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Abstract The aim of this paper is to propose amethodological framework for conse-
quence analysis of transportation networks. The probabilistic framework is based
on the definition of performance indicators that describe the time-dependent func-
tionality of the asset/system, starting from a pre-existing normal performance state,
capturing the time and evolution of disruption during and after the disruption and
during the recovery/restoration stage. A proposed case study that will be used for the
demonstration of the applicability of the framework is described.
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1 Introduction

The economy of a society and the well-being of its citizens depend on the continuous
and reliable functioning of infrastructure systems. Among all infrastructure systems,
those which incapacity and destruction impacts the defence and economic security,
are generally regarded as critical [1]. Different countries have different lists detailing
their critical infrastructure systems but generally, they have the following list of
systems in common: transportation,water supply systems, telecommunications, elec-
tric power systems, natural gas and oil, banking and finance, government services
and emergency services. These infrastructure systems constitute the backbone of
modern societies by providing essential services for their functioning. Destructing
or damaging assets in such systems either disconnects large areas of networks from
each other or causes a rerouting of the flow from one area of the network to another
through a longer detour path. Resilience and vulnerability conditions associated with
such systems can then have an impact on the resilience/vulnerability of the whole
network [2, 3]. Therefore, the disruption consequence analysis of such systems is
an essential component of risk and resilience management of systems subjected to
hazardous events.
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The European project SIRMA (Strengthening Infrastructure RiskManagement in
theAtlanticArea) aims to develop, validate and implement a robust framework for the
efficient management and mitigation of natural hazards in terrestrial transportation
modes at the Atlantic Area. As part of this project a risk and vulnerability assessment
system will be developed to assess interceptable and non-interceptable events under
various climate change scenarios. An integral part of this system will be a conse-
quence assessment framework which will consider the short-term and long-term,
direct and indirect impact of the climate change-induced hazards on transportation
infrastructure. This study presents a novel framework for probabilistic consequence
analysis of transport networks as a function of performance indicator of the system.
This forms an integral component of SIRMA’s risk assessment framework.

The paper is organised as follows: Sect. 2 presents a state-of-the-art review of
the consequence analysis for transport networks, Sect. 3 provides an overview of the
framework and Sect. 4 demonstrates the details of the case study that will be used to
illustrate the application of the framework in future studies.

2 Background on Consequences of Failure of Transport
Networks

2.1 Categorisation of Consequence of Failure

Consequences of failure can often be seen as a good indicator of the importance
of an asset, given its form, function and location within a transport network. They
can range from casualties and injuries to structural damage, reduction in network
functionality and may also extend into environmental as well as societal impact.
Table 1 shows a categorisation framework for consequences of failure into four main
categories: human, economic, environmental and social consequences. Each of these
main four categories can be further sub-divided into a number of more specific areas,
so that itemisation and appropriate modelling, where possible, may be undertaken to
assess and/or quantify them.

Consequences can be classified as either direct or indirect. Direct consequences
are considered to result from damage states of individual components/assets. Indirect
consequences, triggered by the former, are associated with reduction in, or loss
of, system/network functionality. The differentiation between direct and indirect
consequences depends on the system boundaries considered in the analysis as well
as on the extent of the time frame that is used; they may, therefore, be subjective to
a degree.

An assessment framework for failure consequences should account for their type,
the relevant time frame, as well as the network/system boundaries. Therefore, they
should be consideredwithin a timedomain aswell as a spatial domain. The time frame
considered (days/weeks/years) plays an important role in consequence modelling;
consequences will be different when considering only a short-term post-event time
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Table 1 Categorisation for
failure consequences of
transport networks

Consequence categories Examples

Human Fatalities
Injuries
Psychological damage

Economic Replacement/repair costs
Loss of functionality/downtime
Traffic delay/re-routing costs
Traffic management costs
Clean up costs
Rescue costs
Regional economic effects
Loss of production/business
Investigations/compensations
Infrastructure interdependency
costs

Environmental CO2 emissions
Energy use
Pollutant releases
Environmental
Clean-up/reversibility
Noise pollution

Social Loss of reputation
Erosion of public confidence
Undue changes in professional
practice

frame or a long-term period extendingwell after the failure event. The actual duration
in considering long-term periods is also expected to affect themagnitude of estimated
consequences. For example, a bridge failure in a transport networkmay result, during
the immediate and mid-term aftermath, in loss of business revenue and high traffic
delay costs but over longer periods these might change as new regional equilibria
are reached within the network. Lastly, consequence estimation is affected by the
definition of the system boundaries, i.e. the extent of the transport network that is
considered in the analysis that the bridge is within (spatial domain). The extent of
the spatial domain is also an important factor, depending on whether a single route
(with diversions) or amorewidely encompassing spatial network is considered.Here,
the level of redundancy of the transportation network in redistributing traffic flows
following the bridge collapse plays an important role. Further layers can be added
to the above systems by addressing wider societal consequences such as business
losses, environmental impact, etc.

