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Abstract. Amid the pandemic COVID-19, the world is facing unprece-
dented infodemic with the proliferation of both fake and real information.
Considering the problematic consequences that the COVID-19 fake-news
have brought, the scientific community has put effort to tackle it. To con-
tribute to this fight against the infodemic, we aim to achieve a robust
model for the COVID-19 fake-news detection task proposed at CON-
STRAINT 2021 (FakeNews-19) by taking two separate approaches: 1)
fine-tuning transformers based language models with robust loss func-
tions and 2) removing harmful training instances through influence calcu-
lation. We further evaluate the robustness of our models by evaluating on
different COVID-19 misinformation test set (Tweets-19) to understand
model generalization ability. With the first approach, we achieve 98.13%
for weighted F1 score (W-F1) for the shared task, whereas 38.18% W-F1
on the Tweets-19 highest. On the contrary, by performing influence
data cleansing, our model with 99% cleansing percentage can achieve
54.33% W-F1 score on Tweets-19 with a trade-off. By evaluating our
models on two COVID-19 fake-news test sets, we suggest the importance
of model generalization ability in this task to step forward to tackle the
COVID-19 fake-news problem in online social media platforms.

Keywords: COVID-19 · Infodemic · Fake news · Robust loss ·
Influence-based cleansing · Generalizability

1 Introduction

As the whole world is going through a tough time due to the pandemic COVID-
19, the information about COVID-19 online grew exponentially. It is the first
global pandemic with the 4th industrial revolution, which led to the rapid spread
of information through various online platforms. It came along with Infodemic.
The infodemic results in serious problems that even affects people’s lives, for
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instance, a fake news “Drinking bleach can cure coronavirus disease” led people
to death1. Not only the physical health is threatened due to the fake-news, but
the easily spread fake-news even affects the mental health of the public with
restless anxiety or fear induced by the misinformation [38].

Table 1. Dataset statistics.

Label FakeNews-19 Tweets-19

Train Valid Test Valid Test

Real 3360 1120 1120 51 172

Fake 3060 1020 1020 9 28

Total 6420 2140 2140 60 200

With the urgent calls to combat the infodemic, the scientific community
has produced intensive research and applications for analyzing contents, source,
propagators, and propagation of the misinformation [2,11,14,22,26] and provid-
ing accurate information through various user-friendly platforms [16,30]. The
early published fact sheet about the COVID-19 misinformation suggested 59%
of the sampled pandemic-related Twitter posts are evaluated as fake-news [2].
To address this, a huge amount of tweets is collected to disseminate the mis-
information [1,21,23,27]. Understanding the problematic consequences of the
fake-news, the online platform providers have started flag COVID-19 related
information with an “alert” so the audience could be aware of the content. How-
ever, the massive amount of information flooding the internet on daily basis
makes it challenging for human fact-checkers to keep up with the speed of infor-
mation proliferation [28]. The automatic way to aid the human fact-checker is
in need, not just for COVID-19 but also for any infodemic that could happen
unexpectedly in the future.

In this work, we aim to achieve a robust model for the COVID-19 fake-news
detection shared task proposed by Patwa. et al. [25] with two approaches 1) fine-
tuning classifiers with robust loss functions and 2) removing harmful training
instances through influence calculation. We also further evaluate the adaptability
of our method out of the shared task domain through evaluations on different
COVID-19 misinformation tweet test set [1]. We show a robust model with high
performance over two different test sets to step forward to tackle the COVID-19
fake-news problem in social media platforms.

2 Dataset

Fake-News COVID-19 (FakeNews-19). A dataset released for the shared
task of CONSTRAINT 2021 workshop [24], which aims to combat the infodemic

1 https://www.bbc.com/news/world-53755067.

https://www.bbc.com/news/world-53755067
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regarding COVID-19 across social media platforms such as Twitter, Facebook,
Instagram, and any other popular press releases. The dataset consists of 10,700
social media posts and articles of real and fake news, all in English. The details of
the statistic are listed in Table 1. Each social media post is manually annotated
either as “Fake” or “Real”, depending on its veracity.

