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Abstract Metrology is extensively used in the manufacturing industry to determine
whether the dimensions of parts are within their tolerance interval. However, errors
cannot be avoided. If the metrology experts are actually aware of it, and currently able
to identify the different sources that contribute to making errors, very few research has
been made in this area to develop metrology methods accounting for such errors. The
probability density function of the error is here assumed to be given as an input. This
work deals with a batch of measures and its statistical properties. The first proposed
method aims to correct the effects of the errors to the distribution that characterize
the entire batch. Then a second method tries to estimate for each single measure,
the dimension that is being the most likely given by a measure, after the error is
deducted. It is based on the output knowledge of the first method and integrates it
with Bayesian statistics. Only Gaussian distributions are considered in the paper.
Their relevance is shown through one example applied on simulated data.
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1 Introduction

Metrology is akey stage in industry as it validates the quality requirements at different
steps of the production process. Designers prepare a Computer-Aided Design (CAD)
model of the parts; a nominal value and tolerance interval are associated with each
dimension (such as for instance the thickness of the part, the diameter of a hole, the
radius of a fillet, etc.). Off-tolerance dimensions may have detrimental effects, for
instance two mating parts need to be geometrically compatible to perform assembly.
These dimensions are measured when the parts are manufactured. However, as every
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measure is always tarnished with errors, the issue of the relevance of such measures
arises.

The consequence of an improper measure gives a wrong idea of the part confor-
mity. It may lead to additional machining, scraping of compliant parts, or delivery
of non-compliant parts to a customer. When studying a batch of parts, all of these
dimensions are used to compute some quality metrics—such as the well-known Cp
and Cpk, thus also subject to errors. Therefore, the errors also propagate to these
quality metrics.

To the authors’ knowledge, the measure process currently takes into account the
measurement tool accuracy. A common practice consists in applying the maximum
accuracy error on both side of the measure to create the tolerance interval. However
there is actually no reason to center the error interval on the measure. Moreover,
only the bounds of the error interval are retained in the end, suggesting that all errors
inside this interval are equiprobable. This actual lack of knowledge can be seen as a
uniform probability density function modeling of the error.

If the measurement tool accuracy is mistaken, many other error sources are
currently missing. This can be studied with the Ishikawa diagram which analyzes
the method, environment, material, process and people sources of uncertainties [1].
The temperature, pressure, dust, altitude, operator repeatability and inter-operability
are all example of errors that are being ignored. If metrologists are actually aware of
these input errors, there is nowadays no mean to integrate them. By default, a certain
amount of skepticism is introduced into the safety factors to prevent any risks, and
the cost of these coefficients has already been widely stated in the literature.

This paper aims to use all the available information. The error is modeled as a
random variable and its probability density function is considered as a given input.
This research is part of the European project STAM [Acknowledgments] leading by
an expert metrology company where engineers assume today to be able to identify
it. The measure is the value that can be read on the measurement tool. This work
aims at correcting (at least partially) the effects of the error on the measure, and tries
to estimate the true dimension. The search for the true dimension is based on this
fundamental formula [1]:

m=v+¢& (D)

where m € R is the measure of the true dimension v tarnished with the error £. The
true dimension is a notion that needs to be carefully manipulated since it is actually
impossible to know its exact value; many metrologists believe it is very complex
to define it. The uncertainties around the manufacturing process cannot be avoided,
therefore, the made parts have not exactly the same dimension. That is why the true
dimension is considered as a random variable.

The paper finally aims to solve two main issues: (i) the correction of the density
associated with a batch of measures; (ii) the correction of the measure associated with
one part. Two methods that complement each other are developed and illustrated with
an example. This study assumes that the error and measure input probability density
functions are Gaussian as it is widely used and covers most of the practical cases. Note
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that this is particularly relevant for the error as it is the sum of numerous independent
variables. The use of Gaussian distribution is therefore in good agreement with the
central limit theorem. This paper develops the methodology in Sect. 2, Sect. 3 presents
an example of their application and the paper closes with the conclusions.