The consequences of failure vary significantly from asset to asset, andmay depend
on a range of factors which are related to the hazard itself, the asset and its utilisation,
as well as the surrounding environment. The source and nature of the hazard leading
to an asset failure will affect the consequences, considerably. It is expected that the
greater the magnitude and duration of a hazard, the greater the consequences will
be. Asset location is one of the major factors expected to influence the magnitude of
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failure consequences. The type of road or rail route served by the asset influences the
traffic intensity and, hence, the number of people exposed to any given hazard, as
well as the traffic delay costs. Moreover, the availability of emergency services and
accessibility to treatment for injuries will most likely be best in urban areas, hence,
the number of fatalities may be lower in such locations. Finally, the cost of repair
or reconstruction of an asset may be higher in rural areas due to increased labour,
materials and transportation costs. On the other hand, access might be easier and
interdependency issues might be less critical than in urban areas. The time of the day
that an asset failure may take place will also have an effect on human consequences.
Assets such as bridges, for example, will experience high levels of traffic during peak
times and the potential for mass casualties is thus higher.

2.2 Analysis of Consequences of Failure of Transport
Networks

The analysis of consequences of failure of transport networks has been performed
in a number of studies for different hazards including earthquakes, extreme rainfall
and others [4–10]. Transport network impacts are commonly analysed using two
methodologies including those measuring network topology (i.e. graph theory) and
system operation (i.e. travel time and cost) [4]. The topological method provides a
more simplistic representation of the network with no consideration of route choice
and periodic demand (peak and non-peak) on travel time and cost. However, the
second method uses traffic models to simulate network flows that are more real-
istic, although the computational and data demands become more complex. These
transport models are used in conjunction with hazard models to quantify the impacts
of extreme weather events. A comprehensive review of these analytical assessment
modelling techniques for disaster events can be found in [11].

A previous study by [4] assessed the impact of landslide disruptions by coupling
hazard data with a transport network model. The methodology followed in the study
was to: (i) establish the road network, (ii) evaluate the vulnerability of the road
network, (iii) create an event set of landslide disruptions, (iv) develop a micro-
meso network model to simulate the traffic flow, and (v) measure the impact of
each event. The study however did not capture wider long-term impacts such as
reductions in business investments. A further study simulated the impacts of closing
different sections of the road network in Switzerland [12]. Failure consequenceswere
calculatedusing subnetworks and compared against the optionof using a full network.
The study however was limited in that it assumed each of the failure scenarios to be
mutually exclusive, which is an oversimplification for natural hazards such as floods.
[5] developed a simple transport network and used a depth-disruption function to
represent the vehicle speed through floodwater. The traffic simulations were then
coupled with a flood model. This study only focused on one mode of transport
(roads). A paper by [6] proposed a new approach to support network operators
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in quantifying the risk related to their networks. The authors quantified risk from
a source event to its societal event over space and time. The consequences were
then monetised into direct and indirect costs, considering restoration interventions,
prolongation of travel time, and missed trips. The paper also defined four damage
states: (0) operational, (1) monitored, (2) capacity-reduced, (3) closed. In another
study, a conventional analytical framework to simulate traffic flows was used under
different flood scenarios in the Boston Metropolitan Area [13]. Direct costs from
the damages were not considered as part of the study as well as no consideration of
network restoration,which is crucial to knowwhen estimating indirect consequences.

A study by [14] used a simulation-based model to measure resilience indicators
in railway transport systems using different scenarios. The paper showed that effi-
cient crisis management plans could reduce the impact of undesirable scenarios on
a system. However, the study was limited in that it did not look into scenarios with
consequences such as casualties and injured passengers. In [7], a macroscopic traffic
simulation of a road flooded in Portlandwas performed. The consequence assessment
was limited to only one scenario, the complete closure of links, were considered in
the study. Others considered the impact of closing different bridges in Stockholm
with two scenarios of bad weather leading to a 15% reduction in free-flow speed
[15]. The transport model however was not calibrated as part of the study, providing
a lower confidence in the results.

