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Preface to the First Edition

The aim of this monograph is to present for the first time a unified and homogeneous
exposition of the theory of almost automorphic functions and its application to the
fast growing field of differential equations in abstract spaces (Banach and Hilbert
spaces).

It is based essentially on the work of M. Zaki, S. Zaidman and the author during
the last three decades.

The concept of almost automorphy is a generalization of almost periodicity. It
has been introduced in the literature by S. Bochner in relation to some aspects
of differential equations [11–13], and [14]. Almost automorphic functions are
characterized by the following property:

Given any sequence of real numbers (s′
n), we can extract a subsequence (sn) such

that

lim
n→∞ lim

m→∞ f (t + sn − sm) = f (t)

for each real number t . The convergence is simply pointwise while one requires
uniform convergence for almost periodicity.

In his important publication [67], W.A. Veech has studied almost automorphic
functions on groups. We like to mention the contribution by M. Zaki [70] which
provides a clear presentation of the study of almost automorphic functions with
values in a Banach space. Zaki’s work has been done under the supervision of
Professor S. Zaidman of the University of Montreal, Canada, and has since strongly
stimulated investigations in relation to the following problem:

What is the structure of bounded functions of the differential equation x′ =
Ax + f where f is an almost automorphic function?

This equation was originally raised and solved by Bohr and Neugebauer for an
almost periodic function f in a finite dimensional space. The generalization of this
result to the larger class of almost automorphic functions in infinite dimensional
spaces is not a trivial one. Indeed, it sometimes uses sophisticated techniques and
strong tools from functional analysis and operator theory.
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viii Preface to the First Edition

In this monograph we present several recent results from authors who contributed
to solve the above problem and consider some nonlinear cases. We deal with
classical solutions as well as the so-called mild solutions.

The concept of weak almost automorphy as presented by M. Zaki [70] is also
discussed (Chap. 2, Sect. 2).

Also, continuous solutions on the non-negative semi-axis that approach almost
automorphic functions at infinity are studied in Sections 5 and 6 of Chap. 2. In
particular semi-groups of linear operators are considered as an independent subject
in section of Chap. 3 and discussed in the context of the so-called Nemytskii and
Stepanov theory of dynamical systems.

A wide range of situations is presented in Chaps. 4 through 6.
In Chap. 3, we present some results of the theory of almost periodic functions

taking values in a locally convex space. We use a definition introduced in the
literature by C. Corduneanu and developed by the author for the first time in [54].
Applications to abstract differential equations are given in Chaps. 7 and 8. At the
end of each chapter, we have included a Notes section that gives some comments
the main references used.

It is our hope that this monograph will constitute a useful reference textbook for
post-graduate students and researchers in analysis, ordinary differential equations,
partial differential equations, and dynamical systems.

May it stimulate new developments of the theory of almost automotrphic and
almost periodic functions and enrich its applications to other fields.

It is a great pleasure to record our very sincere thanks to Professor Jerome
A. Goldstein, a friend and mentor for over two decades and Professor Georges
Anastassiou, who strongly encouraged us to complete this project.

We express my warm gratitude to Professor Constantin Corduneanu and Pro-
fessor Joseph Auslander for their valuable comments and suggestions. Our thanks
to our friend Professor Thomas Seidman who corrected some errors and Stephanie
Smith for her extraordinary skill and patience in setting this text.

We also express our appreciation to the editorial assistance of Kluwer Academic
Publishers, especially from Ana Bozicevic and Chris Curcio.

Finally, we owe a great deal to Professor Samuel Zaidman, who introduced us
to the exciting world of mathematical research. His experience and outstanding
contributions to mathematics have been a great source of inspiration to several
young mathematicians.



Preface to the Second Edition

Since the publication of our book [55] in 2001, there has been a real rebirth of the
theory of almost automorphic functions and applications to evolution equations as
we expected. An incredible number of researchers have been attracted by this topic.
This leads to a fast-growing number of publications.

We have received many helpful comments from colleagues and students, some
pointing out typographical errors, others asking for clarification and improvement
on some materials. In particular, Zheng, Ding, and N’Guérékata were able to
answer the long-time open problem: what is the “amount” of almost automorphic
functions which are not almost periodic in the sense of Bohr? The answer is
that the space of almost periodic functions is a set of first category in the space of
almost automorphic functions (cf. Chap. 1). Many other problems remain open, for
instance the study of almost periodic functions taking values in non-locally convex
spaces (cf. [30]).

Several generalizations were introduced in the literature including the study
of almost automorphic sequences. The interplay between almost automorphy and
almost periodicity is better known.

Researchers in the field overwhelmingly encouraged us to write a second edition
including some of the fresh and most relevant contributions and references.

As in the first edition, we present the materials in a simplified and rigorous way.
Each chapter is concluded with bibliographical notes showing the original sources
of the results and further reading.

We are most grateful to our numerous co-authors and colleagues who made such
great contributions to the theory of almost automorphy. We will not exhibit a list,
which would be any way incomplete, but we hope our friends will be satisfied with
our thanks and gratitude.

Finally, we thank our students Fatemeh Norouzi and Romario Gildas Foko
Tiomela and our friend and colleague Alexander Pankov for their careful proof-
reading and suggestions.

Baltimore, MD, USA Gaston M. N’Guérékata
October 2020
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Chapter 1
Introduction and Preliminaries

This monograph presents several recent developments on the theory of almost
automorphic and almost periodic functions (in the sense of Bohr) with values in
an abstract space and its application to abstract differential equations. We suppose
that the reader is familiar with the fundamentals of Functional Analysis. However,
to facilitate the understanding of the exposition, we give in the beginning, without
proofs, some facts of the theory of topological vector spaces and operators which
will be used later in the text.

1 Banach Spaces

We denote by R and C the fields of real and complex numbers, respectively. We will
consider a (real or complex) normed space X, that is a vector space over the field
� = R or C (respectively) with norm ‖ · ‖.

Definition 1.1 A sequence of vectors (xn) in X is said to be a Cauchy sequence if
for every ε > 0, there exists a natural number N such that ‖xn − xm‖ < ε for all
n,m > N .

Proposition 1.2 The following are equivalent:

(i) (xn) is a Cauchy sequence.
(ii) ‖xnk+1 − xnk

‖ → 0 as k → ∞, for every increasing subsequence of positive
integers (nk).

Proposition 1.3 If (xn) is a Cauchy sequence in a normed space X, the sequence
of reals (‖xn‖) is convergent.

Definition 1.4 A Banach space X is a complete normed space, that is, a normed
space X in which every Cauchy sequence is convergent to an element of X.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. M. N’Guérékata, Almost Periodic and Almost Automorphic Functions in Abstract
Spaces, https://doi.org/10.1007/978-3-030-73718-4_1
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2 1 Introduction and Preliminaries

Definition 1.5 A Banach space X is said to be uniformly convex if for every α, 0 <

α < 2, there exists a number δ = δ(α) > 0 such that for every x, y ∈ X with
‖x‖ < 1, ‖y‖ < 1, ‖x − y‖ > α, we have ‖x + y‖ ≤ 2(1 − δ).

Now if x, y ∈ X (not necessarily in the open unit ball), the conditions become

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

≤ (1 − δ) · max{‖x‖, ‖y‖}

if

‖x − y‖ ≥ α · max{‖x‖, ‖y‖}.

We observe that Hilbert spaces are examples of uniformly convex Banach spaces.

Definition 1.6 A subset S of a normed space X is said to be open if for every x ∈ S,
there exists ε > 0 such that the open ball

B(x, ε) := {y ∈ X : ‖x − y‖ < ε}

is included in S. S is said to be closed if its complement in X is open.

Proposition 1.7 A subset S of a normed space X is closed if and only if every
sequence of elements of S which converges in X, has its limit in S.

Definition 1.8 The closure of a subset S in a normed space X, denoted S, is the
intersection of all closed sets containing S.

It is easy to verify the following:

Proposition 1.9 Let S be a subset of a normed space X; then

S = {x ∈ X : ∃(xn) ⊂ S, lim
n→∞ xn = x}.

Definition 1.10 A subset S of a normed space X is said to be

(i) Dense in X if S = X;
(ii) Bounded in X if it is either empty or included in a closed ball;

(iii) Relatively compact in X if S is compact. Equivalently S is relatively compact if
and only if every sequence in S contains a convergent sequence. It is observed
that every relatively compact set is bounded.

Definition 1.11 Let X be a Banach space over the field � = R or C. The
(continuous) dual space of X is the normed space of all bounded linear functionals
ϕ : X → � which we denote X

∗.

We can rewrite Definition 1.10 (ii) as follows:



2 Lp Spaces 3

Definition 1.12 A subset S of a Banach space X is said to be bounded if ϕ(S) is
bounded in � for every ϕ ∈ X

∗.

Proposition 1.13 ([54]) Weakly bounded sets are bounded in any Banach space X.
In particular every weakly convergent sequence is bounded in X.

We refer to (X∗)∗ = X
∗∗, the bidual of X. X can be considered as embedded in

X
∗∗ as follows:
For x ∈ X, let

J (x) : X∗ → �(= R or C)

be defined by

J (x)[ϕ] = ϕ(x), ϕ ∈ X
∗.

Then J (x) is a linear form. It is continuous since

|J (x)[ϕ]| = |ϕ(x)| ≤ ‖ϕ‖‖x‖|, ∀ϕ ∈ X
∗.

Hence J (x) ∈ X
∗∗ for all x ∈ X. The map J : X → X

∗∗ defined this way is also
linear and isometric. It is called the canonical embedding of X into its bidual X∗∗.

Definition 1.14 If the canonical embedding J : X → X
∗∗ is surjective, i.e. X =

X
∗∗, we say that X is reflexive.

Proposition 1.15 If X is a reflexive Banach space and (xn) is a bounded sequence,
then we can extract a subsequence (x′

n) which will converge weakly to an element
of X.

2 Lp Spaces

Let I be an open interval of R and denote by Cc(I,X) the Banach space of all
continuous functions I → X with compact support.

Definition 1.16 A function f : I → X is said to be measurable if there exists a set
S ⊂ I of measure 0 and a sequence (fn) ⊂ Cc(I,X) such that fn(t) → f (t) for all
t ∈ I \ S.

It is clear that if f : I → X is measurable, then ‖f ‖ : I → R is measurable too.

Theorem 1.17 Let fn : I → X, n = 1, 2, . . . be a sequence of measurable
functions and suppose that f : I → X and fn(t) → f (t), as n → ∞, for almost
all t ∈ I . Then f is measurable.

Proof We have fn → f on I \ S, where S is a set of measure 0. Let (fn.k) be a
sequence of functions in Cc(I,X) such that fn.k → f almost everywhere on I as
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k → ∞. By Egorov’s Theorem (cf. [69, p. 16]) applied to the sequence of functions
‖fn,k−fn‖, there exists a set Sn ⊂ I of measure less that 1

2n such that fn,k−f → fn

uniformly on I \ Sn, as k → ∞.
Now let k(n) be such that ‖fn,k(n)‖ < 1

n
on I \ Sn and Fn := fn,k(n). Also let

B := S ∪ (∩m≥1
⋃

n>m Sn). Then it is clear that B is a subset of I of measure 0.
Take t ∈ I \ B. So we get fn(t) → f (t), as n → ∞. On the other hand if n is large
enough, t ∈ I \ Sn. It follows that ‖Fn − f ‖ < 1

n
, which means that Fn(t) → f (t),

as n → ∞, and consequently, f is measurable. ��
Remark 1.18 It is easy to observe that if φ : I → R and f : I → X are measurable,
then the product φf : I → X is measurable too.

Theorem 1.19 (Pettis Theorem) A function f : I → X is measurable if and only
if the following conditions hold:

(a) f is weakly measurable (i.e. for every x∗ ∈ X∗, the dual space of X, the
function x∗f : I → X is measurable).

(b) There exists a set S ⊂ I of measure 0 such that f (I \ S) is separable.

Proof See [69, p. 131]. ��
We also have the following:

Theorem 1.20 If f : I → X is weakly continuous, then it is measurable.

Theorem 1.21 (Bochner’s Theorem) Assume that f : I → X is measurable.
Then f is integrable if and only if ‖f ‖ is integrable. Moreover, we have

∥
∥
∥
∥

∫

I

f

∥
∥
∥
∥

≤
∫

I

‖f ‖.

Proof Let f : I → X be integrable. Then there exists a sequence of functions
fn ∈ Cc(I,X), n = 1, 2, . . . such that

∫

I
‖fn(t) − f (t)‖dt → 0, as n → ∞. Using

the inequality ‖f ‖ ≤ ‖f − fn‖ + ‖fn‖, for all n, we see that ‖f ‖ is integrable.
Conversely assume that ‖f ‖ is integrable. Let Fn ∈ Cc(I,R), n = 1, 2, . . . be

a sequence of continuous functions such that
∫

I
|Fn − ‖f ‖| → 0 as n → ∞ and

|Fn| ≤ F almost everywhere for some F : I → R with
∫

I
|F | < ∞.

Since f is measurable, there exists fn ∈ Cc(I,X), n = 1, 2, . . . such that
fn → f almost everywhere.

We now let

un := |Fn|
‖fn‖ + 1

n

, n = 1, 2, . . .

Then it is obvious that un ≤ F, n = 1, 2, . . . and un → f almost everywhere on
I . Therefore

∫

I
‖un − f ‖ → 0 as n → ∞ and consequently f is integrable.

Using the Lebesgue–Fatou Lemma (cf. [69]), we get
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∥
∥
∥
∥

∫

I

f

∥
∥
∥
∥

≤ lim
n→∞

∥
∥
∥
∥

∫

I

un

∥
∥
∥
∥

≤
∫

I

‖f ‖.

This completes the proof. ��
Theorem 1.22 (Lebesgue’s Dominated Convergence Theorem) Let fn : I →
X, n = 1, 2, . . . be a sequence of integrable functions and g : I → R

+ be an
integrable function. Let also f : I → X and assume that:

(i) for all n = 1, 2, . . . , ‖fn‖ ≤ g, almost everywhere on I .
(ii) fn(t) → f (t), as n → ∞ for all t ∈ I .

Then f is integrable on I and

∫

I

f = lim
n→∞

∫

I

fn.

Definition 1.23 Let 1 ≤ p ≤ ∞. We will denote by Lp(I,X) the space of all
classes of equivalence (with respect to the equality on I ) of measurable functions
f : I → X such that ‖f ‖p is integrable. If we equip Lp(I,X) with the norm

‖f ‖p :=
(∫

I

‖f (t)‖pdt

) 1
p

, 1 ≤ p < ∞

and

‖f ‖∞ := ess sup
I

‖f (t)‖, p = ∞,

then Lp(I,X) turns out to be a Banach space.
We shall denote by L

p
loc(I,X) the space of all (equivalence classes of) measur-

able functions f : I → X such that the restriction of f to every bounded subinterval
of I is in Lp(I,X).

3 Linear Operators

Let us consider a normed space X and a linear operator A : X → X. We define the
norm of A by

|||A||| := sup
‖x‖=1

‖Ax‖.

Definition 1.24 A linear operator A : X → X is said to be continuous at x ∈ X

if for any sequence (xn) ⊂ X such that xn → x, we have Axn → Ax, that is,
‖Axn − Ax‖ → 0 as ‖xn − x‖ → 0.



6 1 Introduction and Preliminaries

If A is continuous at each x ∈ Y ⊂ X, we say that A is continuous on Y .

Proposition 1.25 A linear operator A : X → X is continuous (on X) if and only if
it is continuous at a point of X.

Based on the above Proposition, we generally prove continuity of a linear operator
by checking its continuity at the zero vector.

Definition 1.26 A linear operator A : X → X is said to be bounded if there exists
M > 0 such that ‖Ax‖ ≤ M‖x‖ for all x ∈ X.

We observe that a linear operator A : X → X is continuous if and only if it is
bounded.

Proposition 1.27 (The Uniform Boundedness Principle) Let F be a nonempty
family of bounded linear operators over a Banach space X. If sup

A∈F
‖Ax‖ < ∞ for

each x ∈ X, then sup
A∈F

|||A||| < ∞.

Definition 1.28 A linear operator A in a normed space X is said to be compact if
AU is relatively compact, where U is the closed unit ball

U := {x ∈ X : ‖x‖ ≤ 1}.

Proposition 1.29 If X is a Banach space, the linear operator A : X → X

is compact if and only if for every bounded sequence (xn) ⊂ X, the sequence
(Axn) ⊂ X has a convergent subsequence; in other words, AS is relatively compact
for every bounded subset S of X.

4 Functions with Values in a Banach Space

We shall consider functions x : I → X where I is an interval of the real number set
R and X a Banach space.

Definition 1.30 A function x(t) is said to be (strongly) continuous at a point t0 ∈ I

if ‖x(t) − x(t0)‖ → 0 as t → t0 and strongly continuous on I if it is (strongly)
continuous at each point of I . If t0 is an end point of I , t → t0 (from the right or
from the left), accordingly.

x(t) is said to be weakly continuous on I if for any ϕ ∈ X
∗, the dual space of X,

the numerical function (ϕx)(t) : I → R is continuous. It is obvious that the strong
continuity of x implies its weak continuity. The converse is not true in general.

In fact we have
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Proposition 1.31 If x(t) : I → X is weakly continuous and has a range with a
compact closure in X, then x(t) is strongly continuous on I .

In this monograph, continuity will always denote strong continuity, unless otherwise
explicitly specified.

Proposition 1.32 Let I = [a, b]. Then the set C(I,X) of all continuous functions
x(t) : I → X is a Banach space when equipped with the norm

‖x‖C(I,X) := sup
t∈I

‖x(t)‖.

Definition 1.33 A function x(t) : I → X is said to be differentiable at an interior
point t0 of I if there exists some y ∈ X such that ‖ x(t0+�t)−x(t0)

�t
− y‖ → 0 as

�t → 0 and differentiable on an open subinterval of I if it is differentiable at each
point of I . Such y ∈ X, when it exists at t0 is denoted x′(t0) and called the derivative
of x(t) at t0.

Definition 1.34 If the function x(t) : I → X is continuous on I = [a, b], we
define its integral on I (in the sense of Riemann) as the following limit:

lim
n→∞

n
∑

k=1

x(tk)�tk,

where the diameter of the partition a = t0 < t1 < . . . < tn = b of I tends to zero.
When the limit exists we denote it by

∫ b

a
x(t)dt .

One can easily establish the estimate

∥
∥
∥
∥

∫ b

a

x(t)dt

∥
∥
∥
∥

≤
∫ b

a

‖x(t)‖dt.

Improper integrals are defined as in the case of classical calculus. For instance, if the
function is continuous on the interval [a,∞), then we define its integral on [a,∞)

as follows:

∫ ∞

a

x(t)dt = lim
b→∞

∫ b

a

x(t)dt

if the limit exists in X. This integral is said to be absolutely convergent if
∫ ∞

a

‖x(t)‖dt < ∞.
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5 Semigroups of Linear Operators

Definition 1.35 Let A : X → X be a linear operator with domain D(A) ⊂ X, a
Banach space. The family T = (T (t))t≥0 of bounded linear operators on X is said
to be a C0-semigroup if

(i) For all x ∈ X, the mapping T (t)x : R+ → X is continuous.
(ii) T (t + s) = T (t)T (s) for all t, s ∈ R

+ (semigroup property).
(iii) T (0) = I , the identity operator.

The operator A is called the infinitesimal generator (or generator in short) of the
C0-semigroup T if

Ax = lim
t→0+

T (t)x − x

t

and

D(A) :=
{

x ∈ X / lim
t→0+

T (t)x − x

t
exists

}

.

It is observed that S commutes with T (t) on D(A). We define a C0-group in a
similar way, by replacing R

+ by R.
For a bounded operator A, we have

T (t) := etA =
∞
∑

n=0

tnAn

n! .

Theorem 1.36 Let T = (T (t))t≥0 be a C0-semigroup. Then there exists K ≥ 1
and α ∈ R such that

‖T (t)‖ ≤ Keαt , ∀t ≥ 0.

If α < 0, we say that T is exponentially stable.

Proposition 1.37

(a) The function t → ‖T (t)‖ from R
+ → R

+ is measurable and bounded on any
compact interval of R+.

(b) The domain D(A) of its generator A is dense in X.

(c) The generator A is a closed operator.

For more details, cf. [35] and [69].
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6 Topological Vector Spaces

Let E be a vector space over the field � (� = R or C). We say that E is a topological
vector space, which we denote E = E(τ), if E is equipped with a topology τ which
is compatible to the algebraic structure of E.

It is easy to check that for all a ∈ E, the translation f : E → E defined by
f (x) = x + a is a homeomorphism. Thus if � is a base of neighborhoods of the
origin, � + a is a base of neighborhoods of a. Consequently the whole topological
structure of E will be determined by a base of neighborhoods of the origin.

In this book, we will mainly use neighborhoods of the origin, which we
sometimes call neighborhoods in short.

Another interesting fact is that for every λ ∈ �, λ �= 0, the mapping f : E → E

defined by f (x) = λx is a homeomorphism, so that λU will be a neighborhood (of
the origin) if U is a neighborhood (of the origin), λ �= 0.

Let us also recall the following:

Proposition 1.38 If � is a base of neighborhoods, then for each U ∈ �, we have:

(i) U is absorbing, that is for each x ∈ U , there exists λ > 0 such that x ∈ αU

for all α with |α| ≥ λ;
(ii) There exists W ∈ � such that W + W ⊂ U ;

(iii) There exists a balanced neighborhood V such that V ⊂ U (A balanced or
symmetric set is a set V such that αV = V if |α| = 1).

A consequence of the above proposition is that every topological space E possesses
a base of balanced neighborhood.

We will call a locally convex topological vector space (or shortly a locally convex
space), every topological vector space which has a base of convex neighborhoods.
It follows that in a locally convex space, any open set contains a convex, balanced,
and absorbing open set.

A locally convex space whose topology is induced by an invariant complete
metric is called a Fréchet space.

Proposition 1.39 Let E be a vector space over the field � (� = R or C). A function
p : E → R

+ is called a seminorm if

(i) p(x) ≥ 0 for every x ∈ E;
(ii) p(λx) = |λ|p(x), for every x ∈ E and λ ∈ �;

(iii) p(x + y) ≤ p(x) + p(y), for every x, y ∈ E.

It is noted that if p is a seminorm on E, then the sets {x : p(x) < λ} and
{x / p(x) ≤ λ}, where λ > 0, are absorbing. They are also absolutely convex. We
recall that a set B ⊂ E is said to be absolutely convex if for every x, y ∈ E and
λ,μ ∈ �, with |λ| + |μ| ≤ 1, we have λx + μy ∈ B.

Theorem 1.40 For every set Q of seminorms on a vector space E, there exists a
coarsest topology on E compatible with its algebraic structure and in which each
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seminorm in Q is continuous. Under this topology, E is a locally convex space and
a base of neighborhoods is formed by the closed sets

{x ∈ E : sup
1≤i≤n

pi(x) ≤ ε},

where ε > 0 and pi ∈ Q, i = 1, 2, . . . n.
Also E will be separated if and only if for each x ∈ E, x �= 0, there exists a

seminorm p ∈ Q such that p(x) > 0.

An important fact that will be used is the following consequence of the Hahn–
Banach Extension Theorem:

Proposition 1.41 ([69, page 107]) For each non-zero a in a locally convex space
E, there exists a linear functional ϕ ∈ E∗, the dual space of E, such that ϕ(a) �= 0.

A subset S of a locally convex space is called totally bounded if, for every
neighborhood U , there are ai ∈ S, i = 1, 2, . . . n, such that

S ⊂ ∪n
i=1(ai + U).

It is clear that every totally bounded set is bounded. Also, the closure of a totally
bounded set is totally bounded.

We observe [69, page 13] that in a complete metric space, total boundedness and
relatively compactness are equivalent notions.

Now for functions of the real variable with values in a locally convex space E,
we define continuity, differentiability, and integration as in [54, 56, 69].

We finally revisit Proposition 1.27 in the context of locally convex spaces as
follows (cf. [45, page 199]):

Proposition 1.42 (Uniform Boundedness Principle) Let ϕ = {Aα : α ∈ �}
where each Aα : E → F is a bounded linear operator and E,F are Fréchet
spaces. Suppose that {Aαx : α ∈ �} is bounded for each x ∈ E. Then ϕ is
uniformly bounded.

Notes Details on this topic can be found in [66].

7 The Exponential of a Bounded Linear Operator

Let E be a complete, Hausdorff locally convex space.

Definition 1.43 A family of continuous linear operators Bα : E → E, α ∈ � is
said to be equicontinuous if for any seminorm p, there exists a seminorm q such
that

p(Bαx) ≤ q(x), for any x ∈ E, any α ∈ �.
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Theorem 1.44 Let A : E → E be a continuous linear operator such that the family
{Ak : k = 1, 2, . . .} is equicontinuous. Then for each x ∈ E, t ≥ 0, the series

∞
∑

k=0

tk

k!A
kx

(where A0 = I , the identity operator on E) is convergent.

Proof Let p be a seminorm on E. By equicontinuity of {Ak : k = 1, 2, . . .}, there
exists a seminorm q on E such that

p(Akx) ≤ q(x), for all k, and x ∈ E.

Therefore we have

p

(
m
∑

k=n

tk

k!A
kx

)

≤
n
∑

k=n

tk

k!p(Akx) ≤ q(x)

m
∑

k=n

tk

k! ,

which proves that the sequence
n
∑

k=0

tk

k!A
kx is a Cauchy sequence in E. It is then

convergent and we denote the limit by

etAx :=
∞
∑

k=0

tk

k!A
kx.

��
Theorem 1.45 The mapping x → etAx, t ≥ 0, defines a continuous linear
operator E → E.

Proof Consider the linear operators An :=
n
∑

k=0

tk

k!A
k, n = 0, 1, 2, . . . The family

{An : n = 0, 1, 2, . . .} is equicontinuous on any compact interval of R+.
Indeed, by equicontinuity of {Ak : k = 1, 2, . . .}, if p is a given seminorm, then

there exists a seminorm q such that

p(Anx) ≤
n
∑

k=0

tk

k!p(Akx) ≤ q(x)

n
∑

k=0

tk

k! ≤ q(x)et

for every n = 0, 1, 2, . . .. It follows that

p(etAx) ≤ q(x)et ,

for every t ≥ 0 and x ∈ E. This completes the proof. ��
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Theorem 1.46 Let A and B be two continuous linear operators E → E such that
{An; n = 1, 2, . . .} and {Bn; n = 1, 2, . . .} are equicontinuous. Assume that A and
B commute, that is AB = BA; then

etA · etB = et(A+B), t ≥ 0.

Proof The proof is similar to the numerical case, that is for any real numbers a and
b, we have

∞
∑

n=0

(ta)n

n! .

∞
∑

n=0

(tb)n

n! =
∞
∑

n=0

(t (a + b))n

n! .

Indeed for any integer k and x ∈ E, we have

(A + B)kx =
k
∑

j=0

(
k

j

)

AjBk−j x =
k
∑

j=0

(
k

j

)

Bk−jAjx,

where
(
k
j

) = k!
j !(k−j)! .

In the last equality, we used the fact that AB = BA. Let p be a given seminorm
on E. Then there exists a seminorm q such that

p((A + B)kx) ≤
k
∑

j=0

(
k

j

)

p(Bk−jAjx)

≤
k
∑

j=0

(
k

j

)

q(Ajx)

≤ 2k sup
j≥0

q(Ajx)

since
k
∑

j=0

(
k

j

)

= 2k .

This last inequality shows that the family
{

(A+B)k

2k : k = 1, 2, . . .
}

is equicon-

tinuous, so by Theorem (1.44), we can define et(A+B) by

et(A+B)x :=
∞
∑

n=0

(t (A + B))nx

n! .

Now using the Cauchy product formula, we obtain
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etA · etB =
∞
∑

n=0

(tA)n

n! ·
∞
∑

n=0

(tB)n

n! =
∞
∑

n=0

Cn,

where

Cn =
n
∑

k=0

(tA)k

k! · (tB)n−k

(n − k)!

