
Chapter 10
The Equation x’(t)=A(t)x(t)+f(t)

1 The Equation x’(t)=A(t)x(t)+f(t)

Case I Let us first assume that X is of finite dimension, say X = C
n.

Let us consider the inhomogeneous linear evolution equations of the form

dx(t)

dt
= A(t)x(t) + f (t), t ∈ R, x(t) ∈ X, (1.1)

where A(·) is a τ -periodic (unbounded) linear operator-valued function and f ∈
AA(X).

Theorem 10.1 ([40, 55]) Every bounded solution on the whole real line of Eq. (1.1)
is in AA(X).

Proof First, we note that by Floquet theory of periodic ordinary differential
equations and by Proposition 2.11 [40], without loss of generality, we may assume
that A is independent of t .

Next, we will show that the problem can be reduced to the one-dimensional
case. In fact, if A is independent of t , by a change of variable if necessary, we
may assume that A is of Jordan normal form. In this direction, we can go further
with the assumption that A has only one Jordan box; that is, we have to prove the
theorem for equations of the form

⎛
⎜⎜⎜⎝

ẋ1(t)

ẋ2(t)
...

ẋn(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

λ 1 0 . . . 0
0 λ 1 . . . 0
. . . . . . . . . . . .

0 0 0 . . . λ

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

x1(t)

x2(t)
...

xn(t)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

f1(t)

f2(t)
...

fn(t)

⎞
⎟⎟⎟⎠ .

Let us consider the last equation involving xn(t). We have
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ẋn(t) = λxn(t) + fn(t), t ∈ R, x(t) ∈ C
n.

If �λ �= 0, then we can easily check that either

y(t) =
∫ t

−∞
eλ(t−ξ)f (ξ)dξ (�λ < 0)

or

z(t) =
∫ ∞

t

eλ(t−ξ)f (ξ)dξ (�λ > 0)

is a unique bounded solution of Eq. (1.1). Moreover, by Proposition 2.11 [40] in
both cases, y(t) and z(t) are in AA(X). Hence, xn is in AA(X).

If �λ = 0, then λ = iη for η ∈ R. By assumption, there is a constant c such that
the function

xn(t) := ceiηt +
∫ t

0
eiη(t−ξ)f (ξ)dξ

is bounded on R. This yields the boundedness of
∫ t

0 e−iηξ f (ξ)dξ on R. Hence,∫ t

0 e−iηξ f (ξ)dξ is in AA(X). Finally, this yields that xn is in AA(X).
Let us consider next the equation involving xn−1 and xn. Since xn is inAA(X), by

repeating the above argument, we can show that xn−1 is also in AA(X). Continuing
this process, we can show that all xk(·) are in AA(X). The proof is complete. ��
Case II Let us now consider Eq. (1.1) in an infinite dimensional Banach space
X where f ∈ AA(X), and A(t) generates a 1-periodic evolutionary process
(U(t, s))t≥s in X, that is, a two-parameter family of bounded linear operators that
satisfies the following conditions:

(i) U(t, t) = I for all t ∈ R,
(ii) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r ,
(iii) The map (t, s) 	→ U(t, s)x is continuous for every fixed x ∈ X,
(iv) U(t + 1, s + 1) = U(t, s) for all t ≥ s (1-periodicity),
(v) ‖U(t, s)‖ ≤ Neω(t−s) for some positive N, ω independent of t ≥ s.

We emphasize that the above choice of the period of the equations is merely
for the simplification of the notation but does not mean a restriction. We refer the
reader to [6, 17, 36] for more information on the applications of this concept of
evolutionary processes to partial differential equations.

Definition 10.2 An X-valued continuous function u on R is said to be a mild
solution of Eq. (1.1) if

u(t) = U(t, s)u(s) +
∫ t

s

U(t, ξ)f (ξ)dξ, ∀t ≥ s; t, s ∈ R. (1.2)
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Lemma 10.3 ([40]) Let u be a bounded mild solution of Eq. (1.1) on R and f be
almost automorphic. Then, u is almost automorphic if and only if the sequence
(u(n))n∈Z is almost automorphic.

