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Abstract The current chapter is focused on the microbiome investigations that have
been used to understand the linkages between soil microbiota and their environments.
Advanced molecular “Omic techniques” such as metagenomics, metatranscrip-
tomics, metaproteomics and metabolomics have been employed to understand in situ
microbiomes and their interactions with soil-ecosystem services at micro-scales. The
potential advances in “Omics approaches” are facilitated by high-throughput next-
generation sequencing techniques and the current work discussed upon implementa-
tion of these technologies in soil microbiome research at global scale. In this chapter,
we have summarized recent advancements and the current state of knowledge in
soil microbial diversity and soil-ecosystem functioning. Different high-throughput
sequencing technologies, molecular “Omic techniques” and their limitations in soil
microbiome research have been addressed. Genome-centric metagenomic approach
was highlighted over gene-centric approach to understand soil microbiomes and their
functions hitherto. Impacts of different physical, chemical and biological factors on
soil microbial communities were reviewed in the current chapter. It is suggested that
soil microbiomes can be exploited to alleviate the negative impacts of environmental
changes for increased crop production.
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18.1 Introduction

Soil is one of the most complex ecosystems that harbor billion of microbiota. Soil
microbial communities perform crucial roles in the elemental cycling of micro and
macronutrients which are vital for the functioning of the above-ground ecosystem
(Prasad et al. 2021). Nevertheless, systemic understanding of the soil microbial
ecology is difficult due to the high degree of spatial heterogeneity that is present
at micro-scales (Raynaud and Nunan 2014). DNA-based microbial taxonomy using
phylogenetic markers (ribosomal RNA gene, ITS, etc.) were enumerated around 10°
different archaeal and bacterial species and approximately 1 billion microbial cells
in 10 g of soil (Roesch et al. 2007; Schloss and Handelsman 2006). Further, Trevors
2010 estimated around 10~° genomes and 10~!? prokaryotic genes in a gram of soil.
Recent metatranscriptomics and subsequent taxonomic annotation of agricultural
soils revealed complex microbiota from the diverse origin, in the following order:
Viruses < Eukaryotes < Archaea < Bacteria (Sharma and Sharma 2018).

It is said that only 1% of soil bacteria are cultivable in the laboratory and is
known as a great plate count anomaly. The major fraction (99%) of soil microbiomes
is uncultivable in nature. Therefore, understanding the factors driving soil micro-
biome structure and their interactions (physical, chemical, biological, etc.) across
a contrasting ecological gradient is difficult by using conventional microbiological
tools. Recent advancements in high-throughput sequencing technologies enlightened
the previously unknown soil microbiome compositions without the necessity for
cultivation and enable us to study complex soil microbiomes in detail using metage-
nomics/transcriptomics (Thompson et al. 2017a, b). In this approach, genomic mate-
rial DNA or RNA will be extracted from the microbiota of soil sample of interest
followed by high-throughput sequencing of gene or transcript. Later the data will
be accurately annotated and corresponding cellular or ecological functions will be
precisely identified (Prosser 2015). The inferences drawn in these studies could be
implemented in sustainable agriculture and other land-use management practices
(Fig. 18.1).

According to Prosser (2015) “metagenomics and metatranscriptomics are defined
as the characterization of all genes and RNA transcripts, respectively, in a given
soil/environment sample”. Further, he has pointed that “single-gene/amplicon-
specific high-throughput sequencing studies are sometimes described as “metage-
nomics” but include data for only one gene and, therefore, do not encompass the
holistic element of the omics”. During the past decade, many “omics” studies have
been conducted to elucidate the soil microbiomes in a wide variety of environments.
In this chapter, we especially highlighted the importance of omic approaches to
address the soil microbiomes and ecosystem function. Different high-throughput
sequencing technologies and their characteristics have been well summarized in
Table 18.1. Further rhizospheric microbiomes and the effect of different environ-
mental perturbations on soil microbial diversity and activity have been discussed
(Fig. 18.2 and Table 18.2). Potential opportunities available in soil microbiome
research are highlighted at the end (Fig. 18.3).
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Fig. 18.1 Bacterial counts per unit in different habitats

18.2 Soil Microbiome Research in the “Omics” Era

Recent advancements in sequencing technologies along with increased computa-
tional power, including a significant reduction in sequencing costs have facilitated a
substantial number of soil microbiome studies (Table 18.3, Jansson and Hofmockel
2018; Kang et al. 2019; Gans 2005; Wu et al. 2011; Prosser 2015; Fierer 2017).
Further, high-throughput sequencing studies have succeeded in enlightening the
previously unknown microbial diversity of soil microbial communities across a wide
variety of soil habitats (Thompson et al. 2017a, b).

The global scenario of soil microbiome research commonly involves three
different kinds of sequencing strategies: (1) high-throughput amplicon-based
metataxonomic sequencing studies, which involves amplification of targeted regions
of phylogenetic markers such as “intergenic spacer region” for Eukaryotes and
16S ribosomal RNA gene (16S rRNA) for archaea and bacteria (2) metage-
nomics/metatranscriptomics which involves high-throughput sequencing of the
metagenome or transcriptome in a specific soil (3) metaproteomics which focuses
on the detection of fragmented and separated proteins followed by sequencing with
the combination of liquid chromatography-mass spectrometry (LC-MS), and (4)
metabolomics wherein detection of metabolites through nuclear magnetic reso-
nance spectroscopy (NMR) or mass spectrometry (LC-MS). Applications of different
advanced technologies used in the soil microbiome research were comprehensively
summarized in Table 18.3. These molecular approaches unraveled the physiological
mechanisms behind unculturability and identified the factors suitable for growth
promotion of previously uncultivable microorganisms in the laboratory (Stewart
2012; Biswas and Sarkar 2018; Yadav et al. 2015).

DNA-based high-throughput sequencing of 16S rRNA gene (V3—-V4 region)
demonstrated that dominant bacterial taxa in agriculture soils were found to be Acti-
nobacteria, Gemmatimonadetes, Proteobacteria, Acidobacteria and Chloroflexi. pH
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Fig. 18.2 Effect of a change in environmental condition on the response of soil microbiomes
as revealed by metagenomics and metatranscriptomics. The concept illustrated in this figure was
adopted, modified and redrawn from Prosser (2015)

was found to be one of the major soil characteristics that confer bacterial commu-
nities in agriculture soils. A significant positive correlation was found between soil
pH, soil bacterial a-diversity and abundance of operational taxonomic units. Results
demonstrated that soil pH is a relatively more important factor than nutrients in
shaping soil bacterial communities in agricultural soils.

