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Abstract. While malicious samples were widely found in many application
fields of machine learning, suitable countermeasures have been researched in the
research field of adversarial machine learning. Support vector machines (SVMs),
as a kind of successful approach,werewidely used to solve security problems, such
as image classification, malware detection, spam filtering, and intrusion detec-
tion. However, many adversarial attack methods have emerged recently, consid-
ering deep neural networks as machine learning models. Therefore, we consider
applying them to SVMs and put forward an effective defense strategy against the
attacks. In this paper, we aim to develop secure kernel machines against a preva-
lent attack method that was previously proposed in deep neural networks. This
defense approach is based on the kernel optimization of SVMs with radial basis
function kernels. To test this hypothesis, we evaluate our approach onMNIST and
CIFAR-10 image classification datasets, and the experimental results show that
our method is beneficial and makes our classifier more robust.

Keywords: Support vector machines · Kernel optimization · Adversarial
machine learning

1 Introduction

During the past several decades, we have seen advances in machine learning. However,
with the expansion of machine learning applications, many new challenges have also
emerged. In particular, adversarial machine learning, as a machine learning technique,
mainly learns the potential vulnerabilities of machine learning in adversarial scenar-
ios and have attracted a lot of attention [1–3]. Adversarial samples have been widely
found in the application fields of machine learning, notably image classification, speech
recognition, and malware detection [4–6]. Meanwhile, various defensive techniques for
the adversarial samples have been proposed recently, including adversarial training,
defensive Distillation, pixel deflection, and local flatness regularization [7–10].

As a popular machine learning method, support vector machines (SVMs) were
widely used to solve security problems, such as image classification, malware detec-
tion, spam filtering, and intrusion detection [11–13]. As described in [14], adversarial
attacks against machine learning can be categorized as poisoning attacks and evasion
attacks in general. A poisoning attack happens at test time, where the adversary injects
a small number of specifically modified samples into the training data, which makes a
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change in the boundary of the model and results in misclassification. With the rise of
various poisoning attack measures against SVMs [15–19], the countermeasures for pro-
tecting SVM classifier from poisoning attacks have been developed, one is data cleaning
technology [20], and the other is to improve the robustness of learning algorithms against
malicious training data [21].

In this paper, we focus mainly on evasion attacks on the SVM classifier. An evasion
attack is an attack that evades the trained model by constructing a well-crafted input
sample during the test phase. In 2013, Biggio et al. [22] simulated various evasion attack
scenarios with different risk levels to enable classifier designers to select models more
wisely. However, as time went by, more and more evasion attack methods began to
emerge. There are two main directions of evasion attacks to generate adversarial exam-
ples. One attack is based on the gradient, which is the most common andmost successful
attack method. The core idea is to use the input image as the starting and modify the
image in the direction of the gradient of the loss function, such as the Fast gradient
Sign Method [23], Basic Iterative Method [24], and Iterative gradient Sign Method [25].
Another is to generate adversarial samples based on hyperplane classification, such as
the DeepFool algorithm [26]. Although the above methods of generating adversarial
examples all consider deep neural networks as machine learning models, in this work,
we focus on SVMs. Therefore, we first attempted to apply the above methods of gen-
erating adversarial samples to the SVM classifier and proposed corresponding defense
strategies.

In this work, our main contribution is to propose an effective defense strategy based
on kernel optimization in SVM to protect the classifier against an attackmethod similar to
themethod proposed in [26]. The experimental results (in Sect. 4) show that our approach
has a very significant defensive effect on the iterative attack based on gradient.Moreover,
after using kernel optimization for defense, our classifier becomes more robust. Besides,
to our best knowledge, this is the first attempt to apply this adversarial attack, which
is proposed in [26] to the SVM model, to generate adversarial examples and achieved
good experimental results.

The remaining of this paper is arranged as follows: In Sect. 2, we introduce the rel-
evant knowledge of SVM and the attack approach that we use throughout our work.
In Sect. 3, we illustrate our defend method based on kernel optimization in SVM
against adversarial examples. Experimental results are presented in Sect. 4, followed
by discussion and conclusions in Sect. 5.

