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5.1 Introduction

Cereal grains are the most commonly grown crops in the world. Wheat and rice are
important commodities which contribute to 50% of the world’s food-calorie intake
(McKevith 2004). These two cereals are critical to food security in the developing
regions. In this context, crop-mapping services can be used for detailed monitoring
of the cultivated areas; it can also provide the area statistics of specific crops and
the data on their intensity across the landscape. This mapping process is also
valuable for government agencies since it provides them with critical information
that can be used to manage their stocks (for imports and exports). This chapter
dwells on a crop-mapping service developed under the SERVIR-HKH program. In
this regard, the needs assessment was carried out with the assistance of the gov-
ernments of Bangladesh and Afghanistan through a consultation workshop. Wheat
mapping in Afghanistan and rice mapping in Bangladesh were the top priorities for
the respective governments. Here, we discuss two particular mapping exercises that
were undertaken in these two countries: wheat mapping in Afghanistan at a national
level and the mapping of Boro rice in selected districts of Bangladesh.
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5.1.1 Cereal Crop Production and Food Insecurity

In-season mapping of major crops is important for early assessment of production
and to know about any potential threats to food security. As all of us know, South
Asia is the most populated part of the world, wherein recent years, both industri-
alization and urbanization have grown by leaps and bounds. This has created an
imbalance in food supply and demand in the region. While it is true that more land
came under agricultural activity from the 1960s to 2000s, resulting in an increase in
food production (Ramankutty et al. 2018). In recent times, it has been observed
that the production levels have gone down because, increasingly, agricultural land
is housing urban infrastructure. Another reason for the dip in food production is that
conventional methods are still being used for agricultural land management. Then
there is the factor of monsoonal variability due to changing climatic conditions
which has also affected crop production. The other factors are poor quality of seeds,
small farms that have limited or no access to technology, and natural disasters in the
form of floods and even earthquakes.

The decrease in domestic crop production and the yearly fluctuations in the same
pose serious threats to the food security situation in the HKH region. Thus, swift
and accurate estimation of crop production becomes vital in providing a baseline for
formulation and implementation of policy related to agriculture management at the
national level. This also plays a significant role in the planning and decision-making
processes related to food and social security (Demeke et al. 2016).

5.1.2 Crop Dynamics in Afghanistan and Bangladesh

Figure 5.1a,b shows the bioclimatic zones—a proxy for agro-ecological zones
(AEZs)—of Afghanistan and Bangladesh (Balasubramanian 2011). AEZs are areas
with similar climates, vegetation, and soils. Some examples are deserts, savannas,
tropical forests, steppes, temperate forests, and cold regions. These zones are
developed utilizing different parameters such as elevation, climatic conditions, and
soil and vegetation types. Agricultural activity is closely related to the conditions of
these zones. The sowing, growing, and harvest time of crops are dependent on the
conditions and varies from one AEZ to another. Broadly, there are five AEZs in
Afghanistan and two in Bangladesh. This is mainly because of the diverse topog-
raphy and climatology in Afghanistan as compared to those in Bangladesh.
However, at the micro-level, there may be many AEZs because of diverse geog-
raphy, with thousands of microclimates and micro-watersheds, as conditions fre-
quently change from one valley to the next, within a fairly short distance.

The phenology of a crop is referred to as the periodic life cycle events of plant
growth and how these are influenced by seasonal and inter-annual variations in
climate (Martínez and Gilabert 2009). Crop phenology plays an important role in
understanding the dynamic vegetation-growth patterns in a crop (Fisher and
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Mustard 2007; Myneni et al. 1997). The vegetation indices derived using satellite
images help in studying the phenology of a crop at different stages (Ahl et al. 2006);
these indices are normalized difference vegetation index (NDVI), enhanced vege-
tation index (EVI), and a two-band enhanced vegetation index (Zhang et al. 2014;
Piao et al. 2006; White et al. 1997; Zhang et al. 2003). For crop mapping using EO
technology, information on the growing season of crops is critically important as
this enables the construction of a phenological profile for the crops.

