
Chapter 8
Almost Periodic Functions with Values in
a Locally Convex Space

1 Almost Periodic Functions

Definition 8.1 Let E = E(τ) be a complete Hausdorff locally convex space. A
function f : R → E is said to be almost periodic if for every neighborhood (of
the origin) U , there exists a real number l > 0 such that every interval [a, a + l]
contains at least one point s such that

f (t − s) − f (t) ∈ U, ∀t ∈ R.

The numbers s depend on U and are called U -translation numbers, or U -almost
periods of the function f .

Remark 8.2 In the case where E is a Banach space X with norm ‖·‖, Definition 8.1
can be rewritten as:
f : R → X is said to be almost periodic if for every ε > 0, there exists a real
number l > 0 such that every interval [a, a + l] contains at least one point s such
that

sup
t∈R

‖f (t − s) − f (t)‖ < ε.

The numbers s are called the ε-almost periods of f .

Remark 8.3

(i) From Definition 8.1, we observe that for each neighborhood U , the set of all
U -translation numbers is relatively dense in R.

(ii) It is obvious that every continuous periodic function f : R → E is almost
periodic.
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We now present some elementary properties of almost periodic functions taking
values in locally convex spaces.

Theorem 8.4 If f, f1, f2 : R → E are almost periodic and λ is a scalar, then the
following functions are also almost periodic:

(i) f1 + f2;
(ii) λf ;
(iii) f̌ defined by f̌ (t) = f (−t) for every t ∈ R.

Proof (i) and (ii) are obvious.
Let us prove (iii). Take U an arbitrary neighborhood of the origin. By almost

periodicity of f , there exists l > 0 such that every interval [a, a + l] contains at
least a point s such that

f (t − s) − f (t) ∈ U, ∀t ∈ R.

If we put r = −t , we get

f̌ (r − s) − f̌ (r) = f (−r + s) − f (−r) = f (t + s) − f (t).

Therefore f̌ (r − s) − f̌ (r) ∈ U for every r ∈ R, which proves almost periodicity
of f̌ with −s as U -translation numbers. ��
We will denote by AP(E) the space of all almost periodic functions f : R → E.

The following two results are easy to prove (cf. [51, 54]):

Theorem 8.5 Let f ∈ AP(E). Then f is uniformly continuous on R.

Theorem 8.6 Let fn ∈ AP(E), n = 1, 2, . . . and suppose that fn → f uniformly
in t ∈ R. Then f ∈ AP(E).

Theorem 8.7 If f ∈ AP(E), then its range {f (t) / t ∈ R} is totally bounded in
E.

Proof Let U be a neighborhood and V a symmetric neighborhood such that V +
V ⊂ U ; let l = l(V ) as in Definition 8.1. By the continuity of f , the set {f (t) / t ∈
[0, l]} is compact in E. But in a locally convex space, every compact set is totally
bounded; therefore there exists x1, x2, . . . , xn ∈ E such that for every t ∈ [0, l], we
have

f (t) ∈ ∪n
j=1(xj + V ).

Take now an arbitrary t ∈ R and consider s ∈ [−t,−t + l] a V -translation number
of the function f . Then we have

f (t + s) − f (t) ∈ V.

Choose xk among x1, . . . , xn such that
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f (t + s) ∈ xk + V.

Let us write f (t) − xk = (f (t) − f (t + s)) + (f (t + s) − xk). Then we have
f (t) − xk ∈ V + V , and therefore f (t) − xk ∈ U , or f (t) ∈ xk + U . Since t is an
arbitrary real number, we conclude that

{f (t) / t ∈ R} ⊂ ∪n
j=1(xj + U).

The proof is complete. ��
Remark 8.8 If f ∈ AP(E) with E a Fréchet space, then its range is relatively
compact inE, since in every complete metric space, relative compactness and totally
boundedness are equivalent notions. We conclude in this case that every sequence
(f (tn)) contains a convergent subsequence (f (tnk

)).

Theorem 8.9 Let E be a Fréchet space and f ∈ AP(E). Then for every sequence
of real numbers (s′

n), there exists a subsequence (sn) such that (f (t + sn)) is
uniformly convergent in t ∈ R.

Proof Let (sn) be a sequence of real numbers and consider the sequence of
functions fsn : R → E defined by fsn(t) = f (t + sn), n = 1, 2, . . . Let S = (ηn)

be a countable dense set in R. By Remark 8.8, we can extract from (f (η1 + sn)) a
convergent subsequence, since the set {f (t) / t ∈ R} is relatively compact in E.

Let (fs1,n) be the subsequence of (fn) which converges at η1.We apply the same
argument to the sequence (fs1,n) to choose a subsequence (fs2,n) which converges
at η2. We continue the process and consider the diagonal sequence (fsn,n) which
converges at ηn in S.

Call this last sequence (frn). Now let us show that it is uniformly convergent on
R: that is, for every neighborhood U , there exists N = N(U) such that

f (t + rn) − f (t + rm) ∈ U

for every t ∈ R, if n,m > N .
Consider now an arbitrary neighborhood U and a symmetric neighborhood V

such that V + V + V + V + V ⊂ U . Let l = l(V ) > 0 as in Definition 8.1. Since f

is uniformly continuous on R (Theorem 8.5), we can find δ = δ(V ) > 0 such that

f (t) − f (t ′) ∈ V

for every t, t ′ ∈ R with |t − t ′| < δ.
Let us divide the interval [0, l] into ν subintervals of lengths smaller than δ and

choose in each interval a point of S, obtaining S0 = {ξ1, . . . , ξν}. Since S0 is a finite
set, (frn) is uniformly convergent over S0; therefore there exists a natural number
N = N(V ) such that

f (ξi + rn) − f (ξi + rm) ∈ V
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for every i = 1, . . . , ν, and for n,m > N .
Let t ∈ R be arbitrary and s ∈ [−t,−t + l] such that f (t + s) − f (t) ∈ V . Let

us choose ξi such that |t + s − ξi | < δ; then

f (t + s + rn) − f (ξi + rn) ∈ V

for every n.
Let us write

f (t + rn) − f (t + rm) = (f (t + rn) − f (r + rn + s)) + (f (r + rn + s)

− f (ξi + rn)) + (f (ξi + rn) − f (ξi + rm))

+ (f (ξi + rm) − f (t + rm + s)) + (f (t + rm + s)

− f (t + rm)).

