Chapter 8 Almost Periodic Functions with Values in a Locally Convex Space

1 Almost Periodic Functions

Definition 8.1 Let $E = E(\tau)$ be a complete Hausdorff locally convex space. A function $f : \mathbb{R} \to E$ is said to be almost periodic if for every neighborhood (of the origin) U, there exists a real number l > 0 such that every interval [a, a + l] contains at least one point *s* such that

$$f(t-s) - f(t) \in U, \ \forall t \in \mathbb{R}.$$

The numbers s depend on U and are called U-translation numbers, or U-almost periods of the function f.

Remark 8.2 In the case where *E* is a Banach space X with norm $\|\cdot\|$, Definition 8.1 can be rewritten as:

 $f : \mathbb{R} \to X$ is said to be almost periodic if for every $\varepsilon > 0$, there exists a real number l > 0 such that every interval [a, a + l] contains at least one point *s* such that

$$\sup_{t\in\mathbb{R}}\|f(t-s)-f(t)\|<\varepsilon.$$

The numbers s are called the ε -almost periods of f.

Remark 8.3

- (i) From Definition 8.1, we observe that for each neighborhood U, the set of all U-translation numbers is relatively dense in \mathbb{R} .
- (ii) It is obvious that every continuous periodic function $f: \mathbb{R} \to E$ is almost periodic.

We now present some elementary properties of almost periodic functions taking values in locally convex spaces.

Theorem 8.4 If $f, f_1, f_2 : \mathbb{R} \to E$ are almost periodic and λ is a scalar, then the following functions are also almost periodic:

(i) $f_1 + f_2;$ (ii) $\lambda f;$ (iii) \check{f} defined by $\check{f}(t) = f(-t)$ for every $t \in \mathbb{R}$.

Proof (i) and (ii) are obvious.

Let us prove (iii). Take U an arbitrary neighborhood of the origin. By almost periodicity of f, there exists l > 0 such that every interval [a, a + l] contains at least a point s such that

$$f(t-s) - f(t) \in U, \ \forall t \in \mathbb{R}.$$

If we put r = -t, we get

$$\check{f}(r-s) - \check{f}(r) = f(-r+s) - f(-r) = f(t+s) - f(t).$$

Therefore $\check{f}(r-s) - \check{f}(r) \in U$ for every $r \in \mathbb{R}$, which proves almost periodicity of \check{f} with -s as U-translation numbers.

We will denote by AP(E) the space of all almost periodic functions $f : \mathbb{R} \to E$.

The following two results are easy to prove (cf. [51, 54]):

Theorem 8.5 Let $f \in AP(E)$. Then f is uniformly continuous on \mathbb{R} .

Theorem 8.6 Let $f_n \in AP(E)$, n = 1, 2, ... and suppose that $f_n \to f$ uniformly in $t \in \mathbb{R}$. Then $f \in AP(E)$.

Theorem 8.7 If $f \in AP(E)$, then its range $\{f(t) \mid t \in \mathbb{R}\}$ is totally bounded in *E*.

Proof Let U be a neighborhood and V a symmetric neighborhood such that $V + V \subset U$; let l = l(V) as in Definition 8.1. By the continuity of f, the set $\{f(t) | t \in [0, l]\}$ is compact in E. But in a locally convex space, every compact set is totally bounded; therefore there exists $x_1, x_2, \ldots, x_n \in E$ such that for every $t \in [0, l]$, we have

$$f(t) \in \bigcup_{i=1}^{n} (x_i + V).$$

Take now an arbitrary $t \in \mathbb{R}$ and consider $s \in [-t, -t + l]$ a V-translation number of the function f. Then we have

$$f(t+s) - f(t) \in V.$$

Choose x_k among x_1, \ldots, x_n such that

$$f(t+s) \in x_k + V.$$

Let us write $f(t) - x_k = (f(t) - f(t + s)) + (f(t + s) - x_k)$. Then we have $f(t) - x_k \in V + V$, and therefore $f(t) - x_k \in U$, or $f(t) \in x_k + U$. Since t is an arbitrary real number, we conclude that

$$\{f(t) / t \in \mathbb{R}\} \subset \bigcup_{j=1}^{n} (x_j + U).$$

The proof is complete.

Remark 8.8 If $f \in AP(E)$ with *E* a Fréchet space, then its range is relatively compact in *E*, since in every complete metric space, relative compactness and totally boundedness are equivalent notions. We conclude in this case that every sequence $(f(t_n))$ contains a convergent subsequence $(f(t_n))$.

Theorem 8.9 Let *E* be a Fréchet space and $f \in AP(E)$. Then for every sequence of real numbers (s'_n) , there exists a subsequence (s_n) such that $(f(t + s_n))$ is uniformly convergent in $t \in \mathbb{R}$.

Proof Let (s_n) be a sequence of real numbers and consider the sequence of functions $f_{s_n} : \mathbb{R} \to E$ defined by $f_{s_n}(t) = f(t + s_n)$, n = 1, 2, ... Let $S = (\eta_n)$ be a countable dense set in \mathbb{R} . By Remark 8.8, we can extract from $(f(\eta_1 + s_n))$ a convergent subsequence, since the set $\{f(t) \mid t \in \mathbb{R}\}$ is relatively compact in E.

Let $(f_{s_1,n})$ be the subsequence of (f_n) which converges at η_1 . We apply the same argument to the sequence $(f_{s_1,n})$ to choose a subsequence $(f_{s_2,n})$ which converges at η_2 . We continue the process and consider the diagonal sequence $(f_{s_n,n})$ which converges at η_n in S.

Call this last sequence (f_{r_n}) . Now let us show that it is uniformly convergent on \mathbb{R} : that is, for every neighborhood U, there exists N = N(U) such that

$$f(t+r_n) - f(t+r_m) \in U$$

for every $t \in \mathbb{R}$, if n, m > N.

Consider now an arbitrary neighborhood U and a symmetric neighborhood V such that V + V + V + V = U. Let l = l(V) > 0 as in Definition 8.1. Since f is uniformly continuous on \mathbb{R} (Theorem 8.5), we can find $\delta = \delta(V) > 0$ such that

$$f(t) - f(t') \in V$$

for every $t, t' \in \mathbb{R}$ with $|t - t'| < \delta$.

Let us divide the interval [0, l] into ν subintervals of lengths smaller than δ and choose in each interval a point of *S*, obtaining $S_0 = \{\xi_1, \ldots, \xi_\nu\}$. Since S_0 is a finite set, (f_{r_n}) is uniformly convergent over S_0 ; therefore there exists a natural number N = N(V) such that

$$f(\xi_i + r_n) - f(\xi_i + r_m) \in V$$

for every $i = 1, ..., \nu$, and for n, m > N.

Let $t \in \mathbb{R}$ be arbitrary and $s \in [-t, -t + l]$ such that $f(t + s) - f(t) \in V$. Let us choose ξ_i such that $|t + s - \xi_i| < \delta$; then

$$f(t+s+r_n) - f(\xi_i + r_n) \in V$$

for every n.

Let us write

$$f(t+r_n) - f(t+r_m) = (f(t+r_n) - f(r+r_n+s)) + (f(r+r_n+s) - f(\xi_i+r_n)) + (f(\xi_i+r_n) - f(\xi_i+r_m)) + (f(\xi_i+r_m) - f(t+r_m+s)) + (f(t+r_m+s) - f(t+r_m)).$$

Then it appears

$$f(t+r_n) - f(t+r_m) \in V + V + V + V \subset U$$

if n, m > N, which proves the uniform convergence of $(f(t + r_n))$.