2 Preliminary

To better illustrate the proposed procedures, we briefly review the main concepts of
the model and the adversarial attack used throughout this paper. We first introduce our
notation and summarize the model we utilized in the SVM in Sect. 2.1. Then we describe
the major method which was used to generate adversarial samples in Sect. 2.2.
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2.1 Support Vector Machine

The SVM model is a prevailing approach of classification between two sets. For illus-
tration, we first describe the main idea of binary SVM, which is to find a hyperplane that
well-separated the two classes. In SVM, a hyperplane is a solution that can correctly
divide positive and negative class samples based on the principle of structural risk min-
imization. Thus, the hyperplane equation is univocally represented as wT · x + b = 0,
where normal vector w gives its orientation, and b is its intercept displacement.

Assuming that the problem is one of binary classification, we symbol a training
dataset as D = {(xi, yi}Ni=1. Here xi ∈ R

d is the input feature vector, y ∈ {−1,+1} the
output label, respectively, where N is the number of samples, and d is the dimensionality
of the input space. The solution of the optimal hyperplane of the SVM model can
be expressed as a convex quadratic programming problem with inequality constraints.
The Lagrangian multiplier method can be used to obtain its dual problem and then α

can be solved by the SMO algorithm. Finally, we can get the discriminant function.

In addition, w can be calculated as
N∑

i=1
αiyixi, and the intercept b can be computed as

b = 1
|S|

∑

i∈S
(yi − ∑

j∈S
αjyj(xi, xj)).

Although SVM was initially designed to solve linear classification problems, SVM
was extended to nonlinear classification cases by choosing from among different kernel
functions [27]. Through the kernel matrix, the training data can be projected to more
complex feature space. The process of solving SVM is to solve the following quadratic
optimization problem

min
α

1
2

N∑

i=1

N∑

j=1
αiαjyiyjk(xi, xj) −

N∑

i=1
αi,

s.t.
N∑

i=1
αiyi = 0, s.t.

N∑

i=1
αiyi = 0,

αi ≥ 0, i = 1, 2...,N ,

(1)

in which αi is the Lagrange multiplier corresponding to the training data xi, K(·) is the
kernel function. If we define a mapping function � : X → χ , that is to say, the function
maps the training sets into a higher-dimensional feature space, then K(xi, xj) can be
generalized to �(xi)T�(xj), so w, and b can be written as

w =
N∑

i=1

αiyi�(xi), (2)

b = 1

|S|
∑

i∈S
(yi −

∑

j∈S
αjyjK(xi, xj)), (3)

where S = {i|αi > 0, i = 1, 2, ...m} the subscript set of all the support vectors. Though
it may be too complicated to compute in the feature space, one need not explicitly know,
and it only corresponds to the kernel function.
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2.2 Attack Strategy

In [26], they proposed the DeepFool algorithm, which is simple as well as an accurate
method and based on hyperplane classification to generate adversarial samples. The
primary attack method used in our study is similar to this method. In the case where the
classifier f is linear, from [26], we know that the minimal perturbation to change the
classifier’s decision is equal to the distance from the point to the hyperplane classification
times the negative gradient of the unit vector of w, where w is the weight vector of the
hyperplane classification. For the nonlinear case, we consider the iterative procedure to
find theminimum perturbation vector, as shown in Fig. 1. In some situations, wemay not
be able to reach the classification hyperplane in one step, like in the case of linearity, and
multi-step superposition may be required. Consequently, in a high dimensional space,
the minimum perturbation vector of the adversarial sample can be expressed as

ε� = −wT
��(x) + b

||w�||22
w�, (4)

where w and b is represented in Eq. (2) and Eq. (3).
In fact, w� can also be formally represented by all the support vectors in high

dimension space, such as

w� =
∑

i∈S
αiyi�(xi). (5)

Of course, �(xi) showing no explicit expression, so Eq. (5) is only part of the w�

formalized representation, cannot be obtained.

Fig. 1. The minimum perturbation that to classify the positive sample to the negative sample for
a nonlinear binary classifier. On the left is the plane figure, on the right is a geometric illustration
of the method.