Table 2. Top-10 most frequent words on FakeNews-19 and Tweets-19

DatasetLabel Most frequent words

Real FakeNews-19cases, #covid19, new, covid, tests, people, states, deaths, total, testing

Tweets-19 #coronavirus, covid, cases, #covid19, people, virus, corona, health, spread, us

Fake FakeNews-19covid, coronavirus, people, virus, vaccine, #coronavirus, trump, says, new, #covid19

Tweets-19 virus, corona, coronavirus, covid, #coronavirus, fake, news, get, really, media

Tweets COVID-19 (Tweets-19). To evaluate the generalizability of trained
models test setting, we take the test set from [1], which is also released for
fighting for the COVID-19 Infodemic tweets. The tweets are annotated with
fine-grained labels related to disinformation about COVID-19, depending on
the interest of different parties involved in the Infodemic. We took the second
question, “To what extent does the tweet appear to contain false information?”,
to incorporate with our binary setting. Originally, it is answered in five labels
based on the degree of the falseness of the tweet. Instead of using the multi-
labels, we follow the binary setting as the data releaser did to map to “Real”
and “Fake” labels for our experiments. For our cleansing experiment, we split
the dataset into validation and test set with equal label distribution. The detail
is listed in Table 1. The most frequent words after removing stopwords on each
dataset is listed in Table 2.

3 Methodology

3.1 Task and Objective

The main task is a binary classification to determine the veracity for the given
piece of text from social media platforms and assign the label either “Fake” or
“Real”. We aim to achieve a robust model in this task with a consideration on
both high performance on predicting labels on FakeNews-19 shared task and
generalization ability through performance on Tweets-19 with two separate
approaches described in the following Sects. 3.2 and 3.3. Note that models are
trained only with FakeNews-19 train set.

3.2 Approach 1: Fine-Tuning Pre-trained Transformer Based
Language Models with Robust Loss Functions

When handling text data, Transformers [31] based language models (LM) are
commonly used as feature extractors [4,13,17] thanks to publicly released large-
scale pre-trained language models (LMs). We adopt different Transformer LMs



Model Generalization on COVID-19 Fake News Detection 131

with a feed-forward classifier trained on top of each model. The list and details
of models are described in Sect. 4.1. As reported in [9,12,37], robust loss func-
tions help to improve the deep neural network performance especially with noisy
datasets constructed from social medium. In addition to the standard cross-
entropy loss (CE), we explore the following robust loss functions: symmetric
cross-entropy (SCE) [33], the generalized cross-entropy (GCE) [39], and curricu-
lum loss (CL) [19]. Inspired by the symmetric Kullback-Leibler divergence, SCE
takes an additional term called reverse cross-entropy to enhance CE symmetric-
ity. GCE takes the advantages of both mean absolute error being noise-robust
and CE performing well with challenging datasets. CL is a recently proposed
0–1 loss function which is a tighter upper bound compared with conventional
summation based surrogate losses, which follows the investigation of 0–1 loss
being robust [7].

3.3 Approach 2: Data Noise Cleansing Based on Training Instance
Influence

This approach is inspired by the work of Kobayashi et al. [10], which proposes
an efficient method to estimate the influence of training instances given a tar-
get instance by introducing turn-over dropout mechanism. We define Dtrn =

{dtrn1 , d
trn
2 , . . . , d

trn
k

} as a training dataset with k training sample and L( f , d) as
a loss function calculated from a model f and a labelled sample d. In turn-
over dropout, a specific dropout mask mi ∈ {0, 1p } with dropout probability p is
applied during training to zeroed-out a set of parameters θ ∈ R

n from the model
f for each training instance dtrni . With this approach, every single sample in the
training set is trained on a unique sub-network of the model.

We define h(dtrni ) is a function to map a training data dtrni into the specific
mask mi. The influence score I(dtgt, dtrni , f ) for each target sample dtgt is defined
as follow:

I(dtgt, dtrni , f ) = L( f
�h(dtrn

i ), dtgt) − L( f h(d
trn
i ), dtgt),

where m̃i is the flipped mask of the original mask mi, i.e., m̃i = 1
p − mi, and

f mi is the sub-network of the model with the mask mi applied. Intuitively, the
influence score indicates the contribution of a training instance dtrni to the target
instance dtgt. A positive influence score indicates dtrni reduces the loss of dtgt

and a negative influence score indicates dtrni increases the loss of dtgt, and the
magnitude of the score indicates how strong the influence is. To calculate the
total influence score of a training data dtrni over multiple samples from a given
target set Dtgt = {dtgt1 , d

tgt
2 , . . . , d

tgt
k

}, we accumulate each individual influence
score by:

Itot(D
tgt, dtrni , f ) =

K
∑

j=1

I(dtgtj , d
trn
i , f ).