=
n
∑

k=0

tn

k!(n − k)!A
kBn−k

=
n
∑

k=0

(
n

k

)
tn

n!A
kBn−k

=
n
∑

k=0

(t (A + B))n

n! .

That means
∞
∑

n=0

Cn = et(A+B). The proof is complete. ��

Theorem 1.47 Suppose that A is a continuous linear operator E → E such that
{An; n = 1, 2, . . .} is equicontinuous. Then for every x ∈ E, we have

lim
h→0+

(
ehA − I

h

)

x = Ax.

Proof Let p be a seminorm. Then there exists a seminorm q such that

p(( ehA−I
h

)x − Ax) = p( 1
h
(

∞
∑

n=0

hn

n! A
n − I )x − Ax)

≤ p( 1
h
(

∞
∑

n=2

hn

n! A
nx)

≤
∞
∑

n=2

hn−1

n! p(Anx)

≤ q(x)

∞
∑

n=2

hn−1

n!
= q(x)

(
eh−1

h
− 1
)

.

And since lim
h→+

eh − 1

h
= 1, we get the result. ��

From the above, we can deduce that
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d

dt
etAx = etA · Ax = AetAx,

Using the semigroup property above, we get also

e(t+s)A = etA · esA.

We can use the same technique to prove similar results if t ≤ 0 and establish etA for
t ∈ R.

We are now ready to prove the following:

Theorem 1.48 The function etAx0 : R → E is the unique solution of the
differential equation

x′(t) = Ax(t), t ∈ R

satisfying x(0) = x0.

Proof Suppose there were another solution y(t) with y(0) = x0. Consider the
function v(s) = e(t−s)Ay(s), with t fixed in R; then we have

v′(s) = −Ae(t−s)Ay(s) + e(t−s)Ay′(s)
= −Ae(t−s)Ay(s) + e(t−s)AAy(s)

= 0,

for every s ∈ R. Therefore, v′(s) = 0 on R, so that

v(t) = v(0), t ∈ R

or

y(t) = etAy(0) = etAx0, t ∈ R.

Since t is arbitrary, this completes the proof. ��
Let us recall the following fixed point theorem from [15]:

Theorem 1.49 Let D be a closed and convex subset of a Hausdorff locally convex
space such that 0 ∈ D, and let G be a continuous mapping of D into itself. If the
implication

(V = convG(V ), or V = G(V ) ∪ {0}) ⇒ V is relatively compact

holds for every subset V of D, then G has a fixed point.
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8 Non-locally Convex Spaces

It is well known that an F -space (X,+, ·, || · ||) is a linear space (over the field
� = R or K = C) such that ||x +y|| ≤ ||x||+||y|| for all x, y ∈ X, ||x|| = 0 if and
only if x = 0, ||λx|| ≤ ||x||, for all scalars λ with |λ| ≤ 1, x ∈ X, and with respect
to the metric D(x, y) = ||x − y||, X is a complete metric space (see e.g. [25, p. 52],
or [37]). Obviously D is invariant to translations.

In addition, if there exists 0 < p < 1 with ||λx|| = |λ|p||x||, for all λ ∈ K, x ∈
X, then || · || will be called a p-norm and X will be called p-Fréchet space. (This
is only a slight abuse of terminology. Note that in e.g. [10] these spaces are called
p-Banach spaces). In this case, it is immediate that D(λx, λy) = |λ|pD(x, y), for
all x, y ∈ X and λ ∈ �.

It is known that the F -spaces are not necessarily locally convex spaces. Three
classical examples of p-Fréchet spaces, non-locally convex, are the Hardy space
Hp with 0 < p < 1 that consists in the class of all analytic functions f : D → C,
D = {z ∈ C; |z| < 1} with the property

||f || = 1

2π
sup

{∫ 2π

0
|f (reit )|pdt; r ∈ [0, 1)

}

< +∞,

the sequences space

lp =
{

x = (xn)n; ||x|| =
∞
∑

n=1

|xn|p < ∞
}

for 0 < p < 1, and the Lp[0, 1] space, 0 < p < 1, given by

Lp = Lp[0, 1] =
{

f : [0, 1] → R; ||f || =
∫ 1

0
|f (t)|pdt < ∞

}

.

More generally, we may consider Lp(,�,μ), 0 < p < 1, based on a general
measure space (,�,μ), with the p-norm given by ||f || = ∫


|f |pdμ.

Some important characteristics of the F -spaces are given by the following
remarks:

Remark 1.50

(1) Three of the basic results in Functional Analysis hold in F -spaces too : the
Principle of Uniform Boundedness (see e.g. [25, p. 52]), the Open Mapping
Theorem, and the Closed Graph Theorem (see e.g. [37, p. 9–10]).

But on the other hand, the Hahn–Banach Theorem fails in non-locally convex
F -spaces. More exactly, if in an F -space the Hahn–Banach theorem holds, then
that space is necessarily locally convex space (see e.g. [37, Chapter 4]).
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(2) If (X,+, ·, || · ||) is a p-Fréchet space over the field �, 0 < p < 1, then its dual
X∗ is defined as the class of all linear functionals h : X → � which satisfy
|h(x)| ≤ |||h||| · ||x||1/p, for all x ∈ X, where |||h||| = sup{|h(x)|; ||x|| ≤ 1}
(see e.g. [10, pp. 4–5]). Note that ||| · ||| in fact is a norm on X∗.

For 0 < p < 1, while (Lp)∗ = 0, we have that (lp)∗ is isometric to l∞—the Banach
space of all bounded sequences (see e.g. [37, p. 20–21]), therefore (lp)∗ becomes a
Banach space. Also, if φ ∈ (Hp)∗ then there exists a unique g, analytic on D and
continuous on the closure of D, such that

φ(f ) = 1

2π
lim
r→1

∫ 2π

0
f (reit )g(e−it )dt,

for all f ∈ Hp (see e.g. [26, p. 115, Theorem 7.5]). Moreover, (Hp)∗ becomes a
Banach space with respect to the usual norm |||φ||| = sup {|φ(f )|; ||f || ≤ 1} (see
the same paper [4]).

In both cases of lp and Hp, 0 < p < 1, their dual spaces separate the points of
corresponding spaces.

(3) The spaces lp and Hp, 0 < p < 1, have Schauder bases (see e.g. [37, p. 20],
for lp and [37, 64] for Hp). It is also worth to note that according to e.g. [28],
every linear isometry T of Hp onto itself has the form

T (f )(z) = α[φ′(z)]1/pf (φ(z)), (8.1)

where α is some complex number of modulus one and φ is some conformal
mapping of the unit disc onto itself.



Chapter 2
Almost Automorphic Functions

1 Almost Automorphic Functions in a Banach Space

Definition 2.1 (S. Bochner [11–14]) Let X be a (real or complex) Banach space
and f ∈ C(R,X). We say that f is almost automorphic if for every sequence of
real numbers (s′

n) there exists a subsequence (sn) such that

lim
m→∞ lim

n→∞ f (t + sm − sn) = f (t)

for each t ∈ R.

This is equivalent to the following:

Definition 2.2 f ∈ BC(R,X) is said to be almost automorphic if for every
sequence of real numbers (s′

n) there exists a subsequence (sn) such that

g(t) := lim
n→∞ f (t + sn)

exists for each t ∈ R and

lim
n→∞ g(t − sn) = f (t)

for each t ∈ R.

Remark 2.3

• The function g in Definition 2.2 is measurable, but not necessarily continuous.
• If the convergence in Definition 2.1 is uniform on compact subsets of R, then we

say that f is compact almost automorphic.
• If the convergence in Definitions 2.1 and 2.2 is uniform in t ∈ R, then f is almost

periodic. This shows that the class of almost automorphic functions is larger than

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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the class of almost periodic functions. We will show later that the inclusion is
strict.

Theorem 2.4 ([27, 44, 58]) If the function g in the Definition 2.2 is continuous,
then f is uniformly continuous.

Proof Suppose f is not uniformly continuous on R. Then there exists a number
ε > 0 and two sequences (t ′n) and (s′

n) such that for each n, we have

‖f (s′
n − t ′n) − f (s′

n)‖ > ε

and

lim
n→∞ t ′n = 0.

In view of the almost automorphy of f , one can extract subsequences (sn) ⊂ (s′
n)

and (sn + tn) ⊂ (s′
n + t ′n) such that

g1(t) := lim
n→∞ f (t + sn)

exists for each t ∈ R and

g2(t) := lim
n→∞ f (t + sn + tn)

for each t ∈ R.
Here g1 and g2 are continuous by assumption. Therefore we have

‖g1(0) − g2(0)‖ > ε.

Define the set

 :=
{

t ∈ R : ‖g1(t) − g2(t)‖ >
3

4
ε

}

.

Then  is an open set in view of the continuity of g1 and g2. It is also nonempty
since 0 ∈ .

Now define for each n the set

An :=
{

t ∈ R : ‖f (t + sm) − g1(t)‖≤ε

4
, ‖f (t + sm + tm)−g2(t)‖ ≤ ε

4
, m≥n

}

.

Each An is nonempty, because of the convergence to g1 and g2 above. Now let

Bn := An ∩ , n = 1, 2, . . .

It is obvious that each Bn is nonempty (since 0 ∈ Bn), and
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∪∞
n=1Bn = .

Let n0 be large enough and take t ∈ Bn0 . Then t ∈  that means

(�) ‖g1(t) − g2(t)‖ >
3

4
ε.

But since  is open and g1 is continuous, we may choose m large enough, m ≥ n0
such that

t + tm ∈ 

and

‖g1(t + tm) − g1(t)‖ <
ε

4
.

Since t ∈ Bn0 , we have

‖f (t + tm + sm) − g2(t)‖ ≤ ε

4
.

Also since  = ∪∞
n=1Bn, there exists n1 such that t+tm ∈ Bn1 implies t+tm ∈ An1 .

So

‖f (t + tm + sm) − g1(t + tm)‖ ≤ ε

4
.

Finally, we obtain

‖g1(t) − g2(t)‖ ≤ ‖g1(t) − g1(t + tm)‖ + ‖g1(t + tm) − f (t + tm + sm)‖
+ ‖f (t + tm + sm) − g2(t)‖
≤ ε

4
+ ε

4
+ ε

4
= 3

4
ε,

which contradicts (�) and establishes the result. ��
Theorem 2.5 If f, f1, f2 are almost automorphic functions R → X and λ is a
scalar, then the following are true:

(i) λf and f1 + f2 are almost automorphic.
(ii) fa(·) := f (a + ·) is almost automorphic for every a ∈ R.

(iii) sup
t∈R

‖f (t)‖ < ∞.

(iv) The range Rf := {f (t) : t ∈ R} is relatively compact in X.

Proof Statements (i) and (ii) are obvious.
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Let us prove (iii). Suppose by contradiction that sup
t∈R

‖f (t)‖ = ∞. Then there

exists a sequence (s′
n) of real numbers such that

lim
n→∞ ‖f (s′

n)‖ = ∞.

Since f is almost automorphic, we can extract a subsequence (sn) ⊂ (s′
n) such that

lim
n→∞ f (sn) = α

for some α ∈ R, that is

lim
n→∞ ‖f (sn)‖ = ‖α‖ < ∞

which is a contradiction and establishes (iii).
(iv) Consider an arbitrary sequence (f (s′

n)) in Rf . Since f is almost automor-
phic, we can extract a subsequence (sn) ⊂ (s′

n) such that

lim
n→∞ f (sn) = g(0),

where g is the function in Definition 2.2. This proves that Rf is relatively compact
in X. ��
Remark 2.6 It is easy to observe that sup

t∈R
‖g(t)‖ = sup

t∈R
‖f (t)‖, which implies that

Rg = Rf .

Theorem 2.7 Let (fn) be a sequence of almost automorphic functions in a Banach
space X such that lim

n→∞ fn(t) = f (t) uniformly in t ∈ R.

Then f (t) is also almost automorphic.

Proof Let (s′
n) be a sequence of real numbers. By the diagonal procedure, we can

extract a subsequence (sn) of (s′
n) such that

lim
n→∞ fi(t + sn) = gi(t) (1.1)

for each i = 1, 2, . . . and each t ∈ R.
We claim that the sequence of functions (gi(t)) is a Cauchy sequence. Indeed if

we write

gi(t) − gj (t) = gi(t) − fi(t + sn) + fi(t + sn) − fj (t + sn)

+ fj (t + sn) − gj (t),

and use the triangle inequality, we get
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‖gi(t) − gj (t)‖ ≤ ‖gi(t) − fi(t + sn)‖ + ‖fi(t + sn) − fj (t + sn)‖
+ ‖fj (t + sn) − gj (t)‖.

Let ε > 0 be given. By uniform convergence of the sequence (fn), we can find a
natural number N such that for all i, j > N ,

‖fi(t + sn) − fj (t + sn)‖ < ε,

for all t ∈ R and all n = 1, 2, . . . . Using Eq. (1.1) and the completeness of the
space X, we can deduce the pointwise convergence of the sequence (gi(t)), say to a
function g(t).

Let us prove that

lim
n→∞ f (t + sn) = g(t)

and

lim
n→∞ g(t − sn) = f (t)

pointwise on R.
Indeed, for each i = 1, 2, . . . , we get

‖f (t + sn) − g(t)‖ ≤ ‖f (t + sn) − fi(t + sn)‖
+ ‖fi(t + sn) − gi(t)‖ + ‖gi(t) − g(t)‖.

Given ε > 0, we can find some natural number M such that

‖f (t + sn) − fM(t + sn)‖ ≤ ε

for every t ∈ R, n = 1, 2, . . . and ‖gM(t) − g(t)‖ < ε for every t ∈ R, so that

‖f (t + sn) − g(t)‖ ≤ 2ε + ‖fM(t + sn) − gM(t)‖

for every t ∈ R, n = 1, 2, . . . .

Now for every t ∈ R, we can find some natural number K depending on ε and
M such that

‖fM(t + sn) − gM(t)‖ < ε

for every n > K .
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Finally, we get

‖f (t + sn) − g(t)‖ < 3ε

for n ≥ N0 where N0 is some natural number depending on t and ε.
We can similarly prove that

lim
n→∞ g(t − sn) = f (t).

��
Let us denote by AA(X) (resp.AAc(X)) the space of all almost automorphic
functions (resp. compact almost automorphic) f : R → X. It turns out from the
above that AA(X) and AAc(X) are closed subspaces of BC(R,X). Thus they are
themselves Banach spaces under the supnorm

‖f ‖AA(X) := sup
t∈R

‖f (t),

resp.

‖f ‖AAc(X) := sup
t∈R

‖f (t).

If we denote by AP(X) the space of all almost periodic functions f : R → X (in
the sense of Bohr, cf. [22], or Chapter 4 below), then it is obvious that

AP(X) ⊂ AAc(X) ⊂ AA(X) (1.2)

and the inclusions are strict.
Let us state the following composition theorem:

Theorem 2.8 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be Banach spaces over the same field �,
f ∈ AA(X) and Rf := {f (t) : t ∈ R} is the range of f . If φ : Rf → Y be a
continuous and bounded application, then the composite function φ ◦ f : Rf → Y

is also almost automorphic.

Proof Let (s′
n) be sequence of real numbers. Since f ∈ AA(X), there exists a

subsequence (sn) such that

g(t) := lim
n→∞ f (t + sn)

exists for each t ∈ R and

lim
n→∞ g(t − sn) = f (t)

for each t ∈ R.
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Since φ is continuous and bounded, we have

lim
n→∞(φ ◦ f )(t + sn) = φ ◦ lim

n→∞ f (t + sn) = (φ ◦ g)(t)

exists for each t ∈ R and

lim
n→∞(φ ◦ g)(t − sn) = φ ◦ lim

n→∞ g(t − sn) = (φ ◦ f )(t)

for each t ∈ R. This shows that φ ◦ f ∈ AA(X). ��
The following corollary follows immediately:

Corollary 2.9 If A is a bounded linear operator on X and f ∈ AA(X), then
(Af )(·) ∈ AA(X).

Let us now give some examples of almost automorphic functions which are not
almost periodic.

Example 2.10 (Levitan) Let f ∈ AP(R) and φ : Rf → Y be continuous and
bounded. Then φ ◦ f : Rf → Y may not be almost periodic. For example, let

x(t) = cost + cos
√

2t + 2

and

φ(s) = sin
1

s
.

Clearly φ(t) = sin

(

1
cost+cos

√
2t+2

)

is almost automorphic. But since φ(s) is not

uniformly continuous on Rx , then φ(t) is not almost periodic.

Example 2.11 (Veech) Consider the function x : R → C defined by

x(t) = eit + ei
√

2t + 2.

Let φ : C \ {0} → � where � is the unit circle in C be defined by

φ(x) = x

|x| .

Thus φ(t) = eit + ei
√

2t + 2

|eit + ei
√

2t + 2| is almost automorphic but not almost periodic.

Remark 2.12 If f ∈ AA(X) and φ : Rf ⊂ R → Y is not bounded, then φ◦f : Rf

in the proof of Theorem 2.8 is not well-defined for all t ∈ R, therefore φ ◦ f : Rf
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is not almost automorphic. For example, replace φ(x) = sin 1
x

in the example above
by φ(x) = 1

x
.

Theorem 2.13 ([72]) AP(X) is a set of first category in AA(X).

Proof It suffices to observe that AP(X) is a closed subset of AA(X) equipped with
the supnorm. Thus its interior is empty. ��
Theorem 2.14 Let T = (T (t))t∈R be a one parameter group of strongly continuous
linear operators uniformly bounded, i.e. there exists M > 0 such that sup

t∈R
‖T (t)‖ ≤

M . Let f ∈ AA(X) and S = f (Q), where Q denotes the set of rational numbers,
with the property that the function T (·)x ∈ AA(X) for each x ∈ S.

Then T (·)f (·) ∈ AA(X).

Proof Let B = {f (t) : t ∈ R} be the range of f . Then S is a countable and dense
subset of B.

Let S = (xn); then T (·)xn ∈ AA(X) for each n = 1, 2, . . . . Consider an arbitrary
sequence of real numbers (s′

n). Using the diagonal procedure, we can show that there
exists a subsequence (sn) of (s′

n) such that

lim
n→∞ T (sn)x

exists for each x ∈ S. Pick x ∈ B. For any n,m, k we have

‖T (sn)x − T (sm)x‖ ≤ ‖T (sn)x − T (sn)xk‖
+ ‖T (sn)xk − T (sm)xk‖
+ ‖T (sm)xk − T (sm)x‖.

Therefore ‖T (sn)xn − T (sm)xm‖ → 0 since xn → S and we have

lim
n,m→∞ ‖T (sn)x − T (sm)x‖ ≤ 2M‖x − xk‖.

Consequently, in view of the density of S in B, we can say that

lim
n→∞ T (sn)x

exists for every x ∈ B.
Now we observe that lim

n→∞ T (sn)x = y defines a mapping F from the linear

space spanned by B into X, namely

Fx = y if lim
n→∞ T (sn)x = y. (1.3)

The map F has the following properties:
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(i) F is linear.
(ii) ‖Fx‖ = ‖y‖ ≤ lim

n→∞ ‖T (sn)x‖ ≤ M‖x‖ for every x in the subspace spanned

by B.
(iii) F is one-to-one.
(iv) If (xn) is a given sequence in B such that strong- lim

n→∞ xn = x exists, then

strong- lim
n→∞ T (sn)xn = Fx and strong- lim

n→∞ Fxn = Fx.

Let RF := {Fx : x ∈ B} be the range of F . Then we observe that

lim
n→∞ T (−sn)y

exists for every y ∈ RF .
It suffices to prove that

lim
n→∞ T (−sn)ym

exists for every ym ∈ F(S), where ym = F(xm), m = 1, 2, . . . .

Since T (t)xm ∈ AA(X) for each m = 1, 2, . . . , we have

lim
n→∞ T (t + sn)xm = lim

n→∞ T (t)T (sn)xm

= T (t) lim
n→∞ T (sn)xm

= T (t)Fxm

= T (t)ym

pointwise on R. Also we have

lim
n→∞ T (t − sn)ym = T (t)xm

= T (t) lim
n→∞ T (−sn)ym.

Now, for t = 0, we get

lim
n→∞ T (−sn)ym

exists for m = 1, 2, . . . and T (0)xm = xm. Hence, we get

lim
n→∞ T (−sn)y

exists for every y ∈ RF . This defines a linear map G on the linear subspace spanned
by RF where
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Gy = lim
n→∞ T (−sn)y.

It is easy to verify that G has the same properties as F and we have

GFx = x

for every x ∈ B.
If (s′

n) is an arbitrary sequence of real numbers, we can extract a subsequence
(sn) such that

lim
n→∞ f (t + sn) = g(t)

lim
n→∞ g(t − sn) = f (t)

pointwise on R and

lim
n→∞ T (−sn)x = y

exists for each x ∈ B.
Now let us observe that for every t ∈ R and n = 1, 2, . . . , we have

f (t + sn), g(t) ∈ B.

Let t ∈ R be arbitrary. Then for every n = 1, 2, . . .

T (t + sn)f (t + sn) = T (t)T (sn)f (t + sn)

so that

lim
n→∞ T (t + sn)f (t + sn) = T (t)Fg(t)

and

lim
n→∞ T (t − sn)Fg(t − sn) = T (t) lim

n→∞ T (−sn)Fg(t − sn)

= T (t)GFf (t).

The theorem is proved. ��
Theorem 2.15 Let f ∈ AA(X). If f (t) = 0 for all t > α for some real number α,
then f (t) ≡ 0 for all t ∈ R.

Proof It suffices to prove that f (t) = 0 for t ≤ α. Consider the sequence of natural
numbers N = (n). By assumption there exists a subsequence (nk) ⊂ (n) such that
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lim
k→∞ f (t + nk) = g(t)

exists for each t ∈ R and

lim
k→∞ g(t − nk) = f (t)

for each t ∈ R.
Obviously, for any t ≤ α, we can find (nkj

) ⊂ (nk) with t + nkj
>

α for all j = 1, 2, . . . , so that f (t + nkj
) = 0 for all j = 1, 2, . . . .

And since lim
j→∞ f (t+nkj

) = g(t), it yields g(t) = 0. Then we deduce that f (t) = 0.

The proof is complete. ��
Theorem 2.16 Let (T (t))t∈R be a C0-group and suppose that x(t) := T (t)x0 ∈
AA(X) for some x0 ∈ D(A), the domain of its infinitesimal generator A. Then

inf
t∈R ‖x(t)‖ > 0, or x(t) ≡ 0 f or every t ∈ R. (1.4)

Proof Assume that inf
t∈R ‖T (t)x0‖ = 0 and let (s′

n) be a sequence of real numbers

such that lim
n→∞ ‖x(s′

n)‖ = 0. We can extract a subsequence (sn) of (s′
n) such that

lim
n→∞ x(t + sn) = y(t)

exists for each t ∈ R and

lim
n→∞ y(t − sn) = x(t)

for each t ∈ R. We have in fact

y(t) = lim
n→∞ T (t + sn)x0 = T (t) lim

n→∞ T (sn)x0 = T (t) lim
n→∞ x(sn) = 0

for each t ∈ R. We deduce that x(t) ≡ 0 on R, and the proof is complete. ��

2 Weak Almost Automorphy

Definition 2.17 A weakly continuous function f : R → X is said to be weakly
almost automorphic (in short w-almost automorphic) if for every sequence of real
numbers (s′

n) there exists a subsequence (sn) such that

weak − lim
n→∞ f (t + sn) = g(t)
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exists for each t ∈ R and

weak − lim
n→∞ g(t − sn) = f (t)

for each t ∈ R.

Remark 2.18

(i) Every almost automorphic function is w-almost automorphic.
(ii) If f : R → X is w-almost automorphic, then the function F : R → R defined

by F(t) := (ϕf )(t) with ϕ ∈ X
∗ the dual space of X is almost automorphic.

The following results are obvious and we omit the proof:

Theorem 2.19 If f, f1, f2 are w-almost automorphic, then the following also are
w-almost automorphic:

(i) f1 + f2.
(ii) cf for an arbitrary scalar c.

(iii) fa(t) := f (t + a), for any fixed real number a.

We denote by WAA(X) the vector space of all w-almost automorphic functions
f : R → X.

Theorem 2.20 If f ∈ WAA(X), then sup
t∈R

‖f (t)‖ < ∞.

Proof Suppose by contradiction that sup
t∈R

‖f (t)‖ = ∞. Then there exists a

sequence of real numbers (s′
n) such that lim

n→∞ ‖f (s′
n)‖ = ∞. Since f is w-almost

automorphic, then we can find a subsequence (sn) such that

weak − lim
n→∞ f (sn) = α exists.

(f (sn)) is then a weakly convergent sequence, hence it is weakly bounded and
therefore bounded by Proposition 1.41. This is a contradiction, and consequently,
the theorem holds. ��
Theorem 2.21 If f ∈ WAA(X), then

sup
t∈R

‖f (t)‖ = sup
t∈R

‖g(t)‖,

where g is the function defined in Definition 2.17.

Proof Since every weakly convergent sequence is bounded in norm (Proposi-
tion 1.41), and in particular if

weak − lim
n→∞ xn = α,
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then

‖α‖ ≤ lim inf
n→∞ ‖xn‖

(cf. [69, Theorem 1, page 120]). Thus, for each t ∈ R, we get

‖g(t)‖ ≤ lim inf
n→∞ ‖f (t + sn)‖ ≤ sup

t∈R
‖f (t)‖ < ∞

and

‖f (t)‖ ≤ lim inf
n→∞ ‖g(t − sn)‖ ≤ sup

t∈R
‖g(t)‖ < ∞.

The equality is now proved. ��
The following result is easy to prove:

Theorem 2.22 Let f ∈ WAA(X) and A ∈ B(X). Then Af : R → X is also
w-almost automorphic.

Theorem 2.23 Let f ∈ WAA(X) and suppose that its range Rf is relatively
compact in X. Then f ∈ AA(X).

Proof Let (s′
n) be a sequence of real numbers. We can extract a subsequence (sn) ⊂

(s′
n) such that

weak − lim
n→∞ f (t + sn) = g(t)

exists for each t ∈ R and

weak − lim
n→∞ g(t − sn) = f (t)

for each t ∈ R. Now fix t0 ∈ R. Then we have

lim
n→∞(ϕf )(t0 + sn) = (ϕg)(t0)

and

lim
n→∞(ϕg)(t0 − sn) = (ϕf )(t0)

for every ϕ ∈ X
∗.

Observe that the range Rg of g is also relatively compact in X.
Indeed, for every t̄ ∈ R, g(t̄) is the strong limit of the sequence (f (t̄ +sn)) which

is contained in the closure of Rf ; whence g(t̄) is in the closure of Rf , a compact
set in X.
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Also from the weak convergence of the sequence (g(t̄ − sn)) toward f (t̄), for
every t̄ ∈ R, we have the strong convergence, so f ∈ AA(X). ��

3 Almost Automorphic Sequences

Similarly as for functions, we define below the almost automorphy of sequences.
From now on, we will use the notation l∞(X) to indicate the space of all bounded
(two-sided) sequences in a Banach space X with supnorm, that is, if x = (xn)n∈Z ∈
l∞(X), then

‖x‖ := sup
n∈Z

‖xn‖.

Definition 2.24 A sequence x ∈ l∞(X) is said to be almost automorphic if for any
sequence of integers (k′

n), there exists a subsequence (kn) such that

lim
m→∞ lim

n→∞ xp+kn−km = xp (3.1)

for any p ∈ Z.

The set of all almost automorphic sequences in X forms a closed subspace
of l∞(X), that is denoted by aa(X). We can show that the range of an almost
automorphic sequence is precompact. For each bounded sequence g := (gn)n∈Z
in X, we will denote by S(k)g the k-translation of g in l∞(X), i.e., (S(k)g)n =
gn+k,∀n ∈ Z. And S stands for S(1).

3.1 Kadets Theorem

Let c0 be the Banach space of all numerical sequences (an)
∞
n=1 such that lim

n→∞ an =
0, equipped with supnorm. In the simplest case, the problem we are considering
becomes the following:

when is the integral of an almost automorphic function also almost auto-
morphic?

