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Abstract Arisk profile provides information about the probabilities of event impacts
of varyingmagnitudes. In this study, a probabilistic framework is developed to derive
a national-scale flood risk profile, which can be used for disaster risk management
and financial planning. These applications typically require risk profiles over a wide
range of return periods. For most countries, the historical record of flood impacts is
limited to a few decades, insufficient to cover the longest return periods. To overcome
this limitation, we developed a stochastic model that can generate arbitrarily long
synthetic time series of flood events which have the same statistical characteristics
as the historical time series. This includes the joint occurrence probabilities of flood
events at different locations across the country. So, the probability of each pair of
locations experiencing a flood event in the same event should be the same for the
synthetic series as for the historic series. To this end, a novel approach based on
‘simulated annealing’ was implemented. Results show an almost exact reproduction
of the statistical properties of the historical time series.
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1 Introduction

In order to increase the financial resilience of ASEAN + 3 members to climate and
disaster risk, the Southeast Asia Disaster Risk Insurance Facility (SEADRIF) has
been established by ASEAN + 3 in partnership with the World Bank. To support
this endeavor, and to increase the financial resilience of Lao PDR, Cambodia and
Myanmar against large-scale floods, theWorld Bank commissioned the development
of tools to support a rapid response financing mechanism. Flood risk profiles for
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these three countries were required to inform the design of financial risk transfer
instruments.

Disaster risk is often quantified in terms of “annual average affected population”
or for financial purposes, “annual average losses”. These are the long-term averages
over many years of larger and smaller disasters as well as no-event years. However,
for financial risk transfer, such as catastrophe insurance, a year loss table (YLT) or
event loss table (ELT) is required due to the importance of the low frequency and high
severity events. Crucially, these also provide information on the temporal and spatial
variance of individual events which cannot be represented by an “average year”.
The historical record is often too short to act as an ELT and will not sufficiently
represent the tail events, therefore a stochastic event set is required. We developed
a methodology to derive a long synthetic time series of flood events to support
SEADRIF countries.

2 Flood Modelling Concept

The flood modelling in this project is based on the concept of a single flood driver for
a given type of flood and subarea. For example, a flood plain along a stretch of river
is called a fluvial subarea. The local flood driver in this case is the river discharge.
We assume the flood extent in the fluvial subarea is fully determined by the value of
this flood driver. We defined four types of flooding and corresponding flood drivers:
Fluvial flooding (river discharge), pluvial flooding (rainfall), tidal flooding (river
water level) and coastal flooding (sea water level). The first step in the flood risk
analysis is to identify and classify the subareas over the region of interest (typically
a country). For each subarea, historical values for the flood driver are collected.
Subsequently, the number of affected people for each flood map is calculated using
the WorldPop population density grid [11].

The historical flood driver values include gauge readings from local hydrome-
teorological centers over the past few decades, simulated river discharges from a
hydrologic model over a 35-year period (using 1979–2013 MSWEP meteorological
input, see [1]), as well as storm surge levels from the Global Tide and Surge Reanal-
ysis (GTSR) data set which also spans 35 years [9] augmented by observations and
hydrodynamic simulation of historical cyclones.

3 Method for Generating Synthetic Time Series

The historical period of 35 years is sufficient for probabilistic assessment up to return
periods of about 10 years, but not for the longer return periods (up to 1000 years)
which are required for assessment of low frequency, high severity events. Therefore,
we generate a long synthetic time series of flood events (characterized by flood driver
values) that enables the analysis of higher return periods. Ourmethodology generates
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a synthetic time series which has the same statistical characteristics as the 35-year
historical time series. This includes:

1. exceedance probabilities of annual maxima for each flood driver;
2. mutual correlations of annual maxima between all pairs of flood drivers;
3. probabilities of joint occurrences for all pairs of flood drivers, i.e. the probability

that annual maxima of two flood drivers occur during the same event;
4. the influence of the joint occurrence on the correlation between the values of

annual maxima (because if annual maxima occur during the same event, the
mutual correlation is generally much higher).

A stochastic event sampling method was developed that reproduces these four
statistical properties. This method consists of four components:

Component 1: deriving probability distributions of individual flood drivers;

Component 2: sampling of annual maxima of flood drivers;

Component 3: sampling of events;

Component 4: linking of annual maxima to event numbers.