Information on the growing season of a crop can be derived using a crop
calendar. A crop calendar for an AEZ or province provides information on the
planting, sowing, and harvesting periods of the crops in that zone. Figure 5.1c
depicts generalized crop calendars for Afghanistan and Bangladesh. While such
generalized calendars provide useful information, RS-based crop mapping requires
a crop calendar at the AEZ or province level. For this study, the crop calendars—of
provinces or districts—were provided by the Afghanistan Ministry of Agriculture,
Irrigation and Livestock (MAIL) and by the Bangladesh Agriculture Research
Council (BARC). These calendars were utilized as a starting point to determine the
timing of the phenological stages of wheat (in the case of Afghanistan) and Boro
rice (in the case of Bangladesh), and then satellite images were used for a more
comprehensive study.

Fig. 5.1 a AEZ of Afghanistan; b AEZ of Bangladesh; c Crop calendar
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5.1.3 Wheat Crop in Afghanistan and Recent Efforts
in Mapping

The agricultural sector plays a significant role in Afghanistan, providing revenue for
nearly three-quarter of the country’s population. It contributes nearly 28% to the
country’s GDP (United Nations 2013). Wheat is the primary crop and food of
Afghanistan and is grown in every province of the country; and mostly, it is grown
for self-consumption. That said, its production has not yet been able to meet the
internal demand. Figure 5.2 depicts the import of wheat to Afghanistan during
1960–2019. It can be observed that wheat imports have consistently increased in the
past few years. In recent times, about 1 million ton (equivalent to 25% of the
internal demand) of wheat have been imported annually to meet the internal
requirement (Martínez and Gilabert 2009), making Afghanistan one of the leading
importers of wheat in the world (Persaud 2013).

The government utilizes the statistics on wheat—about the areas where it is
grown and how much is produced—to assess the current demand and also for
procurement in case of shortages. However, limited work has been done till now in
the case of wheat-area estimation in Afghanistan. While MAIL carries out yearly
qualitative assessments of wheat-sown areas using ground sample data and with the
help of some conventional RS techniques based on interpretation of satellite images

Fig. 5.2 Wheat import data of Afghanistan. Source USDA
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(FAO 2016), United States Department of Agriculture (USDA) has made some
qualitative assessments using NDVI anomalies (Baker 2015; Pervez et al. 2014).

Recently, donor agencies such as United States Agency for International
Development (USAID) have shown interest in food security management in
Afghanistan. They have started projects like grain research and innovation
(GRAIN) which primarily supports wheat-related research in order to boost pro-
duction; the project also works on resilience building and diversification. Then,
there is the Kandahar food zone (KFZ) project which focuses on strengthening rural
livelihoods (USAID 2017). However, currently, there is no operational framework
in Afghanistan that can provide a rapid assessment of wheat-sown areas essential in
terms of food security management.

5.1.4 Rice Crop in Bangladesh and Recent Efforts
in Mapping

The economic growth of Bangladesh depends highly on agriculture. Two-third of
the labor forces in the country are either directly or indirectly employed in the
agricultural sector (Raihan 2011). Moreover, nearly 80% of the population belong
to rural areas which directly rely on the agricultural sector for their livelihood. And,
agricultural production accounts for one-third of the country’s GDP and 32% of its
value of exports (Rahman and Hossain 2014).

Rice is the most valuable commodity in the economy of Bangladesh. It is the
most dominating cereal crop, making Bangladesh the world’s sixth-largest producer
of rice. This also makes Bangladesh one of the top exporters of rice in the world.
However, it is becoming increasingly evident that the production of rice can be
extremely vulnerable to the impacts of climate change (Aryal et al. 2019). Rice
production has been adversely influenced by unpredictable rainfall, temperature
extremes, increased salinity, droughts, floods, river erosion, and tropical storms.
Moreover, the prediction is that these events would be highly repetitive and
intensify in the future (Sivakumar and Stefanski 2010), which could lead to a
decrease in crop yields by up to 30%, thereby posing a very high risk to food
security. Figure 5.3 shows the uneven trends in rice exports which strongly
explains the variability in the production of rice. Therefore, there is a strong need
for an in-season assessment of the rice-crop area and yields for the formulation and
implementation of policy-related rice exports and food security management.