We can take the same counterexample as in [38] to show that additional
conditions should be imposed on the space X.

Example 2.25 Consider the function f (t) with values in c0 defined by

f (t) = ((1/n) cos(t/n))∞n=1,∀t ∈ R.
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The integral F(t) = ∫ t

0 f (ξ)dξ of f (t) is F(t) = (sin(t/n))∞n=1. Obviously, f

is almost periodic (so it is almost automorphic), and F is bounded. However, the
range of F , as shown in [38, p. 81–82], is not precompact, so F cannot be almost
automorphic.

The Kadets Theorem (see e.g. [38, Theorem 2, p. 86]) says that if f is almost
periodic and F is bounded, then F is almost periodic if and only if X does not
contain any subspace isomorphic to c0. An extension of the Kadets Theorem to
almost automorphic functions was given in [9].

The following extension of the Kadets Theorem to sequences will be used later
on:

Lemma 2.26 Assume that x = (xn)n∈Z is a sequence in a Banach space X that
does not contain any subspace isomorphic to c0, and the difference

x − Sx = y (3.2)

is almost automorphic. Then, the sequence x itself is almost automorphic.

Proof This lemma is a special case of [9, Theorem 1]. ��
As it is well known (see e.g. [38]), a convex Banach space does not contain any
subspace isomorphic to c0. In particular, every finite dimensional space does not
contain any subspace isomorphic to c0.

Example 2.27 ([67]) Let θ ∈ Q. For n ∈ Z, cos(2πnθ) �= 0. We define

ln = sgn cos(2πnθ) = 1, if cos(2πnθ) > 0

ln = sgn cos(2πnθ) = −1, if cos(2πnθ) < 0.

Let f be defined by

f (t) = ln + (t − n)(ln+1−n), t ∈ [n, n + 1].

It is obvious that f is compact almost automorphic but it is not almost periodic.

4 Asymptotically Almost Automorphic Functions

This section is devoted to the study of continuous functions R → X which approach
almost automorphic functions as t tends to ∞. This theory was introduced in [52,
53]. The results obtained will be used to investigate the asymptotic behavior of
solutions of differential equations and dynamical systems.
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Definition 2.28 Let X be a (real or complex) Banach space. A function f ∈
C(R+,X) is said to be asymptotically almost automorphic if it admits a decom-
position

f (t) = g(t) + h(t), t ∈ R
+,

where g ∈ AA(X) and h ∈ C0(R
+,X) (i.e. h : R

+ → X is continuous and
lim

t→∞ ‖h(t)‖ = 0). The function g(t) (resp. h(t)) is called the principal term (resp.

corrective term) of f (t).

The set of all asymptotically almost automorphic functions f : R+ → X will be
denoted AAA(X).

Remark 2.29 It is obvious that if f ∈ AA(X), then its restriction to R
+ will belong

to AAA(X). It suffices to take g = f on R and h = 0 on R
+.

The following is quite obvious:

Theorem 2.30 AAA(X) is a linear vector space.

We also have the following properties:

Theorem 2.31 Let X be a Banach space over the field � = R or C and f : R+ →
X and ν : R

+ → � be asymptotically almost automorphic. Then the following
functions are also asymptotically almost automorphic:

(i) fa : R+ → X defined by fa(t) = f (t + a), a ∈ �;
(ii) νf : R+ → X defined by (νf )(t) = ν(t)f (t).

Proof Obvious. ��
Proposition 2.32 ([52, 59]) Let f ∈ AAA(X) such that f = g+h with g ∈ AA(X)

and h ∈ C0(R
+,X). Then

(i) The decomposition of f is unique.
(ii) {g(t) : t ∈ R} ⊂ {f (t) : t ∈ R+}.

(iii) AAA(X) is a Banach space under the norm

‖f ‖� := sup
t∈R+

‖f (t)‖.

(iv) The range Rf := {f (t); t ∈ R
+} of a function f ∈ AAA(X) is relatively

compact.
(v) AAA(X) = AA(X) ⊕ C0(R

+;X).

Proof

(i) Let f ∈ AAA(X) such that

f (t) = gi(t) + hi(t), t ∈ R
+,
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where gi ∈ AA(X), hi ∈ C0(R
+,X) for i = 1, 2. Then for t ∈ R

+ we have

g1(t) − g2(t) + h1(t) − h2(t) = 0.

Consequently,

lim
t→∞ g1(t) − g2(t) = 0.

Consider the sequence of natural numbers (n). Since g1 − g2 ∈ AA(X), there
exists a subsequence (nk) ⊂ (n) such that

lim
k→∞ g1(t + nk) − g2(t + nk) = F(t)

exists for each t ∈ R and

lim
k→∞ F(t − nk) = g1(t) − g2(t)

for each t ∈ R. This proves that F(t) ≡ 0 on R and consequently g1 − g2 ≡ 0
as well. It follows that h1(t) − h2(t) = 0, for every t ∈ R

+. This completes
the proof.

(ii) Let (s′
n)n be a sequence of reals such that lim

n→∞ s′
n = +∞. Then consider the

subsequence (sn)n such that

k(t) := lim
n→∞ g(t + sn)

is well-defined for each t ∈ R and

lim
t→∞ k(t − sn) = g(t)

pointwise on R.
Fix t0 ∈ R and consider

f (t0 + sn) = g(t0 + sn) + h(t0 + sn).

Since t0 + sn → ∞ as n → ∞, we get

lim
n→∞ f (t0 + sn) = k(t0).

Hence k(t0) ∈ {f (t) : t ∈ R+}; consequently {k(t) : t ∈ R} ⊂
{f (t) : t ∈ R+}.

But from the definition and property of k it is obvious that {k(t) : t ∈ R} =
{g(t) : t ∈ R}. Thus
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{g(t) : t ∈ R} ⊂ {f (t) : t ∈ R+}.

This ends the proof.
(iii) From (ii), it is clear that

sup
t∈R

‖g(t)‖ ≤ sup
t∈R+

‖f (t)‖.

Therefore we get

‖f ‖� ≤ |f | = sup
t∈R

‖g(t)‖ + sup
t∈R+

‖f (t) − g(t)‖ ≤ 3 sup
t∈R+

‖f (t)‖ = 3‖f ‖�.

This shows that the norms ‖ · ‖� and | · | are equivalent. But (AAA(X), | · |) is
a Banach space (cf. [57]), thus (AAA(X), ‖ · ‖�) is a Banach space too.

(iv) Note that the range of g is relatively compact since g ∈ AA(X). It suffices to
prove that range {h(t) : t ∈ R

+} of h is relatively compact.
Now let (s′

n)n be a sequence in R
+.

Case I: (s′
n)n is bounded. Then there exists a subsequence (sn)n such that

lim
n→∞ sn = t0 for some t0 ∈ R

+. Since h is continuous, lim
n→∞ h(sn) =

h(t0).
Case II. (s′

n)n is unbounded. Then there exists a subsequence (sk)k such that
sk → +∞. Therefore lim

n→∞ h(sn) = 0.

We deduce from Case I and Case II that the range {h(t) : t ∈ R
+} of h is relatively

compact in X. The proof is complete. ��
Theorem 2.33 Let (X, ‖·‖X), (Y, ‖·‖Y) be two Banach spaces over the field � and
f ∈ AAA(X). Let φ : X → Y be a strongly continuous application. Assume that
there exists a compact set B which contains {f (t) : t ∈ R+} and {g(t) : t ∈ R}.

Then we have φ(f (t)) ∈ AAA(Y).

Proof Let f = g + h where g is the principal term of f and h its corrective term.
Then φ(g(t)) ∈ AA(Y) by Theorem 2.8. Since φ(f (t)) and φ(g(t)) are continuous,
the function � : R+ → Y defined by

�(t) = φ(f (t)) − φ(g(t)), t ∈ R
+

is also continuous.
Let ε > 0 be given. By uniform continuity on the compact set B, we can choose

δ > 0 such that

‖φ(x) − φ(y)‖Y < ε if ‖x − y‖X < δ,

with x, y ∈ B.
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On the other hand, since lim
t→∞ h(t) = 0, there exists t0 = t0(δ) > 0 such that

‖h(t‖ = ‖f (t) − g(t)‖ < δ ∀t > t0.

Now if t > t0, we obtain

‖�(t)‖Y = ‖φ(f (t)) − φ(g(t))‖Y < ε

which proves that lim
t→∞ �(t) = 0.

The function φ(f (t)) is then asymptotically almost automorphic; its principal
term is φ(g(t)) and its corrective term is �(t). This completes the proof. ��
Bibliographical Notes Materials in this chapter are work of N’Guérékata [52, 53,
58, 59] and Zaki [70].

In [31, 34], the author developed the theory of almost automorphic functions in
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In [32], and following Veech [67], the authors presented interesting results on
almost automorphic groups and semigroups in Fréchet spaces.



Chapter 3
Almost Automorphy of the Function
f (t, x)

1 The Nemytskii’s Operator

Definition 3.1 A continuous function f : R × X → X is said to be almost
automorphic if f (t, x) is almost automorphic in t ∈ R uniformly for all x ∈ K ,
where K is any bounded subset of X. In other words for every sequence of real
numbers (s′

n) there exists a subsequence (sn) such that

g(t, x) = lim
n→∞ f (t + sn, x)

is well-defined in t ∈ R for all K and

lim
n→∞ g(t − sn, x) = f (t, x)

for all t ∈ R and x ∈ K .

We denote by AA(R × X,X) the set of all such functions.

Theorem 3.2 If f, f1, f2 ∈ AA(R × X,X), then we have

(i) f1 + f2 ∈ AA(R × X,X).
(ii) λf ∈ AA(R × X,X), for any scalar λ.

Proof Obvious. ��
Theorem 3.3 If f ∈ AA(R × X,X),then

sup
t∈R

‖f (t, x)‖ = sup
t∈R

‖g(t, x)‖ = Cx < ∞

for x in any bounded set K ⊂ X where g is the function in Definition 3.1.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. M. N’Guérékata, Almost Periodic and Almost Automorphic Functions in Abstract
Spaces, https://doi.org/10.1007/978-3-030-73718-4_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73718-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-73718-4_3


38 3 Almost Automorphy of the Function f (t, x)

Proof It is analogous to the proof of Remark 2.6. ��
Theorem 3.4 If f ∈ AA(R×X,X) is lipschitzian in x uniformly in t ∈ R, then the
function g as in Definition 3.1 is also lipschitzian with the same Lipschitz constant.

Proof Let L be a Lipschitz constant for the function f , i.e.

‖f (t, x) − f (t, y)‖ < L‖x − y‖

for x, y in any bounded subset K of X uniformly in t ∈ R.
Let t ∈ R be arbitrary and ε > 0 and K a bounded set in X be given. Then for

any sequence of real numbers (s′
n), there exists a subsequence (sn) such that

‖f (t + sn, x) − g(t, x)‖ <
ε

2

and

‖g(t − sn, x) − f (t, x)‖ <
ε

2

for n sufficiently large and uniformly in x ∈ K .
Let us write for x, y ∈ K

g(t, x) − g(t, y) = g(t, x) − f (t + sn, x) + f (t + sn, x) − f (t + sn, y)

+ f (t + sn, y) − g(t, y).

For n sufficiently large we get

‖g(t, x) − g(t, y)‖ < ε + L‖x − u‖.

And since ε is arbitrary we obtain

‖g(t, x) − g(t, y)‖ ≤ ε

uniformly for x, y ∈ K , which completes the proof. ��
Theorem 3.5 ([39]) Let f ∈ AA(R × X,X) and assume that f (t, ·) is uniformly
continuous on each bounded set K ⊂ X uniformly for t ∈ R; in other words, for
any ε > 0 there exists δ > 0 such that if x, y ∈ K with ‖x − y‖ < δ, then
‖f (t, x) − f (t, y)‖ < ε for all t ∈ R. Let ϕ ∈ AA(X).

Then the Nemytskii operator N : R → X defined by N (·) := f (·, ϕ(·)) is in
AA(X).

Proof Let (s′
n) be a sequence of real numbers. Then there exists a subsequence

(sn) ⊂ (s′
n) such that
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(i) lim
n→∞ f (t + sn, x) = g(t, x), for each t ∈ R and x ∈ X,

(ii) lim
n→∞ g(t − sn, x) = f (t, x), for each t ∈ R and x ∈ X,

(iii) lim
n→∞ ϕ(t + sn) = γ (t) for each t ∈ R,

(iv) lim
n→∞ γ (t + sn) = ϕ(t) for each t ∈ R.

Let us define G : R → X by G(t) = g(t, γ (t)). Then we obtain

lim
n→∞N (t + sn) = G(t)

and

lim
n→∞ G(t − sn) = N (t)

for each t ∈ R.
Consider the inequality

‖N (t + sn) − G(t)‖ ≤ ‖f (t + sn, ϕ(t + sn)) − f (t + sn, γ (t))‖
+ ‖f (t + sn, γ (t)) − g(t, γ (t))‖.

Since ϕ ∈ AA(X), then ϕ and γ are bounded. Let us choose K ∈ X such that
ϕ(t), γ (t) ∈ K for all t ∈ R. In view of (iii) and the uniform continuity of f (t, x)

in x ∈ K , we will have

lim
n→∞ ‖f (t + sn, ϕ(t + sn)) − f (t + sn, γ (t))‖ = 0.

Now by (i), we get

lim
n→∞ ‖f (t + sn, γ (t)) − g(t, γ (t))‖ = 0,

which proves that for each t ∈ R

lim
n→∞N (t + sn) = G(t).

Similarly, we can prove that

lim
n→∞ G(t − sn) = N (t)

for each t ∈ R. The proof is now complete. ��
Theorem 3.6 ([39]) Let f ∈ AAA(R+ × X,X) with principal term g(t, x) and
corrective term h(t, x). Assume that g(t, x) is uniformly continuous on any bounded
set K ⊂ X uniformly for t ∈ R. Assume also that ϕ ∈ AAA(X). Then the Nemytskii
operator N : R → X defined by N (·) := f (·, ϕ(·)) is in AAA(X).
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Proof Let α(t) and β(t) be the principal and corrective terms of ϕ(t), respectively.
Let us write

f (t, ϕ(t)) = g(t, α(t)) + f (t, ϕ(t)) − g(t, α(t)) = g(t, α(t)) + g(t, ϕ(t))

− g(t, α(t)) + h(t, ϕ(t)).

In view of Theorem 3.5, g(t, α(t)) ∈ AA(R × X,X).
On the other hand, the uniform continuity of g(t, ϕ(t)) implies that for any ε > 0,

there exists δ > 0 such that

‖g(t, ϕ(t)) − g(t, α(t))‖ < ε

if ϕ(t), α(t) ∈ K for any t ∈ R
+ and a given bounded set K ⊂ X and ‖ϕ(t) −

α(t)‖ < δ. Moreover since β(t) ∈ C0(R,X), there exists T > 0 such that

‖ϕ(t) − α(t)‖ = ‖β(t)‖ < δ,

for t > T . Consequently, we get

lim
t→∞ ‖g(t, ϕ(t)) − g(t, α(t))‖ = 0.

We know also that

lim
t→∞ ‖h(t, ϕ(t))‖ = 0.

This proves that

g(t, ϕ(t)) − g(t, α(t)) + h(t, ϕ(t)) ∈ C0(R
+,X),

and consequently

N (·) := f (·, ϕ(·)) ∈ AAA(X)

��
Bibliographical Notes Most of this chapter are contained in the first edition of
this book. It is noted that C. Lizama and J.G Mesquita [41–43] and Milcé et al.
[46, 47, 50, 62, 63] studied almost automorphy on time scales and its application to
dynamic equations on time scales. This is another growing field which needs further
investigation.



Chapter 4
Differentiation and Integration

1 Differentiation in AA(X)

Theorem 4.1 Let f ∈ AA(X) and suppose that its derivative f ′ exists and is
uniformly continuous on R. Then f ′ ∈ AA(X).

Proof Let ε > 0 be given; then using the uniform continuity of f ′ we can choose
δ > 0 such that for every pair of real numbers t1, t2 such that |t1 − t2| < δ, we have
‖f ′(t1) − f ′(t2)‖ < ε.

Now for arbitrary t ∈ R and δ ≥ 1
n

, we get

n(f (t + 1

n
) − f (t)) − f ′(t) = n

∫ 1
n

0
(f ′(t + s) − f ′(t))ds.

This equality shows that the sequence of almost automorphic functions n(f (t + 1
n
))

converges uniformly to f ′(t) on R. We deduce that f ′ ∈ AA(X). ��

2 Integration in AA(X)

Let us introduce some useful notations due to S. Bochner in order to facilitate the
exposition of the proofs. In what follows if f : R → X is a function and a sequence
of real numbers s = (sn) is such that we have

lim
n→∞ f (t + sn) = g(t)

pointwise in R, we will write

Tsf = g.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. M. N’Guérékata, Almost Periodic and Almost Automorphic Functions in Abstract
Spaces, https://doi.org/10.1007/978-3-030-73718-4_4

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73718-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-73718-4_4


42 4 Differentiation and Integration

Remark 4.2

• Ts is a linear operator.
Indeed, given a fixed sequence s = (sn) ⊂ R, the domain of Ts is D(Ts) =

{f : R → X / Tsf exists}. D(Ts) is a linear set. Indeed if f, f1, f2 ∈ D(Ts),
then f1 + f2 ∈ D(Ts) and λf ∈ D(Ts) for any scalar λ. And obviously Ts(f1 +
f2) = Tsf1 + Tsf2 and Ts(λf ) = λTsf .

• Let us write −s := (−sn) and suppose f ∈ D(Ts) and Tsf ∈ D(T−s). Then the
product As = T−sTs is well-defined. It is easy to verify that As is also a linear
operator.

• As maps bounded functions into bounded functions, and if f ∈ AA(X), we get
Asf = f .

We are now ready to prove the following:

Theorem 4.3 Let f ∈ AA(X) and consider the function F : R → X defined by
F(t) = ∫ t

0 f (s)ds. Then F ∈ AA(X) if and only if its range RF = {F(t) / t ∈ R}
is relatively compact in X.

Proof It suffices to prove that F(t) ∈ AA(X) if RF is relatively compact. Let
(s′′

n) be an arbitrary sequence of real numbers. Then there exists a subsequence
(s′

n) ⊂ (s′′
n) such that

lim
n→∞ f (t + s′

n) = g(t)

exists for each t ∈ R and

lim
n→∞ g(t + s′

n) = f (t)

for each t ∈ R, and

lim
n→∞ F(s′

n) = α1

for some α1 ∈ X.
For every t ∈ R, we get

F(t + s′
n) =

∫ t+s′
n

0
f (r)dr =

∫ s′
n

0
f (r)dr +

∫ t+s′
n

s′
n

f (r)dr

= F(s′
n) +

∫ t+s′
n

s′
n

f (r)dr.

Using the substitution σ = r − s′
n, we obtain

F(t + s′
n) = F(s′

n) +
∫ t

0
f (σ + s′

n)dσ.
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If we apply the Lebesgue Dominated Convergence Theorem, we then get

lim
n→∞ F(t + s′

n) = α1 +
∫ t

0
g(σ )dσ

for each t ∈ R.
Let us observe that the range of the function G(t) = α1 + ∫ t

0 g(r)dr is also
relatively compact in X and

sup
t∈R

‖G(t)‖ ≤ sup
t∈R

‖f (t)‖

so that we can extract a subsequence (sn) ⊂ (s′
n) such that

lim
n→∞ G(−sn) = α2

for some α2 ∈ X.
Now we can write

G(t − sn) = G(−sn) +
∫ t

0
g(r − sn)dr

so that

lim
n→∞ G(t − sn) = α2 +

∫ t

0
f (r)dr = α2 + F(t).

Let us prove now that α2 = θ , the null vector in X.
Using notation in Remark 4.2 above, we get

AsF = α2 + F,

where s = (sn).
Now it is easy to observe that F as well as α2 belongs to the domain of As .

Therefore AsF also is in the domain of As , and we deduce the equation

A2
sF = Asα2 + AsF = α2 + α2 + AsF = 2α2 + F.

We can continue indefinitely the process to get

An
s F = nα2 + F, ∀n = 1, 2, . . .

But we have

sup
t∈R

‖An
s F (t)‖ ≤ sup

t∈R
‖F(t)‖
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and F(t) is a bounded function. This leads to a contradiction if α2 �= θ . Hence
α2 = θ and AsF = F which proves that F(t) ∈ AA(X). The proof is complete. ��
Theorem 4.4 Let X be a reflexive Banach space and f ∈ WAA(X). Then the
function F : R → X defined by F(t) = ∫ t

0 f (s)ds is weakly almost automorphic if
and only if it is bounded in norm.

Proof This is similar to the proof of Theorem 4.3 above. It suffices to observe
that in a reflexive Banach space, bounded sets are weakly relatively compact
(Proposition 1.15) ��
Theorem 4.5 Let X be a uniformly convex Banach space and let f ∈ AA(X). Then
the function F : R → X defined by F(t) = ∫ t

0 f (s)ds is almost automorphic if and
only if it is bounded.

Proof If F ∈ AA(X), then it is bounded.
Conversely let us assume that F(t) is bounded. Since f ∈ AA(X), then f ∈

WAA(X). On the other hand X is reflexive since it is uniformly convex. Using
Theorem 4.3, we know that F ∈ WAA(X).

Assume now that

weak − lim
n→∞ F(t + sn) = G(t)

pointwise on R. Observe that

sup
t∈R

‖F(t)‖ = sup
t∈R

‖G(t)‖.

Let us show that the image of F(t) is relatively compact in X. Suppose it is not.
Then there exists σ > 0 and a sequence (s′′

n) of real numbers such that

‖F(s′′
n) − F(s′′

m)‖ ≥ 2σ, n �= m.

Since f ∈ AA(X), we can extract a subsequence (s′
n) of (s′′

n) such that

lim
n→∞ f (t + s′

n) = g(t)

pointwise on R.
Observe that the sequence (F (s′

n)) is bounded in virtue of the assumption on f .
Since X is also reflexive, we can extract a subsequence (sn) of (s′

n) such that

weak − lim
n→∞ F(sn) = α

exists in X. Let t ∈ R be arbitrary. Then we can write
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F(t + sn) = F(sn) +
∫ t+sn

sn

f (s)ds = F(sn) +
∫ t

0
f (s + sn)ds

and deduce that

weak − lim
n→∞ F(t + sn) = α +

∫ t

0
g(s)ds

pointwise on any finite interval of R. Let

H(t) = α +
∫ t

0
g(s)ds, t ∈ R.

We get

sup
t∈R

‖F(t)‖ = sup
t∈R

‖H(t)‖ = M < ∞. (2.1)

Let us fix t ∈ R. Then

‖F(t + sn) − F(t + sm)‖ = ‖F(sn) − F(sm) +
∫ t

0
f (s + sn) − f (s + sm)ds‖

≥ ‖F(sn) − F(sm)‖ − ‖
∫ t

0
f (s + sn) − f (s + sm)ds‖

≥ 2σ − ‖
∫ t

0
f (s + sn) − f (s + sm)ds‖

≥ σ

≥ σ

M
max {‖F(s + sn)‖, ‖F(s + sm)‖} ,

for n,m > N = N(t). Since X is a uniformly convex Banach space, it follows that

∥
∥
∥
∥

F(t + sn) − F(t + sm)

2

∥
∥
∥
∥

≤
(

1 − δσ

M

)

[max {‖F(s + sn)‖, ‖F(s + sm)‖}]

≤
(

1 − δσ

M

)

M

for n,m > N = N(t).
Now let ϕ ∈ X

∗ be arbitrary with ‖ϕ‖ = 1. We have

∣
∣
∣
∣
ϕ(

F (t + sn) − F(t + sm)

2
)

∣
∣
∣
∣
≤ ‖ϕ‖

∥
∥
∥
∥

F(t + sn) − F(t + sm)

2

∥
∥
∥
∥
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≤
(

1 − δσ

M

)

M.

Take the limit as n,m → ∞ to both sides of the inequality and obtain

|ϕ(H(t))| ≤
(

1 − δσ

M

)

M.

Hence

‖H(t)‖ ≤
(

1 − δσ

M

)

M

and

sup
t∈R

‖H(t)‖ ≤
(

1 − δσ

M

)

M

< M = sup
t∈R

‖F(T )‖

which contradicts (2.3) and prove that F(t) is relatively compact. Thus, since F ∈
WAA(X), then F ∈ AA(X).

The proof is complete. ��
Proposition 4.6 Let X be a Banach space and x ∈ C(R+,X), f ∈ C(R,X). Let
T = (T (t))t∈R+ be a C0-semigroup of linear operators. Suppose that

x(t) = T (t)x(0) +
∫ t

0
T (t − s)f (s)ds, t ∈ R

+.

Then for t given in R and b > a > 0, a + t > 0, we have

x(t + b) = T (t + a)x(b − a) +
∫ t

−a

T (t − s)f (s)ds.

Proof Since t + b > t + a > 0, we get

x(t + b) = T (t + b)x(0) + ∫ t+b

0 T (t + b − s)f (s)ds

= T (t + a)T (b − a)x(0) + ∫ t+b

0 T (t + b − s)f (s)ds.

We also have

x(b − a) = T (b − a)x(0) +
∫ b−a

0
T (b − a − s)f (s)ds,

which gives
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T (b − a)x(0) = x(b − a) −
∫ b−a

0
T (b − a − s)f (s)ds.

Substituting this into the expression for x(t + b) gives

x(t + b) = T (t + a)(x(b − a) −
∫ b−a

0
T (b − a − s)f (s)ds

+
∫ t+b

0
T (t + b − s)f (s)ds

= T (t + a)x(b − a) +
∫ t+b

b−a

T (t + b − s)f (s)ds.

And putting s = r + b will give

∫ t+b

b−a

T (t + b − s)f (s)ds =
∫ t

−a

T (t − r)f (r + b)dr.

The proof is now complete. ��
Theorem 4.7 Let T = (T (t))t∈R+ be a C0-semigroup of linear operators on the
reflexive Banach space X. Let f ∈ AA(X) and x ∈ BC(R+,X) with the integral
representation

x(t) = T (t)x(0) +
∫ t

0
T (t − s)f (s)ds, t ∈ R

+.

Then there exists y ∈ BC(R → X) such that

y(t) = T (t − t0)y(t0) +
∫ t

t0

T (t − s)f (s)ds

for all t0 ∈ R and all t ≥ t0.

Proof Let xn(t) := x(t + n), n = 1, 2, . . . . Since X is reflexive, every bounded
subset of X is weakly sequentially compact. Also X is weakly sequentially complete,
so there exists a subsequence (nk,0)

∞
k=1 ∈ N such that

weak − lim
k→∞ xnk,0(0) ≡ weak − lim

k→∞ x(nk,0) = x0

exists in X.
Now we extract a subsequence (nk,1)

∞
k=1 ⊂ (nk,0)

∞
k=1 such that

weak − lim
k→∞ xnk,1(−1) ≡ weak − lim

k→∞ x(−1 + nk,1) = x1
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exists in X. We continue the process and take the diagonal sequence (nj )
∞
j=1 to

obtain

weak − lim
j→∞ xnj

(−N) = xN

for each N = 0, 1, 2, . . . .

Since f ∈ AA(X), we can extract a subsequence (ni)
∞
i=1 ⊂ (nj )

∞
j=1 such that

lim
i→∞ f (t + ni) = g(t)

exists pointwise in R and

lim
i→∞ g(t − ni) = f (t)

pointwise on R and

weak − lim
i→∞ xni

(−N) = xN

for N = 0, 1, 2, . . .

Now let us prove the following three properties:

(i) weak − lim
i→∞ xni

(t) = z(t) pointwise on R.

(ii) sup
t∈R

‖z(t)‖| < ∞.

(iii) z(t) = T (t − t0)z(t0) + ∫ t

t0
T (t − s)g(s)ds for every t ≥ t0.