2 Proposed Methods of Analysis

2.1 Correction of the Density Associated with a Batch
of Measures

A manufactured part is meant to verify some key dimension expectations. To check
the quality of a batch of parts, these essential dimensions are measured. The distri-
butions obtained are all the more important that they are used to establish the quality
metrics, such as process capability indexes [2, 3]. However, just as a measure is always
tarnished with an error, the distribution of a set of measures is as well tarnished with
errors. To estimate the true dimension distribution, the idea is to exploit the error
distribution we assumed to know. The measure dimension is expressed as the sum
of two random variables and its probability density function is expressed as:

) =T o e~y @

where ), is the probability density function of the measure, fy and f, are respec-
tively the probability density functions of the two input random variables: the true
dimension V and the error ¢. This formula corresponds to the measure distribution
and it happens to be a convolution product. Convolution is a well-documented issue,
notably resolvable with a Monte Carlo simulation or Gauss’ integration scheme [4]. In
our context, the convolution product is known—the results are available (measures)—
and one term of the product is also known the probability density function of the
error. The identification of the second term of the convolution product is referred to
as deconvolution.

Deconvolution methods to deal with continuous signals, either temporal or spatial,
are mainly used and developed in image processing [5] and signals processing [0,
7]. The metrological approach is not about filtering: a sample set is available, it is
not time-dependent and each measure is a unique phenomenon. Therefore, these
well documented methods are not applicable to the deconvolution of probabilistic
distributions.

We recall that we introduced the assumption of a Gaussian modeling. In this
context the most relevant method in our context is the use of characteristic functions,
as they provide an analytical solution. If a random variable has a probability density
function, then the characteristic function is its inverse Fourier transform. As a Gaus-
sian distribution satisfies the conditions of Bochner’s theorem [8], its characteristic
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function exists and its expression is [9]:
. 1
(1) = &2 3)

with ux and oy respectively the mean and the standard deviation of the normal
distribution which characterize the random variable X. Then is used the interesting
property that the characteristic function of the sum of two independent random vari-
ables is equal to the product of each of their characteristic function [10]. As we can
assume the independence between the true dimension V and the error ¢, the relation
obtained is:

Su(t) = Qy4e(t) = Pv (1) (1) “4)

This last expression makes the deconvolution straightforward: the characteristic
function of the true dimension density is obtained by a division. The division of the
two exponential functions gives an exponential function with the same shape, from
which it is very easy to identify the parameters. The true dimension distribution that
we finally get is Gaussian; its mean is the measure mean minus the error mean; its
variance is the measure variance minus the error variance.

VNN(,LLM—,LLE,GI%,,—U&Z) )

2.2 Correction of the Measure Associated with One Part

The first method deals with the distribution of the measure, as we considered a batch
of parts. This subsection describes another method which is focused on the measure
of each part of the batch. The main objective is to determine if the parts respect
the tolerance specifications, and more generally for each part the probability that
the dimension lays within its tolerance interval. It is impossible to know the true
dimension density, so this method aims to get an approximation of it, at least better
than the measure which is always tarnished with errors.

Recall that the measure has been introduced as the sum of a true dimension and an
error. So, each measure can be associated with an infinite number of combinations
of true dimension and error. However, the combinations are not all equiprobable.
The research consists in finding the most probable couple of terms of which the sum
is equal to the measure. On one side, the error measurement probability function is
obviously used to weigh the plausibility of a supposed error. On the other side, it
is necessary to provide some other new information for the a priori to estimate the
plausibility of a supposed true dimension.

The production team possesses a specific expertise, which includes some theories
and a long time experiences for operators and engineers, as long as the machine in
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the manufacturing process is maintained and keeps working to make the investment
the most profitable. This non negligible knowledge exists and just waits to be picked
up. Nevertheless, it must be noticed that it remains very complex to quantify the
truthfulness and integrity of this source. Another interesting alternative is to use the
deconvoluted distribution from the last application as the a priori probability density
function. Like the production team’s knowledge, this shall identify the production
behavior, with an experience based on a previous huge batch of parts and being
“conscious” of the error probability density function. This is the a priori information
chosen in this paper. Remark that the batch being corrected must be independent
from the one used for the deconvolution [11]. In order to assimilate this knowledge,
we use the Bayesian statistics. From these knowledge sources, the Bayesian theorem
[11] highlights the probability for a given value x to be the true dimension knowing
the measure m is given by:

1
P(x|m) = Eﬁ(m — x)7(x) (6)

where L is the likelihood, P and w are respectively the a posteriori (or posterior)
and the a priori (or prior) probability density functions, and C is the evidence which
guarantees that the a posteriori distribution integrates to one. The a priori distribution
corresponds to the expert knowledge which weighs the plausibility of a supposed true
dimension. It would be the distribution that characterizes the manufacturing process
if no measure were made. The likelihood gives the probability for m to have been
measured knowing that the true dimension is x. It is based on the error density, which
is known, we get: L(m — x) = £(x — m). The likelihood would be used to compute
the probability of being out-of-tolerance if there was no a priori.

The outcome of the procedure for each measure is an a posteriori distribution,
which contains much more information. In particular, the highest density of the a
posteriori is called the revised dimension: this is the most probable true dimension.
While the traditional use of the Bayesian theorem is meant to update the a priori
with the observations, we may say that we update our observations with our a priori.
This Bayesian approach can easily be extended to any arbitrary probability density
function. In our context, the input distributions are supposed to be Gaussian. So, the
product between the likelihood and the a priori is a density product of two Gaussian
distributions which can be solved analytically. The posterior distribution obtained is
also Gaussian and, incorporating the previous expression of the likelihood and that
the a priori input is set as a deconvoluted distribution, it is expressed as:

02 02 62
R~ (1= )+ o = pn0?(1- %)) ™
Oy Oy Oy

where R, is the random variable of the revised dimension. It is worth noting that
there is a linear relationship between the mean of the revised distribution and the
measure. Also, the standard deviation is constant and does not depend on the input
measure.
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3 Examples

3.1 Presentation of the Example

To illustrate the effect of these two methods we consider the following analytical
examples; the data (measure) is generated using a Monte Carlo simulation, which
allows us to compare the results to the known solution, thus to quantify their quality.

The first major input is the error probability density function. Recall that it is
assumed to be known using the metrologist expertise. It is important to remind that
this information is actually impossible to identify perfectly. Yet to estimate the extent
of the method potential, the error probability density function is supposed to describe
perfectly the mistakes made in reality. This probability density function used here is
unbiased, in the example its mean is equal to zero. Bias correction is straight-forward
and already applied in industry, this is therefore not considered here.

The second major input is the true dimension probability function which is also
set arbitrarily. Its mean value is not discussed in detail as it does not influence the
study. The standard deviation is set in order to be twice the standard deviation of the
error. If the measurement tools have the same dispersion than the production—which
is very unlikely—then they are useless. On the contrary, if they are too precise then
there may be no need for the application of these methods.

This sample size is set to 1000. It is moderately large from a statistical perspective
and we assume that the uncertainties are fairly well represented. On the other hand,
collecting and measuring 1000 dimensions requires quite some efforts for a real-life
manufactured component. We therefore assume that our sample size is a fair trade-off
between the statistical relevance and industrial constraints.

To get a measure sample, two samples are drawn from the error and the true
dimension probability density function and added together as a whole. The limits of
the tolerance interval are set to 14.0 and 14.4. Recall that the input distributions are
assumed to be Gaussian. Table 1 summarizes the input distributions:

3.2 Deconvolution of a Batch of Parts

The methods described in Sect. 2.1 are applied to remove the effects of the errors to
the distribution identified from a set of measures. Figure 1 shows the deconvolution
result. The deconvoluted line is very close to the solution—the true dimension density.
Despite an analytical solving of the problem, the deconvolution probability density

Table 1 Parameters of the

. s Probability density function |Mean | Standard deviation
input distributions

True dimension 14.2 0.1

Error 0.0 0.05
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Fig.1 Deconvolution of the density associated with a batch of parts. The dashed red line is the true
dimension distribution. The black line is the Gaussian distribution inferred on the measure sample
represented by the transparent grey histogram. The thick green line is the deconvoluted distribution

function does not exactly match the solution. This difference is only due to the
sample size, as the mean and variance of the measure sample differ slightly from
those of the law from which it is extracted. Both the mean and variance of the
deconvoluted distribution are still very satisfying: the error made for these parameters
is respectively about 0.059 and 0.001 times the standard deviation. Nevertheless, the
high quality of the results obtained must be put in parallel with the Gaussian modeling
hypothesis and the perfect identification of the error probability density function that
have been assumed.