We are now ready to establish the following important result called also the **Bochner's criterion**:

Theorem 8.10 Let *E* be a Fréchet space. Then $f \in AP(E)$ if and only if for every sequence of real numbers (s'_n) , there exists a subsequence (s_n) such that $(f(t+s_n))$ converges uniformly in $t \in \mathbb{R}$.

Proof The condition is necessary by Theorem 8.9.

Now we need to prove that it is sufficient. Suppose by contradiction that $f \notin AP(E)$. Then there exists a neighborhood U such that for every real number l > 0, there exists an interval of length l which contains no U-translation number of f, or there exists an interval [-a, -a + l] such that for every $s \in [-a, -a + l]$, there exists $t = t_s$ such that $f(t + s) - f(t) \notin U$.

Let us consider $s_1 \in \mathbb{R}$ and an interval (a_1, b_1) with $b_1 - a_1 > 2|s_1|$ which contains no *U*-translation number of *f*. Now let $s_2 = \frac{(a_1-b_1)}{2}$; then $s_2-s_1 \in (a_1, b_1)$ and therefore $s_2 - s_1$ cannot be a *U*-translation number of *f*.

Let us consider another interval (a_2, b_2) with $b_2 - a_2 > 2(|s_1| + |s_2|)$, which contains no *U*-translation number of *f*. Let $s_3 = \frac{(a_2-b_2)}{2}$; then $s_3 - s_1, s_3 - s_2 \in (a_2, b_2)$ and therefore $s_3 - s_1$ and $s_3 - s_2$ cannot be *U*-translation numbers of *f*.

We proceed and obtain a sequence (s_n) of real numbers such that no $s_m - s_n$ is a *U*-translation number of *f*, that is

$$f(t+s_m-s_n)-f(t)\not\in U.$$

Putting $\sigma = t - s_n$, we get

$$f(\sigma + s_m) - f(\sigma + s_n) \notin U. \tag{1.1}$$

Suppose there exists a subsequence (s'_n) of (s_n) such that $(f(t + s'_n))$ converges uniformly in $t \in \mathbb{R}$. Then for every neighborhood V, there exists a natural number N = N(V) such that, if n, m > N (we may take m > n), we have

$$f(t+s'_m) - f(t+s'_n) \in V$$

for every $t \in \mathbb{R}$. This contradicts (2.1) and so establishes the sufficiency of the condition.

The proof is complete.

Theorem 8.11 Let $f \in AP(E)$. Then the following hold true:

(i) $Af(t) \in AP(E)$ for every linear bounded operator A on E. (ii) $vf \in AP(E)$ where $v : \mathbb{R} \to \Phi$ is almost automorphic.

Proof Trivial, cf for instance [51, 54].

Using the Bochner's criterion, one can easily prove the following:

Theorem 8.12 Let *E* be a Fréchet space and $f_1, f_2 \in AP(E)$. Then the function $F : \mathbb{R} \to E \times E$ defined by $F(t) = (f_1(t), f_2(t))$ is also almost periodic.

Corollary 8.13 Let $f_1, f_2 \in AP(E)$ where E is a Fréchet space. Then for every neighborhood U, f_1 and f_2 have common U-translation numbers.

Proof Let U be a neighborhood in E. Then by Theorem 8.12 the function $f(t) = (f_1(t), f_2(t)) \in AP(E \times E)$. Consider now s a U-translation number of f; then $f(t+s) - f(t) \in U \times U$ for every $t \in \mathbb{R}$, and therefore $f_i(t+s) - f_i(t) \in U$, i = 1, 2 for every $t \in \mathbb{R}$. s is a U-translation number for f_1 and f_2 .

Theorem 8.14 Let E be a Fréchet space. Then AP(E) is also a Fréchet space.

Proof Consider $BC(\mathbb{R}, E)$ the linear space of all bounded and continuous functions $\mathbb{R} \to E$ and denote by (p_n) , $n \in \mathbb{N}$, the family of seminorms which generates the topology of E. Without loss of generality we may assume that $p_n \le p_{n+1}$, pointwise for $n \in \mathbb{N}$. Define

$$q_n(f) = \sup_{t \in \mathbb{R}} p_n(f(t)), \ n \in \mathbb{N}.$$

Obviously (q_n) forms a family of seminorms on $BC(\mathbb{R}, E)$. Moreover, it is clear that $q_n \leq q_{n+1}$ for $n \in \mathbb{N}$. Define the pseudonorm

$$|f| := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{q_n(f)}{1+q_n(f)}, \quad f \in BC(\mathbb{R}, E).$$

Obviously $BC(\mathbb{R}, E)$ with the above defined pseudonorm is a Fréchet space. It is also a closed linear subspace of $BC(\mathbb{R}, E)$. This completes the proof.

2 Weakly Almost Periodic Functions

Definition 8.15 Let *E* be a complete Hausdorff locally convex space. A weakly continuous function $f : \mathbb{R} \to E$ is said to be weakly almost periodic if the numerical function $F(t) = (x^*f)(t)$ is almost periodic for every $x^* \in E^*$ the dual space of *E*.

We will denote by WAP(E) the set of all weakly almost periodic functions $\mathbb{R} \to E$.

Remark 8.16

- (i) Every weakly almost periodic function is weakly bounded.
- (ii) Every almost periodic function is weakly almost periodic.

Theorem 8.17 Let $f \in WAP(E) \cap C(\mathbb{R}, E)$. Assume that the set $\{F(t) / t \in \mathbb{R}\}$ be weakly bounded where the function $F : \mathbb{R} \to E$ is defined by $F(t) = \int_0^t f(s) ds$. Then $F \in WAP(E)$.

Proof We first observe that the integral exists in *E* since *f* is (strongly) continuous on \mathbb{R} . Take $x^* \in E^*$, so $x^* f \in AP(\mathbb{R})$. By the continuity of x^* , $(x^*F)(t) = x^* \int_0^t f(s) ds = \int_0^t (x^*f)(s) ds$ which is bounded by assumption and so is almost periodic. The Theorem is proved.

Theorem 8.18 Let *E* be a Fréchet space and $f : \mathbb{R} \to E$. Then $f \in AP(E)$ if and only if $f \in WAP(E)$ and its range is relatively compact.

Proof The condition is necessary by Remarks 8.8 and 8.16. Let us show by contradiction that it is sufficient.

Suppose there exists $t_0 \in \mathbb{R}$ such that f is discontinuous at t_0 , so we can find a neighborhood U and two sequences of real numbers (s'_n) and (s''_n) such that

$$\lim_{n \to \infty} s'_n = 0 = \lim_{n \to \infty} s''_n$$

and

$$f(t_0 + s'_n) - f(t_0 + s''_n) \notin U, \ \forall n \in \mathbb{N}.$$
 (2.1)

By the relative compactness of $\{f(t) \mid t \in \mathbb{R}\}$, we can extract (r'_n) and (r''_n) from (s'_n) and (s''_n) respectively, such that

$$\lim_{n \to \infty} f(t_0 + r'_n) = a_1 \in E$$

and

2 Weakly Almost Periodic Functions

$$\lim_{n \to \infty} f(t_0 + r_n'') = a_2 \in E.$$

Consequently, $a_1 - a_2 \notin U$ by (2.1), and using the Hahn–Banach Theorem (Proposition 1.41 Chap. 1), we can find $x^* \in E^*$ such that $x^*(a_1 - a_2) \neq 0$, hence $x^*(a_1) \neq x^*(a_2)$. By the continuity of x^* , we have

$$x^*(a_1) = \lim_{n \to \infty} (x^*f)(t_0 + r'_n) = \lim_{n \to \infty} (x^*f)(t_0 + r''_n) = x^*(a_2)$$

which is a contradiction. So we conclude that f is continuous on \mathbb{R} .