To prove (i), let us fix t ∈ R and choose N such that t + N > 0 and consider i

such that ni > N .
Letting a = N and ni = b in Proposition 4.6 we get

x(t + ni) = T (t + N)x(ni − N) +
∫ t

−N

T (t − s)f (s + ni)ds.

On the other hand, we observe that for t0, t fixed in R with t ≥ t0 and for any
sequence of real numbers (sn), the sequence of functions Fn : [t0, t] → X defined
by

Fn(s) := T (t − s)f (s + sn), n = 1, 2, . . .

is a uniformly bounded sequence of strongly measurable functions since f ∈
AA(X).

As T = (T (t))t∈R+ is a C0-semigroup, then we have

‖T (t)‖ ≤ Meβt , t ∈ R
+
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for some constant M ≥ 1 and β ∈ R. Therefore T (t − s) is uniformly bounded for
s ∈ [t0, t]. Observe also that the function F : [t0, t] → R defined by

F(s) = T (t − s)f (s)

is continuous.
We can now prove that (T (t − s)f (s − ni)) is a sequence of uniformly bounded

and strongly measurable functions which converge to T (t − s)g(s) everywhere on
the interval [−N, t]. Therefore

lim
i→∞

∫ t

−N

T (t − s)f (s + ni)ds =
∫ t

−N

T (t − s)g(s)ds

by the Lebesgue Dominated Convergence Theorem. Let us call

weak − lim
i→∞ xni

(t) = weak − lim
i→∞ x(t + ni) = z(t)

so that

z(t) = T (t + N)xN +
∫ t

−N

T (t − s)g(s)ds

for all t ∈ R and all N such that t + N > 0. Also

‖z(t)‖ ≤ lim inf
i→∞ ‖x(t + ni)‖ ≤ M

for all t ∈ R. Therefore

sup
t∈R

‖z(t)‖ ≤ N < ∞,

which proves (i).
Now choose t0, t ∈ R with t ≥ t0 and choose N ∈ N with t0 + N > 0. Then we

obtain

z(t + a) = T (t − t0)x(t0 + a) +
∫ t

t0

T (t − s)g(s)ds.

Since z(t) is bounded in norm on R, we may assume that the sequence (z(t0 − ni))

is weakly convergent in the reflexive Banach space X.
Let us write

z(t − ni) = T (t − t0)z(t0 − ni) +
∫ t

t0

T (t − s)g(s − ni)ds.
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Since f ∈ AA(X), then g is bounded in norm and T (t − s)f (s) is strongly
measurable. Therefore the sequence (T (t − s)g(s −ni)) will be uniformly bounded
on [t0, t] and strongly measurable, and

lim
i→∞ T (t − s)g(s − ni) = T (t − s)f (s)

for every s ∈ [t0, t].
Hence

lim
i→∞

∫ t

t0

T (t − s)g(s − ni)ds =
∫ t

t0

T (t − s)f (s)ds

and

weak − lim
i→∞ z(t − ni) = y(t)

exists in X for every t ∈ R.
Then

y(t) = T (t − t0)y(t0) +
∫ t

t0

T (t − s)f (s)ds

for every t ≥ t0, so y(t) is defined on R and

‖y(t)‖ ≤ lim inf
i→∞ ‖z(t − ni)‖ ≤ M

for all t ∈ R.
Since we have

sup
t∈R

‖z(t)‖ ≤ M,

then we also get

sup
t∈R

‖y(t)‖ ≤ M.

The proof is now complete. ��
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3 Differentiation in WAA(X)

Definition 4.8 A Banach space X is said to be perfect if every bounded function
f : R → X with an almost automorphic derivative f ′ is necessarily almost
automorphic.

Remark 4.9 Every uniformly convex Banach space is a perfect Banach space (cf.
Theorem 4.5)

Theorem 4.10 Let X be a perfect Banach space and f ∈ AAA(X) with principal
term g and corrective term h. Assume that f ′(t) exists for every t ∈ R

+ and g′(t)
exists for every t ∈ R. If in addition f ′ ∈ AAA(X), then g′(t) and h′(t) are
respectively the principal and the corrective terms of f ′.

Proof We first note that h′(t) exists on R
+. Since f ′ ∈ AAA(X), let us write

f ′(t) = G(t) + H(t), t ∈ R
+,

where G(t) and H(t) are respectively the principal and the corrective terms of f ′(t).
We need to show that G(t) = g′(t) for every t ∈ R and H(t) = h′(t) for every
t ∈ R

+.
Let us consider the functions α : R → X and β : R+ → X defined by

α(t) =
∫ t+η

t

G(s)ds, t ∈ R

β(t) =
∫ t+η

t

H(s)ds, t ∈ R
+

for a fixed real number η. Note that β is continuous on R
+ and we have the

inequality

‖β(t)‖ ≤ |η| · sup
s∈Iη

‖H(s)‖,

where Iη = [t + η, t] or Iη = [t, t + η] according to the sign of η. Since
lim

t→∞ ‖H(t)‖ = 0, we deduce that lim
t→∞ ‖β(t)‖ = 0.

Also, α is defined and continuous on R; t is bounded on R since G is bounded
on R. Since X is a perfect Banach space, we deduce that α ∈ AA(X).

Now consider the equalities

f (t + η) − f (t) = α(t) + β(t)

f (t + η) − f (t) = [g(t + η) − g(t)] + [h(t + η) − h(t)],
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where t ∈ R
+ and η is chosen so that t + η ≥ 0. By the uniqueness of the

decomposition of the asymptotically almost automorphic function f (t + η) − f (t),
we get

α(t) = g(t + η) − g(t), t ∈ R

β(t) = h(t + η) − h(t), t ∈ R
+,

whence

G(t) = lim
η→0

α(t)

η
= lim

η→0

g(t + η) − g(t)

η
= g′(t), t ∈ R

H(t) = lim
β→0

α(t)

η
= lim

η→0

h(t + η) − h(t)

η
= h′(t), t ∈ R

+.

The proof is achieved. ��

4 Integration in AAA(X)

Theorem 4.11 Let X be a Banach space and f ∈ AAA(X). Consider the function
F : R+ → X defined by F(t) = ∫ t

0 f (s)ds and G : R → X defined by G(t) =
∫ t

0 g(s)ds where g is the principal term of f . Assume G has a relatively compact
range in X and

∫∞
0 ‖h(s)‖ds < ∞ where h is the corrective term of f .

Then F ∈ AAA(X); its principal term will be G(t) + ∫∞
0 h(s)ds, and its

corrective term H(t) = − ∫∞
t

h(s)ds.

Proof We observe that G ∈ AA(X) by Theorem 4.3, so is G(t) + ∫∞
0 h(s)ds since

the improper integral
∫∞

0 h(s)ds exists in X.
Now the continuous function H(t) = − ∫∞

t
h(s)ds, t ∈ R

+ satisfies the
property lim

t→∞ ‖H(t)‖ = 0.

Finally, observe that we can write

F(t) = G(t) +
∫ ∞

t

h(s)ds + H(t), t ∈ R
+.

The theorem is proved. ��
Corollary 4.12 Let X be a uniformly convex Banach space and f ∈ AAA(X).
Consider the function F : R+ → X defined by F(t) = ∫ t

0 f (s)ds and G : R → X

defined by G(t)
∫ t

0 g(s)ds where g is the principal term of f . Assume G has a
bounded range in X and

∫∞
0 ‖h(s)‖ds < ∞ where h is the corrective term of f .
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Then F ∈ AAA(X); its principal term will be G(t) + ∫∞
0 h(s)ds and its

corrective term H(t) = − ∫∞
t

h(s)ds.

Proof Observe that G ∈ AA(X) in view of Theorem 4.5. ��
Bibliographical Notes The results of this chapter are the work of N’Guérékata and
were presented in [52, 53] and the first edition of this book.



Chapter 5
Pseudo Almost Automorphy

1 Pseudo Almost Automorphic Functions

Let AA0(X), φ ∈ BC(R,X) such that

lim
T →∞

1

2T

∫ T

−T

‖φ(t)‖dt = 0,

(resp. AA0(R × X) the set of all functions φ ∈ BC(R × X,X) such that

lim
T →∞

1

2T

∫ T

−T

‖φ(t, x)‖dt = 0

uniformly for x in any bounded set of X.)

Definition 5.1 A function f ∈ BC(R,X) is said to be pseudo almost automorphic
(and we write f ∈ PAA(X)) if it admits the decomposition

f = g + φ,

where g ∈ AA(X) and φ ∈ AA0(X). Analogously a function f ∈ BC(R×X,X) is
said to be pseudo almost automorphic (and we write f ∈ PAA(R×X)) if it admits
the decomposition

f = g + φ,

where g ∈ AA(R × X) and φ ∈ AA0(R × X) uniformly for x in any bounded set
of X.

In either cases, g is called the principal term of f and φ its ergodic term.
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Remark 5.2 The following are obvious:

(i) PAA(X) and PAA(R × X) are vector spaces.
(ii) AAA(X) ⊂ PAA(X).

Lemma 5.3 Assume f ∈ AA(X), write

Bε := {τ ∈ R : ‖f (t0 + τ) − f (t0)‖ < ε},

where ε > 0 and t0 ∈ R is fixed. Then there exists s1, s2, . . . , sm ∈ R such that

∪m
i=1(si + Bε) = R.

Theorem 5.4 Let f ∈ PAA(X) where g ∈ AA(X) and h ∈ AA0(X) such that

f = g + h.

Then

{g(t) : t ∈ R} ⊂ {f (t) : t ∈ R}. (1.1)

Proof Suppose that (1.1) is not true, then there exists t0 ∈ R, ε > 0 such that

‖g(t0) − f (t)‖ ≥ 2ε, t ∈ R. (1.2)

Let s1, s2, . . . , sm be as in Lemma 5.3 and write

τi = si − t0, i = 1, 2, . . . , m, η = max
1≤i≤m

|τi |.

For T ∈ R with |T | > η, we let

B
(i)
ε,T := [−T + η − τi, T − η − τi] ∩ (t0 + Bε), i = 1, 2, . . . , m,

where Bε is as in Lemma 5.3. It is clear that

∪m
i=1(τi + B

(i)
ε,T ) = [−T + η, T − η].

Thus we obtain

2(T − η) = mes[−T + η, T − η]

≤
m
∑

i=1

mes(τi + B
(i)
ε,T )
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=
m
∑

i=1

mes(τi + B
(i)
ε,T )

≤ m · max
1≤i≤m

{mes(B(i)
ε,T )}

≤ m · mes([−T , T ] ∩ (t0 + Bε)), (1.3)

if we observe that

B
(i)
ε,T ⊂ [−T , T ] ∩ (t0 + Bε),

for each i = 1, 2, . . . , m. Using Inequality (1.2) we have

‖h(t)‖ = ‖f (t) − g(t)‖ ≥ ‖g(t0) − f (t)‖ − ‖g(t) − g(t0)‖ > ε

for any t ∈ t0 + Bε.
This and Inequality (1.3) together give

1

2T

∫ T

−T

‖h(t)‖dt ≥ ε
T − η

mT
→ ε

m
, as T → ∞.

This is a contradiction since h ∈ AA0(X) and establishes our claim (1.1). ��
Theorem 5.5 PAA(X) is a Banach space if equipped with the supnorm ‖ · ‖0.

Proof Let (fn) ⊂ PAA(X) be a Cauchy sequence in BC(R,X) with the supnorm.
Then we have

fn = gn + hn, n = 1, 2, . . . ,

where gn ∈ AA(X) and hn ∈ AA0(X) for each n = 1, 2, . . . . From (1.1) we can
say that (gn) is also a Cauchy sequence in BC(R,X), and consequently (hn) also
is a Cauchy sequence in BC(R,X). Since this latter is a Banach space and both
AA(X) and AA0(X) are closed subspaces of BC(R,X), there exists g ∈ AA(R,X)

and h ∈ AA0(X) such that

‖gn − g‖0 → 0 and ‖hn − h‖0 → 0, as n → ∞.

This implies that

fn → g + h, as n → ∞

in the supnorm. Since g + h ∈ PAA(X), the conclusion follows: ��
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2 µ-Pseudo Almost Automorphic Functions

Let B be the Lebesgue σ -field of R and M the set of all positive measures μ on B
satisfying μ([a, b]) < ∞ for all a, b ∈ R (a < b).

Definition 5.6 Let μ ∈ M. A function f ∈ BC(R,X) is said to be μ-ergodic if

lim
r→+∞

1

μ([−r, r])
∫

[−r,r]
‖f (t)‖dμ(t) = 0.

We denote the space of all such functions by ε(R,X, μ).

Definition 5.7 Let μ ∈ M. A function f ∈ C(R×Y → X) is said to be μ-ergodic
if f (·, y) is bounded for each y ∈ Y and

lim
r→+∞

1

μ([−r, r])
∫

[−r,r]
‖f (t, y)‖dμ(t) = 0,

uniformly in y ∈ Y. We denote the space of all such functions by ε(R × Y,X, μ).

For h > 0, consider the following spaces:

ε(X, μ, h)

:=
{

f ∈ BC(R,X) : lim
r→∞

1

μ([−r, r])
∫

[−r,r]

(

sup
θ∈[t−h,t]

‖f (θ)‖
)

dμ(t) = 0

}

;

ε(Y,X, μ, h) := {f ∈ C(R × Y,X) : f (·, y) is bounded for each y ∈ Y

and lim
r→∞

1

μ([−r, r])
∫

[−r,r]

(

sup
θ∈[t−h,t]

‖f (θ, y)‖
)

dμ(t)=0 uniformly in y ∈ Y

}

.

Definition 5.8 Let μ ∈ M. A continuous function f : R → X is said to be μ-
pseudo almost automorphic if f is written in the form:

f = g + φ,

where g ∈ AA(X) and φ ∈ ε(R,X, μ).

We denote the space of all such functions by PAA(R,X, μ). Then we have

AA(R,X) ⊂ PAA(R,X, μ) ⊂ BC(R,X).

Definition 5.9 Let μ ∈ M. A continuous function f : R × Y → X is said to be
μ-pseudo almost automorphic if f is written in the form:
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f = g + φ,

where g ∈ AA(R × Y,X) and φ ∈ ε(R × Y,X, μ).

Definition 5.10 Let μ ∈ M. A function f ∈ BC(R,X) (respectively, f ∈ BC(R×
Y,X)) is called μ-pseudo almost automorphic of class h if it can be expressed as
f = g + φ, where g ∈ AA(X) (respectively, AA(R × Y,X)) and φ ∈ ε(X, μ, h)

(respectively, ε(Y,X, μ, h)). We denote by PAA(X, μ, h) (respectively, PAA(R×
Y,X, μ, h)) the set of all such functions.

Lemma 5.11 Let μ ∈ M. Then (ε(R,X, μ), ‖ · ‖∞) is a Banach space.

Proof It suffices to prove that ε(R,X, μ) is a closed subset of BC(R,X). To this
end, let (fn) be a sequence in ε(R,X, μ) such that lim

n→∞ fn(t) = f (t) uniformly in

t ∈ R.
Take an arbitrary r > 0. Then we get

∫

[−r,r]
‖f (t)‖dμ(t) ≤

∫

[−r,r]
‖f (t) − fn(t)‖dμ(t) +

∫

[−r,r]
‖fn(t)‖dμ(t),

which yields

1

μ([−r, r])
∫

[−r,r]
‖f (t)‖dμ(t) ≤ ‖f − fn‖∞ + 1

μ([−r, r])
∫

[−r,r]
‖fn(t)‖dμ(t).

Thus we obtain

lim sup
r→∞

1

μ([−r, r])
∫

[−r,r]
‖f (t)‖dμ(t) ≤ ‖f − fn‖∞, ∀n ∈ N.

Now observing that lim
n→∞ ‖f − fn‖∞ = 0, we obtain that

lim
r→∞

1

μ([−r, r])
∫

[−r,r]
‖f (t)‖dμ(t) = 0

which proves the result. ��
Lemma 5.12 Let μ ∈ M. Then (ε(X, μ, h), ‖ · ‖∞) is a Banach space.

Proof Like in the Lemma above, it suffices to prove that ε(X, μ, h) is a closed
subset of ε(R,X, μ). Let (fn) be a sequence in ε(X, μ, h) such that lim

n→∞ fn(t) =
f (t) uniformly in t ∈ R. Let r > 0. Then we have

∫

[−r,r]

(

sup
θ∈[t−h,t]

‖f (θ)‖
)

dμ(t)



60 5 Pseudo Almost Automorphy

≤
∫

[−r,r]

(

sup
θ∈[t−h,t]

‖f (θ) − fn(θ)‖
)

dμ(t)+
∫

[−r,r]

(

sup
θ∈[t−h,t]

‖fn(θ)‖
)

dμ(t),

we deduce that

1

μ([−r, r])
∫

[−r,r]

(

sup
θ∈[t−h,t]

‖f (θ)‖
)

dμ(t)

≤ ‖f − fn‖∞ + 1

μ([−r, r])
∫

[−r,r]

(

sup
θ∈[t−h,t]

‖fn(θ)‖
)

dμ(t);

it follows that

lim sup
r→∞

1

μ([−r, r])
∫

[−r,r]

(

sup
θ∈[t−h,t]

‖f (θ)‖
)

dμ(t) ≤ ‖f − fn‖∞ f or all n ∈ N.

Since lim
n→∞ ‖f − fn‖∞ = 0, we deduce that

lim
n→∞

1

μ([−r, r])
∫

[−r,r]

(

sup
θ∈[t−h,t]

‖f (θ)‖
)

dμ(t) = 0.

We also obtain that

lim
n→∞

1

μ([−r, r])
∫

[−r,r]
‖f (t)‖dμ(t) = 0.

i.e. ε(X, μ, h) is closed in ε(R,X, μ). ��
In view of the definitions of ε(X, μ, h) and ε(Y,X, μ, h) and the previous

proof, it is clear that ε(X, μ, h) and ε(Y,X, μ, h) are continuously embedded into
ε(R,X, μ) and ε(R × Y,X, μ), respectively. Furthermore, it is not hard to see
that ε(X, μ, h) and ε(Y,X, μ, h) are closed in ε(R,X, μ) and ε(R × Y,X, μ),
respectively.

For μ ∈ M and τ ∈ R, we denote μτ the positive measure on (R,B) defined by

μτ (B) = μ({a + τ : a ∈ B}) f or B ∈ B. (2.1)

From μ ∈ M, we formulate the following hypothesis:
(A0) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

μτ (B) ≤ βμ(B),

when B ∈ B satisfies B ∩ I = ∅.
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Lemma 5.13 Let μ ∈ M. Then it satisfies (A0) if and only if μ and μτ are
equivalent for all τ ∈ R.

Proof It is obvious that (A0) holds if μ and μτ are equivalent. Conversely let τ ∈ R.
By (A0), we can say that there exists c = c(τ ) > 0 and a bounded interval I = I (τ )

such that for all B ∈ B satisfying B ∩ I = ∅ we have

μ({a + τ : a ∈ B}) ≤ cμ(B) (2.2)

and

μ({a − τ : a ∈ B}) ≤ cμ(B). (2.3)

We can deduce that there exists a bounded interval J such that for all B ∈ B, we
have

B ∩ J = ∅ ⇒ B ∩ I = ∅ (2.4)

and

{a + τ : a ∈ B} ∩ I = ∅. (2.5)

Now from the above (2.2), (2.3), (2.4), and (2.5), we deduce that for all B ∈ B such
that B ∩ J = ∅ we have

μ({a + τ : a ∈ B}) ≤ cμ(B) and μ(B) ≤ cμ({a + τ : a ∈ B}). Finally,
combining the above we obtain

1

c
μ(B) ≤ μτ (B) ≤ cμ(B)

for all B ∈ B such that B ∩ I = ∅. This shows that μ ∼ μτ and ends the proof. ��
Theorem 5.14 Let μ ∈ M satisfy (A0). Then ε(R,X, μ) is translation invariant;
therefore PAA(R,X, μ) is also translation invariant.

Proof We know that AA(X) is translation invariant. It remains to prove that
ε(R,X, μ) is also translation invariant, that is if f ∈ ε(R,X, μ), then fτ ∈
ε(R,X, μ) as well for any τ ∈ R.

So let f ∈ ε(R,X, μ) and τ > 0 is given. Since μ(R) = +∞, then we can find
r0 > 0 such that μ([−r − |τ |, r + |τ |]) > 0 for all r ≥ r0. For such r and given
τ ∈ R let us denote by Mτ the following mean:

Mτ(r) := 1

μτ ([−r, r])
∫

[−r,r]
‖f (t)‖dμτ (t),

where μτ is defined as in (2.1). By the lemma above, μ and μτ are equivalent, thus
ε(R,X, μτ )=ε(R,X, μ). Consequently f ∈ ε(R,X, μτ ), which implies
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lim
r→∞ Mτ(r) = 0, ∀τ ∈ R.

Take an arbitrary B ∈ B and consider its characteristic function χB . Then we can
get

∫

[−r,r]
χBdμτ (t) =

∫

[−r+τ,r+τ ]
χB(t − τ)dμ(t)

for all B ∈ B. Now since t → ‖f (t)‖ can be viewed as the pointwise limit of
an increasing sequence of linear combination of characteristic functions, we deduce
that

∫

[−r,r]
‖f (t)‖dμτ (t) =

∫

[−r+τ,r+τ ]
‖f (t − τ)‖dμ(t).

From the above, we obtain

Mτ(r) = 1

μ([−r + τ, r + τ ])
∫

[−r+τ,r+τ ]
‖f (t − τ)‖dμ(t).

Let us denote τ+ := max(τ, 0) and τ− := max(−τ, 0). Then we have |τ | + τ =
2τ+ and |τ | − τ = 2τ−; thus

[−r + τ − |τ |, r + τ + |τ |] = [−r − 2r−, r + 2r+].

Consequently, we obtain

Mτ(r + |τ |) = 1

μ([−r − 2τ−, r + 2τ+])
∫

[−r−2τ−,r+2τ+]
‖f (t − τ)‖dμ(t).

Combining this equality with the following:

1

μ([−r, r])
∫

[−r,r]
‖f (t−τ)‖dμ(t) ≤ 1

μ([−r, r])
∫

[−r−2τ−,r+2τ+]
‖f (t−τ)‖dμ(t),

we get

1

μ([−r, r])
∫

[−r,r]
‖f (t − τ)‖dμ(t) ≤ μ([−r − 2τ−, r + 2τ+])

μ([−r, r]) Mτ (r + |τ |),

which implies

1

μ([−r, r])
∫

[−r,r]
‖f (t − τ)‖dμ(t) ≤ μ([−r − 2|τ |, r + 2|τ |])

μ([−r, r]) Mτ (r + |τ |).
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Now it is clear from all of the above that

lim
r→∞

1

μ([−r, r])
∫

[−r,r]
‖f (t − τ)‖dμ(t) = 0,

which means the shift function f−τ ∈ ε(R,X, μ) for all τ ∈ R. The proof is
complete. ��
Theorem 5.15 Let μ ∈ M. Assume that PAA(R,X, μ) is translation invariant.
Then the decomposition of a μ-pseudo almost automorphic function in the form
f = g + φ where g ∈ AA(R,X) and φ ∈ ε(R,X, μ), is unique.

Proof Let f ∈ PAA(R,X, μ) and suppose that f = gi + hi where gi ∈ AA(X),
and hi ∈ ε(R,X, μ), for i = 1, 2. Then we have 0 = (g1 − g2) + (h1 − h2) ∈
PAA(R,X, μ) since g1 − g2 ∈ AA(X) and h1 − h2 ∈ ε(R,X, μ). Now (g1 −
g2)(R) ⊂ {0}, therefore g1 −g2 ∈ AA(X) and h1 −h2 ∈ ε(R,X, μ), which implies
g1 = g2 and h1 = h2. The proof is complete. ��
Theorem 5.16 Let μ ∈ M. Assume that PAA(R,X, μ) is translation invariant.
Then (PAA(R,X, μ), ‖ · ‖∞) is a Banach space.

Proof Consider an arbitrary Cauchy sequence (fn) ⊂ PAA(R,X, μ), and let
fn = gn + hn where gn and hn are respectively its principal term and μ-ergodic
perturbation of fn. From a previous result we can say that ‖gn − gm‖ ≤ ‖fn − fm‖
which shows that (gn) is a Cauchy sequence in AA(X). It implies that (hn) is
also a Cauchy sequence in ε(R,X, μ). Therefore lim

n→∞ gn = g ∈ AA(X) and

lim
n→∞ hn = h ∈ ε(R,X, μ). Finally, lim

n→∞ fn = g + h ∈ PAA(R,X, μ). This

completes the proof. ��
Bibliographical Notes The concept in Sect. 1 was suggested by N’Guérékata in
[57, page 40] and developed by Liang et al. in [68]. Section 2 is devoted to a new
approach to this study via measure theory introduced by Blot et al. and leading to a
series of interesting papers [18–21] and many others.



Chapter 6
Stepanov-like Almost Automorphic
Functions

1 Definitions and Properties

Definition 6.1 The Bochner transform f b := f b(t, s), t ∈ R, s ∈ [0, 1] of a
function f : R → X is defined by

f b(t, s) = f (t + s).

Remark 6.2 A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of a
certain function f (t)

ϕ(t, s) = f b(t, s)

if and only if

ϕ(t + τ, s − τ) = ϕ(t, s)

for all t ∈ R, s ∈ [0, 1] and τ ∈ [s − 1, s].
Definition 6.3 ([65]) Let p ∈ [1,∞). The space BSp(X) of Stepanov bounded
functions, with the exponent p, consists of all measurable functions f : R → X

such that f b ∈ L∞(R, Lp(0, 1;X)).

Remark 6.4 BSp(X) turns out to be a Banach space if equipped with the norm

‖f ‖Sp = ‖f b‖L∞(R,Lp) := sup
t∈R

(∫ t+1

t

‖f (s)‖p

X
ds

) 1
p

.

Definition 6.5 ([60]) The space ASp(X) of all Sp-almost automorphic functions
consists of all f ∈ BSp(X) such that f b ∈ AA(Lp(0, 1;X)).
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66 6 Stepanov-like Almost Automorphic Functions

Equivalently, a function f ∈ L
p
loc(R,X) is said to be Sp-almost automorphic if

its Bochner transform f b : R → Lp(0, 1;X) is almost automorphic in the sense
that for every sequence of real numbers (s′

n) there exists a subsequence (sn) and a
function g ∈ L

p
loc(R,X)) such that

(∫ 1

0
‖f (t + sn + s) − g(t + s)‖pds

) 1
p

→ 0

and

(∫ 1

0
‖g(t − sn + s) − f (t + s)‖pds

) 1
p

→ 0

as n → ∞ pointwise on R.

Remark 6.6

(i) If 1 ≤ p < q < ∞ and f ∈ L
q
loc(R,X) is Sq -almost automorphic, then f is

Sp-almost automorphic.
(ii) It is clear that f ∈ AAc(X) if and only if f b ∈ AA(L∞(0, 1;X)).

Consequently AAc(X) can be considered as AS∞(X).

Theorem 6.7 The following are equivalent:

(i) f ∈ ASp(X).
(ii) f b ∈ AAc(L

p(0, 1;X)).
(iii) For every sequence of real numbers (s′

n) there exists a subsequence (sn) such
that

g(t) := lim
n→∞ f (t + sn)

exists in the space L
p
loc(R,X) and

f (t) = lim
n→∞ g(t − sn)

exists in the sense of L
p
loc(R,X).

Proof

(ii) ⇒ (i) is straightforward.
(iii) ⇒ (ii) Let us prove

lim
n→∞ f b(t + sn) = gb(t)

in C(R;Lp(0, 1)). Indeed we have
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sup
t∈[−a,a]

‖f b(t + sn) − gb(t)‖Lp(0,1;X)

≤
(∫ a

−a

‖f (t + sn) − g(t)‖pdt

) 1
p → 0.

Similarly, we can prove that

lim
n→∞ gb(t − sn) = f b(t)

in C(R;Lp(0, 1)).

