \mathbb{R} .

Let us consider the functions (φ_n) defined on R by

$$
\varphi_n(t) := (x^* f)(t + h_n), \ \ n = 1, 2, \ldots
$$

The equality

$$
\varphi_n(t+s) - \varphi_n(t) = (x^*f)(t+s+h_n) - (x^*f)(t+h_n)
$$

shows the almost periodicity of each φ_n , $n = 1, 2, \ldots$, if *s* is seen as a *U*-translation number of $(x * f)(t)$. Also the sequence of functions (φ_n) is equicontinuous over $\mathbb R$ because $(x^* f)(t)$ is uniformly continuous on $\mathbb R$.

Since

$$
\lim_{n\to\infty} f(\eta_r + h_n) = x_r,
$$

we get

$$
\lim_{n \to \infty} (x^* f)(n_r + h_n) = x^* x_r
$$

for every $r = 1, 2, \ldots$ Therefore by Lemma [8.19,](#page-6-0) $((x^* f)(\eta_r + h_n))$ is uniformly convergent in *t*.

Consider now the sequences $(\xi_r + h'_r)$ and $(\xi_r + h''_r)$. By the Bochner's criterion, we can extract a subsequence from each sequence, respectively, such that, using the same notations, $((x^* f)(t + \xi_r + h'_r))$ and $((x^* f)(t + \xi_r + h''_r))$ are uniformly convergent in $t \in \mathbb{R}$.

Let us now prove that

$$
\lim_{r \to \infty} (x^* f)(t + \xi_r + h'_r) = \lim_{r \to \infty} (x^* f)(t + \xi_r + h''_r).
$$

Write $(x^* f)(t + \xi_r + h'_r) - (x^* f)(t + \xi_r + h''_r)$ as follows:

$$
(x^* f)(t + \xi_r + h'_r) - (x^* f)(t + \xi_r + h''_r)
$$

= (x^* f)(t + \xi_r + h'_r) - (x^* f)(t + \xi_r + h_r)
+ (x^* f)(t + \xi_r + h_r) - (x^* f)(t + \xi_r + h''_r)

and consider the following inequality (IN):

$$
|(x^* f)(t + \xi_r + h'_r) - (x^* f)(t + \xi_r + h''_r)|
$$

\n
$$
\leq |(x^* f)(t + \xi_r + h'_r) - (x^* f)(t + \xi_r + h_r)|
$$

\n
$$
+ |(x^* f)(t + \xi_r + h_r) - (x^* f)(t + \xi_r + h''_r)|
$$

which holds true for $r = 1, 2, \ldots$

Let $\varepsilon > 0$ be given. Since $((x^* f)(t + h_r))$ is uniformly convergent in *t*, we can choose η_{ε} such that for $r, s > \eta_{\varepsilon}$, we obtain

$$
|(x^*f)(t+h_s)-(x^*f)(t+h_r)|<\frac{\varepsilon}{2},\ \forall t\in\mathbb{R}.
$$

So, replacing *t* by $t + \xi_r$ gives,

$$
|(x^*f)(t+\xi_r+h_s)-(x^*f)(t+\xi_r+h_r)|<\frac{\varepsilon}{2},
$$

and consequently

$$
|(x^* f)(t + \xi_r + h'_r) - (x^* f)(t + \xi_r + h_r)| < \frac{\varepsilon}{2},
$$

$$
|(x^* f)(t + \xi_r + h''_r) - (x^* f)(t + \xi_r + h_r)| < \frac{\varepsilon}{2}.
$$

The inequality (IN) above gives

$$
|(x^*f)(t + \xi_r + h'_r) - (x^*f)(t + \xi_r + h''_r)| < \varepsilon, \ \forall t
$$

which proves that

$$
\lim_{r \to \infty} (x^* f)(t + \xi_r + h'_r) = \lim_{r \to \infty} (x^* f)(t + \xi_r + h''_r)
$$

which contradicts $x^*(b') \neq x^*(b'')$ obtained earlier and uniform continuity of $(f(\eta_r + h_n))$ as well.

If $i, j > N$, we have

$$
f(\eta_r + h_i) - f(\eta_r + j) \in U.
$$

This proves that $f \in AP(E)$ by the Bochner's criterion.

Theorem 8.20 *Let E be a Fréchet space. If* $f \in AP(E)$ *and* $\{F(t) \mid t \in \mathbb{R}\}$ *is relatively compact in E where* $F(t) = \int_0^t f(s)ds$, then $F \in AP(E)$ *.*

Proof This is immediate by Theorems [8.17](#page-5-3) and [8.18.](#page-5-2) □

Theorem 8.21 *Let E be a complete locally convex space and* $f \in AP(E)$ *. If the derivative* f' *exists and is uniformly continuous on* \mathbb{R} *, then* $f' \in AP(E)$ *.*

Proof This is similar to the proof of the almost automorphic case (Theorem 4.1). We consider the sequence of almost periodic functions $(n(f(t + \frac{1}{n}) - f(t)))$ and let $U = U(\varepsilon; p_i, 1 \le i \le k)$ be a neighborhood. Since $f'(t)$ is uniformly continuous on R, we can choose $\delta = \delta(U) > 0$ such that

$$
f'(t_1) - f(t_2) \in U
$$

for every t_1, t_2 such that $|t_1 - t_2| < \delta$. Let us write

$$
f'(t) - n\left(f\left(t + \frac{1}{n}\right) - f(t)\right) = n \int_0^{\frac{1}{n}} (f'(t) - f'(t+s)) ds.
$$

