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Abstract This study proposes a machine learning algorithim—a Gaussian process
regression (GPR)—for predicting the concrete breakout capacity of single anchors
in shear. To this end, experimental strength of 366 tests on single anchors with
concrete edge breakout failures were collected from literature to establish the exper-
imental database to train and test the model. 70% of the data were used for the model
training, and the rest were used for the model testing. Shear influence factors such
as the concrete strength, the anchor diameter, the embedment depth (technically the
influence length), and the concrete edge distance were taken as the model input vari-
ables. The generated predictive model yielded a determination coefficient R2 = 0.99
for both the training and testing data sets. Predictions from the developed models
were compared to that of the other existing models (Eurocode 2 and ACI 318) to
validate its performance. The developed model provided a better prediction of the
experimentally observed shear strength, compared to the existing models, yielding
low mean absolute error, low bias and variability when tested.

Keywords Machine learning · Gaussian process regression · Breakout strength ·
Fasteners · Model uncertainty

1 Introduction

Recent advances in computing have given a boost in the use of advanced soft
computing methods across all industries; the field of artificial intelligence has been
developing since the 1950s. Knowledge-based methods or expert systems have been
deployed to assist risk-related decisions under uncertainty. Applications in structural
engineering are witnessed in the research field as early as the 1980s [1] since struc-
tural engineering problems in practice are governed by a wide range of uncertainties
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related for example to the applied actions, thematerial performance andhomogeneity,
or the models used to describe the problem itself. A benefit of such soft computing
methods is that they can provide reliable solutions on multi-parametric problems
and highly nonlinear correlations of the input. Simultaneously, various disciplines
of structural engineering rely on empirical, semi-empirical, or numerical predictive
models.

Design of anchorage to concrete, offers an example of semi-empirical predictive
and design models, particularly when it comes to concrete-related failure modes.
The assessment of anchor capacity using Artificial Neural Networks (ANN) has been
previously investigated in [2, 3]. More recent studies present paradigms of machine
learning algorithms such as the Gaussian process regression (GPR) with very high
efficiency in structural engineering problems [4, 5]. The present paper investigates
the feasibility of using GPR algorithms to predict the concrete breakout strength of
single anchors loaded in shear. Towards developing the model, experimental results
of 366 tests on single anchors with concrete edge breakout failures were collected
based on an extensive literature search to establish the database to train and test
the model. A parametric study and comparison of the proposed models with other
existing predictive models were reported to assess the accuracy and efficiency of the
shear capacity design methods for anchors subjected to shear loads.

2 Existing Strength Models for Concrete Breakout
Capacity of Single Anchors in Shear

The current EN 1992-4 [6] and ACI 318 [7] design standards provide Eqs. 1 and
2, respectively, for the evaluation of a single anchor’s resistance against concrete
edge failure in non-cracked concrete. The European design is valid for a dnom ≤
60 mm and influence length l f ≤ 12dnom in case of dnom ≤ 24 mm and otherwise
≤ max{8 · dnom; 300 mm}. The design calculations covered byCENare valid only up
until fck < 60 N/mm2. ACI 318 is valid for a concrete compressive cylinder strength
of 10,000 psi (70 MPa) for cast in anchors and 8000 psi (55 MPa) for post-installed
anchors and an anchor diameter up to 4in. (100 mm).

VEC2−k = 2.4.dα
nom .lb

f .
√

fck .c
1.5
1 . (1a)

The mean concrete breakout capacity of single shear anchor in non-cracked
concrete for the EN 1992-4 standard is calculated according to Eq. 1b [8].

VEC2−m = 3.dα
nom .lβf .

√
fcm .c1.51 . (1b)

where
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α = 0, 1 ·
(

l f

c1

)0,5

β = 0, 1 ·
(

dnom

c1

)0,2

The design and the mean concrete breakout capacity of single shear anchor in
non-cracked concrete for ACI 318 are calculated according to Eq. 2a, b respectively
[9, 10].
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VAC I−m = min
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(2b)

where dnom is the outside diameter of the anchor. f ′
c is the concrete cylinder strength

per the ACI acceptance standards. λa is the modification factor for applications in
lightweight concrete. fcm is the mean concrete cylinder compressive strength. l f is
the influence length of the anchor loaded in shear.