These four components are detailed in the next four subsections.

3.1 Component 1: Deriving Probability Distributions
of Flood Drivers

Extreme value distributions were derived for the various flood drivers, based on the
available 35-year historical time series. For eachflooddriver, annualmaximumvalues
were selected, and an extreme value distribution function was fitted, applying fairly
“standard” techniques such as described in Coles [2]. Figure 1 shows an example of
a Gumbel fit on annual maximum discharges for Nam Khan River in Laos.

3.2 Component 2: Sampling of Annual Maxima

The second component of the sampling method concerns the sampling of annual
maxima. In this step, the mutual correlation between the annual maxima of different
flood drivers is taken into account. The correlation coefficient is derived for all flood
driver pairs from the observed annual maximum values. This results in an n * n
covariance matrix, C, where n is the number of flood drivers (n = 127 for the study
area).

To reproduce these correlations in the synthetic time series, a Gaussian Copula is
applied in the sampling procedure (see e.g. [4, 8]). This method requires correlation
matrix,C, as input. As proven by Fang et al. [5],C should be taken equal to sin(πτ/2),
where τ is Kendall’s rank correlation matrix. The procedure to generate correlated
samples is as follows:
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Fig. 1 Fitted Gumbel distribution function to simulated annual maximum discharges at BanMixay
gauge station (Nam Khan River, Lao PDR)

1. Derive a matrix P for which: PP′ = C, through Cholesky decomposition of
correlation matrix C (see, e.g. [12]). Note: P′ is the transpose of matrix P.

2. Sample values u1, … ,un from the standard normal distribution function; store
the results in a 1xn vector u.

3. Compute: u* = uP′.

The u*-values are subsequently transformed to “real-world” values of flood
drivers, using the probability distribution functions of the individual flood drivers
as derived in component 1:

�(ui∗) = Fi (xi ) (1)

Where� is the standard normal distribution function, ui* is the sampled u*-value
of the ith flood driver, xi is the “real-world” realisation of the ith flood driver and F i

is the derived extreme value distribution function of xi.

3.3 Component 3: Sampling of Events

The sampling method for annual maxima (AM) in the previous section creates a
synthetic time series with correlated annual maxima for each flood driver. The corre-
lation between AM refers to their value, not to their timing. Within a single year,
the annual maxima of the flood drivers are not expected to all occur during the same
event. Typically, there are several events per year and the AM are distributed over
them. Since we are interested in event impacts, the relative timing of the maxima
within a year also needs to be part of the sampling method. The generated AM are
thus assigned to events and the number of annual maxima per event should be in
accordance with the historical series. More specifically: the probability of each pair
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of flood drivers having an AM during the same event should be the same for the
synthetic series as for the historical series. In the case study, there are 127 flood
drivers, which means there are 127 * 126/2 = 8001 joined occurrence probabilities
that need to be reproduced in the sampling procedure. For this challenging objective
we developed a novel approach based on simulated annealing (Kirckpatrick et al.,
1983).

3.3.1 Outline of the Method

The starting point of the analysis is a time series zt, consisting of event numbers
as derived from historical data. zt is an Y * n matrix, with Y being the number of
years and n the number of flood drivers. If zt (y,j) = 3, this means flood driver j had
its AM in the 3rd “biggest” event of year y (note: in each year, events are ordered
based on the number of flood drivers that had their AM occurring during the event).
As an illustration, Fig. 2 shows the five biggest events in 1979 and 1980 and the
flood drivers that had their AM during one of these events. The objective of the
stochastic simulation method is to create a (lengthy) synthetic time series zst with
similar characteristics as the historical time series zt . Here, similarity refers to [1]
the probability that AM of any two flood drivers, L1 and L2, occur during the same
event and [2] the probability distribution of the number of flood drivers having their
AM occur in the biggest event in the year.

To this end, a “cost” function, G(zst , zt), is defined that penalizes differences
between the historical and synthetic series. G is formulated in such a way that it
decreases if zt and zst are in better agreement. Thus, function G needs to be mini-
mized to obtain the best agreement between the historical and synthetic series. The
choice of function G is critical to the performance of the procedure, both in terms
of computation time and the quality of the end result. Both zt and zst are matrices
with the same number of columns, were each column represents a flood driver, but
different numbers of rows, where each row represents a year. Matrix zt has 35 rows,
corresponding to the 35 years of observation, whereas zst has a user-defined number
of rows (e.g. 10,000). Both zt and zst contain event numbers, were 1 corresponds to
the biggest event.