Metatranscriptomics revealed that the diversity of the rhizosphere microbiome has
differed from bulk soil and in between plant species, for example, Pea had a stronger
effect on the rhizosphere microbiome than wheat and oat resulted in a different
rhizosphere community. A comprehensive understanding of the microbial commu-
nities of the paddy soils driving methane metabolism via the formation hydrogen
and acetate has been established by RNA-based metatranscriptomics (Masuda et al.
2018). Deep metatranscriptomics analysis revealed that in the anoxic layer, Deltapro-
teobacteria, Planctomycete, Acidobacteria actively generated hydrogen; Further,
Acidobacteria, Betaproteobacteria, Alphaproteobacteria and Deltaproteobacteria
generated acetate; Utilizing both hydrogen and acetate as substrates for methanogen-
esis, the archaeal genera such as Methanoregula, Methanocella and Methanosaeta
actively produced methane in anoxic layers. Subsequently, in the oxic layer, methan-
otrophs related to Methylogaea and Methylocystis readily oxidized methane (Masuda
et al. 2018).



579

18 Global Scenario of Soil Microbiome Research: Current Trends ...

(panunuoo)

(8102) ‘Te 10 eSewgeg

SOWIAZUD Ie[N[[JBNXD PA)sa) [[B
jsowrfe Jo Ajanoe oy Juniqryur £q q1os jo santadoid [esrwayooiq ay) ur pue
©JOIQOIOTW [10S JO uonISodwod ay} U0 SIPIdISUNJ JO J00JJ0 dANEIOU SNOIAGO

(SI/SIN-D'T) Anowonoads
ssew-wopue) AyderSoyeworyo
pmbi| ‘poyraw (SON)
Surouonbas uonerouad-1xoN

soprorsun,j

(6107) 'Te 19 Jorun( epIodeT]

SuI1oAo Juarnnu pue uonismboe ) 1oy renuajod

o1)oUd3 Q) UI SAOUAIYIP pamoys soonoeld ainjnoude pue poarosard

JO SAWOIQOIdIUI [I0S "S[I0S PAJOJJJe-AIMNILITE Ul AJIUNWIOD [BIQOIOTI
Q) Suraup ur 9[ol Jueoyusis e paAe[d Ajiqe[reae juarnnu ISeNUOD

uJ "A1oAnoadsal ‘suoseas KIp pue Aurel oy Ul SISQUISW BLIA)OBGOUNOY
pUE BLI)ORQ02)0I] JO asearoul Suons e Im 1ogap 1ojem £q Aqedrourid
padeys a1om sAFUBYO [BUOSEIS JOPUN SANIUNWIOD [BIGOIITW [I0S

yoeoidde
sorwoudgeow ungjoys

S109JJ0 [RUOSEIS
pue soonoeld I noudy

(8100) ‘e 10 I

S2INQLIIE [BUOTIOUN) PUB JIWOUOXE) dY) UI S$IIIYS
9[qe1orpaid 01 pedf [[IM pue saniAnoe druagodoryue 0} paduIl sem AJIIX0)
SH 1108 ur aseaIour uy "seudS [euonouny pue sassadoid [10s Aoy ‘s10ISN[d
[89130]092 ‘@duepuNqge ‘AISIFAIP [BLIA)OR] SB YINS saInqLle [euonouny
pue orwouoxe) d[dnnuw uo syoedwr aanesou jueoyrugis sey uonnjjod SH

Surouenbas

VN §9[ [eL=10eq oy

Jo uor3ar1 A ndySnonp-ySiy
ay L, ‘Surouanbos
orwoudgejow ungioys

BUIYD Sso1oe s[1os ur uonnjjod SH

(6107) ‘e 10 imolog

wmajonad papeayun jey) [10 [3SAP YPIM
padnou sem joedwir 9ANESOU 10)BAIS O ], "OWOIqOIOIW [I0S AY) JO ANIqe)s
Ay pue s3ssa001d drjoqeldu [10s Ay pagrmsip uonnjjod wnajonad ayg,

Qua3 VNI S9T [eLeIoeq
Jo Surouenbas ndySnony)-y3ry

sq1os pangjod wnojoned
Papeajun pue [10 [3S31(

(6100) T2 Ing

91e)s [RUISLIO SIT 0] QWES AY) AI0JSAI 0 JNOLJIP 2q JYSTW I ‘AJANOE Uewny
Aq paIoy[e ST AJIUNuIuIod [eIqoIoTW [10S ay) 90U Jeys sySysry Apms

SIY L, osn pue[ SurSueyd Aq palolfe sem SAUIOIQOIOIW [10S Jo uonisoduwod
AU, "S[IOS PUB[IOM 3} UI }SOMO[ PUB PUE] A[qEIE Y} Ul PIOTIOU dIOM

13un} pue pLI1IDQOPIDY BLINJEQ JO ddUBPUNQE JAYSIY Y "dSuByDd Isn-pue|
£q pR1oajJe A1oMm DLI2IODGOPIDY PUR ISUNJ ‘BLI2IORQ JO SANISIdAIp-eyd[e oy,

uor3a1 [S 1] oY) Se [[om Se YAy
S9I Te112108q JO UOISAI yA—EA
Jo Surouanbas ndysnonp-y3ryg

SOIIAIIOR UOTRIO)SI
woIsAs pue surned asn-pue]

(6102) 'Te 19 oeyf

UONEBUTWILIUOD [EIIWAYD 0) dsuodsar ur aImons A)unwuod
pue KJISISAIP [BIQOIOIW [I0S JO SuId)jed UOISSIIONS PUL IUSI[ISAY

sorwoudgejowr un3joys pue
Surouonbas uoordwe YAy S97

skep (g 10J S[10s
AMNOLISE 0JUT SHUBUTWIRIUOD
omesio pue ouesiouy

S90UAIRJOY

asuodsar sworqoorui [10§

pasn sanbruyoag,

QoueqINSIp/ATURYD
[eIUSWIUOIIAUL

QWIOIQOIOTUI [I0S UO SIOUBGINISIP JO SAZUBYD [BJUSWUOIIAUD SNOLIBA JO 1991Jq  7°8T dIqBL



G. Subrahmanyam et al.

580

(panunuood)