3 Gaussian Process Regression (GPR)

The Gaussian process model is a kernel machine type which can be used as a super-
vised learning technique for classification as well as regression. Gaussian processes
can give a simple probabilistic representation of random processes and can be used
for many different types of nonparametric estimation. This method is currently well
adopted and applied in various areas in structural engineering [4, 5]. A summary of
theGPR algorithm is presented in this section.More details on theGPRmethodology
can be found in [11].

Given a training set, U = {(xi , yi ); i = 1, 2, . . . , n}, where the input xi ∈ R
U.n

denotes the design matrix and yi ∈ R
n denotes the vector of the desired output,

drawn from an unknown distribution. A GPR model predicts the value of the output
variable ynew, given a new input vector xnew, and training data. In the setting of classic
linear regression, we model the output variable y by a function of an input variable
x expressed in Eq. 3 [11].

y = xT β + ε (3)

where x is the input vector, and y is the observed target value. The random error term
ε ∼ N

(
0, σ 2

n

)
. The error variance σ 2

n and the coefficients β are estimated from the
data.
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Themultivariate Gaussian distribution, which has amean vectorμ and covariance
matrix � have the joint probability density expressed as Eq. 4.

p(x |µ) = (2π)−
D
2 |�|− 1

2 exp

(
−1

2
(x − μ)T �−1(x − μ)

)
(4)

Unlike theGaussian distribution,which is a distribution over vectors, theGaussian
process is a distribution over functionswith a covariance function k

(
x, x ′) and amean

function m(x) (Eq. 5).

f (x) ∼ G P
(
m(x), k

(
x, x ′)) (5)

The indexes of the GP is x . Where the mean function and covariance function of
a real process f (x) is defined as Eqs. 6 and 7, respectively.

m(x) = E[ f (x)] (6)

k
(
x, x ′) = E

[(
f (x) − m(x))( f (x ′) − m

(
x ′))

]
(7)

The Gaussian Process is a multivariate Gaussian of infinite length. Following the
GPR procedure, the n observations in an arbitrary data set, y = {y1, . . . , yn} can
be taken as a sample from some multivariate Gaussian distribution. Hence, going
from the process of distribution, we can get an understanding of a GP and then
draw samples from it. The Gaussian process f ∼ G P(m, k) is defined with a mean
function m(x) = 0 (Eq. 8) and covariance/kernel function k

(
x, x ′) (Eq. 9). The goal

of only working with finite quantities is simply achieved by requiring the values of
f at a distinct number of n locations. Given the x-values we can evaluate the GP,
which is now reduced to a multivariate Gaussian distribution [11].

μ = m(x) = 0 (8)

k
(
x, x ′) = σ 2

f exp

(
− 1

2l2
(
x − x ′)2

)
+ σ 2

n δ
(
x, x ′) (9)

where l denotes the length parameter of the kernel function. δ
(
x, x ′) is denotes the

Kronecker delta function.
Gaussian Process regression has different types of kernel functions, some ofwhich

includes the squared exponential kernel, Laplace kernel and Linear Kernel. Since
different kernel functions are suitable for different type of data, several kernel func-
tions need to be trialled to choose the most appropriate. In this study, the two most
suitable kernel functions (non-linear kernel functions) obtained for the database is
the Gaussian or Radial Basis Function (RBF) k

(
x, x ′) = exp

(− 1
2σ 2 x − x ′2). Where

σ is the width of the kernel which are user-defined parameters.
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4 Development of the GPR Model

The experimental database considered in this investigation was compiled from
different research published in technical literature. They are majorly experiments
conducted by [10, 12–22]. The different experiments were aimed and designed to
reflect the behaviour of single anchors in shear. The experimental database consists of
the failure load of 366 single anchors in shear, failing due to concrete edge breakout
in non-cracked concrete. The database covers a wide range of anchor configurations
that can be used to assess any anchor design method against experimental results.

The development of an efficient model for predicting the concrete breakout
strength of single anchors in shear requires the inclusion of the main factors affecting
anchors in shear as inputs. The various parameters affecting the breakout strength
of single anchors in shear are discussed in [9]. In this study, the input parameters
considered for the implementation of the GPR model includes edge distance c1,
anchor diameters dnom , influence length l f and concrete strength fc.

