
Chapter 14
Plant Stress Enzymes Nanobiotechnology

Paras Porwal, Sashi Sonkar, and Akhilesh Kumar Singh

Abstract Abiotic and biotic stresses are significantly affects the plant growth,
thereby limiting agricultural productivity of crops. Agricultural plants/crops should
be able to cope-up with both biotic and abiotic stresses by their innate biological
mechanisms, failing which affect their growth, development and productivity. As
per FAO, there is a need to foster the crop productivity factor greater than 70% by
2050 to feed additional 2.3 billion people worldwide. Moreover, sustainable agricul-
ture acts as amain pillar for the development of themankind and national economy as
well as fulfills the food demand in developing countries. Realizing these critical facts,
it becomes necessary for the scientific arena to generate harmless stress-mitigating
mechanisms in plants, so that the plants/crop productivity is improved. In today’s
world, nanobiotechnology receiving an increasing attention towards the mitigation
of biotic and/or abiotic stresses of agricultural plants/crops including the challenges
in the yield barriers with the development of eco-friendly technologies. Although,
there exists a huge gap in our understanding of the eco-toxicity, tolerable limit, and
uptake capability of various nanoparticles in plants. This chapter encapsulates the
promises as well as progress in plant nanobiotechnology especially with respect to
promoting plant growth factors and ways to overcome abiotic stresses.

Keywords Abiotic and biotic stresses · Antioxidant · Nanobiotechnology ·
Nanoparticles · Plants/crop productivity · Reactive oxygen species · Salinity

P. Porwal
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow,
Uttar Pradesh 226028, India
e-mail: pporwal@lko.amity.edu

S. Sonkar
Department of Botany, Bankim Sardar College, Tangrakhali 743329, South 24 Parganas, West
Bengal, India

A. K. Singh (B)
Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University,
Motihari 845401, Bihar, India
e-mail: akhileshsingh@mgcub.ac.in

© Springer Nature Switzerland AG 2021
J. M. Al-Khayri et al. (eds.), Nanobiotechnology,
https://doi.org/10.1007/978-3-030-73606-4_14

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73606-4_14&domain=pdf
mailto:pporwal@lko.amity.edu
mailto:akhileshsingh@mgcub.ac.in
https://doi.org/10.1007/978-3-030-73606-4_14


328 P. Porwal et al.

14.1 Introduction

Sustainable agriculture acts as a backbone for the development of the national
economy as well as fulfills the aspiration of food demand in developing countries.
To satisfy the demand for food supply for the upcoming future with the changing
environmental conditions as well as rapidly increasing population, there is urgent
need to increase crop yield and stability of plants in adverse conditions by exploiting
the advance approaches like nanobiotechnology (Eckardt et al. 2009; Zhang 2007).
Agricultural plants/production of crops together with their protection are reliant on
the various parameters such as type as well as the quantity of applied fertilizers and
pesticides. The growth and development of agricultural plants/crops entirely depend
on ease of availability of optimal environmental as well as nutritional factors and any
deviation from it leads to plant stress. Stress is a condition in which plants are not
able to fully express their genetic potential for growth, development, and reproduc-
tion, thereby limits productivity owing to damage to biomass. Being sessile, plants
cannot escape from adverse climatic conditions and, thus have to meet both the
stresses, i.e., biotic stresses, for instance, interactions among organisms like micro-
bial pathogens and so on and abiotic stresses that involve interactions among organ-
ismswith their physical environment. Abiotic (physical) stresses include temperature
alteration (high or low), nutrient starvation, water deficit (drought), anoxia (during
the flood), salinity and alkalinity of the soil, light intensity, submergence, mineral,
andmetal toxicity/deficiency (Cramer et al. 2011;Hirel et al. 2007;Wang et al. 2003).
These stresses are unpredictable in nature in terms of their intensity, duration, and
occurrence, so sustaining the development and survival of plants in an unfavorable
environment turns out to be a difficult task. So, plants need to respond distinctly
to protect themselves from physical stresses like cold, drought, heat, etc., that ulti-
mately lead to the development of some adaptative mechanism in plants (Mittler
2002). Plants have the ability to sense abiotic stress and respond accordingly as per
their past exposure so that in further repetitive stress can be adjusted (Ahmad et al.
2015; Hilker et al. 2015; Jiang et al. 2016). However, on the other hand, transgenic
plants/crops are still not popular among the grower or farmers owing to their high
level of safety concern. Therefore, in the current scenario, plant nanobiotechnology
offers promising technological approaches for achieving food safety and security
by increasing the efficiency of plants/crops, protecting them from different types of
biotic as well as abiotic stresses via. modulating the mechanisms of different path-
ways, apart from those achieved through genetic and chemical production (Giraldo
et al. 2019; Iqbal et al. 2020; Kah et al. 2019). Nanobiotechnology involves the
cutting edge application-oriented research in the area of Nanoscience together with
biotechnology. Nanomaterials (NMs) can be defined as materials depicting diameter
in the range of 1–100 nm (Porwal and Sharma 2016; Pandey et al. 2018; Porwal et al.
2020; Rani et al. 2020; Singh and Porwal 2020; Singh, Pal, et al. 2018; Singh, Yadav,
et al. 2018; Singh et al. 2020). The effect of various kinds of nanomaterials on plants
under normal and/or abiotic stressed environment is presented in Table 14.1.
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Table 14.1 Impact of nanomaterials on plants under normal and/or abiotic stressed condition

