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Foreword by Davinder Singh

Microbes are ubiquitous in the environment and can survive in most habitats. They
play a major role in the ecosystem and are even excellent for plant growth promotion
for agro-environmental sustainability. It is expected that the fast-growingworld popu-
lation will make food security a big issue in the future. Agricultural sustainability is
facing to be a formidable task by using chemical-based fertilizers and pesticides in
order to increase the yield of the crop plants. To fulfill the increasing demand of food
supply with the problems like shrinking farmlands, and global warming is one of
the major challenges. The soil microbiome has found diverse and complex habitats,
which consist of billions of bacteria, fungi, and other living organisms.

Beneficial microbes play an essential role in nutrient cycling and plant shielding
fromdestructive effects of biotic and abiotic stresses. Intensive farming practices lead
to an increase in crop production, but they also have detrimental effects on the biolog-
ical and physiological properties of soils. The macronutrients for plant growth are
generally provided via chemical fertilizers. In comparison to chemical and synthetic
fertilizers, biofertilizers and biopesticides improve plant growth and crop produc-
tivity in an eco-friendlyway.Alongwith plant growth promotion, beneficialmicrobes

v



vi Foreword by Davinder Singh

could be used for mitigation of diverse abiotic stresses using diverse plant growth-
promoting mechanisms such as fixation of atmospheric nitrogen, solubilization of
macronutrients (phosphorus, potassium, and zinc) and micronutrients (magnesium,
selenium), production of ACC deaminase, antagonistic substances, plant growth
hormones (auxin, cytokinin, and gibberellins), and siderophores (iron chelators).
Thus, using beneficial soil microbiomes for sustainable agriculture is gaining vast
attention worldwide.

I recommend this book to researchers and students working on the emerging and
fascinating field of microbiology, biotechnology, and related subjects. The book will
advance the knowledge to a greater extent in these areas with significant broader
research on soil microbial communities and their biotechnological role for agricul-
tural sustainability. The editor of this book deserves credit for such a splendid and
innovative contribution to microbiology research.

Dr. Davinder Singh
Vice Chancellor

Eternal University, Baru Sahib, Himachal
Pradesh, India



Foreword by Amrik Singh Ahluwalia

Microbes are the hidden wonders of the planet Earth that stuns humans with their
diversity, habitats, and functional capabilities. Archaea, bacteria, and fungi are the
three major microbial domains that comprise millions of microbes that are present
in various habitats like soil, water, air, plant, and animal externals and irrefutably
play various roles. Among all habitats, the soil is the one habitat that is known to
comprise a large portion of microbial diversity and these microbes are believed to
play a large number of ecosystem processes. Nitrogen fixation, carbon cycling, phos-
phorus cycling, weathering of rocks, decomposition of dead, and decay matter are
some of the roles that soil microbes play in the ecosystem. The functional annotation
of microbes could be advantageous to many sectors including the agriculture envi-
ronment and industry. Nowadays, plant growth-promoting microbes as biofertilizers
and biopesticides are known as the sustainable input that enhances crop produc-
tivity and soil fertility. Soil microbes undergo different mechanisms to improve crop
productivity like solubilization of micro- and macronutrients, fixation of nitrogen,
chelation, and mitigation of biotic and abiotic stress.
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viii Foreword by Amrik Singh Ahluwalia

Thepresent bookSoilMicrobiomes for SustainableAgriculture:FunctionalAnno-
tation is to provide the recent advances in mechanisms of plant growth promotion
and applications of soil microbiomes for mitigation of different abiotic stresses in
plants. The proposed book encompasses current knowledge of soil microbiomes
and their potential biotechnological applications for plant growth, crop yield, and
soil health under the natural as well as harsh environmental conditions for sustain-
able agriculture. The book volume comprises 19 chapters. The Chap. 1 by Bose
et al. describes the soil microbiomes, their beneficial attributes of the plant growth
promotion, and potential applications in agriculture, whereas Mokrani and Nabti
highlight diverse soil microbial communities from different crops and their roles for
crop productivity in Chap. 2. Chapter 3 by Boroujeni et al. describes soil microbes
with multifarious plant growth-promoting attributes for enhanced production of food
crops. Chapter 4 by Emami-Karvani and Chitsaz-Esfahani highlights the mecha-
nisms, recent advancement, and future challenge of phosphorus solubilizing micro-
biomes. Berde et al. describe potassium solubilization, its mechanism, and functional
impact on plant growth in Chap. 5. In Chap. 6, Kumar et al. have given the details
about soil microbiomes with siderophores production and zinc solubilizing attributes
for cereals biofortification. Jatav et al. highlights the diverse soil microbes for plant
growth promotion and mitigation of abiotic stress of drought in Chap. 7. In Chap. 8,
Maitra et al. describe the current status and future outlook of mitigation of heat stress
by thermotolerant soil microbes. Mukhtar et al. highlight the potential applications
of halophilic soil microbes for the mitigation of salt stress in Chap. 9. Jha et al.
explain the role of psychrotrophic soil microbes in the alleviation of cold stress in
plants in Chap. 10. Mitigation strategies for abiotic stress tolerance in plants through
stress-tolerant PGP microbes have been described by Dhevagi et al. in Chap. 11.
Chapter 12 byMaitra et al. describes the omics strategies for abiotic stress responses
and microbe-mediated mitigation in plants. Zia et al. highlight the technical chal-
lenges and emerging solutions for enhancing food crops using plant probiotics in
Chap. 13. Salimi and Hamedi highlight the soil microbes as biofertilizers for agri-
cultural productivity in Chap. 14 and soil microbes as biopesticides for agricultural
sustainability in Chap. 15. Mycorrhiza as a plant growth-promoting and biocon-
trol agent for crops growing under the stress condition is discussed in Chap. 16 by
Hussain et al. Thakur et al. highlights entomopathogenic soil microbes for sustain-
able crop protection in Chap. 17. Subrahmanyam et al. explain global scenario of
soil microbiome research in Chap. 18. Finally, the conclusion and future prospects
of functional annotation and biotechnological applications of soil microbiomes have
been described by the editor and co-authors in the last chapter.
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Overall, great efforts have been carried out by Dr. Ajar Nath Yadav, his reviewer
team, and scientists from different countries to compile this book as a highly unique
and up-to-date source on soil microbiome for sustainable agriculture for the students,
researchers, scientists, and academicians. I hope that the readers will find this book
highlyuseful and interestingduring their pursuit ofmicrobiology and related subjects.

Prof. Amrik Singh Ahluwalia
Pro-Vice Chancellor

Eternal University, Baru Sahib, Himachal
Pradesh, India



Preface

The microbes are ubiquitous in nature. The soil is a natural hotspot of the soil micro-
biome. The soil microbiome plays a critical role in themaintenance of global nutrient
balance and ecosystem functioning. The soil microbiomes are associated with plant
ecosystems through the intense network of plant–microbe interactions. Themicrobes
present in bulk soil move toward the rhizospheric region due to the release of different
nutrients by plant systems. The rhizospheric microbes may survive or proliferate in
the rhizospheric zone depending on the extent of influences of the chemicals secreted
into the soil by roots. The root exudates contain the principal nutrients factors (amino
acids, glucose, fructose, and sucrose). The microbes present in the rhizospheric
region have the capabilities to fix atmospheric nitrogen, produce different phyto-
hormones, and solubilize phosphorus, potassium, and zinc. The plant systems take
these nutrients for their growth and development. These soil- and plant-associated
microbes also play an important role in the protection of plants from different plant
pathogenic organisms by producing a wide range of secondary metabolites such as
ammonia, hydrogen cyanide, siderophores, and hydrolytic enzymes. The soil micro-
biomes with plant growth-promoting (PGP) attributes have emerged as an important
and promising tool for sustainable agriculture. The soil microbiomes promote plant
growth, enhance crop yield and soil fertility via different direct or indirect plant
growth-promoting mechanisms. The soil microbes help the plant for adaptation in
extreme habitats by mitigating the abiotic stress of high/low temperatures, hyper-
salinity, drought, and acidic/alkaline soil. These PGP microbes could be used as
biofertilizers/bioinoculants to replace the harmful chemical fertilizers for sustainable
agriculture and environments.

The aim of volume Soil Microbiomes for Sustainable Agriculture: Functional
Annotation is to provide the recent advances in mechanisms of plant growth promo-
tion and applications of soil microbiomes for mitigation of different abiotic stresses
in plants. The proposed book encompasses current knowledge of soil microbiomes
and their potential biotechnological applications for plant growth, crop yield, and soil
health under the natural as well as harsh environmental conditions for sustainable
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agriculture. The book will be useful to scientists, researchers, and students related to
microbiology, biotechnology, agriculture, molecular biology, environmental biology,
and related subjects.

Baru Sahib, Himachal Pradesh, India Ajar Nath Yadav
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Chapter 1
Plant Growth-Promoting Soil
Microbiomes: Beneficial Attributes
and Potential Applications

Pragya Tiwari, Subir Kumar Bose, and Hanhong Bae

Abstract Soil microbiome constitutes an integral component of plant–soil–microbe
associations and has a key impact on the ecosystem. The soil microbiome influ-
ences key biological processes namely bio-geochemical cycling, plant nutritional
uptake and carbon sequestration. The present era has witnessed the emerging signif-
icance of soil microbiome as a dynamic system influencing plant productivity and
conferring stress tolerance to the plants, having a major impact on the ecosystem.
Comprehensive knowledge about plant–soil microbiome is essential for increasing
agricultural output, maintenance of soil health towards more sustainable agriculture.
Discussing the emerging significance of soil microbiomes in the recent perspective,
this chapter extensively focuses on the soil microbiome diversity and distribution in
nature, providing an overview of its integral association and dynamics in association
with the plants. Moreover, the beneficial attributes of the soil microbiome and its
socio-economic applications in a biotechnological perspective are herein discussed.
Recent approaches in bioengineering soil microbiomes provide a key platform to
enhance food security and sustainable agriculture for millions across the globe.

Keywords Metabolic engineering ·Metagenomics · Plant colonization · Plant
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1.1 Introduction

Soil microbiome constitutes a plethora of diverse microbes in close proximity with
plants and influences plant growth. Plant-associated microbial communities enhance
plant tolerance to environmental stress, nutrition uptake and contributing to plant
growth (Bakker et al. 2018; Kour et al. 2020). Recent statistics by the Food and Agri-
culture Organization (FAO, United Nations) suggests that to sustain an estimated 10
billion world population, the global food production has to be increased up to 70%
by 2050. This can be achieved by the increase in crop production through agricul-
ture to compensate for the depleting natural resources, indiscriminate use of natural
products, threatened plant species, among others (Sergaki et al. 2018; Sharma et al.
2021). The vital functions in the ecosystem are governed by soil microbes, ranging
from carbon sequestration, nutrient re-cycling to agricultural output. The soil micro-
biome comprises of microbial communities exhibiting enormous diversity and abun-
dance (Thakur and Geisen 2019). Moreover, the microbial communities inhabiting
the rhizosphere include mainly soil bacteria and fungi, performing multiple func-
tions in the ecosystem (Bardgett and Van Der Putten 2014; Kour et al. 2019). Any
fluctuations in climatic condition directly or indirectly affect the plant–soil micro-
biome and its dynamics (Tripathi et al. 2015). The existence of microbial diversity
in the ecosystem and its association with plants highlight the beneficial prospects
in biotechnological applications, restoration of ecological balance, agriculture and
pharmaceutical sectors (Dubey et al. 2019; Hesham et al. 2021).

Therefore, understanding the dynamics of plant–soil microbiome and their main-
tenance is the key to sustainable agriculture and crop productivity. In the present
context, researchers across the globe are working on increasing the beneficial
prospects of soil microbiome, aiming for increased agricultural production. Plant–
soil microbiome is indispensable to plant productivity with significant role in cycling
of nutrients, carbon sequestration and increase in plant growth (Verma et al. 2017a, b;
Yadav et al. 2021). Modern scientific techniques for plant–soil microbiome profiling
hold potential for the identification of plant-associated microbes and their func-
tional dynamics, providing insights into the influence of climate changes on their
distribution and diversity in the soil. With an overview of microbial communities
in soil microbiomes and their distribution, the chapter discusses the importance of
understanding plant–soil microbiome dynamics in the context of sustainable agri-
culture. Moreover, recent trends in genetic engineering approach towards synthetic
symbiosis and bioengineering plant–soil microbiomes hold enormous potential
towards maximum utilization of these beneficial microbes towards increased crop
productivity in agriculture.
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1.2 Plant and Soil Microbiomes

The naturally occurring microbes in the rhizosphere include a group of microor-
ganisms classified as bacteria, fungi, protozoans, nematodes and micro-arthropods.
The plant rhizosphere consists of the upper surface of the soil, with widespread root
networks (Kumar et al. 2015b; Singh et al. 2019). The plant root secretes several
primary and secondary metabolites comprising of amino acids, lipids and carbohy-
drates, which promotes microbial population towards the plant (Yadav 2021). The
above solublemetabolites bind to receptors on bacterial membrane and attract micro-
bial communities, which colonize and adhere to the roots of the plant (rhizosphere).
This is correlated and promotes plant tolerance to environmental stress, plant growth
promotion and plant productivity (Singh et al. 2019; Santoro et al. 2015; Kumar
et al. 2015a; Subrahmanyam et al. 2020).Moreover, plant growth-promoting bacteria
(PGPB) are defined as the microorganisms, which promote plant growth, yield and
production (Glick et al. 1999; Babalola 2010) (Table 1.1).

