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Abstract Efficient computational methods for system reliability assessment are of
importance in many contexts, where crude Monte Carlo simulation is inefficient or
infeasible. These methods include a variety of importance sampling techniques as
well as subset simulation. Most of these methods function in an adaptive manner,
whereby the sampling density gradually approaches the failure domain. The adap-
tation can work well when the limit state function describing system performance
is continuous. However, many system reliability problems involve limit state func-
tions that are non-continuous over the input sample space. Such situations occur in
both connectivity- and flow-based problems, due to the binary or multi-state random
variables entering the definition of the system performance or the discontinuous
nature of the performance function. When solving this kind of problem, the stan-
dard subset simulation algorithm with fixed intermediate conditional probability and
fixed number of samples per level can lead to significant errors, since the discon-
tinuity of the output can result in an ambiguous definition of the sought percentile
of the samples and, hence, of the intermediate domains. In this paper, we propose
an adaptive subset simulation algorithm to determine the reliability of systems with
discontinuous limit state functions. The proposed algorithm chooses the number of
samples and the conditional probability adaptively. Numerical examples are provided
to demonstrate the accuracy and efficiency of the proposed algorithm.

Keywords Subset simulation · System reliability analysis · Discontinuous limit
state

1 Introduction

Infrastructure networks, such as power grids andwater supply systems, deliver essen-
tial services to society. Failures of such networks can have severe consequences.
Quantification of the probability of survival or, conversely, the probability of failure

J. Chan (B) · I. Papaioannou · D. Straub
Engineering Risk Analysis Group, Technische Universität München, München, Germany
e-mail: jianpeng.chan@tum.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. C. Matos et al. (eds.), 18th International Probabilistic Workshop, Lecture Notes
in Civil Engineering 153, https://doi.org/10.1007/978-3-030-73616-3_9

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73616-3_9&domain=pdf
mailto:jianpeng.chan@tum.de
https://doi.org/10.1007/978-3-030-73616-3_9


124 J. Chan et al.

of such systems is essential in understanding and managing their reliability; this is
the main purpose of network system reliability assessment.

The performance of the system can be assessed by the limit state function (LSF),
also known as performance function, g(X). X is an n-dimensional vector of random
variables with joint cumulative distribution function (CDF) FX and represents the
uncertainty in the model. By convention, failure of the system occurs for all system
states x for which g(x) ≤ 0. That is, g(x) represents the ‘distance’ between the
system state x and the failure surface, and hence can be regarded as the safety
margin of state x. The probability of failure of the system is defined as

P f � P(g(X) ≤ 0) =
∫

g(x)≤0

dFX(x). (1)

Unlike in structural system reliability analysis, the vector of basic random vari-
ables X entering the definition of the LSF of network systems usually contains
discrete random variables, which results in a discontinuous LSF. This is due to the
fact that the performance of the network is often calculated through a function of a
large number of binary or multi-state components. Moreover, real-word infrastruc-
ture networks are often designed to be highly reliable. This leads to high-dimensional
reliability assessment problems with small failure probabilities [1].

Manymethods have been proposed for evaluating system reliability, amongwhich
sampling based methods such as Monte Carlo simulation (MCS) and its variants
feature prominently. For rare events simulation, crude MCS is inefficient and often
infeasible when the LSF is expensive to compute. This is because the coefficient of
variation of the crude Monte Carlo estimate is

√
(1 − P f )/NP f , with N denoting

the sample size, and as a result, for small P f the required sample size for an accurate
estimate is very large. Therefore, advanced sampling techniques have been developed
that decrease the required number of LSF evaluations for obtaining an accurate
probability estimate. These techniques include a variety of importance sampling
methods [2, 3] as well as subset simulation [4]. They mostly function in an adaptive
manner, whereby the sampling gradually approaches the failure domain. The basic
idea of importance sampling is to sample fromaproposal distribution underwhich the
rare event is more likely to happen and to correct the resulting bias in the estimate by
multiplying each sample contribution in the estimator with the appropriate likelihood
ratio [5]. In contrast, subset simulation expresses the probability of failure as a product
of larger conditional probabilities of a set of intermediate nested events. This requires
sampling conditional on the intermediate events, which is performed with Markov
Chain Monte Carlo (MCMC) methods [6]. Subset simulation can be viewed as a
generalization of the splitting method for static rare event simulation [7].