Nanoparticle
type

Abiotic stress Plant name Impact Reference

Ag Dark stress Horseshoe
pelargonium
(Pelargonium zonale
(L.) L’Hér. ex Aiton)

Elevated antioxidative
enzymes activities, petal
longevity, leaf
carotenoids and
chlorophyll content.
Decreased the
peroxidation of lipid and
petal abscission

Ghorbanpour and
Hatami (2014)

Ag Flooding Soybean (Glycine
max (L.) Merr.)

Promotes seedling
growth and abundance of
stress-related proteins.
Decreases the cytotoxic
by-products of
glycolysis

Mustafa et al.
(2015b)

Ag Flooding Saffron (Crocus
sativus L.)

Promotes root growth.
Blocks signaling
pathway of ethylene

Rezvani et al.
(2012)

Al2O3 Flooding Soybean (Glycine
max (L.) Merr.)

Controls energy
metabolism and cell
death

Mustafa et al.
(2015a)

Al2O3 Nanotoxicity Onion (Allium cepa
L.)

Increases the activities
of CAT and SOD

Rajeshwari et al.
(2015),
Riahi-Madvar
et al. (2012)

CeO2 Nanotoxicity Maize (Zea mays L.) Up-regulation of heat
shock protein such as
HSP70 and improved
generation of H2O2

CeO2 Nanotoxicity Soybean (Glycine
max (L.) Merr.)

Stimulates plant growth.
Rubisco carboxylase
activity and
photosynthesis rate
increases

Zhao et al. (2012)

CuO Nanotoxicity Chickpea (Cicer
arietinum L.)

Increase the activity of
POD

Nair and Chung
(2015)

CuO Nanotoxicity Wheat (Triticum
aestivum L.)

Increase the activity of
CAT and POD

Dimkpa et al.
(2012)

Fe2O3 Nanotoxicity Watermelon Citrullus
lanatus (Thunb.)
Matsum & Nakai

Increase the activities of
CAT, POD, and SOD.
Changes in the root
activity, ferric reductase
activity as well as
chlorophyll, root
apoplastic iron, and
MDA contents were
observed

Li et al. (2013)

(continued)
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Table 14.1 (continued)

Nanoparticle
type

Abiotic stress Plant name Impact Reference

Fe3O4 Nanotoxicity Wheat (Triticum
aestivum L.)

Increases the activities
of CAT, APX, GPOX,
and SOD

Iannone et al.
(2016)

SiO2 Cold Tall wheatgrass
(Agropyron
elongatum L.)

Overcome seed
dormancy. Improved
seed germination and
seedling weight

Azimi et al.
(2014)

SiO2 Drought Hawthorn (Crataegus
sp.)

Increase photosynthetic
rate, plant biomass, and
stomatal conductance
while insignificant effect
on carotenoid and
chlorophyll content

Ashkavand et al.
(2015)

SiO2 Salinity Basil (Ocimum
basilicum L.)

Increased chlorophyll
and proline content.
Improves dry and fresh
weight

Kalteh et al.
(2014)

SiO2 Salinity Broad bean (Vicia
faba L.)

Increased the activity of
antioxidant enzymes.
Stimulates seed
germination, water
content and total yield

Qados and
Moftah (2015),
Qados (2015)

SiO2 Salinity Tomato
(Lycopersicon
esculentum Mill.)

Nano-SiO2 at low
concentration improved
seed germination, dry
weight, and root length
whereas at higher
concentration suppressed
seed germination

Haghighi et al.
(2012)

SiO2 Salinity Tomato (Solanum
lycopersicum L.)