Studies have discussed the association of complex microbial communities with a
diverse group of plants including herb, shrub and trees (Yasmin et al. 2016; Sandhya
et al. 2017). Themicrobial components of the plant holobiont comprise ofmicrobiota
and microbiome (Lucaciu et al. 2019). The presence of plant microbiota and micro-
biome (microorganisms and microbial genomes) in endosphere, phyllosphere and
rhizosphere demonstrates significant functions in plant growth and disease manage-
ment (Sczyrba et al. 2017; Sanchez-Canizares et al. 2017; Lucaciu et al. 2019; Yadav
2020).

Nowadays, crop production is challenged by exposure to toxic chemicals and
heavy metals, climate changes, and an ever-increasing need to enhance global agri-
cultural output. Plant growth-promoting rhizobacteria (PGPR) improves plant health
and aids in higher crop yield and production, these microorganisms are desig-
nated as biofertilizers (Prasad et al. 2021). In the present context, there has been
a growing scientific interest in employing biofertilizers in agricultural practices (Di-
Benedetto et al. 2017). Presently, biofertilizers are commercially marketed in many
brand names, such as Galltrol, Diegall, Gmax PGPR, Nitromax, Azo-Green, Custom
N2, Custom GP, BaciGold, Subtilex, YieldShield, RootShield, Plus WP and others
(Table 1.2).Microorganisms that are closely associatedwith a particular plant species
are specific for exudate secretion of plants roots (Fig. 1.1) and not dependent on soil
conditions, respectively.

1.2.1 Diversity and Composition

Microbial communities are present in close proximity with plant species and consti-
tute the “soil microbiome”. Plants display interaction with the microbial commu-
nities, namely the phyllosphere and soil/rhizosphere, among others (Hardoim et al.
2015). The microbiota associated with roots is horizontally transferred, although
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Table 1.1 Plant growth-promoting bacteria as bio-fertilizer and their functional role in plant growth
promotion

Host/Microorganism Region PGP attributes Host plant References

Alcaligenes faecalis str.
S8

Endophyte P-solubilization
IAA production

Withania
somnifera

Abdallah et al.
(2016)

Pseudomonas putida Rhizosphere P-
solubilization
Siderophore
production
IAA production

M. piperita Santoro et al.
(2015)

Enterobacter sp. TAP02 Rhizosphere IAA production
N2 fixation
P-solubilization

T. amplexicaulis El-Sayed et al.
(2014)

Pseudomonas
fluorescens WCS417r
Bacillus
amyloliquefaciens GB03

Root
inoculation

Increase the
drought
tolerance

M. piperita Chiappero et al.
(2019)

Bacillus subtilis P-20
B. subtilis Daz-26

Rhizosphere PGPRs
Essential oil
yield

M. arvensis Maji et al.
(2013)

Achromobacter
xylosoxidans Fd2
Herbaspirillum
seropedicae Oci9
Ochrobactrum
rhizosphaerae Oci13

Rhizosphere IAA production
Siderophore
production

Ocimum sanctum Barnawal et al.
(2012)

Serratia ureilytica Bac5 Rhizosphere Siderophore
production
ACCdeaminase
P-solubilization

O. sanctum Barnawal et al.
(2012)

Pseudomonas stutzeri
CSP03,
Bacillus subtilis TTP02
Pseudomonas putida
PHP03

Rhizosphere IAA production
N2 fixation
P-solubilization
Siderophore
production

Capparis
spinosa

El-Sayed et al.
(2014)

Arthrobacter sp. SMR3,
B.subtilis SMR15

Endophyte IAA production
ACC deaminase

Papaver
somniferum

Pandey et al.
(2016)

Bacillus sp.
Pseudomonas putida
(ECL5)

Endophyte,
IAA

P-solubilization
Siderophore
production

Curcuma longa Kumar et al.
(2016a, b)

Clavibacter
michiganensis

Endophyte IAA production C. longa Kumar et al.
(2016a, b)

Azotobacter
chroococcum CL13

Rhizosphere IAA, HCN,
ammonia
P-solubilization

C. longa Kumar et al.
(2014)

(continued)
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Table 1.1 (continued)

Host/Microorganism Region PGP attributes Host plant References

Bacillus subtilis LK14 Endophyte P-solubilization
IAA production

Moringa
peregrine

Khan et al.
(2016)

B. subtilis CT-1
A. tumefaciens CT-2
P. putida CT-4
Pseudomonas sp. CT-5

Endophyte IAA
production,
Ammonia
production
P-solubilization

Cassia tora L. Kumar et al.
(2015a)

Achromobacter
xylosoxidansAUM54

Endophyte IAA
production,
Phosphate
solubilization
Siderophore
production

Catharanthus
roseus

Karthikeyan
et al. (2012)

Rhizobium sp. Rhizosphere Cytokinin
production

Mimosa pudica Sabat et al.
(2014)

Pseudomonas stutzeri P3 Endophyte IAA production Echinacea Lata et al.
(2006)

Paenibacillus borealis
BR 32

Rhizosphere IAA production
N2 fixation
Phosphate
solubilization

Juniperus sp. Navarro-Noyaa
et al. (2012)

Acinetobacter sp.
ALEB16

Endophyte Abscisic acid
production
Salicylic acid
production

Atractylodes
lancea

Wang et al.
(2015)

Paenibacillus durus
BR 30

Rhizosphere IAA production
N2 fixation
Phosphate
solubilization

Asphodelus sp. Navarro-Noyaa
et al. (2012)

Brevundimonas diminuta
EGEB-1 Agrobacterium
tumefaciens EGE-B-5
Stenotrophomonas
rhizophilia EGE-B-6

Endophyte IAA production
Phosphate
solubilization

Prunus persica Liaqat and
Eltem (2016)

Bacillus strains
OSU-142 and M3

Rhizosphere Auxin and
cytokinin
production (N2
fixing) and
phosphate
solubilizing)
M3 produce
Zeatin

Raspberry Orhan et al.
(2006)

(continued)
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Table 1.1 (continued)

Host/Microorganism Region PGP attributes Host plant References

Pseudomonas BA-8
Bacillus OSU-142
Bacillus M-3

Rhizosphere Auxin and
Cytokinins

Fragaria ×
ananassa

Pırlak and Kose
(2009)

Stenotrophomonas
maltophilia R551-3

Endophyte IAA synthesis
ACC deaminase

Populus sp. Taghavi et al.
(2009)

Paenibacillus graminis
BR 35

Rhizosphere N2 fixation
Phosphate
solubilization

Aster
gymnocephalus

Navarro-Noyaa
et al. (2012)

Azospirillum lipoferum
KYR F6

Rhizosphere IAA synthesis
N2 fixation
Phosphate
solubilization

Haplopappus sp. Navarro-Noyaa
et al. (2012)

Rhizobium sp.
Azospirillum sp.

Endophyte IAA synthesis
N2 fixation

Oryza sativa Sev et al. (2016)

Pseudomonas
aeruginosa FTR,
Enterobacteras buriae
MRC12 Acitenobacter
brumalii MZ30V92

Endophyte Ammonia
production
Phosphate
solubilization
Siderophore
production

Zea mays Sandhya et al.
(2017)

Pseudomonas monteilii
FMZR2
Sinorhizobium meliloti
MRC31

Endophyte Ammonia
production
Phosphate
solubilization,

Z. mays Sandhya et al.
(2017)

Serratia sp. Rh269 Rhizosphere IAA synthesis
Siderophore
production
Phosphate
solubilization

Oryza sativa Yasmin et al.
(2016)

Bacillus sp. Rh219 Rhizosphere Siderophore
production

O. sativa Yasmin et al.
(2016)

Pseudomonas sp. E227 Rhizosphere IAA synthesis
Siderophore
production
HCN
Phosphate
solubilization

O. sativa Yasmin et al.
(2016)

Azospirillum brasilense
Pseudomonas
fluorescens

Rhizosphere – Triticum
aestivum

Naiman et al.
(2009)

Azospirillum sp.
Azotobacter sp.

– – T. aestivum Namvar and
Khandan (2013)

Azospirillum brasilense Inoculation
of seeds with
bacteria
culture

– T. aestivum
cultivar CD 150

Piccinin et al.
(2011)

(continued)
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Table 1.1 (continued)

Host/Microorganism Region PGP attributes Host plant References

Glomus intraradices
BEG72, Glomus mossae
Trichoderma atroviride
MUCL 45632

Coated seeds
of wheat
with a
microbial
consortium

Enhance
growth, nutrient
uptake, yield
and grain
quality

Triticum durum Colla et al.
(2015)

vertical transmission for bacteria through seeds has also been observed in nature
(Rana et al. 2020; Rana et al. 2019b). The microbial communities present in rhizo-
sphere colonize the plant through roots, which offers a unique ecological niche (Hart-
mann et al. 2009). However, some studies also suggested that the microbial commu-
nities present in rhizosphere show variation with time. Plant roots are colonized by
diverse bacterial endophytes, in a symbiotic network with the plant species. Diverse
bacterial species present as endophytes in grapevine roots comprise of Acidobac-
teria, Actinobacteria, Chloroflexi, Planctomycetes, Proteobacteria, Verrucomicrobia,
beside others (Fierer 2017). The aboveground zone, the phyllosphere provides a
unique environment for the epiphytes microbial communities. The endophytes may
enter the plant tissues through aerial parts or from xylem to the stem, and leaves,
respectively (Compant et al. 2011). The plant microbiota, which is above ground,
mainly thrives from soil, air and seed and several environmental factors affect their
presence and distribution. The epiphytes and endophytes enhance plant growth and
improve stress (biotic and abiotic) tolerance, respectively (Hardoim et al. 2015; Rana
et al. 2019a).

1.2.2 Factors Affecting the Soil Microbiomes

Soil and rhizosphere microbial communities (soil microbiomes) are affected by
the environmental stresses: biotic factors–host genotypes, cultivars, developmental
stages, proximity to root and root architecture. In the case of abiotic factors, these
influence soil composition of microbial communities including soil type and soil
quality (Buyer et al. 1999; Li et al. 2018), the physical factor includes light, pH,
seasonal variation, moisture content, temperature and soil mineral composition. The
soil porosity is a critical determinant of plant growth and development because it
provides oxygen (O2) to the roots of the plants (Berendsen et al. 2012; Chaparro
et al. 2012; Turner et al. 2013; Kumar et al. 2019).

1.2.2.1 Soil Type and Composition

Soil environment plays a key role in rhizosphere microbial communities’ growth, in
direct and indirect manner. The root secretions (exudates) have a key effect on the
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Fig. 1.1 Diagrammatic representation of the influence of the soil factors and PGPR on plant roots
and soil microbes, which modify the soil environment and induce chemical signalling and growth
hormone production, promoting plant health and yield

soil microbes as signalling molecules for microbes, creating a complex and intricate
interaction between plants and the microbiome (Chaparro et al. 2012).

A key study by Broeckling et al. (2008) suggested a close dynamics between the
composition of soil microbial population and their interaction with the plant species.
Some fungal communities (soil-borne fungus) altered the composition and nature of
soil and decreased the total biomass of a non-native model plant (Broeckling et al.
2008). The experiments were conducted in two plant species, Arabidopsis thaliana
andMedicago truncatula. Both plants were cultivated in their natural environments
(presence of their natural microbiomes) and in the non-native soil.Arabidopsis plants
(root secretions) supported the native fungal community in natural soil conditions (as
compared to non-native soil), when cultivated alone. The beneficial microbial popu-
lation was disproportionate (in non-native soil) and while other microbial species
were increased due to this uneven population of microbes (fungal biomass), micro-
bial population and plant growth were also affected, when compared with or without
treatment with root exudates in Arabidopsis plants. The similar observation was
recorded in case of M. truncatula plants. These results strongly suggested that the
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secretion of chemicals from plant roots (roots exudates) and, therefore, individual
plants influenced the total population and composition of soil microbiomes.

1.2.2.2 Soil pH Effect

Soil pH is a measure of soil acidity/alkalinity and governs the composition of micro-
bial communities (Fierer and Jackson 2006; Yang et al. 2017). The soil pH showed
a negative correlation with soil biomass and a positive correlation with average well
colour development (AWCD) (Zhong et al. 2010; Chen et al. 2015), distinct fungal
and bacterial interactions with soils of diversified texture, nitrogen and phosphorous
content (Frey et al. 2004; Chaparro et al. 2012;Girvan et al. 2003;Yadav et al. 2020b),
and pH of the soil (Fierer and Jackson 2006; Rousk et al. 2010). The optimum soil
pH range for plant growth is 5.5–7.5. Soil pH influences the plant nutrients avail-
ability, micro or macronutrient and directly affects the growth of plants and their
productivity. Therefore, soil pH governs the growth of the plant and adaptation to the
environment. Moreover, a plant may be sensitive to a pH range in some soil condi-
tions but not for others, for example, a low concentration of molybdenum (Mo) in
soil may not be optimum forGlycine max (pH 5.5), but soils with optimumMo leads
to better growth at that pH (Sumner and Yamada 2002). Bacterial decomposition of
organic contents and some fertilizers release nitrogen (chemically synthesized fertil-
izers), which influence soil properties and pH, the optimum pH for bacterial growth
being 5.5–7.0 range. In soil with pH < 5.0, most of the plant nutrients demonstrate
soil leaching (mainly acidic condition) (Loncaric et al. 2008).