The total influence score Itot can be used to remove harmful instances, which
only add noise or hinder generalization of the model, from the training set by
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removing top-n% of training instances with the smallest total influence score
from the training data. We refer to our data cleansing method as influence-based
cleansing which can remove noisy data and further improve model robustness
and adaptability.

Table 3. Results on FakeNews-19 test set using large language models. Underline
indicates the best performance on each model. Acc. and W-F1 stands for Accuracy and
weighted F1 respectively. SVM is placed under the column of CE for ease of comparison.

Loss functions models CE SCE GCE CL

Acc. W-F1 Acc. W-F1 Acc. W-F1 Acc. W-F1

TF-IDF SVM [25] 93.32 93.32 – – – – – –

ALBERT-base 97.34 97.33 96.82 96.82 96.45 96.44 96.73 96.72

BERT-base 97.99 97.99 97.15 97.14 97.66 97.66 97.71 97.7

BERT-large 97.15 97.14 96.92 96.91 97.29 97.28 97.24 97.23

RoBERTa-base 97.94 97.94 97.52 97.51 97.57 97.56 97.62 97.61

RoBERTa-large 98.13 98.13 97.90 97.89 97.48 97.47 97.48 97.47

4 Experiment 1: Fine-Tuning LMs with Robust Loss
Functions

4.1 Experiment Set-Up

We set up the baseline of our experiment from [25], an SVM model trained with
features extracted from extracted by using TF-IDF. We try five different pre-
trained BERT-based models, including ALBERT-base [13], BERT-base, BERT-
large [4], RoBERTa-base, and RoBERTa-large [17]. We fine-tune the models on
FakeNews-19 train set with the classification layers on the top exploiting the
pre-trained models provided by [36]. We train each model with four different
loss functions, which are CE, SCE, GCE, and CL. The hyperparameters are
searched with learning rate of 1e−6, 3e−6, 5e−6 and epoch of 1, 3, 5, 10 and the best
combination is chosen based on performance on FakeNews-19 validation set.
The robustness of fine-tune models is then evaluated on both FakeNews-19 and
Tweets-19 test sets. In this experiment, we mainly focus our evaluation on the
Weighted-F1 (W-F1) score.

4.2 Experimental Results

Table 3 reports the result of on FakeNews-19 task. Across all settings,
RoBERTa-large trained with CE loss function achieved the highest W-F1 scores,
98.13%, with a gain of 4.81% in W-F1 compared to the TF-IDF SVM base-
line. Except for BERT-large, all other models achieved their best performance
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when fine-tuned with CE loss function. The robust loss functions did not con-
tribute in terms of improving the performance of predicting the labels. In other
words, the large-scale LMs could extract high-quality features that the noise with
FakeNews-19 was barely available for the robust loss functions to contribute.

In Table 4, we show the inference results on Tweets-19; unlike the suc-
cessful result on FakeNews-19 RoBERTa-large with CE scores only 33.65%
of W-F1 on Tweets-19, showing that the generalization of the model is not
successful. Instead, the highest performance could be achieved with BERT-large
with SCE with 38.18%, which is 4.53% gain compared to RoBERTa-large with
CE. Interestingly, across all models, the highest performance when fine-tuned
with the robust loss functions, SCE, GCE, and CL. This shows the robust loss
functions help to improve the generalization ability of models. For instance, the
RoBERTa-large could gain 3.85% with CL loss function, compared to its per-
formance with CE. Considering that RoBERTa-large with CL achieves 97.47%,
which is only 0.66% loss from the highest performance, it can be considered as
a fair trade-off for selecting RoBERTa-large with CL could as a robust model,
which achieves high performance on FakeNews-19 as well as generalizes better
on Tweets-19.

Overall, while LMs with robust loss functions could achieve the highest
98.13% and lowest 96.44% on FakeNews-19, performance on Tweets-19 is
comparatively poor as lower than 40% and even results in 22.85% lowest for
W-F1. It could be inferred that the test set distributions are distinct although
they are both related to COVID-19 infodemic and share the same data source,
Twitter. This could be explained that CL is more robust to noisy labels, where
FakeNews-19 labels are considered to be noisy to Tweets-19 test set. Further
analysis is in Sect. 6.1.