Proof

Necessity: Obviously, if u is almost automorphic, the sequence (u(n))n∈Z is
almost automorphic.

Sufficiency: Let the sequence (u(n))n∈Z be almost automorphic. We now prove
that u is almost automorphic. The proof is divided into several steps:

Step 1: We first suppose that (n′
k) is a given sequence of integers. Then, there

exist a subsequence (nk) and a sequence (v(n)) such that

lim
k→∞ u(n + nk) = v(n); lim

k→∞ v(n − nk) = u(n), ∀n ∈ Z (1.3)

lim
k→∞ f (t + nk) = g(t); lim

k→∞ g(t − nk) = f (t), ∀t ∈ R. (1.4)

For every fixed t ∈ R, let us denote by [t] the integer part of t . Then, define

v(η) := U(η, [t])v([t]) +
∫ η

[t]
U(η, ξ)g(ξ)dξ, η ∈ [[t], [t] + 1).

In this way, we can define v on the whole line R. Now, we show that

lim
k→∞ u(t + nk) = v(t).

In fact,

lim
k→∞ ‖u(t + nk)−v(t)‖ ≤ lim

k→∞ ‖U(t+nk, [t]+nk)u([t]+nk)−U(t, [t])v([t])‖

+ lim
k→∞

∫ t

[t]
‖U(t, η)‖‖f (η + nk) − g(η)‖dη

= lim
k→∞ ‖U(t, [t])u([t] + nk) − U(t, [t])v([t])‖

+ lim
k→∞

∫ t

[t]
‖U(t, η)‖‖f (η + nk) − g(η)‖dη = 0.

Similarly, we can show that

lim
k→∞ ‖v(t − nk) − u(t)‖ = 0.

Step 2: Now, we consider the general case where (s′
k)k∈Z may not be an integer

sequence. The main lines are similar to those in Step 1 combined with the strong
continuity of the process and the precompactness of the range of the function f .
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Set n′
k = [s′

k] for every k. Since (tk)k∈Z, where tk := s′
k − [s′

k], is a sequence
in [0, 1), we can choose a subsequence (nk) from {n′

k} such that lim
k→∞ tk = t0 ∈

[0, 1] and (1.3) holds for a function v, as shown in Step 1.

Let us first consider the case 0 < t0 + t − [t0 + t]. We show that

lim
k→∞ u(tk + t + nk) = lim

k→∞ u(t0 + t + nk) = v(t0 + t). (1.5)

In fact, for sufficiently large k, from the above assumption, we have [t0+t] = [tk+t].
Using the 1-periodicity of the process (U(t, s))t≥s , we have

‖u(tk + t + nk) − u(t0 + t + nk)‖ ≤ A(k) + B(k), (1.6)

where A(k) and B(k) are defined and estimated as below. By the 1-periodicity of
the process (U(t, s))t≥s , we have

A(k) := ‖U(tk + t + nk, [tk + t] + nk)u([tk + t] + nk)

−U(t0 + t + nk, [t0 + t] + nk)u([t0 + t] + nk)‖
= ‖U(tk + t, [t0 + t])u([t0 + t] + nk) − U(t0 + t, [t0 + t])u([t0 + t] + nk)‖.

Using the strong continuity of the process (U(t, s))t≥s and the precompactness of
the range of the sequence (u(n))n∈Z, we have lim

k→∞ A(k) = 0. Next, we define

B(k) := ‖
∫ tk+t+nk

[tk+t]+nk

U(tk +t+nk, η)f (η)dη−
∫ t0+t+nk

[t0+t]+nk

U(t0+t+nk, η)f (η)dη‖.

By the 1-periodicity of the process (U(t, s))t≥s and [t0 + t] = [tk + t], we have

B(k) =
∥∥∥∥
∫ tk+t−[tk+t]

0
U(tk + t + nk, [t0 + t] + nk + θ)f ([t0 + t] + nk + θ)dθ

−
∫ t0+t−[t0+t]

0
U(t0 + t + nk, [t0 + t] + nk + θ)f ([t0 + t] + nk + θ)dθ

∥∥∥∥

=
∥∥∥∥
∫ tk+t−[t0+t]

0
U(tk + t − [t0 + t], θ)f ([t0 + t] + nk + θ)dθ

−
∫ t0+t−[t0+t]

0
U(t0 + t − [t0 + t], θ)f ([t0 + t] + nk + θ)dθ

∥∥∥∥ .