The deconvoluted distribution can be subsequently used as the reference to char-
acterize the production process. The re-estimation of the parameters directly impacts
the percentage for parts to be out-of-tolerance. This is explicitly shown in Fig. 2 where
the probability goes from 0.0736 with the measures to 0.0462 with the deconvolution.

3.3 Revision of the Measure Associated with a Part

The methods described in Sect. 3.2 are applied to remove the effects of the errors to
each measure of a simulated set. The deconvoluted distribution from the last applica-
tion is set as the a priori probability density function. The scatter plot of the measure
residues in Fig. 3a shows a concentric dispersion which confirms the fair construc-
tion of the sample, based on two Gaussian probability density functions. The scatter
of the revised dimension shown in Fig. 3b presents a dispersion smaller than the
measured ones: the mean squared error goes from 1.555 to 1.431. It also presents a
linear decreasing tendency, pointing out the dependence between the revised dimen-
sion and the true dimension value. This is clearly visible for the extreme values of
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Fig. 2 Probability for the process to produce a part out-of-tolerance. The red dashed line is the
true dimension density, the large green line is the deconvoluted density and the solid black line
is the measured dimension density. The black arrow indicates the tolerance interval bounds, the
green area and the grey striped area are the probability to be out of it, respectively according to the
deconvoluted distribution and to the measured distribution. Graph b focuses on the right side of the
graph a, to explicit the probability failure reduction
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Fig. 3 Measures and revised dimension residues. a The measures residues with respect to the true
dimension. b The revised dimensions residues with respect to the true dimension

the true dimension. The introduction of a bias is the price of an improvement of the
measure.

The coefficient of determination is used to quantify the improvement introduced
by the proposed method. This metrics is frequently used in the context of (non-)linear
regression, as it can be considered as the score of the predictive model. The idea in
this application is to consider that the measure and revised dimension can be seen as
predictions of the true dimension:

o D00 )’
Z?:l(v(i) - M%/)z

where x is either the measure or the revised dimension. If one of these two predictions
is perfect then its predicted value is equal to the true dimension and the score is equal
to 1. The uncertainties present in this model make the search of almost perfect
values irrelevant. The coefficient of determination computed in this example on the

®)
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measured and revised dimensions are respectively equal to 0.776 and 0.811. This
result is satisfying as it endorses the general increase in quality.

The mean squared errors and the coefficients of determination confirm that the
revised dimensions obtained through Bayesian statistics are generally better than the
measure. But no conclusion regarding the conformity of each parts in the batch can
be drawn. The confusion matrix is a relevant tool to synthesize all this information.
It is also based on the idea that both the measured and the revised dimension are
predictions of the truth. The two confusion matrices are shown in the Fig. 4. In the
top left corner is presented the number of right predictions about the actual conformity
of the true dimension (True compliant); in the bottom right corner, the number of
the right predictions about the actual non-conformity of the true dimension (True
non- compliant). These right predictions constitute a diagonal in the matrix. The
other diagonal groups all the errors: either when it is mistakenly believed the part is
acceptable—in the bottom left corner (False compliant)—or when it is mistakenly
believed the part is not acceptable—in the top right corner (False non-compliant).

The sum of True compliant and True non-compliant is higher using the revised
dimensions and this is an encouraging result (960 against 942). However, these are
many more False compliant (30 against 13) which leads to the conclusion that this
method is “optimistic” as it tends to report more conformed value. To evaluate the true
benefit with the confusion matrix, it is necessary for the industrialist to associate a cost
for each of the four cases; or at least for the False compliant and False non-compliant
which are respectively known as client risk and supplier risk.

The optimistic behavior identified can be explained by the linear relation between
the revised dimension and the measure that has been given in Eq. (7). Indeed, applying
the tolerance interval to the linearly transformed measure is equivalent to apply the
linearly transformed tolerance interval to the measure. The new tolerance interval
obtained after the Bayesian revision is called the acceptance interval. In our appli-
cation its bounds are equal to 13.96 and 14.44 (against 14.0 and 14.2 originally).

