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Abstract. Given some pixels with user-defined land cover types as labeled pos-
itive and negative samples, traditional remote sensing classification methods are
sufficient to obtain optimal classification results. However, in many cases, only the
positive pixels that users are interested in are labeled, and the negative samples are
too diverse to be labeled. Such classification problems are referred to as one-class
classification. Traditional learning methods are not suitable for one-class classifi-
cation problems because labeled negative samples are required for these methods.
In this paper, we propose a regularization-based positive and unlabeled learn-
ing method called RPUL for one-class classification of high-spatial-resolution
aerial photographs. RPUL uses the implicit mixture model of restricted Boltz-
mann machines (IRBM) as the base framework of the classifier. With the help
of a regularization term embedded into the loss function, an additional restric-
tion is imposed on the negative class conditional PDF to ensure that it is as far
from the positive class conditional PDF as possible. Thus, although no labeled
negative training samples are available, the negative class conditional PDF can
be estimated directly to obtain a binary classifier for the detection of the class
of interest. The experimental results indicate that the new method provides high
classification accuracy and outperforms state-of-the-art methods, including the
cost-sensitive positive and unlabeled learning (CSPUL) and Gaussian domain
descriptor methods.

Keywords: Remote-sensing · Positive and unlabeled data · Regularization
term · Restricted boltzmann machines (RBM)

1 Introduction

Remote sensing technology has been widely used in various urban and environmental
applications, such as land use change monitoring, water quality measurement and veg-
etation mapping. In general, remote sensing technologies rely on the classification and
detection of targets in remote sensing images. Target detection refers to the technical
process of distinguishing target and nontarget areas in an image and can essentially be
seen as a process of machine learning: learn and construct a statistical classification
model on the set of positive and negative labeled data and use this model to obtain the
class label of other unlabeled pixels.
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In recent years, with the development of machine learning and image processing
technologies, remote sensing object detection methods have provided relatively good
detection results. However, in some applications, we may be interested in only specific
target areas and not other areas, which may incur the absence of negative labelled data
[1–5]. For example, if the goal of a project is to detect roads from remote sensing data
and update the information of an existing transport system, we may be reluctant to label
forests and agricultural areas in the images as labeled negative training data. Moreover,
even if we can afford the time and labor cost, it is still difficult to obtain a proper negative
training dataset due to the high diversity of negative classes, particularly when high-
spatial-resolution images are used. The classification problem in which the training data
include only labeled positive training samples (target region) and not negative labeled
training samples (non-target region) is called the one-class learning problem in machine
learning [6, 7]. For this type of problem, traditional supervised classification methods
are usually inefficient because traditional supervised classifiers require the classes in the
remote sensing image to all have labeled training pixels. Thus, it is necessary to develop
a stable and efficient remote sensing image target region detection method for cases
where the training set contains only positive labeled samples.

At present, two strategies are used to address the one-class classification problem in
the literature. The first strategy completely ignores unlabeled data and trains a classi-
fier on only positive labeled data. Typical approaches of this type include the Gaussian
model (GM) [7], one-class support vector machine (OCSVM) [8, 9] and support vec-
tor data description (SVDD) [10]. The GM assumes that the positive data are sampled
from a Gaussian distribution. After density estimation of the positive labeled data, GM
discriminates the positive class from the other classes by specifying an appropriate
threshold. The disadvantage of GM is its inability to determine a suitable threshold.
Moreover, when the data feature dimensionality is high, density estimation is usually
very difficult. SVDD and OCSVM regard the original point as the only negative train-
ing case and find a hyperellipsoid that can exactly accommodate all positive examples
or a hyperplane to separate the positive labeled data from the original point with the
maximum margin. The disadvantage of these two methods is that their classification
results are sensitive to the parameter values, so careful parameter tuning is required.
The second strategy is semi-supervised learning, where unlabeled data are added to the
learning process to compensate for missing negative labeled data. Representative works
include semi-supervised one-class SVM (S2OC-SVM) [11], 1-SVMs [13], positive and
unlabeled learning method (PUL) [3] and cost-sensitive positive and unlabeled learning
method (CSPUL) [13]. S2OC-SVM and 1-SVMs improve the classifier by introducing
manifold regular terms into the learning goal to make the labels smoother. However, the
classification outcome is still sensitive to the parameter values. PUL and CSPUL are
state-of-the-art methods for one-class classification. They use the estimated class prior
to learning a classifier on positive and unlabeled data directly, where the unlabeled data
play a similar role as the negative labeled data. However, the two-step strategy makes
the classification precision strongly dependent on the class prior estimated in their first
step.
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In this paper, we propose a PUL method based on regularization, which is formal-
ized as the Bhattacharyya coefficient (BC). The BC is a measure of the amount of
overlap between two statistical samples or populations and is widely used in research
on feature extraction and selection, image processing, speaker recognition, and phone
clustering. We use the BC to impose an additional restriction on the unknown negative
class conditional PDF to ensure that it is as far from the positive class conditional PDF
as possible. Since the positive class conditional PDF and the mixture PDF of both the
positive class and negative class can be estimated from the positive data and the unla-
beled data, respectively, such a learning strategy makes it possible to obtain an estimate
of the negative class conditional PDF. Moreover, we adopt an implicit mixture model
of restricted Boltzmann machines (IRBM) to depict the data distribution to avoid the
problem of simultaneously estimating the value of unknown class priors and unknown
density functions. Thus, RPUL is established by embedding the BC between two class
conditional densities into the risk function, i.e., the KL divergence between samples and
the IRBM model, as a regularization item.