To prove the almost periodicity of *f* we need the following:

Lemma 8.19 Let *E* be a Fréchet space and $\phi \in AP(E)$. Let (s_n) be a sequence of real numbers such that $\lim_{n\to\infty} \phi(s_n + \eta_k)$ exists for each k = 1, 2, ... where the set (η_k) is dense in \mathbb{R} . Then the sequence $(\phi(t + s_n))$ is uniformly convergent in $t \in \mathbb{R}$.

Proof (of Lemma 8.19) Suppose by contradiction that $(\phi(t + s_n))$ is not uniformly convergent in $t \in \mathbb{R}$. Then there exists a neighborhood U such that for every N = 1, 2, ... there exists $n_N, m_N > N$ and $t_N \in \mathbb{R}$ such that

$$\phi(t_N + s_{n_N}) - \phi(t_N + s_{m_N}) \notin U.$$

By the Bochner's criterion (Theorem 8.10), we can extract two sequences $(s'_{n_N}) \subset (s_{n_N})$ and $(s'_{m_N}) \subset (s_{m_N})$ such that

$$\lim_{N \to \infty} \phi(t + s'_{n_N}) = g_1(t) \text{ uniformly in } t \in \mathbb{R}$$

and

$$\lim_{N \to \infty} \phi(t + s'_{m_N}) = g_2(t) \text{ uniformly in } t \in \mathbb{R}$$

Let V be a symmetric neighborhood such that $V + V + V \subset U$. Then there exists $N_0 = N_0(V)$ such that if $N > n_0$, we have

$$\phi\left(t_N + s'_{n_N}\right) - g_1(t_N) \in V$$

and

$$\phi\left(t_N+s'_{m_N}\right)-g_2(t_N)\in V.$$

We deduce that $g_1(t_N) - g_2(t_N) \notin V$, otherwise we should have

$$\phi\left(t_N+s'_{n_N}\right)-\phi\left(t_N+s'_{m_N}\right)\in U$$

which contradicts (2.1).

Indeed if $g_1(t_N) - g_2(t_N) \in V$, then by writing

$$\phi(t_N + s'_{n_N}) - \phi(t_N + s'_{m_N}) = \phi(t_N + s'_{n_N}) - g_1(t_N) + g_1(t_N) - g_2(t_N) + g_2(t_N) - \phi(t_N + s'_{m_N})$$

we obtain

$$\phi(t_N + s'_{n_N}) - \phi(t_N + s'_{m_N}) \in V + V + V \subset U.$$

Thus we have found a symmetric neighborhood V with the property that if N is large enough, there exists $t_N \in \mathbb{R}$ such that

$$g_1(t_N) - g_2(t_N) \notin V.$$

But this is impossible, because if we take a subsequence (ξ_k) of (η_k) with $\xi_k \to t_N$, then we would obtain

$$\lim_{N \to \infty} \phi\left(\xi_k + s'_{n_N}\right) = \lim_{N \to \infty} \phi\left(\xi_k + s'_{m_N}\right)$$

for every k.

Therefore $g_1(\xi_k) = g_2(\xi_k)$ for every *k*. By the continuity of g_1 and g_2 , $g_1(t_N) = g_2(t_N)$, thus $g_1(t_N) - g_2(t_N)$ belongs to every neighborhood.

The lemma is proved.

Proof (of Theorem 8.18 (continued)) Consider a sequence of real numbers (h_n) and a sequence of rational numbers (η_r) . By the relative compactness of $\{f(t) | t \in \mathbb{R}\}$, we can extract a subsequence (h_n) (we do not change the notation) such that for each r = 1, 2, ...

$$\lim_{n \to \infty} f(\eta_r + h_n) = x_r$$

exists in *E*. Now the sequence $(f(\eta_r + h_n))$ is uniformly convergent in η_r , or we could find a neighborhood *U* and three subsequences $(\xi_r) \subset (\eta_r)$, $(h'_r) \subset (h_r)$, and $(h''_r) \subset (h_r)$ with

$$f(\xi_r + h'_r) - f(\xi_r + h''_r) \notin U.$$
(2.2)

By the relative compactness of $\{f(t) \mid t \in \mathbb{R}\}$, we may say that

$$\lim_{r \to \infty} f\left(\xi_r + h'_r\right) = b' \in E$$
$$\lim_{r \to \infty} f\left(\xi_r + h''_r\right) = b'' \in E.$$

Then, using (2.2), we get

$$b' - b'' \not\in U.$$

By the Hahn–Banach Theorem, there exists $x^* \in E^*$ such that

$$x^*(b') \neq x^*(b'').$$

Now $x^* f \in AP(\mathbb{R})$, therefore it is uniformly continuous over \mathbb{R} .

Let us consider the functions (φ_n) defined on \mathbb{R} by

$$\varphi_n(t) := (x^* f)(t + h_n), \quad n = 1, 2, \dots$$

The equality

$$\varphi_n(t+s) - \varphi_n(t) = (x^*f)(t+s+h_n) - (x^*f)(t+h_n)$$

shows the almost periodicity of each φ_n , n = 1, 2, ..., if *s* is seen as a *U*-translation number of $(x^*f)(t)$. Also the sequence of functions (φ_n) is equicontinuous over \mathbb{R} because $(x^*f)(t)$ is uniformly continuous on \mathbb{R} .

Since

$$\lim_{n\to\infty}f(\eta_r+h_n)=x_r,$$

we get

$$\lim_{n \to \infty} (x^* f)(n_r + h_n) = x^* x_r$$

for every r = 1, 2, ... Therefore by Lemma 8.19, $((x^*f)(\eta_r + h_n))$ is uniformly convergent in t.

Consider now the sequences $(\xi_r + h'_r)$ and $(\xi_r + h''_r)$. By the Bochner's criterion, we can extract a subsequence from each sequence, respectively, such that, using the same notations, $((x^*f)(t + \xi_r + h'_r))$ and $((x^*f)(t + \xi_r + h''_r))$ are uniformly convergent in $t \in \mathbb{R}$.

Let us now prove that

$$\lim_{r \to \infty} (x^* f)(t + \xi_r + h'_r) = \lim_{r \to \infty} (x^* f)(t + \xi_r + h''_r).$$

Write $(x^* f)(t + \xi_r + h'_r) - (x^* f)(t + \xi_r + h''_r)$ as follows:

$$\begin{aligned} & (x^*f)(t+\xi_r+h'_r)-(x^*f)(t+\xi_r+h''_r) \\ &= (x^*f)(t+\xi_r+h'_r)-(x^*f)(t+\xi_r+h_r) \\ & +(x^*f)(t+\xi_r+h_r)-(x^*f)(t+\xi_r+h''_r) \end{aligned}$$

and consider the following inequality (IN):

$$\begin{aligned} |(x^*f)(t+\xi_r+h'_r)-(x^*f)(t+\xi_r+h''_r)| \\ &\leq |(x^*f)(t+\xi_r+h'_r)-(x^*f)(t+\xi_r+h_r)| \\ &+ |(x^*f)(t+\xi_r+h_r)-(x^*f)(t+\xi_r+h''_r)| \end{aligned}$$

which holds true for r = 1, 2, ...