(e4107) T8 10 wekuewyeiqng

Anay

[10s pue sa)er uonedyLnIu fenudjod [10s uo joedwr aaneSou Jueoyrusis

B 9ARY AW Sy pue nD) £q UONBUIWEIUOD [10S JBY) PASITIns s[nsay 's[10s
panyjod [ejow £Aeay ur uoneprxo eruowwe ut dnois siyy jo souejrodwr
1oyyng opraoid pue sqros o1proe o1ydonoSIjo ur uonedYINIU Ul A[0I
juepoduwr ue sAefd q1°1 dnoi3 yQVy-[edeyorewney, 2y} Jey) PI[eIAI U3
Yo Jo sisA[eue o1oudgo[Ayd [1os panjjodun wolj JusroyIp Apueoyrusis
j0u sem (VQV) BoRYOIe SUIZIPIXO-BIUOWIWE JO AINIONIS AJTUNUIWOD

Ay} UO 1D PUE SV JO 19JJ2 AU, S[OSY[E JIPIOL UI Sy puB N S[ejow

KA®AY JO $SA1S 9Y) 0] I[QBIAUNA AIdM SOQOIJIW SUIZIPIXO-LIUOWWE [I0S

QU3 youp Jo sOIUOUSLION

Sy pue n) s[ejow AAedH

(L107) Te 10 uex

Aunwwod

[e1QOIOTW [10S JOJ SA[qeLIeA A9Y 9q 0] A[OYI] Sem N [BIOL, pue N druesio
PIA[OSSIP ‘U0qIed d1ue3I0 PIA[osSIp ‘Hd ‘soSueyd [BUOSEIS PUB UONIPPE

N 9 0} sesuodsal [BIqOIOTW JOJ SI0JeIIPUI [BOIS0[01q/SISYIRWOIq SB Pasn oq
PINOD BXE) [BIGOIDTW OYI0ads Jey) 9JedIpul $)[Nsay "PaAIasqo sem uonisodop
N JURI9JJIp 0} swistueSI00101W dYy192ds Jo asuodsar renonied segueyd
[euOSeas pue uonippe N Aq pa1odjje A[Juedoyrusis orom sonIUNuUIod
[21QOIOTU [10S JO A)ISIOAIP PUE QOUBPUNQE AU, 'SUOSLIS JUSIILIP UT PILIBA
Apueoyugis are uonippe N 03 AUNWWOD [BIGOIdIUI [10S JO sasuodsay

VNI 81 [eSung

Jo suoI3ar S 1] pue ‘YN

S$97 Ter1a1oeq oy} Jo UoISaI A
Jo Surouanbes Indysnoay)-ysSig

sontodoid
110§ ‘saSueyo [euoseas pue
uonisodap N JO S[OAJ] JUIIg

swistuesio  o1oew,, Jo Aydei300301q oY) WOIJ JUSIQHIP ST

yomym sa[qerrea orydeps £q parjonuod Ajrewnid st Aydeidoadorq rerqororu
Jey) pasagns ) NSy "S[I0S JIPIOL Ul PAONOU SEM AJISIOAIP JOMO] PUE S[I0S
[ENNSU UT POAISSQO Sem AJISIOAIP [eL1ajoeq JoySTH "Hd [1os £q pouredxa
A[231e] seM 2INONIS JWOIGOIIOUW UT SAOUIYJIP A [, “WAISAS0I9 Ay Jo 2dK)

sasAreue (d14Y-L) Surouanbas

019
“arnjerodwo) ‘uonerrdsuenodead
renuajod ‘opmine| ‘oner N/D
‘D0 ‘Hd se yons so[qeLIeA [10S

(9007) uosyor( pue I101dL] | AQ POIOJIP SONIUNUIWIOD [BLI2JORQ [I0S JO SSQUYDLI sa10ads pue AJISIOAIP Y], pue SunuudioSuy YN |  SnoLeA ‘wo)sAs0o9 oy Jo adAT,
S[10S JIPIdE Ul AJISIQAIP JOMO] pue sajduwres [ennau ur
Kyis1oA1p 10431y Yim ‘Hd [10S 03 paje[or A[Suons sem INONIS AJIUNWWOd
[eL1o)0eg "$9ss0001d (291501000 UAALIp-EIIIORq UO uonnyod Hvd Surouenbas

(L107) e 19 npy

Uey) UONEIYIPIOE JO AOUANYUI [ENUL)SGNS JIOW B JO JANEDIPUL ‘S[I0S d[qele
ur Ajiunuiuod [eriejoeq ay) o jueuruiiayep redourid oy oq 03 punoy sem Hd

VNY4 S91 [eL19108q 941
Jo uoi3a1 A IndySnonp-ySryg

uoneutweluod Hyd pue Hd 1o

S90UAIRJOY

asuodsar sworqoorui [10§

pasn sanbruyoag,

QoueqINSIp/ATURYD
[eIUSWIUOIIAUL

(panunuod) Z'8T dqEL,



581

18 Global Scenario of Soil Microbiome Research: Current Trends ...

onel N/D [10S pue uonedyLnIu pasearout ySnoiy) Hd [10s oY) pasearoop
uoSomIu Jo UoNIppe Y, ‘TI0S Y} UT JURPUNGE dIIM SHID0I0UNUIY

pue sauvjdopoyy] ‘Snjj1ovqIUavg ‘WinLI1dPGOISH] WNIPLISO]) ‘SaPI0421doDg
Wn1qo21y4Spp.g se Yons eIouds [eL)oeg "[10s oy ul AJI[Iqe[IeAR JusLynu
Jo uonerpau 1oy Hd 2y} Jo WSIURYIAW dY) 0) anp 3q P[Nod Iy, (FOJ)
[10s JuawLIddXa sseln) yIed dy) Ul ssewolq pue uonisodwod ‘KISIOAIp