Then it appears

f (t + rn) − f (t + rm) ∈ V + V + V + V + V ⊂ U

if n,m > N , which proves the uniform convergence of (f (t + rn)). ��
We are now ready to establish the following important result called also the

Bochner’s criterion:

Theorem 8.10 Let E be a Fréchet space. Then f ∈ AP(E) if and only if for every
sequence of real numbers (s′

n), there exists a subsequence (sn) such that (f (t + sn))

converges uniformly in t ∈ R.

Proof The condition is necessary by Theorem 8.9.
Now we need to prove that it is sufficient. Suppose by contradiction that f �∈

AP(E). Then there exists a neighborhood U such that for every real number l > 0,
there exists an interval of length l which contains no U -translation number of f , or
there exists an interval [−a,−a + l] such that for every s ∈ [−a,−a + l], there
exists t = ts such that f (t + s) − f (t) �∈ U .

Let us consider s1 ∈ R and an interval (a1, b1) with b1 − a1 > 2|s1| which
contains noU -translation number of f . Now let s2 = (a1−b1)

2 ; then s2−s1 ∈ (a1, b1)

and therefore s2 − s1 cannot be a U -translation number of f .
Let us consider another interval (a2, b2) with b2 − a2 > 2(|s1| + |s2|), which

contains no U -translation number of f . Let s3 = (a2−b2)
2 ; then s3 − s1, s3 − s2 ∈

(a2, b2) and therefore s3 − s1 and s3 − s2 cannot be U -translation numbers of f .
We proceed and obtain a sequence (sn) of real numbers such that no sm − sn is a

U -translation number of f , that is

f (t + sm − sn) − f (t) �∈ U.

Putting σ = t − sn, we get
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f (σ + sm) − f (σ + sn) �∈ U. (1.1)

Suppose there exists a subsequence (s′
n) of (sn) such that (f (t + s′

n)) converges
uniformly in t ∈ R. Then for every neighborhood V , there exists a natural number
N = N(V ) such that, if n,m > N (we may take m > n), we have

f (t + s′
m) − f (t + s′

n) ∈ V

for every t ∈ R. This contradicts (2.1) and so establishes the sufficiency of the
condition.

The proof is complete. ��
Theorem 8.11 Let f ∈ AP(E). Then the following hold true:

(i) Af (t) ∈ AP(E) for every linear bounded operator A on E.
(ii) νf ∈ AP(E) where ν : R → 
 is almost automorphic.

Proof Trivial, cf for instance [51, 54]. ��
Using the Bochner’s criterion, one can easily prove the following:

Theorem 8.12 Let E be a Fréchet space and f1, f2 ∈ AP(E). Then the function
F : R → E × E defined by F(t) = (f1(t), f2(t)) is also almost periodic.

Corollary 8.13 Let f1, f2 ∈ AP(E) where E is a Fréchet space. Then for every
neighborhood U , f1 and f2 have common U -translation numbers.

Proof Let U be a neighborhood in E. Then by Theorem 8.12 the function f (t) =
(f1(t), f2(t)) ∈ AP(E × E). Consider now s a U -translation number of f ; then
f (t + s)−f (t) ∈ U ×U for every t ∈ R, and therefore fi(t + s)−fi(t) ∈ U, i =
1, 2 for every t ∈ R. s is a U -translation number for f1 and f2. ��
Theorem 8.14 Let E be a Fréchet space. Then AP(E) is also a Fréchet space.

Proof Consider BC(R, E) the linear space of all bounded and continuous functions
R → E and denote by (pn), n ∈ N, the family of seminorms which generates the
topology ofE. Without loss of generality we may assume that pn ≤ pn+1, pointwise
for n ∈ N. Define

qn(f ) = sup
t∈R

pn(f (t)), n ∈ N.

Obviously (qn) forms a family of seminorms on BC(R, E). Moreover, it is clear
that qn ≤ qn+1 for n ∈ N. Define the pseudonorm

|f | :=
∞∑

n=1

1

2n

qn(f )

1 + qn(f )
, f ∈ BC(R, E).



84 8 Almost Periodic Functions with Values in a Locally Convex Space

Obviously BC(R, E) with the above defined pseudonorm is a Fréchet space. It is
also a closed linear subspace of BC(R, E). This completes the proof. ��

2 Weakly Almost Periodic Functions

Definition 8.15 Let E be a complete Hausdorff locally convex space. A weakly
continuous function f : R → E is said to be weakly almost periodic if the
numerical function F(t) = (x∗f )(t) is almost periodic for every x∗ ∈ E∗ the
dual space of E.

We will denote byWAP(E) the set of all weakly almost periodic functionsR → E.

Remark 8.16

(i) Every weakly almost periodic function is weakly bounded.
(ii) Every almost periodic function is weakly almost periodic.

Theorem 8.17 Let f ∈ WAP(E) ∩ C(R, E). Assume that the set {F(t) / t ∈ R}
be weakly bounded where the function F : R → E is defined by F(t) = ∫ t

0 f (s)ds.
Then F ∈ WAP(E).

Proof We first observe that the integral exists in E since f is (strongly) continuous
on R. Take x∗ ∈ E∗, so x∗f ∈ AP(R). By the continuity of x∗, (x∗F)(t) =
x∗ ∫ t

0 f (s)ds = ∫ t

0 (x∗f )(s)ds which is bounded by assumption and so is almost
periodic. The Theorem is proved. ��
Theorem 8.18 Let E be a Fréchet space and f : R → E. Then f ∈ AP(E) if and
only if f ∈ WAP(E) and its range is relatively compact.

Proof The condition is necessary by Remarks 8.8 and 8.16. Let us show by
contradiction that it is sufficient.