Let $\varepsilon > 0$ be given. Since $((x^*f)(t + h_r))$ is uniformly convergent in t, we can choose η_{ε} such that for $r, s > \eta_{\varepsilon}$, we obtain

$$|(x^*f)(t+h_s)-(x^*f)(t+h_r)|<\frac{\varepsilon}{2}, \quad \forall t\in\mathbb{R}.$$

So, replacing t by $t + \xi_r$ gives,

$$|(x^*f)(t+\xi_r+h_s)-(x^*f)(t+\xi_r+h_r)|<\frac{\varepsilon}{2},$$

and consequently

$$|(x^*f)(t+\xi_r+h'_r)-(x^*f)(t+\xi_r+h_r)| < \frac{\varepsilon}{2},$$
$$|(x^*f)(t+\xi_r+h''_r)-(x^*f)(t+\xi_r+h_r)| < \frac{\varepsilon}{2}.$$

The inequality (IN) above gives

$$|(x^*f)(t+\xi_r+h'_r)-(x^*f)(t+\xi_r+h''_r)|<\varepsilon, \ \forall t$$

which proves that

$$\lim_{r \to \infty} (x^* f)(t + \xi_r + h'_r) = \lim_{r \to \infty} (x^* f)(t + \xi_r + h''_r)$$

which contradicts $x^*(b') \neq x^*(b'')$ obtained earlier and uniform continuity of $(f(\eta_r + h_n))$ as well.

If i, j > N, we have

$$f(\eta_r + h_i) - f(\eta_r + j) \in U.$$

This proves that $f \in AP(E)$ by the Bochner's criterion.

Theorem 8.20 Let *E* be a Fréchet space. If $f \in AP(E)$ and $\{F(t) / t \in \mathbb{R}\}$ is relatively compact in *E* where $F(t) = \int_0^t f(s) ds$, then $F \in AP(E)$.

Proof This is immediate by Theorems 8.17 and 8.18.

Theorem 8.21 Let *E* be a complete locally convex space and $f \in AP(E)$. If the derivative f' exists and is uniformly continuous on \mathbb{R} , then $f' \in AP(E)$.

Proof This is similar to the proof of the almost automorphic case (Theorem 4.1). We consider the sequence of almost periodic functions $(n(f(t + \frac{1}{n}) - f(t)))$ and let $U = U(\varepsilon; p_i, 1 \le i \le k)$ be a neighborhood. Since f'(t) is uniformly continuous on \mathbb{R} , we can choose $\delta = \delta(U) > 0$ such that

$$f'(t_1) - f(t_2) \in U$$

for every t_1, t_2 such that $|t_1 - t_2| < \delta$. Let us write

$$f'(t) - n\left(f\left(t + \frac{1}{n}\right) - f(t)\right) = n\int_0^{\frac{1}{n}} (f'(t) - f'(t+s))ds.$$

Then if $N = N(U) > \frac{1}{n}$ and n > N, we would obtain

$$p_i\left[f'(t) - n\left(f\left(t + \frac{1}{n}\right) - f(t)\right)\right] \le n \int_0^{\frac{1}{n}} p_i\left[(f'(t) - f'(t+s))\right] ds < \varepsilon$$

for every seminorm p_i and every $t \in \mathbb{R}$. That shows that the sequence of almost periodic functions $\left(n\left(f(t+\frac{1}{n})-f(t)\right)\right)$ converges uniformly to f'(t) on \mathbb{R} . By Theorem 8.6, it follows that $f' \in AP(E)$.

Theorem 8.22 If $f : \mathbb{R} \to E$ (*E a Fréchet space*) is weakly bounded, then it is bounded.

Proof For f to be weakly bounded means $\sup_{t \in \mathbb{R}} |x^*f(t)| < \infty$ for every $x^* \in E^*$. Suppose $f(\mathbb{R})$ is not bounded. Then there would exist a seminorm p such that $p(f(t_n)) \to \infty$ as $n \to \infty$ for some sequence of real numbers (t_n) .

Let E_p be the completion of the normed space E/kerp in the norm p. So E_p is a Banach space and $\tilde{f}(t_n) = f(t_n)/kerp$ is unbounded in E_p . Consequently there exists $\varphi \in E_p^*$ such that $|\varphi(\tilde{f}(t_n))| \to \infty$ as $n \to \infty$.

The natural map $J : E \to E_p$ is continuous, so its adjoint $J^* : E_p^* \to E^*$ is continuous. Finally setting $\psi = J^*(\varphi) \in E^*$, we have

$$|\psi(f(t_n))| = |J^*(\varphi)(f(t_n))| = |\varphi(f(t_n))| \to \infty$$

as $n \to \infty$. This completes the proof.

Theorem 8.23 Let *E* be a Fréchet space, $f \in WAP(E)$ and $A \in L(E)$ a bounded linear operator on *E*. Then $Af \in WAP(E)$.

Proof Obvious. We leave it to the reader.

Proposition 8.24 Let *E* be a complete locally convex space and $f \in AP(E)$. Then for every sequence of real numbers (s_n) , there exists a subsequence (s'_n) such that for every neighborhood *U*,

$$f(t+s'_n) - f(t+s'_m) \in U$$

for every $t \in \mathbb{R}$ and every n, m.

Proof Let $U = U(\varepsilon; p_i, 1 \le i \le n)$ and $V = V(\frac{\varepsilon}{3}; p_i, 1 \le i \le n)$ be a symmetric neighborhood such that $V + V + V \subset U$. By the definition of almost periodicity, there exists a number l = l(V) > 0 (depending also on U) such that every compact interval of length l contains a number τ such that

$$f(t+\tau) - f(t) \in V$$

for every $t \in \mathbb{R}$.

Consider now a given sequence of real numbers (s_n) . For each s_n , we can find τ_n and σ_n such that $s_n = \tau_n + \sigma_n$ with τ_n a *V*-translation number of *f* and $\sigma_n \in [0, l]$. In fact it suffices to take $\tau_n \in [s_n - l, s_n]$ and then $\sigma_n = s_n - \tau_n$.

Since f is uniformly continuous, there exists $\delta = \delta(\varphi)$ such that

$$f(t') - f(t'') \in V$$

for all t', t'' with $|t' - t''| < 2\delta$.

Note that $\sigma_n \in [0, l]$ for all *n*. Hence by the Bolzano–Weierstrass Theorem, the sequence (σ_n) has a convergent subsequence, say (σ_{n_k}) . Let $\sigma = \lim_{k \to \infty} \sigma_{n_k}$, which shows that $\sigma \in [0, l]$.

Now consider the subsequence of (σ_{n_k}) (we use the same notation) with

$$\sigma - \delta \leq \sigma_{n_k} \leq \sigma + \delta, \ k = 1, 2, \dots$$

and let (s_{n_k}) be the corresponding subsequence of (s_n) with

$$s_{n_k} = \tau_{n_k} + \sigma_{n_k}, \ k = 1, 2, \dots$$

Let us prove that

$$f(t+s_{n_k}) - f(t+s_{n_i}) \in U$$

for all t and all k, j. For this, let us write

$$f(t + s_{n_k}) - f(t + s_{n_j}) = f(t + \tau_{n_k} + \sigma_{n_k}) - f(t + \sigma_{n_k}) + f(t + \sigma_{n_k}) - f(t + \sigma_{n_j}) + f(t + \sigma_{n_j}) - f(t + \tau_{n_j} + \sigma_{n_j}).$$

Because τ_{n_k} and τ_{n_i} are V-translation numbers of f, we have

$$f(t + \tau_{n_k} + \sigma_{n_k}) - f(t + \sigma_{n_k}) \in V$$

and

$$f(t + \sigma_{n_i}) - f(t + \tau_{n_i} + \sigma_{n_i}) \in V$$

for every t and every k, j. Also

$$f(t + \sigma_{n_k}) - f(t + \sigma_{n_i}) \in V$$

for every t and every k, j, since

$$|(t+\sigma_{n_k})-(t+\sigma_{n_j})|=|\sigma_{n_k}-\sigma_{n_j}|\leq |\sigma_{n_k}-\sigma|+|\sigma-\sigma_{n_j}|\leq 2\delta.$$

The result is complete if we set $s'_k = s_{n_k}$, k = 1, 2, ...