From the strong continuity of the process (U(t, s))t≥s and the precompactness of
the range of f , it follows that lim

k→∞ B(k) = 0. So, in view of Step 1, we see that

(1.5) holds.
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Next, we consider the case when t0 + t − [t0 + t] = 0, that is, t0 + t is an integer.
If tk + t ≥ t0 + t , we can repeat the above argument. So, we omit the details. Now,
suppose that tk + t < t0 + t . Then,

‖u(tk + t + nk) − u(t0 + t + nk)‖ ≤ C(k) + D(k), (1.7)

where C(k) and D(k) are defined and estimated as below:

C(k) := ‖U(tk + t + nk, [tk + t] + nk)u([tk + t] + nk)

−U(t0 + t + nk, t0 + t − 1 + nk)u(t0 + t − 1 + nk)‖
= ‖U(tk + t, t0 + t − 1)u(t0 + t − 1 + nk)

−U(t0 + t, t0 + t − 1)u(t0 + t − 1 + nk)‖.

Now, using the strong continuity of the process (U(t, s))t≥s and the precompactness
of the range of the sequence (u(n))n∈Z, we obtain lim

k→∞ C(k) = 0.

As for D(k), we have

D(k) :=
∥∥∥∥
∫ tk+t+nk

[tk+t]+nk

U(tk + t + nk, η)f (η)dη

−
∫ t0+t+nk

[t0+t]+nk−1
U(t0 + t + nk, η)f (η)dη

∥∥∥∥

=
∥∥∥∥
∫ tk+t+nk

[t0+t]+nk−1
U(tk + t + nk, η)f (η)dη

−
∫ t0+t+nk

[t0+t]+nk−1
U(t0 + t + nk, η)f (η)dη

∥∥∥∥

=
∥∥∥∥
∫ tk+1−t0

0
U(tk + t, t0 + t − 1 + θ)f (t0 + t + nk − 1 + θ)dθ

−
∫ 1

0
U(t0 + t, t0 + t − 1 + θ)f (t0 + t + nk − 1 + θ)dθ

∥∥∥∥ .

From the strong continuity of the process (U(t, s))t≥s and the precompactness of
the range of f , it follows that lim

k→∞ D(k) = 0. This finishes the proof of the lemma.

��
Theorem 10.4 ([40]) Let A(t) in Eq. (1.1) generate a 1-periodic strongly continu-
ous evolutionary process, and let f be almost automorphic. Assume further that the
space X does not contain any subspace isomorphic to c0, and the part of spectrum
of the monodromy operator U(1, 0) on the unit circle is countable. Then, every
bounded mild solution of Eq. (1.1) on the real line is almost automorphic.
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Proof The theorem is an immediate consequence of the results above. In fact, we
need only to prove the sufficiency. Let us consider the discrete equation

u(n + 1) = U(n + 1, n)u(n) +
∫ n+1

n

U(n + 1, ξ)f (ξ)dξ, n ∈ Z.

From the 1-periodicity of the process (U(t, s))t≥s , this equation can be rewritten in
the form

u(n + 1) = Bu(n) + yn, n ∈ Z, (1.8)

where

B := U(1, 0); yn :=
∫ n+1

n

U(n + 1, ξ)f (ξ)dξ, n ∈ Z.

We are going to show that the sequence (yn)n∈Z defined as above is almost
automorphic. In fact, since f is automorphic, for any given sequence (n′

k), there are
a subsequence (nk) and a measurable function g such that lim

k→∞ f (t + nk) = g(t)

and lim
m→∞ g(t − nm) = f (t) for every t ∈ R. Therefore, if we set

wn = lim
k→∞

∫ n+nk+1

n+nk

U(n + nk, ξ)f (ξ)dξ, n ∈ Z,

then, by the 1-periodicity of (U(t, s))t≥s and the Lebesgue Dominated Convergence
Theorem, we have

wn = lim
k→∞

∫ n+1

n

U(n, η)f (nk + η)dη =
∫ n+1

n

U(n, η)g(η)dη.