Then if $N = N(U) > \frac{1}{n}$ and $n > N$, we would obtain

$$
p_i\left[f'(t) - n\left(f\left(t + \frac{1}{n}\right) - f(t)\right)\right] \le n \int_0^{\frac{1}{n}} p_i\left[(f'(t) - f'(t+s))\right] ds < \varepsilon
$$

for every seminorm p_i and every $t \in \mathbb{R}$. That shows that the sequence of almost periodic functions $\left(n\left(f(t+\frac{1}{n})-f(t)\right)\right)$ converges uniformly to $f'(t)$ on R. By Theorem [8.6,](#page-1-1) it follows that $f' \in AP(E)$.

Theorem 8.22 If $f : \mathbb{R} \to E$ (*E* a Fréchet space) is weakly bounded, then it is *bounded.*

Proof For *f* to be weakly bounded means $\sup_{n \to \infty} |x^* f(t)| < \infty$ for every $x^* \in E^*$. *^t*∈^R Suppose $f(\mathbb{R})$ is not bounded. Then there would exist a seminorm p such that $p(f(t_n)) \to \infty$ as $n \to \infty$ for some sequence of real numbers (t_n) .

Let E_p be the completion of the normed space $E/ker p$ in the norm p. So E_p is a Banach space and $\tilde{f}(t_n) = f(t_n)/\text{ker } p$ is unbounded in E_p . Consequently there exists $\varphi \in E_p^*$ such that $|\varphi(f(t_n))| \to \infty$ as $n \to \infty$.

The natural map $J: E \to E_p$ is continuous, so its adjoint $J^* : E_p^* \to E^*$ is continuous. Finally setting $\psi = J^*(\varphi) \in E^*$, we have

$$
|\psi(f(t_n))| = |J^*(\varphi)(f(t_n))| = |\varphi(f(t_n))| \to \infty
$$

as $n \to \infty$. This completes the proof.

Theorem 8.23 *Let E be a Fréchet space,* $f \in WAP(E)$ *and* $A \in L(E)$ *a bounded linear operator on* E *. Then* $Af \in WAP(E)$ *.*

Proof Obvious. We leave it to the reader.

Proposition 8.24 *Let E be a complete locally convex space and* $f \in AP(E)$ *. Then for every sequence of real numbers (sn), there exists a subsequence (s n) such that for every neighborhood U,*

$$
f(t+s'_n) - f(t+s'_m) \in U
$$

for every $t \in \mathbb{R}$ *and every* n, m *.*

Proof Let $U = U(\varepsilon; p_i, 1 \leq i \leq n)$ and $V = V(\frac{\varepsilon}{3}; p_i, 1 \leq i \leq n)$ be a symmetric neighborhood such that $V + V + V \subset U$. By the definition of almost periodicity, there exists a number $l = l(V) > 0$ (depending also on *U*) such that every compact interval of length *l* contains a number *τ* such that

$$
f(t+\tau) - f(t) \in V
$$

for every $t \in \mathbb{R}$.

Consider now a given sequence of real numbers (s_n) . For each s_n , we can find τ_n and σ_n such that $s_n = \tau_n + \sigma_n$ with τ_n a *V*-translation number of f and $\sigma_n \in [0, l]$. In fact it suffices to take $\tau_n \in [s_n - l, s_n]$ and then $\sigma_n = s_n - \tau_n$.

Since *f* is uniformly continuous, there exists $\delta = \delta(\varphi)$ such that

$$
f(t') - f(t'') \in V
$$

for all t' , t'' with $|t'-t''| < 2\delta$.

Note that $\sigma_n \in [0, l]$ for all *n*. Hence by the Bolzano–Weierstrass Theorem, the sequence (σ_n) has a convergent subsequence, say (σ_{n_k}) . Let $\sigma = \lim_{k \to \infty} \sigma_{n_k}$, which shows that $\sigma \in [0, l]$.

Now consider the subsequence of (σ_{n_k}) (we use the same notation) with

$$
\sigma-\delta\leq\sigma_{n_k}\leq\sigma+\delta,\ \ k=1,2,\ldots
$$

and let (s_{n_k}) be the corresponding subsequence of (s_n) with

$$
s_{n_k}=\tau_{n_k}+\sigma_{n_k},\ \ k=1,2,\ldots
$$

Let us prove that

$$
f(t+s_{n_k})-f(t+s_{n_j})\in U
$$

for all t and all k , j . For this, let us write

$$
f(t + s_{n_k}) - f(t + s_{n_j}) = f(t + \tau_{n_k} + \sigma_{n_k}) - f(t + \sigma_{n_k}) + f(t + \sigma_{n_k})
$$

-
$$
f(t + \sigma_{n_j}) + f(t + \sigma_{n_j}) - f(t + \tau_{n_j} + \sigma_{n_j}).
$$