Now we prove the statement (i) ⇒ (iii). Indeed, suppose

f b(t + sn) → ν(t)

pointwise on R. By definition ν is a measurable function with values in Lp(0, 1;X).
By Remark 6.2, ν(t) = gb(t), where g ∈ L

p
loc(R,X). Let

εn :=
∫ a

−a

‖f (t + sn) − g(t)‖pdt.

We prove that εn → 0 as n → ∞. Indeed without loss of generality, we may assume
that a is an integer. Then we have

εn :=
a−1
∑

k=−a

∫ k+1

k

‖f (t+sn)−g(t)‖pdt =
a−1
∑

k=−a

‖f b(k+sn)−gb(k)‖p

Lp(0,1;X)
→ 0,

which proves that

g(t) := lim
n→∞ f (t + sn)

in the space L
p
loc(R,X). Similarly, we can prove that

f (t) = lim
n→∞ g(t − sn)

in the sense of L
p
loc(R,X). ��

Now we prove the following:

Theorem 6.8 ASp(X) is a closed linear subspace of BSp(X).

Proof Let f ∈ ASp(X) and λ a scalar. Then it is obvious that λf ∈ ASp(X).
Now let f1, f2 ∈ ASp(X). Then by definition, f b

1 , f b
2 ∈ AA(Lp(0, 1;X)). Now

using the Minkowski’s theorem, we have
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‖f b
1 + f b

2 ‖L∞(R,Lp) ≤ sup
t∈R

(∫ t+1

t

‖f1(s) + f2(s)‖p

X
ds

) 1
p

≤ sup
t∈R

(∫ t+1

t

‖f1(s)‖p

X
ds

) 1
p

+ sup
t∈R

(∫ t+1

t

‖f2(s)‖p

X
ds

) 1
p

= ‖f b
1 ‖L∞(R,Lp) + ‖f b

2 ‖L∞(R,Lp),

which proves that f1 + f2 ∈ ASp(X).
Finally, it is easy, using again the Minkowski’s theorem, to prove that if (fn) is a

sequence in ASp(X) which converges to f in the Sp norm, then f ∈ ASp(X).
The proof of the theorem is complete. ��

Example 6.9 Let f1 ∈ ASp(X) and f2 ∈ AAc(X). Then f1 + f2 ∈ ASp(X) and
f1 + f2 �∈ AA(X).

Example 6.10 Let (xn) be an almost automorphic sequence with values in X and
ε0 ∈ (0, 1

2 ). Let the function f : R → X be defined by
f (t) = xn, t ∈ (n − ε0, n + ε0) and f (t) = 0 otherwise. Then f ∈ ASp(X) for
all p with 1 ≤ p < ∞. But f �∈ AA(X).

The following result is easy to prove:

Theorem 6.11 Let f ∈ ASp(X) and A ∈ L(X). Then Af ∈ ASp(X).

Definition 6.12 A function f is said to be weakly Sp-almost automorphic if ϕf ∈
ASp(X) for every ϕ ∈ X

∗.

Let us denote by ASp(X) the space of all Sp-almost automorphic functions with
values in X. Then we have the following:

AA(X) ⊂ WAA(X)

AAc(X) ⊂ WAAc(X)

ASp(X) ⊂ WASp(X).

Proposition 6.13

(a) Suppose f ∈ WAA(X). Then f is bounded and its range is separable. As a
consequence f ∈ L∞(R,X).

(b) If f ∈ WASp(X), then f ∈ BSp(X).

Proof

(a) This is Theorem 2.20 in Chap. 2.
(b) Follows from (a).

��
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Proposition 6.14 Let X0 ⊂ X1 be a continuous and dense embedding of Banach
spaces.

(a) Let f ∈ L∞(R,X0) be a weakly continuous function. If f ∈ WAA(X1), then
f ∈ WAA(X0).

(b) If f ∈ BSp(X0) and f ∈ WASp(X1), then f ∈ WASp(X0).

Proof

(a) It is clear that the dual embedding X
∗
1 ⊂ X

∗
0 is also continuous and dense.

Therefore for ϕ ∈ X
∗
0, there exists a sequence ϕn ∈ X

∗
1 such that lim

n→∞ ϕn = ϕ

in X
∗
0. Obviously, we have

|(ϕf )(t) − (ϕnf )(t)| ≤ ‖ϕ − ϕn‖‖f ‖L∞(R,X0).

Since all (ϕnf )(t) are almost automorphic, the result follows.
(b) The proof of this case is similar.

��
Bibliographical Notes The results in this chapter are due to N’Guérékata and
Pankov [60].



Chapter 7
Dynamical Systems and C0-Semigroups

In this section, we are concerned with the behavior of asymptotically almost
automorphic semigroups of linear operators T = (T (t))t≥0 at t → ∞. We present
some topological and asymptotic properties based on the Nemytskii and Stepanov
theory of dynamical systems.

First of all, we present a connection between abstract dynamical systems and
C0-semigroups of linear operators. X is a (real or complex) Banach space.

1 Abstract Dynamical Systems

Definition 7.1 A mapping u : R
+ × X → X is called an (abstract) dynamical

system if

(i) u(0, x) = x, for every x ∈ X;
(ii) u(·, x) : R+ → X is continuous for any t > 0 and right-continuous at t = 0,

for each x ∈ X;
(iii) u(t, ·) : X → X is continuous for each t ∈ R

+;
(iv) u(t + s, x) = u(t, u(s, x)) for all t, s ∈ R

+ and x ∈ X.

If u : R+ × X → X is a dynamical system, the mapping u(·, x) : R+ → X will
be called a motion originating at x ∈ X.

Now, we state and prove the following.

Theorem 7.2 Every C0-semigroup (T (t))t∈R+ determines a dynamical system and
conversely by defining u(t, x) := T (t)x, t ∈ R

+, x ∈ X.

Proof Let u(t, x) be a dynamical system in the sense of Definition 7.1 and consider

T (t)x = u(t, x), t ∈ R
+, x ∈ X.
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Then, obviously T (0) = I , the identity operator on X, since for every x ∈ X,
T (0)x = u(0, x) = x.

Let t, s ∈ R
+ and x ∈ X; then, we have

T (t + s)x = u(t + s, x) = u(t, u(s, x))

by property (iv) of Definition 7.1. But we have also

T (t)T (s)x = T (t)u(s, x) = T (t, u(s, x))

using the definition of T (t)x. Therefore,

T (t + s)x = T (t)T (s)x,

for every t, s ∈ R
+ and x ∈ X, which proves the semigroup property

T (t + s)x = T (t)T (s)x,

for all t, s ∈ R
+, x ∈ X.

The continuity of T (t)x : X → X follows readily from property (iii) of
Definition 7.1 for every t ∈ R

+.
Now, we have

lim
t→0+ T (t)x = lim

t→o+ u(t, x) = u(0, x) = x

using property (ii) and then property (i) in Definition 7.1. We have proved that
(T (t))t∈R+ is a C0-semigroup.

Conversely, suppose we have a C0-semigroup (T (t))t∈R+ and define

u(t, x) = T (t)x, t ∈ R
+, x ∈ X.

Then, all the properties (i)–(iv) in Definition 7.1 are obviously true. Therefore, the
mapping u is a dynamical system. ��
Remark 7.3 The above result tells us that the notions of abstract dynamical systems
and C0-semigroups are equivalent. This fact provides a solid ground to study C0-
semigroups of linear operators as an independent topic.

2 Complete Trajectories

In this section, we will consider a C0-semigroup of linear operators (T (t))t∈R+ such
that the motion T (t)x0 : R+ → X is an asymptotically almost automorphic function
with principal term f (t).
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Let us now introduce some notations and definitions. We recall that x0 is some
fixed element in X.

Definition 7.4 A function ϕ : R → X is said to be a complete trajectory of T if it
satisfies the functional equation ϕ(t) = T (t − a)ϕ(a) for all a ∈ R and all t ≥ a.

We have the following properties.

Theorem 7.5 The principal term of T (t)x0 is a complete trajectory for T .

Proof We have T (t)x0 = f (t) + g(t), t ∈ R
+. Since f ∈ AA(X), there exists a

subsequence (nk) ⊂ (n) = N such that

lim
k→∞ f (t + nk) = g(t)

and

lim
k→∞ g(t − nk) = f (t)

pointwise on R.
Put ϕ(t) = T (t)x0. Then, ϕ(0) = x0. Let us fix a ∈ R and choose k large enough

so that a + nk ≥ 0. If s ≥ 0, then

ϕ(a + s + nk) = T (a + s + nk)ϕ(0)

= T (s)T (a + nk)ϕ(0)

= T (s)ϕ(a + nk).

Consequently,

f (a + s + nk) + h(a + s + nk) = T (s)ϕ(a + nk),

where s ≥ 0 and a + nk ≥ 0. But we have

lim
k→∞ f (a + s + nk) = g(a + s)

and

lim
k→∞ h(a + s + nk) = 0,

so

lim
k→∞ ϕ(a + s + nk) = lim

k→∞ T (s)ϕ(a + nk) = g(a + s).

We also have
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lim
k→∞ ϕ(a + nk) = g(a).

Using the continuity of T (t), we get

lim
k→∞ T (s)ϕ(a + nk) = T (s)g(a).

We can establish the following equality:

T (s)g(a) = g(a + s), ∀a ∈ R, ∀s ≥ 0.

But we have

lim
k→∞ g(t − nk) = f (t), t ∈ R

and

g(a − nk + s) = T (s)g(a − nk), ∀a ∈ R, ∀s ≥ 0.

Therefore,

lim
k→∞ g(a − nk + s) = T (s)f (a), ∀a ∈ R, ∀s ≥ 0,

so that

f (a + s) = T (s)f (a), ∀a ∈ R, ∀s ≥ 0.

Finally, let us put s = t − a with t ≥ 0. Then,

f (t) = T (t − a)f (a), ∀a ∈ R, ∀t ≥ a.

The proof is complete. ��
Definition 7.6 The set

ω+(x0) = {y ∈ X : ∃ 0 ≤ tn → ∞ s.t. lim
n→∞ T (tn)x0 = y}

is called the ω-limit of f (t), the principal term of T (t)x0.

γ +(x0) = {T (t)x0 / t ∈ R
+}

is called the trajectory of T (t)x0.

Theorem 7.7 ω+(x0) �= ∅.
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Proof We let tn = n, n = 1, 2, . . . Since f ∈ AA(X), there exists a subsequence
(tnk

) ⊂ (tn) such that

lim
k→∞ f (tnk

) = g(0).

But

lim
k→∞ T (tnk

)x0 = lim
k→∞ f (tnk

).

Thus, we get

lim
k→∞ T (tnk

)x0 = g(0).

Consequently, g(0) ∈ ω+(x0), since tnk
→ ∞ as k → ∞. So, ω+(x0) �= ∅.

This completes the proof. ��
Theorem 7.8 ω+(x0) = ω+

f (x0).

Proof To see that T (t)x0 and its principal term have the same ω-limit set, it suffices
to observe that

lim
t→∞ T (t)x0 = lim

t→∞ f (t).

��
Definition 7.9 A set B ⊂ X is said to be invariant under the semigroup T =
(T (t))t∈R+ if T (t)y ∈ B for every y ∈ B and t ∈ R

+.

Theorem 7.10 ω+(x0) is invariant under T .

Proof Let y ∈ ω+(x0), so there exists 0 ≤ tn → ∞ such that lim
t→∞ T (tn)x0 = y.

Consider the sequence (sn) where sn = t + tn, n = 1, 2, . . . , for a given t ∈ R
+.

Then, sn → ∞ as n → ∞. We have

T (sn)x0 = T (t)T (tn)x0, n = 1, 2, . . .

and lim
n→∞ T (sn)x0 = T (t)y, using the continuity of T (t). Therefore, T (t)y ∈

ω+(x0).
The proof is complete. ��

Theorem 7.11 ω+(x0) is closed.

Proof Let y ∈ ω+(x0), the closure of ω+(x0). Then, there exists a sequence of
elements ym ∈ ω+(x0), m = 1, 2, . . . , with ym → y. For each ym, there exists
0 ≤ tm,n → ∞ such that lim

n→∞ T (tm,n)x0 = ym.
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Recursively choose

t1,n1 > 1 such that ‖y1 − T (t1,n1)x0‖ <
1

2

t2,n2 > max(2, t1,n1) such that ‖y2 − T (t2,n2)x0‖ <
1

22

t3,n3 > max(3, t2,n2) such that ‖y3 − T (t3,n3)x0‖ <
1

23

tk,nk
> max(k, tk−1,nk−1) such that ‖yk − T (tk,nk

)x0‖ <
1

2k
.

Let sk = tk,nk
, k = 1, 2, . . . Clearly, 0 < sk → ∞ as k → ∞, and we have

‖T (sk)x0 − y‖ ≤ ‖T (sk)x0 − yk‖ + ‖yk − y‖

<
1

2k
+ ‖yk − y‖.

Since lim
k→∞ yk = y, we have y ∈ ω+(x0).

This achieves the proof. ��
Theorem 7.12 ω+(x0) is compact if γ +(x0) is relatively compact.

Proof It is obvious that ω+(x0) ⊂ γ +(x0). But γ +(x0) is compact by assumption
and ω+(x0) is a closed subset (cf. Theorem 7.11). Therefore, ω+(x0) is itself
compact. ��
Theorem 7.13 γf (x0) := {f (t) / t ∈ R} is invariant under the semigroup T =
(T (t))t∈R+ .

Proof We recall that γf (x0) is relatively compact since f ∈ AA(X). Let y ∈
γf (x0). So, there exists σ ∈ R such that y = f (σ). For arbitrary a ∈ R such
that σ ≥ a, we can write

y = f (σ) = T (σ − a)f (a),

since f is a complete trajectory (cf. Theorem 7.5). Now, let t ≥ 0. Then,

T (t)y = T (t + σ − a)f (a)

= f (t + σ),

i.e. T (t)y ∈ γf (x0), for every t ≥ 0, which shows that γf (x0) is indeed invariant
under the semigroup T . ��
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Theorem 7.14 Let ν(t) := inf
y∈ω+(x0)

‖T (t)x0 − y‖. Then,

lim
t→∞ ν(t) = 0.

Proof Suppose lim
t→∞ ν(t) �= 0. Then, there exists ε > 0 such that for every n =

1, 2, . . . , there exists t ′n ≥ n such that ν(t ′n) ≥ ε, i.e.

∃t ′n ≥ n, ‖T (t ′n)x0 − y‖ ≥ ε ∀y ∈ ω+(x0), ∀n = 1, 2, . . .

Let (tn) be a subsequence of (t ′n) such that (f (tn)) converges, say, to y, as guaranteed
by the relative compactness of γf (x0).

Now, since tn → ∞ as n → ∞, we get

lim
n→∞ T (tn)x0 = lim

n→∞ f (tn) = y.

Therefore, y ∈ ω+(x0), which is a contradiction. ��
Remark 7.15 The minimality property above shows that the ω-limit set ω+(x0)

is the smallest closed set toward which the asymptotically almost automorphic
function T (t)x0 tends to as t → ∞.

Definition 7.16 e ∈ X is called a rest point for the semigroup T = (T (t))t∈R+ if
T (t)e = e, ∀t ∈ R

+.

Theorem 7.17 If x0 is a rest point for the semigroup T = (T (t))t∈R+ , then
ω+(x0) = {x0}.
Proof Since T (t)x0 = x0, for every t ≥ 0, then for every sequence of real numbers
(tn) such that 0 ≤ tn → ∞, we get lim

n→∞ T (tn)x0 = x0, i.e. x0 ∈ ω+(x0).

Now, let y ∈ ω+(x0). There exists 0 ≤ sn → ∞ such that lim
n→∞ T (sn)x0 = y.

But T (sn)x0 = x0 for all n = 1, 2, . . . Therefore, x0 = y.
The proof is complete. ��

Bibliographical Notes The results in this chapter are due to N’Guérékata and
published for the first time in the first edition of this book.



Chapter 8
Almost Periodic Functions with Values in
a Locally Convex Space

1 Almost Periodic Functions

Definition 8.1 Let E = E(τ) be a complete Hausdorff locally convex space. A
function f : R → E is said to be almost periodic if for every neighborhood (of
the origin) U , there exists a real number l > 0 such that every interval [a, a + l]
contains at least one point s such that

f (t − s) − f (t) ∈ U, ∀t ∈ R.

The numbers s depend on U and are called U -translation numbers, or U -almost
periods of the function f .

Remark 8.2 In the case where E is a Banach space X with norm ‖·‖, Definition 8.1
can be rewritten as:
f : R → X is said to be almost periodic if for every ε > 0, there exists a real
number l > 0 such that every interval [a, a + l] contains at least one point s such
that

sup
t∈R

‖f (t − s) − f (t)‖ < ε.

The numbers s are called the ε-almost periods of f .

Remark 8.3

(i) From Definition 8.1, we observe that for each neighborhood U , the set of all
U -translation numbers is relatively dense in R.

(ii) It is obvious that every continuous periodic function f : R → E is almost
periodic.
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We now present some elementary properties of almost periodic functions taking
values in locally convex spaces.

Theorem 8.4 If f, f1, f2 : R → E are almost periodic and λ is a scalar, then the
following functions are also almost periodic:

(i) f1 + f2;
(ii) λf ;

(iii) f̌ defined by f̌ (t) = f (−t) for every t ∈ R.

Proof (i) and (ii) are obvious.
Let us prove (iii). Take U an arbitrary neighborhood of the origin. By almost

periodicity of f , there exists l > 0 such that every interval [a, a + l] contains at
least a point s such that

f (t − s) − f (t) ∈ U, ∀t ∈ R.

If we put r = −t , we get

f̌ (r − s) − f̌ (r) = f (−r + s) − f (−r) = f (t + s) − f (t).

Therefore f̌ (r − s) − f̌ (r) ∈ U for every r ∈ R, which proves almost periodicity
of f̌ with −s as U -translation numbers. ��
We will denote by AP(E) the space of all almost periodic functions f : R → E.

The following two results are easy to prove (cf. [51, 54]):

Theorem 8.5 Let f ∈ AP(E). Then f is uniformly continuous on R.

Theorem 8.6 Let fn ∈ AP(E), n = 1, 2, . . . and suppose that fn → f uniformly
in t ∈ R. Then f ∈ AP(E).

Theorem 8.7 If f ∈ AP(E), then its range {f (t) / t ∈ R} is totally bounded in
E.

Proof Let U be a neighborhood and V a symmetric neighborhood such that V +
V ⊂ U ; let l = l(V ) as in Definition 8.1. By the continuity of f , the set {f (t) / t ∈
[0, l]} is compact in E. But in a locally convex space, every compact set is totally
bounded; therefore there exists x1, x2, . . . , xn ∈ E such that for every t ∈ [0, l], we
have

f (t) ∈ ∪n
j=1(xj + V ).

Take now an arbitrary t ∈ R and consider s ∈ [−t,−t + l] a V -translation number
of the function f . Then we have

f (t + s) − f (t) ∈ V.

Choose xk among x1, . . . , xn such that
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f (t + s) ∈ xk + V.

Let us write f (t) − xk = (f (t) − f (t + s)) + (f (t + s) − xk). Then we have
f (t) − xk ∈ V + V , and therefore f (t) − xk ∈ U , or f (t) ∈ xk + U . Since t is an
arbitrary real number, we conclude that

{f (t) / t ∈ R} ⊂ ∪n
j=1(xj + U).

The proof is complete. ��
Remark 8.8 If f ∈ AP(E) with E a Fréchet space, then its range is relatively
compact in E, since in every complete metric space, relative compactness and totally
boundedness are equivalent notions. We conclude in this case that every sequence
(f (tn)) contains a convergent subsequence (f (tnk

)).

Theorem 8.9 Let E be a Fréchet space and f ∈ AP(E). Then for every sequence
of real numbers (s′

n), there exists a subsequence (sn) such that (f (t + sn)) is
uniformly convergent in t ∈ R.

Proof Let (sn) be a sequence of real numbers and consider the sequence of
functions fsn : R → E defined by fsn(t) = f (t + sn), n = 1, 2, . . . Let S = (ηn)

be a countable dense set in R. By Remark 8.8, we can extract from (f (η1 + sn)) a
convergent subsequence, since the set {f (t) / t ∈ R} is relatively compact in E.

Let (fs1,n) be the subsequence of (fn) which converges at η1.We apply the same
argument to the sequence (fs1,n) to choose a subsequence (fs2,n) which converges
at η2. We continue the process and consider the diagonal sequence (fsn,n) which
converges at ηn in S.

Call this last sequence (frn). Now let us show that it is uniformly convergent on
R: that is, for every neighborhood U , there exists N = N(U) such that

f (t + rn) − f (t + rm) ∈ U

for every t ∈ R, if n,m > N .
Consider now an arbitrary neighborhood U and a symmetric neighborhood V

such that V + V + V + V + V ⊂ U . Let l = l(V ) > 0 as in Definition 8.1. Since f

is uniformly continuous on R (Theorem 8.5), we can find δ = δ(V ) > 0 such that

f (t) − f (t ′) ∈ V

for every t, t ′ ∈ R with |t − t ′| < δ.
Let us divide the interval [0, l] into ν subintervals of lengths smaller than δ and

choose in each interval a point of S, obtaining S0 = {ξ1, . . . , ξν}. Since S0 is a finite
set, (frn) is uniformly convergent over S0; therefore there exists a natural number
N = N(V ) such that

f (ξi + rn) − f (ξi + rm) ∈ V
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for every i = 1, . . . , ν, and for n,m > N .
Let t ∈ R be arbitrary and s ∈ [−t,−t + l] such that f (t + s) − f (t) ∈ V . Let

us choose ξi such that |t + s − ξi | < δ; then

f (t + s + rn) − f (ξi + rn) ∈ V

for every n.
Let us write

f (t + rn) − f (t + rm) = (f (t + rn) − f (r + rn + s)) + (f (r + rn + s)

− f (ξi + rn)) + (f (ξi + rn) − f (ξi + rm))

+ (f (ξi + rm) − f (t + rm + s)) + (f (t + rm + s)

− f (t + rm)).

Then it appears

f (t + rn) − f (t + rm) ∈ V + V + V + V + V ⊂ U

if n,m > N , which proves the uniform convergence of (f (t + rn)). ��
We are now ready to establish the following important result called also the

Bochner’s criterion:

Theorem 8.10 Let E be a Fréchet space. Then f ∈ AP(E) if and only if for every
sequence of real numbers (s′

n), there exists a subsequence (sn) such that (f (t + sn))

converges uniformly in t ∈ R.

Proof The condition is necessary by Theorem 8.9.
Now we need to prove that it is sufficient. Suppose by contradiction that f �∈

AP(E). Then there exists a neighborhood U such that for every real number l > 0,
there exists an interval of length l which contains no U -translation number of f , or
there exists an interval [−a,−a + l] such that for every s ∈ [−a,−a + l], there
exists t = ts such that f (t + s) − f (t) �∈ U .

Let us consider s1 ∈ R and an interval (a1, b1) with b1 − a1 > 2|s1| which
contains no U -translation number of f . Now let s2 = (a1−b1)

2 ; then s2−s1 ∈ (a1, b1)

and therefore s2 − s1 cannot be a U -translation number of f .
Let us consider another interval (a2, b2) with b2 − a2 > 2(|s1| + |s2|), which

contains no U -translation number of f . Let s3 = (a2−b2)
2 ; then s3 − s1, s3 − s2 ∈

(a2, b2) and therefore s3 − s1 and s3 − s2 cannot be U -translation numbers of f .
We proceed and obtain a sequence (sn) of real numbers such that no sm − sn is a

U -translation number of f , that is

f (t + sm − sn) − f (t) �∈ U.

Putting σ = t − sn, we get
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f (σ + sm) − f (σ + sn) �∈ U. (1.1)

Suppose there exists a subsequence (s′
n) of (sn) such that (f (t + s′

n)) converges
uniformly in t ∈ R. Then for every neighborhood V , there exists a natural number
N = N(V ) such that, if n,m > N (we may take m > n), we have

f (t + s′
m) − f (t + s′

n) ∈ V

for every t ∈ R. This contradicts (2.1) and so establishes the sufficiency of the
condition.

The proof is complete. ��
Theorem 8.11 Let f ∈ AP(E). Then the following hold true:

(i) Af (t) ∈ AP(E) for every linear bounded operator A on E.
(ii) νf ∈ AP(E) where ν : R → � is almost automorphic.

Proof Trivial, cf for instance [51, 54]. ��
Using the Bochner’s criterion, one can easily prove the following:

Theorem 8.12 Let E be a Fréchet space and f1, f2 ∈ AP(E). Then the function
F : R → E × E defined by F(t) = (f1(t), f2(t)) is also almost periodic.

Corollary 8.13 Let f1, f2 ∈ AP(E) where E is a Fréchet space. Then for every
neighborhood U , f1 and f2 have common U -translation numbers.

Proof Let U be a neighborhood in E. Then by Theorem 8.12 the function f (t) =
(f1(t), f2(t)) ∈ AP(E × E). Consider now s a U -translation number of f ; then
f (t + s)−f (t) ∈ U ×U for every t ∈ R, and therefore fi(t + s)−fi(t) ∈ U, i =
1, 2 for every t ∈ R. s is a U -translation number for f1 and f2. ��
Theorem 8.14 Let E be a Fréchet space. Then AP(E) is also a Fréchet space.

Proof Consider BC(R, E) the linear space of all bounded and continuous functions
R → E and denote by (pn), n ∈ N, the family of seminorms which generates the
topology of E. Without loss of generality we may assume that pn ≤ pn+1, pointwise
for n ∈ N. Define

qn(f ) = sup
t∈R

pn(f (t)), n ∈ N.

Obviously (qn) forms a family of seminorms on BC(R, E). Moreover, it is clear
that qn ≤ qn+1 for n ∈ N. Define the pseudonorm

|f | :=
∞
∑

n=1

1

2n

qn(f )

1 + qn(f )
, f ∈ BC(R, E).
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Obviously BC(R, E) with the above defined pseudonorm is a Fréchet space. It is
also a closed linear subspace of BC(R, E). This completes the proof. ��

2 Weakly Almost Periodic Functions

Definition 8.15 Let E be a complete Hausdorff locally convex space. A weakly
continuous function f : R → E is said to be weakly almost periodic if the
numerical function F(t) = (x∗f )(t) is almost periodic for every x∗ ∈ E∗ the
dual space of E.

We will denote by WAP(E) the set of all weakly almost periodic functions R → E.

Remark 8.16

(i) Every weakly almost periodic function is weakly bounded.
(ii) Every almost periodic function is weakly almost periodic.

Theorem 8.17 Let f ∈ WAP(E) ∩ C(R, E). Assume that the set {F(t) / t ∈ R}
be weakly bounded where the function F : R → E is defined by F(t) = ∫ t

0 f (s)ds.
Then F ∈ WAP(E).

Proof We first observe that the integral exists in E since f is (strongly) continuous
on R. Take x∗ ∈ E∗, so x∗f ∈ AP(R). By the continuity of x∗, (x∗F)(t) =
x∗ ∫ t

0 f (s)ds = ∫ t

0 (x∗f )(s)ds which is bounded by assumption and so is almost
periodic. The Theorem is proved. ��
Theorem 8.18 Let E be a Fréchet space and f : R → E. Then f ∈ AP(E) if and
only if f ∈ WAP(E) and its range is relatively compact.

Proof The condition is necessary by Remarks 8.8 and 8.16. Let us show by
contradiction that it is sufficient.

Suppose there exists t0 ∈ R such that f is discontinuous at t0, so we can find a
neighborhood U and two sequences of real numbers (s′

n) and (s′′
n) such that

lim
n→∞ s′

n = 0 = lim
n→∞ s′′

n

and

f (t0 + s′
n) − f (t0 + s′′

n) �∈ U, ∀n ∈ N. (2.1)

By the relative compactness of {f (t) / t ∈ R}, we can extract (r ′
n) and (r ′′

n ) from
(s′

n) and (s′′
n) respectively, such that

lim
n→∞ f (t0 + r ′

n) = a1 ∈ E

and
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lim
n→∞ f (t0 + r ′′

n ) = a2 ∈ E.