Downregulation of six
genes RBOH1, APX2,
MAPK2, ERF5,
MAPK3, and DDF2 and
upregulation of four salt
stress genes AREB,
TAS14, NCED3, and
CRK1 thereby
suppressing the effect of
salinity stress on seed
germination rate, root
length, and fresh weight

Almutairi (2016)

SiO2 Salinity Tomato (Solanum
lycopersicum L.)

Eliminate the effect of
stress on photosynthetic
rate, leaf water, and
chlorophyll content

Haghighi and
Pessarakli (2013)

(continued)
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Table 14.1 (continued)

Nanoparticle
type

Abiotic stress Plant name Impact Reference

TiO2 Drought Basil (Ocimum
basilicum L.)

Ameliorate negative
effects of stress on the
plant

Kiapour et al.
(2015)

TiO2 Drought Flax (Linum
usitatissimum L.)

Improve growth,
carotenoids, and
chlorophyll contents.
Reduces H2O2 and
MDA contents

Aghdam et al.
(2016)

TiO2 Drought Wheat (Triticum
aestivum L.)

Increase in gluten and
starch content. Improves
the overall growth and
yield of the plant

Jaberzadeh et al.
(2013)

TiO2 Cold Chickpea (Cicer
arietinum L.)

Enhanced the activity of
antioxidant enzymes,
phosphoenolpyruvate
carboxylase, and
expression of Rubisco
and chlorophyll-binding
protein genes. Decreased
in H2O2 content and
electrolyte leakage

Hasanpour et al.
(2015),
Mohammadi
et al. (2013,
2014)

TiO2 Heat Tomato
(Lycopersicon
esculentum Mill.)

Induced stomatal
opening and cooling of
leaves

Qi et al. (2013)

TiO2 Nanotoxicity Broad bean (Vicia
faba L.)

Decreased the activity of
GR and APX

Foltete et al.
(2011)

TiO2 Nanotoxicity Duckweed (Lemna
minor L.)

Increased the activity of
SOD, CAT, and POD

Song et al. (2012)

TiO2 Nanotoxicity Hydrilla (Hydrilla
verticillata (L.f.)
Royle)

The activity of enzymes
such as CAT and GR are
increased

Okupnik and
Pflugmacher
(2016)

TiO2 Nanotoxicity Peppermint (Mentha
piperita L.)

Increase the amount of
chlorophyll (a and b) and
carotenoid

Samadi et al.
(2014)

TiO2 Nanotoxicity Spinach (Spinacia
oleracea L.)

Increased the activity of
SOD, CAT, APX, and
GPOX↑

Lei et al. (2008)

ZnO and
Fe3O4

Salinity Ben tree Moringa
peregrine (Forssk.)
Fiori

Increased enzymatic and
non-enzymatic
antioxidants. Promotes
the chlorophyll,
carotenoids, proline, N,
P, K, Ca2+, Mg2+

carbohydrates, and crude
protein content.
Decreased Na+ and Cl
content

Soliman et al.
(2015)

(continued)
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Table 14.1 (continued)

Nanoparticle
type

Abiotic stress Plant name Impact Reference

ZnO Nanotoxicity Green pea (Pisum
sativum L.)

Increased the elongation
of root

Mukherjee et al.
(2014)

ZnO Nanotoxicity Mouse-ear cress
(Arabidopsis thaliana
(L.) Heynh.)

Increase in lateral root
formation.

Nair and Chung
(2017)

ZnO Nanotoxicity Wheat (Triticum
aestivum L.)

Reduced the activity of
CAT

Dimkpa et al.
(2012)

ZnO Salinity White lupin (Lupinus
termis L.)

Increased the activity of
ascorbic acid, phenols,
organic solutes, and
SOD, CAT, POD, and
APX whereas decreased
the content of MDA

Latef et al.
(2017)

APX: Ascorbate peroxidase; CAT: Catalase; GPOX: Guaiacol peroxidase; GR: Glutathione reductase;
MDA: Malondialdehyde; POD: Peroxidase; SOD: Superoxide dismutase