Recent research evidence proves that the pHof the soilmay critically affect the soil
bacterial communities (Fierer and Jackson 2006). Soil sample analysis byRousk et al.
(2010) was performed in pH range that varies from 4.0 to 8.3, while all other factors
and variables in soil were regulated. In the above study, the diversity and composition
of the bacterial population showed correlation with soil pH (Rousk et al. 2010). It
was assumed that the correlation between soil bacterial communities and soil pH
structure was attributed to the pH sensitivity of bacterial cells, the bacterial taxa
being tolerant to a relatively narrow pH range (Rousk et al. 2010). Other evidence
suggested that soil pH was a key factor for soil microbial diversity, highlighting that
altitude, phosphorous concentration and the ratios of Ca2+, Mg2+, and Al3+ ions in
the soil, are key determinants (Faoro et al. 2010).

1.2.2.3 Nutrient Composition

The nutrient composition of soil is a key determinant of soil health and has a crit-
ical effect on plant growth (Ryan and Sommer 2012). Soil basically comprises of
three nutrients: nitrogen (N), phosphorus (P) and carbon (C) (Ryan and Sommer
2012), while other factors, namely iron, also influence the presence of rhizosphere
microbiome (Yang and Crowley 2000). Optimum nutrient content in soil is crucial to
plant growth and deficiency of any factor is overcome by the application of chemical
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fertilizers (Geiger et al. 2010). Moreover, the fertility of the soil is determined by a
complex interaction between the biotic and the abiotic components, the soil microbes
aiding the organic content decomposition and nutrient generation for plant growth.
The growth of the plant facilitates the acquisition of nutrients and root colonization
by the microbes (Berendsen et al. 2012). In addition, disproportionate soil nutrient
content also has a critical impact on biodiversity in ecosystem and cultural practices
for land use, thereby having a profound effect on the soil microbiome (Joergensen
and Emmerling 2006).

Another key nutrient, phosphorous modulates the microbiome in rhizosphere
(Kour et al. 2021). A study by Coolon et al. (2013) showed that grassland burning
would increase phosphorous and nitrogen availability and studied the effect of phos-
phorous and nitrogen increase on grasslands in North America. The study showed
the effect of soil phosphorous and nitrogen on natural ecosystems. Moreover, the
presence of nitrogen in the soil has a profound effect on plant productivity and bacte-
rial communities (Clark et al. 2007). Studies have shown that an increase in nitrogen
enhanced plant productivity but adversely affected lower plants and bacterial commu-
nities (Suding et al. 2005). This study demonstrates the significance of soil nutrients
in diversity and distribution of soil microbes and plant growth, respectively.

1.2.2.4 Climate Changes

The global rising temperature results in fluctuating climatic conditions, thereby
adversely affecting the soil microbiome. Studies have shown that the microbial
communities, which were selective for Arabidopsis root exudates, responded to
changes in the environment (Badri et al. 2013). In another study, the structure and
function of rhizosphere microbes were modified by increased CO2 concentration
in root exudates. The changes in climatic conditions altered the gene expression in
microbial communities (Bardgett et al. 2013). Moreover, the depletion in ozone layer
had increased the penetration of UV-B radiations (Müller et al. 1997), and ecosys-
tems in the polar region been prone to climatic changes (Caldwell et al. 1982). UV-B
radiation directly affects soil microbes leading to altered growth, carbon assimila-
tion, changes in pigments, synthesis of amino acids, among others (Formanek et al.
2014). Compared to the rhizosphere, the phyllosphere microbes are more sensitive
to ultraviolet (UV) radiations, thereby only a few taxa are present in the phyllosphere
as compared to rhizosphere regions (Dohrmann and Tebbe 2005).

The soil microbiomes are directly affected by increased UV-B radiation levels
(Johnson et al. 2002); but the microbial communities in rhizosphere display different
levels of sensitivity to damage by UV-B radiation (Arrage et al. 1993). The bacterial
population adopts multiple mechanisms to tolerate UV radiations. The bacterium,
Pseudomonas syringae, includes a plasmid having rulAB operon functions in DNA
repair process (Cazorla et al. 2008), as a protective mechanism. In Xanthomonas
campestris, the bacteria show UV tolerance by producing an extracellular polysac-
charide, which absorbs UV radiations (Hugenholtz et al. 1998). Moreover, the bacte-
rial communities in phyllosphere produce pigments as a UV protection mechanism
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(Whipps et al. 2008). The UV-B radiation affects the nutrient cycle in soil, thereby
having a key effect on soil microbes (Caldwell et al. 2007). The root biomass is
reduced on exposure to UV radiation, leading to less colonization and little nutrients
in the soil, disturbing the soil microbiome. Moreover, the increase in atmospheric
CO2 (Hu et al. 2001) and elevated temperature (global warming) directly affects the
soil microbial communities (Carson et al. 2010).

1.2.2.5 Geographical Factors

Few studies have shown the effect of latitude, longitude and altitude on the diversity
and distribution of the soil microbiome. VanHorn et al. (2013), suggested that abiotic
factors, namely organic content, pH, etc., govern the biodiversity of Antarctic soil.
The study further discussed the importance of geographical sampling for the deter-
mination of geographical factors affecting soil microbial communities. Moreover,
studies have shown that the combinations of different abiotic factors are responsible
for biogeographical changes, rather than altitude, latitude and longitude, respectively
(Chu et al. 2010).

1.3 Scientific Techniques for Plant–Soil Microbiome
Profiling

For gaining insights into the beneficial plant and microbe interaction and dynamics
(Fierer 2017; Singh et al. 2019), the plant–soil microbiome needs to be explored
using scientific approaches (Lucaciu et al. 2019). Nowadays, sophisticated scientific
techniques are employed to decipher information and correlate them (Fierer 2017;
Singh et al. 2019; Lucaciu et al. 2019). The newer scientific techniques comprise of
microbiome 16S r-RNA gene-sequencing technique, sequence analysis, microarrays
analysis, shotgun metagenomics approaches, among others (Table 1.3). Table 1.3
discusses modern techniques and scientific tools used for plant–soil microbiome
profiling.

The techniques specifically employed for the insilico studies of shotgun
metagenomes include target-gene assembly, taxonomic profiling, and genome
binning and taxonomic binning. From whole-genome sequence data, scientists
collect and use genomic data, which improves phylogenetic resolution and functional
annotation. The strategy employed to estimate the extent of sequencing essential to
delineate information for a particular genome requires preliminary metagenomics
data and existing 16S rDNA amplicon data, respectively (Tamames et al. 2012;
Ni et al. 2013; Rodriguez et al. 2018). Other techniques are meta-transcriptomics,
and meta-proteomics employed in plant–microbe association studies. Additionally,
sequencing of amplicon of functional genes acting in key biogeochemical reac-
tion in soil and the rhizosphere zone is done. The important ones include pmoA
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Table 1.3 Modern techniques and scientific tools used for plant–soil microbiome profiling

Name of techniques/approaches Main function References

16S r-RNA gene-sequencing
technique (Using sequencing
technique and databases platform
e.g. Greengenes, Silva and RDP)

Sequencing analysis strategies to
estimate how much sequencing is
necessary to recover information
for a target genome require
existing 16S r-DNA amplicon data
and/or a preliminary
metagenomics data set

Tamames et al. (2012)

Shotgun metagenomic
approaches (computational
analysis of genomic DNA
sequence)

There are four techniques typical
for the computational analysis of
shotgun metagenomes: including,
taxonomic binning, taxonomic
profiling, target-gene reassembly
and genome binning

Ni et al. (2013)

Metagenomics
(Microarray-based
Metagenomics analysis)

It is the study of genetic material
recovered directly from
environmental samples. The broad
field may also be referred to as
environmental genomics,
ecogenomics or community
genomics

Riesenfeld et al. (2004)

Meta-transcriptomics
(RNA-sequencing analysis)

Transcript sequences from the
organisms in a microbiome

Chaparro et al. (2014)

Meta-proteomics
(meta-proteomics mostly utilizes
methods originating from mass
spectrometry (MS)-based
proteomics)

Meta-proteomics is the study of
the proteins in a microbial
community from an environmental
sample

Hettich et al. (2013)

Metabolomics (Nuclear magnetic
resonance (NMR), and liquid
chromatography–mass
spectrometry (LC-MS) and gas
chromatography–mass
spectrometry (GC-MS))

It is the large-scale study of
metabolites molecules, within
cells, biofluids, tissues or
organisms. Collectively, these
small molecules and their
interactions within a biological
system are known as the
metabolome

Cajka and Fiehn (2016)

and amoA (methanotrophs) and ammonia oxidizers (Suddaby and Sourbeer 1990;
Pester et al. 2012), mcrA gene (methanogens) (Zeleke et al. 2013) and dsrB for
sulphite and sulphate reducers (Jochum et al. 2017; Vigneron et al. 2018; Zeleke
et al. 2013), nifH for diazotrophs (Collavino et al. 2014; Angel et al. 2018) nxrB for
nitrite oxidizers (Pester et al. 2014), a comprehensive overview and omics database
platform of functional genes may be retrieved from Fungene (Fish et al. 2013).

The analytical methods and technologies employed for the study of metabolomics
include nuclearmagnetic resonance (NMR), liquid chromatography–mass spectrom-
etry (LC-MS) and gas chromatography–mass spectrometry (GC-MS). The estima-
tion of metabolites employing MS-based techniques provides better resolution than
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NMR (Emwas 2015). However, an extensive MS sample preparation method and
the detection of metabolites (that ionize into the detectable mass range) project few
limitations. The NMR-based metabolic profiling works well with compounds that
are difficult to ionize or derivatization is required (Markley et al. 2017).

1.4 Beneficial Attributes of Soil Microbiomes

The constant applications of synthetic chemical fertilizers and pesticides have a
harmful consequence on the natural microbiomes, which include bacteria, archaea,
protozoan, cyanobacteria, fungi, nematodes and micro-arthropods inhabiting the
rhizosphere (microbiomes) and the frequent use leads to disturbance in soil natural
ecosystem and chemical properties of the soil (pH, bacterial population) and correla-
tion between them (Mazid and Khan 2014; Devi et al. 2020). Moreover, the extended
use of synthetic chemical fertilizers and pesticides leads to damage of soil property,
texture quality and soil microbial communities influencing the yield and productivity
of plants. To address this concern, scientists are focusing on sustainable agriculture
for restoration of soil health and promote crop yield and production, by employing
natural methods without affecting natural soil microflora. For sustainable agricul-
ture, the concerns associated with chemical fertilizers and pesticides for mitigation
of climate influence need to be addressed (Kumar et al. 2017a, b). Sustainable agri-
culture is the possible way to compensate for the rising demand for organic fertilizers
of biological origin, then employing agro-chemicals. Organic farming maintains the
diversity of natural microbes in the soil and natural microflora contribute to plant
growth. The microflora comprise of bacteria, actinomycetes, fungi including arbus-
cular mycorrhiza fungi (AMF), cyanobacteria, to manage disease (disease manage-
ment), salt tolerance, drought tolerance and heavymetal toxicity (Gupta 2012;Mishra
et al. 2014; Kumar et al. 2021).

The rhizosphere zone constitutes the upper soil layer; in close proximity to the root
surface (Kumar et al. 2015b). In the rhizosphere zone, root secretion comprises of
lipids, amino acids and carbohydrates, respectively. These chemicals attract micro-
bial population, which colonize the plant roots, and participate in promoting plant
growth and tolerance to diseases (Oku et al. 2012; Kumar et al. 2015a, b). Plant-
associated beneficial microbes influence the biomass, yields and productivity of the
host plant and are known as plant growth-promoting bacteria (PGPB) (Babalola
2010; Kumar et al. 2016a, b). The PGPB also induce phytohormone production,
ammonia production, phosphate solubilization, siderophores and hydrogen cyanide
(HCN) production, among other functions (Yadav et al. 2020c).