Consequently, a1 − a2 �∈ U by (2.1), and using the Hahn–Banach Theorem
(Proposition 1.41 Chap. 1), we can find x∗ ∈ E∗ such that x∗(a1 − a2) �= 0, hence
x∗(a1) �= x∗(a2). By the continuity of x∗, we have

x∗(a1) = lim
n→∞(x∗f )(t0 + r ′

n) = lim
n→∞(x∗f )(t0 + r ′′

n ) = x∗(a2)

which is a contradiction. So we conclude that f is continuous on R. ��
To prove the almost periodicity of f we need the following:

Lemma 8.19 Let E be a Fréchet space and φ ∈ AP(E). Let (sn) be a sequence of
real numbers such that lim

n→∞ φ(sn + ηk) exists for each k = 1, 2, . . . where the set

(ηk) is dense in R. Then the sequence (φ(t + sn)) is uniformly convergent in t ∈ R.

Proof (of Lemma 8.19) Suppose by contradiction that (φ(t + sn)) is not uniformly
convergent in t ∈ R. Then there exists a neighborhood U such that for every N =
1, 2, . . . there exists nN,mN > N and tN ∈ R such that

φ(tN + snN
) − φ(tN + smN

) �∈ U.

By the Bochner’s criterion (Theorem 8.10), we can extract two sequences (s′
nN

) ⊂
(snN

) and (s′
mN

) ⊂ (smN
) such that

lim
N→∞ φ(t + s′

nN
) = g1(t) uniformly in t ∈ R

and

lim
N→∞ φ(t + s′

mN
) = g2(t) uniformly in t ∈ R.

Let V be a symmetric neighborhood such that V + V + V ⊂ U . Then there exists
N0 = N0(V ) such that if N > n0, we have

φ
(

tN + s′
nN

)− g1(tN ) ∈ V

and

φ
(

tN + s′
mN

)− g2(tN ) ∈ V.
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We deduce that g1(tN ) − g2(tN ) �∈ V , otherwise we should have

φ
(

tN + s′
nN

)− φ
(

tN + s′
mN

) ∈ U

which contradicts (2.1).
Indeed if g1(tN ) − g2(tN ) ∈ V , then by writing

φ
(

tN + s′
nN

)− φ
(

tN + s′
mN

) = φ
(

tN + s′
nN

)− g1(tN )

+ g1(tN ) − g2(tN )

+ g2(tN ) − φ
(

tN + s′
mN

)

we obtain

φ(tN + s′
nN

) − φ(tN + s′
mN

) ∈ V + V + V ⊂ U.

Thus we have found a symmetric neighborhood V with the property that if N is
large enough, there exists tN ∈ R such that

g1(tN ) − g2(tN ) �∈ V.

But this is impossible, because if we take a subsequence (ξk) of (ηk) with ξk → tN ,
then we would obtain

lim
N→∞ φ

(

ξk + s′
nN

) = lim
N→∞ φ

(

ξk + s′
mN

)

for every k.
Therefore g1(ξk) = g2(ξk) for every k. By the continuity of g1 and g2, g1(tN ) =

g2(tN ), thus g1(tN ) − g2(tN ) belongs to every neighborhood.
The lemma is proved. ��

Proof (of Theorem 8.18 (continued)) Consider a sequence of real numbers (hn)

and a sequence of rational numbers (ηr). By the relative compactness of {f (t) / t ∈
R}, we can extract a subsequence (hn) (we do not change the notation) such that for
each r = 1, 2, . . .

lim
n→∞ f (ηr + hn) = xr

exists in E. Now the sequence (f (ηr + hn)) is uniformly convergent in ηr , or we
could find a neighborhood U and three subsequences (ξr ) ⊂ (ηr), (h′

r ) ⊂ (hr), and
(h′′

r ) ⊂ (hr) with

f (ξr + h′
r ) − f (ξr + h′′

r ) �∈ U. (2.2)
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By the relative compactness of {f (t) / t ∈ R}, we may say that

lim
r→∞ f

(

ξr + h′
r

) = b′ ∈ E

lim
r→∞ f

(

ξr + h′′
r

) = b′′ ∈ E.

Then, using (2.2), we get

b′ − b′′ �∈ U.

By the Hahn–Banach Theorem, there exists x∗ ∈ E∗ such that

x∗(b′) �= x∗(b′′).

Now x∗f ∈ AP(R), therefore it is uniformly continuous over R.
Let us consider the functions (ϕn) defined on R by

ϕn(t) := (x∗f )(t + hn), n = 1, 2, . . .

The equality

ϕn(t + s) − ϕn(t) = (x∗f )(t + s + hn) − (x∗f )(t + hn)

shows the almost periodicity of each ϕn, n = 1, 2, . . ., if s is seen as a
U -translation number of (x∗f )(t). Also the sequence of functions (ϕn) is equicon-
tinuous over R because (x∗f )(t) is uniformly continuous on R.

Since

lim
n→∞ f (ηr + hn) = xr ,

we get

lim
n→∞(x∗f )(nr + hn) = x∗xr

for every r = 1, 2, . . . Therefore by Lemma 8.19, ((x∗f )(ηr + hn)) is uniformly
convergent in t .

Consider now the sequences (ξr + h′
r ) and (ξr + h′′

r ). By the Bochner’s criterion,
we can extract a subsequence from each sequence, respectively, such that, using
the same notations, ((x∗f )(t + ξr + h′

r )) and ((x∗f )(t + ξr + h′′
r )) are uniformly

convergent in t ∈ R.
Let us now prove that

lim
r→∞(x∗f )(t + ξr + h′

r ) = lim
r→∞(x∗f )(t + ξr + h′′

r ).
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Write (x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + h′′

r ) as follows:

(x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + h′′

r )

= (x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + hr)

+(x∗f )(t + ξr + hr) − (x∗f )(t + ξr + h′′
r )

and consider the following inequality (IN):

|(x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + h′′

r )|
≤ |(x∗f )(t + ξr + h′

r ) − (x∗f )(t + ξr + hr)|
+|(x∗f )(t + ξr + hr) − (x∗f )(t + ξr + h′′

r )|

which holds true for r = 1, 2, . . .

Let ε > 0 be given. Since ((x∗f )(t + hr)) is uniformly convergent in t , we can
choose ηε such that for r, s > ηε, we obtain

|(x∗f )(t + hs) − (x∗f )(t + hr)| <
ε

2
, ∀t ∈ R.

So, replacing t by t + ξr gives,

|(x∗f )(t + ξr + hs) − (x∗f )(t + ξr + hr)| <
ε

2
,

and consequently

|(x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + hr)| <

ε

2
,

|(x∗f )(t + ξr + h′′
r ) − (x∗f )(t + ξr + hr)| <

ε

2
.

The inequality (IN) above gives

|(x∗f )(t + ξr + h′
r ) − (x∗f )(t + ξr + h′′

r )| < ε, ∀t

which proves that

lim
r→∞(x∗f )(t + ξr + h′

r ) = lim
r→∞(x∗f )(t + ξr + h′′

r )

which contradicts x∗(b′) �= x∗(b′′) obtained earlier and uniform continuity of
(f (ηr + hn)) as well.

If i, j > N , we have

f (ηr + hi) − f (ηr + j) ∈ U.



2 Weakly Almost Periodic Functions 89

This proves that f ∈ AP(E) by the Bochner’s criterion. ��
Theorem 8.20 Let E be a Fréchet space. If f ∈ AP(E) and {F(t) / t ∈ R} is
relatively compact in E where F(t) = ∫ t

0 f (s)ds, then F ∈ AP(E).

Proof This is immediate by Theorems 8.17 and 8.18. ��
Theorem 8.21 Let E be a complete locally convex space and f ∈ AP(E). If the
derivative f ′ exists and is uniformly continuous on R, then f ′ ∈ AP(E).

Proof This is similar to the proof of the almost automorphic case (Theorem 4.1).
We consider the sequence of almost periodic functions (n(f (t + 1

n
)−f (t))) and let

U = U(ε; pi, 1 ≤ i ≤ k) be a neighborhood. Since f ′(t) is uniformly continuous
on R, we can choose δ = δ(U) > 0 such that

f ′(t1) − f (t2) ∈ U

for every t1, t2 such that |t1 − t2| < δ. Let us write

f ′(t) − n

(

f

(

t + 1

n

)

− f (t)

)

= n

∫ 1
n

0
(f ′(t) − f ′(t + s))ds.

Then if N = N(U) > 1
n

and n > N , we would obtain

pi

[

f ′(t) − n

(

f

(

t + 1

n

)

− f (t)

)]

≤ n

∫ 1
n

0
pi

[

(f ′(t) − f ′(t + s))
]

ds < ε

for every seminorm pi and every t ∈ R. That shows that the sequence of almost

periodic functions
(

n
(

f (t + 1
n
) − f (t)

))

converges uniformly to f ′(t) on R. By

Theorem 8.6, it follows that f ′ ∈ AP(E). ��
Theorem 8.22 If f : R → E (E a Fréchet space) is weakly bounded, then it is
bounded.

Proof For f to be weakly bounded means sup
t∈R

|x∗f (t)| < ∞ for every x∗ ∈ E∗.

Suppose f (R) is not bounded. Then there would exist a seminorm p such that
p(f (tn)) → ∞ as n → ∞ for some sequence of real numbers (tn).

Let Ep be the completion of the normed space E/kerp in the norm p. So Ep is
a Banach space and f̃ (tn) = f (tn)/kerp is unbounded in Ep. Consequently there
exists ϕ ∈ E∗

p such that |ϕ(f̃ (tn))| → ∞ as n → ∞.
The natural map J : E → Ep is continuous, so its adjoint J ∗ : E∗

p → E∗ is
continuous. Finally setting ψ = J ∗(ϕ) ∈ E∗, we have

|ψ(f (tn))| = |J ∗(ϕ)(f (tn))| = |ϕ(f̃ (tn))| → ∞

as n → ∞. This completes the proof. ��
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Theorem 8.23 Let E be a Fréchet space, f ∈ WAP(E) and A ∈ L(E) a bounded
linear operator on E. Then Af ∈ WAP(E).

Proof Obvious. We leave it to the reader. ��
Proposition 8.24 Let E be a complete locally convex space and f ∈ AP(E). Then
for every sequence of real numbers (sn), there exists a subsequence (s′

n) such that
for every neighborhood U ,

f (t + s′
n) − f (t + s′

m) ∈ U

for every t ∈ R and every n,m.

Proof Let U = U(ε; pi, 1 ≤ i ≤ n) and V = V ( ε
3 ; pi, 1 ≤ i ≤ n) be a

symmetric neighborhood such that V + V + V ⊂ U . By the definition of almost
periodicity, there exists a number l = l(V ) > 0 (depending also on U ) such that
every compact interval of length l contains a number τ such that

f (t + τ) − f (t) ∈ V

for every t ∈ R.
Consider now a given sequence of real numbers (sn). For each sn, we can find τn

and σn such that sn = τn + σn with τn a V -translation number of f and σn ∈ [0, l].
In fact it suffices to take τn ∈ [sn − l, sn] and then σn = sn − τn.

Since f is uniformly continuous, there exists δ = δ(ϕ) such that

f (t ′) − f (t ′′) ∈ V

for all t ′, t ′′ with |t ′ − t ′′| < 2δ.
Note that σn ∈ [0, l] for all n. Hence by the Bolzano–Weierstrass Theorem, the

sequence (σn) has a convergent subsequence, say (σnk
). Let σ = lim

k→∞ σnk
, which

shows that σ ∈ [0, l].
Now consider the subsequence of (σnk

) (we use the same notation) with

σ − δ ≤ σnk
≤ σ + δ, k = 1, 2, . . .

and let (snk
) be the corresponding subsequence of (sn) with

snk
= τnk

+ σnk
, k = 1, 2, . . .

Let us prove that

f (t + snk
) − f (t + snj

) ∈ U

for all t and all k, j . For this, let us write
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f (t + snk
) − f (t + snj

) = f (t + τnk
+ σnk

) − f (t + σnk
) + f (t + σnk

)

− f (t + σnj
) + f (t + σnj

) − f (t + τnj
+ σnj

).

Because τnk
and τnj

are V -translation numbers of f , we have

f (t + τnk
+ σnk

) − f (t + σnk
) ∈ V

and

f (t + σnj
) − f (t + τnj

+ σnj
) ∈ V

for every t and every k, j . Also

f (t + σnk
) − f (t + σnj

) ∈ V

for every t and every k, j , since

|(t + σnk
) − (t + σnj

)| = |σnk
− σnj

| ≤ |σnk
− σ | + |σ − σnj

| ≤ 2δ.

The result is complete if we set s′
k = snk

, k = 1, 2, . . . ��
Theorem 8.25 Let E be a Fréchet space and (T (t))t∈R be an equicontinuous C0-
group of linear operators with {T (t)x; t ∈ R} relatively compact in E for every
x ∈ E. Assume also that f : R → E is a function with a relatively compact range
in E. Then {T (t)f (t) : t ∈ R} is relatively compact in E.

Proof Let (t ′′n ) be a sequence of real numbers. Since the range of f (t) is relatively
compact in E, we can extract a subsequence (t ′n) ⊂ (t ′′n ) such that

lim
n→∞ f (t ′n) = x, exists in E.

Further, by the assumption on T (t), we can find a subsequence (tn) ⊂ (t ′n) such that
(T (tn)x) is convergent, thus a Cauchy sequence in E.

Let us write

T (tn)f (tn) − T (tm)f (tm) = [T (tn) − T (tm)][f (tn) − x] + [(T (tn) − T (tm))x]
+T (tm)[f (tn) − f (tm)].

For an arbitrary seminorm p we have

p(T (tn)f (tn) − T (tm)f (tm)) ≤ p([T (tn) − T (tm)][f (tn) − x])
+p([(T (tn) − T (tm))x])
+p(T (tm)[f (tn) − f (tm)]).

Using the equicontinuity of T (t), we can find a seminorm q such that
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p(T (tm)[f (tn) − f (tm)]) ≤ q(f (tn) − f (tm))

and

p([T (tn) − T (tm)][f (tn) − x]) ≤ 2q(f (tn) − x).

Now choose n large enough so that

q(f (tn) − f (tm)) <
ε

3
q(f (tn) − x) <

ε

3

and

q([T (tn) − T (tm)]x) <
ε

3

p(T (tn)f (tn) − T (tm)) < ε,

which shows that (T (tn)f (tn)) is a Cauchy sequence, thus convergent. The theorem
is proved. ��
Theorem 8.26 Let E be a Fréchet space and consider an equicontinuous C0-group
of linear operators (T (t))t∈R such that T (t)x : R → E is almost periodic for every
x ∈ E. Suppose also that f ∈ AP(E). Then T (t)f (t) ∈ AP(E).

Proof Consider U = U(ε; pi, 1 ≤ i ≤ n) be a given neighborhood of the
origin. Because of the equicontinuity of T (t), one can find, for each semi-norm pi ,
a seminorm qi such that

pi(T (t)x) ≤ qi(x)

for every t ∈ R and x ∈ E. Consider also the symmetric neighborhood

V = V
(ε

4
; pi, qi, 1 ≤ i ≤ n

)

.

Then V + V + V + V ⊂ U . Since {f (t) : t ∈ R} is totally bounded, there exists
t1, . . . , tν such that

f (t) ∈
ν
⋃

k=1

(f (tk) + V )

for every t ∈ R.
Consider now the almost periodic functions

f (t), T (t)(f (tk)), k = 1, 2, . . . , ν.
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These are the same V -translation numbers by Corollary 8.13; therefore we can find
a number l = l(V ) > 0 such that any interval [a, a+ l] contains at least one number
s such that

f (t + s) − f (s) ∈ V for every t ∈ R, (2.3)

T (t + s)f (tk) − T (t)f (tk) ∈ V for every t ∈ R (2.4)

and for every k = 1, 2, . . . , ν.
Take now an arbitrary t ∈ R. Then there exists (1 ≤ j ≤ ν) such that

f (t) ∈ f (tj ) + V. (2.5)

Write

T (t + s)f (t + s) − T (t)f (t) = T (t + s)(f (t + s) − f (t))

+T (t + s)(f (t) − f (tj ))

+T (t + s)f (tj ) − T (t)f (tj )

+T (t)(f (tj ) − f (t)).

For every seminorm pi , we can find a seminorm qi such that

pi[T (t + s)f (t + s) − T (t)f (t)] ≤ qi(f (t + s) − f (t))

+qi(f (t) − f (tj )) + pi(T (t + s)f (tj )

−T (t)f (tj )) + qi(f (tj ) − f (t))

< ε
4 + ε

4 + ε
4 + ε

4
= ε

using (2.3), (2.4), and (2.5) above. Thus we have

T (t + s)f (t + s) − T (t)f (t) ∈ U

for every t ∈ R, which establishes the almost periodicity of T (t)f (t). ��
Definition 8.27 A Fréchet space E is said to be perfect if every bounded function
f : R → E with an almost periodic derivative f ′ is necessarily almost periodic.

Example 8.28 Denote by s the linear space of all real sequences

s := {s = (xn) / xn ∈ R, n = 1, 2, . . .}.

For each n ∈ N, define pn(x) := |xn|, x ∈ s. Obviously pn is a seminorm defined
on s. Now define qn := p1 ∨ p2 ∨ . . . ∨ pn for n ∈ N. We have qn ≤ qn+1 for
n ∈ N. The space s considered with the family of seminorms (qn) is a Fréchet
space. Moreover, it can be proved (cf. [1] 17.7 p. 210) that each closed and bounded
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subset of s is compact. Thus, in particular, s is not a Banach space. Moreover in
view of Theorem 8.20, s is perfect.

Definition 8.29 A function f ∈ C(R,X) is called periodic if there exists l > 0
such that

f (t + l) = f (t), ∀t ∈ R.

Here, l is called a period of f . We denote the collection of all such functions by
P(X). For f ∈ P(X), we call l0 the fundamental period if l0 is the smallest period
of f .

Remark 8.30 Similar to the proof in [22, p. 1], it is not difficult to show that if
f ∈ P(X) is not constant, then f has the fundamental period.

Theorem 8.31 ([72]) Let X be a Banach space with norm ‖ · ‖, then P(X) is a set
of first category in AP(X).

Proof For n = 1, 2, . . ., we denote

Pn = {f ∈ C(R,X) : ∃l ∈ [n, n + 1] such that f (t + 1) = f (t), ∀t ∈ R}.

Then, it is easy to see that

P(X) =
∞
⋃

n=1

Pn.

We divide the remaining proof into two steps.

Step 1 Every Pn is a closed subset of AP(X).
Let f ∈ AP(X)\Pn. Then, for every l ∈ [n, n + 1], there exists tl ∈ R such that
f (tl + l) �= f (tl). Denote

εl := 1

4
‖f (tl + l) − f (tl)‖ > 0, l ∈ [n, n + 1].

In addition, due to the continuity of f , for every l ∈ [n, n+1], there exists δl > 0
such that

‖f (tl + s) − f (tl)‖ ≥ 3εl, ∀s ∈ (l − δl, l + δl). (2.6)

Obviously, we have

[n, n + 1] ⊂
⋃

l∈[n,n+1]
(l − δl, l + δl).

Then, by the Heine-Borel theorem, there exists l1, . . . lk ∈ [n, n + 1] such that
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[n, n + 1] ⊂
k
⋃

i=1

(li − δli , li + δli ),

where k is a fixed positive integer. Letting ε = min
1≤i≤k

{εli }, and

N(f, ε) := {g ∈ AP(X) : ‖g − f ‖AP(X) < ε},

for every g ∈ N(f, ε), we claim that g /∈ Pn. In fact, for every l ∈ [n, n + 1],
there exists i ∈ {1, . . . , k} such that

l ∈ (li − δli , li + δli ).

Then, by (4.3), we have

‖f (tli + l) − f (tli )‖ ≥ 3εli ≥ 3ε,

which yields that

‖g(tli + l) − g(tli )‖ ≥ ‖f (tli + l) − f (tli )‖ − ‖f (tli + l) − g(tli + l)‖
−‖f (tli ) − g(tli )‖ ≥ 3ε − ε − ε = ε > 0,

where ‖g − f ‖AP(R) < ε was used. So, we know that N(f, ε) ⊂ AP(X)\Pn,
which means that Pn is a closed subset of AP(X).

Step 2 Every Pn has an empty interior.
It suffices to prove that for every f ∈ Pn and δ > 0, N(f, δ)

⋂
(AP (X)\Pn) �=

∅. Now let f ∈ Pn and δ > 0. In the following, we discuss by two cases:
Case I f is constant.

We denote

fδ(t) = cos t + cos(
√

2t)

3
· δ · x0 + f (t), t ∈ R

where x0 ∈ X is some constant with ‖x0‖ = 1. Then fδ ∈ N(f, δ), and fδ /∈ Pn

since fδ is not periodic.
Case II f is not constant.

Let f be a fundamental period l0. We denote

fδ(t) = f (t) + f

(
t

π

)

· δ

Mf

, t ∈ R,

where Mf = sup
t∈R

‖f (t)‖. Obviously, fδ ∈ N(f, δ). Also, we claim that fδ /∈ Pn.

In fact, if this is not true, then there exists T ∈ [n, n + 1] such that
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fδ(t + T ) = fδ(t), t ∈ R,

i.e.

f (t + T ) + f

(
t + T

π

)

· δ

Mf

= f (t) + f

(
t

π

)

· δ

Mf

, t ∈ R.

Let

F1(t) = f (t + T ) − f (t), F2(t) = δ

Mf

[

f

(
t

π

)

− f

(
t + T

π

)]

, t ∈ R.

Then F1(t) ≡ F2(t). If F1(t) ≡ F2(t) ≡ C, where C is a fixed constant, then

f (t + T ) = f (t) + C, t ∈ R,

which yields

C = f (kT ) − f (0)

k
→ 0, k → ∞,

since f is bounded. Thus, we have

f (t + T ) = f (t), f

(
t

π

)

= f

(
t + T

π

)

, t ∈ R.

Noting that l0 is the fundamental period of f and πl0 is the fundamental period of
f
( ·

π

)

, there exist two positive integers p, q such that

pl0 = T = qπl0,

i.e. π = p
q

, which is a contradiction. If F1 = F2 is not constant, then by
Remark 8.30, we can assume that T0 is the fundamental period of F1 and F2. Noting
that l0 is a period of F1 and πl0 is a period of F2, similar to the above proof, we can
also show that π is a rational number, which is a contradiction.

In conclusion, P(X) is countable unions of closed subsets with empty interior.
So P(X) is a set of first category. ��
Theorem 8.32 ([72]) Let X be a Banach space. Then AP(X) is a set of first
category in AA(X).

Proof It suffices to note that AP(X) is a proper closed subspace of AA(X) equipped
with the supnorm. Therefore it is of first category in AA(X). ��
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3 Almost Periodicity of the Function f (t, x)

Definition 8.33 Let E be a Fréchet space. A function f ∈ C(R × E,E) is said to
be almost periodic in t ∈ R for each x ∈ E if for each neighborhood of the origin
U , there exists a real number l > 0 such that every interval [a, a + l] contains at
least a point τ such that

f (t + τ, x) − f (t, x) ∈ U, for each t ∈ R and each x ∈ E.

In view of the Bochner’s criterion, this definition is equivalent to the following:
f ∈ C(R × E,E) is almost periodic in t ∈ R for each x ∈ E if and only if for
every sequence of real numbers (s′

n) there exists a subsequence (sn) ⊂ (s′
n) such

that (f (t + sn, x)) converges uniformly in t ∈ R and x ∈ E.

Theorem 8.34 Let f : R × E → E be almost periodic in t ∈ R for each x ∈
E, and assume that f satisfies a Lipschitz condition in x uniformly in t , that is
d(f (t, x) − f (t, y)) ≤ Ld(x, y) for all t ∈ R and x, y ∈ E, where d is a metric on
E. Let φ : R → E be almost periodic. Then the Nemytskii’s operator N defined by
N (·) := f (·, φ(·)) is almost periodic.

Proof Trivial. We leave it to the reader. ��

4 Equi-Asymptotically Almost Periodic Functions

In this section, we introduce the notion of equi-asymptotically almost periodicity
(cf. [24]), and present some basic and interesting properties for equi-asymptotically
almost periodic functions.

Definition 8.35 Let X be a Banach space. A set F ⊂ C(R,X) is called equi-
asymptotically almost periodic if for every ε > 0, there exist a constant M(ε) > 0
and a relatively dense set T (F, ε) ⊂ R such that

‖f (t + τ) − f (t)‖ < ε,

for all f ∈ F , t ∈ R with |t | > M(ε) and τ ∈ T (F, ε) with |t + τ | > M(ε).

Theorem 8.36 Let F ⊂ AAP(R,X). Then the following assertions are equiva-
lent:

(i) F is precompact in AAP(R,X).
(ii) F satisfy the following three conditions:

(a) for every t ∈ R, {f (t) : f ∈ F } is precompact in X.
(b) F is equi-uniformly continuous.
(c) F is equi-asymptotically almost periodic.
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(iii) G is precompact in AP(R, X) (in short AP ) and H is precompact in C0(R, X)

(in short C0), where

G = {fAP : f ∈ F } and H = {fC0 : f ∈ F }.

Proof

(i) ⇒ (ii) Let F be precompact in AAP(R,X). Then, obviously, for every t ∈ R,
{f (t) : f ∈ F } is precompact in X. In addition, for every ε > 0, there
exist f1, f2, . . . , fk ∈ F such that for every f ∈ F ,

min
1≤i≤k

‖f − fi‖ < ε,

where k is a positive integer dependent on ε. Combining this with the
fact that (fi)

k
i=1 is equi-uniformly continuous and equi-asymptotically

almost periodic, we know that (b) and (c) hold.
(ii) ⇒ (iii) Let (gn) ⊂ G. For every n, there exist fn ∈ F and hn ∈ H such that

fn = gn + hn. By (a) and (b), applying Arzela–Ascoli theorem and
choosing diagonal sequence, we can get a subsequence of (fn), which
we still denote by (fn) for convenience, such that (fn(t)) is uniformly
convergent on every compact subsets of R.

Since (fn) is equi-asymptotically almost periodic, for every ε > 0,
there exists l(ε),M(ε) > 0 such that for every t ∈ R with |t | > M(ε),
there is a

τt ∈ [M(ε) + 1 − t,M(ε) + 1 − t + l(ε)]

satisfying

‖fn(t + τt ) − fn(t)‖ <
ε

3
(4.1)

for all n ∈ N. Noting that (fn(t)) is uniformly convergent on

[−M(ε) − l(ε) − 1,M(ε) + l(ε) + 1],

for the above ε > 0, there exists N ∈ N such that for all m ≥ n ≥ N

and t ∈ [−M(ε) − l(ε) − 1,M(ε) + l(ε) + 1],

‖fm(t) − fn(t)‖ <
ε

3
. (4.2)

Combining (4.1) and (4.2), for all m ≥ n ≥ N and t ∈ R with |t | >

M(ε), we have

‖fm(t) − fn(t)‖ ≤ ‖fm(t) − fm(t + τt )‖ + ‖fm(t + τt ) − fn(t + τt )‖
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+‖fn(t + τt ) − fn(t)‖ ≤ ε,

which and (4.2) yield that (fn(t)) is uniformly convergent on R. In view
of

{gm(t) − gn(t) : t ∈ R} ⊂ {fm(t) − fn(t) : t ∈ R}

for all m, n ∈ N, we conclude that (gn(t)) is also uniformly convergent
on R, i.e. (gn) is convergent in AP(R, X). So G is precompact in
AP(R, X). In addition, it follows from the above proof that F is
precompact, and thus H is also precompact.

(iii) ⇒ (i) The proof is straightforward.
��

Remark 8.37 Theorem 8.36 can be seen as an extension of the corresponding
compactness criteria for the subsets of AP(R,X) (cf. e.g., [22]).

Definition 8.38 F ⊂ C0(R, X) is called equi-C0 if

lim|t |→∞ sup
f ∈F

‖f (t)‖ = 0.