In contrast to other one-class methods, RPUL makes no assumptions about the data
generationmechanism and requires no processing steps to estimate the threshold or class
prior. We apply RPUL to classify data extracted from three scenes of a high-spatial-
resolution image under the assumption that only positive data and unlabeled data are
available for training. The experimental results illustrate the superiority of the proposed
method compared with other state-of-the-art strategies.

2 The Proposed Approach

2.1 Preliminaries

Bhattacharyya Coefficient. The BC between two probability densities p1(v) and
p2(v), with v ∈ Rd , is defined as

B =
∫
Rd

√
p1(v)p2(v)dv. (1)

Clearly, the value of B is always confined within the interval [0, 1].
Implicit mixture model of RBMs (IRBM) [14]. The IRBM is a mixture model of
RBMs with the mixed weights implicitly parameterized.

Let v ∈ Rd be a vector of visible (observed) variables and h be a vector of hidden
variables. Let K be the number of components (classes): K is two in this paper since we
discuss only situations with two classes. Let q be a K-dimensional binary vector with
only one element being one. Further, if q1 = 1 and q2 = 0, then the current v is a case
of the positive class; otherwise, it is a case of the negative class. The energy function for
IRBM is

E(v,h, q) = 1

2

∑
i

(vi − ci)
2 −

∑
j

hjdj −
∑
k

qk
∑
i,j

Wijkvihj (2)
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ci =
∑
k

qkCik , dj =
∑
k

qkDjk (3)

where W, C and D are the weight parameters, the visible unit biases and the hi-den unit
biases, respectively, and k represents the component index. The joint distribution for the
mixture model is

pmodel(vs,hs,qs) = exp
(−E(vs,hs,qs)

)
/Z (4)

where

Z =
∑
v,h,q

exp(−E(v,h,q)) (5)

is the partition function of the implicit mixture model. The components of IRBM are
standard RBMs. The energy function of the kth component derived from (2) is

Ek(v,h) = E(v,h, qk = 1) (6)

The corresponding distribution function of the kth component is

pmodel(vs,hs|qk = 1) = exp
(−Ek(vs,hs)

)
/Zk

Zk =
∑
v,h

exp(Ek(v,h)) (7)

Let θ = {W ,C,D} be the set of model parameters. Given a set of N training
cases

{
v1, ..., vN

}
, the learning process of IRBM is to maximize the log likelihood of

L = ∑N
n=1 log pmodel(vn; θ) or tominimize theKullback–Leibler (KL) distance between

the empirical data distribution and the model distribution KL(pdata(v)||pmodel(v ; θ)),
where pdata(v) = 1

N

∑n
i=1 δ(v − vn) and δ(v−vn) is 1 onlywhen v = vn; otherwise, it is

0. IRBM can be trained by a contrastive divergence-like algorithm by sampling the con-
ditional distributions p(h,q|v) and p(v|h,q). Sampling p(h,q|v) is not straightforward
and performed in two steps. First, the K-way discrete distribution p(q|v) is computed
(see below) and sampled. Then, given qk = 1, the kth component RBM is selected and
its conditional distribution p(h|v) is sampled. p(q|v) is given by

p(qk = 1|v) = exp(−F(v, qk = 1))∑
m exp(−F(v, qm = 1))

(8)

where

F(v, qk = 1) = 1

2

∑
i

(vi − ci)
2 −

∑
j

log

(
1 + exp

(∑
i

Wijkvi

))
(9)
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2.2 Learning Framework

Notation
Let Y = {+1,−1} be the set of possible labels. Without loss of generality, we suppose
only the first l cases in

{
v1, ..., vN

}
are labeled with positive label +1 and the rest are

unlabeled. LetP = {
v1, ..., vl

}
be the set of positive samples, and letU = {

vl+1, ..., vN
}

be the set of unlabeled samples.