In order to implement the GPR model, the database of experimental anchor tests
was split into two subsets, namely: the training data set, and testing data set. The
training data set is used to develop both the GPR model, whereas the performance
of the developed model is evaluated using the testing dataset. While splitting the
database into subsets, it is essential to ensure data patterns that are statistically consis-
tent in both the training and testing datasets. This was achieved by randomly sorting
both the training and testing data set until an acceptable consistency is maintained
among the input variables, in terms of statistical properties (such as mean and stan-
dard deviation) and range of data. This is summarised in Table 1. In this study, 70%
of the data (256 out of 366 cases) were used for training, and the remainder (110
cases) were used for testing the models.

The nonlinear regression technique of the GPR models, implemented in a
MATLABenvironment,was used to predict the concrete breakout strength of anchors
in shear. In order to map input data into feature space, nonlinear regression tech-
nique requires kernel functions. The optimum search method was used to obtain the
optimum parameters. The performance of the developed model was detailed using
statistical parameters, namely the coefficient of determination (R2), mean absolute
percentage error (MAPE), Mean square error (MSE) and root-mean-squared error
(RMSE).

5 Results and Discussion

5.1 Performance of the GPR Model

The investigation of the performance of the developed model using the training and
testing data set is discussed in this section. Using the experimental data presented in
Table 1, the GPR model was adopted to successfully learn the interrelationships
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Table 1 Statistical summary of the experimental dataset used for the model development

Statistical parameter Datasets dnom (mm) l f (mm) c1 (mm) fc (MPa) Vu (kN)

Range Training 8–88.9 50–762 45–508 18.4–85.4 4.72–511.27

Testing 8–88.9 50–762 50–508 18.4–85.4 5.17–518.72

Mean Training 25.05 206.7 148.1 27.8 71.6

Testing 25.1 234.7 160.3 28.2 89

SD Training 15.2 150.3 107.6 9.9 97.4

Testing 17.7 175.2 126.2 10.4 127.9

SD denotes the standard deviation, Vu is the experimental concrete breakout strength

Table 2 Statistical properties
of the developed models

Parameters GPR model

Dataset Training data set (256) Testing data set (110)

R2 0.99 0.99

RMSE 8.7 11.1

MSE 76.7 123.9

MAE 5.8 5.6

between concrete breakout strength and varied shear strength parameters (input
variables). The model accuracy is assessed using statistical parameters such as R2,
RMSE, MAE and MSE, calculated between the experimental and predicted results,
and the results presented in Table 2. The statistical result for the training database
(256 experimental tests) is reported as follows: RMSE = 8.7; MAE = 5.8 and R2

= 0.99. The R2 and MAE value of the testing database is comparable to that of the
training database (110 experimental tests), but with a slightly higher RMSE value.
These results indicate that the GPR model is a good predictor of concrete breakout
strength. The results demonstrate the generalization capability of the developed GPR
model.

5.2 Comparative Study of the GPR with Existing Concrete
Breakout Strength Models

The trained GRPmodel was compared to existing concrete breakout capacity predic-
tive models, using the testing dataset, to examine the predictive performance of the
models. Two existing concrete breakout capacity models in shear were considered,
namely the predictive model of (1) EN 1992-4 (Eq. 1) (2) ACI 318 (Eq. 2). The mean
shear resistance function/best estimate model of the EN 1992-4 and ACI 318 models
were used in this comparative assessment.

The plot of the experimental breakout capacity against the predicted breakout
capacity of the developed models and other existing models, using the testing
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database, are presented in Fig. 1. The figure portrays the deviation of the predicted
strength by the methods from the line of ‘Perfect model’, which is defined as the
line position of all the points where the experimental breakout capacity is equal to
predicted breakout capacity. As seen from the figures, the predicted values by the
GPR model are much less scattered compared to the values from the other models.