14.2 ROS Scrounging Antioxidants of Plants

ROS (reactive oxygen species) are short-lived, unstable, and reactive (Halliwell
2006), which includes singlet oxygen (1O2), hydroxyl radical (OH·), superoxide
radical (O2·−) as well as hydrogen peroxide (H2O2), etc. These are generated in
different cellular compartments such as chloroplast, mitochondria, peroxisomes,
plasma membrane (Apel and Hirt 2004) as a regular (unavoidable) by-product of
aerobic metabolism such as photosynthesis and respiration in plants (Miller et al.
2010; You and Chan 2015) which is regulated by both enzymatic and non-enzymatic
antioxidant defense system of the plant. The low or moderate level of ROS is respon-
sible for plant growth (reproductive and senescence) and development including leaf
shape, root hair elongation, trichome development (Gapper and Dolan 2006), stom-
atal closure, programmed cell death (Petrov et al. 2015), gravitropism (Wassim et al.
2013) as well as act as the secondmessenger inmediating different series of reactions
in plant cells, and promotes the tolerance from biotic and abiotic stress conditions
(Nath et al. 2017). However, excessive production of ROS due to both biotic and
abiotic stresses (Bhattacharjee 2012; Khare et al. 2014; Kumar and Khare 2014) was
not removed then results in damage to cell membranes (lipid peroxidation), proteins,
nucleic acid (DNA as well as RNA), and several other cellular components of the
plants, thereby affecting plant growth including development and ultimately yield
(Demidchik 2015; Mittler 2002). Various abiotic stresses induced ROS generation
and the role of nanomaterials enhancing stress tolerance in the plant is depicted in
Fig. 14.1.
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Fig. 14.1 An overview of the abiotic stress-induced ROS generation in agricultural plants/crops
and the role of nanomaterials in improving stress tolerance (Source Modified from Meena et al.
2017; Xie et al. 2019)

14.3 Stimulation of Antioxidant Mechanism in Response
to Nanoparticle Exposure

Plants make use of enzymatic and non-enzymatic antioxidative systems and/or
pathways to mitigate oxidative stress. The key enzymes involved in the ROS-
scrounging include catalase (CAT), ascorbate peroxidase (APX), superoxide dismu-
tase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione peroxidase
(GPX), glutathione S-transferase (GST), alternative oxidases (AOX), peroxiredoxin
(PRX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase
(DHAR), and many more (Catalá and Díaz 2016; Jaleel et al. 2009; Maxwell et al.
1999; Mittler et al. 2004). Non-enzymatic antioxidants comprised of low molecular
weightmetabolites such as flavonoids, polyphenols, glutathione (GSH), ascorbic acid
(AsA), β-carotene, α-tocopherol, proline, glycine betaine, and many more (Gill and
Tuteja 2010; Pandey et al. 2017). During stressed conditions plants protect them-
selves from ROS toxicity (leads to oxidative damage) by changing gene expres-
sions as well as adapting ROS-scrounging antioxidant metabolic pathways such as
ascorbate, aldarate, and shikimate phenylpropanoid biosynthesis routes (Zhang et al.
2018), usingROS as signalingmolecules (Dietz 2015; Foyer andNoctor 2013; Ismail
et al. 2014; Mignolet-Spruyt et al. 2016). Ascorbate-glutathione cycle (AsA-GSH)
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is a major ROS-scrounging pathway in plants (chloroplast, mitochondria, apoplast,
and peroxisomes), which involves successive oxidation and reduction of ascorbate,
glutathione, and NADPH catalyzed by APX, MDHAR, DHAR, and GR, thereby
helps in combating oxidative damages triggered by abiotic stresses (Mittler 2002).
Association ofROS in signaling reveals that theremust be some regulation of network
to maintain ROS at non-toxic level, needs a precise balance between ROS produc-
tion (during cellular metabolism), ROS generating enzyme and ROS-scrounging
pathways. Thus, stress tolerance of the plants/crop can be improved remarkably by
manipulating the ROS levels. Numerous, research studies have demonstrated the role
of nanomaterials (CeO2, C60 as well as Fe2O3) in scrounging the over-accumulation
of ROS, generated during abiotic stress in plants, thereby improving abiotic stress
tolerance in the plant and finally mitigating yield losses (Zhao et al. 2020).

14.4 Enzymatic Antioxidants

The agricultural plants/crops depict different types of antioxidants systems (Fig. 14.2)
which are as follows:

(a) Superoxide dismutases (SOD): SOD enzymes are present naturally in different
living organisms like agricultural plants/crops and so on. They speed-up the
dismutation of O•−

2 to H2O2, so act as the first line of defense against ROS

Fig. 14.2 Various types of antioxidant systems in plants
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(Moustaka et al. 2015). Generally, due to the attachment of SODs to a metal
ion such as Cu, Zn, Fe,Mn, and Ni, are distinguished based on their subcellular
location and metal cofactor. In agricultural plants/crops, SODs encoding genes
can be controlled and managed by development, tissue-specific, and abiotic
stresses/signals (Scandalios 2005).