The event sampling procedure is based on the method of ‘simulated annealing’
(Kirckpatrick et al., 1983). Figure 3 shows the basic algorithm. The procedure starts
with a randomly selected initial synthetic time series for which the cost function is
evaluated. The elements of this synthetic time series are subsequently permutated in
a (large) number of iteration steps, until a stop criterion is reached. In each iteration
step, two elements of the time series are permutated to create a newly ‘proposed’
time series. For the simulated annealing procedure, we adopted the Matlab imple-
mentation of Joachim Vandekerckhove1 and adapted it for our specific application.
The algorithm is as follows:

1https://nl.mathworks.com/matlabcentral/fileexchange/10548-general-simulated-annealing-alg
orithm

https://nl.mathworks.com/matlabcentral/fileexchange/10548-general-simulated-annealing-algorithm
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Fig. 2 Example of joint occurrences in the years 1979 and 1980. Clusters of flood drivers that
experience the annual maximum within the same event have the same colour.

[1] start with an initial time series zst (0) 

[2] evaluate cost function G(zst, zt) 

[3] start with an initial ‘temperature’ T = T0

[4] Select an end temperature Te<T0 as stop criterion 

[5] while T>Te do: (stop criterion 1) 

[6]    while stop criterion 2 is not met do: 

[7]  Select a new time series zst* by randomly changing swapping 2 elements of of zst

[8]  evaluate cost function G(zst *, zt) 

[9]  accept zst* as the new solution, i.e.: zst = zst *, with probability p(T) 
and reject it with probability 1-p(T)

[10] decrease T: T = c*T; with c a constant <1  

This algorithm explores the Y * n-dimensional space of all possible outcomes,
where Y is the number of years of the synthetic series and n is the number of flood
drivers. The probability, p(T ), of accepting the proposal solution is decreasing to
near-zero at the end of the procedure. Therefore, in the later phases of the procedure,
the procedure has an increasing tendency tomove into the direction of lower values of
the cost function and to end up in a minimum. To prevent the procedure from ending
up too early in a local minimum, a ‘temperature’ T is introduced, which allows for
the solution to move to a higher value of the cost function. In the beginning of the
procedure, the temperature is high, thereby increasing the probability ofmoving away
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Fig. 3 Schematic view of the basic principle of simulated annealing

from a (local) minimum. The temperature is then slowly reduced, and the solution is
forced to move towards a (local) minimum of the cost function. The procedure can
be repeated several times with a different random seed to check if the sameminimum
is found each and every time. This is no guarantee for a global minimum, but it does
provide more confidence.

3.3.2 Details of the Annealing Method

In this section, we describe some further details of the simulated annealing method
step by step. The number below refer to the steps mentioned in Sect. 3.3.1.

[1] First, we have to define the number of years of the synthetic time series (Y )
and the maximum number of events per year (Ne). The time series zst consists of
event numbers 1 to Ne + 1. For example: if zst(y,j) = 5, this means flood driver j
had its annual maximum in the 5th event of year y. Event number Ne + 1 represents
the ‘non-event’, which means if zst(y,j) = Ne + 1, the annual maximum of flood
driver j in year y is assumed to have taken place in isolation. In the initialization
of zst , an integer number is randomly sampled from the range [1, Ne + 1] for each
combination of year y and flood driver j.

[2] The cost function G(zst ,zt) was chosen to be the sum of three functions G1 -
G3. To compute these three functions, some pre-processing is required. First of all,
the probability that annual maxima of any two flood drivers, L1 and L2, occur during



116 F. Diermanse et al.

the same event is estimated from the historic series. So, for example, if flood drivers
L1 and L2, had their annual maxima occur in the same event in 10 out of 35 years,
the estimated probability of joint occurrence is 10/35 ≈ 0.29. This is done for each
pair of flood drivers, resulting inM = n * (n − 1)/2 percentages (n = the number of
flood drivers), which are stored in anM * 1 vectorHo. The same computation is done
for the current solution (zst) of the synthetic time series, and the results are stored in
an M * 1 vector Hs. Subsequently, the absolute differences between Ho and Hs are
computed and stored in anM * 1 vector D. Function G1 is the maximum value of D.
Function G2 is the mean value of D. To compute function G3, the maximum number
of flood drivers with an annual maximum occurring in a single event is determined
per year and stored in an Y * 1 vector. Subsequently, the mean over all the years is
computed. In other words: the mean number of flood drivers that have their annual
maximum occurring in the biggest event. This is done for the observed and synthetic
series. Function G3 quantifies the differences between the two.

