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Abstract. The research and application of lidar in the establishment of high-
precision maps and path planning of intelligent driving vehicles are being devel-
oped as a technical support for intelligent driving technology. In this paper we
mainly focus on the research and application of lidar real-time positioning and
map building technology in intelligent driving vehicles, including the preprocess-
ing of raw data required by Simultaneous Localization and Mapping (SLAM),
the front-end algorithm of SLAM, the back-end optimization of SLAM and the
final algorithm experiment. In the front-end algorithm of SLAM, we propose a
boundary line feature extraction scheme based on the traditional curvature feature
point extraction method and Random Sample Consensus (RANSAC) algorithm,
and realize point cloud registration and pose estimation based on optimized Iter-
ative Closest Point (ICP). In the back-end processing algorithm, we propose a
sparse algorithm of graph nodes for selection, and propose boundary verification
based on an improved loop detection and relocation strategy design. The results
showed that the algorithm in this paper was less affected by noise, which consid-
erably saves time in the operation of the loop frame determination algorithm and
improves the safety of the intelligent vehicle in the process of driving.
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1 Introduction

Currently, with the development of science and technology, the improvement and pursuit
of vehicle performance, intelligence, safety and comfort, and transportation efficiency are
constantly changing and strengthening [1]. People’s pursuit and exploration of vehicle
intelligence have become the driving force for the development of the intelligent driving
industry. Among them, safety, efficiency and economy are driving the development of
intelligent driving [2].

The construction of high-precision maps and the acquisition of real-time accurate
positions are important contents of unmanned vehicle environmental perception, and
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have an important impact on the path planning and decision-making control of unmanned
vehicles. At present, the most widely used sensors in the environmental perception of
intelligent driving vehicles are laser sensors, GPS and visual sensors. Depending on
different application environments [3, 4], the selection of sensors has varying emphases;
however, lidar is a necessary sensor for all types of intelligent driving vehicles. The
main reason is that other sensors have their own defects to some extent, and they cannot
independently undertake the environmental perception of intelligent driving vehicles.

In this paper we summarize the problems of intelligent vehicle navigation based
on GPS and vision Simultaneous Localization and Mapping (SLAM) technology [5,
6]. (1) Navigation systems based on GPS have limited use scenarios, and signal loss is
easily caused as a result of blockage. In addition, the GPS signal is unstable. Therefore,
the application of this navigation scheme in intelligent driving vehicles has serious
drawbacks and security problems. (2) The SLAM technology, which is based on vision,
is greatly affected by light and weather. For example, in rainy days, foggy days, and
strong and weak light conditions, the sensors’ perception of the environment is affected,
and there are also serious security problems. Compared with the vision sensor, the lidar
sensor has fast response speed, strong anti-interference ability and high data accuracy,
which solves the problems inherent to GPS and camera technology [7].

2 Related Work

At the present stage, generally speaking, the sensors used in lidar SLAMmainly include
an inertial measurement unit, a wheel odometer and lidar. The map types constructed
include a coverage grid map and a point cloud map. The coverage grid map has clearer
divisions and annotation of the environment and iswidely used.According to the assump-
tion of the mapping environment, there are two types of SLAM technology: one is a
dynamic environment,whichmeans that there aremoving objects (high dynamic objects)
in the lidar field of vision, or that the position difference of the same object changes (low
dynamic object) when lidar is observed twice; the other is a static environment, which
is the type most SLAM algorithms widely use at present. In the latter, it is assumed that
the environment is static in the process of mapping and navigation [8, 9]. On the basis of
the static environment assumption, the environment is either divided into a scale map, a
topological map or a hybrid map according to the output process. At present, almost all
SLAMs are scale maps.

On the basis of a scale map, there are different branches varying in their main
principles. At present, SLAM based on filters and SLAM based on graph optimization
are widely used.

2.1 SLAM Based on Filters

According to the different filters, theSLAMmethodbasedonfilters is divided intoSLAM
based on a Kalman filter and SLAM based on a particle filter. However, the main basis of
the twofilters is the same, and themain principle is recursiveBayesian state estimation. In
order to avoid the problem of feature point definition and corresponding data association
to a certain extent, the FastSLAMalgorithm, as one of themost representative algorithms
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based on a particle filter SLAM algorithm, has become a hot topic of scholars at home
and abroad. Therefore, the algorithm has been constantly improved by different scholars,
which makes the algorithm capable of achieving good results in specific scenarios.