Method
The goal of our method is to learn the posterior probability function p(q1 = 1|v).
According to Bayes’ rule,

p(q1 = 1|v) = p(v|q1 = 1)p(q1 = 1)

p(v)
. (10)

Then, the positive conditional density function p(v|q1 = 1),the mixture density p(v)
and the class prior p(q1 = 1) must be estimated. As the IRBM was adopted as the data
description model, estimation of the class prior is replaced by estimation of the negative
class conditional density function. However, because of the lack of labeled negative data,
estimation of the negative class conditional density is not straightforward. To address this
problem, we introduce the BC to obtain supernumerary information about the negative
class conditional density to compensate for the absence of negative labeled data. This
approach is reasonable. In fact, minimizing the BC between the conditional densities
of two class, i.e., the amount of overlap, would lead to a negative class conditional
density that is far from the positive class conditional density. Then, in the area far from
the negative data, it holds that p(v|q1 = 1)p(q1 = 1) is approximately equal to p(v).
Notably, approximating p(v|q1 = 1)p(q1 = 1) as p(v) is the starting point of the
state-of-the-art one-class method [13] for estimating the class prior.

Finally, the proposed framework of RPUL is formulated to minimize

Z(θ) = KL(pdata(v|q1 = 1), p(v|q1 = 1; θ1))

+ KL(pdata(v), p(v; θ)) + μB(p(v|q1 = 1; θ1), p(v|q2 = 1; θ2)) (11)

where θ = {θ1, θ2} is the set of model parameters and θk is the set of parameters of the kth

component of IRBM. KL(•) is the Kullback–Leibler divergence. The first two items on
the right side of the equal sign measure the degree of fit between the positive data and the
first positive component of IRBM and the degree of fit between the unlabeled data and
the complete IRBM, respectively. The final item is the BC regularization item, which
ensures that the second component of IRBM captures the negative class conditional
density precisely, as mentioned in the previous analysis. The trade-off between the data
fit items and the regularization item is positive parameter μ, which is fixed at 0.1 in this
paper.

Solution
As in the training process of IRBM, gradient descent is employed to solve optimization
problem (11). To make the notation concise, the three terms on the right side of the equal
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sign of (11) are denoted by KL1(θ1), KL2(θ), and B(θ). Given the samples vs ∈ U , the
estimate of B(θ) is computed by

B(θ) =
∑

vs

√
f (vs; θ1)g(vs; θ2). (12)

Then, the derivative of B(θ) with respect to θk is

∂B

∂θk
= −1

2
√
p(q1 = 1)p(q2 = 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
vs
p(vs)

√
p(q1 = 1|vs)p(q2 = 1|vs)∂Fk(vs)

∂θk

−
(∑

vs p(v
s)

√
p(q1 = 1|vs)p(q2 = 1|vs)∑
v p(v)p(qk = 1|v)

)

(∑
v
p(v)p(qk = 1|v)∂Fk(v)

∂θk

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

where θ is omitted for brevity and Fk(v) = F(v, qk = 1). To compute the terms
associated with the variable v of (13) exactly, we would need to sum over the joint space
of all possible visible variables, which is an intractable task. Fortunately, we can address
this problem using the CD learning algorithm, which has been found to be effective for
training a variety of energy-based models. Based on the CD algorithm, we sample the
mixed probability density p(v) to compute the corresponding expectation terms and then
obtain the approximation to the derivative of B(θ):

∂B(θ)

∂θnk
≈ −1

2
√
p(q1 = 1)p(q2 = 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l+u∑
s=l

pdata(vs)
√
p(q1 = 1|vs)p(q2 = 1|vs)∂Fk(vs)

∂θnk

−

⎛
⎜⎜⎜⎝

l+u∑
s=l

pdata(vs)
√
p(q1 = 1|vs)p(q2 = 1|vs)

l+u∑
s=l

p
(
(vs)−

)
p(qk = 1|(vs)−)

⎞
⎟⎟⎟⎠

(
l+u∑
s=l

p
(
(vs)−

)
p(qk = 1|(vs)−)

∂Fk((vs)−)