VN4
$OJ [eL1210eq 9y} JO UOISAI A

(S102) ‘Te 30 eUIU[RYZ [81QOIOTW pauTuLIR)Ap Jey) Jo3owered [10s urewr oy} 9q 0} punoj sem Hd | jo Surouonbas jndySnonp-ySrg Hd 1108
sp1os panjjod A[y3ry ur pa3oaiop sem suonendod
VOV pue gOV yioq jo syiys Aunwwod juaredde £q poruedwoode
ANSIOAIP PRONpay "SPIAY PABUIWILIUOD A[QJBIIPOW PUE PJRUTUIRIUOIUN
Ul padNou seM YOV JO doueuruopald JIOAIMOH ‘[0S POJRUIWIEIUOD
A1yS1y oyy ur (VOV) BoBYoIE SUIZIPIXO-BIUOWWY UBY) JUBpUNqE
Q10w sem (gOV) BLIIOEQ SUIZIPIXO-BIUOWULY ‘IOYMN] 's[10s Jo uonnjjod
w19)-3u0] SuISsISSE J0J SI0JLIIPUI [IISO[0Iq JUBAS[RI SE PAsn 9q UED Jey)
sanIATOR aWAZUD 10s Im Suore e[dyd [ere)oeq oyroads pasodord Apnis
Ay, 'syueinyjod 0) 2dULID[O} [B1IA)IEQ SunedIpUl S[I0s painjjod ur sIoquIdW sIIew dudg
Jueuropaid QI9M DLI2IIDGOULDY PUR SINDIULIL] DIIIIODGOPIDY Se Yons [euonouny pue onouaSojAyd
BIOUQ3T [BLIOBY PAAIISQO AI9M S[I0S PAIAJJe-F M Ul Ul PIys A Iunwwiod Jo sisATeue 3urouanbas pue
9102 [eL1)0Bg PAAIISQO SeM UOTIOUN [10S PUB AJISIQAIP ‘A)ANJE [eIqoIoIW | Suruod ‘oo Aq dworqoionu ("HMI)
0%107) ‘Te 10 wekuewyeiqng [10S UO (FAA]) JUSNPJQ 2)SeMm [BLIISNPUI JO 10919 snoLId)d[ap juaredde ayp, | [10s jo SunuudioSuy 1e[nd9[oj uonnyjod juenyje [ernsnpuy
QoueqINSIp/ATURYD
SQOURIAJOY asuodsal awoIqoIdI 10§ pasn senbruyoay, [eIUSWIUOIIAUL

(panunuod) Z'8T dqEL,



582 G. Subrahmanyam et al.

Crop and soil level

Plant genetic and microblome level .
. Paotential entry points for management Potential benefits
T3 . crop and soil level
= . | (€D Plant ehoice: enhanced erop * Onganic matter formation
< ! diversity, intercropping, lving * Habitat formation for soil

) soil management: mulching, reduced » Availability of dissobved
Sod structure and aggregation Root micrablome soil tillage, no-il organic and mineral nutrients
Greenhouss gas emissions Mutrient competition + Soil aggregation and
- = Nutrient availability Microbi I 1 e - -
[ Decampasers henise a8 icrobiome leved stability, erosion resistance
and engineers emissions ) Integrating plant breeding and
Plant pests rhizosphere microbiome management
Pest coatrol for enhanced ecosystem services; eg., » Enhanced utrient uptake
nitrification inhibition or denitrification efficney
o, inhibition, disease suppression « Reduced mutrient lass
Q\/\ @) inoculation with beneficial soil » through leaching, and

organisms, such as greenhouse gas emissions

mulch induding N-fixing legumes l binlogical communithes

\._ entomaopathogenic nematodes « Formation of 50M and
of plant growth-promating bactesia, carbon sequestration
g, pseudomanads * Plant health, pest
O Fostering indigenous AMF communitics resistance
e o inoculation with AMF » Plant drought resistance
Nutrient apap .
loss uptake  prants e '
Microorganisms ~

Ecosystem sustainability

Fig. 18.3 Different soils ecological engineering approaches for local ecosystem management. The
figure was adopted from Bender et al. (2016)

In a study, Sharma et al. (2019) demonstrated a high expression of microbial tran-
scripts in agricultural and organic soils with diversified metabolic functions. This
study provided insights about certain molecular markers which are indicative of
metal and pesticide contamination in soil. It was observed that Archaea had rela-
tively a greater role than bacteria in the soil nitrification process of polluted environ-
ments. Particularly, over-expression of aromatic hydrocarbon-degrading transcripts
indicates the importance of soil microbiomes in the biodegradation of pollutants in
agroecosystems (Sharma et al. 2019).

Community shifts in the structure and composition of the soil microbiomes are
considered as biological indicators for assessing long-term pollution of soils (Subrah-
manyam et al. 2011, 2014b, 2016; Ros et al. 2020; Liu et al. 2018; Kumar et al.
2020a, b, c,2021). RNA-based metatranscriptomics of agriculture soils indicated that
higher expression of transcripts related to heavy metals bioremediation (e.g., thiore-
doxin reductase, mercuric ion reductase, cobalt-zinc-cadmium resistance protein,
etc.). Enhanced RNA transcripts in soils were related to soil C, N, P and S cycles
(e.g., PstA, PstB SoxX, SoxD, SoxA, SoxB, etc.). Large quantity of the transcripts
involved in soil denitrification suggesting its key role in the loss of nitrogen in agricul-
ture soils. Transcripts of sulfur metabolic pathways demonstrated a higher expres-
sion of alkane sulfonate monooxygenase, arysulfatase and sulfonate monooxyge-
nases. This is indicative of active sulfur metabolism wherein microbiomes in these
ecosystems were able to acquire sulfur from organosulfur substances. Higher abun-
dance of pesticides and heavy metal degrading bacteria such as Pseudomonas, Strep-
tomyces Achromobacter, Bacillus, Sphingobium, Serratia, Micrococcus, Desulfob-
ulbus, Ralstonia, Acinetobacter, Desulfobacterium, Thiobacillus Rhodospirillum and
Arthrobacter were noticed in agricultural soils (Sharma and Sharma 2018; Yadav
et al. 2020).
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Metabolomics has the potential to characterize the plant—soil biochemical interac-
tions in the soil ecosystem. Metabolomics has advantages over conventional “Omic
technologies” by determining key metabolites which are utilized by both plants and
microbes. However, only a few metabolomics studies were conducted in soil micro-
biome research (Li et al. 2014). Maize metabolomic analysis revealed that inoculation
of plant growth-promoting bacteria upregulated the hormone biosynthesis, photosyn-
thesis and TCA cycle metabolites. The ability of plant growth-promoting bacteria
to transform soil metabolic pathways could be utilized to enhance production and
productivity of agriculture crops in polluted soils (Li et al. 2014).

Metaproteomics indicated that proteins expressed in the agriculture crops rhizo-
sphere are unique and are not identified by existing MS/MALDI-TOF. Very complex
interactions were observed between microbiomes and plants in a crop rhizosphere.
Functional analysis of proteins revealed several pathways and metabolic signal trans-
ductions involved in the soil biotic community (Wang et al. 2011). Metaproteomics
of maize soils identified the upregulation of several proteins related to plant devel-
opment and stress response (Li et al. 2014). Applications of omic techniques in soil
microbiome research were comprehensively reviewed by many authors (Biswas and
Sarkar 2018; Krishna et al. 2019).