[3 + 4 + 5] The starting value T 0 should be chosen in such a way that accepting
a new time series with a higher (“worse”) cost function than the current time series
should be relatively large, whereasT end should be chosen in such away that accepting
a new time series with a higher (“worse”) cost function than the current time series
should be close to 0. T end should be several orders of magnitude smaller than T 0 to
provide the method with a sufficient number of iterations to converge to a “good”
result. The best choice of T 0 and T end requires some insights in the cost function loss
function G(zst ,zt) and the speed with which it converges to the (local) minimum. In
our case T 0 was set equal to 1 and T end equal to 1E−8.

[6] Stop criterion 2 controls the number of iterations for a single temperature T.
An obvious criterion is to set a maximum allowed number of iterations. Additional
criteria can be to stop after a user-defined number of accepted new solutions and/or
stop after a long successive series of rejected solutions. All three criteria have been
implemented in the Matlab implementation of Joachim Vandekerckhove that was
used as the basis of our method.

[7] A key step in the procedure is the selection of a new proposal time series. A
straightforward method is to randomly select a specific flood driver in a specific year
and to randomly generate a new event number for this flood driver. However, this
approach led to very slow convergence of the procedure. To speed up the procedure,
we implemented an alternative method in which we look for the combination of two
flood drivers L1 and L2 that contribute most to the outcome of function G1(zst , zt).
In other words, the two flood drivers L1 and L2 for which the difference in computed
joint occurrence probability between the observed series zt and the synthetic series
zst is the largest. We then change the event number of one of the flood drivers in such
a way that the objective function is decreased. Note, however, that this approach is
slightly in contrast with the concept of simulated annealing in which increases in the
objective function in successive iterations should also be allowed to prevent it from
converging too soon to a local minimum. Therefore, the final strategy was a mixture
of both: with a probability p* we apply the first method (random selection of flood
driver) and with a probability 1− p* we apply the second method (selection of flood
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driver that contributes most to the cost function). We found that a value of p* = 0.8
in general gave most satisfactory results.

[8] The probability, p, of accepting a newly proposed solution, zst*, is set equal
to:

p = min
(
1, e− �G

kT

)
; �G = G

(
zs∗

t , zt
)−G(zst , zt ) (2)

This means ifG(zst*, zt)≤G(zst , zt), the new solution is accepted with probability
1, whereas if G(zst*, zt) > G(zst , zt), the acceptance probability depends on the
difference betweenG(zst*, zt) andG(zst , zt), on the temperature T and constant k. To
make this function generically applicable, cost function G is normalised by dividing
it by G0, i.e. by the value of the cost function in the first iteration. Constant k should
preferably be inversely proportional to the total number of elements, N (N is equal
to the number of years times the number of flood drivers in our case). We chose k =
10/N.

[9] The decrease in the value of T is taken care of as follows: T = c * T; with
c a constant < 1. This means the temperature declines exponentially. We adopted a
value of c = 0.8.

3.4 Component 4: Linking Annual Maxima to Event
Numbers

The sampling procedures of component 2 and 3 are carried out independently from
each other. That means the correlation between annual maxima of two flood drivers
is not influenced by the fact whether these two maxima are observed during the same
event. In reality, however, there is a relation between the two, as occurrence during
the same event means there may be a common cause that is also likely to affect the
magnitude of the annual maximum of both flood drivers. This is confirmed by an
analysis of the data of the historical 35-year series. In the analysis we computed the
correlation between rank numbers2 of annual maxima for [A] all annual maxima
occurring in the same year and [B] all annual maxima occurring in the same event.
The table below shows the difference between the two is significant. Ignoring the
relation between event numbers and (correlations between) annual maxima means
the ‘within-event-correlation’ will be equal to the numbers shown under [A], whereas
it should be equal to the numbers shown under [B].