∂θnk

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

where (vs)− is obtainedby thenegative phase,which are thevalues of thevisible variables
after M steps of alternating sampling and p(h,q|v) and p(v|h,q). Otherwise, given vs, if
the sampled q1 = 1, let sk = 1; else, let sk = 2. Similarly, given (vs)−, we can obtain the
value of (sk)−. The derivative of Fk in (14) can be computed approximately as follows:

∂Fk(vs)
∂Wijk

= −p
(
hj|vs, qk = 1

)
vsi ≈

{
−hsj v

s
i , k = sk

0, k �= sk
, (15)

∂Fk((vs)−)

∂Wijk
= −p

(
hj|(vs)−, qk = 1

)
(vsi )

− ≈
{

−(hsj )
−(vsi )

−, k = s−k
0, k �= s−k

, (16)
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∂Fk(vs)
∂Cik

=
{−vsi + ci, k = sk
0, k �= sk

, (17)

∂Fk((vs)−)

∂Cik
=

{−(vsi )
− + ci, k = s−k

0, k �= s−k
(18)

∂Fk(vs)
∂Djk

= −p
(
hj|vs, qk = 1

) ≈
{

−hsj , k = sk
0, k �= sk

, (19)

∂Fk((vs)−)

∂Djk
= −p

(
hj|(vs)−, qk = 1

) ≈
{

−(hsj )
−, k = s−k

0, k �= s−k
(20)

The derivative of KL1(θ1) with respect to θ1 and the derivative of KL2(θ) with respect to
θ can be computed by CD algorithm, as done in the preliminaries. After the derivatives
are computed, the parameters of our model are iteratively updated as follows:

θnew = θold − η�θ, (21)

where η is the learning rate and

�θ = ∂(μB + KL1 + KL2)

∂θ
. (22)

Finally, for any given sample v, following Bayes’ decision theory, if p(q1 = 1|v) >

p(q2 = 1|v), the label is positive. Otherwise, the label is negative, and p(q1 = 1|v) can
be computed via formula (8).

Note that the computation of (22) simply involved applying the CD algorithm to the
P set and U set, and the time complexity of the proposed method is the same as that of
IRBM.

3 Experiments

In this section, we investigate the performance of the proposed RPUL for one-class
classification of remote sensing data. The cost-sensitive LPU method (called CSLPU
below) proposed in [13] is a state-of-the-art alternative learning method for the same
positive/unlabeled scenario, and the Gaussian domain descriptor (GDD) methods are
commonly used one-class classifiers. Hence, these methods are also compared with the
proposed RPUL in our experiments.

3.1 Dataset Description

The initial dataset used in this paper was RIT-18 [15, 16], which is composed of very-
high-resolution aerial photographs (4.7 cm GSD) acquired by an unmanned aircraft
system (see Fig. 1). The dataset includes 6 VNIR spectral bands and 18 labeled object
classes. The 2nd, 14th, 15th and 16th classes were chosen as positive classes in this paper
because they are the first four classes that have a sufficient number of pixels (at least 1%
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of the total pixels). The size of the photographs is 9393× 5642, with a total of 52995306
pixels. We slid a 5 × 5 pixel template over the image and extracted 88 features for each
pixel, including the mean, variance, homogeneity, contrast, and second moment of the
six bands. All features were rescaled to the range [0, 1].

RPULandCSLPUrequire positive andunlabeled data for training,whereasGDDand
SVDD require only positive data. In general, more labeled training data results in higher
accuracy but also increases the required labeling effort. In our experiments, for each class
extraction, we randomly selected only 50 pixels of a class as labeled positive training
samples: the labeled pixels were less than 9e−5% of the entire image. Additionally,
for RPUL and CSLPU, we randomly selected an additional 1000 pixels from the entire
image as the unlabeled dataset. As mentioned in the introduction, the classification
results of GDD strongly depend on the tuned model parameters: high classification
accuracy on the testing dataset is difficult to guarantee if these parameters are tuned
with only positive data. To investigate the optimal performance, we used 1000 randomly
selected background pixels of other classes in addition to the previously prepared positive
labeled samples to tune the parameters. Finally, the remaining pixels of the photographs
formed the test dataset. Moreover, to obtain statistically reliable results, ten different
random realizations of the training data were considered for each classification, and the
classification results were evaluated in terms of the overall accuracy (OA), F-measure
(F), recall (R) and kappa coefficient (K) [17].

Fig. 1. RGB visualization of the RIT-18 dataset. This dataset has six spectral bands.