Because τ_{n_k} and τ_{n_j} are *V*-translation numbers of *f*, we have

$$
f(t+\tau_{n_k}+\sigma_{n_k})-f(t+\sigma_{n_k})\in V
$$

and

$$
f(t + \sigma_{n_j}) - f(t + \tau_{n_j} + \sigma_{n_j}) \in V
$$

for every t and every k , j . Also

$$
f(t + \sigma_{n_k}) - f(t + \sigma_{n_j}) \in V
$$

for every t and every k , j , since

$$
|(t+\sigma_{n_k})-(t+\sigma_{n_j})|=|\sigma_{n_k}-\sigma_{n_j}|\leq |\sigma_{n_k}-\sigma|+|\sigma-\sigma_{n_j}|\leq 2\delta.
$$

The result is complete if we set $s'_k = s_{n_k}, \quad k = 1, 2, \ldots$

Theorem 8.25 *Let E be a Fréchet space and* $(T(t))_{t\in\mathbb{R}}$ *be an equicontinuous* C_0 *group of linear operators with* $\{T(t)x; t \in \mathbb{R}\}$ *relatively compact in E for every* $x \in E$ *. Assume also that* $f : \mathbb{R} \to E$ *is a function with a relatively compact range in E. Then* $\{T(t)f(t): t \in \mathbb{R}\}$ *is relatively compact in E.*

Proof Let $(t_n^{\prime\prime})$ be a sequence of real numbers. Since the range of $f(t)$ is relatively compact in *E*, we can extract a subsequence $(t'_n) \subset (t''_n)$ such that

$$
\lim_{n \to \infty} f(t'_n) = x, \text{ exists in } E.
$$

Further, by the assumption on $T(t)$, we can find a subsequence $(t_n) \subset (t'_n)$ such that $(T(t_n)x)$ is convergent, thus a Cauchy sequence in *E*.

Let us write

$$
T(t_n) f(t_n) - T(t_m) f(t_m) = [T(t_n) - T(t_m)][f(t_n) - x] + [(T(t_n) - T(t_m))x] + T(t_m)[f(t_n) - f(t_m)].
$$

For an arbitrary seminorm *p* we have

$$
p(T(t_n) f(t_n) - T(t_m) f(t_m)) \leq p([T(t_n) - T(t_m)][f(t_n) - x]) + p([(T(t_n) - T(t_m))x]) + p(T(t_m)[f(t_n) - f(t_m)]).
$$

Using the equicontinuity of $T(t)$, we can find a seminorm q such that

$$
p(T(t_m)[f(t_n) - f(t_m)]) \le q(f(t_n) - f(t_m))
$$

and

$$
p([T(t_n)-T(t_m)][f(t_n)-x])\leq 2q(f(t_n)-x).
$$

Now choose *n* large enough so that

$$
q(f(t_n)-f(t_m))<\frac{\varepsilon}{3}q(f(t_n)-x)<\frac{\varepsilon}{3}
$$

and

$$
q([T(t_n) - T(t_m)]x) < \frac{\varepsilon}{3}
$$
\n
$$
p(T(t_n)f(t_n) - T(t_m)) < \varepsilon,
$$

which shows that $(T(t_n) f(t_n))$ is a Cauchy sequence, thus convergent. The theorem is proved. is proved. \Box

Theorem 8.26 *Let E be a Fréchet space and consider an equicontinuous* C_0 -group *of linear operators* $(T(t))_{t\in\mathbb{R}}$ *such that* $T(t)x : \mathbb{R} \to E$ *is almost periodic for every* $x \in E$ *. Suppose also that* $f \in AP(E)$ *. Then* $T(t)f(t) \in AP(E)$ *.*

Proof Consider $U = U(\varepsilon; p_i, 1 \le i \le n)$ be a given neighborhood of the origin. Because of the equicontinuity of $T(t)$, one can find, for each semi-norm p_i , a seminorm *qi* such that

$$
p_i(T(t)x) \le q_i(x)
$$

for every $t \in \mathbb{R}$ and $x \in E$. Consider also the symmetric neighborhood

$$
V = V\left(\frac{\varepsilon}{4};\ p_i,q_i,\ 1 \leq i \leq n\right).
$$

Then $V + V + V \subset U$. Since $\{f(t): t \in \mathbb{R}\}$ is totally bounded, there exists t_1, \ldots, t_ν such that

$$
f(t) \in \bigcup_{k=1}^{v} (f(t_k) + V)
$$

for every $t \in \mathbb{R}$.

Consider now the almost periodic functions

$$
f(t), T(t)(f(t_k)), k = 1, 2, ..., \nu.
$$

These are the same *V*-translation numbers by Corollary [8.13;](#page-4-1) therefore we can find a number $l = l(V) > 0$ such that any interval [a, $a + l$] contains at least one number *s* such that

$$
f(t+s) - f(s) \in V \text{ for every } t \in \mathbb{R},
$$
 (2.3)

$$
T(t+s)f(t_k) - T(t)f(t_k) \in V \text{ for every } t \in \mathbb{R}
$$
 (2.4)

and for every $k = 1, 2, \ldots, \nu$.

Take now an arbitrary $t \in \mathbb{R}$. Then there exists $(1 \le j \le \nu)$ such that

$$
f(t) \in f(t_j) + V. \tag{2.5}
$$

Write

$$
T(t+s)f(t+s) - T(t)f(t) = T(t+s)(f(t+s) - f(t))
$$

+T(t+s)(f(t) - f(t_j))
+T(t+s)f(t_j) - T(t)f(t_j)
+T(t)(f(t_j) - f(t)).