(b) Catalases: These enzymes are mostly confined to peroxisomes, known for the
exclusion of H2O2 by reducing it into 2H2O. The specific gene that encodes
for CATs responds separately to each abiotic stress known to produce ROS
(Scandalios 2005).

(c) Glutathione peroxidases (GPX): These proteins are mostly confined to mito-
chondria, cytosol, and chloroplast. GPX is nonheme thiol peroxidases respon-
sible for speed-up the reduction of organic H2O2 to H2O (Margis et al.
2008).

(d) Ascorbate peroxidases (APX): These enzymes utilize ascorbate as an electron
donor and are responsible for catalyzing the conversion of hydrogen peroxide
intowater.Different isomers ofAPXare present in the subcellular compartment
of the plants like mitochondria, chloroplast, peroxisomes, and cytosol. The
APX gene in plants is modulated by several environmental stresses (Caverzan
et al. 2014) whereas the balance between APX, SOD, and CAT determines the
intracellular level of O•−

2 and H2O2. Any alteration in the balance of these three
enzymes seems to induce defense-mechanism pathways (Scandalios 2005).

(e) Peroxiredoxins: These antioxidant enzymes (thiol specific) are responsible for
ROS detoxification in the chloroplast (Foyer and Shigeoka 2010), cell defense
of plants by protecting them from oxidative damage, speed-up the reduction of
peroxynitrite and various organic H2O2 to their corresponding alcohols (Wood
et al. 2003).

(f) Guaiacol peroxidases: These are heme-containing enzymes known to detoxify
H2O2 and belong to class III or secreted plant peroxidases. Guaiacol peroxi-
dases can also carry out hydroxylic reaction (second cyclic reaction), different
from the peroxidative reaction. These class III peroxidases support many activ-
ities in plants such as auxin metabolism, germination to senescence, cell wall
elongation, and protection from pathogens (Passardi et al. 2004).

(g) Monodehydroascorbate reductase (MDAR): Different isomers of MDAR are
found in the different subcellular compartments of plants such asmitochondria,
peroxisomes, and cytosol. MDAR (flavin adenine dinucleotide enzyme) main-
tains the ascorbate pool in plants by catalyzing the regeneration of monode-
hydroascorbate radical utilizing NAD(P)H as an electron donor (Asada 1999;
Leterrier et al. 2005).

(h) Dehydroascorbate reductase (DHAR): It helps to maintain ascorbate (AsA) in
its reduced form and speed up dehydroascorbate reduction into ascorbate by
utilizing glutathione as reducing substrate (Gratão et al. 2005).

(i) Glutathione reductase (GR): These enzymes are NAD(P)H dependent, speed-
up the reduction of oxidized glutathione (GSSG) into reduced glutathione
(GSH), and high GSH/GSSG ratio is required to protect the plant from oxida-
tive damage (Foyer and Noctor 2005). GR plays a significant role in the
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ascorbate-glutathione cycle and maintains an appropriate level of reduced
glutathione.

14.5 Impact of Nanoparticles on Plant Growth

Nanoparticles such as platinum (Pt), gold (Au), fullerene C60, Fe3O4, CeO2, Mn3O4

and many more are reported to improve in the functional activities of antioxidant
enzymes like SOD, CAT, and POD, that results in more improved adaptation of
plants to different abiotic stresses (Chen et al. 2018; Upadhyaya et al. 2018). The
fabricated nanosheets of MoS2 resemble SODs, CATs, and PODs like activities.
The nanoparticles of CeO2 at low concentration (5 μM) efficiently decrease ROS
level and protect chloroplast (Boghossian et al. 2013), whereas CeO2 nanoparticles,
when coated with polyacrylic acid, shows SOD and CAT activities, and success-
fully retained the photosynthetic capability of Arabidopsis plants under saline condi-
tions (Wu et al. 2018). Foliar-sprayed CeO2 nanoparticles in sorghum under drought
conditions mitigate the effect of oxidative damage (Djanaguiraman et al. 2018). γ-
Fe2O3 nanoparticles in Brassica napus under drought conditions protect plants from
oxidative stress by efficiently reducing H2O2 and malondialdehyde (Palmqvist et al.
2017). In the investigation conducted by Yao et al. (2018), suggested that Mn3O4