In the standard subset simulation algorithm [4], the intermediate failure events
are chosen adaptively, so that the estimates of the conditional probabilities equal a
predefined value p0. This is achieved through generating a fixed number of samples
in each conditional level, sorting the samples according to their LSF values and
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determining the p0-percentile of the samples, which is set as the threshold defining
the next failure event.

When solving network reliability problems, the discontinuous nature of the LSF
can result in a large number of samples in a certain conditional level having the same
LSF values. In such cases, the standard fixed effort subset simulation method will
result in an ambiguous definition of the intermediate domains. In extreme conditions,
all samples generated in a certain level might have the same LSF value, in which
case the sample process can get stuck and might not reach the failure domain.

To address this issue, we introduce a novel variant of subset simulation, which
chooses the number of samples per level and the respective conditional probability
adaptively to ensure that an adequate number of samples fall in the subsequent
intermediate domain. The performance of the method is illustrated by two numerical
examples, a one-dimensional multi-state problem and a benchmark transmission
power network system.

2 Brief Introduction of Standard Subset Simulation

2.1 Brief Introduction of Subset Simulation

The basic idea of subset simulation (or generalized splitting) is to express the rare
failure event F as the intersection of a series of nested intermediate events F1 ⊃
F2 ⊃ · · · ⊃ Fm = F . The failure probability is then written as

P(F) =
m∏
i=1

P(Fi |Fi−1) (2)

where F0 is the certain event. Ideally, the intermediate events are selected such that
each conditional probability is appropriately large. In this way, the original problem
of estimating a small probability is transformed to a sequence of m intermediate
problems of evaluating larger conditional probabilities.

The estimation of each conditional probability P(Fi |Fi−1) requires sampling from
the distribution of the random variables conditional on Fi−1, denoted Q(x|Fi−1),
where Q(x|F0) = FX(x). Q(x|F0) can be sampled by standard Monte Carlo
sampling, but the distributions Q(·|Fi ), i > 0, are only known point-wise up to
a normalizing constant and, hence, cannot be sampled directly. Therefore MCMC
sampling is employed as an alternative. The sampling process in the j th sampling
level is performed as follows: (1) Select the samples P ( j−1) from the ( j −1)-th level
that fall in Fj as the seeds S( j). (P (0) are generated through Monte Carlo sampling)
(2) From each seed, start a Markov chain that has the target distribution Q(·|Fj ) as
the stationary distribution, and record all the states as new samples P ( j). (3) Take
the samples P ( j) located in Fj+1 as new seeds S( j+1) and estimate P(Fj+1|Fj ). The
above three steps are repeated successively until F is approached. We note that the
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number of the samples per level or the sampling effort card(P ( j)) is usually fixed
prior to the analysis.

Defining the intermediate events a priori is typically challenging. Hence, in stan-
dard subset simulation the intermediate failure events are chosen adaptively during
the simulation such that each conditional probability equals a predefined constant
p0. This standard subset simulation approach is also termed (fixed effort) adaptive
multilevel splitting [7]. In this variant, step (3) in the above sampling process is
modified as follows: Order the samples P ( j) by their safety margins. The first p0-
percent of these sorted samples are then taken as seeds for the next sampling level
and the safety margin of the p0-percentile g(x

( j)
0 ) is used to define the boundary of

the intermediate domain, such that Fj+1 =
{
x : g(x) ≤ g

(
x( j)
0

)}
.

Various MCMC algorithms are proposed for constructing the Markov chains for
subset simulation. These include the modified (or component-wise) Metropolis-
Hasting [4] and the conditional sampling (CS) [6] algorithms, both developed to
tackle high-dimensional problems. In this paper, we adopt the adaptive conditional
sampling (aCS) as the MCMC algorithm [6]. This method is remarkably simple
since it no longer involves the explicit choice of a proposal distribution [8]. Instead
it adaptively tunes the correlation between candidate and current samples to achieve
a near-optimal acceptance probability [6]. aCS is proposed for sampling in standard
normal space, hence, it is necessary to transform the original sample space of X and
define the reliability problem in standard normal space. This can be achieved by the
Rosenblatt transformation [9]. We discuss this transformation in the next section,
focusing on its implementation for discrete original sample spaces, which is partic-
ularly relevant for network reliability assessment. However, the proposed adaptive
effort subset simulation algorithm can be implemented with any MCMC algorithm,
including those that work in the original sample space.