Theorem 8.39 The following two assertions are equivalent:

(I) F is equi-asymptotically almost periodic;
(II) G is equi-almost periodic and H is equi-C0, where

G = {fAP : f ∈ F } and H = {fC0 : f ∈ F }.

Proof The proof from (II) to (I) is straightforward. We will only give the proof from
(I) to (II) by using the idea in the proof of [71, p. 24, Theorem 2.5].

Since F is equi-asymptotically almost periodic, for every k ∈ N, there exist a
constant Mk > 0 and a relatively dense set T (F, k) ⊂ R such that

‖f (t + τ) − f (t)‖ <
1

k
, (4.3)

for all f ∈ F , t ∈ R with |t | > Mk and τ ∈ T (F, k) with |t + τ | > Mk . Moreover,
for every f ∈ F ⊂ AAP(R,X), noting that f is uniformly continuous, for the
above k ∈ N, there exists δ

f
k > 0 such that

‖f (t1) − f (t2)‖ <
1

k
(4.4)

for all t1, t2 ∈ R with |t1 − t2| < δ
f
k .

Now, for every t ∈ R and k ∈ N, we choose τ t
k ∈ T (F, k) with t + τ t

k > Mk .
Also, we denote
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g
f
k (t) = f (t + τ t

k), t ∈ R, k ∈ N, f ∈ F.

Next, we divide the remaining proof into eight steps.

Step 1 For every f ∈ F , there holds

∥
∥
∥g

f
k (t1) − g

f
k (t2)

∥
∥
∥ <

5

k
(4.5)

for all k ∈ N, and t1, t2 ∈ R with |t1 − t2| < δ
f
k .

In fact, by (4.3) and (4.4), we have

‖gf
k (t1) − g

f
k (t2)‖ = ‖f (t1 + τ

t1
k ) − f (t2 + τ

t2
k )‖

≤ ‖f (t1 + τ
t1
k ) − f (t1 + τ

t1
k + τ)‖

+ ‖f (t1 + τ
t1
k + τ) − f (t2 + τ

t1
k + τ)‖

+ ‖f (t2 + τ
t1
k + τ) − f (t2 + τ)‖

+ ‖f (t2 + τ) − f (t2 + τ + τ
t2
k )‖

+ ‖f (t2 + τ + τ
t2
k ) − f (t2 + τ

t2
k )‖ <

5

k
,

where τ ∈ T (F, k) satisfying

min
{

t1 + τ
t1
k + τ, t2 + τ

t1
k + τ, t2 + τ, t2 + τ + τ

t2
k

}

> Mk.

Step 2 For every k ∈ N, there holds

‖gf
k (t + τ) − g

f
k (t)‖ <

5

k
(4.6)

for all f ∈ F , τ ∈ T (F, k), and t ∈ R.
In fact, by using (4.3), we have

‖gf
k (t + τ) − g

f
k (t)‖ = ‖f (t + τ + τ t+τ

k ) − f (t + τ t
k)‖

≤ ‖f (t + τ + τ t+τ
k ) − f (t + τ + τ t+τ

k + τ ′)‖
+ ‖f (t + τ + τ t+τ

k + τ ′) − f (t + τ t+τ
k + τ ′)‖

+ ‖f (t + τ t+τ
k + τ ′) − f (t + τ ′)‖

+ ‖f (t + τ ′) − f (t + τ ′ + τ t
k)‖

+ ‖f (t + τ ′ + τ t
k) − f (t + τ t

k)‖ <
5

k
,
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where τ ′ ∈ T (F, k) satisfying

min
{

t + τ + τ t+τ
k + τ ′, t + τ t+τ

k + τ ′, t + τ ′, t + τ ′ + τ t
k

}

> Mk.

Step 3 For every n ∈ N, there holds

∥
∥
∥g

f
m(t) − g

f
n (t)

∥
∥
∥ <

4

n
(4.7)

for all f ∈ F , t ∈ R, and m, n ∈ N with m ≥ n.
In fact, without loss of generality, we can assume that Mk+1 ≥ Mk for all k ∈ N.
Then, by using (4.3), we have

∥
∥
∥g

f
m(t) − g

f
n (t)

∥
∥
∥

= ‖f (t + τ t
m) − f (t + τ t

n)‖
≤ ‖f (t + τ t

m) − f (t + τ t
m + τ)‖ + ‖f (t + τ t

m + τ) − f (t + τ t
m + τ + τ t

n)‖
+‖f (t + τ t

m + τ + τ t
n) − f (t + τ + τ t

n)‖ + ‖f (t + τ + τ t
n) − f (t + τ t

n)‖

<
1

n
+ 1

n
+ 1

n
+ 1

n
≤ 4

n
,

where τ ∈ T (F, n) satisfying

min
{

t + τ t
m + τ, t + τ t

m + τ + τ t
n, t + τ + τ t

n

}

> Mm.

Step 4 Let

gf (t) = lim
n→∞ g

f
n (t), t ∈ R, f ∈ F.

By Step 3, we know that for every f ∈ F , gf is well-defined. Moreover, it
follows from Step 3 that for every n ∈ N, there holds

‖gf (t) − g
f
n (t)‖ ≤ 4

n
(4.8)

for all f ∈ F , R, and n ∈ N.
Step 5 For every f ∈ F , gf is uniformly continuous on R.

In fact, by (4.5) and (4.8), we have

‖gf (t1) − gf (t2)‖ ≤ ‖gf (t1) − g
f
n (t1)‖ + ‖gf

n (t1) − g
f
n (t2)‖

+‖gf
n (t2) − gf (t2)‖ ≤ 4

n
+ 5

n
+ 4

n
= 13

n
,
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for all n ∈ N and t1, t2 ∈ R with |t1 − t2| < δ
f
n .

Step 6 {gf }f ∈F is equi-almost periodic.
By (4.6) and (4.8), for every n ∈ N, we get

‖gf (t + τ) − gf (t)‖ ≤ ‖gf (t + τ) − g
f
n (t + τ)‖ + ‖gf

n (t + τ) − g
f
n (t)‖

+‖gf
n (t) − gf (t)‖ ≤ 4

n
+ 5

n
+ 4

n
= 13

n
,

for all f ∈ F , τ ∈ T (F, n), and t ∈ R. Then, it follows that {gf }f ∈F is equi-
almost periodic.

Step 7 {hf }f ∈F is equi-C0, where hf (t) = f (t)−gf (t) for all f ∈ F and t ∈ R.
In fact, firstly, by Step 5, hf ∈ C(R, X) for every f ∈ F ; secondly, for every
n ∈ N, by (4.8) and the definition of τ t

n, we have

‖hf (t)‖ = ‖f (t) − gf (t)‖
≤ ‖f (t) − g

f
n (t)‖ + ‖gf

n (t) − gf (t)‖
≤ ‖f (t) − f (t + τ t

n)‖ + 4

n

≤ 1

n
+ 4

n
= 5

n
,

for all f ∈ F , t ∈ R with |t | > Mn. Thus, {hf }f ∈F is equi-C0.
Step 8 It follows from the above proof that G = {gf }f ∈F and H = {hf }f ∈F .

This completes the proof.
��

Bibliographical Notes Section 1 in this chapter is in [51, 54]. Theorem 8.32 is in
[72] with a different proof. Section 3 is a work by Ding et al. [24].



Chapter 9
Almost Periodic Functions with Values in
a Non-locally Convex Space

In this section, (X,+, ·, || · ||) will be a p-Fréchet space with 0 < p < 1 (over the
field � = R or C). Also, denote D(x, y) = ||x − y||.

Similarly to [22], p. 137, a trigonometric polynomial of degree ≤ n with
coefficients (and values) in the p-Fréchet space X, is defined as a finite sum of

the form Tn(t) =
n
∑

k=1

cke
iλnt , where ck ∈ X, k = 1, . . . , n.

Also, recall that f : R → X is said to be continuous on x0 ∈ R if ∀ε > 0, there
exists δ > 0 such that ||f (x) − f (x0) || < ε, whenever x ∈ R, |x − x0| < δ. From
the triangle inequality satisfied by the p-norm || · ||, it easily follows the inequality
| ||x|| − ||y|| | ≤ ||x − y||, which immediately implies that if f is continuous in
x0 as above, then the real-valued function ||f (t)|| is also continuous at x0.

1 Definitions and Properties

In this section, starting from a Bohr-kind definition for the almost periodicity, we
develop a theory of almost periodic functions with values in a p-Fréchet space,
0 < p < 1, similar to that for functions with values in a Banach space.

The following three points in Definition 3.1 represent the basic concepts in the
theory of almost periodic functions with values in the p-Fréchet space X.

Definition 9.1 Let f : R → X be continuous on R.

(i) We say that f is almost periodic if ∀ε > 0, there exists l (ε) > 0 such that any
interval of length l (ε) of the real line contains at least one point ξ with

||f (t + ξ) − f (t) || < ε, ∀t ∈ R.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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(ii) We say that f is normal if for any sequence Fn : R → X of the form Fn (x) =
f (x + hn), n ∈ N, where (hn)n is a sequence of real numbers, one can extract
a subsequence of (Fn)n, converging uniformly on R (i.e. ∀ (hn)n, ∃ (Fnk

)

, ∃F :
R → X (which may depend on (hn)n), such that lim

k→∞ ||Fnk (x)−F (x) || = 0,

uniformly with respect to x ∈ R).
(iii) We say that f has the approximation property, if ∀ε > 0, there exists

some trigonometric polynomial T with coefficients in X, such that ||f (x) −
T (x) || < ε, ∀x ∈ R.

Let us denote AP (X) = {f : R → X; f is almost periodic}. The next two theo-
rems show that AP (X) is a subclass of uniformly continuous bounded functions.

Remark 9.2 We can reformulate 9.1(i), as follows: f : R → X is called almost
periodic if for every ε > 0, there exists a relatively dense set {τ }ε, such that

sup
t∈R

||f (t + τ) − f (t)|| ≤ ε, for all τ ∈ {τ }ε.

Also, each τ ∈ {τ }ε is called ε-almost period of f .

Remark 9.3 Theorems 10.5, 8.5, 8.6, and 8.10 and Remark 8.8 remain valid in p-
Fréchet spaces, 0 < p < 1.

Theorem 9.4 If f has the approximation property, then it is almost periodic.

Proof A function f : R → X is said to be τ -periodic if f (t + τ) = f (t) for all
t ∈ R. Obviously, any trigonometric polynomial with values in X is almost periodic.
This with Theorem 8.6 completes the proof. ��
Remark 9.5 Let us denote AP (X) = {f : R → X; f is B-almost periodic} , and
for f ∈ AP (X), let us define ‖f ‖b = sup {‖f (t)‖ ; t ∈ R}. By Theorem 3.2, we
get ‖f ‖b < +∞. It easily follows that || · ||b is also a p-norm on the space

BC (R, X) = {f : R → X is continuous and bounded on R}.

In addition, since (X,D), where D is defined by D(x, y) = ‖x − y‖, is a complete
metric space, by standard reasonings, it follows that BC(R, X) becomes complete
metric space with respect to the metric Db(f, g) = ||f −g||b, that is, (BC(R, X), ||·
||b) becomes a p-Fréchet space.

Then, Theorems 3.2 and 3.5 show that AP (X) is a closed subset of BC (R, X),
i.e. (AP (X) ,Db) is a complete metric space, and therefore (AP (X), || · ||b)
becomes a p-Fréchet space. By similar reasonings with those in the proofs of
Theorems 6.9 and 6.10 in [22], pp. 142–143 (where we define on Xm the p-norm

||x||m =
m
∑

k=1

||xk|| and the metric Dm (x, y) =
m
∑

i=1

D (xi, yi), ∀x = (x1, . . . , xm),

y = (y1, . . . , ym) ∈ Xm), we can state the following compactness criterion.
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Theorem 9.6 The necessary and sufficient condition that a family A ⊂ AP(X) be
relatively compact is that the following properties hold true:

(i) A is equicontinuous;
(ii) A is equi-almost periodic;

(iii) for any t ∈ R, the set of values of functions from A be relatively compact in X.

In what follows, we consider the concept of Bochner’s transform. Thus, Bochner’s
transform of f in BC(R, X) is denoted by B(f ) := f̃ and is defined by f̃ : R →
BC(R, X), f̃ (s) ∈ BC(R, X), f̃ (s)(t) = f (t + s), for all t ∈ R.

The properties of the Bochner transform can be summarized in the following
theorem:

Theorem 9.7 (i) ||f̃ (s)||b = ||f (· + s)||b = ||f̃ (0)||b, for all s ∈ R;
(ii) ||f̃ (s + τ) − f̃ (s)||b = sup{||f (t + τ) − f (t)||; t ∈ R} = ||f̃ (τ ) −

f̃ (0)||b, for all s, τ ∈ R;
(iii) f is B-almost periodic if and only if f̃ is B-almost periodic, with the same set

of ε-almost periods {τ }ε;
(iv) f̃ is B-almost periodic, if and only if there exists a relatively dense sequence

in R, denoted by {sn; n ∈ N}, such that the set of functions {f̃ (sn); n ∈ N} is
relatively compact in the complete metric space (BC(R,X),Db);

(v) f̃ is B-almost periodic, if and only f̃ (R) is relatively compact in the complete
metric space (BC(R,X),Db);

(vi) (Bochner’s criterion) f is B-almost periodic if and only if f̃ (R) is relatively
compact in the complete metric space (BC(R,X),Db).

Proof It is absolutely similar to the proof for Banach space valued functions, see
e.g. [3, pp. 7–9].

Now, we are in position to prove the following sufficient condition for B-almost
periodicity in p-Fréchet spaces, 0 < p < 1. ��
Theorem 9.8 Let f ∈ BC(R,X). Let us suppose that there exists a relatively dense
set of real numbers (sn), such that

(i) the set {f (sn); n ∈ N} is relatively compact in the metric space (X,D) and
(ii) for any n,m ∈ N, the relation

||f (sn) − f (sm)|| ≥ c||f (· + sn) − f (· + sm)||b
holds with c > 0 independent of n,m.

Then, f is almost periodic.

Proof The inequality in statement together with Theorem 9.7, obviously implies

D[f (sn), f (sm)] = ||f (sn)−f (sm)|| ≥ c||f̃ (sn)−f̃ (sm)||b = cDb[f̃ (sn), f̃ (sm)].

Since by hypothesis, the set {f (sn); n ∈ N} is relatively compact in the metric
space (X,D), it has a convergent subsequence (f (s′

n))n, which therefore is a
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Cauchy sequence in the complete metric space (X,D), so it is convergent. The
above inequality implies that (f̃ (s′

n))n is also a Cauchy sequence in the complete
metric space (C(R,X),Db), so it is convergent. Combined with Theorem 3.11(iv),
it follows that f̃ is almost periodic, which combined with Theorem 3.11(iii), implies
that f is almost periodic. The theorem is proved. ��

2 Weakly Almost Periodic Functions

In what follows, we will consider the concept of weakly almost periodicity, at least
in the cases of lp and Hp spaces, 0 < p < 1. Indeed, according to Remark 9.13(1)
in Sect. 2, the dual spaces (lp)∗ and (Hp)∗ are non-null. In addition, since {ei, i ∈
N}, with ei = (δi,n)n ∈ lp, δi,n, Kronecker’s symbol, is a basis in lp (see e.g. [5],
p. 20), and since any e∗

i : lp → R is linear and continuous (see e.g. [5], p. 12,
Theorem 1.8), it easily follows that {pϕ;ϕ ∈ (lp)∗}, with pϕ(x) = |ϕ(x)|, for all
x ∈ lp, defines a sufficient family of seminorms on lp, which evidently induces a
weak topology on lp, namely a locally convex Hausdorff topology on lp.

Also, since according to e.g. [37, p. 35], the point evaluations ϕz(f ) = f (z), z ∈
D, satisfy ϕz ∈ (Hp)∗, for all z ∈ D, again it easily follows that {pϕ(x);ϕ ∈ (Hp)∗}
with pϕ(x) = |ϕ(x)|, for all x ∈ Hp, defines a sufficient family of seminorms on
Hp, which evidently induces a locally convex Hausdorff (weak) topology on Hp.

Definition 9.9 Let X = lp or X = Hp with 0 < p < 1. A function f : R → X

is called weakly almost periodic, if f : R → X is continuous and almost periodic,
considering X endowed with the (weak) locally convex topology as above (see e.g.
[2, pp. 159–160], or [7, 8]).

Remark 9.10 Obviously that Definition 9.9 has no sense for the p-Fréchet space
Lp[0, 1], 0 < p < 1, whose dual is {0}.
Theorem 9.11 Let X = lp or X = Hp, 0 < p < 1. The necessary and sufficient
condition that the function f : R → X be weakly almost periodic is that for any
ϕ ∈ X∗, the numerical function h : R → R, defined by h(t) = ϕ[f (t)], be almost
periodic.

Proof It is similar to the proof for Banach space-valued functions (see Theo-
rem 6.1.7, p. 160 in [2]). ��
Theorem 9.12 Let X = lp or X = Hp, 0 < p < 1. The necessary and sufficient
condition that the function f : R → X be almost periodic is that f be weakly
almost periodic and that f (R) be relatively compact.

Proof Since for any ϕ ∈ X∗ and all t, τ ∈ R, we have

|ϕ[f (t + τ)] − ϕ[f (r)]| ≤ |||ϕ||| · ||f (t + τ) − f (t)||1/p,
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the usual (strong) almost periodicity and continuity of f immediately imply that f

is weakly almost periodic and weakly continuous. This together with Theorem 3.6
immediately proves the necessity of theorem.

To prove the sufficiency, we would need the analogue for p-Fréchet space of the
following result of Philips for Banach space (see the proof of Theorem 6.18, pp.
160–161 in [2]): from any bounded sequence (ϕn)n in X∗ defined on a relatively
compact subset A ⊂ X, one can extract a convergent subsequence on A. ��
Remark 9.13

(1) In the case when X is a p-Fréchet space endowed with the p-norm || · ||, 0 <

p < 1, in [3, p. 102] (see also [1, p. 158]), the integral was introduced as
follows. First, for a = a0 < a1 < . . . < an = b, a partition of [a, b], a step

function on [a, b] is of the form s(x) =
n−1
∑

k=0

yk ·χ[ak,ak+1)(x) (where χ[ak,ak+1) is

the characteristic function of [ak, ak+1) and yk ∈ X, k = 0, 1, . . . , n − 1), and

its integral on [a, b] is defined by
∫ b

a
s(x)dx =

n−1
∑

k=0

yk(ak+1 − ak). Then, since

any continuous function f : [a, b] → X is uniformly continuous on [a, b], it
is easy to show that it is the uniform limit on [a, b] of the sequences of step
functions sn(x), n ∈ N defined by

sn(x) =
n−1
∑

k=0

f (ak) · χ[ak,ak+1)(x), ak = a + k
b − a

n
, k = 0, 1, . . . , n − 1,

and the integral of f will be defined by
∫ b

a
f (x)dx ∈ X, where

lim
n→∞

∥
∥
∥
∥

∫ b

a

f (x)dx −
∫ b

a

sn(x)dx

∥
∥
∥
∥

= 0.

(It is easy to see that the above
∫ b

a
f (x)dx does not depend on the sequence

of step functions uniformly convergent to f .) Unfortunately, the fundamental
theorem of calculus stated in [3, Theorem 2, pp. 104–105] (see also [10], pp.
161–162) seems to be not valid in general, since for a continuous function f :
[a, b] → X, for the integral F(t) = ∫ t

a
f (x)dx, we have

∥
∥
∥
∥

F(t + h) − F(t)

h
− f (t)

∥
∥
∥
∥

=
∥
∥
∥
∥
∥

∫ t+h

t
[f (x) − f (t)]dx

h

∥
∥
∥
∥
∥

,

but we do not get, in general, the estimate



108 9 Almost Periodic Functions with Values in a Non-locally Convex Space

∥
∥
∥
∥

∫ t+h

t

[f (x) − f (t)]dx

∥
∥
∥
∥

≤ |h|p||f (u) − f (t)||,

with u between t and t + h, as claimed in [10], p. 162 (which would imply that

lim
h→0

∥
∥
∥
∥

F(t + h) − F(t)

h
− f (t)

∥
∥
∥
∥

= 0). As a first consequence, it follows that

the implication “f ′ uniformly continuous and f B-almost periodic imply f ′
B-almost periodic” does not hold, although in the case of Banach space-valued
functions, it is valid (see e.g. [3, Theorem VI, p. 6]).

(2) One could also adopt the more particular definition (of Riemann-type) for the
integral on [a, b] of a function f : [a, b] → X, as unique limit of all the

Riemann sums
n−1
∑

k=0

f (ξk)(ak+1 − ak), with ξk ∈ [ak, ak+1]. Unfortunately, for

this kind of integral too, the property ||λx|| = |λ|p||x||, where 0 < p < 1,
produces a bad estimate for the difference between the Riemann sums attached
to two functions f, g : [a, b] → X, namely

∥
∥
∥
∥
∥

n−1
∑

k=0

f (ξk)(ak+1 − ak) −
n−1
∑

k=0

g(ξk)(ak+1 − ak)

∥
∥
∥
∥
∥

≤
n−1
∑

k=0

(ak+1 − ak)
p ‖f (ξk) − g(ξk)‖

�≤
n−1
∑

k=0

(ak+1 − ak)||f (ξk) − g(ξk)||

(in fact, since 0 < p < 1, for ak+1 − ak ≤ 1, we have (ak+1 − ak)
p ≥ (ak+1 −

ak), which is the case for n sufficiently large). This fact that has the similar
effect as for the first integral, namely the fundamental theorem of calculus for
this second integral also does not hold.

(3) From Remarks 9.13(1) and (2), it is evident that for a continuous f : [a, b] →
X, the inequality

∥
∥
∥
∥

∫ b

a

f (t)dt

∥
∥
∥
∥

≤
∫ b

a

||f (t)||dt

does not hold.

Now, if we introduce (as in the case of Banach space-valued functions) the mean
value

M (f ) = lim
T →+∞

1

T
·
∫ T

0
f (t) dt ∈ X ,
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where the limit is considered in the metric space (X,D) (i.e. there exists M (f ) ∈ X

with lim
T →+∞ D

(

M (f ) ,
1

T
·
∫ T

0
f (t) dt

)

= 0), then because of Remark 9.13, it

seems that M(f ) does not exist for any f ∈ AP(X), since in the proof for the case
of Banach space-valued functions, the inequality mentioned in Remark 9.13(3) is
essential. This has as an effect the fact that, in general, one cannot attach Fourier
series to a function f ∈ AP(X) and the fact that the almost periodicity of f does
not imply the approximation property mentioned in Definition 3.1(iii).

(4) In [6], a theory of the semigroups of linear and continuous operators is
developed. As one of the applications, it was obtained that the initial value
problem in the p-Fréchet space X, 0 < p < 1,

du(t)

dt
= A[u(t)], t ≥ 0, u(0) = x ∈ X

(where A : X → X is linear and continuous) has as the unique solution u(t) =
T (t)(x), with T (t)(x) = lim

n→∞

(

I − t

n
A

)−n

(x), the limit being in the p-norm

in X. On the other hand, taking into account Remarks 9.13(1) and 9.13(2), it
follows that the inhomogeneous Cauchy problem

du(t)

dt
= A[u(t)] + f (t), t ≥ 0, u(0) = x ∈ X,

in general, seems to not have mild solution, in the sense that, even if we can
define it as usual, it does not satisfy the differential equation.

(5) It is easy to construct almost periodic functions f : R → X for which there
exists M(f ) and the fundamental theorem of calculus holds. Indeed, any f of
the form c · g, where c ∈ X and g : R → R is almost periodic, satisfies these
two requirements.

Remark 9.14 The results in this section are contributions from Gal and
N’Guérékata [30].

3 Applications

Firstly, we illustrate the idea of propagation of almost periodicity from the input
data to the solutions of a simple differential equation in a p-Fréchet space (X, || · ||).
In this sense, we present the following.

Theorem 9.15 Let f : R → R be a usual almost periodic function and c ∈ X.
Then, the function y : R → X given by
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y(t) = c ·
∫ t

−∞
eu−t f (u)du, t ∈ R,

is B-almost periodic and satisfies the differential equation

y′(t) + y(t) = c · f (t),

for all t ∈ R.
Here, y′(t) is defined as usual, that is, the limit in the metric D(x, y) = ||x −y||,

given by

y′(t) = lim
h→0

y(t + h) − y(t)

h
.

Proof Let us denote F(t) = ∫ t

−∞ eu−t f (u)du, t ∈ R. By the classical theory, F is
a usual almost periodic function. Then, by

||c · F(t) − c · F(t + τ)|| = |F(t) − F(t + ξ)|p · ||c||,

it is immediate that y(t) = c · F(t) is B-almost periodic in the sense of
Definition 3.1(i).

Since

F ′(t) = f (t) −
∫ t

−∞
eu−t f (u),∀t ∈ R,

it easily follows that y′(t) = c ·
[

f (t) − ∫ t

−∞ eu−t f (u)du
]

and that y(t) satisfies

the differential equation, which proves the theorem. ��
Bibliographical Notes The materials in this chapter are due to Gal and
N’Guérékata [30]. As one can see, there are some open problems that need further
investigations.



Chapter 10
The Equation x’(t)=A(t)x(t)+f(t)

1 The Equation x’(t)=A(t)x(t)+f(t)

Case I Let us first assume that X is of finite dimension, say X = C
n.

Let us consider the inhomogeneous linear evolution equations of the form

dx(t)

dt
= A(t)x(t) + f (t), t ∈ R, x(t) ∈ X, (1.1)

where A(·) is a τ -periodic (unbounded) linear operator-valued function and f ∈
AA(X).

Theorem 10.1 ([40, 55]) Every bounded solution on the whole real line of Eq. (1.1)
is in AA(X).

Proof First, we note that by Floquet theory of periodic ordinary differential
equations and by Proposition 2.11 [40], without loss of generality, we may assume
that A is independent of t .

Next, we will show that the problem can be reduced to the one-dimensional
case. In fact, if A is independent of t , by a change of variable if necessary, we
may assume that A is of Jordan normal form. In this direction, we can go further
with the assumption that A has only one Jordan box; that is, we have to prove the
theorem for equations of the form

⎛

⎜
⎜
⎜
⎝

ẋ1(t)

ẋ2(t)
...

ẋn(t)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

λ 1 0 . . . 0
0 λ 1 . . . 0
. . . . . . . . . . . .

0 0 0 . . . λ

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x1(t)

x2(t)
...

xn(t)

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

f1(t)

f2(t)
...

fn(t)

⎞

⎟
⎟
⎟
⎠

.

Let us consider the last equation involving xn(t). We have
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ẋn(t) = λxn(t) + fn(t), t ∈ R, x(t) ∈ C
n.

If �λ �= 0, then we can easily check that either

y(t) =
∫ t

−∞
eλ(t−ξ)f (ξ)dξ (�λ < 0)

or

z(t) =
∫ ∞

t

eλ(t−ξ)f (ξ)dξ (�λ > 0)

is a unique bounded solution of Eq. (1.1). Moreover, by Proposition 2.11 [40] in
both cases, y(t) and z(t) are in AA(X). Hence, xn is in AA(X).

If �λ = 0, then λ = iη for η ∈ R. By assumption, there is a constant c such that
the function

xn(t) := ceiηt +
∫ t

0
eiη(t−ξ)f (ξ)dξ

is bounded on R. This yields the boundedness of
∫ t

0 e−iηξ f (ξ)dξ on R. Hence,
∫ t

0 e−iηξ f (ξ)dξ is in AA(X). Finally, this yields that xn is in AA(X).
Let us consider next the equation involving xn−1 and xn. Since xn is in AA(X), by

repeating the above argument, we can show that xn−1 is also in AA(X). Continuing
this process, we can show that all xk(·) are in AA(X). The proof is complete. ��
Case II Let us now consider Eq. (1.1) in an infinite dimensional Banach space
X where f ∈ AA(X), and A(t) generates a 1-periodic evolutionary process
(U(t, s))t≥s in X, that is, a two-parameter family of bounded linear operators that
satisfies the following conditions:

(i) U(t, t) = I for all t ∈ R,
(ii) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r ,

(iii) The map (t, s) �→ U(t, s)x is continuous for every fixed x ∈ X,
(iv) U(t + 1, s + 1) = U(t, s) for all t ≥ s (1-periodicity),
(v) ‖U(t, s)‖ ≤ Neω(t−s) for some positive N, ω independent of t ≥ s.