may be used to enhance plant stress resistance (as Mn is micronutrient for plants)
due to their stronger ROS-scrounging ability over Ce nanoparticles. When Fe2O3

nanoparticles are applied on watermelon in different concentrations, the activities of
SOD, CAT, POD, and seedling germination were found to significantly increase and,
therefore help to mitigate abiotic stress (Li et al. 2013). Nanoparticles have shown
a concentration-dependent impact on the growth and development of plants (Mishra
et al. 2017). For instance, onion seedlings, when exposed to TiO2 nanoparticles, the
SOD activity was increases with the increase in the concentration of TiO2 nanopar-
ticles, whereas onion seed germination as well as seedling growth was enhanced
at low concentration and suppressed at higher concentration of TiO2 nanoparticles
(Dimkpa et al. 2017). Shallan et al. (2016) in their study, discovered that foliar spray
of SiO2 (3200mg L−1) or TiO2 (50 mg L−1) nanoparticles were found to enhance the
drought tolerance of cotton plants. Siddiqui et al. (2014) reported that the application
of SiO2 nanoparticles (1.5–7.5 g L−1) on squash (Cucurbita pepo L.) under saline
condition upregulated the gene expression of SOD, CAT, POD, APX, andGR as well
as increase the chlorophyll concentration, photosynthesis and biomass content of the
plant. Under saline conditions, SOD and GPX gene expression are downregulated
in tomato (Solanum lycopersicum), while on application of ZnO nanoparticles (15
and 30 mg L−1) showed positive growth response (Alharby et al. 2016). On similar
lines, foliar spray of ZnO in finger millet (Eleusine coracana (L.) Gaertn) improved
salinity stress tolerance (Sathiyanarayanan 2018). Dimkpa et al. (2019), reported
positive effect on drought tolerance when ZnO nanoparticles (18 nm, 5 mg kg−1)
are applied to soil-grown sorghum. However, several reports confirmed the negative
impact of nanoparticles/engineered nanoparticles (Rico et al. 2015; Singh et al. 2016)
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on seed quality of plants like wheat (Rico et al. 2014) and common bean (Majumdar
et al. 2015).

14.6 Effect of Nanoparticles on Plant Growth Under
Salinity

Excessive accumulation of NaCl in the soil increases the salinity of soil and it affects
the growth, development, and productivity of the plants in two ways: osmotic stress
and ionic toxicity. Generally, osmotic pressure in the plant cell is more than the
osmotic pressure in soil solution. Under high osmotic pressure, plant cell take-up
water as well as other requisite minerals from soil solution into the root cells, but
during saline conditions, this situation gets reversed and plant ability to take-up
water and requisite minerals such as K+ and Ca2+ also disturbed, meanwhile Na+ and
Cl− ions enter into cytosol that leads to low K+/Na+ ratio which is responsible for
increased ROS production, electrolytes leakage, toxicity to cell membranes, and also
affects metabolic activities in the cytosol (Khan et al. 2012; Kumar 2013; Kumar and
Khare 2014). Overall, salinity has a negative effect on various biological and physi-
ological processes of the plant. Some major negative effects of salinity stress on the
plant include nutritional imbalance, increased ionic toxicity, ROS overproduction,
reduced osmotic potential, the decline in photosystem II efficiency, and stomatal
conductance (Negrão et al. 2017). Recently, nanoparticles have been reported to
enhance the antioxidative defense mechanism of plants. This potential approach is
being exploited to mitigate the salinity stress of the plants (Sabaghnia and Janmo-
hammad 2015). Derosa et al. (2010) reported that SiO2 nanoparticles enunciate a
layer inside the cell wall that facilitates them to conquer salinity stress and uphold
yield. Silicon nanoparticles increase the rate of photosynthesis, proline accretion,
seed germination, leaf water content, and antioxidant enzymes activities (Qados
2015). On the application of SiO2 nanoparticles, improvement in salinity stress was
observed in Ocimum basilicum (Kalteh et al. 2014), Lens culinaris (Sabaghnia and
Janmohammadi 2014) and Vicia faba (Qados 2015). Similarly, SiO2 nanoparticles
were reported to enhance seed germination and antioxidant system in squash and
tomato (Siddiqui et al. 2014). Further, mitigation in salinity stress was observed
by the application of the foliar spray of Fe3O4 as well as ZnO (60 mg L−1) as
nano-fertilizers on Moringa peregrina (Soliman et al. 2015). The efficiency of a
chloroplast, as well as biomass, were increased in treating Brassica napus L. with
CeO2 nanoparticles under both fresh and saline water irrigation (Rossi et al. 2016).
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14.7 Impact of Nanoparticles on Plant Growth Under
Drought Stress

