
Training Aggregation in Federated
Learning

Li Hu, Hongyang Yan(B), and Zulong Zhang

School of Artificial Intelligence and Blockchain, Guangzhou University,

Guangzhou, People’s Republic of China

Abstract. Federated learning is a new machine learning paradigm for
distributed data. It enables multi-party cooperation to train global mod-
els without sharing their private data. In the classic federated learning
protocol, the model parameters are the interaction information between
the client and the server. The client can update the local model accord-
ing to the global model parameters, and the server can aggregate the
updated model parameters of each client to obtain a new aggregation
model. However, in the actual federated learning scenario, there are still
privacy problems caused by model stealing attack in collaborative learn-
ing using model parameters as interactive information. Therefore, we use
knowledge distillation technology to avoid the model stealing attack in
federated learning, and on this basis, we propose a novel aggregation
scheme, which can make the output distribution of each customer refine
the aggregation results through model training. Experiments show that
the scheme can achieve normal convergence while ensuring privacy secu-
rity, and reduce the number of interactions between client and server,
thus reducing the resource consumption of each client participating in
federated learning.
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1 Introduction

Federated learning [1–3] is a collaborative machine learning algorithm for Non-
IID data [4,5], which enables multiple parties to collaboratively train a shared
global model without sharing data. At the beginning of each round of training,
the central server will transmit the current global model to all parties, and all
parties will train the model on local data. Then the server will collect model
update information from all parties and update the central global model.

The main purpose of participating in federated learning is to obtain better
models without sharing local data. The prototypical federated learning archi-
tecture [2,6] uses model parameters as the interactive information between the
clients and the server, and then the server performs weighted average aggrega-
tion to update the global model. However, there are three problems with the
model parameters as the interactive information:
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1. When model parameters are used as interactive information, malicious clients
may steal model parameters from victims, which may lead to privacy leakage.

2. The model structure trained by each client must be the same to be aggregated.
However, in real scenarios, the agents participating in federated learning may
have different training model structures due to different requirements [7,8].

3. When there are many users participating in federated training, the required
communication will increase sharply, because each user has many model
parameters, which will affect the efficiency of federated aggregation.

In response to the above problems, existing related articles [9–11] propose to
use the output of the model as interactive information. However, articles [9,10]
both directly aggregate the logit value by weighted average, while the article [11]
designs an robust mean estimation algorithm to achieve aggregation, but none of
these methods of aggregation explains whether the final aggregation result is the
optimal result. Inspired by these solutions, this paper proposes to use knowledge
distillation technology [12–14] and let the logit value output by the client aggre-
gate by itself, that is, train the model on the server to aggregate the updated
value uploaded by each client. Experiments have proved that this aggregation
method can also achieve high convergence accuracy. At the same time, the num-
ber of interactions with the client is greatly reduced for its convergence, which
will significantly reduce the amount of communication in the federated learning
scenario. And it can explain from the perspective of knowledge distillation that
each client participating in the training can obtain better results.

Figure 1 gives a high-level overview of this scheme. The model of each client
is different. What is uploaded is the prediction distribution of the public data
set. A model is trained on the server to aggregate the prediction distribution
uploaded by the client. The generated model then predicts the public data set,
and the prediction results broadcast to each client updates its local model, and
so on, until the average accuracy of each client model converges, and then stops
federated learning.

The main contributions of this work are summarized as follows:

– We design a collaborative learning approach with training for aggregation to
achieve federated learning with heterogeneous model architectures.

– We further verify federated learning aggregation by training (FLAT) can
improve the computation efficiency and reduce communication overhead.

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we present our detailed designs of mutual federated learning framework. The
system evaluation and experimental results are presented in Sect. 3. Section 4
concludes this paper.
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Fig. 1. The illustration of FLAT framework.

2 The Detail for Federated Learning Aggregation
by Training

In this section we will introduce the details of our proposal. Algorithm1 describes
the process (called FLAT). We learn from the idea of knowledge distillation
[12,15] and use the output of the model as the interactive information between
the client and the server to achieve federated learning.

Each client initializes its own model parameter θ0k(k ∈ {1, 2, ...n}), and the
models are heterogeneous between clients, that is, they have different model
structures and sizes. User k has a dataset Dk containing Nk samples Xk =
{xki}Nk

i=1, of the M class, with the corresponding label set of Yk = {yki}Nk
i=1, yki ∈

{1, 2, ...,M}, at the same time, each client has a dataset D containing N samples
X = {xi}Ni=1, of the M class, with the corresponding label set of Y = {yi}Ni=1, yi ∈
{1, 2, ...,M}. In the first round, each client updates the model parameters based
on the local datasets Dk and D, and obtains θ1k = θ0k − �L(Dk

⋃
D; θ0k), where

L(Dk

⋃
D; θ0k) is about θ0k loss function on the dataset Dk

⋃
D, and α is the

learning rate. Each party then predicts dataset D based on locally updated
parameters and uploads the prediction Y 1

k = f(θ1k,X) to the server, f(θ1k,X)
represents the probability distribution of input X passing through the model with
parameters θ1k. The server aggregates by training a model (model parameter is
θ0) and gets a new predictive distribution Ỹ 1 of public dataset D. Each client
obtains Ỹ 1 through the server broadcast, and updates themself model through
the dataset Dk

⋃
D

⋃
(X, Ỹ 1).