Suppose there exists t0 ∈ R such that f is discontinuous at t0, so we can find a
neighborhood U and two sequences of real numbers (s′

n) and (s′′
n) such that

lim
n→∞ s′

n = 0 = lim
n→∞ s′′

n

and

f (t0 + s′
n) − f (t0 + s′′

n) �∈ U, ∀n ∈ N. (2.1)

By the relative compactness of {f (t) / t ∈ R}, we can extract (r ′
n) and (r ′′

n ) from
(s′

n) and (s′′
n) respectively, such that

lim
n→∞ f (t0 + r ′

n) = a1 ∈ E

and



2 Weakly Almost Periodic Functions 85

lim
n→∞ f (t0 + r ′′

n ) = a2 ∈ E.

Consequently, a1 − a2 �∈ U by (2.1), and using the Hahn–Banach Theorem
(Proposition 1.41 Chap. 1), we can find x∗ ∈ E∗ such that x∗(a1 − a2) �= 0, hence
x∗(a1) �= x∗(a2). By the continuity of x∗, we have

x∗(a1) = lim
n→∞(x∗f )(t0 + r ′

n) = lim
n→∞(x∗f )(t0 + r ′′

n ) = x∗(a2)

which is a contradiction. So we conclude that f is continuous on R. ��
To prove the almost periodicity of f we need the following:

Lemma 8.19 Let E be a Fréchet space and φ ∈ AP(E). Let (sn) be a sequence of
real numbers such that lim

n→∞ φ(sn + ηk) exists for each k = 1, 2, . . . where the set

(ηk) is dense in R. Then the sequence (φ(t + sn)) is uniformly convergent in t ∈ R.

Proof (of Lemma 8.19) Suppose by contradiction that (φ(t + sn)) is not uniformly
convergent in t ∈ R. Then there exists a neighborhood U such that for every N =
1, 2, . . . there exists nN,mN > N and tN ∈ R such that

φ(tN + snN
) − φ(tN + smN

) �∈ U.

By the Bochner’s criterion (Theorem 8.10), we can extract two sequences (s′
nN

) ⊂
(snN

) and (s′
mN

) ⊂ (smN
) such that

lim
N→∞ φ(t + s′

nN
) = g1(t) uniformly in t ∈ R

and

lim
N→∞ φ(t + s′

mN
) = g2(t) uniformly in t ∈ R.

Let V be a symmetric neighborhood such that V + V + V ⊂ U . Then there exists
N0 = N0(V ) such that if N > n0, we have

φ
(
tN + s′

nN

) − g1(tN ) ∈ V

and

φ
(
tN + s′

mN

) − g2(tN ) ∈ V.
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We deduce that g1(tN ) − g2(tN ) �∈ V , otherwise we should have

φ
(
tN + s′

nN

) − φ
(
tN + s′

mN

) ∈ U

which contradicts (2.1).
Indeed if g1(tN ) − g2(tN ) ∈ V , then by writing

φ
(
tN + s′

nN

) − φ
(
tN + s′

mN

) = φ
(
tN + s′

nN

) − g1(tN )

+ g1(tN ) − g2(tN )

+ g2(tN ) − φ
(
tN + s′

mN

)

we obtain

φ(tN + s′
nN

) − φ(tN + s′
mN

) ∈ V + V + V ⊂ U.

Thus we have found a symmetric neighborhood V with the property that if N is
large enough, there exists tN ∈ R such that

g1(tN ) − g2(tN ) �∈ V.

But this is impossible, because if we take a subsequence (ξk) of (ηk) with ξk → tN ,
then we would obtain

lim
N→∞ φ

(
ξk + s′

nN

) = lim
N→∞ φ

(
ξk + s′

mN

)

for every k.
Therefore g1(ξk) = g2(ξk) for every k. By the continuity of g1 and g2, g1(tN ) =

g2(tN ), thus g1(tN ) − g2(tN ) belongs to every neighborhood.
The lemma is proved. ��

Proof (of Theorem 8.18 (continued)) Consider a sequence of real numbers (hn)

and a sequence of rational numbers (ηr). By the relative compactness of {f (t) / t ∈
R}, we can extract a subsequence (hn) (we do not change the notation) such that for
each r = 1, 2, . . .

lim
n→∞ f (ηr + hn) = xr

exists in E. Now the sequence (f (ηr + hn)) is uniformly convergent in ηr , or we
could find a neighborhood U and three subsequences (ξr ) ⊂ (ηr), (h′

r ) ⊂ (hr), and
(h′′

r ) ⊂ (hr) with

f (ξr + h′
r ) − f (ξr + h′′

r ) �∈ U. (2.2)
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By the relative compactness of {f (t) / t ∈ R}, we may say that

lim
r→∞ f

(
ξr + h′

r

) = b′ ∈ E

lim
r→∞ f

(
ξr + h′′

r

) = b′′ ∈ E.

Then, using (2.2), we get

b′ − b′′ �∈ U.

By the Hahn–Banach Theorem, there exists x∗ ∈ E∗ such that

x∗(b′) �= x∗(b′′).

Now x∗f ∈ AP(R), therefore it is uniformly continuous over R.
Let us consider the functions (ϕn) defined on R by

ϕn(t) := (x∗f )(t + hn), n = 1, 2, . . .

The equality

ϕn(t + s) − ϕn(t) = (x∗f )(t + s + hn) − (x∗f )(t + hn)

shows the almost periodicity of each ϕn, n = 1, 2, . . ., if s is seen as a
U -translation number of (x∗f )(t). Also the sequence of functions (ϕn) is equicon-
tinuous over R because (x∗f )(t) is uniformly continuous on R.

Since

lim
n→∞ f (ηr + hn) = xr ,

we get

lim
n→∞(x∗f )(nr + hn) = x∗xr

for every r = 1, 2, . . . Therefore by Lemma 8.19, ((x∗f )(ηr + hn)) is uniformly
convergent in t .