Therefore, lim
k→∞ yn+nk

= wn for every n ∈ Z. Similarly, we can show that

lim
k→∞ wn−nk

= yn.

By Lemma 2.11 [48], since (u(n)) is a bounded solution of (1.8), X does not
contain any subspace isomorphic to c0, and the part of spectrum of U(1, 0) on the
unit circle is countable, (u(n)) is almost automorphic. By Lemma 10.3, this yields
that the solution u itself is almost automorphic. ��

Now, let us consider Eq. (1.1) where A(t) = A.

Theorem 10.5 ([70]) Suppose that A generates an asymptotically stable C0-
semigroup (T (t))t≥0, that is,

lim
t→∞ T (t)x = 0, for every x ∈ X,
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and f ∈ AA(X). If x(t) is a mild solution of Eq. (1.1) with a relatively compact
range in X, then x ∈ AA(X).

Proof x(t) will admit the representation

x(t) = T (t − a)x(a) +
∫ t

a

T (t − ξ)f (ξ)dξ

for each a ∈ R and t ≥ a.
Let (s′

n) be a sequence of real numbers. Since f ∈ AA(X), we can find a
subsequence (sn) ⊂ (s′

n) such that

g(t) := lim
n→∞ f (t + sn)

is well-defined for each t ∈ R and

lim
n→∞ g(t − sn) = f (t)

for each t ∈ R.
Suppose now that the sequence (x(t0 + sn)) is not convergent for some t0 ∈ R.

Then, there exist some α > 0 and two subsequences (σ ′
n) and (σ ′′

n ) of (sn) such that

‖x(t0 + σ ′
n) − x(t0 + σ ′′

n )‖ > α (1.9)

for n = 1, 2, . . ..
We have, for a ≤ t0

x(t0 + σ ′
n) − x(t0 + σ ′′

n ) = T (t0 − a)[x(t0 + σ ′
n) − x(t0 + σ ′′

n )]
+ ∫ t0

a
T (t0 − ξ)[f (ξ + σ ′

n) − f (ξ − σ ′′
n )]dξ.

Let K = {x(t) / t ∈ R} be the closure of the range of x(t); by assumption K is
compact in X.

Since lim
t→∞ T (t)x = 0 for every x ∈ X, it is easy to observe that lim

t→∞ T (t)x = 0

uniformly in any compact subset of X. Thus we can choose some a < 0 such that

‖T (t0 − a)x(a + σ ′
n)‖ <

ε

3

and

‖T (t0 − a)x(a + σ ′′
n )‖ <

ε

3

for all n = 1, 2, . . . Now, fix a and put
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Fn(ξ) := T (t − ξ)[f (ξ + s′
n) − f (ξ + s′′

n)]

with a ≤ ξ ≤ t0. Since sup
t∈R

‖f (t)‖ < ∞, and ‖T (t0)‖ ≤ M for some M > 0, we

get

‖Fn(ξ)‖ ≤ ‖T (t0 − ξ)‖(‖f (ξ + s′
n)‖ + ‖f (ξ + s′′

n)‖) ≤ L

for some L < ∞.
Also, we observe that lim

n→∞ Fn(ξ) = 0 in the strong sense for every ξ since

lim
n→∞ f (t + sn) exists for every t , and (σ ′

n) and (σ ′′
n ) both are subsequences of (sn).

Finally, Fn(ξ) is measurable for each n = 1, 2, . . .
Using Lebesgue’s Dominated Convergence Theorem, we get

lim
n→∞

∫ t

a

T (t − ξ)[f (ξ + σ ′
n) − f (ξ + σ ′′

n )]dξ = 0.