For every seminorm *pi*, we can find a seminorm *qi* such that

$$
p_i[T(t+s)f(t+s) - T(t)f(t)] \le q_i(f(t+s) - f(t))
$$

+
$$
q_i(f(t) - f(t_j)) + p_i(T(t+s)f(t_j))
$$

-
$$
T(t)f(t_j)) + q_i(f(t_j) - f(t))
$$

$$
< \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4}
$$

=
$$
\varepsilon
$$

using (2.3) , (2.4) , and (2.5) above. Thus we have

$$
T(t+s)f(t+s) - T(t)f(t) \in U
$$

for every *t* ∈ R, which establishes the almost periodicity of $T(t) f(t)$. $□$

Definition 8.27 A Fréchet space *E* is said to be perfect if every bounded function *f* : $\mathbb{R} \to E$ with an almost periodic derivative *f'* is necessarily almost periodic.

Example 8.28 Denote by *s* the linear space of all real sequences

$$
s := \{s = (x_n) / x_n \in \mathbb{R}, n = 1, 2, \ldots\}.
$$

For each $n \in \mathbb{N}$, define $p_n(x) := |x_n|, x \in s$. Obviously p_n is a seminorm defined on *s*. Now define $q_n := p_1 \vee p_2 \vee \ldots \vee p_n$ for $n \in \mathbb{N}$. We have $q_n \leq q_{n+1}$ for $n \in \mathbb{N}$. The space *s* considered with the family of seminorms (q_n) is a Fréchet space. Moreover, it can be proved (cf. [1] 17.7 p. 210) that each closed and bounded

subset of *s* is compact. Thus, in particular, *s* is not a Banach space. Moreover in view of Theorem [8.20,](#page-10-0) *s* is perfect.

Definition 8.29 A function $f \in C(\mathbb{R}, \mathbb{X})$ is called periodic if there exists $l > 0$ such that

$$
f(t+l) = f(t), \quad \forall t \in \mathbb{R}.
$$

Here, *l* is called a period of *f*. We denote the collection of all such functions by *P*(\mathbb{X}). For *f* ∈ *P*(\mathbb{X}), we call *l*₀ the fundamental period if *l*₀ is the smallest period of *f* .

Remark 8.30 Similar to the proof in [22, p. 1], it is not difficult to show that if $f \in P(\mathbb{X})$ is not constant, then *f* has the fundamental period.

Theorem 8.31 ([72]) Let *X* be a Banach space with norm $\|\cdot\|$, then $P(\mathbb{X})$ is a set *of first category in* $AP(X)$ *.*

Proof For $n = 1, 2, \ldots$, we denote

$$
P_n = \{ f \in C(\mathbb{R}, \mathbb{X}) \; : \; \exists l \in [n, n+1] \text{ such that } f(t+1) = f(t), \; \forall t \in \mathbb{R} \}.
$$

Then, it is easy to see that

$$
P(\mathbb{X})=\bigcup_{n=1}^{\infty}P_n.
$$

We divide the remaining proof into two steps.

Step 1 Every P_n is a closed subset of $AP(\mathbb{X})$.

Let *f* ∈ *AP*(\mathbb{X})*P_n*. Then, for every *l* ∈ [*n*, *n* + 1], there exists *t_l* ∈ \mathbb{R} such that $f(t_l + l) \neq f(t_l)$. Denote

$$
\varepsilon_l := \frac{1}{4} || f(t_l + l) - f(t_l) || > 0, \quad l \in [n, n + 1].
$$

In addition, due to the continuity of *f*, for every $l \in [n, n+1]$, there exists $\delta_l > 0$ such that

$$
|| f(t_l + s) - f(t_l)|| \ge 3\varepsilon_l, \quad \forall s \in (l - \delta_l, l + \delta_l). \tag{2.6}
$$

Obviously, we have

$$
[n, n+1] \subset \bigcup_{l \in [n, n+1]} (l - \delta_l, l + \delta_l).
$$

Then, by the Heine-Borel theorem, there exists $l_1, \ldots l_k \in [n, n + 1]$ such that

2 Weakly Almost Periodic Functions 95

$$
[n, n+1] \subset \bigcup_{i=1}^k (l_i - \delta_{l_i}, l_i + \delta_{l_i}),
$$

where *k* is a fixed positive integer. Letting $\varepsilon = \min_{1 \le i \le k} {\{\varepsilon_{l_i}\}}$, and

$$
N(f, \varepsilon) := \{ g \in AP(\mathbb{X}) : \| g - f \|_{AP(X)} < \varepsilon \},
$$

for every $g \in N(f, \varepsilon)$, we claim that $g \notin P_n$. In fact, for every $l \in [n, n + 1]$, there exists $i \in \{1, \ldots, k\}$ such that

$$
l\in (l_i-\delta_{l_i},l_i+\delta_{l_i}).
$$

Then, by (4.3) , we have

$$
|| f(t_{l_i} + l) - f(t_{l_i}) || \geq 3\varepsilon_{l_i} \geq 3\varepsilon,
$$

which yields that

$$
||g(t_{l_i} + l) - g(t_{l_i})|| \ge ||f(t_{l_i} + l) - f(t_{l_i})|| - ||f(t_{l_i} + l) - g(t_{l_i} + l)||
$$

-
$$
||f(t_{l_i}) - g(t_{l_i})|| \ge 3\varepsilon - \varepsilon - \varepsilon = \varepsilon > 0,
$$

where $\|g - f\|_{AP(\mathbb{R})} < \varepsilon$ was used. So, we know that $N(f, \varepsilon) \subset AP(\mathbb{X})\backslash P_n$, which means that P_n is a closed subset of $AP(\mathbb{X})$.