Numerous works have been carried out for rice-area estimation, using both RS as
well as the conventional field-based sampling approaches. The Bangladesh bureau
of statistics (BBS) is the agency that is in charge of rice-area mapping. It utilizes
conventional methods such as crop-cut surveys and statistical approaches
(“Yearbook of Agricultural Statistics-2017” 2018). This approach is cumbersome
and inefficient as it requires manual field data collection, rich sampling, and sig-
nificant post processing before releasing any reliable statistics on crop area. But that
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is slowly changing—in recent times, the BSS, in collaboration with various
research institutes and NGOs, has been working on rice-area estimation using RS
techniques which have several advantages over the conventional approaches.

In the meantime, researchers have been using both optical and SAR data with
spatial extents for crop mapping (mainly rice). Some of their approaches have been:
unsupervised and supervised (Cheema and Bastiaanssen 2010; Konishi et al. 2007;
Lin 2012; Turner and Congalton 1998), rule-based (Boschetti et al. 2017),
phenology-based (Dong et al. 2015, 2016), and time-series classification algorithms
(Dong et al. 2016; Shew and Ghosh 2019). Besides, MODIS too has been effec-
tively used for rice mapping and monitoring application scales (Burchfield et al.
2016; Nelson et al. 2014; Shapla et al. 2015). This is mainly due to high repeti-
tiveness, the relatively small data size, and the high spectral resolution, and
available bands which are particularly pertinent to agriculture (Whitcraft et al. 2015;
Zhang et al. 2017). Further, MODIS time-series images have been integrated with
data from the ENVISAT in rice mapping (Nelson et al. 2014). However, due to its
coarser resolution (250 m), using MODIS for crop-type mapping has its limitations
in Bangladesh due to small field sizes.

Fig. 5.3 Rice export of Bangladesh. Source: BARC
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Bangladesh’s SPARRSO has also attempted to use RS for rice monitoring using
MODIS data and the AI-based semi-automatic approach (Shew and Ghosh 2019;
Rahman and Hossain 2014; Begum and Nessa 2013). Besides, the time-series
seasonal maximum value NDVI composites from MODIS data were used for
classifying the rice fields in Bangladesh (Gumma 2011). In 2014, Nelson et al.
attempted to integrate SAR and optical data for rice-crop mapping. They used
MODIS and ENVISAT, as also phenology, to map the rice fields in Bangladesh.
However, they have not yet reported on the achieved accuracy. Earlier, in 2013,
multi-date SPOT images and ISODATA image-classification techniques had been
used for rice mapping (More and Manjunath (2013)). Change detection techniques
too have been used in Bangladesh—to assess the surplus or deficiency in rice
cultivation—based on a phenological analysis of MODIS data (More and
Manjunath 2013; Shapla et al. 2015).

Some of the studies have also taken advantage of the high-resolution SAR and
optical data, along with cloud-computing techniques like GEE, for mapping dif-
ferent crops. Recently, Singha et al. (2019) used the high-resolution SAR Sentinel-1
and MODIS data on the GEE platform for mapping rice in Bangladesh, and they
reported more than 90% accuracy. Similarly, Shew and Ghosh (2019) utilized EVI
and the normalized difference fraction index (NDFI) derived from the landsat
archive on the GEE platform for mapping rice in the country. These approaches
focus more on commission error—i.e., if a pixel in an image is classified as rice, but
it is not—and less on omission error, i.e., if a pixel in an image is non-rice, but is
classified as rice.

5.1.5 Global RS-Based Crop-Mapping Techniques

Globally, several researchers have developed methods for crop-type mapping using
different RS techniques. These techniques can be classified as those based on:
sensors—optical or SAR (Inglada et al. 2015), the resolution of satellite data
(Wardlow and Egbert 2010), and threshold and classification.

The remote sensing data sets, both optical and SAR, utilized time-series NDVI
profiles for identification of seasonal thresholds, which is utilized for classifying
different crop types. The acquisition time of the image plays a major role in
identification and classification of different crop types. The information on life
cycle, i.e., sowing, growing, and harvesting time of any crop is obtained by con-
sulting the crop calendar. Although time-series NDVI thresholding approaches
require fewer number of samples from the ground, they enable high accuracy even
though they are unable to classify crops with similar phenological characteristics
(with the same sowing, peak, and harvest time).