Nitragin is a potent biofertilizer (legume inoculants and growth promotants)
marketed by Merck KGaA, Darmstadt, Germany. The statistics suggested that the
global market of Nitragin is $85 million dollar in agriculture because the farmers
prefer organic and sustainable agriculture. Presently, the global market for bio-
inoculants is projected at an annual cost of $85 million (with $50 million in the
USA alone).
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Azotobacter is a free-living Gram-negative bacteria (diazotrophic), primarily
found in neutral to alkaline soils (pH range 7.0), on some plants and in aquatic
environments. One of the distinct abilities of Azotobacter is that it can survive in
dry soils, in the form of cysts for up to 24 years. Moreover, it fixes atmospheric
nitrogen by conversion to ammonia (biological nitrogen fixation). Blue-green algae
(BGA) (cyanobacteria) are prokaryotes, consisting of free-living bacteria and the
endo-symbiotic plastids, found in some eukaryotes. They perform photosynthesis
for energy generation and shows freshwater or terrestrial origin. Few cyanobacteria
perform biological nitrogen fixation in anaerobic conditions by specialized cells
called heterocysts. The heterocysts of BGA are able to fix atmospheric nitrogen (N2)
into ammonia (NH3), nitrites (NO2

−) or nitrates (NO3
−), readily assimilated by the

plants (Golden and Yoon 1998; Fay 1992). Free-living cyanobacteria inhabit the
water content of rice paddies and play important role in increasing the yield and
production of rice crop through a biological process.

Considering the current demand for organic farming, PGPB is a potential biofer-
tilizer, safe and effective for increasing crop yields and productivity in agri-
culture. Recently in organic farming, several bacterial species were used, such
as Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter,
Klebsiella,Pseudomonas and Serratia (Saharan andNehra 2011; Kumar et al. 2015a,
b). In plants, phytohormones play a major role in the growth and secondary metabo-
lites production (Bose et al. 2013).Azospirillum fixes atmospheric nitrogen, produces
phytohormones and confers abiotic and biotic stresses tolerance to the plants (Fukami
et al. 2018; Bashan and de-Bashan 2010; Naiman et al. 2009).

The study of beneficial plant–microbe interactions and the increase in plant growth
by Hordelymus europaeus (also known as wood-barley) were undertaken. In this
study, the effect ofmicroorganisms (Protozoa,Nematoda andLumbricidae) increased
shoot/root ratio up to 3.4–5.6 in H. europaeus (Alphei et al. 1996). The N2-fixing
bacteria, Azospirillum lipoferum and Azotobacter chroococcum, were used as biofer-
tilizers and its effect on the growth and productivity of three Mentha species was
studied (El-Hadi et al. 2009). The study showed that microbiological parameters
(total fungi, total microbial counts, Azotobacter and Azospirilla) were enhanced
with the treatments of above biofertilizers, and Mentha essential oil yield was also
increased.

1.5 Biotechnological Applications in Agriculture

To improve crop productivity and sustainable agriculture, researchers are exploring
innovative methods in agriculture. Approaches for enhancing sustainable agricul-
ture are required to boost crop productivity and maintain ecological balance. The
plants showing higher adaptation to changing environmental conditions and biotic
and abiotic stress tolerance would lead to a higher agricultural output (Pretty et al.
2011; Singh et al. 2020) (Tiwari et al. 2021). The soil microbiomes comprise of
the rhizosphere and phyllosphere microbes in close association with the plant. The
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beneficial microbe in soil serves as an important bioresource for nutrition uptake
(mineral solubilization) and siderophores production. The plant growth-promoting
microbes or biofertilizers define an eco-friendly method for sustainable agriculture.
Besides agriculture, microbes producing phytases show good prospects in nutritional
applications as human food (Kumar et al. 2016a, b, 2017a, b). Moreover, the mineral
bioavailability was increased by exogenous phytase addition (Penella et al. 2008),
while improved iron bioavailability was seen in oat, rice and maize porridges by
phytase supplementation (Hurrell et al. 2003). The bio-fortification method has been
used to increase micronutrients in the major food crops. PGP bacteria were used in
place of synthetic pesticides and fertilizers, which mobilize nutrients by chelation,
organic acids release and acidification (Verma et al. 2017a, b; Kaur et al. 2020).

Probiotics are defined as food supplements made to improve human health and
consist of live microbes, which positively influence the host by the maintenance
of microbial balance. Probiotics were prepared for pharmaceutical application and
showed improvement in the immune system in a host (Rekha et al. 2020). A better
immune response to Salmonella typhi oral vaccine in a person taking Lactobacillus
johnsonii and Bifidobacterium lactis as probiotic was observed (Olivares et al. 2007)
and Lactobacillus fermentum showed promising effects in influenza (Arunachalam
et al. 2000). Moreover, probiotics also affects the behaviour of a person and initial
human trials suggested that probiotic consumption may induce gastro-intestinal
symptoms and behaviour (Yadav et al. 2017; Benton et al. 2010).

1.6 Presence of Soil Microbiomes and Management
Practices

The agricultural management practices affect the diversity of soil microbiomes.
These management practices are classified as conventional and organic: the organic
farming was defined as “an ecological production management system that promotes
and enhances biodiversity, biological cycles and soil biological activity”. The organic
farming targets replenishing and maintains ecological balance (Gold 1995) and does
not use synthetic fertilizers. However, the conventional farming practice employs
pesticides and synthetic chemicals for crop protection and crop production. These
management practices greatly affect the soil microbiome, the use of synthetic pesti-
cides in conventional agriculture may change the diversity of soil microbial commu-
nities (Liu et al. 2007; Sugiyama et al. 2010; Yadav et al. 2020a). However, the
organic farming may combat plant pathogens by methods that promote the diversity
of microbial communities (Sugiyama et al. 2010). Moreover, studies have suggested
that soil microbiome is affected by stress and environmental changes (Degens et al.
2001), agri-management practices, etc. (Lumini et al. 2011).
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1.7 Towards Synthetic Symbiosis: Bioengineering
Plant–Soil Microbiomes

Soil microbiomes influence the distribution and productivity of plants (Lau and
Lennon 2011; van der Heijden et al. 2008), therefore, studies in the present time are
investigating the functional dynamics of microbial communities and plants. More-
over, studies in the past have highlighted that plant health and yield may be predicted
by an increase in soil microbial communities (Lau and Lennon 2011; Schnitzer et al.
2011). Advances in scientific technologies have provided significant information on
the diversity and functions of soil microbiome (Nannipieri et al. 2003), for instance,
plant growth and productivity increased with a diversity of fungal species (Maherali
andKlironomos 2007).Moreover, the plant–microbe association displays a feedback
mechanism, the soil microbiome and the plant community changes in response to
each other.

The presence of soil microbiome is critical for plant productivity and intensive
agriculture practices hamper the diversity and functions of associated microbes,
which in turn leads to less crop yield and production. To address this concern,
collaborative UK research projects (funded by the Soil Security Programme) are co-
integrating genomics and field studies to gain insight into the functional dynamics
of the soil microbiomes and to manipulate them for benefit of farmers. In a related
“Roots of Decline” project, the researchers studied the outcome of continuous crop-
ping on causing diseased microbiomes in oilseed rape and how to use different OSR
varieties for disease improvement (www.soilsecurity.org/roots-of-decline). Addi-
tionally, the “MycoRhiza soil” project aims to study the different combination of
wheat varieties and their cultivation may promote beneficial crop–microbe associa-
tions, leading to better soil health and disease resistance (www.soilsecurity.org/myc
arhizasoil).

Advances in synthetic biology approaches have put forth possibilities of bioengi-
neering “soil microbiome” for more sustainable agriculture. For example, the legu-
minous crops have an inherent property to fix atmospheric nitrogen but not present
in cereal crops (maize, wheat, etc.). Researchers are exploring the possibilities to
transfer genes from nitrogen-fixing bacteria to bacteria associating with cereal crops
(www.synthsym.org). The advantages include the increased crop yield in low-income
areas and would improve the damages caused by intensive agricultural practices.
However, the science of “synthetic symbiosis” by bioengineering soil microbiomes
needs to find scientific approval since genetic manipulations remain a controversial
area in scientific research.

http://www.soilsecurity.org/roots-of-decline
http://www.soilsecurity.org/mycarhizasoil
http://www.synthsym.org
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1.8 Perspectives in Sustainable Agriculture and Food
Security

With the rising global population and a requirement to provide food to the billions,
agriculture calls for a more sustainable approach by increasing food production
and security (Gupta 2012). The agricultural methods should focus on enhancing
the plant–microbe associations to promote diversity of soil microbiome. This will
increase the crop yield and production while utilizing the minimum use of resources
(Chaparro et al. 2012). Research studies have demonstrated the beneficial effects of
plant microbial communities in improving plant growth and productivity (Lambers
et al. 2009; van der Putten et al. 2009). According to guidelines of U.S. National
Research Council, the objectives of sustainable agriculture should focus on the devel-
opment of productive farming systems that conserve energy and are environmentally
sound (Lakshmanan et al. 2014). In this direction, the ideal approach would be to use
beneficial microbes for nutritional enhancement and tolerance to biotic and abiotic
and stress conditions. Different formulations of beneficial microbes were used in
soil applications, bio-priming, seed treatment, etc. in the respective plant. Several
key areas in sustainable agriculture include microbial isolate optimization, identifi-
cation of healthy microbiomes and their agricultural applications (Lakshmanan et al.
2014). Moreover, comprehensive knowledge about plant–soil microbiome interac-
tion will serve as a platform to increase crop productivity, stress tolerance and plant
growth.

1.9 Recent Trends and Outcome in Plant–Soil Microbiome
Research

The “soil microbiome” represents a diverse ecosystem with interacting microbial
communities. With the changing environmental conditions, the microbial commu-
nities have evolved mechanism for adaptation and survival (Jansson and Hofmockel
2020), however, the impact of changing climatic conditions has a major impact on
the presence and stability of the soil microbial communities. With the progress in
high-throughput methods, it is possible to determine the effect of climatic change
on the diversity of soil microbial communities and their composition. Moreover, the
determination of functional mechanisms of soil microbial communities, for example,
soil respiration process, is a very critical aspect in understanding soil microbiome
science and may be studied by multi-omics strategies. The presence and functions of
the soil microbiome in maintaining healthy soil and providing nutrition to the plants
are vital for optimum functioning of ecosystem. The recent trends in themaintenance
of soil microbiome and sustainable agriculture call for a more integrated approach to
use soil management practices, biodiversity maintenance, carbon sequestration and
increased tolerance to climate changes (Jansson and Hofmockel 2020). Moreover,
different omics-technologies, namely proteomics, metabolomics, transcriptomics,
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etc., provided clear insights into the plant–microbe dynamics, contributing to better
genetic and functional prospects of soil microbiome (Dubey et al. 2018; Malla et al.
2018a, b). Additionally, advanced methods, namely stable isotope probing, helped
in the estimation of diversity and function of soil microbial communities (Mau et al.
2015; Zhang et al. 2018). In the present era, emerging, sophisticated technologies,
namely amplicon sequencing, had been employed for taxonomic classification of
bacterial communities within ecosystems (Sanschagrin and Yergeau 2014). More-
over, the large dataset obtained by 16SrRNA gene sequencing provided details about
the presence of microbial species but no insight into the function (Fierer et al. 2012).
To address this concern, metagenomics approaches were employed to decipher the
diversity and functional mechanisms of microbial communities (Zhou et al. 2015).
The bioinformatics resources namely Functionalize R (Kristiansson et al. 2009),
MG-RAST (Glass and Meyer 2011), Galaxy portal (Goecks et al. 2010) and others
are available to analyze and interpret the biological data. A key area in this direc-
tion defines exploring the molecular basis of plant–microbe interactions, in order to
promote the functioning of plant and thereby respective ecosystem.

1.10 Conclusion and Future Prospects

Soil microbes constituting the “soil microbiome” are the key soil components of soil,
which provide nutrients to the plants and protection against pests. Soil microbiome
constitutes a determining factor of ecosystem health, and there has been increasing
momentum in deciphering the functional dynamics of soil microbiome as a compo-
nent of ecosystem and climate change. Studies have shown the emerging importance
of soil microbial communities in plant associations and as plant pathogens, having a
major impact on the ecosystems. However, high-throughput technologies and omics
approaches are required for gaining insights into the microbial pathways and their
functional mechanism. Moreover, next-generation sequencing and metagenomics
are promising areas employed to monitor climate changes. In the present era, with
the global population increase and climate changes, it is necessary to adopt scien-
tific methods to boost sustainable agriculture. These scientific methods to study
soil microbial communities would aim at delineating information about microbial
communities sensitive to climate changes and its influence on microbial community
and its function. Such studies exhibit significant prospects in the maintenance of soil
health and a productive ecosystem. Attempts towards understanding the dynamics
of soil microbiomes and adopting scientific approaches towards maintaining and
improving soil microbiomes and their beneficial functions would be the prospective
approaches towards sustainable agriculture.
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Chapter 2
Microbes Associated with Crops:
Functional Attributes for Crop
Productivity

Slimane Mokrani and El-hafid Nabti

Abstract Microorganisms associatedwith plants can affect their health positively or
negatively, thus influencing hugely crop yield and productivity. Several investigations
have reported that the microbes associated with different plants are much diversified.
Especially, those microorganisms of agricultural interest belong mainly to bacteria
and fungi. Additionally, they are various mechanisms of plant/microorganisms inter-
action, which are already elucidated and well documented, bringing together two
principal categories; by one side, the implication of germs in biotic and abiotic
stress reactions; by the other side, the all aspects related to plant responses. This
work aimed to expose some aspects of the microbe’s associates to plants and the
functional attributes for ameliorating crop productivity and yields.