18.3 Different Sequencing Technologies in Soil Microbiome
Research

Although Sanger sequencing has been used for decades in soil microbial ecology,
it has certain limitations such as time consuming, not economic and is not a
high-throughput technology. Consequently, it is essential to develop economic
high-throughput sequencing methodologies that will provide information on the
soil microbiomes and their functions in different realms. In the recent past, new
sequencing technologies were evolved and subsequently commercialized by different
firm’s viz. Applied Biosystems, Thermo Fisher Scientific, Roche Life Sciences
and Illumina (Table 18.1). Generally, these methods were referred to as next-
generation (NGS) or second-generation sequencing technologies which revolution-
ized soil microbiome research. Many sequencing platforms employing NGS have
been developed, including Illumina/Solexa platform, Ion Torrent technology, SOLiD
and pyrosequencing (Krishna et al. 2019), PacBio etc. Comprehensive details for
different sequencing platforms were summarized in Table 18.1. Different sequencing
technologies and their chemistry have been reviewed by previous authors (Ambardar
et al. 2016; Thompson and Steinmann 2010; Krishna et al. 2019).
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18.3.1 ““Gene-centric” Versus “Genome-centric”
Metagenomics

Molecular analysis and investigation of individual target genes obtained from
metagenomes are known as “Gene-centric” metagenomics. Most of the soil micro-
biome research at the global scale involves a gene-centric approach. It mainly targets
amplicon-specific sequencing of phylogenetic markers such as 16 rRNA, ITS, etc.
So that it could not be possible to establish the origin of the genes like which
genes originated from which genome. Therefore, it is difficult to establish a link
between soil function and microbial phylogeny based on the taxonomic genes. Subse-
quently, it is difficult to reestablish interrelated metabolic pathways operating in
complex soil microbiomes with the help of gene-centric metagenomics. The main
technical limitation in the sequencing of single-cell genome is difficulty in anno-
tating a full coverage of genome assembly. These limitations can be addressed with
genome-centric metagenomics.

In contrast to gene-centric’ metagenomics, ‘“genome-centric”’ metagenomics is
considered to be a holistic approach as it aims to obtain complete sequences of
genomes in a given soil sample through single-cell genomics or the Denovo assembly
of individual genes. Few disadvantages of genome-centric’ metagenomics involve the
risk of formation of chimeras during genome assembly, in which segments of other
microbial genomes are assembled. These limitations can be minimized by bioinfor-
matics and technological advancements. Kougias et al. (2018) employed a genome-
centric metagenomics approach and reported a spatial distribution of lignocellulose
degrading microbiota with diverse metabolic functions. Most recently “genome-
centric metagnemics” were employed to resolve microbial diversity of denitrifica-
tion pathways, coral reefs and the response of bacteria to operational disturbances
in activated sludge (Gao et al. 2019; Pérez et al. 2019; Glasl et al. 2020). A detailed
account of Gene-centric’ versus “genome-centric”’ metagenomics was discussed by
Prosser (2015).

Metatranscriptomics provide us to understand the functional roles of microor-
ganisms in soil-ecosystem services. Nevertheless, the diversity and composition
of microbiomes in diverse soils are rarely addressed owing to enormous habitat
complexity and micro-scale heterogeneity. Furthermore, recent advancements in
computational biology and the development of algorithms such as Check-M,
MetaBAT and MaxBin, etc., facilitate us to reconstruct metabolic pathways of
microbial genomes in complex soil microbiomes (Kang et al. 2019; Wu et al. 2011).

18.3.2 Functional Potential of Soil Microbiomes
to Environmental Changes/Disturbances

Understanding soil microbiomes and their potential multifunctionality under
contrasting environmental factors such as nutrient availability, pH, temperature,
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moisture, etc., is a complex subject in soil ecology (Yadav et al. 2020). It is essen-
tial to understand the dynamic responses of global soil microbiomes to physical,
chemical, biological changes including soil-plant-microbe interactions for devel-
oping/predicting long-term soil-ecosystem models. However, small numbers of
investigations have employed multi-omics technologies to decipher the impact of
soil contamination/environmental changes at functional and taxonomic levels in the
soil microbiome (Jiao et al. 2019). Identifying the factors for microbial community
stability such as “resilience (the degree of rate of recovery after disturbance) and
resistance (inherent capacity of insensitivity to disturbance)” is of paramount impor-
tance for forecasting microbiome response to environmental stress. Comprehensive
details on concepts of microbiome resilience and resistance were reviewed by Shade
et al. (2012). Measuring the soil microbiome response to a disturbance has been a
subject of interest for many decades.

Agricultural ecosystems are currently facing various anthropogenic and envi-
ronmental perturbations such as climate change, pollutants, heavy metals, antibi-
otics pesticides, fertilizers and organic residues (Trenberth et al. 2014; Callaway
et al. 2011, Subrahmanyam et al. 2014a, c; Prasad et al. 2012; Singh et al. 2020)
(Table 18.2). Soil microbes play significant roles in driving the global biogeochem-
ical cycles (C, N, P, S, Fe, etc.) and recycling of organic and inorganic elements
(Falkowski et al. 2008; Subrahmanyam et al. 2014b). Since microbes plays a crucible
in soil-ecosystem functioning, it is imperative to elucidate spatio-temporal dynamics
of soil microbiomes and their diversity under contrasting disturbances. This infor-
mation is required to mitigate environmental pollution and mitigate agro-ecosystem
contamination.