A comparison of the GPRmodel with other existing models in terms of MAE and
RMSE values is presented in Table 3. The table revealed that the MAE and RMSE
values of the GPR model is less than that of the other models. Güneyisi et al. [23]
developed a model to predict the concrete edge breakout capacity of single adhesive
anchors using gene expression programming (GEP). Their developed model yielded
R2 of 0.92 (lower than what is obtained for GPR model in this study) and the value
of RMSE= 13; MAPE= 14.2, MSE= 168.7 (higher than what is achieved for GPR
model in this study), using the testing database of 34 anchor experiments. However,
it should be highlighted that a larger database is utilized for training and testing in
this study compared to [23]. A general assessment of the results presented in Table 3
suggests that the GPR model outperformed all the other models investigated in this
study.

The summary of the statistical properties of the model uncertainty (obtained as
the ratio of experimental breakout strength to predicted breakout strength) associated
to the GPR and the other models are presented in Table 3, and the distributions are
plotted in a box plot shown in Fig. 2. A box plot is a statistical tool that can be used
to provide statistical summaries of the underlying distribution of a dataset. The box
plot displays the maximum and minimum values in the dataset, the lower and upper
quartiles, the mean and the median. A model uncertainty mean value μM E = 1 is
a condition for an ideal model. The GPR and the other models are assessed, using
the criteria that an ideal model is expected to have in addition to model uncertainty
mean value μM E = 1; high precision (that is, small scatter of data) [24, 25].

Assessment of the box plot revealed that the GPR model has the smallest length
of the interquartile range of all the models investigated, thereby suggesting less vari-
ability of the GPRmodel uncertainty. As presented in Table 3, the model uncertainty
variable associated with the GPR model has a mean value of μM E = 0.99 (closest

Table 3 Statistical properties
of the proposed and existing
models

Parameters GPR EC2 ACI 318

R2 0.99 0.98 0.98

RMSE 11.1 41.78 22.2

MSE 123.9 1747.2 196

MAPE 5.6 20.7 14.0

Mean μM E 0.99 0.86 0.93

Standard deviation σM E 0.11 0.18 0.23

μM E and σM E are respectively, themean and standard deviation of
the model uncertainty (ratio of the experimentally observed shear

capacity and the predicted shear capacity by the models). R2 is the
coefficient of determination
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Fig. 1 aThe full plot of experimental breakout capacity versus predicted breakout capacity.bPartial
plot of experimental breakout capacity versus predicted breakout capacity (breakout strength up to
100 kN only)

to mean value of 1), suggesting that the model reasonably predicts the breakout
strength. Regarding standard deviation, the GPR model yields the lowest dispersion
of all the models investigated with σM E = 0.11. Table 3 also shows that the best
estimate models of EN 1992-4 and ACI 318 overpredict the shear breakout strength,
but predictive models in design standards may typically lie on the conservative side.
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Fig. 2 Comparison of the prediction error of GPR to other models

6 Conclusions

A possible failure mode for shear loaded anchors is the concrete breakout failure.
Concrete related failuremode poses a significant safety issue, since theymay develop
abruptly, without preceding signs of damage. Given this, accurate prediction of the
concrete breakout resistance of anchors in shear is crucial. This contribution focuses
on the feasibility of using the Gaussian Process Regression (GPR) machine learning
algorithms to predict the shear breakout strength of single anchors and quantifies the
model uncertainties in existing predictivemodels. The following general conclusions
may be drawn from the present study:

• A reasonable accuracy was obtained for both the training and testing datasets in
termsof lowRMSE,MAEandhighdetermination coefficients R2, even though the
database for testing were not utilized for training. This reflects the generalization
capability of the developed GPR model.

• The prediction capability of the developed model was compared to that of the
existing models proposed in EN 1992-4 and ACI 318. The statistical analysis
revealed that the proposed GPR model had relatively lower errors and higher
determination coefficient than the existing codified models investigated.

• The model uncertainty associated with the GPRmodel has the closest mean value
to 1 (μM E = 0.99) and the lowest standard deviation (σM E = 0.11). Therefore,
the GPR model is described as the best performer of all the models analysed in
this study.

• In the context of the reliability analyses, a limit state function should ideally be
based on a good predictive model, with low bias (with a mean close to 1) and
uncertainty coupled. Such a model can be used as a general probabilistic model
in the reliability analysis of fastening to concrete design provisions.
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