Keywords Crop productivity ·Mechanisms · PGP traits · Plant microbiome

2.1 Introduction

The industrial revolution of farming in the twentieth century has drastically trans-
formed and accelerated the market and agricultural activities; in order to raise crops
and feed the planet’s increasing population (Zorner et al. 2018). In addition, modern
agriculture faces several problems, including environmental issues, and an increase
in supply for durable manufacturing (Compant et al. 2019; Sharma et al. 2021). In
particular, eco-friendly and durable farming techniques are vital for ensuring food
safety, like the use of effective farm-benefit microorganisms (bioinoculants) that play
potential roles in sustainable crop manufacturing due to their vast characteristics for
plant increase, improving adaptability and viability under stressful conditions; and
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other important utilizations that can efficiently reduce the use of pesticides and fertil-
izers inmodern farming (Singh et al. 2016;Kumar et al. 2021). Thesemicrobes ensure
a crucial function in various farm ecosystems (Deveau et al. 2018; Prasad et al. 2021).
Since ancestor plant lines colonized the land 450 million years ago, plants and their
microorganisms interacting there formed an association of organisms often designed
as a “holobiont.” (Hassani et al. 2018). Particularly in the last years, intensive efforts
have been dedicated to elucidate the interaction between plants and bacteria, both
beneficial and pathogenic (Degrassi et al. 2012).

Colonization is arduous for microbial populations in their niches, particularly
because of their huge diversity, dynamic interactions, constant genetic interchange
and deficiency of adequate analytical techniques (Singh et al. 2010). Equally, the
microbes associatedwith plants include algae, bacteria, fungi and viruses. Depending
upon their localization on the host plant, they can be endophytic and/or epiphytic.
Endophyticmicrobial interrelationships affect the inner part (Rana et al. 2020a; Singh
et al. 2020), whereas epiphytic microbial interrelationships affect the outer surface of
plants (Kumar et al. 2017). Notably, in the last decade, diverse studies have indicated
the complicated microbial accumulations related to various plants, and particular
plant compartments (Reinhold-Hurek 2015). Moreover, several researches reported
the benefits of rhizobacteria and endophytic bacteria belonging to the specific phylo-
genetic group on the biological characteristics of different vegetable crops (Vansuyt
et al. 2007). Generally, epiphytic, endophyte or rhizophyte interrelations can be
harmful or beneficial to both the microbe or the plant and may be considered compe-
tition, amensal, synergism, commensal, mutual, parasitism or neutral (Montesinos
2003; Yadav 2021).

2.2 Microbes Linked with Crops

2.2.1 Rhizospheric Microbiomes

Rhizosphere is the region in which the roots and related microbes engage in diverse
interactions and is characterized by wide microbial diversity (Patra et al. 2016). The
exudation of roots comprises of amixture of compounds such as sugars, organic acids,
amino acids and vitamins, which attracts a diverse microbial population (Bertin et al.
2003; Kour et al. 2019b). Proteobacteria, especially those of tα and β groups, tend
to dominate. Acidbacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, Firmi-
cutes and Planctomycetes are among the other principal groups (Turner et al. 2013).
Particularly, root and rhizosphere microbial communities are named plant growth-
promoting rhizobacteria (PGPR) play key functions in determining plant health and
productivity (Verbon and Liberman 2016; Hesham et al. 2021).
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2.2.2 Epiphytic Microbiomes

Plant aerial parts are the habitat of several epiphytic microorganisms, which could
be noxious or useful to the plant (Sharma et al. 2019). Epiphytic microbes live on
fruit, flowers, leaves, buds and stems (Whipps et al. 2008; Mukhtar et al. 2010).
Apparently, microbial interrelations in the phyllosphere may influence soil health
in native populations, crop yield production and the security of human-consuming
horticultural products (Whipps et al. 2008). This analysis points toward the soil and
air as important sources of leaf and root microbial inoculums (Kumar et al. 2019a,
2019b).

The action of insects, wind and rain could allow microorganisms to reach the
surface or to leave the plant surface. This analyzes the air and soil as key root
and leaf microbial inoculum provenances (Lilley et al. 1997). The complexity, role
and relation to the microbiota of the rhizosphere are also emerging research areas
(Bai et al. 2015). The content and richness of bacterial communities are specific to
host, memberships of the alphaproteobacteria predominate and are widely spread in
phyllosphere microbiotas, and the generaMethylobacterium and Sphingomonas are
frequently observed among various hosts (Delmotte et al. 2009).

2.2.3 Endophytic Microbiomes

Endophytes comprise all species occupying plant organs that could populate inte-
rior plant tissues at any stage of their life without doing any obvious damage to the
host (Petrini 1991; Rana et al. 2020b). Endophytes are ecologically ubiquitous and
diversified in the majority of plant species and perform various fundamental func-
tions in nature for plant productiveness, mainly by metabolism and enhancement
of nutrient assimilation, synthesizing plant development hormones, controlling the
host’s defensive gene expression and other elementary metabolic processes (Zhou
et al. 2017).

In particular, plant-associated endophytes, including endophytic fungi, are widely
distributed in nature (Jia et al. 2016). Also, endophytic bacteria–plant relationships
have been widely studied for their various roles, mainly in the improvement of
plant increase, biocontrol, phytopathogenicity, resistance toward stressful factors
and bioremediation (Fester et al. 2014; Yadav et al. 2021b). Figure 2.1 shows the
microbes associated with crop ecology.
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Fig. 2.1 Microbes associated with crops ecology. Free-living microbes are holobionts in plants: in
rhizosphere as well as in phyllosphere like epiphytic and endophytic in the whole plant. In addition,
they have important ecological roles evolved by living in pathogens, PGPR or saprophytes. Most
such microbes–host interactions are beneficial, adversely to others which are harmful, inducing an
increase or loss of crops yield and productivity

2.3 Mechanisms of Increasing Crop Productivity and Yield

Among the benefits of plant-useful microorganisms, different mechanisms can be
listed like plant increase improvement, synthesizing various antibiotic/antifungal
molecules inhibiting several phytopathogens, resistance to numerous environmental
stress factors and microorganism-assisted elimination of organopollutants (Wu et al.
2009). Furthermore, soil microbial populations are essential for several of the earth’s
biogeochemical cycles like mineralization of nutritional compounds, organic carbon
decomposition and nitrogen cycle (Patra et al. 2016). Notably, a number of soil
microbial mechanisms convert unavailable nutritional elements to be easily assimi-
lated by plants (Lalitha 2017). Endophytes and epiphytes have no negative impacts
on the plant; instead, they cause the production of certain essential chemicals like
hormones (Kumar et al. 2017). Additionally, some other microbes can synthesize
auxin, which improves growth and ensures a crucial function in plant life cycle
(Fernandes et al. 2011). Globally, inside rhizosphere PGPR assist the indirect and
direct increase of plants through various mechanisms. They participate in nutrient
uptake, nitrogen fixation, phosphate solubility, siderophores formation, IAA and
other diverse phytohormones (Pahari et al. 2016; Rai et al. 2020; Subrahmanyam



2 Microbes Associated with Crops: Functional Attributes for Crop Productivity 35

Fig. 2.2 Mechanisms developed by plant-associated microbes for protecting and increasing crop
productivity and yields. (ISR: Induced Systemic Resistance; ASR: Acquired Systemic Resistance)

et al. 2020; Abdel-Azeem et al. 2021). Figure 2.2 illustrates the mechanisms devel-
oped by plant-associated microbes for protecting and increasing crop productivity
and yields.

2.3.1 Phosphate Solubilization

It is well established that plants need at least 14 mineral elements for sufficient
nutrition, in addition to water, carbon dioxide and oxygen (Mengel et al. 2001).
Insufficiency of any of these mineral elements decreases plant growth and crop
yields (El-Ramady et al. 2014). In particular, microbes of various genera are capable
of transforming insoluble phosphate into soluble compounds, which are then avail-
able to plants, and are generally known as phosphorus solubilizing microbes or
PSMs (Shrivastava et al. 2018; Kour et al. 2020, 2021). Phosphorus-solubilizing
bacteria ensure a function in phosphate nutrition via increasing its accessibility to
plants, releasing phosphate pools from organic and inorganic soil and solubilizing
and mineralizing mechanisms (Khan et al. 2009). Enhanced crop productivities arise
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from PSM solubilization of fixed soil P and applied phosphates (Zaidi 1999). They
also improve soil fertility and crop productivity in organic farming (Kaur and Reddy
2014).

2.3.2 Siderophores

Iron is a crucial plant nutritional element that operates as a cofactor in various
enzymes of the respiratory system, photosynthetic activity and nitrogen fixation.
Although iron is quite prevalent in soil, it is often inaccessible to microbes and
plants because it arises under aerobic environment primarily as a trivalent state iron
Fe(III) (Bano and Ilyas 2012). Iron deficiency can adversely impact plant, beneficial
and phytopathogenic microorganisms. For instance, the microbial surface hydropho-
bicity significantly reduces under iron-deficient growth conditions that also distort
the surface protein constitution (Simões et al. 2007). On the other hand, siderophores
are secondary metabolites with low molecular weight and an iron-chelating capa-
bility (Kour et al. 2019c; Sharaff et al. 2020). These are substances characterized
by small peptide molecules with laterally chains and operational groups that have a
ligand with great affinity that binds ferrous ions into the cellular membrane (Niehus
et al. 2017). Nearly, all microbes develop them in reaction to an iron insufficiency
(Crowley 2006). Siderophore production is controlled by well-established bacte-
rial and fungal transcriptional factors (Troxell and Hassan 2013); in particular, the
bacteria generating siderophores are frequently isolated from the rhizospheric plant
area (Calvente et al. 2001). Plants may also produce Fe(III)-chelating molecules
designed phytosiderophores forming unique and solid Fe(III) structures (Ma 2005;
Kraemer et al. 2006).

A number of investigations explain the function of siderophores as an important
component in ISRprotection effects (Vleesschauwer andHofte 2009).Mahmoud and
Abd-Alla (2001) mentioned that hydroxymate, a kind of siderophore produced by
Pseudomonas sp., which stimulated the formation of nodules and fixation of nitrogen
by mung bean seedlings as compared to sowing infested with Bradyrhizobium sp.
strain solely. Furthermore, bacteria-forming siderophores play a major function in
the suppression of some phytopathogenic microorganisms (Beneduzi et al. 2012).

2.3.3 Phytohormones

Ethylene, cytokinins, abscisic acid, gibberellins and auxins are widespread among
various regulating factors of growing plants and are well known for their acting
processes (Kashyap et al. 2017; Suyal et al. 2021). In this case, microorganisms
interacting with plants generate main plant growth hormones such as auxins and
gibberellins. Generation of gibberellins is the most usual for the development of
root-associated microorganisms and auxin is widespread into whole plant-related
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microbes (Yadav et al. 2017; Tiwari et al. 2020). Especially, the great effective and
typical auxin in plants is indole 3-acetic acid (IAA) (Kashyap et al. 2017). Patten and
Glick (1996) mentioned the synthesis and secretion of auxin as elementary molecule
of around 80% of rhizosphere microorganisms. Notably, auxins are important in
phototropism and geotropism, differentiation of the vascular tissue, apical domi-
nance, lateral and adventitious root initiation, cellular division, extension of root and
stem (Grobelak et al. 2015; Rastegari et al. 2020a, 2020b).

2.3.4 N2 Fixation

Nitrogen is an important element responded in different ecosystems. For instance,
inorganic nitrogen in themarine ecosystem ranges fromnitrate to ammonia in various
oxidation forms (Ravikumar and Kathiresan 2007). Moreover, nitrogen is among the
most essential nutrients affecting the production of crops. Especially, leguminous in
combination with rhizobia provide an invaluable function, in the natural and agricul-
tural environments, to the global nitrogen balance (Vance 2001; Rana et al. 2019). It
has been estimated that the price of utilizing N-fixing microorganisms is 1% more
than the price of utilizing chemical products (Stokstad 2016).

2.3.5 ISR and ASR

Most plants respond to a local attack by herbivores or pathogenic microorganisms
through the formation of compounds aiming to mitigate or prevent further attacks, or
the effectiveness of their enemies. The reactions occur in either the initially attacked
plant organ (local reaction) or remote but not damaged sections (systemic reactions).
One of these reactions is the induced systemic resistance (ISR), and the other is
systemic acquired resistance (SAR) forming together the plant defensive system
against plant pathogens (Heil and Bostock 2002). Furthermore, a number of PGPR
induce transformations related to chemical or physical protection system in the plant
(Van Loon et al. 1998). Nevertheless, combined ISR and SAR present greater protec-
tion than any of them alone, suggesting that they might act synergistically to promote
pathogen tolerance (Van Wees et al. 2000).