Metatranscriptomics is considered to be advanced technology to capture func-
tional gene expression patterns in soil microbiomes and subsequently investigates
their responses to environmental perturbations. The effect of a change in environ-
mental condition/disturbance on the response of soil microbiomes as revealed by
metagenomics and metatranscriptomics was comprehensively illustrated in Fig. 18.2.
A small change in the soil environment (temperature, pH or any disturbance) is
unlikely to change any significant soil microbiome community composition. This
could be due to physiological plasticity and flexibility within the prevailing micro-
biome (Terzaghi and O’Hara 1990; Prosser 2015). However, a little environmental
change in the soil-ecosystem could lead to a subtle change in both metabolic profiling
and activity which can be reflected in metatranscriptomics. Such type of responses
would not be traced in metagenomes as discussed earlier (Prosser 2015); A moderate
environmental impact could lead to a change in the distribution of the different
phylotypes at the metagenomics level. However, at the metatranscriptomics stage,
one can notice a relative change in the expression of new genes which belong to
phylotypes adapted to environmental disturbance. A change in the relative expres-
sion of existing transcripts was also noticed at the metatranscriptomics level. Large
and extreme changes in the soil environment could possibly make either expression
of new RNA transcripts (At metatranscriptomics level) or extinction of susceptible
phylotype or the invasion of new species at metagenomics level. Extreme changes
in the soil-ecosystem may also induce mutations/adaptations in existing phenotypes
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subsequently expression of new genes contributes to a different kind of metatran-
scriptome. Table 18.2 summarizes the important observations in microbiome research
with response to soil physical, chemical and biological disturbances.

The diversity and species richness of soil bacterial communities differed by type
of the ecosystem (Table 18.2; Fierer et al. 2009, Fierer and Jackson 2006). The differ-
ences in microbiome structure were largely explained by soil pH. Higher bacterial
diversity was observed in neutral soils whereas lower bacterial diversity was noticed
in acidic soils (Wu et al. 2017). Results suggested that microbial biogeography is
primarily controlled by edaphic variables which are different from the biogeography
of “macro” organisms (Fierer and Jackson 2006). The abundance and composition of
soil microbiomes were greatly influenced by soil pH. This could be due to the mech-
anism of the pH for mediation of nutrient availability in the soil. Bacterial genera
such as Bradyrhizobium, Bacteroides, Clostridium, Mycobacterium, Paenibacillus,
Rhodoplanes and Ruminococcus were abundant in the soil (Zhalnina et al. 2015; Wu
et al. 2017).

Land-use patterns and system restoration activities showed a greater effect on soil
microbiomes (Sui et al. 2019). The diversities of fungi, bacteria, and Acidobacteria
were influenced by the change in land-use patterns. A low abundance of bacteria,
Acidobacteria and fungi were noticed in the wetlands and their abundance was
substantially increased in arable land (Sui et al. 2019). The composition of soil
microbiomes was altered by changing land use. The community structure of soil
microbiomes was influenced by seasons and the diversity was shaped principally
by water scarcity. A higher abundance of Proteobacteria and Actinobacteria were
noticed in the rainy and dry seasons, respectively. In addition to this, the availability
of nutrients also showed a significant role in shaping the microbiome assemblages
in soils under agriculture management. Soil microbiomes were greatly influenced by
agriculture practices and showed contrasting genetic potential for C acquisition and
biogeochemical cycling (Lacerda Junior et al. 2019).

18.4 Limitations of Soil
Metagenomics/Metatranscriptomics

Soil metagenomics and metatranscriptomics have certain limitations and biases as
like as in any other molecular techniques. These limitations are mainly confined to
protocols that are related to lysis of microbial cells, genomic DNA/RNA extraction
along with sequencing errors (Lombard et al. 2011). The stability of the extracted
nucleic acids (DNA or RNA) has also posed a major problem in soil metagenomic
studies. There are certain main limitations found in absolute quantification and
accurate annotation of sequenced genes. Therefore, complete soil metagenome or
metatranscriptome coverage is very difficult to achieve; for instance, Howe et al.
(2014) in a study reported that deep coverage of the majority of a soil microbiomes
was not accomplished, even after processing 398 billion base pairs of sequence
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data. It was highlighted that sixty percent of proteins predicted in sequencing data
were not matched with existing databases indicating the limitations of the existing
databases, for example, Genomes Orthology database and Kyoto Encyclopedia of
Genes. Further, they suggested that more deep sequencing data are required to charac-
terize the functional content of soil microbial communities. More importantly “Omic
techniques” require substantial computational resources to annotate and predict the
genes obtained through De novo metagenomic assembly.

Functional gene identification in a metagenomics library is not a substantiated
proof of its expression at the RNA level or its activity at the protein level. The qual-
itative presence of functional gene may be cryptic in nature and the gene transcript
could not be translated or the host organism may be inactive or dormant. One should
be noted that the prevailing environmental conditions such as temperature, pH, water
availability and substrate concentra-tion may likely inhibit the activity of the func-
tional gene product. The amount of a particular enzyme in the soil may be accurately
reflected by quantitative soil metagenomic data, but it would not deliver much infor-
mation about the process rate/metabolic flux. It is a well-known phenomenon that the
cellular flux of metabolites in a metabolic pathway relies on the available quantities
of other co-enzymes and enzymes of the same metabolic pathway (Kacser 1983).
Accordingly, the potential metabolic flux of the related pathway could not be sensi-
tive to different quantities of the encoding gene. Prosser et al. (2015) opinioned that
metagenomics may not provide complete information related to physiological char-
acters, for example, susceptibility to predation, optimum pH and temperature for
growth, minimum and maximum specific growth rates, saturation constants, etc. A
small change in a soil environment (temperature, pH or any disturbance) is unlikely
to induce any change in soil microbiome community composition. This could be due
to plasticity and flexibility within the prevailing microbiome (Terzaghi and O’Hara
1990; Prosser 2015). However, it is noticed that a small change in soil environment
may lead to subtle changes in metabolic profiling and activity. Such type of responses
would not be traced in metagenomes (Prosser 2015).

Drawing correlations between soil physicochemical characteristics and metage-
nomic data for obtaining meaningful information is difficult. This could be due to
temporal and spatial heterogeneity of soil matrix which will separate substrates phys-
ically from cells that contain a functional gene involved in the metabolism of those
substrates (Prosser 2012; Schimel and Schaeffer 2012). The fundamental quest in
soil microbiome research is how soil microbial diversity is produced and maintained.
Conventionally, the fundamental processes that are responsible for inducing genetic
diversity in species are defined as evolutionary processes which include genetic
drift, gene flow, mutation, and selection (Hartl and Clark 2007). Conversely, the
fundamental forces that are driving diversity among species are in general referred
to as ecological processes which include ecological drift, selection, speciation and
dispersal (Vellend 2010; Zhou and Ning 2017). Metagenomics, or metatranscrip-
tomics may not deliver much information to understand these fundamental ecological
mechanisms that are driving soil microbial communities.