3 Methodological Framework

3.1 Probabilistic Consequence Analysis Framework

As shown in the literature review the definition of consequence analysis depends on a
type of disruption, type of consequence andmeans of quantification of consequences.
However, the literature is generally in agreement that any form of consequence
can be described and linked directly or indirectly to time-dependent asset/system
performance indicator/delivery function/figure of merit. Asset/system performance
indicator describes time-dependent functionality of the asset/system at status quo,
time of disruption, during and after the disruption and during recovery/restoration
stage.

One of the traditional forms of performance indicator is the trapezoid function
which is often used to describe the behaviour of an asset and/or system in response to
a disruptive event and corresponding recovery stage [16]. In this form, the behaviour
of the asset/system following a disruption and recovery is generalised as a linear func-
tion. Another traditional formulation is the triangular description which assumes a
sudden drop in performance indicator following a disruption and a linear recovery
afterwards. Imani and Hajializadeh [17] have expanded the trapezoid description
to allow for flexibility in different disruption absorption and recovery/restoration
trajectories for different assets/systems. Figure 1 shows a schematic representation
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Fig. 1 Schematic probabilistic time-dependent performance indicator function

of a generalized performance indicator variation with time at five distinct zones.
These zones include (1) equilibrium during status quo; (2) absorption of disrup-
tion; (3) equilibrium following disruption; (4) recovery initiation and absorption; (5)
equilibrium following recovery.

Themajority of state-of-the-art attempts in formulating asset/system performance
have been focused on the deterministic definition, many of which concentrated on
post-event recovery analysis. The deterministic assessments may lead to misjudg-
ment of performance indicator of the asset/systemwhich could then result in underes-
timation of the consequences. On the other hand, a probabilistic framework that can
capture the uncertainties in the time-evolution of the performance indicator shown
in Fig. 1 can offer useful insight into how failure consequences may be affected by
such uncertainties.

The scope of this study is to provide a novel framework to evaluate
asset/system performance indicator by accounting for the uncertainties in failure
and recovery/restoration trajectories. Figure 1 schematically demonstrates the main
uncertainties in describing asset/system performance indicator by joint probability
density functions, p(Q, t | zi), for time-dependent performance indicator,Q(t), at each
zone/stage, zi, as a function of time, t.

The joint probability distribution function aims to move past the type of disrup-
tion and recovery measures and it focuses on the impact of disruption and recovery
on performance indicator. This is advantageous to the deterministic consequence
analysis where the performance indicator is defined as a function of the event only.
The joint probability of distribution can also be defined as a conditional proba-
bility for different types of hazards and disruptions, however, in the absence of
required database and/or in cases of low-probability/high consequence events, it is
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advantageous to formulate the probability functions independently from the type of
disruption.

The probability functions can be defined based on the available literature on
different types of hazards, disruptions and recovery measures. The main source of
the required database for probability functions are empirical qualitative data available
in grey literature, reports of National Transport Authorities and newsmedia searches.

To account for different possibilities for disruptive scenarios, a systematic scenario
generating strategy is developed. The generated scenarios for a given transport
network will include a cohort of Monte Carlo simulated single and multi-asset,
simultaneous and sequential disruptions within the network. For single asset failure
scenarios, the time of occurrence of the disruption, td, and total drop in performance
indicator of the asset (once the disruption is absorbed), PId , will be defined. An
example of this would be the drop in traffic capacity of a bridge, or a segment of a
road, due to flooding, capturing how quickly the flooding evolves over time leading
to the loss of asset performance.

For multi-asset simultaneous disruptions, in addition to time and drop in perfor-
mance indicator for each asset, the number of disrupted assets, nd, should also be
defined. For the sequential multi-assets, the time lag between each disruption, tlag, j
will be generated as part of the scenario simulation process. This type of scenario
can, for example, represent a wider impact of a hazard on the transport network such
as wider-scale flooding that may affect multiple stretches of roads and/or bridges.
Figure 2 summarizes these inputs for each scenario.

The key in consequence analysis of a system, hence its performance indicator
assessment, is to consider the interconnections and interdependencies of individual
assets that can cause cascading failures, amplify negative consequences due to these
failures and influence the overall performance of the system.