2.3.6 ACC Deaminase

This enzymemetabolizes ACC (1-aminocycle-1-carboxylate) in plant tissues, which
is the initial precursor to ethylene (Yang and Hoffman 1984; (Kour et al. 2019a).
Moreover, ethylene, usually, is involved in crucial plant processes like differentia-
tion of tissues, shoot and root formation primordia, root ramification and extension,
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the implementation of the lateral bud, floration, flora senescence, fruit maturation and
abscission, formation of anthocyanin, the elaboration of volatile organic substances
responsible for the fruits aroma production (Glick 2014). Moreover, for the germi-
nation of seed, ethylene is necessary, as it is established by its rate of production
rising considerably during germination and planting growing (Abeles et al. 1992).
Additionally, ACC deaminase is a plant hormone that is largely stimulated by stress
factors and can limit considerably the activity of increasing plants (Dikilitas et al.
2021). On the other hand, a number of microorganisms could reduce the plant’s rate
of ethylene by assimilating the ACC, the main plant’s produced ethylene precursor
(Ajar et al. 2017). ACC deaminase-producing microbes convert ACC into ammonia
and α-ketobutyrate (Glick 2005). In particular, plant growth-promoting rhizobacteria
endowed with ACC deaminase properties stimulate plant development and produc-
tivity and can be effectively enclosed in bioengineering of biofertilizers (Shaharoona
et al. 2006). The root-interacting bacteria decrease the rate of ethylene by ACC
cleavage ultimately plant stress tolerance (Van de Poel and Van Der Straeten 2014).
Importantly, it has been reported that the use of bacteria-producing ACC deami-
nase against a variety of biotic and abiotic factors improved plant resistance against
different stressful factors (Glick 2014; Yadav et al. 2020a, 2020b, 2021a).

2.3.7 Lytic Enzymes

Several plant growth-promoting bacteria secrete various lytic enzymes like lipase,
protease, chitinase or β 1,3 glucanase, all of which contribute to cellular fungal degra-
dation (Chet and Inbar 1994). Thus, these enzymes affect the growth and develop-
ment of phytopathogenic fungi (El-Tarabily 2006). PGPB have been reported to have
biocontrol effect toward a number of phyopathogenic fungi like Pythium ultimum,
Rhizoctonia solani, Sclerotium rolfsii, Fusarium oxysporum, Botrytis cinerea and
Phytophta spp. by synthesis of one or more lytic enzymes (Frankowski et al. 2001;
Singh et al. 1999). Whereas, other particular enzymes of plant-associated microbes
like cutinases were identified as necessary for spore fixation on the surface of
many phytopathogens such as Blumeria graminis, Colletotrichum graminicola and
Uromyces viciae-fabae (Deising et al. 1992; Pascholati et al. 1993). Generally, such
activities of the diverse hydrolase enzymes are very important in rhizosphere soil,
as they reflect soil capability to ensure complex biochemical processes, the fertility
of the soil and plant productiveness conservation (Burns 1982; Shukla and Varma
2011; Schloter et al. 2018). Microbial enzymes are important for soil operation and
quality because of their implication in organic matter dynamics and nutrient cycles,
organic compounddegradation,mineralization and the release of nutritional elements
including nitrogen, carbon and other importantmetals (Khare andYadav 2017;Yadav
et al. 2020c).
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2.3.8 Nanoparticles

Nanomaterials and nanoparticles are generally described as molecules of approx-
imately 1–100 nm measurements that demonstrate characteristics not observed in
the bulk state (Bulgari et al. 2019; Patil et al. 2021). They are incorporated into the
ground through a range of human practices, which include deliberate land releases
via water and soil treatment, the extensive utilization of farming (e.g. chemical fertil-
ization) and unconscious water, air and wastewater disposal onto the soil (Mishra
and Kumar 2009); or are produced biologically in situ in the soil by microorganisms
(bacteria and fungi) in contact with contaminants such as silver. This is of particular
concern for soil benefit microbes since AgNPs act as antimicrobials by inhibiting
enzymatic activity, damaging DNAand generating reactive oxygen species that lead
to cell death (Li et al. 2010). Several microbial suppressive impacts of nanoparti-
cles have been observed impacting directly microbe’s survival (Lovern and Klaper
2006). Generally, antiphytopathogenic activity, seed germination enhancement and
improving crop development were reported using zinc oxide and silver nanoparticles
(Gogos et al. 2012).

2.3.9 Biofilms

Historically, microbes had been explored as planktonic cells (or free swimmings).
The majority of these cells has been established in multi-cell joint to surfaces, called
biofilms (Rudrappa et al. 2008). According to Costerton et al (1999), a biofilm is
described as “a structural community of bacterial cells enclosed in a self-produced
polymeric matrix and adherent to an inert or living surface. On plant surfaces, they
are formedmostly by bacteria in pathogenic, mutualistic, or symbiotic association on
leaves, roots, and in the soil (Cavalcante et al. 2017). It is a property in plant growth-
promoting bacteria that enable them to resist various abiotic stresses (Bouskill et al.,
2016). Especially, biofilm formation on plant roots appears to be associated with
symbiotic interactions. For instance, these structures help to create protective niches
for Rhizobia (Barriuso, 2017). Recently, it has been shown that biofilm-mediated
microcolonies formed on root hairs of finger millet by endophytic Enterobacter sp.
conferred protection against colonization by the pathogenic organisms (Mousa et al.
2016). Apart from the root surface, microbial biofilms are also reported on the phyl-
lospheric region and vasculature (Torres et al. 2006). Epiphytic microbes are often
formed in biofilms, likely because these microenvironments protect bacteria from
harsh environmental conditions (Monier and Lindow 2004). Furthermore, certain
bacteria in biofilm matrices have been found to stimulate plant growth and protect
plants from phytopathogens while others are involved in pathogenesis (Bogino et al.
2013).
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2.3.10 Antibiotics

Antibiotics produced by microorganisms play a major role in plant pathogens and
the diseases they cause (Pal and McSpaddenGardener 2006). The production of
antibiotics is one of the important mechanisms most commonly associated with the
capability of PGPB to act as antagonistic agents (Glick et al. 2007;Abdel-Azeemet al.
2021). Furthermore, the production of antibiotics is used in the acquisition of genes
coding for antibiotic resistance from transgenic plants by plant-associated bacteria
(Montesinos 2003). Amongst PGPR, species belonging to Pseudomonas excrete a
great variety of effective antibiotics such as 2,4-diacetylphloroglucinol (2,4-DAPG),
pyoluteorin, pyrrolnitrin, (Raaijmakers et al. 2002; (Singh and Yadav 2020; Yadav
et al. 2020c). In addition, some species can also produce hydrogen cyanide (HCN)
that is toxic to certain pathogenic fungi (Dowling and O’Gara 1994).

In soil, several metabolites from endophytic Streptomyces sp. have been char-
acterized, which are associated with antibiotic activity (Castillo et al. 2003; Guan
et al. 2005). Furthermore, endophytic fungus, Acremonium zeae, has been implicated
in the protection of its host against Aspergillus flavus and Fusarium verticillioides
(Wicklow et al. 2005).

2.4 Beneficial Effects on Crop Production and Yield

Plant-associated microbiomes play a pivotal role in plant biology, performing key
functions in germination, growth, health and stress protection (Mendes and Raai-
jmakers 2015; Tiwari et al. 2021). An increasing number of studies have shown
that plant-associated microbes improve plants’ nutritional conditions, resistance to
abiotic stresses and inhibit pathogens and pests (Vandenkoornhuyse et al. 2015).
Importantly, rhizosphericmicrobes affect plant growth, development and stress resis-
tance by diverse mechanisms (Lareen et al. 2016; Rai et al. 2020). Beneficial effects
of some plant-associated microbes on crop productivity and yields have been listed
in Table 2.1.

2.4.1 Seed Germination Enhancement

Seed germination is an important stage in the life cycle of plants (Song et al. 2005).
In particular, seed-associated microorganisms can be essential for the germination
process in different plant phyla (Jacquemyn et al. 2015). Effectively, PGPB can accel-
erate seed germination and improve seedling emergence (Souza et al. 2015). This
is illustrated by seed treatment of legumes with Rhizobaceae that frequently leads
to increase in yield (Thilakarathna and Raizada 2017). In addition, the application
of beneficial microorganisms to seeds is an efficient mechanism for the placement
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Table 2.1 Beneficial effects of plant-associated microbes on some crop productivity and yields

Associated microbes Crops Effects References

Pseudomonas spp. Soybean and
wheat

Increased straw and grain
yields; increased nutrient
uptake: N, P, K, Zn and Fe

(Sharma et al. 2011)

Pseudomonas fluorescens Rice In field experiments, the
occurrence of sheath
blight and leaf folder
insect incidence
decreased by average
62.1% and 47.7–56.1%,
respectively

(Commare et al. 2002)

Serratia marcescens
strain SRM

Wheat Significantly influence
wheat seedling growth at
cold temperatures

(Selvakumar et al.
2008)

Bacillus thuringiensis Maize Increase seed germination
percentage up (94%),
seedling growth to
(36.08 cm/seedling) and
vigor index (3391.52)

(Kassogué et al. 2016)

Bacillus subtilis Tomato Reduce substantially
seedling mortality in
inoculated plants, it
(6.6%) is compared to
high mortality in the
control seedlings (51.6%)

(Cabra Cendales et al.
2017)

Azospirillum brasilense Wheat and oat Yield increase up to 27%
in wheat and to 6% in oat

(Swędrzyńska 2000)

Streptomyces sp. KLBMP
5084

Wheat Increase in germination
rate, concentration of N,
P, Fe and Mn, shoots
grown under salinity
stress

(Sadeghi et al. 2012)

Trichodermaatroviridae Indian
mustard

Bioremediation by
influencing uptake and
translocation of Ni, Zn
and Cd

(Cao et al. 2008)

of microbial inoculum to soil and protection against soil-borne diseases and pests
(O’Callaghan 2016).

The enhancementmechanism of seed germination is ensured via the production of
different PGP traits. Seed treatment of cowpea with Bacillus sp. exhibiting multiple
PGP attributes improved seed germination and yield parameters (Minaxi et al. 2012).
Paul et al. (2011) reported IAA-producing bacterium Azotobacter chroomcoccum,
particularly when co-inoculated with arbuscular mycorrhizal fungi improve seed
germination.
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2.4.2 Stimulation of Plant Growth

The positive response of different crops to microbial inoculation has been assessed
in many experiments under greenhouse and field conditions (Calvo et al. 2014). It
has been reported that specific guilds of taxa among the soil bacterial microbiome
can be selected to modify plant traits and to coordinate changes in soil resource pools
(Pfeiffer et al. 2017). Notably, plant growth-promoting rhizobacteria are beneficial
microorganisms that help in promoting plant growth and significantly increase soil
fertility (Kashyap et al. 2017). Some microorganisms when given the opportunity
to inhabit plant roots become root symbionts. Such root colonization by symbiotic
microbes can enhance crop yields by promoting the growth, nutrient uptake, fixation,
resistance to pests, diseases and abiotic environmental stress conditions stresses
(Harman and Uphoff 2019; Yadav et al. 2018).

2.5 Resistance to Abiotic Stress

Abiotic stress in soils includes extreme temperatures, pH, drought, water-logging
and toxic metals (Wu 2017), salinity (Shrivastava and Kumar 2015) and some gases
and nutrient deficiency or excess (Hayat et al. 2017). They are greatly affecting
plant growth and agricultural productivity and cause more than 50% of worldwide
yield loss of major crops every year (Jarvis et al. 2006; Kumari et al. 2019). These
conditions often favor pathogens and negatively affect plant productivity and soil
fertility (Dresselhaus andHückelhoven 2018). Particularly, drought has affected 64%
of the worldwide land area, salinity 6%, anoxia 13%, soil alkalinity 15%, mineral
starvation 9% and cold 57% (Mittler 2006). For example, drought stress limits the
growth and productivity of crops particularly in arid and semi-arid areas (Kramer
and Boyer 1995).

Plant-associated microbiomes have a much greater evolutionary potential for
dealing with abiotic stresses than the plant itself (Jones et al. 2019). Therefore, it is
potentially more sustainable to manage abiotic stresses in a holistic and multifaceted
manner. The microorganisms use indirect and direct mechanisms to promote plant
growth and development during stress conditions (Kumar and Verma 2018). Some
bacteria have sigma factors to change gene expression under adverse conditions to
overcome negative effects (Gupta et al. 2013). Notably, microorganism communica-
tions with the plants incite a few fundamental responses that improve their metabolic
mechanism for defense against abiotic stress conditions (Nguyen et al. 2016).
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2.5.1 Bioremediation

Environmental pollution resulting from human activities has a great impact on the
biodiversity and functioning of terrestrial and aquatic ecosystems and is a major
threat to human health across the globe (Alava et al. 2017). Extensive pollution of
terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need
for hazardous and expensive physico-chemical remediation techniques. Alterna-
tively, plant-associated bacteria and cooperation between these bacteria and their
host plants allow for greater plant survivability and treatment outcomes in contam-
inated sites (Gkorezis et al. 2016). Such ecological microorganisms are expected to
have multiple implications for maintaining pollutant decomposition and ecological
services in terrestrial environments (Shi et al. 2018). Filamentous fungi including
Aspergillus sp., Mucor sp., Penicillium sp. and Trichoderma sp. have been reported
to possess capability to tolerate heavy metal stress (Ezzouhri et al. 2009; Oladipo
et al. 2017). Mycorrhizal fungi, free-living or endophytic fungi are also known for
their strong degradative capacities and are often applied during phytoremediation of
organic pollutants (Deng and Cao 2017).