Table 4. Results on Tweets-19 test set of large language model classifiers. Underlined
results indicate the highest performance within each model.

Loss functions models CE SCE GCE CL

Acc. W-F1 Acc. W-F1 Acc. W-F1 Acc. W-F1

ALBERT-base 35.38 35.07 36.15 35.69 37.69 37.16 33.85 33.59

BERT-base 23.08 22.85 33.08 32.93 31.15 31.10 24.62 24.50

BERT-large 32.69 32.57 38.85 38.18 32.69 32.57 31.54 31.47

RoBERTa-base 28.08 28.08 36.92 36.38 33.46 33.24 29.62 29.61

RoBERTa-large 33.85 33.65 31.54 31.47 31.92 31.84 38.08 37.50
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5 Experiment 2: Data Cleansing with Influence
Calculation

5.1 Experiment Set-Up

We first fine-tune a pre-trained RoBERTa-large model with FakeNews-19 train
set while applying turn-over dropout to the weight matrix on the last affine
transformation layer of the model with dropout probability of p = 0.5. We cal-
culate the total influence score from the resulting model to the validation sets
of FakeNews-19 and Tweets-19. We investigate the effectiveness of our data
cleansing approach by removing n% of training instances with the smallest total
influence score with n = {1, 25, 50, 75, 99}. Then, we retrain the models from the
remaining training data and perform an evaluation of the retrained model. All
the models are trained with Cross-Entropy loss function with a fixed learning
rate of 3e−6. We run the model for 15 epochs with the early stopping of 3. As the
baseline, we compare our method with three different approaches: 1) pre-trained
RoBERTa-large model without additional fine-tuning, 2) RoBERTa-large model
fine-tuned with all training data without performing any data cleansing, and
3) model trained with random cleansing using the same cleansing percentage.
We run each experiment five times with different random seeds to measure the
evaluation performance statistics from each experiment.

5.2 Experiment Result

Based on our experiment results in Table 5, our influence-based cleansing method
performs best for Tweets-19 when the cleansing percentage is at 99% by
only using 64 most influential training data. When cleansing percentage ≥25%,
our influence-cleansed model outperforms the model without cleansing and the
model with the random cleansing approach in terms of both accuracy and W-
F1. The pre-trained model without fine-tuning (i.e. 0 training instance) results
in 34.36% and 46.24% W-F1 on FakeNews-19 and Tweets-19 respectively.
Our best model produces a significantly higher F1-score compared to the pre-
trained model without fine-tuning by a large margin on both FakeNews-19 and
Tweets-19, which means that the small set of the most influential training
data helps to significantly boost the generalization ability on both datasets.
Furthermore, even with a high cleansing percentage, our model can maintain
high evaluation performance on the FakeNews-19. Specifically, our model with
a 99% cleansing percentage can produce an evaluation performance of 61.10%
accuracy score and 54.33% W-F1 score on Tweets-19 and 87.79% accuracy
score and 87.69% W-F1 score on FakeNews-19. With this method, we could
achieve an absolute gain of 20.69 W-F1 on Tweets-19, a much-improved gener-
alization ability. Compared to the highest score achieved with using the full data
for training, however, there is a trade-off with 10.44% loss for FakeNews-19.
This trade-off in performances on two test sets suggests a potential for handling
unseen data set during the training phase.
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Table 5. Results on FakeNews-19 test set and Tweets-19 test set using Data cleans-
ing approach. Model performance is explored when n% of harmful instances are dropped
from the training. We run the experiments 5 times and report the mean. The under-
lined value indicates a higher value for comparing Influence vs. Random for each test
set and each row.