Country # Flood drivers [A] Within year correlation [B] Within event correlation

Cambodia 21 0.20 0.66

Lao PDR 22 0.24 0.35

(continued)

2Rank numbers are numbers from 1..35 indicating per flood driver the highest (1), second highest
(2).. Lowest (35) annual maximum in the series of 35 years.
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(continued)

Country # Flood drivers [A] Within year correlation [B] Within event correlation

Myanmar 84 0.11 0.40

Combined 127 0.06 0.29

In order to take the relation between event numbers and annual maxima into
account an additional simulated annealing procedure was implemented. In each iter-
ation, a flood driver is randomly selected and the sampled annualmaxima of this flood
driver for two randomly selected years (as provided by component 2) are exchanged.
This means the event numbers of these two annual maxima have been exchanged.
This has an impact on the overall computed ‘within event correlation’. A cost func-
tion is defined that quantifies the difference between the observed and synthetic
‘within event correlation’. The iterations are carried out until the computed within
event correlation is the same as the corresponding number of the observed data (see
table above). It turned out that the method was capable of exactly reproducing these
numbers.

4 Results

To test the applicability of the procedure,we verify if the relevant statistical properties
of the historical times series are reproduced by the synthetic time series. Figure 4
shows the joint occurrence probabilities of annual maxima during an event for all
flood driver pairs as derived from the historical series (vertical axis) and from a
generated 10,000-year synthetic series (horizontal axis). The plot on the left shows
results forCambodia (21 flood drivers), the plot on the right shows results for the three
countries combined (127 flood drivers). The figures show that the joint occurrence
probabilities in the synthetic time series are in very good agreement with those in
the historical time series.

The quantile plots in Fig. 5 compare the probability distributions of the number
of flood drivers that had their annual maximum during the “biggest event” in the
year, as derived from the historical series (horizontal axis) and from the 10,000-year
synthetic series (vertical axis). The blue dots are all close to the line y = x. This
shows the probability distribution of the number of locations in the largest event is
very well captured in the synthetic series.

Figure 6 shows frequency curves of affected population that were derived from
the synthetic series (red) and from the historical series (blue dots). The numbers
were normalized by the 100-year return value as the actual numbers are not eligible
for publication. The plot on the right is a zoomed version of the plot on the left. It
shows that the derived frequency curves are well in accordance with the historical
numbers, which is an essential validation of the method. The added value of the
synthetic method is that it provides return values for much larger return periods, as
can be seen from the left plot.
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Fig. 4 Joint occurrence probabilities for all pairs of flood drivers in Cambodia (left) and all three
countries combined (right). Synthetic time series (x-axis) compared to historical time series (y-axis)

Fig. 5 Quantile plot for the number of flood drivers having their annualmaximumduring the largest
event in Myanmar (left) and all three countries combined (right)

Fig. 6 Frequency curves (normalized) of population affected – empirical (blue) versus probabilistic
(red). The plot on the right is a zoomed version of the plot on the left.
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5 Conclusions

The results prove that the synthetic series of flood events have statistical properties
that are very similar to the historical series. This shows that the stochastic sampling
method performs well. The lengthy synthetic time series that can be generated with
the stochastic model offers opportunities to provide an event loss table and detailed
risk profile for various applications. The challenge of reproducing joint occurrence
probabilities of ~8000 pairs of flood drivers was tackled by a novel approach based
on simulated annealing (Kirckpatrick et al., 1983). One of the attractive features of
this method is that multiple objective functions can be optimised simultaneously.
This enabled the reproduction of several relevant statistical features of the historical
time series in the synthetic time series. In this study, we have focused on population
affected by flood events, but the methodology can easily be generalized to economic
losses and other types of disasters.

In this paper, the objective was to generate a synthic time series with similar
statistics as the historic time series. However, the method can also be applied to
create synthetic time series that account for climate change projections. It is possible
to choose/design virtually any set of statistics (for example perturbing the annual
maxima frequency and correlations due to climate change) and to subsequently
generate a synthetic time series which will match these statistics. That potential
is very valuable to the risk modelling community.
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