Water is a prerequisite necessity for plant growth and survival, essentially needed for
transporting nutrients, thus its crises result in drought stress. Drought stress affects
the growth of plants, thereby ultimately influencing the agricultural plants/crops
yield globally. During water crises situation, plants limit their various activities such
as stomatal closure to prevent additional water loss, reduce CO2 fixation (photo-
synthesis), and NADP+ regeneration through the Calvin cycle (Gunjan et al. 2014).
Drought stress tolerance of plant varies from species to species and depend to a larger
extent on time and intensity they spendunder stressful surroundings.Research studies
confirm that during drought conditions plants overproduce ROS (H2O2, O•

2,
1O2,

and OH•) which causes lipid peroxidation, denaturation of protein, DNA mutation,
and eventually cell death (Molassiotis et al. 2016). However, plants protect them-
selves from negative effects of ROS by its several antioxidant enzymes like SOD,
CAT, APX, and GR, while the degree of cellular oxidative damage depends on the
capacity of their antioxidant defense system (enzymatic or non-enzymatic). Drought
stress can be modulated by the application of different nanoparticles such as silica,
silver, copper, ZnO, CeO2, and many more. On the application of silica nanopar-
ticles improvement in drought tolerance was observed in two sorghum (Sorghum
bicolor L. Moench) cultivars (Hattori et al. 2005), Crataegus sp., and hawthorns
(Ashkavand et al. 2015). Similar results were observed in wheat on the applica-
tion of 1.0 mM sodium silicate (Pei et al. 2010). Sedghi et al. (2013) reported an
increased rate of germination on the application of ZnO nanoparticles in soybean
under drought-stressed conditions. Foliar application of some micronutrients like
iron and titanium nanoparticles were reported to improve drought stress in safflower
cultivars andwheat, correspondingly (Davar et al. 2014). Further, Zn andCu nanopar-
ticles reported improving drought stress by enhancing SOD and CAT enzymes
in wheat that results in limiting lipid peroxidation and increasing relative water
content by enhancing photosynthesis (Taran et al. 2017). CeO2 nanoparticles when
applied at 100 mg kg−1 reported enhancing photosynthesis and Rubisco carboxylase
activity (Cao et al. 2017), while composite of CuO, ZnO, and B2O3 improve drought
stress in Glycine max (Dimkpa et al. 2017). Encapsulated abscisic acid (ABA) was
delivered successfully to Arabidopsis thaliana plant through glutathione-responsive
mesoporous silica nanoparticles and their controlled release in plants increased the
expression of ABA induciblemarker gene (AtGALK2), ultimately improved drought
resistance (Sun et al. 2018).
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14.8 Impact of Nanoparticles on Plant Growth Under
Metallic Stress

Excessive accumulation of metals in plants causes phytotoxicity, alters plant
growth, and causes oxidative damage. Metal toxicity interferes with plant growth
by suppressing activities of different plant enzymes, interrupting uptake of essen-
tial elements which leads to deficiency symptoms. Metals in growth medium are
responsible for the overproduction of ROS, which leads to oxidative damage to
biomolecules, cell structure, and cell membrane denaturation (Sharma et al. 2012).
Biophysical barriers form the first line of defense against metallic stress. If metal
passes through this barrier and enters cells, then plants resist metal uptake by its accu-
mulated biomolecules such as organic acids, metal-chelates, and polyphosphates
by activating cellular defense system which is responsible for ROS scrounging.
However, timely and target-oriented stimulation of these antioxidant defense systems
is essential to remove the effects of metallic stress. Nanoparticles (such as nano-
selenium, nano-oxides of iron, manganese, and cerium) enters the contamination
zone easily due to their smaller size and large surface area, possess a strong affinity
towards metal/metalloids adsorption. Nanoparticles in plants retard metal-induced
oxidative stress by regulating their energymetabolism, antioxidants,ROSproduction,
and thereby mitigating abiotic stresses. Nanoparticles immobilize metal/metalloids
in soil and improve the growth and development of plants during phytoremediation
(Martínez-Fernández et al. 2017). Nano-TiO2 has been reported to limit cadmium
(Cd) toxicity and enhance photosynthesis and plant growth rate (Singh andLee 2016),
nano-scale hydroxyapatite mitigates Cd toxicity in Brassica juncea (Li and Huang
2014), and ZnO nanoparticles attenuate uptake of Cd in plants (Venkatachalam et al.
2017). Tripathi et al. (2015) demonstrated that silicon nanoparticles hampersCr accu-
mulation in growth medium and prevents pea seedlings against Cr (VI) phytotoxicity
by enhancing the antioxidant defense system. However, research studies reveal that
nanoparticles may yield good or bad effects on plants at any level. Toxicological
studies of nanomaterials done so far provide a great understanding of nanoparticle
interaction with the plants and their potential risk hazards associated with the abiotic
stress management and crop productivity improvement (Mustafa and Komatsu 2016;
Venkatachalam et al. 2017).