Drop of instance Training instance FakeNews-19 Tweets-19

Influence Random Influence Random

% # # Acc. W-F1 Acc. W-F1 Acc. W-F1 Acc. W-F1

0% 0 6420 98.13 98.13 98.13 98.13 33.85 33.65 33.85 33.65

1% 64 6356 97.96 97.96 97.40 97.40 32.00 31.76 30.60 30.39

25% 1605 4815 97.25 97.24 97.14 97.13 36.70 36.12 32.60 32.33

50% 3210 3210 97.01 97.00 88.29 86.38 37.70 37.09 30.80 30.19

75% 4815 1605 96.27 96.26 96.34 96.32 39.50 38.62 38.50 37.58

99% 6356 64 87.79 87.69 89.13 89.09 61.10 54.33 48.00 45.45

6 Discussion

6.1 Data Distribution Between Different FakeNews-19 and
Tweets-19 Test Sets

Although both data set built to address COVID-19 fake-news and share the
same data collection source, tweets, the results show that the models trained on
FakeNews-19 could achieve relatively lower performance on Tweets-19 test
set. (Note that the Tweets-19 consists of the only test set with relatively
smaller scale compared to FakeNews-19.) For further understanding, we visu-
alize features extracted by the best performing model right before the clas-
sification layers with t-SNE. As shown in Fig. 1, even though the features of
FakeNews-19 test set can distinguish the “Fake” and “Real” labels, the fea-
tures of Tweets-19 cannot separate the two labels quite well.

Fig. 1. Datasets distribution comparison with FakeNews-19 training set using t-SNE.
While the distributions within FakeNews-19 kept to be similar, the distribution of
Tweets-19 is significantly different.
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Fig. 2. Datasets distribution comparison with top 1% influential training samples using
t-SNE. Top 1% influential samples are distributed fairly evenly over the whole training
set (a), thus the extracted test features remain separable (b), and the Tweets-19 dis-
tribution is captured better than trained with the full training set (c).

6.2 How Did Smaller Data Help for Generalization Ability of the
Model?

As mentioned in Subsect. 5.2, higher cleansing percentage tends to lead to
higher evaluation F1 score. By using the model trained with top 1% influen-
tial instances, we extract sentence representation as depicted in Fig. 2. Similar
to in Fig. 1, the same number of instances from the test set are randomly selected
for better understanding. Top 1% influential instances are fairly evenly sampled
from the whole training set, and this small subset of the training set is enough to
produce the distribution to separate the test features, which supports the effec-
tiveness of the influential score. Moreover, since the top 1% samples are more
sparse, the trained model can flexibly deal with samples from unseen distribu-
tions, resulting in extracted features of higher quality.

Table 6. Binary evaluation results of influence-based data cleansing model on
Tweets-19 test set. B-F1, B-Rec., and B-Pre. denotes binary F1, binary recall, and
binary precision scores respectively. Bold denotes the best performance over all exper-
iments.

Drop % Fake Real

B-F1 B-Rec. B-Pre. B-F1 B-Rec. B-Pre.

0% 28.80 ± 1.06 99.29 ± 1.60 16.85 ± 0.71 33.33 ± 5.25 20.12 ± 3.80 99.44 ± 1.24

1% 29.06 ± 1.17 99.29 ± 1.60 17.03 ± 0.82 34.46 ± 7.49 21.05 ± 5.43 99.58 ± 0.93

25% 30.56 ± 1.23 99.29 ± 1.60 18.07 ± 0.88 41.67 ± 6.11 26.51 ± 5.01 99.65 ± 0.78

50% 31.02 ± 0.75 100.0 ± 0.00 18.36 ± 0.52 43.16 ± 3.02 27.56 ± 2.49 100.0 ± 0.00

75% 31.51 ± 0.85 99.29 ± 1.60 18.73 ± 0.66 45.72 ± 4.47 29.77 ± 3.97 99.69 ± 0.70

99% 37.17 ± 2.20 81.43 ± 9.24 24.28 ± 2.53 71.50 ± 6.92 57.79 ± 9.59 95.23 ± 1.65

For the performance on Tweets-19 test set, we take additional considera-
tion on binary-Recall (B-Rec.), binary-Precision (B-Prec.), and binary-F1 (B-F1)
scores to further analyze the generalization ability of the model. As shown in
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Table 6, the model with around 99% data cleansing achieves the best per class
F1-score with 37.17% B-F1 score on the fake label and 71.50% on the real label.
In general, the “Fake” B-Pre and “Real” B-Rec scores increase as the cleansing
percentage increase, while “Real” B-Pre and “Fake” B-Rec behave the other
way around, which means the model with higher cleansing percentage capture
more real news and reduce the number of false “Fake” label with the trade-off
of capturing less true ‘Fake” label. Overall, the B-F1 for each labels increases
as the cleansing percentage increase. Our influence-based cleansing method out-
performs the model without data cleansing by a large margin with 8.37% for the
“Fake” B-F1 and 38.17% for the “Real” B-F1.