Measured dimension prediction Revised dimension prediction
800 800
compliant 45 compliant 10
_ 800  _ 600
-1 ¥
= =
2 a0 3 400
= =
non-compliant 13 33 200 non-compliant 30 16 200
ol '\ ol o~
Q\\-o“ Q\@(\ Q\\"’o &
& & & &
& &
Predicted label Predicted label
(a) (b)

Fig. 4 Confusion matrix of the different predictions. The confusion matrix of the a measures and
b revised dimensions
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The width of the acceptance interval is increased; therefore the method reduces the
number of rejects.

The Bayesian revision explains this enlargement as the measures are attracted by
the a priori. In most of the common cases, it is in the tolerance interval and so, the
small dimensions are increased and the large ones are reduced. The consequence of
this optimistic attraction into the tolerance interval is an increase of the risk. Recall
that the criterion to choose the revised dimension is to maximize the probability of the
a posteriori distribution. However, this definition does not consider the probability to
be out-of-tolerance which is a risk that the user should also be aware of. In the worst
case shown in Fig. 5, the revised dimension falls on an extreme bound of the tolerance
interval and, with Gaussian probability density function only, the probability to be
out-of-it is 0.5. To summarize, by considering the revised value or by applying the
acceptance interval, industrialists are setting the admissible risk to mispredict the
conformity up to 0.5.

The Bayesian revision ends with an a posteriori probability density function which
makes possible to compute the probability to be out-of-tolerance for the revised
dimension. In this Gaussian modeling context, the acceptance interval has been
determined analytically with the analytical expression of the mean. By proceeding
experimentally, if the admissible risk is set to 0.5 then it is possible to identify all
the revised value that are conformed without exceeding this probability: therefore, to
identify the acceptance interval which must be applied on the measure to obtain the
set of revised values which satisfy this conformity status. This approach may be used
with any admissible risk threshold. Figure 6 shows an abacus to read the acceptance
interval for any admissible risk threshold for the numerical values of this example.

Figure 6 is symmetric as the tolerance interval is centered on the true dimension.
The basic results can be confirmed: if the wanted risk is null, then none of the

The maximum risk acceptable

40 |

35 f

301 i

201

Probability

15 4 y |

10 4 #

05 4 r

0.0 { B v

138 140 142 144 146 148 15.0
Dimension

Fig. 5 The maximum acceptable risk. The large green curve is the a posteriori density. The green
triangle is the revised dimension and the green area is the risk associated with this chosen value
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Fig. 6 Acceptance interval for an admissible risk. The black thick arrow reminds the original
tolerance interval bounds at its equivalent risk. The black dots define the bounds of the acceptance
interval included in the shaded area

measure meet the requirement, therefore none is compliant. If there is no limit to the
acceptable risk then all of the measures are considered as compliant. The acceptance
interval calculated before for a 0.5 risk with bounds equal to 13.96 and 14.44 can be
found. An interesting result, read in reverse, is the revelation of the risk taking with
the measurement process: in our application it is 0.18.

4 Conclusions

In this paper, we present two methods that complement each other, which can be
used by metrologists to consider the error random variable. The first deals with a
batch of measures. It aims to correct the distribution which characterizes this batch
from the error disturbances. The output is the new reference distribution to compute
and estimate the usual quality metrics. The second method deals with measures one
at a time. The output of the first method and the probability density function of the
error are combined with the Bayesian statistics. It finally gives a new distribution to
characterize the measure. The most probable dimension can be identified from this
distribution, as well as the probability of being out-of-tolerance, for a given tolerance
interval.

Both methods are applied to the same example; the data are generated using Monte
Carlo simulation and it is observed that errors can be partially corrected. It also
provides a diagram of the acceptance interval for a better control of the production
risk. The concrete benefit is relative to the industrial application context, as it involves
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the actual costs of the client and the supplier risk. Remark that, if the Bayesian
correction does not require the Gaussian model assumption, the deconvolution of
non-parametric distribution is more challenging and will be studied in more detail
in the future.
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