Step 2 Every P_n has an empty interior.

It suffices to prove that for every $f \in P_n$ and $\delta > 0$, $N(f, \delta) \bigcap (AP(\mathbb{X}) \setminus P_n) \neq 0$ ∅*.* Now let *f* ∈ *Pn* and *δ >* 0. In the following, we discuss by two cases:

Case I *f* is constant.

We denote

$$
f_{\delta}(t) = \frac{\cos t + \cos(\sqrt{2}t)}{3} \cdot \delta \cdot x_0 + f(t), \quad t \in \mathbb{R}
$$

where $x_0 \in \mathbb{X}$ is some constant with $||x_0|| = 1$. Then $f_\delta \in N(f, \delta)$, and $f_\delta \notin P_n$ since f_δ is not periodic.

Case II *f* is not constant.

Let f be a fundamental period l_0 . We denote

$$
f_{\delta}(t) = f(t) + f\left(\frac{t}{\pi}\right) \cdot \frac{\delta}{M_f}, \quad t \in \mathbb{R},
$$

where $M_f = \sup_{n \to \infty} || f(t) ||$. Obviously, $f_\delta \in N(f, \delta)$. Also, we claim that $f_\delta \notin P_n$. *^t*∈^R In fact, if this is not true, then there exists $T \in [n, n + 1]$ such that

$$
f_{\delta}(t+T)=f_{\delta}(t), \quad t \in \mathbb{R},
$$

i.e.

$$
f(t+T) + f\left(\frac{t+T}{\pi}\right) \cdot \frac{\delta}{M_f} = f(t) + f\left(\frac{t}{\pi}\right) \cdot \frac{\delta}{M_f}, \quad t \in \mathbb{R}.
$$

Let

$$
F_1(t) = f(t+T) - f(t), \quad F_2(t) = \frac{\delta}{M_f} \left[f\left(\frac{t}{\pi}\right) - f\left(\frac{t+T}{\pi}\right) \right], \quad t \in \mathbb{R}.
$$

Then $F_1(t) \equiv F_2(t)$. If $F_1(t) \equiv F_2(t) \equiv C$, where *C* is a fixed constant, then

$$
f(t+T) = f(t) + C, \quad t \in \mathbb{R},
$$

which yields

$$
C = \frac{f(kT) - f(0)}{k} \to 0, \ k \to \infty,
$$

since *f* is bounded. Thus, we have

$$
f(t+T) = f(t), \quad f\left(\frac{t}{\pi}\right) = f\left(\frac{t+T}{\pi}\right), \quad t \in \mathbb{R}.
$$

Noting that l_0 is the fundamental period of f and πl_0 is the fundamental period of $f\left(\frac{1}{\pi}\right)$, there exist two positive integers *p*, *q* such that

$$
pl_0 = T = q\pi l_0,
$$

i.e. $\pi = \frac{p}{q}$, which is a contradiction. If $F_1 = F_2$ is not constant, then by Remark [8.30,](#page-15-0) we can assume that T_0 is the fundamental period of F_1 and F_2 . Noting that l_0 is a period of F_1 and πl_0 is a period of F_2 , similar to the above proof, we can also show that π is a rational number, which is a contradiction.

In conclusion, $P(X)$ is countable unions of closed subsets with empty interior. So $P(\mathbb{X})$ is a set of first category.

Theorem 8.32 ([72]) *Let* X *be a Banach space. Then* $AP(X)$ *is a set of first category in* $AA(\mathbb{X})$ *.*

Proof It suffices to note that $AP(X)$ is a proper closed subspace of $AA(X)$ equipped with the supnorm. Therefore it is of first category in $AA(\mathbb{X})$.

3 Almost Periodicity of the Function *f (t, x)*

Definition 8.33 Let *E* be a Fréchet space. A function $f \in C(\mathbb{R} \times E, E)$ is said to be almost periodic in $t \in \mathbb{R}$ for each $x \in E$ if for each neighborhood of the origin *U*, there exists a real number $l > 0$ such that every interval [a, a + l] contains at least a point *τ* such that

 $f(t + \tau, x) - f(t, x) \in U$, for each $t \in \mathbb{R}$ and each $x \in E$.

In view of the Bochner's criterion, this definition is equivalent to the following: $f \in C(\mathbb{R} \times E, E)$ is almost periodic in $t \in \mathbb{R}$ for each $x \in E$ if and only if for every sequence of real numbers (s'_n) there exists a subsequence $(s_n) \subset (s'_n)$ such that $(f(t + s_n, x))$ converges uniformly in $t \in \mathbb{R}$ and $x \in E$.