To describe the behaviour of a transport system as a function of its assets, network
theory is utilised in this study. Network theory has been widely used to characterize
infrastructure network topology and layout features by taking advantage of closed-
form expressions and numerical simulations. Mathematically, a topological network
can be represented as a graph with nodes and edges representing their connectivity
nature. For the infrastructure network A, network properties can be represented by
IA = {NA, EA,MA}, where NA, is the node sets, EA, is edges set andMA is a NA×NA

matrix representing the function of edges to pair-wise nodes. For transport networks,
nodes can represent junctions, public transport stations, intersection control systems
and traffic signs and edges could represent roads, bridges, tunnels, etc.

Once the system is simplified into its graph network representation, each asset (i.e.
node and edge) will be assigned a performance indicator with corresponding joint
probability distribution function p(Q, t |zi ), i = [1, .., 5]. The performance indicator
for each asset defines the level of serviceability and capacity for each asset. Then,
by conducting a traffic simulation method (microscopic or macroscopic), the overall
performance of the transport network can be defined as a function of the performance
of its assets, collectively.

The characteristics of the overall system performance depend on the type of simu-
lation. Macroscopic traffic simulation describes the collective vehicle dynamics as
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Fig. 2 Disruption scenario generation and inputs

a function of the spatial and temporal distribution of vehicle density and average
velocity, whereas the microscopic traffic models define the individual position and
velocity of all interacting vehicles in the system.

Once the performance of the system function for a given disruptive scenario is
calculated, the consequence of the disruption as a function of the time-dependent
performance indicator can be evaluated. The output of this stage will be a time-
dependent consequence function for a given disruptive scenario. These steps will be
repeated for all simulated scenarios. Once the number of required scenarios has been
reached, a consequence spectrum can be constructed based on the time-dependent
consequence function for each scenario. Figure 3 demonstrates the overall process
of the proposed framework to acquire consequence spectrum. This framework will
be used within the context of a case study transport network which is described in
the following section.

4 Transport Network Case Study

The test bed for this study is located in Portugal and has been selected within the
context of the EU-funded SIRMA project. The test bed includes some sections of
the National Road 6 (EN6), which runs along the coast, and the Cascais Railway
line, which runs parallel to EN6 at certain sections. The EN6 Road has a length of
16 km and the Cascais Railway line has a length of 25.5 km. The road and railway
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Fig. 3 Flowchart of the proposed consequence analysis framework

both play an important role in connecting the Cascais area, which is a major summer
retreat for the local population and tourists, to Lisbon.

The European Commission (EC) have previously reported that 28% of the
Portuguese mainland is vulnerable to coastal flooding, which can have severe conse-
quences as 60% of the population inhabits the coastal zone [18]. With this in mind,
the most critical natural hazard events in the selected Portuguese test bed have been
identified to be coastal flooding from wave inundation and sea level rise. One of the
main issues that has been reported by Infraestruturas de Portugal (IP), the major
highway and railway infrastructure owner in Portugal and a key partner of the
EU-funded SIRMA project, includes exposure to high tides in the Lisbon
metropolitan area.

A transport model of the case study has been prepared through the AIMSUNNext
transport modelling software that can perform both themacroscopic andmicroscopic
traffic simulations within the same software. The traffic parameters required for
the study include the speed, signal timings, traffic volumes from traffic counters,
percentage of vehicle types, and the timetabled train services. Further infrastructure
data is also required including the road and rail geometry, location of the asset, its
construction type and the age of the assets. Part of this data has been provided by
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IP towards the development of the transport network model and additional data will
be utilized for the calibration of the model. Other data requirements for this study
include historic weather and future climate projections data that will assist towards
the development of the failure scenarios to be captured in the network analysis. In
particular, past disruption/failure events that have taken place in the test bed will be
collected from IP to appreciate the different types of hazards that have impacted the
test bed as well as the level of disruption that has been experienced to derive the
joint probability distribution functions for each asset. The framework proposed in
this paper will then be applied to this case study through the work in Work Package
4 of the EU-funded SIRMA project.

5 Concluding Remarks

This paper has presented an overview of a novel probabilistic consequence analysis
framework, which forms an integral part of the risk assessment framework that will
be developed as part of the EU-funded SIRMA project. The proposed framework is
based on probabilistic description of asset performance indicator and can be utilised
to assess the uncertainty in themodelling characteristics of the performance indicator
on the resulting consequence of failure of transport networks. It is envisaged that the
proposed framework will be applied to a multi-modal transport network in Portugal.
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