Consider now the sequences (ξr + h′
r ) and (ξr + h′′

r ). By the Bochner’s criterion,
we can extract a subsequence from each sequence, respectively, such that, using
the same notations, ((x∗f )(t + ξr + h′

r )) and ((x∗f )(t + ξr + h′′
r )) are uniformly

convergent in t ∈ R.
Let us now prove that

lim
r→∞(x∗f )(t + ξr + h′

r ) = lim
r→∞(x∗f )(t + ξr + h′′

r ).
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Write (x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + h′′

r ) as follows:

(x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + h′′

r )

= (x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + hr)

+(x∗f )(t + ξr + hr) − (x∗f )(t + ξr + h′′
r )

and consider the following inequality (IN):

|(x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + h′′

r )|
≤ |(x∗f )(t + ξr + h′

r ) − (x∗f )(t + ξr + hr)|
+|(x∗f )(t + ξr + hr) − (x∗f )(t + ξr + h′′

r )|

which holds true for r = 1, 2, . . .
Let ε > 0 be given. Since ((x∗f )(t + hr)) is uniformly convergent in t , we can

choose ηε such that for r, s > ηε, we obtain

|(x∗f )(t + hs) − (x∗f )(t + hr)| <
ε

2
, ∀t ∈ R.

So, replacing t by t + ξr gives,

|(x∗f )(t + ξr + hs) − (x∗f )(t + ξr + hr)| <
ε

2
,

and consequently

|(x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + hr)| <

ε

2
,

|(x∗f )(t + ξr + h′′
r ) − (x∗f )(t + ξr + hr)| <

ε

2
.

The inequality (IN) above gives

|(x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + h′′

r )| < ε, ∀t

which proves that

lim
r→∞(x∗f )(t + ξr + h′

r ) = lim
r→∞(x∗f )(t + ξr + h′′

r )

which contradicts x∗(b′) �= x∗(b′′) obtained earlier and uniform continuity of
(f (ηr + hn)) as well.

If i, j > N , we have

f (ηr + hi) − f (ηr + j) ∈ U.
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This proves that f ∈ AP(E) by the Bochner’s criterion. ��
Theorem 8.20 Let E be a Fréchet space. If f ∈ AP(E) and {F(t) / t ∈ R} is
relatively compact in E where F(t) = ∫ t

0 f (s)ds, then F ∈ AP(E).

Proof This is immediate by Theorems 8.17 and 8.18. ��
Theorem 8.21 Let E be a complete locally convex space and f ∈ AP(E). If the
derivative f ′ exists and is uniformly continuous on R, then f ′ ∈ AP(E).

Proof This is similar to the proof of the almost automorphic case (Theorem 4.1).
We consider the sequence of almost periodic functions (n(f (t + 1

n
)−f (t))) and let

U = U(ε; pi, 1 ≤ i ≤ k) be a neighborhood. Since f ′(t) is uniformly continuous
on R, we can choose δ = δ(U) > 0 such that

f ′(t1) − f (t2) ∈ U

for every t1, t2 such that |t1 − t2| < δ. Let us write

f ′(t) − n

(
f

(
t + 1

n

)
− f (t)

)
= n

∫ 1
n

0
(f ′(t) − f ′(t + s))ds.

Then if N = N(U) > 1
n
and n > N , we would obtain

pi

[
f ′(t) − n

(
f

(
t + 1

n

)
− f (t)

)]
≤ n

∫ 1
n

0
pi

[
(f ′(t) − f ′(t + s))

]
ds < ε

for every seminorm pi and every t ∈ R. That shows that the sequence of almost

periodic functions
(
n

(
f (t + 1

n
) − f (t)

))
converges uniformly to f ′(t) on R. By

Theorem 8.6, it follows that f ′ ∈ AP(E). ��
Theorem 8.22 If f : R → E (E a Fréchet space) is weakly bounded, then it is
bounded.

Proof For f to be weakly bounded means sup
t∈R

|x∗f (t)| < ∞ for every x∗ ∈ E∗.

Suppose f (R) is not bounded. Then there would exist a seminorm p such that
p(f (tn)) → ∞ as n → ∞ for some sequence of real numbers (tn).

Let Ep be the completion of the normed space E/kerp in the norm p. So Ep is
a Banach space and f̃ (tn) = f (tn)/kerp is unbounded in Ep. Consequently there
exists ϕ ∈ E∗

p such that |ϕ(f̃ (tn))| → ∞ as n → ∞.
The natural map J : E → Ep is continuous, so its adjoint J ∗ : E∗

p → E∗ is
continuous. Finally setting ψ = J ∗(ϕ) ∈ E∗, we have

|ψ(f (tn))| = |J ∗(ϕ)(f (tn))| = |ϕ(f̃ (tn))| → ∞

as n → ∞. This completes the proof. ��
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Theorem 8.23 Let E be a Fréchet space, f ∈ WAP(E) and A ∈ L(E) a bounded
linear operator on E. Then Af ∈ WAP(E).

Proof Obvious. We leave it to the reader. ��
Proposition 8.24 Let E be a complete locally convex space and f ∈ AP(E). Then
for every sequence of real numbers (sn), there exists a subsequence (s′

n) such that
for every neighborhood U ,

f (t + s′
n) − f (t + s′

m) ∈ U

for every t ∈ R and every n,m.

Proof Let U = U(ε; pi, 1 ≤ i ≤ n) and V = V ( ε
3 ; pi, 1 ≤ i ≤ n) be a

symmetric neighborhood such that V + V + V ⊂ U . By the definition of almost
periodicity, there exists a number l = l(V ) > 0 (depending also on U ) such that
every compact interval of length l contains a number τ such that

f (t + τ) − f (t) ∈ V

for every t ∈ R.
Consider now a given sequence of real numbers (sn). For each sn, we can find τn

and σn such that sn = τn + σn with τn a V -translation number of f and σn ∈ [0, l].
In fact it suffices to take τn ∈ [sn − l, sn] and then σn = sn − τn.

Since f is uniformly continuous, there exists δ = δ(ϕ) such that

f (t ′) − f (t ′′) ∈ V

for all t ′, t ′′ with |t ′ − t ′′| < 2δ.
Note that σn ∈ [0, l] for all n. Hence by the Bolzano–Weierstrass Theorem, the

sequence (σn) has a convergent subsequence, say (σnk
). Let σ = lim

k→∞ σnk
, which

shows that σ ∈ [0, l].
Now consider the subsequence of (σnk

) (we use the same notation) with

σ − δ ≤ σnk
≤ σ + δ, k = 1, 2, . . .

and let (snk
) be the corresponding subsequence of (sn) with

snk
= τnk

+ σnk
, k = 1, 2, . . .