Theorem 8.34 *Let* $f : \mathbb{R} \times E \to E$ *be almost periodic in* $t \in \mathbb{R}$ *for each* $x \in E$ *E, and assume that f satisfies a Lipschitz condition in x uniformly in t, that is d*(*f*(*t*, *x*) − *f*(*t*, *y*)) ≤ *Ld*(*x*, *y*) *for all t* ∈ $\mathbb R$ *and x*, *y* ∈ *E, where d is a metric on E. Let* ϕ : $\mathbb{R} \to E$ *be almost periodic. Then the Nemytskii's operator* $\mathcal N$ *defined by* $\mathcal{N}(\cdot) := f(\cdot, \phi(\cdot))$ *is almost periodic.*

Proof Trivial. We leave it to the reader.

4 Equi-Asymptotically Almost Periodic Functions

In this section, we introduce the notion of equi-asymptotically almost periodicity (cf. [24]), and present some basic and interesting properties for equi-asymptotically almost periodic functions.

Definition 8.35 Let X be a Banach space. A set $F \subset C(\mathbb{R}, \mathbb{X})$ is called equiasymptotically almost periodic if for every $\varepsilon > 0$, there exist a constant $M(\varepsilon) > 0$ and a relatively dense set $T(F, \varepsilon) \subset \mathbb{R}$ such that

$$
\|f(t+\tau)-f(t)\|<\varepsilon,
$$

for all $f \in F$, $t \in \mathbb{R}$ with $|t| > M(\varepsilon)$ and $\tau \in T(F, \varepsilon)$ with $|t + \tau| > M(\varepsilon)$.

Theorem 8.36 *Let* $F \subset AAP(\mathbb{R}, \mathbb{X})$ *. Then the following assertions are equivalent:*

- (i) *F* is precompact in $AAP(\mathbb{R}, \mathbb{X})$.
- (ii) *F satisfy the following three conditions:*
	- (a) *for every* $t \in \mathbb{R}$, $\{f(t) : f \in F\}$ *is precompact in* X*.*
	- (b) *F is equi-uniformly continuous.*
	- (c) *F is equi-asymptotically almost periodic.*

(iii) *G is precompact in* $AP(\mathbb{R}, X)$ *(in short* AP *) and* H *is precompact in* $C_0(\mathbb{R}, X)$ $(in short C₀)$ *, where*

$$
G = \{ f_{AP} : f \in F \} \text{ and } H = \{ f_{C_0} : f \in F \}.
$$

Proof

(i) \Rightarrow (ii) Let *F* be precompact in *AAP* (\mathbb{R}, \mathbb{X}). Then, obviously, for every $t \in \mathbb{R}$, ${f(t) : f \in F}$ is precompact in *X*. In addition, for every $\varepsilon > 0$, there exist $f_1, f_2, \ldots, f_k \in F$ such that for every $f \in F$,

$$
\min_{1 \le i \le k} \|f - f_i\| < \varepsilon,
$$

where k is a positive integer dependent on ε . Combining this with the fact that $(f_i)_{i=1}^k$ is equi-uniformly continuous and equi-asymptotically almost periodic, we know that (b) and (c) hold.

(ii) \Rightarrow (iii) Let (g_n) ⊂ *G*. For every *n*, there exist f_n ∈ *F* and h_n ∈ *H* such that $f_n = g_n + h_n$. By (a) and (b), applying Arzela–Ascoli theorem and choosing diagonal sequence, we can get a subsequence of (f_n) , which we still denote by (f_n) for convenience, such that $(f_n(t))$ is uniformly convergent on every compact subsets of R.

> Since (f_n) is equi-asymptotically almost periodic, for every $\varepsilon > 0$, there exists $l(\varepsilon)$, $M(\varepsilon) > 0$ such that for every $t \in \mathbb{R}$ with $|t| > M(\varepsilon)$, there is a

$$
\tau_t \in [M(\varepsilon) + 1 - t, M(\varepsilon) + 1 - t + l(\varepsilon)]
$$

satisfying

$$
||f_n(t + \tau_t) - f_n(t)|| < \frac{\varepsilon}{3}
$$
 (4.1)

for all $n \in \mathbb{N}$. Noting that $(f_n(t))$ is uniformly convergent on

$$
[-M(\varepsilon)-l(\varepsilon)-1, M(\varepsilon)+l(\varepsilon)+1],
$$

for the above $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m \ge n \ge N$ and $t \in [-M(\varepsilon) - l(\varepsilon) - 1, M(\varepsilon) + l(\varepsilon) + 1],$

$$
||f_m(t) - f_n(t)|| < \frac{\varepsilon}{3}.
$$
 (4.2)

Combining [\(4.1\)](#page-19-0) and [\(4.2\)](#page-19-1), for all $m \ge n \ge N$ and $t \in \mathbb{R}$ with $|t| >$ $M(\varepsilon)$, we have

$$
|| f_m(t) - f_n(t) || \le || f_m(t) - f_m(t + \tau_t) || + || f_m(t + \tau_t) - f_n(t + \tau_t) ||
$$

$$
+\|f_n(t+\tau_t)-f_n(t)\|\leq\varepsilon,
$$

which and [\(4.2\)](#page-19-1) yield that $(f_n(t))$ is uniformly convergent on R. In view of

$$
\{g_m(t) - g_n(t) : t \in \mathbb{R}\} \subset \overline{\{f_m(t) - f_n(t) : t \in \mathbb{R}\}}
$$

for all $m, n \in \mathbb{N}$, we conclude that $(g_n(t))$ is also uniformly convergent on \mathbb{R} , i.e. (g_n) is convergent in $AP(\mathbb{R}, X)$. So G is precompact in $AP(\mathbb{R}, X)$. In addition, it follows from the above proof that *F* is precompact, and thus *H* is also precompact.