Theorem 8.25 Let *E* be a Fréchet space and $(T(t))_{t \in \mathbb{R}}$ be an equicontinuous C_0 group of linear operators with $\{T(t)x; t \in \mathbb{R}\}$ relatively compact in *E* for every $x \in E$. Assume also that $f : \mathbb{R} \to E$ is a function with a relatively compact range in *E*. Then $\{T(t)f(t): t \in \mathbb{R}\}$ is relatively compact in *E*.

Proof Let (t''_n) be a sequence of real numbers. Since the range of f(t) is relatively compact in E, we can extract a subsequence $(t'_n) \subset (t''_n)$ such that

$$\lim_{n \to \infty} f(t'_n) = x, \text{ exists in } E.$$

Further, by the assumption on T(t), we can find a subsequence $(t_n) \subset (t'_n)$ such that $(T(t_n)x)$ is convergent, thus a Cauchy sequence in *E*.

Let us write

$$T(t_n) f(t_n) - T(t_m) f(t_m) = [T(t_n) - T(t_m)][f(t_n) - x] + [(T(t_n) - T(t_m))x] + T(t_m)[f(t_n) - f(t_m)].$$

For an arbitrary seminorm *p* we have

$$p(T(t_n)f(t_n) - T(t_m)f(t_m)) \le p([T(t_n) - T(t_m)][f(t_n) - x]) + p([(T(t_n) - T(t_m))x]) + p(T(t_m)[f(t_n) - f(t_m)]).$$

Using the equicontinuity of T(t), we can find a seminorm q such that

$$p(T(t_m)[f(t_n) - f(t_m)]) \le q(f(t_n) - f(t_m))$$

and

$$p([T(t_n) - T(t_m)][f(t_n) - x]) \le 2q(f(t_n) - x).$$

Now choose *n* large enough so that

$$q(f(t_n) - f(t_m)) < \frac{\varepsilon}{3}q(f(t_n) - x) < \frac{\varepsilon}{3}$$

and

$$q([T(t_n) - T(t_m)]x) < \frac{\varepsilon}{3}$$
$$p(T(t_n)f(t_n) - T(t_m)) < \varepsilon,$$

which shows that $(T(t_n)f(t_n))$ is a Cauchy sequence, thus convergent. The theorem is proved.

Theorem 8.26 Let *E* be a Fréchet space and consider an equicontinuous C_0 -group of linear operators $(T(t))_{t \in \mathbb{R}}$ such that $T(t)x : \mathbb{R} \to E$ is almost periodic for every $x \in E$. Suppose also that $f \in AP(E)$. Then $T(t)f(t) \in AP(E)$.

Proof Consider $U = U(\varepsilon; p_i, 1 \le i \le n)$ be a given neighborhood of the origin. Because of the equicontinuity of T(t), one can find, for each semi-norm p_i , a seminorm q_i such that

$$p_i(T(t)x) \le q_i(x)$$

for every $t \in \mathbb{R}$ and $x \in E$. Consider also the symmetric neighborhood

$$V = V\left(\frac{\varepsilon}{4}; p_i, q_i, 1 \le i \le n\right).$$

Then $V + V + V + V \subset U$. Since $\{f(t) : t \in \mathbb{R}\}$ is totally bounded, there exists t_1, \ldots, t_v such that

$$f(t) \in \bigcup_{k=1}^{\nu} (f(t_k) + V)$$

for every $t \in \mathbb{R}$.

Consider now the almost periodic functions

$$f(t), T(t)(f(t_k)), k = 1, 2, \dots, \nu.$$

These are the same V-translation numbers by Corollary 8.13; therefore we can find a number l = l(V) > 0 such that any interval [a, a+l] contains at least one number *s* such that

$$f(t+s) - f(s) \in V$$
 for every $t \in \mathbb{R}$, (2.3)

$$T(t+s)f(t_k) - T(t)f(t_k) \in V \text{ for every } t \in \mathbb{R}$$
(2.4)

and for every $k = 1, 2, \ldots, \nu$.

Take now an arbitrary $t \in \mathbb{R}$. Then there exists $(1 \le j \le v)$ such that

$$f(t) \in f(t_i) + V. \tag{2.5}$$

Write

$$T(t+s)f(t+s) - T(t)f(t) = T(t+s)(f(t+s) - f(t)) +T(t+s)(f(t) - f(t_j)) +T(t+s)f(t_j) - T(t)f(t_j) +T(t)(f(t_j) - f(t)).$$

For every seminorm p_i , we can find a seminorm q_i such that

$$p_i[T(t+s)f(t+s) - T(t)f(t)] \le q_i(f(t+s) - f(t)) +q_i(f(t) - f(t_j)) + p_i(T(t+s)f(t_j)) -T(t)f(t_j)) + q_i(f(t_j) - f(t)) < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon$$

using (2.3), (2.4), and (2.5) above. Thus we have

$$T(t+s)f(t+s) - T(t)f(t) \in U$$

for every $t \in \mathbb{R}$, which establishes the almost periodicity of T(t) f(t).

Definition 8.27 A Fréchet space *E* is said to be perfect if every bounded function $f : \mathbb{R} \to E$ with an almost periodic derivative f' is necessarily almost periodic.

Example 8.28 Denote by *s* the linear space of all real sequences

$$s := \{s = (x_n) / x_n \in \mathbb{R}, n = 1, 2, \ldots\}.$$

For each $n \in \mathbb{N}$, define $p_n(x) := |x_n|$, $x \in s$. Obviously p_n is a seminorm defined on *s*. Now define $q_n := p_1 \lor p_2 \lor \ldots \lor p_n$ for $n \in \mathbb{N}$. We have $q_n \le q_{n+1}$ for $n \in \mathbb{N}$. The space *s* considered with the family of seminorms (q_n) is a Fréchet space. Moreover, it can be proved (cf. [1] 17.7 p. 210) that each closed and bounded

subset of s is compact. Thus, in particular, s is not a Banach space. Moreover in view of Theorem 8.20, s is perfect.

Definition 8.29 A function $f \in C(\mathbb{R}, \mathbb{X})$ is called periodic if there exists l > 0 such that

$$f(t+l) = f(t), \quad \forall t \in \mathbb{R}.$$

Here, l is called a period of f. We denote the collection of all such functions by $P(\mathbb{X})$. For $f \in P(\mathbb{X})$, we call l_0 the fundamental period if l_0 is the smallest period of f.

Remark 8.30 Similar to the proof in [22, p. 1], it is not difficult to show that if $f \in P(\mathbb{X})$ is not constant, then f has the fundamental period.

Theorem 8.31 ([72]) Let X be a Banach space with norm $\|\cdot\|$, then P(X) is a set of first category in AP(X).

Proof For $n = 1, 2, \ldots$, we denote

$$P_n = \{ f \in C(\mathbb{R}, \mathbb{X}) : \exists l \in [n, n+1] \text{ such that } f(t+1) = f(t), \forall t \in \mathbb{R} \}.$$

Then, it is easy to see that

$$P(\mathbb{X}) = \bigcup_{n=1}^{\infty} P_n$$

We divide the remaining proof into two steps.