Alternatively, machine-learning classification algorithms, such as random forest
(RF), support vector machine (SVM), and artificial neural network (ANN) require a
systematic sampling approach and an ample amount of accurate ground samples for
training the classification model (Tatsumi et al. 2015; Camps-Valls et al. 2003;
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Murmu and Biswas 2015; Tamiminia et al. 2015; Gao et al. 2018; Sonobe et al.
2014). Here, it has to be noted that poorly sampled and inaccurate sample data from
the field results in under fitting and overfitting of the classification model and
therefore may result in overestimation or underestimation of the classification results
(Liakos et al. 2018). The study of Tiwari et al. (2020) provides detailed insights into
well-known crop-type mapping methods using different sensors and resolutions.

5.1.6 Challenges and Needs

Despite several approaches available for crop-type mapping, developing a sys-
tematic framework for crop-area assessment in the two countries is rather chal-
lenging. The key challenges are field inaccessibility because of tough topography,
security concerns, the phenomena of cloud cover which restricts the use of optical
imagery, low Internet bandwidth to download the satellite data, and limited com-
puting infrastructure for data processing and analysis. The challenges in both the
countries are depicted in Table 5.1.

The system was developed harnessing the power of multisensory remote sensing
(RS) imagery (optical and SAR) and cloud-computing (GEE) techniques (Gorelick
et al. 2017; Dong et al. 2016). The system has been designed keeping in mind the
challenges in the region and provides the capacity for operationalization. It can
provide independent and evidence-based information on the status of annual crops
at the province level. And by ingesting field data at regular intervals for different
seasons, the system would achieve higher accuracy in crop area estimates at the
subnational level too.

Table 5.1 Challenges for Afghanistan and Bangladesh in crop mapping

Country Internet
bandwidth

Computing
infrastructure

Field
accessibility

Security
concerns

Cloud cover

Afghanistan Limited,
high-speed
Internet only
available in the
cities

Limited Limited field
accessibility
because of
the
topography

Not safe
to carry
out
fieldwork

Availability of
optical data is
limited during the
wheat-growing
period due to
heavy cloud
cover in the
winter season

Bangladesh Limited, not
available
everywhere in
the country,
especially in
remote villages

Limited Limited field
accessibility,
especially
during
monsoon
because of
floods

No
safety
issues

Availability of
optical data is
limited during the
summer-rice and
Boro-rice harvest
seasons due to
cloud cover in the
monsoon season
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5.2 Setting up Crop Interpretation Applications
and Operation

The workflow for in-season crop mapping that is being implemented by SERVIR is
shown in Fig. 5.4. Broadly, the methodology has six major components. The first
step is reference data preparation. This involves the collection of ground sample
points and quality check, after which the reference data is prepared for training and
validation. In the second step, the agriculture mask (representation of agriculture
area) is delineated which is used in the further stages. After obtaining the

Fig. 5.4 Methodology of crop mapping
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agriculture mask, the crop mapping is done in the third step using optical and SAR
data to obtain a crop map. This crop map is then validated at the fourth stage using
validation samples. In the fifth step, the crop area is calculated using the resolution
of the images and pixel counts. In the final step, the application is customized for
operationalization and to disseminate the results.

Each of these components is described in detail from Sects. 5.2.1–5.2.3.

5.2.1 Reference Data Preparation

5.2.1.1 Field Data Collection

Crop mapping based on RS techniques requires reference data from the ground. The
reference data preparation is a process of collecting data from the different sources
described in Fig. 5.5. The collected reference data from the various sources are then
utilized for training and validation of the crop classification model. These data sets
are broadly categorized as qualitative (based on social surveys and field forms) and
quantitative data (based on GPS location and the geo-tagged photographs of crops).
Qualitative data provide information on the crop cycle, crop rotation, crop condi-
tions, production, and on the irrigation network. This information is utilized in
developing crop calendars or for refining the existing crop calendars, and for
deciding about the period of the satellite images which should be used for the crop
assessment.