Next, we proposed the adversarial generation method, which is based on kernel. For
the nonlinear function f (x), combined with Eq. (3) and Eq. (5), is then defined as follows

f (x) =wT
��(x) + b
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=
∑

i∈S
αiyiK(xi, x) + 1

||S||
∑

i∈S
(yi −

∑

j∈S
αjyjK(xi, x)). (6)

For an unclassified testing sample, if the value of f (x) is positive, the sample would be
classified as a normal example. Otherwise, it would be classified as a malicious sample.
The gradient of f (x) with respect to x is thus given by

∇xf (x) =
∑

i∈S
αiyi∇xK(xi, x). (7)

Here, if we use the Radial Basis Function (RBF) as the kernel function, for this kernel

K(xi, xj) = e− ||xi−xj ||22
σ2 , the gradient is ∇xK(xi, x) = − 2

σ 2 e
− ||xi−x||

σ2 (x − xi). Therefore,
the gradient of f (x) can be rewritten as

∇xf (x) = − 2

σ 2

∑

i∈S
αiyie

− ||xi−x||
σ2 (x − xi). (8)

According to Algorithm 1, we can thus find the adversarial sample.
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3 The Defense Based on Kernel Optimization

If we choose RBF as the kernel function, according to Eq. (1), the dual problem of SVM
can be described as

min
α

1
2

N∑

i=1

N∑

j=1
αiαjyiyje

− ||xi−xj ||22
σ2 −

N∑

i=1
αi

s.t.
N∑

i=1
αiyi = 0

αi ≥ 0, i = 1, 2...,N .

(9)

After solving Eq. (9) to obtain the value of α, considering optimize the kernel param-
eter to improve the ability of defense against adversarial attack.Wenoted the support vec-
tor as xs then the discriminant function of support vectors is f (xs) = wT

��(xs)+b = ±1.
Combining with Eq. (4), correspondingly, we get the minimum perturbation radius of
the support vector against the adversarial samples, which is as below

ε = 1

||w�||2 . (10)

Tomake ourmodelmore difficult to be attacked, we urgentlymaximize theminimum
perturbation semidiameter. Therefore, the task of defense is to maximize the value of
Eq. (10), which can be achieved by minimizing ||w�||22. When given the value of α,
combined with Eq. (5), the optimization of the kernel parameters to defend the attacks
as follows

min
α

A(σ ) =
∑

i∈S

∑

j∈S
αiαjyiyje

− ||xi−xj ||22
σ2 . (11)

This is an unconstrained optimization problem, which can be solved by the gradient
descent method

σk = σk−1 − ηA′(σk−1), (12)

where A′(σ ) = 2
σ 3

∑

i∈S
∑

j∈S
αiαjyiyj||xi − xj||22e− ||xi−xj ||22

σ2 . The Gaussian kernel param-

eter optimization algorithm for defending against adversarial attack, as shown in
Algorithm 2. The initial value of the kernel parameter can be defined as σ (0) =√

1
N (N−1)

N∑

i=1

N∑

j=1
||xi − xj||22, where N is the number of training samples.

In [15], they proposed a simple yet accuratemethod for computing and comparing the
robustness of different classifiers to adversarial perturbations; they defined the average
robustness ρ̂adv(f ) as follows

ρ̂adv(f ) = 1

D

∑

x∈D

||Or(x)||2
||x||2 . (13)
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To verify the effectiveness of our defense method, we also use this method to compare
the robustness of the classifier under different kernel parameters.

4 Experimental Results

Datasets. For the sake of demonstrating the effectiveness of the kernel optimization
defense method, we validated it on MNIST [28] and CIFAR-10[29] image classification
datasets, respectively. In these experiments, we only consider a standard SVM with the
RBF kernel and choose data from two classes, considering one class as the benign class
and a different one as the attack class. The class and number of samples employed in
each training and test set are given in Table 1. In order to limit the range of the adversarial
example, each pixel of the example in both datasets is normalized to x ∈ [0, 1]d [0, 1]d
by dividing by 255, in which d represents the number of feature vectors. For the MNIST
dataset, each digital image represents a grayscale image of 28 ∗ 28 pixels, which means
that feature vectors have d = 28∗28 = 784 values, while for the CIFAR-10 dataset, each
image is a color image with three channels and each channel have 32 * 32 pixels, which
means that feature vectors have d = 32 ∗ 32 ∗ 3 = 3072 features. In these experiments,
only the kernel parameter σ is considered, and the regularization parameter c of the
SVM is fixed to default.