Step 1 Every P_n is a closed subset of $AP(\mathbb{X})$.

Let $f \in AP(\mathbb{X}) \setminus P_n$. Then, for every $l \in [n, n + 1]$, there exists $t_l \in \mathbb{R}$ such that $f(t_l + l) \neq f(t_l)$. Denote

$$\varepsilon_l := \frac{1}{4} \| f(t_l + l) - f(t_l) \| > 0, \quad l \in [n, n+1]$$

In addition, due to the continuity of f, for every $l \in [n, n+1]$, there exists $\delta_l > 0$ such that

$$\|f(t_l+s) - f(t_l)\| \ge 3\varepsilon_l, \quad \forall s \in (l-\delta_l, l+\delta_l).$$
(2.6)

Obviously, we have

$$[n, n+1] \subset \bigcup_{l \in [n, n+1]} (l - \delta_l, l + \delta_l).$$

Then, by the Heine-Borel theorem, there exists $l_1, \ldots l_k \in [n, n + 1]$ such that

2 Weakly Almost Periodic Functions

$$[n, n+1] \subset \bigcup_{i=1}^{k} (l_i - \delta_{l_i}, l_i + \delta_{l_i}),$$

where k is a fixed positive integer. Letting $\varepsilon = \min_{1 \le i \le k} \{\varepsilon_{l_i}\}$, and

$$N(f,\varepsilon) := \{g \in AP(\mathbb{X}) : \|g - f\|_{AP(X)} < \varepsilon\},\$$

for every $g \in N(f, \varepsilon)$, we claim that $g \notin P_n$. In fact, for every $l \in [n, n + 1]$, there exists $i \in \{1, ..., k\}$ such that

$$l \in (l_i - \delta_{l_i}, l_i + \delta_{l_i}).$$

Then, by (4.3), we have

$$\|f(t_{l_i}+l) - f(t_{l_i})\| \ge 3\varepsilon_{l_i} \ge 3\varepsilon_{l_i}$$

which yields that

$$\begin{aligned} \|g(t_{l_{i}}+l) - g(t_{l_{i}})\| &\geq \|f(t_{l_{i}}+l) - f(t_{l_{i}})\| - \|f(t_{l_{i}}+l) - g(t_{l_{i}}+l)\| \\ &- \|f(t_{l_{i}}) - g(t_{l_{i}})\| \geq 3\varepsilon - \varepsilon - \varepsilon = \varepsilon > 0, \end{aligned}$$

where $||g - f||_{AP(\mathbb{R})} < \varepsilon$ was used. So, we know that $N(f, \varepsilon) \subset AP(\mathbb{X}) \setminus P_n$, which means that P_n is a closed subset of $AP(\mathbb{X})$.

Step 2 Every P_n has an empty interior.

It suffices to prove that for every $f \in P_n$ and $\delta > 0$, $N(f, \delta) \bigcap (AP(X) \setminus P_n) \neq \emptyset$. Now let $f \in P_n$ and $\delta > 0$. In the following, we discuss by two cases:

Case I f is constant.

We denote

$$f_{\delta}(t) = \frac{\cos t + \cos(\sqrt{2}t)}{3} \cdot \delta \cdot x_0 + f(t), \quad t \in \mathbb{R}$$

where $x_0 \in \mathbb{X}$ is some constant with $||x_0|| = 1$. Then $f_{\delta} \in N(f, \delta)$, and $f_{\delta} \notin P_n$ since f_{δ} is not periodic.

Case II f is not constant.

Let f be a fundamental period l_0 . We denote

$$f_{\delta}(t) = f(t) + f\left(\frac{t}{\pi}\right) \cdot \frac{\delta}{M_f}, \quad t \in \mathbb{R},$$

where $M_f = \sup_{t \in \mathbb{R}} ||f(t)||$. Obviously, $f_{\delta} \in N(f, \delta)$. Also, we claim that $f_{\delta} \notin P_n$. In fact, if this is not true, then there exists $T \in [n, n + 1]$ such that

$$f_{\delta}(t+T) = f_{\delta}(t), \quad t \in \mathbb{R},$$

i.e.

$$f(t+T) + f\left(\frac{t+T}{\pi}\right) \cdot \frac{\delta}{M_f} = f(t) + f\left(\frac{t}{\pi}\right) \cdot \frac{\delta}{M_f}, \quad t \in \mathbb{R}.$$

Let

$$F_1(t) = f(t+T) - f(t), \quad F_2(t) = \frac{\delta}{M_f} \left[f\left(\frac{t}{\pi}\right) - f\left(\frac{t+T}{\pi}\right) \right], \quad t \in \mathbb{R}.$$

Then $F_1(t) \equiv F_2(t)$. If $F_1(t) \equiv F_2(t) \equiv C$, where C is a fixed constant, then

$$f(t+T) = f(t) + C, \quad t \in \mathbb{R},$$

which yields

$$C = \frac{f(kT) - f(0)}{k} \to 0, \ k \to \infty,$$

since f is bounded. Thus, we have

$$f(t+T) = f(t), \quad f\left(\frac{t}{\pi}\right) = f\left(\frac{t+T}{\pi}\right), \quad t \in \mathbb{R}.$$

Noting that l_0 is the fundamental period of f and πl_0 is the fundamental period of $f(\frac{1}{\pi})$, there exist two positive integers p, q such that

$$pl_0 = T = q\pi l_0,$$

i.e. $\pi = \frac{p}{q}$, which is a contradiction. If $F_1 = F_2$ is not constant, then by Remark 8.30, we can assume that T_0 is the fundamental period of F_1 and F_2 . Noting that l_0 is a period of F_1 and πl_0 is a period of F_2 , similar to the above proof, we can also show that π is a rational number, which is a contradiction.

In conclusion, P(X) is countable unions of closed subsets with empty interior. So P(X) is a set of first category.

Theorem 8.32 ([72]) Let X be a Banach space. Then AP(X) is a set of first category in AA(X).

Proof It suffices to note that $AP(\mathbb{X})$ is a proper closed subspace of $AA(\mathbb{X})$ equipped with the supnorm. Therefore it is of first category in $AA(\mathbb{X})$.

3 Almost Periodicity of the Function f(t, x)

Definition 8.33 Let *E* be a Fréchet space. A function $f \in C(\mathbb{R} \times E, E)$ is said to be almost periodic in $t \in \mathbb{R}$ for each $x \in E$ if for each neighborhood of the origin *U*, there exists a real number l > 0 such that every interval [a, a + l] contains at least a point τ such that

 $f(t + \tau, x) - f(t, x) \in U$, for each $t \in \mathbb{R}$ and each $x \in E$.

In view of the Bochner's criterion, this definition is equivalent to the following: $f \in C(\mathbb{R} \times E, E)$ is almost periodic in $t \in \mathbb{R}$ for each $x \in E$ if and only if for every sequence of real numbers (s'_n) there exists a subsequence $(s_n) \subset (s'_n)$ such that $(f(t + s_n, x))$ converges uniformly in $t \in \mathbb{R}$ and $x \in E$.

Theorem 8.34 Let $f : \mathbb{R} \times E \to E$ be almost periodic in $t \in \mathbb{R}$ for each $x \in E$, and assume that f satisfies a Lipschitz condition in x uniformly in t, that is $d(f(t, x) - f(t, y)) \leq Ld(x, y)$ for all $t \in \mathbb{R}$ and $x, y \in E$, where d is a metric on E. Let $\phi : \mathbb{R} \to E$ be almost periodic. Then the Nemytskii's operator \mathcal{N} defined by $\mathcal{N}(\cdot) := f(\cdot, \phi(\cdot))$ is almost periodic.