 $(iii) \Rightarrow (i)$ The proof is straightforward.

Remark 8.37 Theorem [8.36](#page-18-0) can be seen as an extension of the corresponding compactness criteria for the subsets of $AP(\mathbb{R}, \mathbb{X})$ (cf. e.g., [22]).

Definition 8.38 $F \subset C_0(\mathbb{R}, X)$ is called equi- C_0 if

$$
\lim_{|t| \to \infty} \sup_{f \in F} ||f(t)|| = 0.
$$

Theorem 8.39 *The following two assertions are equivalent:*

(I) *F is equi-asymptotically almost periodic;*

(II) *G* is equi-almost periodic and *H* is equi- C_0 *, where*

$$
G = \{ f_{AP} : f \in F \} \text{ and } H = \{ f_{C_0} : f \in F \}.
$$

Proof The proof from (II) to (I) is straightforward. We will only give the proof from (I) to (II) by using the idea in the proof of [71, p. 24, Theorem 2.5].

Since *F* is equi-asymptotically almost periodic, for every $k \in \mathbb{N}$, there exist a constant $M_k > 0$ and a relatively dense set $T(F, k) \subset \mathbb{R}$ such that

$$
|| f(t + \tau) - f(t) || < \frac{1}{k}, \tag{4.3}
$$

for all $f \in F$, $t \in \mathbb{R}$ with $|t| > M_k$ and $\tau \in T(F, k)$ with $|t + \tau| > M_k$. Moreover, for every *f* ∈ *F* ⊂ *AAP* (\mathbb{R}, \mathbb{X}), noting that *f* is uniformly continuous, for the above $k \in \mathbb{N}$, there exists $\delta_k^f > 0$ such that

$$
|| f(t_1) - f(t_2)|| < \frac{1}{k}
$$
 (4.4)

for all $t_1, t_2 \in \mathbb{R}$ with $|t_1 - t_2| < \delta_k^f$.

Now, for every $t \in \mathbb{R}$ and $k \in \mathbb{N}$, we choose $\tau_k^t \in T(F, k)$ with $t + \tau_k^t > M_k$. Also, we denote

 \Box

$$
g_k^f(t) = f(t + \tau_k^t), \quad t \in \mathbb{R}, \ k \in \mathbb{N}, \ f \in F.
$$

Next, we divide the remaining proof into eight steps.

Step 1 For every $f \in F$, there holds

$$
\left\|g_k^f(t_1) - g_k^f(t_2)\right\| < \frac{5}{k} \tag{4.5}
$$

for all $k \in \mathbb{N}$, and $t_1, t_2 \in \mathbb{R}$ with $|t_1 - t_2| < \delta_k^f$. In fact, by (4.3) and (4.4) , we have

$$
\|g_k^f(t_1) - g_k^f(t_2)\| = \|f(t_1 + \tau_k^{t_1}) - f(t_2 + \tau_k^{t_2})\|
$$

\n
$$
\le \|f(t_1 + \tau_k^{t_1}) - f(t_1 + \tau_k^{t_1} + \tau)\|
$$

\n
$$
+ \|f(t_1 + \tau_k^{t_1} + \tau) - f(t_2 + \tau_k^{t_1} + \tau)\|
$$

\n
$$
+ \|f(t_2 + \tau_k^{t_1} + \tau) - f(t_2 + \tau)\|
$$

\n
$$
+ \|f(t_2 + \tau) - f(t_2 + \tau + \tau_k^{t_2})\|
$$

\n
$$
+ \|f(t_2 + \tau + \tau_k^{t_2}) - f(t_2 + \tau_k^{t_2})\| < \frac{5}{k},
$$

where $\tau \in T(F, k)$ satisfying

$$
\min\left\{t_1+\tau_k^{t_1}+\tau, t_2+\tau_k^{t_1}+\tau, t_2+\tau, t_2+\tau+\tau_k^{t_2}\right\} > M_k.
$$

Step 2 For every $k \in \mathbb{N}$, there holds

$$
||g_k^f(t+\tau) - g_k^f(t)|| < \frac{5}{k}
$$
 (4.6)

for all $f \in F$, $\tau \in T(F, k)$, and $t \in \mathbb{R}$. In fact, by using (4.3) , we have

$$
\|g_k^f(t+\tau) - g_k^f(t)\| = \|f(t+\tau + \tau_k^{t+\tau}) - f(t+\tau_k^t)\|
$$

\n
$$
\le \|f(t+\tau + \tau_k^{t+\tau}) - f(t+\tau + \tau_k^{t+\tau} + \tau')\|
$$

\n
$$
+ \|f(t+\tau + \tau_k^{t+\tau} + \tau') - f(t+\tau_k^{t+\tau} + \tau')\|
$$