2.2 Implementation in Standard Normal Space

Let U denote an n-dimensional random vector that has the independent standard
normal distribution. One can define the reliability problem in the U-space through
an isoprobabilistic mapping T : Rn → R

n such that

P f = P(g(X) ≤ 0) = P(G(U) ≤ 0) =
∫

G(u)≤0

ϕn(u)du (3)

whereG(U) = g(T (U)) andϕn(u) is the independent standard normal joint prob-
ability density function (PDF). The mapping T (·) can be obtained by the Rosenblatt
transformation, which is implemented as follows
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x1 = F−1
X1

(�(u1))
x2 = F−1

X2|x1(�(u2))
...

xm = F−1
Xm |x1,··· ,xm−1

(�(um))

(4)

where �represents the CDF of standard normal distribution and FXi |x1,··· ,xi−1(·)
denotes the conditional CDF of Xi given X1 = x1, · · · , Xi−1 = xi−1. If any subset
of X consists of discrete random variables, then it is possible that the functions
FXi |x1,··· ,xi−1(·) are not strictly invertible. Therefore, we use the following extended
definition of the inverse of a CDF

F−1(a) = inf(x : F(x) ≥ a) (5)

We note that in such cases the Rosenblatt transformation is not one-to-one and,
hence, the inverse mapping from X to U is not uniquely defined.

2.3 Statistics of the Subset Simulation Estimator

Assume that the intermediate events are defined prior to the simulation. In the Monte
Carlo level, samples P (0) are generated from Q(·|F0) independently, and therefore
the corresponding seeds S(1) follow distribution Q(·|F1). This will lead to so called
perfect sampling when simulating the Markov chains in the next level. Since the
chains have already reached the stationary state at the beginning, no burn-in period
is needed, and all the samples P (1) will follow Q(·|F1). In this way, all samples
P ( j) generated in any j-th level will follow the target distribution Q(·|Fj ) and the
corresponding estimator of the conditional probability P

∧

(Fj+1|Fj ) will be unbiased.
Moreover, [7] proves that the resulting failure probability estimator P

∧

f (F) is also
unbiased if both intermediate events and length of the Markov chain are predefined,
i.e. if they are independent of the simulation process.

Since the intermediate events are usually selected adaptively and as a result,
samples P ( j) will not completely follow the target distribution. Both conditional
probability estimator and failure probability estimator will be slightly biased. Never-
theless, compared to the variance of the estimator, the squared bias is one order of
magnitude smaller [4] and, hence, its contribution to the mean-square error (MSE)
of the estimator is negligible, since the latter can be decomposed as

MSE
(
P
∧

f

)
= Var

(
P
∧

f

)
+

(
Pf − E

(
P
∧

f

))2
(6)

In other words, the error of the subset simulation is mainly due to the variance of
the failure probability estimator rather than the bias. The most common and reliable
way to calculate the variance Var(P

∧

f ) is to run subset simulation several times and
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to use the sample variance as the unbiased estimation of the Var(P
∧

f ). One can also
evaluate the variance approximately through a single run of the subset simulation.
More details can be found in [4, 6].

3 Adaptive Effort Subset Simulation Method

In each conditional level of the subset simulation method with fixed number of
samples N and adaptive estimation of the intermediate events, the p0-percentile of
the safety margins of the samples P ( j), g(x( j)

0 ) is used to define the boundary of
the intermediate domain. This works well when only a few samples are located on
the boundary g(x) = g(x( j)

0 ), i.e. a few samples have the same LSF value as the
p0-percentile. However, it may happen that many samples fall on this boundary,
particularly in either of the following cases:

1. 1X includes discrete random variables.
2. The LSF is defined such that the probability measure of the set {x : g(x) =

g(x( j)
0 )} is positive.