The core idea of the SLAM algorithm based on a recursive Bayesian estimation
is to use the motion model and observation model of intelligent driving vehicles to
forecast and observe the state of vehicles under the assumption of a hidden Markov
model. Although this method has the advantages of online real-time map updating, due
to its own characteristics, it inevitably has its disadvantages. Because the method of
map construction is incremental, and sensors errors and other aspects of the vehicle are
constantly accumulating during the driving process; this cumulative error will lead to
inconsistency of the constructed map when the vehicle driving environment is large.
Therefore, the application of SLAM based on recursive Bayesian state estimation in
large-scale environments is not ideal.

2.2 SLAM Based on Graph Optimization

With the widening application of SLAM technology, its application scenarios are also
growing. In order to adapt to large-scale application scenarios, more and more scholars
have carried out research on SLAM based on graph optimization. SLAM based on
graph optimization can correct the trajectory of intelligent driving vehicles through
global optimization and build a more realistic map. At present, SLAM based on graph
optimization is the most widely used and researched method, with good effect. This
SLAM method can have absolute position information and can recover to a better state
from the error accumulation process. Through the maximum likelihood estimation of
the position and attitude, the local minimum value is non convex optimization, so as to
obtain the position and attitude information of the vehicle at a certain time in the future.

Grisetti G et al. [11] proposed a solution based on least square error, and proposed
optimization using the framework of SLAM problem W et al. [12] and others proposed
to use the branch bindingmethod to effectively solve themapping problem of subgraphs,
and has good loopback ability. It has high accuracy in building maps, and can solve slam
problems in large environment. In 2016, vysotska et al. [13] and others will build new
subgraphs, public maps and data from laser sensors So as to improve the drawing effect.
Most of these graph optimization SLAM algorithms are basic nonlinear optimization
problems, and the least squares method is also the most commonly used algorithm
framework [14, 15].

Based on the lidar, we carry out the research and application of real-time positioning
and map building technology in intelligent driving vehicles, including the preprocessing
of raw data required by SLAM, the front-end algorithm of SLAM, the back-end opti-
mization of SLAMand afinal algorithmexperiment. Themain contributions of this paper
are as follows: in the front-end algorithm of SLAM, based on the traditional curvature
feature point extraction method and Random Sample Consensus (RANSAC) algorithm,
a boundary line feature extraction scheme is proposed, and point cloud registration and
pose estimation are realized based on the optimized Iterative Closest Point(ICP). In
the back-end processing algorithm, the sparse algorithm of graph nodes is proposed
to select, and the boundary test is proposed based on the improved loop detection and
relocation strategy. Through a series of front-end and back-end algorithm optimization,
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the influence of noise on the matching algorithm is reduced, and the time consumed by
loop frame determination algorithm is considerably reduced.

3 Design of SLAM Front End Processing Algorithm for Lidar

Due to the low density of lidar remote point cloud data, the effect and accuracy of these
point cloud data in point cloud registration and other post-processing are usually not
very good [16, 17]. Therefore, this paper sets conditions for the x-axis, y-axis and z-axis
to remove the remote data [18]. In this paper, we set the filter to specify the value range
from three dimensions, and then check whether a point is in the specified value domain
of the specified dimension as the condition to traverse the cloud data, remove the external
points and retain the internal points.

Suppose the midpoint P (x, y, z) of the original point cloud, if:

x ∈ (X1,X2) ∩ y ∈ (Y1,Y2) ∩ z ∈ (Z1,Z2) (1)

When Eq. (1) is satisfied, the point is retained, otherwise it is deleted.
On the other hand, in order to ensure the processing speed and efficiency of the

later point cloud data, the point cloud data must be downsampled in the process of
preprocessing the original input point cloud. Considering the effect of down sampling
and the fidelity of the original point cloud, the followingmethods are used to downsample
the input point cloud.

The main idea of this method is as follows: firstly, the input 3D point cloud is divided
into a series of 3D grids. Assuming that there are n point cloud data in a grid, the center
of gravity is as follows:

(x, y, z) =
(∑n

i=1 xi
n

,

∑n
i=1 yi
n

,

∑n
i=1 zi
n

)
(2)

For each grid point cloud, the center of gravity of these point clouds is approximately
replaced, and other point cloud data are removed and the center of gravity points are
retained to achieve the purpose of down sampling.

3.1 Feature Point Extraction from Point Cloud Data

At present, the curvature-based feature point extraction method is mainly used. The
theory of this method is relatively simple, the calculation speed is fast, and the extraction
effect of feature points is relatively ideal. However, this method is sensitive to noise and
does not have good robustness. Therefore, on this basis, this paper combines this method
with the RANSAC algorithm, and proposes a boundary line feature extraction scheme
to ensure the integrity of the method. The feature information of a point cloud is used
to prepare for the later point cloud registration. The boundary line feature extraction
scheme is as follows:

(1) Taking a grid point cloud Qdata as input, the model is set as linear model M, and
two points inQdata are randomly selected as sample points to fit modelM. The schematic
diagram is shown in Fig. 1.
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Fig. 1. Schematic diagram of any two points fitting model M.