Let us prove that

f (t + snk
) − f (t + snj

) ∈ U

for all t and all k, j . For this, let us write
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f (t + snk
) − f (t + snj

) = f (t + τnk
+ σnk

) − f (t + σnk
) + f (t + σnk

)

− f (t + σnj
) + f (t + σnj

) − f (t + τnj
+ σnj

).

Because τnk
and τnj

are V -translation numbers of f , we have

f (t + τnk
+ σnk

) − f (t + σnk
) ∈ V

and

f (t + σnj
) − f (t + τnj

+ σnj
) ∈ V

for every t and every k, j . Also

f (t + σnk
) − f (t + σnj

) ∈ V

for every t and every k, j , since

|(t + σnk
) − (t + σnj

)| = |σnk
− σnj

| ≤ |σnk
− σ | + |σ − σnj

| ≤ 2δ.

The result is complete if we set s′
k = snk

, k = 1, 2, . . . ��
Theorem 8.25 Let E be a Fréchet space and (T (t))t∈R be an equicontinuous C0-
group of linear operators with {T (t)x; t ∈ R} relatively compact in E for every
x ∈ E. Assume also that f : R → E is a function with a relatively compact range
in E. Then {T (t)f (t) : t ∈ R} is relatively compact in E.

Proof Let (t ′′n ) be a sequence of real numbers. Since the range of f (t) is relatively
compact in E, we can extract a subsequence (t ′n) ⊂ (t ′′n ) such that

lim
n→∞ f (t ′n) = x, exists in E.

Further, by the assumption on T (t), we can find a subsequence (tn) ⊂ (t ′n) such that
(T (tn)x) is convergent, thus a Cauchy sequence in E.

Let us write

T (tn)f (tn) − T (tm)f (tm) = [T (tn) − T (tm)][f (tn) − x] + [(T (tn) − T (tm))x]
+T (tm)[f (tn) − f (tm)].

For an arbitrary seminorm p we have

p(T (tn)f (tn) − T (tm)f (tm)) ≤ p([T (tn) − T (tm)][f (tn) − x])
+p([(T (tn) − T (tm))x])
+p(T (tm)[f (tn) − f (tm)]).

Using the equicontinuity of T (t), we can find a seminorm q such that
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p(T (tm)[f (tn) − f (tm)]) ≤ q(f (tn) − f (tm))

and

p([T (tn) − T (tm)][f (tn) − x]) ≤ 2q(f (tn) − x).

Now choose n large enough so that

q(f (tn) − f (tm)) <
ε

3
q(f (tn) − x) <

ε

3

and

q([T (tn) − T (tm)]x) <
ε

3

p(T (tn)f (tn) − T (tm)) < ε,

which shows that (T (tn)f (tn)) is a Cauchy sequence, thus convergent. The theorem
is proved. ��
Theorem 8.26 Let E be a Fréchet space and consider an equicontinuous C0-group
of linear operators (T (t))t∈R such that T (t)x : R → E is almost periodic for every
x ∈ E. Suppose also that f ∈ AP(E). Then T (t)f (t) ∈ AP(E).

Proof Consider U = U(ε; pi, 1 ≤ i ≤ n) be a given neighborhood of the
origin. Because of the equicontinuity of T (t), one can find, for each semi-norm pi ,
a seminorm qi such that

pi(T (t)x) ≤ qi(x)

for every t ∈ R and x ∈ E. Consider also the symmetric neighborhood

V = V
(ε

4
; pi, qi, 1 ≤ i ≤ n

)
.

Then V + V + V + V ⊂ U . Since {f (t) : t ∈ R} is totally bounded, there exists
t1, . . . , tν such that

f (t) ∈
ν⋃

k=1

(f (tk) + V )

for every t ∈ R.
Consider now the almost periodic functions

f (t), T (t)(f (tk)), k = 1, 2, . . . , ν.
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These are the same V -translation numbers by Corollary 8.13; therefore we can find
a number l = l(V ) > 0 such that any interval [a, a+ l] contains at least one number
s such that

f (t + s) − f (s) ∈ V for every t ∈ R, (2.3)

T (t + s)f (tk) − T (t)f (tk) ∈ V for every t ∈ R (2.4)

and for every k = 1, 2, . . . , ν.
Take now an arbitrary t ∈ R. Then there exists (1 ≤ j ≤ ν) such that

f (t) ∈ f (tj ) + V. (2.5)

Write

T (t + s)f (t + s) − T (t)f (t) = T (t + s)(f (t + s) − f (t))

+T (t + s)(f (t) − f (tj ))

+T (t + s)f (tj ) − T (t)f (tj )

+T (t)(f (tj ) − f (t)).

For every seminorm pi , we can find a seminorm qi such that

pi[T (t + s)f (t + s) − T (t)f (t)] ≤ qi(f (t + s) − f (t))

+qi(f (t) − f (tj )) + pi(T (t + s)f (tj )

−T (t)f (tj )) + qi(f (tj ) − f (t))

< ε
4 + ε

4 + ε
4 + ε

4
= ε

using (2.3), (2.4), and (2.5) above. Thus we have

T (t + s)f (t + s) − T (t)f (t) ∈ U

for every t ∈ R, which establishes the almost periodicity of T (t)f (t). ��
Definition 8.27 A Fréchet space E is said to be perfect if every bounded function
f : R → E with an almost periodic derivative f ′ is necessarily almost periodic.

Example 8.28 Denote by s the linear space of all real sequences

s := {s = (xn) / xn ∈ R, n = 1, 2, . . .}.