This implies the existence of some positive integer N such that

‖x(t0 + σ ′
n) − x(t0 + σ ′′

n )‖ < ε if n > N,

which contradicts (1.9).
Consequently, we deduce that the sequence (x(t + sn)) is convergent in X for

t ∈ R.
Let y(t) := lim

n→∞ x(t + sn), t ∈ R. It follows that

y(t) = T (t − a)y(a) +
∫ t

a

T (t − ξ)g(ξ)dξ

for every a ∈ R and t ≥ a. Moreover, � := {y(t) / t ∈ R} ⊂ K . And consequently,
� is relatively compact in X. We may assume that

lim
n→∞ y(t − sn) = u(t)

pointwise on R.
Using the same argument as above, we can get

u(t) = T (t − a)u(a) +
∫ t

a

T (t − ξ)g(ξ)dξ
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for every a ∈ R and t ≥ a. We also have

{u(t) / t ∈ R} ⊂ {y(t) / t ∈ R} ⊂ K.

It remains to prove that u(t) = x(t), t ∈ R.
Let us write y(t − sn) − x(t) = T (t − a)y(a − sn) − T (t − a)x(a)

+ ∫ t

a
T (t − ξ)(g(ξ − sn) − f (s))dξ.

Fix t ∈ R, and let ε > 0. Since K is compact, one may choose a < 0 large
enough such that

‖T (t − a)y(a − sn)‖ <
ε

3
, ∀n

and

‖T (t − a)x(a)‖ <
ε

3
.

The second inequality is based on the assumption that lim
t→∞ T (t)x = 0. Now, fix a,

and let

Hn(ξ) := T (t − ξ)(g(ξ − sn) − f (ξ)).

It is clear that eachHn(ξ), n = 1, 2, . . . , is bounded in norm since sup
t≥0

‖T (t)‖ <

∞ and sup
t∈R

‖f (t)‖ < M < ∞. By Lebesgue’s Dominated Convergence Theorem,

we get

lim
n→∞

∫ t

a

T (t − ξ)(g(ξ − sn) − f (ξ))dξ = 0.

We then obtain

‖y(t − sn) − x(t)‖ < ε,

if n > N for some given positive integer N . This implies that x(t) = u(t) for each
t ∈ R. The proof is complete. ��
Theorem 10.6 (N’Guérékata [55]) Assume that A is bounded and f ∈ AA(X).
Let x(t) be a (strong) solution of Eq. (1.1) with a relatively compact range in
X. Assume also that there exists a finite dimensional subspace X1 of X with the
properties:

(i) etAu ∈ X1, ∀u ∈ X1;
(ii) Ax(0) ∈ X1;
(iii) (etA − I )f (s) ∈ X1 ∀t, s ∈ R.
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Then, x ∈ AA(X).

Proof Consider the projection P : X → X1. Then, we have X = X1 ⊕ N(P ),
where N(P ) is the null space of P . Note that Q = I −P is the projection on N(P ).
Both P and Q are bounded linear operators.

Let x(t) be a solution of Eq. (1.1). Then, we can write

x(t) = x1(t) + y(t), t ∈ R,

where x1(t) = Px(t) ∈ X1 and y(t) = Qx(t) ∈ N(P ).
Since the range of x(t) is relatively compact in X, so are the ranges of x1(t) and

y(t) as we can easily observe. Also,

x′(t) = x′
1(t) + y(t) = Ax1(t) + Ay(t) + Pf (t) + Qf (t), t ∈ R. (1.10)

x(t) has the integral representation

x(t) = etAx(0) + ∫ t

0 e(t−ξ)Af (ξ)dξ

= etAx(0) + ∫ t

0 f (ξ)dξ + ∫ t

0 (e(t−ξ)A − I )f (ξ)dξ.

Using assumption (iii), we can deduce that
∫ t

0 (e(t−ξ)A − I )f (ξ)dξ ∈ X1; then,
applying Q to both sides of the last equation above, we get

y(t) = QetAx(0) + Q

∫ t

0
f (ξ)dξ = QetAx(0) +

∫ t

0
Qf (ξ)dξ.

Thus,

y′(t) = QAetAx(0) + Qf (t) = Qf (t)

since Ax(0) ∈ X1, so etAAx(0) ∈ X1 by (ii).
Now, Qf (t) : R → X is an almost automorphic function since Q is a bounded

linear operator. Hence, y′(t) ∈ AA(X). Thus, y(t) ∈ AA(X) since its range is
relatively compact in X in view of Theorem 4.3.