Fig. 5.5 Data collection workflow
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In quantitative data collection, the GPS locations and multidirectional pho-
tographs of the crops are captured which are then utilized in understanding the crop
dynamics and in training and validating the classification model for crop mapping.
Depending on the type of the data, these data sets are collected using the different
data collection platforms described in Fig. 5.5, such as mobile applications,
handheld GPS, GPS-enabled camera, high-resolution satellite images, and existing
land-cover maps.

Figure 5.6a,b shows the reference data collected from different sources in
Afghanistan and Bangladesh using a random sampling approach. In Afghanistan,
the quantitative reference data were collected using a field-based method
(GPS-enabled camera), high-resolution satellite images (Pleiades and Google Earth
images), and the existing food and agriculture organization (FAO) land-cover data
(FAO 2010). The qualitative data were collected using field forms/questionnaires
prepared by professionals from MAIL. In Bangladesh, both quantitative and
quantitative reference data were collected using a mobile application (Geo-ODK)
by professionals from the International Maize and Wheat Improvement Center
(CIMMYT), BARC, and ICIMOD.

5.2.1.2 Data Cleaning and Preparation

The collected field data were then subjected to a quality check. This was because
some of the samples were not taken from the middle of the crop field due to
inaccessibility. So, the reference points collected from the corner of the crop field
were then adjusted and moved inside the fields to make them useful for the training
and validation of the models. The judgment was made on three criteria: the
direction and orientation of the field photographs, the phenological characteristics
of the crop, and the visual interpretations through high-resolution Google Earth

Fig. 5.6 Field data collection—a Afghanistan. b Bangladesh
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images. The cleaned reference points were then merged and divided randomly into
two categories—for training and validation; while 70% of the samples were used
for training, the remaining 30% were utilized in the validation process.

5.2.2 Delineation of Agriculture Mask

For crop-area mapping, the delineation of agriculture areas is important, so as to
confine the identification of specific crops within an agriculture mask. There are two
ways of delineating an agriculture mask: by the existing land cover and by deriving
it using optical time-series images. In the case of Afghanistan, the agriculture area
was delineated using the existing FAO land-cover data (FAO 2010) and by
extracting the area of agricultural land from it. Whereas, in the case of Bangladesh,
the agricultural land extent was delineated by performing the random forest
(RF) classification using ground reference points on time-series NDVI images
derived from optical (Sentinel-2) images (from January 2017 to December 2018).
The agriculture mask was delineated for two years (2017 and 2018) and combined
to obtain the maximum agriculture mask.

5.2.3 Crop-Area Mapping

In RS-based crop mapping, two things are important and must be considered before
proceeding to mapping: knowledge of the crop-growing season and selection of the
data set (optical or SAR). The knowledge of the growing season of the target crop
helps in deciding the time period for acquisition of satellite data which eventually
helps in reconstructing the crop phenology through time-series NDVI (refer to
Sect. 1.2). Phenology is measured commonly by the onset of greening, peak
development during the growing period, the onset of senescence, and the length of
the growing season (Hudson and Keatley 2010). The selection of the data set
completely relies on cloud cover. Sometimes, despite using high-temporal optical
satellite data sets (e.g., Sentinel-2), the crops cannot be separated using the optical
data sets. This is because the intermixing/overlapping of NDVI (crop phenology)
values with the limited cloud-free images makes it difficult to select the appropriate
seasonal thresholds (sowing, peak, harvest).

Alternatively, SAR sensors have the unique capability to penetrate clouds and
collect during all weather and are also sensitive to plant structure. However,
SAR-based classification alone would require much more sample data on all the
crops. Also, SAR is incapable of capturing the chlorophyll content present in the
crops which is directly proportional to the growing stage of the crops. Therefore,
SAR cannot alone be used for crop identification in case of limited availability of
sample points. However, a crop map (developed from optical data) can be refined
using SAR data under the following conditions:
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• SAR data should have consistent time series in terms of incidence angle and
should have a wide swath in mapping different crops (Inglada et al. 2016)

• The data should be preprocessed which entail: orbital file correction; thermal
noise removal; terrain correction; and removal of speckle noise