For each n ∈ N, define pn(x) := |xn|, x ∈ s. Obviously pn is a seminorm defined
on s. Now define qn := p1 ∨ p2 ∨ . . . ∨ pn for n ∈ N. We have qn ≤ qn+1 for
n ∈ N. The space s considered with the family of seminorms (qn) is a Fréchet
space. Moreover, it can be proved (cf. [1] 17.7 p. 210) that each closed and bounded
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subset of s is compact. Thus, in particular, s is not a Banach space. Moreover in
view of Theorem 8.20, s is perfect.

Definition 8.29 A function f ∈ C(R,X) is called periodic if there exists l > 0
such that

f (t + l) = f (t), ∀t ∈ R.

Here, l is called a period of f . We denote the collection of all such functions by
P(X). For f ∈ P(X), we call l0 the fundamental period if l0 is the smallest period
of f .

Remark 8.30 Similar to the proof in [22, p. 1], it is not difficult to show that if
f ∈ P(X) is not constant, then f has the fundamental period.

Theorem 8.31 ([72]) Let X be a Banach space with norm ‖ · ‖, then P(X) is a set
of first category in AP(X).

Proof For n = 1, 2, . . ., we denote

Pn = {f ∈ C(R,X) : ∃l ∈ [n, n + 1] such that f (t + 1) = f (t), ∀t ∈ R}.

Then, it is easy to see that

P(X) =
∞⋃

n=1

Pn.

We divide the remaining proof into two steps.

Step 1 Every Pn is a closed subset of AP(X).
Let f ∈ AP(X)\Pn. Then, for every l ∈ [n, n + 1], there exists tl ∈ R such that
f (tl + l) �= f (tl). Denote

εl := 1

4
‖f (tl + l) − f (tl)‖ > 0, l ∈ [n, n + 1].

In addition, due to the continuity of f , for every l ∈ [n, n+1], there exists δl > 0
such that

‖f (tl + s) − f (tl)‖ ≥ 3εl, ∀s ∈ (l − δl, l + δl). (2.6)

Obviously, we have

[n, n + 1] ⊂
⋃

l∈[n,n+1]
(l − δl, l + δl).

Then, by the Heine-Borel theorem, there exists l1, . . . lk ∈ [n, n + 1] such that
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[n, n + 1] ⊂
k⋃

i=1

(li − δli , li + δli ),

where k is a fixed positive integer. Letting ε = min
1≤i≤k

{εli }, and

N(f, ε) := {g ∈ AP(X) : ‖g − f ‖AP(X) < ε},

for every g ∈ N(f, ε), we claim that g /∈ Pn. In fact, for every l ∈ [n, n + 1],
there exists i ∈ {1, . . . , k} such that

l ∈ (li − δli , li + δli ).

Then, by (4.3), we have

‖f (tli + l) − f (tli )‖ ≥ 3εli ≥ 3ε,

which yields that

‖g(tli + l) − g(tli )‖ ≥ ‖f (tli + l) − f (tli )‖ − ‖f (tli + l) − g(tli + l)‖
−‖f (tli ) − g(tli )‖ ≥ 3ε − ε − ε = ε > 0,

where ‖g − f ‖AP(R) < ε was used. So, we know that N(f, ε) ⊂ AP(X)\Pn,
which means that Pn is a closed subset of AP(X).

Step 2 Every Pn has an empty interior.
It suffices to prove that for every f ∈ Pn and δ > 0, N(f, δ)

⋂
(AP (X)\Pn) �=

∅. Now let f ∈ Pn and δ > 0. In the following, we discuss by two cases:
Case I f is constant.

We denote

fδ(t) = cos t + cos(
√
2t)

3
· δ · x0 + f (t), t ∈ R

where x0 ∈ X is some constant with ‖x0‖ = 1. Then fδ ∈ N(f, δ), and fδ /∈ Pn

since fδ is not periodic.
Case II f is not constant.

Let f be a fundamental period l0. We denote

fδ(t) = f (t) + f

(
t

π

)
· δ

Mf

, t ∈ R,

where Mf = sup
t∈R

‖f (t)‖. Obviously, fδ ∈ N(f, δ). Also, we claim that fδ /∈ Pn.

In fact, if this is not true, then there exists T ∈ [n, n + 1] such that
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fδ(t + T ) = fδ(t), t ∈ R,

i.e.

f (t + T ) + f

(
t + T

π

)
· δ

Mf

= f (t) + f

(
t

π

)
· δ

Mf

, t ∈ R.

Let

F1(t) = f (t + T ) − f (t), F2(t) = δ

Mf

[
f

(
t

π

)
− f

(
t + T

π

)]
, t ∈ R.

Then F1(t) ≡ F2(t). If F1(t) ≡ F2(t) ≡ C, where C is a fixed constant, then

f (t + T ) = f (t) + C, t ∈ R,

which yields

C = f (kT ) − f (0)

k
→ 0, k → ∞,

since f is bounded. Thus, we have

f (t + T ) = f (t), f

(
t

π

)
= f

(
t + T

π

)
, t ∈ R.

Noting that l0 is the fundamental period of f and πl0 is the fundamental period of
f

( ·
π

)
, there exist two positive integers p, q such that

pl0 = T = qπl0,

i.e. π = p
q
, which is a contradiction. If F1 = F2 is not constant, then by

Remark 8.30, we can assume that T0 is the fundamental period of F1 and F2. Noting
that l0 is a period of F1 and πl0 is a period of F2, similar to the above proof, we can
also show that π is a rational number, which is a contradiction.

In conclusion, P(X) is countable unions of closed subsets with empty interior.
So P(X) is a set of first category. ��
Theorem 8.32 ([72]) Let X be a Banach space. Then AP(X) is a set of first
category in AA(X).

Proof It suffices to note thatAP(X) is a proper closed subspace ofAA(X) equipped
with the supnorm. Therefore it is of first category in AA(X). ��
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3 Almost Periodicity of the Function f (t, x)

Definition 8.33 Let E be a Fréchet space. A function f ∈ C(R × E,E) is said to
be almost periodic in t ∈ R for each x ∈ E if for each neighborhood of the origin
U , there exists a real number l > 0 such that every interval [a, a + l] contains at
least a point τ such that

f (t + τ, x) − f (t, x) ∈ U, for each t ∈ R and each x ∈ E.