Proof Trivial. We leave it to the reader.

4 Equi-Asymptotically Almost Periodic Functions

In this section, we introduce the notion of equi-asymptotically almost periodicity (cf. [24]), and present some basic and interesting properties for equi-asymptotically almost periodic functions.

Definition 8.35 Let X be a Banach space. A set $F \subset C(\mathbb{R}, X)$ is called equiasymptotically almost periodic if for every $\varepsilon > 0$, there exist a constant $M(\varepsilon) > 0$ and a relatively dense set $T(F, \varepsilon) \subset \mathbb{R}$ such that

$$\|f(t+\tau) - f(t)\| < \varepsilon,$$

for all $f \in F$, $t \in \mathbb{R}$ with $|t| > M(\varepsilon)$ and $\tau \in T(F, \varepsilon)$ with $|t + \tau| > M(\varepsilon)$.

Theorem 8.36 Let $F \subset AAP(\mathbb{R}, \mathbb{X})$. Then the following assertions are equivalent:

- (i) *F* is precompact in $AAP(\mathbb{R}, \mathbb{X})$.
- (ii) *F* satisfy the following three conditions:
 - (a) for every $t \in \mathbb{R}$, $\{f(t) : f \in F\}$ is precompact in X.
 - (b) *F* is equi-uniformly continuous.
 - (c) *F* is equi-asymptotically almost periodic.

(iii) *G* is precompact in $AP(\mathbb{R}, X)$ (in short AP) and *H* is precompact in $C_0(\mathbb{R}, X)$ (in short C_0), where

$$G = \{f_{AP} : f \in F\}$$
 and $H = \{f_{C_0} : f \in F\}.$

Proof

(i) \Rightarrow (ii) Let *F* be precompact in *AAP*(\mathbb{R} , \mathbb{X}). Then, obviously, for every $t \in \mathbb{R}$, $\{f(t) : f \in F\}$ is precompact in *X*. In addition, for every $\varepsilon > 0$, there exist $f_1, f_2, \ldots, f_k \in F$ such that for every $f \in F$,

$$\min_{1 \le i \le k} \|f - f_i\| < \varepsilon,$$

where k is a positive integer dependent on ε . Combining this with the fact that $(f_i)_{i=1}^k$ is equi-uniformly continuous and equi-asymptotically almost periodic, we know that (b) and (c) hold.

(ii) \Rightarrow (iii) Let $(g_n) \subset G$. For every *n*, there exist $f_n \in F$ and $h_n \in H$ such that $f_n = g_n + h_n$. By (a) and (b), applying Arzela–Ascoli theorem and choosing diagonal sequence, we can get a subsequence of (f_n) , which we still denote by (f_n) for convenience, such that $(f_n(t))$ is uniformly convergent on every compact subsets of \mathbb{R} .

Since (f_n) is equi-asymptotically almost periodic, for every $\varepsilon > 0$, there exists $l(\varepsilon)$, $M(\varepsilon) > 0$ such that for every $t \in \mathbb{R}$ with $|t| > M(\varepsilon)$, there is a

$$\tau_t \in [M(\varepsilon) + 1 - t, M(\varepsilon) + 1 - t + l(\varepsilon)]$$

satisfying

$$\|f_n(t+\tau_t) - f_n(t)\| < \frac{\varepsilon}{3} \tag{4.1}$$

for all $n \in \mathbb{N}$. Noting that $(f_n(t))$ is uniformly convergent on

$$[-M(\varepsilon) - l(\varepsilon) - 1, M(\varepsilon) + l(\varepsilon) + 1],$$

for the above $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m \ge n \ge N$ and $t \in [-M(\varepsilon) - l(\varepsilon) - 1, M(\varepsilon) + l(\varepsilon) + 1]$,

$$\|f_m(t) - f_n(t)\| < \frac{\varepsilon}{3}.$$
(4.2)

Combining (4.1) and (4.2), for all $m \ge n \ge N$ and $t \in \mathbb{R}$ with $|t| > M(\varepsilon)$, we have

$$\|f_m(t) - f_n(t)\| \le \|f_m(t) - f_m(t + \tau_t)\| + \|f_m(t + \tau_t) - f_n(t + \tau_t)\|$$

$$+\|f_n(t+\tau_t)-f_n(t)\|\leq\varepsilon,$$

which and (4.2) yield that $(f_n(t))$ is uniformly convergent on \mathbb{R} . In view of

$$\{g_m(t) - g_n(t) : t \in \mathbb{R}\} \subset \overline{\{f_m(t) - f_n(t) : t \in \mathbb{R}\}}$$

for all $m, n \in \mathbb{N}$, we conclude that $(g_n(t))$ is also uniformly convergent on \mathbb{R} , i.e. (g_n) is convergent in $AP(\mathbb{R}, X)$. So G is precompact in $AP(\mathbb{R}, X)$. In addition, it follows from the above proof that F is precompact, and thus H is also precompact.

(iii) \Rightarrow (i) The proof is straightforward.

Remark 8.37 Theorem 8.36 can be seen as an extension of the corresponding compactness criteria for the subsets of $AP(\mathbb{R}, \mathbb{X})$ (cf. e.g., [22]).

Definition 8.38 $F \subset C_0(\mathbb{R}, X)$ is called equi- C_0 if

$$\lim_{|t| \to \infty} \sup_{f \in F} \|f(t)\| = 0.$$

Theorem 8.39 The following two assertions are equivalent:

(I) *F* is equi-asymptotically almost periodic;

(II) G is equi-almost periodic and H is equi- C_0 , where

$$G = \{f_{AP} : f \in F\}$$
 and $H = \{f_{C_0} : f \in F\}.$

Proof The proof from (II) to (I) is straightforward. We will only give the proof from (I) to (II) by using the idea in the proof of [71, p. 24, Theorem 2.5].

Since F is equi-asymptotically almost periodic, for every $k \in \mathbb{N}$, there exist a constant $M_k > 0$ and a relatively dense set $T(F, k) \subset \mathbb{R}$ such that

$$\|f(t+\tau) - f(t)\| < \frac{1}{k},$$
(4.3)

for all $f \in F$, $t \in \mathbb{R}$ with $|t| > M_k$ and $\tau \in T(F, k)$ with $|t + \tau| > M_k$. Moreover, for every $f \in F \subset AAP(\mathbb{R}, \mathbb{X})$, noting that f is uniformly continuous, for the above $k \in \mathbb{N}$, there exists $\delta_k^f > 0$ such that

$$\|f(t_1) - f(t_2)\| < \frac{1}{k}$$
(4.4)

for all $t_1, t_2 \in \mathbb{R}$ with $|t_1 - t_2| < \delta_k^f$. Now, for every $t \in \mathbb{R}$ and $k \in \mathbb{N}$, we choose $\tau_k^t \in T(F, k)$ with $t + \tau_k^t > M_k$. Also, we denote

$$g_k^f(t) = f(t + \tau_k^t), \quad t \in \mathbb{R}, \ k \in \mathbb{N}, \ f \in F.$$

Next, we divide the remaining proof into eight steps.