14.9 Impact of Nanoparticles on Plant Growth Under
Ultraviolet Radiation Stress

Sunlight together with the UV-B radiation (280-315 nm) is unavoidable abiotic stress
for photosynthetic organisms due to the continuous depletion of the ozone layer in
the stratosphere. On exposure to such non-ionizing radiation, structural changes
occur in cellular components such as DNA, protein, chloroplast, and also induces
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accumulation of ROS, and free radical scrounging enzymes like SOD (Hideg et al.
2013). Moreover, plants also accumulate phenolic compounds which absorb detri-
mental UV-radiations (Shen et al. 2010). Nanoparticles are known to intensify the
harmful effects of UV-B radiation on plants such as the application of CuO nanopar-
ticles alone on Elodea nuttallii (waterweed species) shows no detrimental effects but
in combination with the UV-B radiation, induces considerable negative effects on
biochemical and physiological traits (Regier et al. 2015).

14.10 Effect of Nanoparticles on Plant Growth Under
Flooding Stress

During flooding state, plants suffer from hypoxia conditions because the rate of diffu-
sion of O2 is slower in water than in air. Flooding stress/hypoxia condition inhibits
respiration, seed germination, root, vegetative and reproductive growth, hypocotyl
pigmentation, and up-regulation of genes for ethylene synthesis (Komatsu et al.
2012). ATP formation is suppressed under hypoxic conditions, thus to sustain cellular
energy level, flooded plants are required to shift their carbohydrate metabolism
towards fermentation (Banti et al. 2013), and up-regulation of genes for alcohol
dehydrogenase and pyruvate decarboxylase (Mustafa et al. 2015a). Nanoparticles
mitigate flooding stress and improve plant growth by inhibiting ethylene biosyn-
thesis (Syu et al. 2014). For instance, the silver nanoparticle treated plant shows less
O2 distress under flooding stress. Besides, employing a gel-free proteomic technique
by Mustafa et al. (2015b), reported that Al2O3 nanoparticles treated soybean plant
under flooding stress has shown better growth performance as compared to plant
treated with Ag and ZnO by regulating metabolic pathways and cell death.

14.11 Conclusion and Prospects

Globally, in the arena of agriculture, nanobiotechnology has been used to improve the
productivity of crops with quality enhancement by improving cultivation methods.
Plants being sessile encounter a variety of abiotic stresses such as salinity, drought,
extreme low/high temperature, metal toxicity, UV-B radiation, flooding, and many
more in their whole life-span. They accommodate themselves at the biochemical,
physiological, and molecular levels by regulating their genes and enzymes respon-
sible for the antioxidant defense system as well as maintaining homeostasis. Plenty
of nanoparticles have been exploited for up-regulating various genes and enzymes
to mitigate different abiotic stresses but still in its early stage. So far, very little work
has been done on the phytotoxicity of nanoparticles on plants, and there exists a huge
gap in our understanding of the eco-toxicity, tolerable limit, and uptake capability
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of various nanoparticles in plants. Therefore, to prevent negative effects of nanopar-
ticles on the environment and living commodity (flora and fauna), and to harness
best peculiar attributes of nanoparticles for improving plant growth, development
and productivity in stressed conditions, further research is urgently needed to have
a clear-cut understanding of the nanoparticle interaction with the plants and envi-
ronments. Moreover, there is a need to develop a regulatory framework established
on the various research evidence which will limit mankind’s exposure to undesir-
able bioengineered nanoparticles to a harmless level, although the application of
nanoparticles had increase the productivity of crops. The remarkable applications
of nanomaterials presents an optimistic prospect of nanobiotechnology with well
understanding of their ecotoxicity and by including all the aspects like reutilizing,
feasibility, manufacturing, and framework of policy to handle them securely and
utilize them in an eco-friendly manner.
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