5.2.3.1 Wheat-Area Mapping in Afghanistan

Wheat mapping (both for irrigated and rainfed crops) in Afghanistan was carried
out at the district/provincial level in order to capture the phenological response of
the crop. For this, time-series Sentinel-1&2 images were used. The mapping was
done in two steps. At first, NDVI thresholds were determined by analyzing the field
data for each province to separate the wheat area from other crops using Sentinel-2
(optical) imagery. Once the wheat areas were separated, Sentinel-1 (SAR) imagery
was used to refine the estimated wheat area through an RF classifier. Then, after
consulting a crop calendar, the time-series Sentinel-2A Level 1-C (top-of-
atmosphere) satellite images with less than 30% cloud cover (from November
2016 to July 2017) were fetched. These images were preprocessed and masked with
the agriculture mask (Sect. 5.2.2). Due to the cloud cover during the wheat-growing
cycle, the seasonal NDVI median composites were generated for the sowing, peak,
and harvest seasons of the wheat crop. Figure 5.7a,b shows the growth pattern of
wheat and other crops for the Laghman and Helmand provinces of Afghanistan.
After examining the growth pattern of different crops, it was found that the
spatio-temporal (time-series NDVI) signal and growth pattern of vineyards are
completely different from the wheat crop cycle. The NDVI values of orchards were
found to be higher when compared to wheat in peak and harvest times. The NDVI
response from vegetables varied a lot, but the values were generally lower than
those of wheat during the peak and harvest seasons. A high degree of overlap
between the NDVI values of opium poppy and wheat was also observed during the
sowing period. As opium poppy has a shorter cropping season, a separation of the

Fig. 5.7 Phonological characteristics of crops in the provinces of a Laghman. b Helmand in
Afghanistan
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former with barley would have been possible if cloud-free monthly images could
have been obtained. Figure 5.7b shows the NDVI characteristics of opium poppy in
Helmand which shows higher separability from wheat during the sowing and peak
seasons.

The rule for defining the threshold for separating wheat from other crops is given
in Eqs. 5.1–5.3.

Minimumof NDVIwheat samples\Wheatsowing �Maximumof NDVIwheat samples

ð5:1Þ

Wheatpeak �ðMinimumof NDVIwheat samplesÞ ð5:2Þ

Minimumof NDVIwheat samples\Wheatharvest �Maximumof NDVIwheat samples

ð5:3Þ

In general, the NDVI seasonal composites were useful to distinguish wheat from
orchards, vineyards, and some vegetables. It was also observed that much more
separation between these crops could be achieved when combining data sets from
the sowing, peak, and harvest times rather than using the sowing or peak times
alone. However, a significant overlap in NDVI was still observed between wheat,
opium poppy, and barley while using the optical image composites.

Therefore, in the second step, these crops (opium poppy and barley) were
separated from wheat using Sentinel-1 (SAR) time-series data. These time-series
Sentinel-1 data sets had been preprocessed by orbital file correction, thermal, and
speckle noise removal, as well as terrain correction. Monthly median composites
were also developed for the entire wheat-crop cycle (i.e., from sowing till har-
vesting). After performing analysis on Sentinel-1 SAR data, it was observed that
different crops had different and unique response patterns across the different
growth phases of wheat. However, the variability of responses showed overlaps and
made it difficult for threshold-based separation (Fig. 5.8a,b). Therefore, an RF
classification technique was performed on time-series Sentinel-1 data using training

Fig. 5.8 Phenological characteristics observed using Sentinel-1 SAR data in a Laghman.
b Helmand provinces in Afghanistan
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sample points to separate the wheat from the other crops. The RF classification was
applied within the classified mask generated from the optical image analysis. This
step was applied only after the harvest season.