The parameters of theMCMC algorithm are inappropriately set, resulting in the
candidates being rejected successively many times.

While case (3) can be avoided by an appropriate implementation of the algorithm,
cases (1) and (2) are common in the context of network reliability assessment. This
will result in an ambiguous definition of the intermediate domain Fj+1 and can lead
to an inaccurate estimate of the failure probability. In extreme situations, all samples
generated in a certain level will have the same LSF value and the sample process can
get stuck and never reach the failure domain.

To circumvent this problem and provide a clear (unambiguous) definition of the
intermediate domains, we propose to discard all the samples on the boundary g(·) =
g(x( j)

0 ), and redefine the intermediate event Fj+1 as Fj+1 =
{
x : g(x) < g

(
x( j)
0

)}
.

Then, we calculate the number of samples that fall in the domain Fj+1 (number
of the seeds). If this number is smaller than a predefined constant, we increase the
sampling effort and appendP ( j) with new samples. With a fixed Fj+1 and increasing
number of samples, the number of the seeds will keep increasing until the desired
threshold is achieved. By doing this, for any state x in Fj+1, there exists g(x) <

g(x( j)
0 ) < g(x( j−1)

0 ), and thus Fj+1 ⊂ Fj is always true, which avoids a degeneracy
of the sampling process. Even in the extreme case where all the samples inP ( j) have
the same safety margin, the sampling process will keep moving forward towards the
failure domain and will no longer get stuck in this level as in the standard subset
simulation algorithm. Unlike standard subset simulation, the number of samples per
level (sampling effort) is adapted throughout the simulation. We, hence, term the
proposed approach adaptive effort subset simulation method.
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In the following, we discuss the proposed adaptive effort subset simulation algo-
rithm for implementation in standard normal space. The samples in each interme-
diate level are generated with the aCS algorithm. In addition to the initial number
of samples per level N0 and conditional probability p0, the algorithm requires the
choice of the parameter tol ∈ (0, 1) that defines the minimum number of seeds
through tol · N0 · p0. We have found that tol ∈ (0.5, 0.8) is a good choice.
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==================================================================

Adaptive effort subset simulation algorithm

-----------------------------------------------------------------------------------------------------------------

: Parameter which limits the minimum number of seeds inside each intermediate domain.

: Parameter which represents the initial conditional probability when starting the iteration.

: Parameter which represents initial number of samples when starting the iteration.

-----------------------------------------------------------------------------------------------------------------

Set .

while do

Set ,  and 

while do

if

Sample  samples  from the standard normal distribution .

else

Sample samples  starting from the seeds  with the aCS algorithm.

end if

Calculate the LSF values of the samples  and sort the samples, such that 
1 . Denote the sorted samples as  and 

let .

If

Set  and .

else

.

end if

If 

.

.

end if

end while

Define the intermediate failure event: .

Take the  as the seeds for the next level.

Calculate the conditional probability estimator: .

.

end while

Estimate the failure probability:

.

==================================================================



An Adaptive Subset Simulation Algorithm … 131

4 Examples

4.1 Multistate Random Variable

Consider a discrete random variable X with 7 states {x1, . . . , x7}. We consider two
cases. In case 1, the CDF of X F(·) is set, such that F(xi )/F(xi+1) ≥ 0.1, while in
case 2, there is a big ‘jump’ between the third and the fourth state, i.e.F(x3)/F(x4) ≈
1.67 · 10−3. The CDF of X for the two considered cases is given in Table 1. The LSF
is defined as g(X) = X +4 such that the failure probability P(X < −4) equals 10−5

for the first case and 2 · 10−5 for the second.
We implement standard subset simulation (SuS) and the proposed adaptive effort

subset simulation (aE-SuS) respectively to evaluate the failure probability. For SuS,
the sampling effort is fixed to 1000, and the conditional probability is 0.1. For aE-SuS,
the parameters are set to be tol = 0.5, N0 = 1000, p0 = 0.1. Each method is run
1000 times to get the relative bias, coefficient of variation and average computation
cost of the failure probability estimator. The results for case 1 and case 2 are shown
in Tables 2 and 3 separately. In both cases, aE-SuS shows good accuracy, a negligible
bias and a much smaller variance than the crude Monte Carlo results (shown in the
red brackets). We note that the coefficient of variation of crude Monte Carlo is given
for the same computational effort as the proposed aE-SuS method. In contrast, SuS
gives the wrong estimate of the failure probability in the first case and falls into a
dead loop in the second case.