Step 1 For every $f \in F$, there holds

$$\left\|g_{k}^{f}(t_{1}) - g_{k}^{f}(t_{2})\right\| < \frac{5}{k}$$
(4.5)

for all $k \in \mathbb{N}$, and $t_1, t_2 \in \mathbb{R}$ with $|t_1 - t_2| < \delta_k^f$. In fact, by (4.3) and (4.4), we have

$$\begin{split} \|g_k^f(t_1) - g_k^f(t_2)\| &= \|f(t_1 + \tau_k^{t_1}) - f(t_2 + \tau_k^{t_2})\| \\ &\leq \|f(t_1 + \tau_k^{t_1}) - f(t_1 + \tau_k^{t_1} + \tau)\| \\ &+ \|f(t_1 + \tau_k^{t_1} + \tau) - f(t_2 + \tau_k^{t_1} + \tau)\| \\ &+ \|f(t_2 + \tau_k^{t_1} + \tau) - f(t_2 + \tau)\| \\ &+ \|f(t_2 + \tau) - f(t_2 + \tau + \tau_k^{t_2})\| \\ &+ \|f(t_2 + \tau + \tau_k^{t_2}) - f(t_2 + \tau_k^{t_2})\| < \frac{5}{k}, \end{split}$$

where $\tau \in T(F, k)$ satisfying

$$\min\left\{t_1 + \tau_k^{t_1} + \tau, t_2 + \tau_k^{t_1} + \tau, t_2 + \tau, t_2 + \tau + \tau_k^{t_2}\right\} > M_k.$$

Step 2 For every $k \in \mathbb{N}$, there holds

$$\|g_k^f(t+\tau) - g_k^f(t)\| < \frac{5}{k}$$
(4.6)

for all $f \in F$, $\tau \in T(F, k)$, and $t \in \mathbb{R}$. In fact, by using (4.3), we have

$$\begin{split} \|g_{k}^{f}(t+\tau) - g_{k}^{f}(t)\| &= \|f(t+\tau+\tau_{k}^{t+\tau}) - f(t+\tau_{k}^{t})\| \\ &\leq \|f(t+\tau+\tau_{k}^{t+\tau}) - f(t+\tau+\tau_{k}^{t+\tau}+\tau')\| \\ &+ \|f(t+\tau+\tau_{k}^{t+\tau}+\tau') - f(t+\tau_{k}^{t+\tau}+\tau')\| \\ &+ \|f(t+\tau_{k}^{t+\tau}+\tau') - f(t+\tau')\| \\ &+ \|f(t+\tau') - f(t+\tau'+\tau_{k}^{t})\| \\ &+ \|f(t+\tau'+\tau_{k}^{t}) - f(t+\tau_{k}^{t})\| < \frac{5}{k}, \end{split}$$

4 Equi-Asymptotically Almost Periodic Functions

where $\tau' \in T(F, k)$ satisfying

$$\min\left\{t+\tau+\tau_k^{t+\tau}+\tau',t+\tau_k^{t+\tau}+\tau',t+\tau',t+\tau'+\tau_k^t\right\}>M_k.$$

Step 3 For every $n \in \mathbb{N}$, there holds

$$\left\|g_m^f(t) - g_n^f(t)\right\| < \frac{4}{n} \tag{4.7}$$

for all $f \in F$, $t \in \mathbb{R}$, and $m, n \in \mathbb{N}$ with $m \ge n$.

In fact, without loss of generality, we can assume that $M_{k+1} \ge M_k$ for all $k \in \mathbb{N}$. Then, by using (4.3), we have

$$\begin{split} \left\| g_m^f(t) - g_n^f(t) \right\| \\ &= \| f(t + \tau_m^t) - f(t + \tau_n^t) \| \\ &\leq \| f(t + \tau_m^t) - f(t + \tau_m^t + \tau) \| + \| f(t + \tau_m^t + \tau) - f(t + \tau_m^t + \tau + \tau_n^t) \| \\ &+ \| f(t + \tau_m^t + \tau + \tau_n^t) - f(t + \tau + \tau_n^t) \| + \| f(t + \tau + \tau_n^t) - f(t + \tau_n^t) \| \\ &< \frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} \leq \frac{4}{n}, \end{split}$$

where $\tau \in T(F, n)$ satisfying

$$\min\left\{t+\tau_m^t+\tau,t+\tau_m^t+\tau+\tau_n^t,t+\tau+\tau_n^t\right\}>M_m.$$

Step 4 Let

$$g^{f}(t) = \lim_{n \to \infty} g_{n}^{f}(t), \quad t \in \mathbb{R}, \ f \in F$$

By Step 3, we know that for every $f \in F$, g^f is well-defined. Moreover, it follows from Step 3 that for every $n \in \mathbb{N}$, there holds

$$\|g^{f}(t) - g_{n}^{f}(t)\| \le \frac{4}{n}$$
(4.8)

for all $f \in F$, R, and $n \in \mathbb{N}$.

Step 5 For every $f \in F$, g^f is uniformly continuous on \mathbb{R} . In fact, by (4.5) and (4.8), we have

$$\begin{split} \|g^{f}(t_{1}) - g^{f}(t_{2})\| &\leq \|g^{f}(t_{1}) - g^{f}_{n}(t_{1})\| + \|g^{f}_{n}(t_{1}) - g^{f}_{n}(t_{2})\| \\ &+ \|g^{f}_{n}(t_{2}) - g^{f}(t_{2})\| \leq \frac{4}{n} + \frac{5}{n} + \frac{4}{n} = \frac{13}{n}, \end{split}$$

for all $n \in \mathbb{N}$ and $t_1, t_2 \in \mathbb{R}$ with $|t_1 - t_2| < \delta_n^f$. Step 6 $\{g^f\}_{f \in F}$ is equi-almost periodic.

By (4.6) and (4.8), for every $n \in \mathbb{N}$, we get

$$\begin{split} \|g^{f}(t+\tau) - g^{f}(t)\| &\leq \|g^{f}(t+\tau) - g^{f}_{n}(t+\tau)\| + \|g^{f}_{n}(t+\tau) - g^{f}_{n}(t)\| \\ &+ \|g^{f}_{n}(t) - g^{f}(t)\| \leq \frac{4}{n} + \frac{5}{n} + \frac{4}{n} = \frac{13}{n}, \end{split}$$

for all $f \in F$, $\tau \in T(F, n)$, and $t \in \mathbb{R}$. Then, it follows that $\{g^f\}_{f \in F}$ is equialmost periodic.

Step 7 $\{h^f\}_{f \in F}$ is equi- C_0 , where $h^f(t) = f(t) - g^f(t)$ for all $f \in F$ and $t \in \mathbb{R}$. In fact, firstly, by Step 5, $h^f \in C(\mathbb{R}, X)$ for every $f \in F$; secondly, for every $n \in \mathbb{N}$, by (4.8) and the definition of τ_n^t , we have

$$\begin{split} \|h^{f}(t)\| &= \|f(t) - g^{f}(t)\| \\ &\leq \|f(t) - g^{f}_{n}(t)\| + \|g^{f}_{n}(t) - g^{f}(t)\| \\ &\leq \|f(t) - f(t + \tau^{t}_{n})\| + \frac{4}{n} \\ &\leq \frac{1}{n} + \frac{4}{n} = \frac{5}{n}, \end{split}$$

for all $f \in F$, $t \in \mathbb{R}$ with $|t| > M_n$. Thus, $\{h^f\}_{f \in F}$ is equi- C_0 . Step 8 It follows from the above proof that $G = \{g^f\}_{f \in F}$ and $H = \{h^f\}_{f \in F}$. This completes the proof.

Bibliographical Notes Section 1 in this chapter is in [51, 54]. Theorem 8.32 is in [72] with a different proof. Section 3 is a work by Ding et al. [24].