5.2.3.2 Boro-Rice Mapping in Bangladesh

Bangladesh has a different crop calendar for Boro rice (Islam and Hossain 2012)
since it demonstrates wide variability in its growing seasons across the entire
landscape. Therefore, the mapping of Boro rice was done at the district level to
capture the unique phenological responses, region-wise. Time-series Sentinel-1 and
-2 (optical and SAR) images were used for mapping Boro rice in three districts—
Rangpur, Dinajpur, and Barisal. Because of the availability of an adequate number
of randomly collected samples from the field, time-series Sentinel-1 images were
utilized in the first step followed by time-series Sentinel-2 data in the second step for
refinement of the Boro-rice map. Firstly, the time-series Sentinel-1 images from
November 2018 to May 2019 were collected. After that, the images were masked
using a delineated agriculture mask (Sect. 5.2.2). Sentinel-1 has two bands (VV and
VH); therefore, to test the most suitable band for Boro-rice mapping, Sentinel-1
images were classified using training samples from different crops. Three combi-
nations were tested (VV, VH, and VV + VH) for the classification using RF clas-
sifiers for mapping Boro rice and other crops. The highest accuracy was observed
while using cross-polarization data sets (VH)—an accuracy of 92.10%; this was
followed by VV + VH (86.48%) and VV (71.05%). The backscattered response
from VH band was also examined (Fig. 5.9a). Different backscattered patterns were
observed for different crops because of the sensitivity of the backscatter toward the
crop structure. Since the highest accuracy was achieved using VH, the classification
was performed using Sentinel-1 (VH) band to classify Boro rice and other crops.

Fig. 5.9 Phenological characteristic of crops determined by using a Sentinel-2 (Optical) data.
b Sentinel-1 (SAR) data
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In step two, the Sentinel-2 (optical) data were used to refine the results obtained
in step one. Figure 5.9b shows phenological characteristics of different crops, i.e.,
Boro rice, maize, wheat, and potato using Sentinel-2 data. By examining the
phenological characteristics of these major crops, it can be interpreted that potato’s
sowing, peak, and harvest seasons differ completely from other crops, while Boro
rice, wheat, and maize have different length of the season and slightly different
sowing and harvest times. Also, the cropping cycle of these crops (maize, Boro rice,
and wheat) can vary because of late sowing or early harvest and sowing. The
classification results obtained using Sentinel-1 data may have high accuracy, but it
may have overestimation in terms of area. This is mainly because of the dependence
of the RF classifier on an ideal number of ground sample points (of different crops)
for training. This might result in overfitting or underfitting of the classifier and
ambiguity in the estimated area. Therefore, to further refine the results, Sentinel-2
time-series images were utilized using the phenological and threshold-based
approach discussed in Sect. 5.2.3.1. Sentinel-2 images with less than 20% cloud
cover (from November 2018 to June 2019) were utilized. The NDVI thresholds
were derived using Eqs. 5.1–5.3 and were applied on the Boro-rice map derived
from the Sentinel-1 images for further refinement of the result.

5.3 Validation and Area Assessment

The validation and area assessment of the maps were done using the standard
RS-based accuracy assessment technique. The accuracy assessment was conducted
in three ways: the results were checked by comparing with various ancillary data to
identify gross errors, by visual interpretation, and by quantitative accuracy
assessment. A confusion matrix/error matrix was also generated, and statistical
accuracy assessment primitives such as the producer’s and user’s accuracy,
including the Kappa coefficient, were utilized in understanding the distribution of
errors. The confusion matrix for Afghanistan and Bangladesh for wheat and Boro
rice, respectively, is depicted in Tables 5.2 and 5.3.

In RS-based classification, the area for the class can be calculated by counting
the number of pixels in a particular class and resolution of the classified
map. Equation 5.4 (below) is generally used for estimating the crop area.

Crop area hað Þ ¼ Pixel countð Þ � resolution of the imageð Þ � resolution of the imageð Þ
10; 000

ð5:4Þ

Figure 5.10a,b shows the distribution of wheat (in Afghanistan) and Boro rice
(in Bangladesh), whereas Fig. 5.10c,d depicts the areas of wheat and rice,
respectively.
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5.4 Service Delivery

5.4.1 Operationalization/Application Development

The dissemination of the final results for Afghanistan was done through the
development of a web-based visualization system as depicted in Fig. 5.12. Such a
web-based visualization system is also planned for Bangladesh. The Afghanistan
portal can be accessed via the following URL: http://geoapps.icimod.org/afwheat/.
The wheat and Boro-rice mapping workflow was implemented in GEE using a
customized interface. The modules (https://code.earthengine.google.com/?accept_