\n
$$
+ \|f(t+\tau_k^{t+\tau} + \tau') - f(t+\tau')\|
$$

\n
$$
+ \|f(t+\tau') - f(t+\tau' + \tau_k^t)\|
$$

\n
$$
+ \|f(t+\tau' + \tau_k^t) - f(t+\tau_k^t)\| < \frac{5}{k},
$$

4 Equi-Asymptotically Almost Periodic Functions 101

where $\tau' \in T(F, k)$ satisfying

$$
\min \left\{ t + \tau + \tau_k^{t+\tau} + \tau', t + \tau_k^{t+\tau} + \tau', t + \tau', t + \tau' + \tau_k^t \right\} > M_k.
$$

Step 3 For every $n \in \mathbb{N}$, there holds

$$
\left\|g_m^f(t) - g_n^f(t)\right\| < \frac{4}{n} \tag{4.7}
$$

for all $f \in F$, $t \in \mathbb{R}$, and $m, n \in \mathbb{N}$ with $m \geq n$.

In fact, without loss of generality, we can assume that $M_{k+1} \ge M_k$ for all $k \in \mathbb{N}$. Then, by using (4.3) , we have

$$
\|g_m^f(t) - g_n^f(t)\|
$$

= $|| f(t + \tau_m^t) - f(t + \tau_n^t) ||$
 $\leq || f(t + \tau_m^t) - f(t + \tau_m^t + \tau) || + || f(t + \tau_m^t + \tau) - f(t + \tau_m^t + \tau + \tau_n^t) ||$
+ $|| f(t + \tau_m^t + \tau + \tau_n^t) - f(t + \tau + \tau_n^t) || + || f(t + \tau + \tau_n^t) - f(t + \tau_n^t) ||$
 $< \frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} \leq \frac{4}{n}$,

where $\tau \in T(F, n)$ satisfying

$$
\min\left\{t+\tau_m^t+\tau, t+\tau_m^t+\tau+\tau_n^t, t+\tau+\tau_n^t\right\} > M_m.
$$

Step 4 Let

$$
g^{f}(t) = \lim_{n \to \infty} g_{n}^{f}(t), \quad t \in \mathbb{R}, \ f \in F.
$$

By Step 3, we know that for every $f \in F$, g^f is well-defined. Moreover, it follows from Step 3 that for every $n \in \mathbb{N}$, there holds

$$
||g^f(t) - g_n^f(t)|| \le \frac{4}{n}
$$
 (4.8)

for all $f \in F$, R, and $n \in \mathbb{N}$.

Step 5 For every $f \in F$, g^f is uniformly continuous on R. In fact, by (4.5) and (4.8) , we have

$$
||g^f(t_1) - g^f(t_2)|| \le ||g^f(t_1) - g_n^f(t_1)|| + ||g_n^f(t_1) - g_n^f(t_2)||
$$

+
$$
||g_n^f(t_2) - g^f(t_2)|| \le \frac{4}{n} + \frac{5}{n} + \frac{4}{n} = \frac{13}{n},
$$

for all $n \in \mathbb{N}$ and $t_1, t_2 \in \mathbb{R}$ with $|t_1 - t_2| < \delta_n^f$. Step 6 ${g^f}_{f \in F}$ is equi-almost periodic.

By [\(4.6\)](#page-21-1) and [\(4.8\)](#page-22-0), for every $n \in \mathbb{N}$, we get

$$
||g^f(t+\tau) - g^f(t)|| \le ||g^f(t+\tau) - g_n^f(t+\tau)|| + ||g_n^f(t+\tau) - g_n^f(t)||
$$

+
$$
||g_n^f(t) - g^f(t)|| \le \frac{4}{n} + \frac{5}{n} + \frac{4}{n} = \frac{13}{n},
$$

for all $f \in F$, $\tau \in T(F, n)$, and $t \in \mathbb{R}$. Then, it follows that $\{g^f\}_{f \in F}$ is equialmost periodic.

Step 7 { $\{h^f\}_{f \in F}$ is equi-*C*₀, where $h^f(t) = f(t) - g^f(t)$ for all $f \in F$ and $t \in \mathbb{R}$. In fact, firstly, by Step 5, h^f ∈ $C(\mathbb{R}, X)$ for every f ∈ F ; secondly, for every *n* \in N, by [\(4.8\)](#page-22-0) and the definition of τ_n^t , we have

$$
||h^f(t)|| = ||f(t) - g^f(t)||
$$

\n
$$
\leq ||f(t) - g_n^f(t)|| + ||g_n^f(t) - g^f(t)||
$$

\n
$$
\leq ||f(t) - f(t + \tau_n^f)|| + \frac{4}{n}
$$

\n
$$
\leq \frac{1}{n} + \frac{4}{n} = \frac{5}{n},
$$

for all $f \in F$, $t \in \mathbb{R}$ with $|t| > M_n$. Thus, $\{h^f\}_{f \in F}$ is equi-*C*₀. Step 8 It follows from the above proof that $G = \{g^f\}_{f \in F}$ and $H = \{h^f\}_{f \in F}$.

This completes the proof.

 \Box

Bibliographical Notes Section [1](#page-0-1) in this chapter is in [51, 54]. Theorem [8.32](#page-17-0) is in [72] with a different proof. Section [3](#page-18-1) is a work by Ding et al. [24].