Table 1 CDF of X

State −6 −5 −3 −2 −1 0 1

CDF (case1) 1e−5 1e−4 1e−3 1e−2 1e−1 5e−1 1

CDF (case2) 1e−5 2e−5 5e−5 3e−2 1e−1 5e−1 1

Table 2 Statistical characteristics of the estimator (Case 1)

Relative bias% Coefficient of variation Average computation effort

SuS −97.8 3.747 7222

aE-SuS −3.5 0.377(3.580) 7804

Table 3 Statistical characteristics of the estimator (Case 2)

Relative bias% Coefficient of variation Average computation effort

SuS / / /

aE-SuS 1.4 0.206(0.760) 86561
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4.2 Power Network System

A transmission power network with the same topology as the IEEE39 bus benchmark
system is considered here. It consists of 39 nodes and 43 weighted edges, whose
weights represent the line reactance values. This examplewas previously investigated
by Scherb et al. [10] to quantify the network reliability considering cascading effects
and spatially distributed hazards, and by Rosero-Velasquez and Straub [11] to select
representative failure scenarios.More details about the example can be found in these
references.

The state of each node is considered as an independent Bernoulli random variable,
with component failure probability set to 10−3. TheLSF is thendefined as the function
of the system state x, which is a binary vector, as follows:

g(x) = E(x)

E(1)
− threshold (7)

E(x) = 1

|SN ||T N |
∑

s ∈ SN , t ∈ T N
t 	= s

e f fst (8)

e f f st is the efficiency of the most efficient path from source node s to terminal node
t and can be evaluated by adding up the reciprocals of the reactance values along
that path. E(x) is the efficiency of the whole system associated to the system state
x (where the vector 1 is the intact system state) and is equal to the mean value of all
the e f f st from each source node in set SN to each terminal nodes in set T N .

In order to model the cascading effects, Eq. (7) is modified to

g(x) =
E

(∼
x
)

E(1)
− threshold (9)

where
∼
x is the final system state after cascading effects. These are triggered by

overloading in individual lines following initial failures, and are modeled following
[10, 12].

The threshold is fixed to 0.3, which means the system fails when its efficiency is
less than 30% of that of the intact system. We then apply aE-SuS algorithm to this
problem and set the parameters N = 2000, p0 = 0.1, tol = 0.8. Figure 1 shows
the empirical CDF of g(X) obtained by Monte Carlo Simulation and the aE-SuS
algorithm respectively. The aE-SuS algorithm is run 25 times to obtain the mean
value, 10 percentile and 90 percentile of the empirical CDF, while a single Monte
Carlo Simulation run with 106 samples is carried out for validation.

The average computation cost of aE-SuS is 24437 calculations of the LSF g(·)
and the relative bias of the failure probability is 9.17%, while the coefficient of
variation is 0.57. Under the same computation cost, the coefficient of variation of
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Fig. 1 Results obtained by
aE-SuS for IEEE39 network.

Monte Carlo Simulation is about 1.06 which is significantly larger than that of aE-
SuS. The standard SuS algorithm is not applicable for this example due to the large
jump in the CDF of the LSF below the threshold of 0.4.

5 Conclusions

We introduce an adaptive effort subset simulation algorithm that enables solving
reliability problems with discontinuous limit states. Such problems often occur in
network reliability assessment because of discrete random variables appearing in
the input random vector or due to discontinuities in the function that defines the
system performance. The proposed algorithm extends the applicability of standard
subset simulation to problems where significant jumps in the distribution of the
limit-state function occur. Numerical examples demonstrate the accuracy and effi-
ciency of the proposed method and show that the method has increased efficiency
compared to crude Monte Carlo in some problems where standard subset simulation
fails to converge. For connectivity-based problems where the LSF can only take two
possible values, the proposed algorithm will turn to crude Monte Carlo simulation
and therefore becomes inefficient in rare event context.
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