(2) Because the point cloud data are not strictly in linear distribution, there are some
fluctuations in the data points. The tolerance range is set as δ, and then it is found out if
the point cloud Qdata falls within the tolerance range δ and the number of the points N
is counted. Figure 2 is a schematic diagram of the points within the tolerance range.

Fig. 2. Schematic diagram of points within tolerance range.

(3) In a point cloud Qdata, two points are randomly selected as sample points, and
the steps in (1) and (2) are repeated K times. The number of iterations K is determined
by the total number of data points N in the point cloud Qdata and the number of points
within the tolerance rangeNin. Suppose that the probability of n points out of all N points
of point cloud Qdata falling within the tolerance range is Pin, while the probability of
falling outside the tolerance range is Pout . Therefore, the probability that at least one of
these N points falls outside the tolerance range is 1 − Pin, while Pout = 1−Nin

N , and then
(1 − Pout)

n represents the probability that all points in point cloud Qdata fall within the
tolerance range. Therefore, when a point in point cloud Qdata falls outside the tolerance
range, the probability is 1 − (1 − Pout)

n. Therefore, in the process of K iterations, the
probability that each point falls out of the tolerance range is (1 − (1 − Pout)

n)K , where
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K is obtained by:

1 − Pin = (1 − (1 − Pout)
n)

K (3)

K = log(1 − Pin)

log(1 − (1 − Pout)
n)

(4)

Figure 3 is the schematic diagram of a certain iteration for reselecting sample points.

Fig. 3. Schematic diagram of a certain iteration for reselecting sample points.

(4) After each iterative fitting, there will be a corresponding number of local points
Nin in the tolerance azimuth δ. After iteration, the line model M corresponding to the
maximum value ofNin is the final extracted line feature. The schematic diagram is shown
in Fig. 4.

Fig. 4. Schematic diagram of line model corresponding to Nin Max in iteration process.

At the same time, according to whether there are point cloud data points in the grid,
it can be divided into a real grid and an empty grid. We binarize these two kinds of grids
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and define that f (x, y, z) = 1 is the real grid and f (x, y, z) = 0 is the empty grid. Real
grids can be expressed as:

g(x, y, z) =
∑

−1≤i≤1

∑
−1≤j≤1

∑
−1≤k≤1

|f (x, y, z) − f (x + i, y + j, z + k)| (5)

where I, J and K denote the topological directions of the grid, and satisfy the equation
i + j + k = ±1& (i = 0‖j = 0‖k = 0).

At this time, if g(x, y, z) ≥ 3,we determine the real grid as the boundary grid, and use
the RANSAC algorithm to calculate the straight line boundary in the same topological
direction in all of the boundary grids. The calculation effect is shown in Fig. 5.

Fig. 5. Effect of boundary line feature extraction.

So far, the feature information has been extracted based on curvature and the
RANSAC algorithm. The next step is to filter the feature information.

4 Design of Laser Radar SLAM Back-End Processing Algorithm

4.1 Selection and Extraction Strategy of Graph Nodes

Due to the low speed of intelligent driving vehicles at present, the speed is controlled
below 30 km/h in complex environments, and the speed can reach 50–60 km/h only
when the environment is simple and the road is straight. When the vehicle speed is low
in complex environments, there will be a large amount of redundant data in the front-
end of SLAM, while in a flat road environment, only a small amount of position and
attitude data is needed. Therefore, in order to effectively simplify the data and reduce
the complexity of the back-end optimization algorithm, this paper proposes a sparse
algorithm to sample the vehicle trajectory.

The algorithm used in this paper is based on the vertical distance between a point and
the line where two points are located, and it sets a threshold to screen the pose points.
The specific algorithm process is described as follows.

(1) A straight line is determined according to the starting position and pose point x1
and the ending position and pose point xn of the vehicle track.



Research on Global Map Construction and Location of Intelligent Vehicles 217

(2) The position and pose points xi on the vehicle track are detected one by one; then
the distance d1i between them and the straight line x1xn is calculated, and then
the position and attitude point xk corresponding to the maximum distance d1max is
determined.

(3) Comparing d1max with the threshold value ε, if d1max < ε, it can be considered
that the trajectory of this segment is approximately equal to the segment, so it is
replaced by this segment.