Although metagenomic sequencing can provide certain information on great
plate count anomaly, it is fundamentally difficult to understand the functionality
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of metabolic pathways of uncultivable microbes in soil (Stewart 2012). Cultiva-
tion of uncultivable soil microbiota in the laboratory is necessary to understand
complete physiology and their functional roles in soil microbial ecology and host
plant improvement. Stewart (2012) discussed advancements made in co-culture tech-
nique suitable for growing uncultivable microbes in the laboratory by providing
in situ environment. Further, a novel “micro-cultivation technology” to increase
more resolution and exploit rare microbial species from the complex environment
was highlighted in the same study.

18.5 Future Prospects in Soil Microbiome Research

18.5.1 Biodiversity and Biogeography

Six distinct biogeographical regions are found on the Earth’s surface (Lomolino
et al. 2006). The biogeographic regions are defined as land surface areas that harbor
distinctive plants, animals and other biota. The distribution of specialized biotas is
hypothesized to exist due to evolutionary events such as vicariance, separation and
dispersal of species by various barriers (Womack et al. 2010). Much emphasis was
given to the distribution of microbiota and the corresponding ecosystem processes
that underlie species distribution. Gourmelon et al. (2016) inferred that microbial
species distribution, abundance, richness were related to the type of surface vegeta-
tion and the prevailing plant species. Each plant possesses its specialized microbiome
because of multifactorial linkages between abiotic and biotic factors in contrasting
geographical regions (Gourmelon et al. 2016). Dispersal limitation in the context of
the biogeographical-island theory proposed by MacArthur and Wilson (1963), can
explain differences in microbiomes of various geographical locations (Gourmelon
et al. 2016). Similar observations were reported by Malard et al. (2019) wherein
spatial and edaphic factors played an important role in the structure of Arctic soil
bacterial communities. It was elucidated that pH as the key environmental driver
shaping Arctic soil bacterial communities. However, still, our understanding of the
different processes of the biosphere is limited. Therefore, polyphasic studies should
be carried out to understand the biosphere, one that links knowledge about biodi-
versity and biogeography in the atmosphere, hydrosphere and lithosphere (Hanson
et al. 2012; Womack et al. 2010).

Gaston (2000) described that species richness is found to be higher in the tropics
and gradually declines toward the poles. Molecular studies focused on the continental
scale distribution and diversity of soil microbiomes revealed a lot of uncertainty in
the global biogeography of soil biota due to a lack of data on patterns. Unraveling
the factors that regulate soil microbiomes, biogeographical distribution, succession
and functions are poorly understood in soil microbiology. Stochastic processes are
thought to have minimal roles in driving soil microbiomes and their functions in the
ecosystem process (Zhou and Ning 2017). It is believed that heterogeneous selection
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by different biotic and abiotic environmental conditions making for more dissimilar
and more diversified microbial structures among microbiomes. This type of selection
is known as variable selection (Zhou and Ning 2017) and we anticipate that variable
selection is one of the major underlying forces in leading diversified microbiomes in
soils at the global scale. It is demonstrated that biodiversity is of paramount impor-
tance for ecosystem functioning (Cardinale 2012; Knelman and Nemergut 2014;
Bardgett and Van Der Putten 2014), but the underlying forces driving the relationships
between microbial communities and ecosystem functioning are still not clear. A few
studies indicate that stochastic processes are important for regulating both microbial
community structure and corresponding ecosystem functions (Fukami et al. 2010;
Zhou et al. 2013). Nevertheless, systematic studies across diverse ecosystems are
necessary to understand whether stochastic community assembly processes affect
ecosystem functioning or not.

18.5.2 Sustainable Soil-Ecosystem Management

Recent studies unraveled that soil biodiversity is crucial to support several ecosystem
functions simultaneously (Delgado-Baquerizo et al. 2016; Wagg et al. 2014). It is
observed that intensive management of agricultural practices, for example, indis-
criminate use of pesticides, fertilizers, soil tillage and monocropping have adverse
effects on soil biota consequently reduce overall soil microbial biomass and diver-
sity (McDaniel et al. 2014). An apparent microbial community shift in soil micro-
biomes was observed because of intensive land-use management practices (Tardy
et al. 2015). Similarly, Philippot et al. (2013) emphasized that the loss in microbial
diversity affects nitrogen cycling and other terrestrial ecosystem process. Therefore,
soil microbial diversity has to be enhanced and maintained for the proper functioning
of agro-ecosystem. It is proposed that sustainability in agricultural soils can be main-
tained by regulating internal ecosystem processes (Hota et al. 2021; Bender et al.
2016; Kumar et al. 2019a, b; Kumari et al. 2020; Rai et al. 2020). Recently, soil
ecological engineering has gained a lot of momentum and is considered to be an
important concept to enhance sustainable productivity in human land-use systems
(Bender et al. 2016).

Soil ecological engineering is a comprehensive approach wherein soil biolog-
ical processes are maximized for sustainable ecosystem functioning. This is one
of the holistic approaches to minimize negative environmental impacts in agro-
ecosystems and provide global food security. Figure 18.3 illustrates different soil
ecological engineering approaches for local ecosystem management. Bender et al.
(2016) comprehensively reviewed soil ecological engineering and biodiversity for
sustainable agriculture/human land-use systems.

Agro-ecosystems are generally characterized into extensive and intensive systems
with a different rate of productivities. The extensive agro-system is accompanied
by high biodiversity, low resource output and inputs, low level of productivity and
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enhanced internal soil regulatory processes. While the intensive agro-system is char-
acterized by depleted biodiversity, high resource inputs-losses, high rate of produc-
tivity and decreased internal soil regulatory processes. Both of these systems have
merits and demerits in terms of productivity and internal soil regulatory processes.
Therefore, the ecological intensification approach needs to be implemented to bring
sustainability in ecosystem multifunctionality. Bender et al. (2016) describe that
the ecological intensification approach combines both traits (extensive and intensive
agrosystems) and leads to an ideal sustainable agro-ecosystem that comprised rich
biodiversity, moderate resource inputs/low nutrient losses, higher productivity and
enhanced internal soil regulatory process. The ecological intensification approach
further maximizes agro-ecosystem multifunctionality.