Table 1. Datasets used for training and testing with RBF-SVMs

Dataset Train
size

Test
size

Positive Negative

MNIST 8000 2000 Digit ‘1’ Digit ‘7’

CIFAR-10 10000 2000 Cat Dog

After the process of training, α can be obtained, and we began to the kernel opti-
mization training. According to Sect. 3, we know that the defense method’s task is to
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maximize Eq. (10), that is, to minimize function A in Eq. (11). The gradient descent
method is used to evaluate the function A, as described in Algorithm 2. The graph of
the value of function A varying with the value of is shown in Fig. 2. We found that the
value of the function A grows with the increase of σ on the two datasets. Therefore, the
minimum value of the function A is obtained at the initial value of σ on both datasets.

Then we verify the effectiveness of the defense method of σ at different values. We
use a method that we proposed in Sect. 2.2 to generate adversarial samples. In order to
prevent the gradient from disappearing, we add a small value η = 0.02 to the disturbance
each time we generate adversarial samples. The method used to generate the adversarial
sample is shown in Algorithm 2. On the MNIST dataset, we selected the value of σ

as 8.6 (initial value of the σ ), 20, 40, and 100, respectively, and then compared the
generated adversarial samples (as shown in Fig. 3 on the top). On the CIFAR-10 dataset,
we selected the value of σ 19.6 (the initial value of σ ), 30, 40, and 50, and then compared
the resulting adversarial samples (as shown in Fig. 3 on the bottom).

Fig. 2. How the function A changes with different values of σ onMNIST and CIFAR-10 datasets.
The picture shows that function A and σ are positively correlated.

Finally, we verified the robustness of the classifier under different values of the kernel
parameters. As shown in Fig. 4, after kernel optimization, it significantly increased the
robustness of the classifier.

5 Discussion and Conclusion

In this work, we are the first to propose a strategy for protecting SVMs against the
adversarial generation method which is based on kernel. In [26], they put forward a
technique based on hyperplane classification for generating adversarial examples of
deep neural networks. We think a similar approach could also work for SVMs, namely
applying it to SVM classifiers. Through experiments, it is confirmed that this method
was beneficial on SVM, especially on MNIST dataset, which have been caused by
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Fig. 3. Different defense effects. The figure on the top was the result obtained on the MNIST
dataset. On the top row, the first picture is the original example, representing the digit ‘1’, and
the other four pictures are the adversarial samples generated by the initial sample under different
kernel parameters, representing the digit ‘7’. The picture below shows the results of the CIFAR-10
dataset. On the bottom row, the first one is the original example, which represents ‘dog’. The other
four are the adversarial samples generated by the first one under different σ , which is meant ‘cat’.

Fig. 4. Relation diagram between the robustness of the classifier and the kernel parameter on
MNIST and CIFAR-10 datasets. As the value of σ increases, the robustness of the classifier will
decrease. The performance is more obvious on the CIFAR-10 dataset.

nearly 100% misclassification. According to this phenomenon, we proposed a strategy
for protecting SVMs against the adversarial attack. This defense approach is based on the
kernel optimization of SVM. We extensively evaluate our proposed attack and defense
algorithms on MNIST and CIRAR-10 datasets.

According to Fig. 3, we found that when the initial value of the σ , that is, the
minimum value of its corresponding function A (see Fig. 2), was taken, there was the
largest perturbation required to generate the adversarial sample, which means that the
defenses are at their best. This finding holds for both datasets. The experimental results
also show that our proposed defensemethod can effectively increase the price of attackers
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and achieve a robust performance (see Fig. 4). This gives the classifier’s designer a better
picture of the classifier performance under adversarial attacks.

In this paper,wefirst described a practical attackmethodwhich has already confirmed
to be effective. Then we proposed a defense method which is based on kernel. The
experimental results demonstrated that the defense method is useful and effective to the
security of SVM. Finally, we believe that our work will inspire future research towards
developing more secure learning algorithms against adversarial attacks.
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