We emphasize that the above choice of the period of the equations is merely
for the simplification of the notation but does not mean a restriction. We refer the
reader to [6, 17, 36] for more information on the applications of this concept of
evolutionary processes to partial differential equations.

Definition 10.2 An X-valued continuous function u on R is said to be a mild
solution of Eq. (1.1) if

u(t) = U(t, s)u(s) +
∫ t

s

U(t, ξ)f (ξ)dξ, ∀t ≥ s; t, s ∈ R. (1.2)
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Lemma 10.3 ([40]) Let u be a bounded mild solution of Eq. (1.1) on R and f be
almost automorphic. Then, u is almost automorphic if and only if the sequence
(u(n))n∈Z is almost automorphic.

Proof

Necessity: Obviously, if u is almost automorphic, the sequence (u(n))n∈Z is
almost automorphic.

Sufficiency: Let the sequence (u(n))n∈Z be almost automorphic. We now prove
that u is almost automorphic. The proof is divided into several steps:

Step 1: We first suppose that (n′
k) is a given sequence of integers. Then, there

exist a subsequence (nk) and a sequence (v(n)) such that

lim
k→∞ u(n + nk) = v(n); lim

k→∞ v(n − nk) = u(n), ∀n ∈ Z (1.3)

lim
k→∞ f (t + nk) = g(t); lim

k→∞ g(t − nk) = f (t), ∀t ∈ R. (1.4)

For every fixed t ∈ R, let us denote by [t] the integer part of t . Then, define

v(η) := U(η, [t])v([t]) +
∫ η

[t]
U(η, ξ)g(ξ)dξ, η ∈ [[t], [t] + 1).

In this way, we can define v on the whole line R. Now, we show that

lim
k→∞ u(t + nk) = v(t).

In fact,

lim
k→∞ ‖u(t + nk)−v(t)‖ ≤ lim

k→∞ ‖U(t+nk, [t]+nk)u([t]+nk)−U(t, [t])v([t])‖

+ lim
k→∞

∫ t

[t]
‖U(t, η)‖‖f (η + nk) − g(η)‖dη

= lim
k→∞ ‖U(t, [t])u([t] + nk) − U(t, [t])v([t])‖

+ lim
k→∞

∫ t

[t]
‖U(t, η)‖‖f (η + nk) − g(η)‖dη = 0.

Similarly, we can show that

lim
k→∞ ‖v(t − nk) − u(t)‖ = 0.

Step 2: Now, we consider the general case where (s′
k)k∈Z may not be an integer

sequence. The main lines are similar to those in Step 1 combined with the strong
continuity of the process and the precompactness of the range of the function f .
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Set n′
k = [s′

k] for every k. Since (tk)k∈Z, where tk := s′
k − [s′

k], is a sequence
in [0, 1), we can choose a subsequence (nk) from {n′

k} such that lim
k→∞ tk = t0 ∈

[0, 1] and (1.3) holds for a function v, as shown in Step 1.

Let us first consider the case 0 < t0 + t − [t0 + t]. We show that

lim
k→∞ u(tk + t + nk) = lim

k→∞ u(t0 + t + nk) = v(t0 + t). (1.5)

In fact, for sufficiently large k, from the above assumption, we have [t0+t] = [tk+t].
Using the 1-periodicity of the process (U(t, s))t≥s , we have

‖u(tk + t + nk) − u(t0 + t + nk)‖ ≤ A(k) + B(k), (1.6)

where A(k) and B(k) are defined and estimated as below. By the 1-periodicity of
the process (U(t, s))t≥s , we have

A(k) := ‖U(tk + t + nk, [tk + t] + nk)u([tk + t] + nk)

−U(t0 + t + nk, [t0 + t] + nk)u([t0 + t] + nk)‖
= ‖U(tk + t, [t0 + t])u([t0 + t] + nk) − U(t0 + t, [t0 + t])u([t0 + t] + nk)‖.

Using the strong continuity of the process (U(t, s))t≥s and the precompactness of
the range of the sequence (u(n))n∈Z, we have lim

k→∞ A(k) = 0. Next, we define

B(k) := ‖
∫ tk+t+nk

[tk+t]+nk

U(tk +t+nk, η)f (η)dη−
∫ t0+t+nk

[t0+t]+nk

U(t0+t+nk, η)f (η)dη‖.

By the 1-periodicity of the process (U(t, s))t≥s and [t0 + t] = [tk + t], we have

B(k) =
∥
∥
∥
∥

∫ tk+t−[tk+t]

0
U(tk + t + nk, [t0 + t] + nk + θ)f ([t0 + t] + nk + θ)dθ

−
∫ t0+t−[t0+t]

0
U(t0 + t + nk, [t0 + t] + nk + θ)f ([t0 + t] + nk + θ)dθ

∥
∥
∥
∥

=
∥
∥
∥
∥

∫ tk+t−[t0+t]

0
U(tk + t − [t0 + t], θ)f ([t0 + t] + nk + θ)dθ

−
∫ t0+t−[t0+t]

0
U(t0 + t − [t0 + t], θ)f ([t0 + t] + nk + θ)dθ

∥
∥
∥
∥

.

From the strong continuity of the process (U(t, s))t≥s and the precompactness of
the range of f , it follows that lim

k→∞ B(k) = 0. So, in view of Step 1, we see that

(1.5) holds.
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Next, we consider the case when t0 + t − [t0 + t] = 0, that is, t0 + t is an integer.
If tk + t ≥ t0 + t , we can repeat the above argument. So, we omit the details. Now,
suppose that tk + t < t0 + t . Then,

‖u(tk + t + nk) − u(t0 + t + nk)‖ ≤ C(k) + D(k), (1.7)

where C(k) and D(k) are defined and estimated as below:

C(k) := ‖U(tk + t + nk, [tk + t] + nk)u([tk + t] + nk)

−U(t0 + t + nk, t0 + t − 1 + nk)u(t0 + t − 1 + nk)‖
= ‖U(tk + t, t0 + t − 1)u(t0 + t − 1 + nk)

−U(t0 + t, t0 + t − 1)u(t0 + t − 1 + nk)‖.

Now, using the strong continuity of the process (U(t, s))t≥s and the precompactness
of the range of the sequence (u(n))n∈Z, we obtain lim

k→∞ C(k) = 0.

As for D(k), we have

D(k) :=
∥
∥
∥
∥

∫ tk+t+nk

[tk+t]+nk

U(tk + t + nk, η)f (η)dη

−
∫ t0+t+nk

[t0+t]+nk−1
U(t0 + t + nk, η)f (η)dη

∥
∥
∥
∥

=
∥
∥
∥
∥

∫ tk+t+nk

[t0+t]+nk−1
U(tk + t + nk, η)f (η)dη

−
∫ t0+t+nk

[t0+t]+nk−1
U(t0 + t + nk, η)f (η)dη

∥
∥
∥
∥

=
∥
∥
∥
∥

∫ tk+1−t0

0
U(tk + t, t0 + t − 1 + θ)f (t0 + t + nk − 1 + θ)dθ

−
∫ 1

0
U(t0 + t, t0 + t − 1 + θ)f (t0 + t + nk − 1 + θ)dθ

∥
∥
∥
∥

.

From the strong continuity of the process (U(t, s))t≥s and the precompactness of
the range of f , it follows that lim

k→∞ D(k) = 0. This finishes the proof of the lemma.

��
Theorem 10.4 ([40]) Let A(t) in Eq. (1.1) generate a 1-periodic strongly continu-
ous evolutionary process, and let f be almost automorphic. Assume further that the
space X does not contain any subspace isomorphic to c0, and the part of spectrum
of the monodromy operator U(1, 0) on the unit circle is countable. Then, every
bounded mild solution of Eq. (1.1) on the real line is almost automorphic.
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Proof The theorem is an immediate consequence of the results above. In fact, we
need only to prove the sufficiency. Let us consider the discrete equation

u(n + 1) = U(n + 1, n)u(n) +
∫ n+1

n

U(n + 1, ξ)f (ξ)dξ, n ∈ Z.

From the 1-periodicity of the process (U(t, s))t≥s , this equation can be rewritten in
the form

u(n + 1) = Bu(n) + yn, n ∈ Z, (1.8)

where

B := U(1, 0); yn :=
∫ n+1

n

U(n + 1, ξ)f (ξ)dξ, n ∈ Z.

We are going to show that the sequence (yn)n∈Z defined as above is almost
automorphic. In fact, since f is automorphic, for any given sequence (n′

k), there are
a subsequence (nk) and a measurable function g such that lim

k→∞ f (t + nk) = g(t)

and lim
m→∞ g(t − nm) = f (t) for every t ∈ R. Therefore, if we set

wn = lim
k→∞

∫ n+nk+1

n+nk

U(n + nk, ξ)f (ξ)dξ, n ∈ Z,

then, by the 1-periodicity of (U(t, s))t≥s and the Lebesgue Dominated Convergence
Theorem, we have

wn = lim
k→∞

∫ n+1

n

U(n, η)f (nk + η)dη =
∫ n+1

n

U(n, η)g(η)dη.

Therefore, lim
k→∞ yn+nk

= wn for every n ∈ Z. Similarly, we can show that

lim
k→∞ wn−nk

= yn.

By Lemma 2.11 [48], since (u(n)) is a bounded solution of (1.8), X does not
contain any subspace isomorphic to c0, and the part of spectrum of U(1, 0) on the
unit circle is countable, (u(n)) is almost automorphic. By Lemma 10.3, this yields
that the solution u itself is almost automorphic. ��

Now, let us consider Eq. (1.1) where A(t) = A.

Theorem 10.5 ([70]) Suppose that A generates an asymptotically stable C0-
semigroup (T (t))t≥0, that is,

lim
t→∞ T (t)x = 0, for every x ∈ X,
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and f ∈ AA(X). If x(t) is a mild solution of Eq. (1.1) with a relatively compact
range in X, then x ∈ AA(X).

Proof x(t) will admit the representation

x(t) = T (t − a)x(a) +
∫ t

a

T (t − ξ)f (ξ)dξ

for each a ∈ R and t ≥ a.
Let (s′

n) be a sequence of real numbers. Since f ∈ AA(X), we can find a
subsequence (sn) ⊂ (s′

n) such that

g(t) := lim
n→∞ f (t + sn)

is well-defined for each t ∈ R and

lim
n→∞ g(t − sn) = f (t)

for each t ∈ R.
Suppose now that the sequence (x(t0 + sn)) is not convergent for some t0 ∈ R.

Then, there exist some α > 0 and two subsequences (σ ′
n) and (σ ′′

n ) of (sn) such that

‖x(t0 + σ ′
n) − x(t0 + σ ′′

n )‖ > α (1.9)

for n = 1, 2, . . ..
We have, for a ≤ t0

x(t0 + σ ′
n) − x(t0 + σ ′′

n ) = T (t0 − a)[x(t0 + σ ′
n) − x(t0 + σ ′′

n )]
+ ∫ t0

a
T (t0 − ξ)[f (ξ + σ ′

n) − f (ξ − σ ′′
n )]dξ.

Let K = {x(t) / t ∈ R} be the closure of the range of x(t); by assumption K is
compact in X.

Since lim
t→∞ T (t)x = 0 for every x ∈ X, it is easy to observe that lim

t→∞ T (t)x = 0

uniformly in any compact subset of X. Thus we can choose some a < 0 such that

‖T (t0 − a)x(a + σ ′
n)‖ <

ε

3

and

‖T (t0 − a)x(a + σ ′′
n )‖ <

ε

3

for all n = 1, 2, . . . Now, fix a and put
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Fn(ξ) := T (t − ξ)[f (ξ + s′
n) − f (ξ + s′′

n)]

with a ≤ ξ ≤ t0. Since sup
t∈R

‖f (t)‖ < ∞, and ‖T (t0)‖ ≤ M for some M > 0, we

get

‖Fn(ξ)‖ ≤ ‖T (t0 − ξ)‖(‖f (ξ + s′
n)‖ + ‖f (ξ + s′′

n)‖) ≤ L

for some L < ∞.
Also, we observe that lim

n→∞ Fn(ξ) = 0 in the strong sense for every ξ since

lim
n→∞ f (t + sn) exists for every t , and (σ ′

n) and (σ ′′
n ) both are subsequences of (sn).

Finally, Fn(ξ) is measurable for each n = 1, 2, . . .

Using Lebesgue’s Dominated Convergence Theorem, we get

lim
n→∞

∫ t

a

T (t − ξ)[f (ξ + σ ′
n) − f (ξ + σ ′′

n )]dξ = 0.

This implies the existence of some positive integer N such that

‖x(t0 + σ ′
n) − x(t0 + σ ′′

n )‖ < ε if n > N,

which contradicts (1.9).
Consequently, we deduce that the sequence (x(t + sn)) is convergent in X for

t ∈ R.
Let y(t) := lim

n→∞ x(t + sn), t ∈ R. It follows that

y(t) = T (t − a)y(a) +
∫ t

a

T (t − ξ)g(ξ)dξ

for every a ∈ R and t ≥ a. Moreover, � := {y(t) / t ∈ R} ⊂ K . And consequently,
� is relatively compact in X. We may assume that

lim
n→∞ y(t − sn) = u(t)

pointwise on R.
Using the same argument as above, we can get

u(t) = T (t − a)u(a) +
∫ t

a

T (t − ξ)g(ξ)dξ
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for every a ∈ R and t ≥ a. We also have

{u(t) / t ∈ R} ⊂ {y(t) / t ∈ R} ⊂ K.

It remains to prove that u(t) = x(t), t ∈ R.
Let us write y(t − sn) − x(t) = T (t − a)y(a − sn) − T (t − a)x(a)

+ ∫ t

a
T (t − ξ)(g(ξ − sn) − f (s))dξ.

Fix t ∈ R, and let ε > 0. Since K is compact, one may choose a < 0 large
enough such that

‖T (t − a)y(a − sn)‖ <
ε

3
, ∀n

and

‖T (t − a)x(a)‖ <
ε

3
.

The second inequality is based on the assumption that lim
t→∞ T (t)x = 0. Now, fix a,

and let

Hn(ξ) := T (t − ξ)(g(ξ − sn) − f (ξ)).

It is clear that each Hn(ξ), n = 1, 2, . . . , is bounded in norm since sup
t≥0

‖T (t)‖ <

∞ and sup
t∈R

‖f (t)‖ < M < ∞. By Lebesgue’s Dominated Convergence Theorem,

we get

lim
n→∞

∫ t

a

T (t − ξ)(g(ξ − sn) − f (ξ))dξ = 0.

We then obtain

‖y(t − sn) − x(t)‖ < ε,

if n > N for some given positive integer N . This implies that x(t) = u(t) for each
t ∈ R. The proof is complete. ��
Theorem 10.6 (N’Guérékata [55]) Assume that A is bounded and f ∈ AA(X).
Let x(t) be a (strong) solution of Eq. (1.1) with a relatively compact range in
X. Assume also that there exists a finite dimensional subspace X1 of X with the
properties:

(i) etAu ∈ X1, ∀u ∈ X1;
(ii) Ax(0) ∈ X1;

(iii) (etA − I )f (s) ∈ X1 ∀t, s ∈ R.
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Then, x ∈ AA(X).

Proof Consider the projection P : X → X1. Then, we have X = X1 ⊕ N(P ),
where N(P ) is the null space of P . Note that Q = I −P is the projection on N(P ).
Both P and Q are bounded linear operators.

Let x(t) be a solution of Eq. (1.1). Then, we can write

x(t) = x1(t) + y(t), t ∈ R,

where x1(t) = Px(t) ∈ X1 and y(t) = Qx(t) ∈ N(P ).
Since the range of x(t) is relatively compact in X, so are the ranges of x1(t) and

y(t) as we can easily observe. Also,

x′(t) = x′
1(t) + y(t) = Ax1(t) + Ay(t) + Pf (t) + Qf (t), t ∈ R. (1.10)

x(t) has the integral representation

x(t) = etAx(0) + ∫ t

0 e(t−ξ)Af (ξ)dξ

= etAx(0) + ∫ t

0 f (ξ)dξ + ∫ t

0 (e(t−ξ)A − I )f (ξ)dξ.

Using assumption (iii), we can deduce that
∫ t

0 (e(t−ξ)A − I )f (ξ)dξ ∈ X1; then,
applying Q to both sides of the last equation above, we get

y(t) = QetAx(0) + Q

∫ t

0
f (ξ)dξ = QetAx(0) +

∫ t

0
Qf (ξ)dξ.

Thus,

y′(t) = QAetAx(0) + Qf (t) = Qf (t)

since Ax(0) ∈ X1, so etAAx(0) ∈ X1 by (ii).
Now, Qf (t) : R → X is an almost automorphic function since Q is a bounded

linear operator. Hence, y′(t) ∈ AA(X). Thus, y(t) ∈ AA(X) since its range is
relatively compact in X in view of Theorem 4.3.

Now, if we apply P to both sides of Eq. (1.10), we get in X1 the following
equation:

x′
1(t) = PAx1(t) + PAy(t) + P 3f (t) + PAf (t), t ∈ R.

We observe that the function g(t) := PAy(t) + P 3f (t) + PAf (t) is almost
automorphic.
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Now, the operator PA restricted to the subspace X1 is a matrix and the function
x1(t) is bounded since its range is relatively compact. So, we deduce that it is almost
automorphic in view of Theorem 4.5.

Finally, x(t) ∈ AA(X) as the sum of two almost automorphic functions.
The proof is complete. ��
Now we consider in a general Banach space X, the equation:

x′(t) = (A + B)x(t), t ∈ R (1.11)

and the associated inhomogeneous one

x′(t) = (A + B)x(t) + f (t), t ∈ R. (1.12)

.
We make the following assumptions:

(i) A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 such that T (t)x :
R → X is almost automorphic for each x ∈ X

(ii) There exists a finite dimensional subspace X1 of X such that D(A) ∩ X1 is
dense in X.

(iii) The projection P : X → X1 commutes with A.
(iv) B is a continuous linear operator such that B(X) = X1.

Theorem 10.7 (N’Guérékata [55]) Under assumptions (i)–(iv), every bounded
solution of Eq. (1.11) is almost automorphic.

Proof We recall that P is a bounded linear operator and has the property

X = X1 ⊕ N(P ),

where N(P ) is the kernel of P . We set Q = I − P .
Now, if x(t) is a bounded solution of Eq. (1.11), then it can be decomposed as

x(t) = x1(t) + x2(t) t ∈ R,

where x1(t) = Px(t) ∈ X1 and x2(t) = Qx(t) ∈ N(P ) are also bounded.
First, let us show that x2(t) ∈ AA(X). We have

x′
2(t) = d

dt
Qx(t) = Q d

dt
x(t) = Q(A + B)x(t)

= QAx(t), since QBx(t) = 0
= AQx(t), since A and Q commute
= Ax2(t).

Thus, we can write x2(t) = T (t)x2(0), t ∈ R, which shows that x2(t) ∈
AA(X).
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Now, if we apply P to Eq. (1.11) and use the commutativity of A and P , we
obtain

x′
1(t) = (A + PB)x1(t) + PBx2(t),

where g(t) := PBx2(t) ∈ AA(X).
It is clear that A + PB = A + B is a linear operator restricted to D(A) ∩ X1 ≡

X1 because of assumption (ii). Since x1(t) is bounded, it is almost automorphic
(Theorem 4.5). Finally, x(t) ∈ AA(X) as the sum of two almost automorphic
functions. The proof is complete. ��
Theorem 10.8 Assume that assumptions (i)–(iv) above are satisfied and f ∈
AA(X). Then, every solution of Eq. (1.12) with a relatively compact range is almost
automorphic.

Proof We start the proof as in Theorem 10.7 with the same notations. Consider a
solution x(t) of Eq. (1.12) with a relatively compact range in X, and let

x(t) = x1(t) + x2(t), t ∈ R,

as above. Observe that the range of x2(t) is also relatively compact in X. It is easy
to check that it satisfies the following equation in N(P ):

x′
2(t) = Ax2(t) + Qf (t), t ∈ R.

The function Qf (t) : R → N(P ) is almost automorphic since Q is bounded. We
deduce that x2(t) ∈ AA(X) in view of Theorem (4.3).

In applying P to Eq. (1.12), we obtain in the finite dimensional space X1 the
equation

x′
1(t) = (A + PB)x1(t) + g(t),

where g(t) := PBx2(t) + Pf (t) is an almost automorphic function R → X1.
As in Theorem 10.7, A + PB = A + B on D(A) ∩ X1. Now, since x1(t) has a
relatively compact range and thus it is bounded in the finite dimensional space X1,
we conclude in view of Theorem 4.5 that it is almost automorphic. Finally, x(t) is
almost automorphic as the sum of two almost automorphic functions. The proof is
now complete. ��
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Chapter 11
Almost Periodic Solutions of the
Differential Equation in Locally Convex
Spaces

As an application of results obtained in Chap. 3, we will study conditions for almost
periodicity of solutions of the linear differential equation x′(t) = Ax(t)+f (t), t ∈
R and the associated homogeneous equation in locally convex spaces. We will start
with the case of a bounded linear operator A and then study the general case of a
(eventually unbounded) linear operator A which generates an equicontinuous C0-
semigroup of linear operators.

1 Linear Equations

Definition 11.1 A Fréchet space E is said to be perfect if it satisfies the following
property:

(F) Every function f : R → E with a bounded range {f (t) : t ∈ R} and f ′(t)
almost periodic is necessarily almost periodic.

Example 11.2 Denote by s the linear space of all real numbers s = {x = (xn) :
xn ∈ R, n = 1, 2, . . .}. For each n, define

pn(x) := |xn|, x ∈ s.

Obviously pn is a seminorm defined on s. Define

qn := p1 ∨ p2 ∨ . . . ∨ pn, n = 1, 2, . . .

We have qn ≤ qn+1, n = 1, 2, . . . The space s considered with the family of
seminorms (qn) is a Fréchet space. Moreover, it can be proved (see [1], 17.7, p.
210) that each closed and bounded subset of s is compact. Thus, in particular, s is a
Banach space. Moreover, in view of Theorem 8.12, s is perfect.
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1.1 The Homogeneous Equation x′ = Ax

Consider in a complete Hausdorff locally convex space E the equation

x′(t) = Ax(t), t ∈ R. (1.1)

Theorem 11.3 ([51]) Let E be a perfect Fréchet space. Assume that

(i) A is a compact linear operator on E;
(ii) {Ak : k = 1, 2, . . .} is equicontinuous;

(iii) for every seminorm p, there exists a seminorm q such that

p(etAx) ≤ q(x), for every t ∈ R, x ∈ E.

Then, the unique solution of Eq. (1.48) is almost periodic in E.

Proof Let x(t) = etAx0 be the unique solution of Eq. (1.1). Then, by (iii), it is
bounded. Since E is a perfect Fréchet space, it suffices to prove that x′(t) is almost
periodic (cf. Property (F) above).

Now, assumption (i) implies that the set {x′(t) : ∈ R} is also relatively compact
in E.

Let (s′
n) be an arbitrary sequence of real numbers; then, we can extract a

subsequence (sn) such that (x′(sn)) is convergent and thus is a Cauchy sequence
in E.

But we have

x′(t + sn) = Ax(t + sn)

= Ae(t+sn)Ax0

= AetAesnAx0

= AetAx(sn)

= etAAx(sn)

= etAx′(sn)

for every n = 1, 2, . . . and every t ∈ R.
If p is a seminorm on E, then there exists a seminorm q on E such that

p(x′(t + sn) − x′(t + sm)) = p(etA(x′(sn) − x′(sm)))

≤ q(x′(sn) − x′(sm))

for every n,m and every t ∈ R.
It follows that (x′(t + sn)) is uniformly Cauchy in t ; therefore, it is uniformly

convergent in t .
We conclude by Bochner’s criterion that x′(t) is almost periodic. This completes

the proof. ��
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1.2 The Inhomogeneous Case

Now, let us consider in a perfect Fréchet space E the inhomogeneous equation:

x′(t) = Ax(t) + f (t), t ∈ R, (1.2)

with the following assumptions:

(H1) A is a compact linear operator on E;
(H2) {Ak; k = 1, 2, . . .} is equicontinuous;
(H3) for every seminorm pn, there exists a seminorm qn such that

pn(e
tAx) ≤ qn(x), for every t ∈ R, x ∈ E;

(H4) f ∈ AP(E) and for each pn ∈ P , there exists a function ψpn : R → R
+ with

pn(f (s)) ≤ ψpn(s) and
∫ ∞

−∞
ψpn(s)ds < ∞.

Now, let us state and prove the following.

Theorem 11.4 ([16]) Under assumptions (H1)–(H4), every solution of Eq. (1.2) is
almost periodic in E.

Proof By Theorem 11.3, the function etAx(0) ∈ AP(E).
Now, let F(t) := ∫ t

0 e(t−s)Af (s)ds. It is also immediate that s → e−sAf (s)

is in AP(E) based on Theorem 8.26. In view of assumptions (H5) and (H8), F(t)

is bounded over R. We then deduce that
∫ t

0 e−sAf (s)ds ∈ AP(E) since E is a
perfect Fréchet space. But this last integral is equal to e−tAF (t). Applying again
Theorem 8.26, we obtain etA(e−tAF (t)) = F(t) is almost periodic. The proof is
now complete. ��

Let us now consider a Fréchet space in which property (F ) may not hold.

Theorem 11.5 ([51, 55]) Let E be a Fréchet space (not necessarily perfect), and
assume that assumptions (i)–(iii) of Theorem 11.3 are satisfied. Assume also that
the range R(A) of the operator A is dense in E.

Then, every solution of Eq. (1.1) is almost periodic.

Proof Let us observe that the first part of the proof of Theorem 11.3 tells us that if
x(t) = etAx0 is a solution of Eq. (1.48) with x0 ∈ D(A) the domain of A, then x′(t)
will be almost periodic. ��
Lemma 11.6 Every solution of Eq. (1.48) with initial data in R(A), the range of
A, is almost periodic.

Proof Let a ∈ R(A) and consider the unique solution y(t) with y(0) = a. There
exists x0 ∈ D(A) such that Ax0 = a. We have
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y(t) = etAa = etAAx0 = AetAx0 = Ax(t) = x′(t),

where x(t) = etAx0. Therefore, x′(t), and consequently y(t), is almost periodic.
��

Proof (of Theorem 11.5 (continued)) Consider the solution x(t) of Eq. (1.48) with
x(0) ∈ E. Since R(A) is dense in E, there exists a sequence (an) in R(A) such that

lim
n→∞ an = x(0).

Consider a sequence of solutions (yn(t)) with yn(0) = an, n = 1, 2, . . . By the
above, each yn(t) is almost periodic. ��

Now, to prove almost periodicity of x(t), it suffices to prove that (yn(t))

converges to x(t) uniformly in t ∈ R. We have

x(t) = etAx(0), yn(t) = etAan.

So, given a seminorm p, there exists a seminorm q by (iii) such that

p(yn(t) − x(t)) = p(etA(an − x(0))) ≤ q(an − x(0))

for every n = 1, 2, . . . and every t ∈ R. The conclusion follows immediately.

Bibliographical Notes The contributions in this chapter are due to D. Bugajewski
and G.M. N’Guérékata [16, 55].



Appendix

The function spaces can be arranged in the following chart:

Type Asymptotic Pseudo

Almost Automorphic AA ⊂ AAA ⊂ PAA

∪ ∪ ∪
Compact Almost Automorhic AAc ⊂ AAAc ⊂ PAAc

∪ ∪ ∪
Almost Periodic AP ⊂ AAP ⊂ PAP

∪ ∪ ∪
ω-Periodic Pω ⊂ APω ⊂ PPω

∩
SAPω
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