Now, if we apply P to both sides of Eq. (1.10), we get in X1 the following
equation:

x′
1(t) = PAx1(t) + PAy(t) + P 3f (t) + PAf (t), t ∈ R.

We observe that the function g(t) := PAy(t) + P 3f (t) + PAf (t) is almost
automorphic.
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Now, the operator PA restricted to the subspace X1 is a matrix and the function
x1(t) is bounded since its range is relatively compact. So, we deduce that it is almost
automorphic in view of Theorem 4.5.

Finally, x(t) ∈ AA(X) as the sum of two almost automorphic functions.
The proof is complete. ��
Now we consider in a general Banach space X, the equation:

x′(t) = (A + B)x(t), t ∈ R (1.11)

and the associated inhomogeneous one

x′(t) = (A + B)x(t) + f (t), t ∈ R. (1.12)

.
We make the following assumptions:

(i) A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 such that T (t)x :
R → X is almost automorphic for each x ∈ X

(ii) There exists a finite dimensional subspace X1 of X such that D(A) ∩ X1 is
dense in X.

(iii) The projection P : X → X1 commutes with A.
(iv) B is a continuous linear operator such that B(X) = X1.

Theorem 10.7 (N’Guérékata [55]) Under assumptions (i)–(iv), every bounded
solution of Eq. (1.11) is almost automorphic.

Proof We recall that P is a bounded linear operator and has the property

X = X1 ⊕ N(P ),

where N(P ) is the kernel of P . We set Q = I − P .
Now, if x(t) is a bounded solution of Eq. (1.11), then it can be decomposed as

x(t) = x1(t) + x2(t) t ∈ R,

where x1(t) = Px(t) ∈ X1 and x2(t) = Qx(t) ∈ N(P ) are also bounded.
First, let us show that x2(t) ∈ AA(X). We have

x′
2(t) = d

dt
Qx(t) = Q d

dt
x(t) = Q(A + B)x(t)

= QAx(t), since QBx(t) = 0
= AQx(t), since A and Q commute
= Ax2(t).

Thus, we can write x2(t) = T (t)x2(0), t ∈ R, which shows that x2(t) ∈
AA(X).
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Now, if we apply P to Eq. (1.11) and use the commutativity of A and P , we
obtain

x′
1(t) = (A + PB)x1(t) + PBx2(t),

where g(t) := PBx2(t) ∈ AA(X).
It is clear that A + PB = A + B is a linear operator restricted to D(A) ∩ X1 ≡

X1 because of assumption (ii). Since x1(t) is bounded, it is almost automorphic
(Theorem 4.5). Finally, x(t) ∈ AA(X) as the sum of two almost automorphic
functions. The proof is complete. ��
Theorem 10.8 Assume that assumptions (i)–(iv) above are satisfied and f ∈
AA(X). Then, every solution of Eq. (1.12) with a relatively compact range is almost
automorphic.

Proof We start the proof as in Theorem 10.7 with the same notations. Consider a
solution x(t) of Eq. (1.12) with a relatively compact range in X, and let

x(t) = x1(t) + x2(t), t ∈ R,

as above. Observe that the range of x2(t) is also relatively compact in X. It is easy
to check that it satisfies the following equation in N(P ):

x′
2(t) = Ax2(t) + Qf (t), t ∈ R.

The function Qf (t) : R → N(P ) is almost automorphic since Q is bounded. We
deduce that x2(t) ∈ AA(X) in view of Theorem (4.3).

In applying P to Eq. (1.12), we obtain in the finite dimensional space X1 the
equation

x′
1(t) = (A + PB)x1(t) + g(t),

where g(t) := PBx2(t) + Pf (t) is an almost automorphic function R → X1.
As in Theorem 10.7, A + PB = A + B on D(A) ∩ X1. Now, since x1(t) has a
relatively compact range and thus it is bounded in the finite dimensional space X1,
we conclude in view of Theorem 4.5 that it is almost automorphic. Finally, x(t) is
almost automorphic as the sum of two almost automorphic functions. The proof is
now complete. ��
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