7 Related Works

COVID-19 Infodemic Research in Natural Language Processing. In recent
months, researchers took various approaches to tackle the problem of COVID-
19 Infodemic. Wang et al. [32] released centralized data CORD-19 that covers
59,000 scholarly articles about COVID-19 and other related coronaviruses to
encourage other studies. Singh et al. [29] analyzed the global trend of tweets at
the first emergence of COVID-19. To understand the diffusion of information,
[3,27] analyze the patterns of spreading COVID-19 related information and also
quantify the rumor amplification across different social media platforms. Alam
et al. [1] focuses on fine-grained disinformation analysis on both English and
Arabic tweets for the interests of multiple stakeholders such as journalists, fact-
checkers, and policymakers. Kar et al. [8] proposes a multilingual approach to
detect fake news about COVID-19 from Twitter posts.

Generalization Ability of Models. As described in the previous section, several
NLP studies involve emerging COVID-19 infodemic yet the generalization aspect
is neglected although it is essential to accelerate industrial application develop-
ment. In recent years, along with the introduction of numerous tasks in various
domains, the importance of model generalization ability with a tiny amount
or even without additional training datasets has been intensely discussed. In
general, recent works on model generalizability can be divided into two dif-
ferent directions: 1) adaptive training and 2) robust loss function. In adaptive
training, different meta-learning [5] and fast adaptation [18,20,35] approaches
have been developed and show promising result for improving the generalization
of the model over different domains. Another meta-learning approach, called
meta transfer learning [34], improves the generalization ability for a low-resource
domain by leveraging a high-resource domain dataset. In robust loss function,
different kind of robust loss functions such as symmetric cross-entropy [33], gen-
eralized cross-entropy [39], and curriculum loss [19] have been shown to produce
a more generalized model compared to cross-entropy loss due to its robust-
ness towards noisy-labeled instances or so-called outliers from the training data.
In addition to these approaches, data de-noising could actually improve model
performance [15], thus, a data cleansing technique with identifying influential
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instances in the training dataset is proposed to further improve the evaluation
performance and generalization ability of the models [6,10].

8 Conclusion

We investigated the COVID-19 fake-news detection task with an aim of achieving
a robust model that could perform high for the CONSTRAINT shared task and
also have high generalization ability with two separate approaches. The robust
loss functions, compared to the traditional cross-entropy loss function, do not
help much in improving F1-score on FakeNews-19 but showed better gener-
alization ability on Tweets-19 with a fair trade-off as shown with the result
comparison between RoBERTa-large with CE and CL. By performing influence
data cleansing with high cleansing percentage (≥25%), we can achieve a better
F1-score over multiple test sets. Our best model with 99% cleansing percent-
age can achieve the best evaluation performance on Tweets-19 with 61.10%
accuracy score and 54.33% W-F1 score while still maintaining high enough test
performance on FakeNews-19. This suggests how we could use the labeled data
to solve the problem of fake-news detection while model generalization ability
should also be taken into account. For future work, we would like to combine
the adaptive training, robust loss function with the influence score data cleans-
ing method such that the resulting influence score can be made more robust for
handling unseen or noisy data.

References

1. Alam, F., et al.: Fighting the COVID-19 infodemic in social media: a holistic
perspective and a call to arms (2020)

2. Brennen, J.S., Simon, F., Howard, P.N., Nielsen, R.K.: Types, sources, and claims
of COVID-19 misinformation. Reuters Institute 7, 3–1 (2020)

3. Cinelli, M., et al.: The COVID-19 social media infodemic. arXiv preprint
arXiv:2003.05004 (2020)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1, pp. 4171–4186. ACL, Minneapo-
lis, June 2019. https://doi.org/10.18653/v1/N19-1423. https://www.aclweb.org/
anthology/N19-1423

5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adapta-
tion of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 70, pp. 1126–1135. PMLR, International Convention Centre, Sydney,
06–11 August 2017 (2017)

6. Hara, S., Nitanda, A., Maehara, T.: Data cleansing for models trained with SGD.
In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett,
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