(4) If d1max ≥ ε, the vehicle trajectory is divided into two segments by taking the pose
point xk as the boundary, and the process of steps (1) to (3) is repeated separately
for these two segments.

(5) In the same way, all parts of the vehicle track are processed in the same way, and
the position and posture points on the track are compressed.

Fig. 6. Comparison of trajectory before and after using two kinds of thinning algorithms: (a)
effect of thinning algorithm; (b) vertical pumping effect.

Another widely used thinning algorithm is the vertical distance limit method, but this
method cannot control the fidelity of the original trajectory globally. Figure 6 shows the
comparison of the two algorithms. It is obvious that the proposed algorithm has better
fidelity while compressing the number of pose points.
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4.2 Improved Loop Detection and Relocation Strategy Design

The framework of the loop detection method proposed in this paper is mainly composed
of the following steps: 1. point cloud preprocessing; 2. feature point extraction; 3. pre-
liminary determination of candidate loop frame; 4. descriptor extraction; 5. loop frame
accurate determination; 6. target matching; 7. boundary verification.

This paper proposes boundary validation.When the target matchingwork is finished,
due to the determination of the looping frame and a small amount ofmatching inaccuracy,
in order to ensure the correctness of the whole process, the point cloud in the candidate
matching list in (3) is further verified. The specific method is as follows: match the
boundary line feature points extracted from two groups of point clouds based on the
RANSAC algorithm to obtain the transformation matrix Rv and Tv. If Rm and Tm are
consistent with Rv and Tv, it is judged that the loop detection match is consistent, that is,
the vehicle returns to the historical position in the track after a period of time, and then a
loop detection edge is added to the pose image; otherwise, when the loop frame appears
in the case of false detection, the values of Rm, Tm and Rv, Tv will be very different, and
the looping frame will be eliminated.

5 Experimental Verification and Result Analysis

The operating platform of the industrial control equipment is a 64 bit Ubuntu 16.04
system. The data processing and algorithm experiments involved in this paper are based
on the Robot Operating System (ROS) robot operating system.

5.1 Experimental Analysis of Front End Processing

Feature Point Extraction Experiment
The strategy of feature point extraction in this paper is a curvature-based and RANSAC-
based boundary line extraction method. The common curvature based feature point
extraction method has fast calculation speed but is sensitive to noise. The reliability of
feature points extracted in a complex environment will be greatly reduced. As shown in
Fig. 10, the feature points extracted from the point cloud data of the experimental scene
based on curvature extraction are shown in Fig. 7.

The red line in the above figure is the part with trees in the experimental scene. The
scene of this part is more complex and changeable, which leads to the reliability of the
feature points in this part to a certain extent. Therefore, based on this, this paper extracts
the boundary line features of the scene based on RANSAC, and the extraction effect is
shown in Fig. 8.
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Fig. 7. Feature point extraction based on curvature. (Color figure online)

Fig. 8. Boundary line feature extraction based on Random Sample Consensus (RANSAC).

Point Cloud Matching Experiment
In this paper, the point cloud matching is optimized on the basis of the original classical
iterative closest point (ICP) algorithm. After optimization, (1) when approaching the
minimum value of the objective function, the descent direction of the iteration gradually
approaches the Gauss Newton method, which is similar to the second derivative infor-
mation, so as to effectively improve the convergence speed of the algorithm; (2) when
far away from the minimum value of the objective function, the iterative descent method
can search the global solution and avoid the local optimal solution.

In order to show the advantages of point cloud matching after optimization, we
compared the twomatching algorithms before and after optimization in terms of iterative
efficiency and robustness to noise in the same experimental scene.

In the comparison experiment of iterative efficiency, this we iterated 10 times, 20
times, 40 times, 80 times, 160 times and 320 times to carry out the point cloud matching
experiments of the two methods. The comparison of the time-consuming of the two
methods is shown in Fig. 9. It can be seen from the graph that the efficiency of the
classical algorithm was greatly improved after optimization, and with the increase of the
number of iterations, the efficiency of the algorithm was increasingly different.
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Fig. 9. Time consumption comparison of point cloudmatching between classical Iterative Closest
Point(ICP) algorithm and our algorithm.

In the contrast experiment of robustness to noise, Gaussian noise was added to the
original data of the experimental scene to compare the matching accuracy of the two
matching algorithms. The addedGaussian noisewas divided into seven levels, fromweak
to strong. The first level did not add Gaussian noise, and then the standard deviation of
each level increased by 0.5 mm until the seventh level. As shown in Fig. 10, the point
cloud data with the third level of Gaussian noise were added. Green points are Gaussian
noise points, and white points are original data points.