3.2 Model Development

RPUL. The RPULmodel was developed in MATLAB. Typically, we used models with
200 latent variables. The value of the parameter μ in (22) was fixed at 0.1; the learning
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rate in (21) was set to 1e−3; and the weight decay was set to 1e−2. A momentum
term was also used: 0.9 of the previous accumulated gradient was added to the current
gradient. A temperature parameter was introduced to scale the free energies, similar to
the training process of IRBM: the parameter was set to 100. We trained the model using
the entire sample in both the P set and the U set until the class labels of the data did not
change or the number of iterations reached 2000.

CSLPU. The CSLPUmodel was implemented inMATLAB.We used a Gaussian radial
basis function (RBF) kernel and followed the empirical approach in [6] to tune the
parameters. The number of basis functions was set to 300. The regularization parameter
was tuned in the range [−3, 10] on a log scale with a step size of 1. The kernel width was
tuned in the range that was computed by first estimating themedian value of the distances
from all samples to the randomly selected centroids and multiplying the median value
by the numbers in the interval [−2, 10] on a log scale with a step size of 1. Moreover,
CSLPUneeds the class prior to be known first.We used themethod in [13] to estimate the
class prior, with the parameters tuned under the same settings as those used for CSLPU.

GDD. The GDD model was implemented via dd_tools. We used the simple Gaussian
target distribution and tuned two parameters: the error on the target class in the range
[0.1, 1] with a step size of 0. 1 and the regularization parameter in the range [0.1, 1]
with a step size of 0.1. As for SVDD, only the samples in the P set were used to train
the classifier using the tuned parameters.

3.3 Experimental Results

Every experiment was repeated ten times with randomly selected positive and unlabeled
samples. Figure 2 shows the classification maps of one of the experiments of Fig. 1 for
each land type, where (a) is the benchmarks, i.e., the true pixel labels, and (b), (c) and (d)
are the classification results of RPUL, CSLPU and GDD, respectively. In general, RPUL
provides the best classification results in the extraction of a single land type from the
aerial photograph. Note that such good classification results are obtained in the situation
with only 50 positive labeled pixels and no negative labeled pixels for training. Therefore,
with the help of the regularization item, RPUL can learn additional information about
the unknown negative training samples from the positive and unlabeled samples to
construct a proper classifier even without the labeled negative training samples. CSLPU
also provides relatively good results, particularly forwater areas, butGDDproduces poor
results. Both RPUL and CSLPU used unlabeled samples to build the classifier, which
may be the reason that they have better classification results than GDD. Moreover,
CSLPU is slightly inferior to RPUL. The main reason is likely that the distribution of
the positive class in the training set is not identical to the distribution in the unlabeled
set since we selected only 50 positive samples as labeled samples; therefore, CSLPU
might not be able to obtain an optimal estimate of the class prior to train the classifier.
Table 1 compares the accuracy, F-measure, recall and kappa coefficient of the three
methods for different land types. The results in Table 1 show that RPUL and CSLPU
had similar best evaluation values and GDD provided the worst classification results,
even with the parameters tuned on the set of additional negative labeled samples and
positive labeled samples.
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Fig. 2. Prediction maps of each land type. From the first row to the last row, prediction maps of
tree, grass and water. White: positive; black: negative.
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Table 1. The accuracy (OA), F-measure (F), recall (R) and kappa coefficient (K) of RPUL,
CSLPU and GDD for all land types

Land Types RPUL CSLPU GDD

OA F R K OA F R K OA F R K

Tree 0.93 0.96 0.96 0.67 0.90 0.94 0.90 0.64 0.77 0.85 0.75 0.36

Grass 0.86 0.90 0.89 0.63 0.89 0.93 0.98 0.61 0.74 0.82 0.72 0.43

water 0.98 0.98 0.99 0.91 0.98 0.99 0.99 0.90 0.97 0.98 0.99 0.88

4 Conclusion

In this paper, we addressed the problem of one-class classification of remote sensing
data by proposing a newBC-based positive and unlabeled learning algorithm. In contrast
to other one-class methods, the proposed method makes no assumptions about the data
generation mechanism and does not need a processing step to estimate the threshold or
the class prior. Moreover, the proposed method is a semi-supervised learning method
that requires only a small set of labeled positive data for classifier training. The exper-
imental results indicated that the new algorithm achieves high classification accuracy,
outperforming the CSPUL, SVDD, and GDDmethods. In future work, we will apply the
learning strategy to a generative adversarial network to further improve the performance
of LPU methods.
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