In view of the Bochner’s criterion, this definition is equivalent to the following:
f ∈ C(R × E,E) is almost periodic in t ∈ R for each x ∈ E if and only if for
every sequence of real numbers (s′

n) there exists a subsequence (sn) ⊂ (s′
n) such

that (f (t + sn, x)) converges uniformly in t ∈ R and x ∈ E.

Theorem 8.34 Let f : R × E → E be almost periodic in t ∈ R for each x ∈
E, and assume that f satisfies a Lipschitz condition in x uniformly in t , that is
d(f (t, x) − f (t, y)) ≤ Ld(x, y) for all t ∈ R and x, y ∈ E, where d is a metric on
E. Let φ : R → E be almost periodic. Then the Nemytskii’s operator N defined by
N (·) := f (·, φ(·)) is almost periodic.
Proof Trivial. We leave it to the reader. ��

4 Equi-Asymptotically Almost Periodic Functions

In this section, we introduce the notion of equi-asymptotically almost periodicity
(cf. [24]), and present some basic and interesting properties for equi-asymptotically
almost periodic functions.

Definition 8.35 Let X be a Banach space. A set F ⊂ C(R,X) is called equi-
asymptotically almost periodic if for every ε > 0, there exist a constant M(ε) > 0
and a relatively dense set T (F, ε) ⊂ R such that

‖f (t + τ) − f (t)‖ < ε,

for all f ∈ F , t ∈ R with |t | > M(ε) and τ ∈ T (F, ε) with |t + τ | > M(ε).

Theorem 8.36 Let F ⊂ AAP(R,X). Then the following assertions are equiva-
lent:

(i) F is precompact in AAP(R,X).
(ii) F satisfy the following three conditions:

(a) for every t ∈ R, {f (t) : f ∈ F } is precompact in X.
(b) F is equi-uniformly continuous.
(c) F is equi-asymptotically almost periodic.
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(iii) G is precompact inAP(R, X) (in shortAP ) andH is precompact inC0(R, X)

(in short C0), where

G = {fAP : f ∈ F } and H = {fC0 : f ∈ F }.

Proof

(i) ⇒ (ii) Let F be precompact in AAP(R,X). Then, obviously, for every t ∈ R,
{f (t) : f ∈ F } is precompact in X. In addition, for every ε > 0, there
exist f1, f2, . . . , fk ∈ F such that for every f ∈ F ,

min
1≤i≤k

‖f − fi‖ < ε,

where k is a positive integer dependent on ε. Combining this with the
fact that (fi)

k
i=1 is equi-uniformly continuous and equi-asymptotically

almost periodic, we know that (b) and (c) hold.
(ii) ⇒ (iii) Let (gn) ⊂ G. For every n, there exist fn ∈ F and hn ∈ H such that

fn = gn + hn. By (a) and (b), applying Arzela–Ascoli theorem and
choosing diagonal sequence, we can get a subsequence of (fn), which
we still denote by (fn) for convenience, such that (fn(t)) is uniformly
convergent on every compact subsets of R.

Since (fn) is equi-asymptotically almost periodic, for every ε > 0,
there exists l(ε),M(ε) > 0 such that for every t ∈ R with |t | > M(ε),
there is a

τt ∈ [M(ε) + 1 − t,M(ε) + 1 − t + l(ε)]

satisfying

‖fn(t + τt ) − fn(t)‖ <
ε

3
(4.1)

for all n ∈ N. Noting that (fn(t)) is uniformly convergent on

[−M(ε) − l(ε) − 1,M(ε) + l(ε) + 1],

for the above ε > 0, there exists N ∈ N such that for all m ≥ n ≥ N

and t ∈ [−M(ε) − l(ε) − 1,M(ε) + l(ε) + 1],

‖fm(t) − fn(t)‖ <
ε

3
. (4.2)

Combining (4.1) and (4.2), for all m ≥ n ≥ N and t ∈ R with |t | >

M(ε), we have

‖fm(t) − fn(t)‖ ≤ ‖fm(t) − fm(t + τt )‖ + ‖fm(t + τt ) − fn(t + τt )‖
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+‖fn(t + τt ) − fn(t)‖ ≤ ε,

which and (4.2) yield that (fn(t)) is uniformly convergent onR. In view
of

{gm(t) − gn(t) : t ∈ R} ⊂ {fm(t) − fn(t) : t ∈ R}

for all m, n ∈ N, we conclude that (gn(t)) is also uniformly convergent
on R, i.e. (gn) is convergent in AP(R, X). So G is precompact in
AP(R, X). In addition, it follows from the above proof that F is
precompact, and thus H is also precompact.

(iii) ⇒ (i) The proof is straightforward.
��

Remark 8.37 Theorem 8.36 can be seen as an extension of the corresponding
compactness criteria for the subsets of AP(R,X) (cf. e.g., [22]).

Definition 8.38 F ⊂ C0(R, X) is called equi-C0 if

lim|t |→∞ sup
f ∈F

‖f (t)‖ = 0.

Theorem 8.39 The following two assertions are equivalent:

(I) F is equi-asymptotically almost periodic;
(II) G is equi-almost periodic and H is equi-C0, where

G = {fAP : f ∈ F } and H = {fC0 : f ∈ F }.

Proof The proof from (II) to (I) is straightforward. We will only give the proof from
(I) to (II) by using the idea in the proof of [71, p. 24, Theorem 2.5].

Since F is equi-asymptotically almost periodic, for every k ∈ N, there exist a
constant Mk > 0 and a relatively dense set T (F, k) ⊂ R such that

‖f (t + τ) − f (t)‖ <
1

k
, (4.3)

for all f ∈ F , t ∈ R with |t | > Mk and τ ∈ T (F, k) with |t + τ | > Mk . Moreover,
for every f ∈ F ⊂ AAP(R,X), noting that f is uniformly continuous, for the
above k ∈ N, there exists δ

f
k > 0 such that

‖f (t1) − f (t2)‖ <
1

k
(4.4)

for all t1, t2 ∈ R with |t1 − t2| < δ
f
k .