3 Experiment Evaluation

The framework FLAT is evaluated based on popular image datasets: MNIST
[16], that is a widely used in the FL [17,18]. In the MNIST training dataset
with 60,000 samples, and in the MNIST testing dataset with 10,000 samples.
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Algorithm 1. Federated Learning Aggregation by Training(FLAT)
Input:

Dk : private dataset for each client k ,(k ∈ {1, 2, ..., n})
D : public dataset for all clients and server
α : the learning rate of training

Output:
θt
k : model parameters for each client k ,(k ∈ {1, 2, ..., n})

1: Initialize :
each client initialize θ0

k by themself
server initialize θ0 by all clients

2: t = 0
3: repeat
4: Client:

D = D
5: for each client k ∈ {1, 2, ..., n} do
6: if t == 0 then
7: ˜Dk = Dk

⋃

D

8: θt+1
k = θt

k - α � L( ˜Dk; θt
k)

9: else
10: θt+1

k = θt
k - α � L( ˜Dk; θt

k)
11: end if
12: Y t

k = f(θt+1
k , X)

13: send Y t
k to server

14: server get dataset D = D
⋃

(X, Y t
k)

15: end for

16: Server:
17: get dataset D
18: θt+1 = θt - α � L(D; θt)

19: ˜Y t+1 = f(θt+1, X)

20: send ˜Y t+1 to each client
21: client k get dataset ˜Dk = Dk

⋃

D
⋃

(X, ˜Y t+1)(k ∈ {1, 2, ..., n})
22: until t>100

First, we verify FLAT algrithm in same neural network with two hidden layers.
After determining the optimal hyperparameter, we then verify FLAT algrithm
in different neural network, which is taken from the tensorflow tutorial [19].

We tested the test accuracy of 3 clients and 20 clients with tagged public
data, and their models are the same. As shown in Fig. 2(a), the results were
consistent with the original federated learning effect, and the increase in the
number of clients would improve the performance of federated learning. In order
to verify the effectiveness of our scheme, we compared the results of federated
distillation (FD) with 20 clients. In the training process of federated distillation,
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Fig. 2. The variation trend of Average Accuracy. On the left is the FLAT scheme
using tagged public data to compare 3 clients and 20 clients. On the right, 20 clients
are trained with labeled public data to compare the FLAT scheme and the FD scheme.

Fig. 3. Convergence behavior about the FLAT scheme and the FD scheme using unla-
beled public data to train 3 and 20 clients.

the probability distribution uploaded by each client was weighted averaged, as
shown in Fig. 2(b), and we found that we could also achieve the optimal accuracy.
And we tested the test accuracy of 3 clients and 20 clients with untagged public
data. Each client with 2,000 private data and 10,000 untagged public data, server
just with 10,000 untagged public data. We can see Fig. 3, public data with or
without tags will have the same effect.
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At the same time, we found that when our scheme achieves the optimal
accuracy, the number of rounds required for interaction between the client and
the server is much less than that of the federated distillation solution. Table 1
lists the specific differences. It can be seen that when the number of clients is 3
and the public data has tags, our solution only needs 62 rounds of interaction to
achieve the best test accuracy of 95.19%, while the federated distillation scheme
requires 188 rounds of interaction to achieve the best test accuracy of 95.29%.
That is to say, at this time, within the range of less accuracy loss, the number of
interactions required by our solution is 1/3 of the FD solution, which can greatly
reduce the resource consumption of the client participating in federated learning.
We also compared the unlabeled cases of the public data sets. The experimental
results show that the number of interactions required by our solution is 1/2 of
the FD solution when the public data set is not labeled, although the accuracy
is more lost when 20 clients participate in federated learning, but the accuracy
loss is within an acceptable range.

Table 1. The number of interactions between clients and server when the model reaches
the Top-1 accuracy (%) on the mnist dataset. FD - FLAT measures the difference in
the number of interactions and accuracy between the FD and FLAT.

With Lable Without Lable
Number of clients

FLAT FD FD - FLAT FLAT FD FD - FLAT

3 62(95.19) 188(95.29) 126(0.01) 83(93.88) 170(93.89) 87(0.01)

20 150(95.32) 176(95.38) 26(0.06) 83(94.23) 169(94.72) 86(0.49)

Fig. 4. Use different models to train 3 and 20 clients to compare the convergence
behavior of the FLAT scheme with labeled public data and unlabeled public data.
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Then we test on different models, so that the number of layers in the model is
different (maybe 2–3 layers), and the number of neurons in each layer is different
(there may be 32, 64, 128, 256, 512, 1024). After that we use the labeled public
data set and the unlabeled public data set to train 20 clients for testing. We
found that changing the model structure can still converge normally. As shown
in Fig. 4, when the model becomes larger, the accuracy of the model obtained
by convergence is also higher.

4 Conclusion

In this paper, we have proposed a novel while effective federated learning frame-
work, targeting to achieve that the user model can be heterogeneous and the
privacy of user can be protected, while reducing the user’s resource consumption
during the federated learning process. Here we learned from the knowledge dis-
tillation method of interacting information with model output as knowledge, and
further improved the existing federated learning aggregation scheme. Through
experiments, we found that FLAT can realize good convergence while greatly
reducing the resource consumption of the client.
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