The basic principle of bioremediation involves reducing the solubility of environ-
mental contaminants by changing pH, the redox reactions and adsorption of contam-
inants from the polluted environment (Jain and Arnepalli 2019). Especially, the
in situ bioremediation processes have become an attractiveway to rehabilitate various
contaminated sites (Ayoub et al. 2010). More particular, phytoremediation is using
plants and associated bacteria for the treatment of soil contaminated by toxic pollu-
tants (Salt et al. 1998). Concerning plant-associated microbes, such as rhizospheric
bacteria, implicated in “Rhizomediation”, it has been demonstrated that they lead to
the decomposition of polluted soil by harmful organic elements and may enhance
phytoremediation (Babalola 2010). Thesemicrobes’ capacity to cleave contaminants
depends on the effectiveness of their development and variousmetabolic surrounding
conditions, including appropriate pH, temperature and humidity (Verma and Jaiswal
2016).

2.5.2 Plant Disease and Pest Control

Plant infections typically happen in regions, forests or fields when different plant
components (like leaves, fruits or flowers) are attacked (Sastry and Zitter 2014).
They are principally treated mainly by chemical pesticides. Plant-related microor-
ganismsmayalso serve as biological control agents due to their protective effect based
likely on the synthesis of effective inhibiting enzymes and substances like hydrolases
and antibiotics destruct the phytopathogenic cell wall (Kumar et al. 2017). Genera,
including Gram-positive and Gram-negative bacteria such as Burkholderia, Pantoes,
Bacillus, Enterobacter, Paenibacillus, Streptomyces and Pseudomonas were, in
particular, mentioned for their involvement in pathogen suppression (Schlatter
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et al. 2017). Additionally, certain native plant epiphytic microorganisms could be
employed in the suppression of agri-foodstuff phytopathogens (Lopez-Velasco et al.
2012), and at a less degree of endophytic bacteria.

2.6 Factors Affecting Crop Productivity and Yield

Crop productivity and yield can be influenced by many organisms as a commu-
nity contributes efficient genome and chemical exchange to create a competitive
metagenome, contributing to improved plants’ production and to strengthen rela-
tionships with each other (Zorner et al. 2018). The nature and the quality of plant
and microorganism interaction and soil microbial diversity can affect largely crop
productivity and yields. Several experiments have also shown the direct effect of
various plant species on the selection of rhizosphere populations (Marschner et al.
2004; Coleman-Derr et al. 2015). Nevertheless, other considerations are included
like developmental stage or variety (Qiao et al. 2017) that may additionally affect
their microbiome contents. In addition, microbiome balance and abiotic indicators
can contribute to crop productivity and yield determination including soil structure,
stability in wet aggregate, water supply potential, rigidity of the soil, pH, capability
for nutritional element and cation exchange (Jeanne et al. 2019). Furthermore, crop
productivity and yield are affected by environmental impacts of unhealthy soil via
microbial activities that could not sequester carbon but cause emissions of methane,
CO2 and other greenhouse gases that harm ecosystems in turn. For example, the
increased global temperature has led adversely to high greenhouse gasses (Saha and
Mandal 2009). Similarly, soil microbial communities are impacted by meteorology
(Terrat et al. 2017). Figure 2.3 illustrates the factors affecting crop productivity and
yield including: Environmental factors, biotic and abiotic stresses and plants (species,
genotype and stage development).

2.7 Conclusion and Future Prospects

The microbes associated with plants are much diversified and can eventually occupy
all the plant parts during their all-development cycle; from seeds to maturation.
These microbes can be both beneficial and harmful, leading to a loss of crop yields
or countless beneficial effects for development and protection against various biotic
and abiotic stresses, undoubtedly leading to an effective increase in crop productivity
andyields. Furthermore, the variability and complexity of the interactionmechanisms
betweenmicrobes, plants and soil always requiremore investigations; especiallywith
regard to the overlap and simultaneous effects of interaction mechanisms such as the
association of abiotic and biotic stress impacts on both plants and microorganisms,
as well as the different strategies developed by each partnership in these specific and
complex interactions.
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Fig. 2.3 Factors affecting crop productivity and yields
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Abstract Fertility is the simplest yet most sophisticated word to describe a well-
cultivated soil. Simply because it can, in general, make the most of the product
available to everyone and complex because many aspects of its sustainable manage-
ment are still unknown, even to experts in the field of soil science. In fact, fertility is
a reflection of the intrinsic complexity of the plant’s soil ecosystem, because of one
of the characteristics of the various components of this vital system, as well as the
numerous interactions between them. These components are affected and, as a result,
they provide the sum of their effects in the capacity to support plant growth and crop
production. Therefore, maintaining this capability at optimum crop production level
requires steady, comprehensive management, and is aware of all the physical, chem-
ical, and biological aspects that affect not only the quantity of production but also the
quality and health of the soil and environmental resources. Microbial fertilizers and
soil microorganisms play an important role in controlling plant diseases, eliminating
plant pests, and converting part of the minerals to a usable form for plants. Chemical
fertilizers are essential components of biocontrol and plant growth factors. The use
of plant food-producing bacteria and the application of proper soil fertility and plant
nutrition in addition to protecting the environment and human health also avoid the
unnecessary and wasteful use of chemical fertilizers.
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3.1 Introduction

Microorganisms or microbes are the microbial organisms that are possible in the
form of a single cell or a colony of the cells that would have existed. Recognition
of beneficial soil microorganisms and their interactions with other microorganisms,
plants, and soils are among the main topics of soil microbiology. Microorganisms
play a key role in the decomposition of organic matter, elemental cycles, and other
soil chemical changes (Kaur et al. 2019). In fact, the general measurements of soil
microbial activity are synonymous with organic matter degradation. The decompo-
sition of organic matter is usually controlled by heterotrophic microorganisms and
leads to the release of elements (especially nitrogen (N), sulfur (S), and phosphorus
(P)). Microorganisms also stabilize amounts of carbon and other elements in their
cells. Therefore, all living microorganisms (microbial biomass) play a pivotal role as
a source, reservoir, and regulator. They have changed the energy and nutrients of the
soil. The remarkable diversity of microbial species and their ability to break a wide
range of chemical bonds means that these organisms are responsible for many of the
key soil functions in which areas (i) decomposition, organic matter available in soil
matter, and plant or animal debris that releases nutrients (ii) changing chemicals from
one form to another often leads to the formation of absorbent and active substances
for the plant and prevents chemical wastes and (iii) the production of antibiotics that
can help deter soil-borne diseases (Wardle 1992).

Synthetic biology in the last two decades and higher potential microorganisms for
genetic engineering in the direction to increase their efficiency leading to dramatic
changes in the has been created by microorganism’s recombinant with industrial
and medical purposes worldwide and have been used commercially in the manu-
facture of various products (Keasling 2012; Sarantinopoulos 2014). Recombinant
microorganisms contain new genes that give them useful properties with greater effi-
ciency for agricultural purposes. Including applications recombinant microorgan-
isms in agriculture can produce high performance, recombinant microorganisms to
control pests and diseases as well as create high-efficiency biofertilizers to produce
various enzymes used in agriculture (Olson et al. 2012; Adrio and Demain 2014;
Kumar et al. 2021; Singh and Yadav 2020). Production of recombinant antibiotics
and drugs, biological receptors to detect soil andwater pollution (Belkin 2003), biore-
mediation, and reduction of pollutants such as heavy metal treatment soil pointed
(Kapoor and Rajagopal 2011; Sharma et al. 2021). Regarding increasing the perfor-
mance of microbial agent’s plant growth-stimulator (Biofertilizers) through genetic
engineering also numerous studies it has happened over the past few years. For
example, corn to nitrogen stabilizing recombinant bacteria (Rhizobium) with the
bio-refining ability of soil heavy metals (Ike et al. 2007), Anabaena sp. with the
growth-stimulating ability and higher nitrogen fixation (Chaurasia and Apte 2011)
and Azospirillum with high auxin production capacity and indicated higher growth
stimuli (Baudoin et al. 2010).
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3.2 Soil

Soil is a very complex and heterogeneous ecosystem with high microbial diversity.
Less than one percent of soil microorganisms is currently cultivable and identified
in vitro (Whipps 2001). On the one hand, these organisms interact with other parts of
the soil and, on the other hand, affect each other at different biological levels (Müller
et al. 2002). Since ancient times, human beings inevitably seek to improve and
expand agricultural crops byusingdifferent cultivationmethods.Without considering
the invisible microorganisms that play an important role in providing the materials
needed for plant growth and development suppose, for example, that the clover was
planted intermittently to enrich their fields without knowing the role of nitrogen-
fixing microorganisms. Today, environmental microbiologists are well aware that
manymicroorganismsplay an important role in improving and expanding agricultural
products, these include bacteria, Actinomycetes, fungi, algae, protozoa, viruses, and
nematodes. Of which the role of bacteria is more prominent. Soil is a major source
of nutrients for crops and supports plant growth in many ways. Understanding soil
health andmaintaining it is crucial to productivity. Soil health can be assessed through
the quality and crops grown on it. This assessment is possible by farmers through
physical, chemical, and biological analysis of soils. Plant nutrients such as Mg, Ca,
K, P, N, and S are called nutrients while Fe, Zn, Cu, Mo, Mn, Br, and Cl are called
micronutrients (Motsara and Roy 2008; Kaur et al. 2020). Plants need nutrients that
are called essential elements and help the plant grow and reproduce. Nutrients are
required for the plant in varying amounts andvary in the amount ofmobilitywithin the
plant and soil. Knowing the relative amounts of nutrients is helpful in preparing and
recommending fertilizer. Soil characteristics affect nutrient availability to plants and
affect nutrient management (Table 3.1). There are more than 100 chemical elements,
but scientists have found that only 17 of them are necessary for plant growth (Jones
and Olson-Rutz 2016), and here we ask a question, what role do bacteria play in
plants or in other words what do they provide for plants? A plant needs light, water,
temperature, and nutrients to gro

3.2.1 Actinomycetes

Actinomycetes constitute about 4% of the soil bacterial population (Hopwood 2007).
They are a group of gram-positive bacteria belonging to the branch ofActinobacteria.
Antibiotics, vitamins, alkaloids, stimulants of plant-enzymes, and enzyme-inhibiting
compounds can be named Actinomycetes. Approximately 85% of naturally produced
and used antibiotics have been isolated from Actinomycetes and mainly by different
Streptomyces species (Rothrock and Gottleib 1981). They are Soil bio buffer guides
and contribute to crop production by decomposing organic matter (Shimizu et al.
2000). One of the characteristic features of this bacterium that makes it suitable
for controlling some of the plant’s damaging agents is the secretion of the enzyme
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Table 3.1 Essential elements needed by plants

Element Role in Plant Source

Carbon (C) Constituent of carbohydrates; necessary for
photosynthesis

Air

Hydrogen (H) Maintains osmotic balance; important in numerous
biochemical reactions; a constituent of carbohydrate

Water

Oxygen (O) Constituent of carbohydrates, necessary for respiration Air/Water

Nitrogen (N) Constituent of proteins, chlorophyll and nucleic acids Air/Soil

Phosphorus (P) Constituent of many proteins, coenzymes, nucleic acids
and metabolic substrates; important in energy

Soil

Potassium (K) Involved with photosynthesis, carbohydrate
translocation, protein synthesis, etc

Soil

Calcium (Ca) A component of cell walls; plays a role in the structure
and permeability of membranes

Soil

Magnesium (Mg) Enzyme activator, component of chlorophyll Soil

Sulfur (S) Important component of plant proteins Soil

Boron (B) Believed to be important in sugar translocation and
carbohydrate metabolism

Soil

Chlorine (Cl) Oxygen production Soil

Copper (Cu) Breathable catalysts Soil

Iron (Fe) Chlorophyll synthesis and electron transfer are involved Soil

Manganese (Mn) Controls oxidation reduction and photosynthesis Soil

Molybdenum (Mo) Stabilization of nitrogen and conversion of nitrate to
ammonium

Soil

Nickel (Ni) It is essential for proper enzyme function and seed
germination

Soil

Zinc (Zn) Regulation of metabolic activity Soil

chitinase, which is the main chitin-degrading bacterium (Deshpande 1986). Actino-
mycetes are filamentous bacteria and are mainly aerobic (Almustapha et al. 2017;
Saadoun et al. 2015). The importance of Actinomycetes lies in its ability to produce
antibiotics and enzymes (Thirumalairaj 2015).

3.2.2 Fungi

All fungi are decomposers, breaking down the dead matter for nutrients, and they
cannot produce their own food. Most fungi are multicellular, but others, such as
yeast are single-celled A fungus is a eukaryote that digests food externally and
absorbs nutrients directly through its cell walls (Abdel-Azeem et al. 2021). Most
fungi reproduce by spores and have a body (thallus) composed ofmicroscopic tubular
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cells called hypha. Fungi are heterotrophs and, like animals, obtain their carbon and
energy from other organisms (Carris 2012; Yadav 2020).

3.2.3 Algae

Algae are a large and diverse group of simple, typically autotrophic microorganisms
that can carry out photosynthesis since they capture energy from sunlight. Algae
play an important role in agriculture where they are used as biofertilizers and soil
stabilizers (Abdel-Raouf et al. 2012).