Now, for every t ∈ R and k ∈ N, we choose τ t
k ∈ T (F, k) with t + τ t

k > Mk .
Also, we denote
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g
f
k (t) = f (t + τ t

k), t ∈ R, k ∈ N, f ∈ F.

Next, we divide the remaining proof into eight steps.

Step 1 For every f ∈ F , there holds

∥∥∥g
f
k (t1) − g

f
k (t2)

∥∥∥ <
5

k
(4.5)

for all k ∈ N, and t1, t2 ∈ R with |t1 − t2| < δ
f
k .

In fact, by (4.3) and (4.4), we have

‖gf
k (t1) − g

f
k (t2)‖ = ‖f (t1 + τ

t1
k ) − f (t2 + τ

t2
k )‖

≤ ‖f (t1 + τ
t1
k ) − f (t1 + τ

t1
k + τ)‖

+ ‖f (t1 + τ
t1
k + τ) − f (t2 + τ

t1
k + τ)‖

+ ‖f (t2 + τ
t1
k + τ) − f (t2 + τ)‖

+ ‖f (t2 + τ) − f (t2 + τ + τ
t2
k )‖

+ ‖f (t2 + τ + τ
t2
k ) − f (t2 + τ

t2
k )‖ <

5

k
,

where τ ∈ T (F, k) satisfying

min
{
t1 + τ

t1
k + τ, t2 + τ

t1
k + τ, t2 + τ, t2 + τ + τ

t2
k

}
> Mk.

Step 2 For every k ∈ N, there holds

‖gf
k (t + τ) − g

f
k (t)‖ <

5

k
(4.6)

for all f ∈ F , τ ∈ T (F, k), and t ∈ R.
In fact, by using (4.3), we have

‖gf
k (t + τ) − g

f
k (t)‖ = ‖f (t + τ + τ t+τ

k ) − f (t + τ t
k)‖

≤ ‖f (t + τ + τ t+τ
k ) − f (t + τ + τ t+τ

k + τ ′)‖
+ ‖f (t + τ + τ t+τ

k + τ ′) − f (t + τ t+τ
k + τ ′)‖

+ ‖f (t + τ t+τ
k + τ ′) − f (t + τ ′)‖

+ ‖f (t + τ ′) − f (t + τ ′ + τ t
k)‖

+ ‖f (t + τ ′ + τ t
k) − f (t + τ t

k)‖ <
5

k
,
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where τ ′ ∈ T (F, k) satisfying

min
{
t + τ + τ t+τ

k + τ ′, t + τ t+τ
k + τ ′, t + τ ′, t + τ ′ + τ t

k

}
> Mk.

Step 3 For every n ∈ N, there holds

∥∥∥g
f
m(t) − g

f
n (t)

∥∥∥ <
4

n
(4.7)

for all f ∈ F , t ∈ R, and m, n ∈ N with m ≥ n.
In fact, without loss of generality, we can assume that Mk+1 ≥ Mk for all k ∈ N.
Then, by using (4.3), we have

∥∥∥g
f
m(t) − g

f
n (t)

∥∥∥

= ‖f (t + τ t
m) − f (t + τ t

n)‖
≤ ‖f (t + τ t

m) − f (t + τ t
m + τ)‖ + ‖f (t + τ t

m + τ) − f (t + τ t
m + τ + τ t

n)‖
+‖f (t + τ t

m + τ + τ t
n) − f (t + τ + τ t

n)‖ + ‖f (t + τ + τ t
n) − f (t + τ t

n)‖

<
1

n
+ 1

n
+ 1

n
+ 1

n
≤ 4

n
,

where τ ∈ T (F, n) satisfying

min
{
t + τ t

m + τ, t + τ t
m + τ + τ t

n, t + τ + τ t
n

}
> Mm.

Step 4 Let

gf (t) = lim
n→∞ g

f
n (t), t ∈ R, f ∈ F.

By Step 3, we know that for every f ∈ F , gf is well-defined. Moreover, it
follows from Step 3 that for every n ∈ N, there holds

‖gf (t) − g
f
n (t)‖ ≤ 4

n
(4.8)

for all f ∈ F , R, and n ∈ N.
Step 5 For every f ∈ F , gf is uniformly continuous on R.

In fact, by (4.5) and (4.8), we have

‖gf (t1) − gf (t2)‖ ≤ ‖gf (t1) − g
f
n (t1)‖ + ‖gf

n (t1) − g
f
n (t2)‖

+‖gf
n (t2) − gf (t2)‖ ≤ 4

n
+ 5

n
+ 4

n
= 13

n
,
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for all n ∈ N and t1, t2 ∈ R with |t1 − t2| < δ
f
n .

Step 6 {gf }f ∈F is equi-almost periodic.
By (4.6) and (4.8), for every n ∈ N, we get

‖gf (t + τ) − gf (t)‖ ≤ ‖gf (t + τ) − g
f
n (t + τ)‖ + ‖gf

n (t + τ) − g
f
n (t)‖

+‖gf
n (t) − gf (t)‖ ≤ 4

n
+ 5

n
+ 4

n
= 13

n
,

for all f ∈ F , τ ∈ T (F, n), and t ∈ R. Then, it follows that {gf }f ∈F is equi-
almost periodic.

Step 7 {hf }f ∈F is equi-C0, where hf (t) = f (t)−gf (t) for all f ∈ F and t ∈ R.
In fact, firstly, by Step 5, hf ∈ C(R, X) for every f ∈ F ; secondly, for every
n ∈ N, by (4.8) and the definition of τ t

n, we have

‖hf (t)‖ = ‖f (t) − gf (t)‖
≤ ‖f (t) − g

f
n (t)‖ + ‖gf

n (t) − gf (t)‖
≤ ‖f (t) − f (t + τ t

n)‖ + 4

n

≤ 1

n
+ 4

n
= 5

n
,

for all f ∈ F , t ∈ R with |t | > Mn. Thus, {hf }f ∈F is equi-C0.
Step 8 It follows from the above proof that G = {gf }f ∈F and H = {hf }f ∈F .

This completes the proof.
��
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