Table 5.2 Accuracy assessment of Afghanistan

Class Non-wheat Irrigated wheat Total User’s
accuracy (%)

Irrigated wheat

Non-wheat 1839 282 2121 86

Irrigated wheat 341 1388 1729 80

Total 2180 1670 3850

Producer’s accuracy (%) 84 83

Overall 83.8 (%)

AC 0.50

Kappa 0.67

Rainfed wheat

Non-wheat 710 59 769 92

Rainfed wheat 58 238 296 80

Total 768 297 1065

Producer’s accuracy (%) 92 80

Overall accuracy 89 (%)

AC 0.59

Kappa 0.77

Table 5.3 Accuracy assessment for Bangladesh

Class Boro rice Other crops Total User’s accuracy (%)

Boro Rice 609 18 627 97

Other crops 3 95 98 97

Total 612 113 725

Producer’s accuracy (%) 99 84

Overall 97 (%)

AC 0.75

K 0.88
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repo=users/varunkt91/Wheatmapping) depicted in Fig. 5.11 shows how crop
mapping is performed. A total of four modules were developed for: phenological
profile assessment, reference data preparation, crop mapping using optical data, and
for crop mapping using SAR data.

5.4.2 Technology Transfer (Capacity Building)

Capacity building is a key element in the sustainability of any project. The details
on the framework of capacity building are described in Chap. 14. A number of
training events (on-the-job training) were organized in crop mapping for building
the capacity of the relevant professionals from MAIL and BARC. On-the-job
training focused on agriculture mapping using optical and SAR data, and on wheat
and rice mapping using GEE-based applications (described in Sect. 4.1). In addi-
tion, training on RS and GIS, a basic introduction on GEE, and field data collection
application Geo-ODK were also organized. The OJTs were conducted mainly in
Kathmandu, Kabul, and Dhaka.

Fig. 5.10 a Distribution of wheat in Afghanistan. b Distribution of Boro rice in selected districts
of Bangladesh. c Wheat area in Afghanistan. d Boro-rice area in selected districts of Bangladesh
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5.5 Conclusions and Way Forward

In this chapter, a systematic and robust framework for mapping wheat (in
Afghanistan) and Boro rice (in Bangladesh) has been explained. This framework
has good potential for operationalization to strengthen the food security manage-
ment of both the countries. The overall framework was designed keeping in mind
challenges such as limited Internet bandwidth, scarcity of ground samples, and
cloud-free optical images.

The system uses a multistep approach to provide area estimation as the wheat
and Boro-rice season progresses in Afghanistan and Bangladesh, respectively.
However, the methodology can also be utilized to map other varieties of rice such

Fig. 5.11 Customized GEE-based application for crop-area mapping

Fig. 5.12 A web-based visualization system for wheat in Afghanistan
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as Aman (spring rice) in Bangladesh if sample points are available for the spring
season. In the first stage, time-series Sentinel-2 was used to map different crops
using a phenology-based approach in different seasons. While in the second stage,
time-series Sentinel-1 (SAR) data sets, along with the RF machine-learning clas-
sification technique, were utilized to refine the result. The first estimation was
provided during the peak season to give an early indication about the cultivated
areas of wheat and Boro rice. A more accurate estimation was provided immedi-
ately after the harvest season. The entire workflow was automated in GEE con-
sidering the low capacity and the need for timely estimation of the crop area.
Meanwhile, capacity building activities—mainly in the area of crop mapping and
monitoring using GEE—in order to enhance the skills of the local staff in gov-
ernment agencies are under way through the SERVIR initiative.

These two case studies from Afghanistan and Bangladesh are primarily about
RS-based crop-area assessment. A standard RS-based method was utilized for
accuracy assessment which provided statistical exactitude based on the Kappa
coefficient and primitives such as user and producer accuracy (Sect. 5.3). However,
in remote sensing-based crop-area estimates can be adjusted by performing bias
adjustment using ground-based area measurement. This can only be achieved by
incorporating more robustly sampled ground truth data for different crop samples.
Such a bias-adjusted area provides for a more robust insight into the mapped area of
any class of crop. The logistics and feasibility of acquisition of adequate sample data
required for this method have to be ensured before deciding the use of such method.
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