Fig. 10. Point cloud data after adding level 3 Gaussian noise.

The comparison of matching accuracy scores of the two matching algorithms under
different levels of Gaussian noise is shown in Fig. 11. It can be clearly seen from the
figure that thematching accuracy of the classical ICP algorithm for point cloudmatching
was significantly reduced when there was too much noise in the environment, while the
optimized matching algorithm presented in this paper was less affected by the noise.
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Fig. 11. Comparison of matching accuracy under different levels of Gaussian noise.

5.2 Back-End Optimization Experiment Analysis

The back-end of SLAM in this paper refers to the optimization of the pose mapwith loop
constraints. For this part, a comparative experiment was set up to examine two aspects:
the optimization degree of the algorithm to the trajectory of the pose map and the time
consumption of the loop frame detection.

Regarding a comparative experiment of in situ pose map trajectory, we compared the
effect before and after the optimization of the back-end pose map from two perspectives
of the whole process of three-dimensional trajectory and of height change. In Fig. 12, the
3D trajectory comparison effect map of the pose map before and after the optimization
of the rear end is shown. The coordinate point (0, 0, 0) in the figure is the starting
point of the experiment, and the vehicle stopped at the entrance of the college after a
circle around the college. It can be seen from the figure that the red and blue tracks
basically coincided at the beginning of the journey. When entering the first corner, the
errors of the two kinds of trajectories began to appear. The later trajectory for back-end
optimization appeared more and more drift. When the red curve was close to the starting
point of the experiment, a good closed-loop was formed for the red curve, while the error
accumulation of the blue track was caused by the distance. There was a big deviation in
the red trajectory.

On the other hand, the comparison effect of height error before and after optimization
corresponding to the three-dimensional trajectory is shown in Fig. 13. The route of the
experimental scene in this paper basically had no large height fluctuation. It can be
seen from the figure that the height after the rear end optimization always fluctuated
slightly up and down based on the starting position, while the height before the rear end
optimization fluctuated greatly due to the impact of vehicle bumps and other factors.

In addition, in order to reflect the advantages of this algorithm in the back-end loop
optimization, the running effect of large-scale environmental offline data sets containing
loopbackwas comparedwithwhether to carry out graph optimization and loop detection.
As shown in Fig. 14, the trajectory had obvious drift without loop detection for pose
optimization.
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Fig. 12. Trajectory comparison before and after optimization. (Color figure online)

Fig. 13. Comparison of height error before and after rear end optimization.

Fig. 14. Large scale environmental mapping effect including loop: (a) the Simultaneous Local-
ization and Mapping (SLAM) algorithm presented in this paper; (b) SLAM algorithm without
loop detection and graph optimization.
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In this paper, the number of feature points is taken as the constraint condition to carry
out the prescreeningwork, which greatly reduces the time consumption of the loop frame
determination. In this regard, experiments were set to verify the optimization effect of
the algorithm’s time consumption by the number of feature points. The experimental
comparison is shown in Fig. 15. Experimental results showed that when the vehicle
passed through the straight road to a new environment, the time consumption of the loop
frame detection was greatly reduced, the algorithm time consumption increased within
the distance of less than 50m at the beginning of the experiment, and the remaining parts
significantly reduced the time consumption of the loop frame determination algorithm.

Fig. 15. Loop frame determination process time comparison.

6 Conclusions

The map and location technologies that intelligent driving vehicles depend on is one of
the hot topics of research. In this paper, considering the advantages of lidar data stability
and good development prospects of laser SLAM, the analysis and processing of raw
data, front-end processing and back-end optimization of lidar SLAM were studied. In
this paper, a boundary line feature extraction method was proposed to supplement the
curvature-based feature points, so as to enhance their anti-interference ability to noise.
Regarding graph nodes, reasonable sparse sampling was carried out on the nodes of
the pose map through the environmental characteristics and trajectory characteristics
of the intelligent driving vehicle. Regarding the constraint edge between nodes, the
loop edge was determined through the determination of a candidate loop frame, the
accurate determination of a loop frame and boundary verification. Finally, the back-end
optimization algorithmwasused tooptimize thewhole posemap to reduce the cumulative
error caused by the large scale of the environment. The experimental results showed
that the optimized matching algorithm was less affected by noise, and the loop frame
detection optimization algorithm was reduced by 75%, which greatly reduced the time
consumption of the loop frame determination algorithm and proves that the optimization
algorithm in this paper is effective. The results provide ideas for the accurate mapping of
intelligent vehicles in the process of driving, and improve the safety of vehicle driving.
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