18.5.3 Rhizosphere Microbiome—Plant Health

Rhizosphere microbiomes that are assembled near roots can harbor up to 10~!!
microbial cells and approximately 30,000 different microbial species per gram of
root (Sharaff et al. 2020; Egamberdieva et al. 2008). Rhizosphere microbiomes are
considered to be one of the complex-ecosystems on the Earth (Kour et al. 2019;
Subrahmanyam et al. 2020; Weinert et al. 2011; Raaijmakers et al. 2009). Rhizo-
sphere microbiomes utilize a diverse array of metabolites released by plant roots
(Lu et al. 2018). Microbiomes of the rhizosphere are rich in diverse plant growth-
promoting fungi and bacteria (Subrahmanyam et al. 2018, 2020; Sharaff et al. 2020;
Kour et al. 2019). The density and distribution of microbial population in the root
rhizosphere are much higher than in the bulk soil and this phenomenon is known as
the “rhizosphere effect.” Increased plant growth is associated with enhanced plant
defense mechanisms. Root microbiome plays important role in conferring host plant
health (Berendsen et al. 2012). It is evidenced that the plant is able to recruit a
wide variety of microbial populations as its microbiome by secreting root exudates
(Ahemad and Kibret 2014; Rana et al. 2020; Subrahmanyam et al. 2020).

Several abiotic and biotic factors are found to be critical for rhizosphere micro-
biome diversity and species richness. Abiotic factors, such as seasonal variation, pH,
soil temperature, root exudates/chemical substances and biotic factors such as devel-
opmental stages of host plants, root architecture, cultivars and host plant genotypes
act as chemical messengers for heterogeneous soil microbiota and subsequently influ-
ence the microbiome structure and function (Lakshmanan et al. 2014; Kumar et al.
2019a, b; Verma et al. 2016; Verma et al. 2017; Yadav et al. 2019). The rhizospheric
microbes can induce a series of plant defense mechanisms for host plant growth
and health. Induced systemic resistance (ISR) is one of the defense mechanisms of
plants induced by PGPR to increase vigor and the health of their host plant against
invading pathogen (Pieterse et al. 2014). Recently, excellent reviews on rhizospheric
microbiomes, plant growth-promoting characteristics and their potential agricultural
applications are published (Berendsen et al. 2012; Subrahmanyam et al. 2020; Sharaff
et al. 2020).
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Rhizosphere microbiomes harbors both useful and harmful microbiota and can
control host plant physiology, growth and development (Subrahmanyam et al.
2020; Subrahmanyam et al. 2018; Sharaff et al. 2020). Further, the healthy mciro-
biomes can prevent plant infection by controlling the pathogen colonization by
either competing or producing antimicrobial compounds such as siderophores, 2,4-
diacetylphloroglucinol, polymyxin, colistin, etc. (Maksimov et al. 2011). The regu-
lation of the plant defense system is generally involved by different phytohormones
such as ethylene, jasmonic acid and salicylic acid (Pieterse et al. 2014). Beneficial
rhizospheric microbes’ triggers induced systemic resistance by modulating salicylic
acid.

The key functions of rhizosphere microbiome include protection against plant
pathogen infection, nutrient acquisition and abiotic stress tolerance in host plants.
Therefore, it is essential to understand the molecular signaling mechanisms between
host plant and microbiome assembly in the rhizosphere by using functional metage-
nomics and transcriptomics. This information can be exploited to develop soil
management practices for increasing plant productivity, designing healthy rhizo-
microbiomes and introduction of novel biocontrol and bio-fertilizer microbes in
sustainable agricultural strategies. Unraveling the mechanisms such as how plants
recruit their selective microbiome and how the rhizosphere microbiome controls host
plant health will open new avenues to increase crop productivity.

18.5.4 Climate Change and Soil Microbiomes

Soil microbiomes perform crucial functions in the elemental cycling of micro and
macronutrients which are vital for the functioning of the above-ground ecosystem.
Nevertheless, still we do not have a general framework at a global scale for predicting
microbiome responses and their ecosystem services to climate change. Recently,
Jansson and Hofmockel (2020) comprehensively reviewed the effect of climate
change on soil microbiomes in diverse soil ecosystems. Mekala and Polepongu
(2019) highlighted the effects of climate change viz. elevated temperature, precipita-
tion, drought and atmospheric CO, on beneficial plant—microorganism interactions.
Further, they have emphasized that k-strategist or oligotrophic microbial groups and
their abundance are increased under high temperature or drought and their abundance
significantly decreased with elevated CO,. In contrast, r-strategist or copiotrophic
microbial groups shown potential resilience after the disturbance or stress has ended.
Studies on climate change have shown both negative and positive impacts on soil
microbial communities (Mekala and Polepongu 2019). In arid grasslands, Yu et al.
(2018) observed increased expression of functional genes involved in carbon fixa-
tion, nitrogen fixation, CH4 metabolism, decomposition, denitrification, and nitrogen
mineralization under elevated atmospheric CO, levels.

It is observed that soil respiration, soil organic matter decomposition and micro-
bial biomass content were increased with increased temperature (Bradford et al.
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2008). Long-term experiments on the elevated temperature at Harvard Forest Ecolog-
ical Research Station revealed microbial community reorganization, diversity shift
toward oligotrophic communities, rapid loss of carbon through respiration in the
heated plots than in control soils. A change in microbiome community structure
followed by reduced recalcitrant carbon pools was observed in the same study
(Melillo et al. 2017). Multiyear field experiments and Mesocosm studies revealed
that draught had a more negative impact on bacteria than fungi in grasslands (Upton
et al. 2018; de Vries et al. 2018).

The residential soil microbiomes can either adapt and or dormant or extinct in
response to climate change. Depending on their physiological and genetic poten-
tial, soil microbiomes respond to environmental disturbances in contrasting ways
(Schimel et al. 2007). For example, Hayden et al. (2012) reported community shifts
of fungi, archaea and specific bacterial groups under elevated CO, in Australian
grasslands. Mekala and Polepongu (2019) proposed that specific functional genes
involved in the N and C cycles can be used to predict the consequences of climate
changes on soil microbial community composition in soil functioning.

Around 30% of the land surface area is occupied by forests and forest soil ecosys-
tems are the major potential sinks for atmospheric carbon as a stable soil organic
matter (Llado et al. 2017). However, it is predicted that because of increasing global
temperature and severity of drought, these forest ecosystems may get converted from
net carbon sinks to net carbon sources globally in the coming future (Kirschbaum
2000). This could be due to increased soil organic matter degradation by microbial
activity (Kirschbaum 2000). A similar kind of observations was made with grasslands
which occupy approximately 26% of the earth surface land area and store around
20% of total soil carbon (Ramankutty et al. 2008; Malyan et al. 2019). Therefore,
potential ways and strategies for predicting the response of soil microbial activity and
diversity to climate change needed to be developed and accordingly soil microbiomes
may be exploited to mitigate the negative impacts of climate change.
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