3.2.4 Protozoa

Protozoa are an unofficial term for protozoa, eukaryotes that are (non-parasitic)
and/or parasites that feed on organic matter such as other microorganisms or residual
organic tissues. Soil protozoa are divided into six groups (Fig. 3.1). Protozoa have
about 1600 species in the soil and adapt to the soil environment. Protozoa have
important functions in the decomposition and the growth cycle of plants and are
valuable markers for natural and anthropogenic effects (Foissner 2014). The high
number of protozoa and their rapid reproduction makes it possible to effectively
control microbial growth. The rhizosphere is the focus of microbial and protozoan
activities the presence of protozoa in the rhizosphere typically results in a 30–80%
plant increase (Bonkowski et al. 2000). The role that protozoa play for plants is crucial
in that they provide nutrients in minerals and access to plants and soil organisms. The
protozoa helpmaintain an ecological balance in the soil.When they graze on bacteria,
protozoa stimulate the growth of the bacterial population and decomposition rates,
and soil aggregation. Protozoa help maintain ecological balance in the soil protozoa
are important food sources for soil organisms (Hoorman 2011).

Fig. 3.1 Protozoa classification (Foissner 2014)
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3.2.5 Viruses

Viruses cause many plant diseases and are responsible for much damage to the
production and quality of crops and though they have no activity outside the body
of the living being. When they enter the living organism’s body using the genetic
material of most viruses that DNA and RNA are able to encode host cell proteins
(Lodish et al. 2000). Infected plants may have many symptoms depending on the
disease. For example, to tarnish the entire plant, abnormalities in flower or fruit
formation can be named. Even viruses can enter the microbial population and have
a major impact on microbial mortality in the biological soil environment and by
reducing the microbial community, nutrient concentrations for plants decrease and
thus have a negative impact on vegetation (Johns 2017).

3.2.6 Nematodes

Nematodes are one of the most ecologically diverse animals on earth found in almost
all habitats. The abundance of nematodes in different ecosystems has made them one
of the best indicators to monitor environmental pollution. Among soil organisms,
nematodes are one of the best biomarkers for identifying disturbances in the soil,
including contamination of heavy metals (Yeates et al. 2009; Thakur et al. 2020).
Nematodes play an important role in processes associated with most ecosystems.
In the soil food web, nematodes transform organic matter into minerals absorbed
by plants and play an important role in plant growth and crop production (Bongers
and Ferris 1999). This group feeds on bacteria, fungi, algae, yeast, and diatoms. In
addition, for invertebrates, vertebrates and plants are parasites. Feeding nematodes
from bacteria and fungi release a high percentage of nitrogen during feeding, so they
are responsible for providing more available nitrogen to the plant (Poinar 2014).
Caenorhabditis elegans nematode is a model for genetic studies that are used to
determine the association between gene expression and developmental stages. It is
the first multicellular living organism to be sequenced. The diversity of nematodes
in agricultural ecosystems and their relation to soil processes reflects the fact that
they have the capability of the biodiversity index. One of these indices is plant-
parasitic nematodes such as the familiesHeteroderidae andLongidoridae. The results
show that the population of free nematodes in organic-rich soils is much higher than
in other soils and this group acts as biodegrades in the soil. Examination of soil-
derived nematodes revealed that among the nematodes that feed on bacteria, the
Cephalobidae family is the most abundant group of soil nematodes (Bernard et al.
2017; Neher 2001).
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3.2.7 Bacteria

Bacteria are a very broad group of prokaryotic single-celled organisms that exist in
all earth’s ecosystems. Bacteria are the smallest single-celled organisms living in the
soil (Müller et al. 2002; Balasubramanian 2017; Johns 2017). These microorgan-
isms, despite their small size, have a greater metabolic capacity than other groups of
organisms. An important role in soil formation, organic matter degradation, contam-
inated soil remediation, biological deformations of nutrients in the soil and establish
interactions between plants and pathogens (Müller et al. 2002; Yadav 2021). Bacteria
are decomposing and they constitute the largest biomass of soil organisms. Bacteria
have different types that focus more on the Rhizobium and Actinomycetes which is
important for agriculture. Bacteria contribute to the carbon cycle through photosyn-
thesis and decomposition and reside in water, soil, and radioactive waste, and also
live in coexistence and parasitic relationships with plants and animals (Balasubra-
manian 2017). Rhizobium is one of the earliest known growth-promoting bacteria
that atmospheric nitrogen in a form coexistence, with the roots of legume plants,
stabilized and in the possession of the plant put (Zahir et al. 2004). Rhizobium is
a gram-negative bacterium that is associated with the formation of root nodules in
plants. This bacterium lives in coexistence with beans it extracts nitrogen from the
atmosphere and transports it to the plant, helping it to grow in low nitrogen soils
(Sawada et al. 2003).

3.3 Bacteria that Stimulate the Growth of Plants

In modern agriculture, the common use of chemical fertilizers, especially nitrogen
and phosphorus, is common; this significantly contributes to soil and climate pollu-
tion. Overuse of these chemicals, in addition to exerting adverse effects on soil
microorganisms, can affect soil fertility and cause environmental pollution (Youssef
and Eissa 2014; Prasad et al. 2021). Long-term use of these fertilizers, especially
nitrogen, often reduces soil pH and inaccessibility, inorganic elements for agricul-
tural products (Joshi et al. 2006). Chemical fertilizers used in agriculture in addition
to increasing crop yields they have negative effects on the ecosystem. Currently,
public concern about the adverse effects of chemicals is causing increasing attention
to the coexistence between plants and the microbial population in the rhizosphere
(Rai et al. 2020). Therefore, the need to use biological fertilizers worldwide has been
accepted. The use of biofertilizer and environmentally friendly, causing reduces the
usage of chemical fertilizers, and improves soil fertility (Singh et al. 2020a). These
changes are probably due to the presence of microbial populations in the soil or
rhizosphere.

Increase soil microbial population by accelerating food cycle and food avail-
ability, maintaining root health during growth in competition with root pathogens,
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and increasing nutrient uptake will increase plant growth and consequently increase
yield (Dey et al. 2004).

Biofertilizers not only improve the cycle of elements but also provides optimal
plant access towater andnutrients andultimately increases plant yield (Aliasgharzade
et al. 2006). Biofertilizers are a variety of microorganisms that help plants grow
through nutrients (Kour et al. 2020c). The types of biological fertilizers and their
classification are shown in Table 3.2 (Datta et al. 2007). Useful soil bacteria that
increase plant growth and so on are called growth-promoting bacteria, and they are
the most important types of biofertilizers (Aliasgharzade et al. 2006). Bacillus, Pseu-
domonas, Rhizobium, Azospirillum, Azotobacter is among the bacteria that stimulate
the growth of plants.Azotobacter andPseudomonas bacteria are attractedmore atten-
tion because of the ability to communicate with important crops like corn, sorghum,
wheat. These bacteria are most commonly found near or even inside the root of the
plant (Saleh-Rastin 2001). A rhizosphere is a place where the interactions between
soil, plants, and micro-organisms occur. The bacteria in the rhizosphere are called
rhizobacteria. The types of rhizobacteria that have positive effects on plant growth
and function are called plant growth-promoting rhizobacteria (PGPR).

They are an important group of free-living bacteria that colonize the rhizosphere
or, in other words, have beneficial effects on plant growth in the space around the root
(Tilak et al. 2005; Kour et al. 2019). When used in seeds or crops, it promotes plant
growth (Kloepper et al 1988). The term was first coined by Skrot and Cloper in 1978
and was used only for a variety of rhizosphere bacteria until later years. Indirectly
through controlling plant pathogens and helping to maintain plant health, the condi-
tions for plant growth were provided. Nowadays, direct mechanisms of the efficacy
of various types of PGPR such as the production of phytohormones, ionophores,
increased plant access to phosphorus through enzymatic and non-enzymatic dissolu-
tion, insoluble organic phosphates and mineral, the development of the root system,
enzymatic activities such as ACC-deaminase and rhizobitoxin production to reduce
the adverse effects of ethylene stress and increase nodulation and ultimately biolog-
ical stabilization of molecular nitrogen, etc. have been demonstrated (Antoun and

Table 3.2 Classification of biological fertilizers and related groups

Groups Examples

N2 Fixing biofertilizer Free-living, Symbiotic,
Associative symbiotic

Azotobacter, Rhizobium, Azospirillum,
Frankia, Azospirillum, Mesorhizobium,
Sinorhizzobium, Pseudomonas

P solubilizing biofertilizer, P Mobilizing
Biofertilizers

Bacillus cirulans, Pseudomonas,
Rhizobium, Serratia, Mycorrhiza

Biofertilizers for mono-nutrients
Silicates and zinc solubilizers

Bacillus spp., Burkholderia spp.,
Pseudomonas

PhytohormonesSiderophore Pseudomonas, Rhizobium, Bacillus,
Azotobacter

Bio-control Antifungal Streptomycetes, Bacillus, Pseudomonas
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Kloepper 2001; Yadav et al. 2020a; Dikilitas et al. 2021; Suyal et al. 2021; Yadav
et al. 2021a). On the other hand, early studies of PGPR have focused only on root
crops such as potatoes, radishes, and sugar beets, but subsequent studies cover a
wider range of agricultural products, including cereals and legumes (Rodriguez and
Fraga 1999).

Biological fertilizers are used to increase productivity. The importance of micro-
bial communities is due to the important role that these communities play in biolog-
ically active processes in the soil that determine the level of plant production are,
play. A bacterium called Azospirillum, in cooperation with the roots of cereal family
plants such as wheat, stabilizes air nitrogen (Tilak et al. 2005). Also, the role of
these bacteria in the rapid development of the root system, strengthening the vigor of
most seedlings in the early stages of growth, increasing the germination percentage,
increasing the green area of the farm, increasing plant tolerance to abnormal envi-
ronmental stresses (drought, salinity, etc.) and living factors (many soil diseases)
and ultimately increased crop yield has been demonstrated (Lucy et al. 2004). This
bacterium, in combination with plants such as wheat, sorghum, and maize, showed
a yield increase of about 10–30%, but this increase was attributed to the production
of plant growth hormones including auxin in addition to nitrogen production. These
bacteria increase the number and length of sub-lethal roots and lethal fibers and ulti-
mately increase the root uptake which results in increased absorption of water and
nutrients by the plant (Saleh Rastin 1999). Today, it is believed that the interactions
between plant roots and soil organisms have been affected by human interventions
through agricultural and industrial activities (Lynch 2002). So the quality of the soil
is not only dependent on its physical and chemical properties, but also closely related
to its biological properties (Ebhin Masto et al. 2006).

The application of biological fertilizers to maintain biological balance, soil
fertility in order tomaximize achieving optimal biological relationships of the system
and minimizing the use of the materials and operations that disrupt these relation-
ships, especially the use of chemical fertilizers, are of particular importance, although
the use of biological fertilizers in agriculture It has great antiquity. In the past not
so far, all the food consumed by humans has been produced using such valuable
resources but the scientific exploitation of such resources, not recorded. The applica-
tion of biological fertilizers, especially bacteria, stimulating plant growth, the most
important strategy in management, integrated plant nutrition for sustainable agricul-
ture system, in combination with the consumption of chemical fertilizers by using
these bacteria are considered (Sharma 2003; Singh et al. 2020b).
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3.3.1 The Mechanism of Action of Growth-Stimulating
Bacteria

Increased plant growth by growth-promoting bacteria is a well-known phenomenon,
and this growth is due to some traits and the specific properties of the growth-
promoting bacteria. Growth-promoting bacteria induce plant growth directly because
of their ability to supply nutrients (nitrogen, phosphorus, potassium, and essential
minerals) or plant hormone production, also by reducing the effects of pathogens,
the production of hydrolytic enzymes and siderophore production indirectly affects
plant growth (Kloepper and Schroth 1981; Tiwari et al. 2020; Yadav et al. 2020c).
Growth-stimulating bacteria by facilitating food absorption and increasing access to
nutrients through nitrogen fixation, the dissolution of minerals, and the production
of plant hormones directly increases plant growth (Bhardwaj et al. 2014). Direct and
indirect effects of growth-promoting bacteria are shown in Fig. 3.2.

Plants, directly and indirectly, increase soil fertility, by increasing the amount of
nitrogen and phosphorus, and other nutrients needed by the plant and synthesizing
various phytohormones such as indole-3-acetic acid, which can promote plant growth
(Saleem et al. 2007). And suppressing pathogens in the soil by producing hydrogen
cyanide, siderophore and antibiotics help increase plant tolerance to drought, soil
salinity, and metal toxicity according to Kloepper and Schroth (1981), plant growth
is facilitated by PGPR by altering the microbial community in the rhizosphere wall
through the production of various materials (Table 3.3) (Kloepper and Schroth 1981;
Hesham et al. 2021; Tiwari et al. 2021).

PGPR is classified into two main groups: (i) extracellular PGPR, which exists
in the rhizosphere or spaces between root cortical cells and (ii) intracellular PGPR,
which exists within the root cells (e.g., Bacillus, Pseudomonas, and Azotobacter).

Fig. 3.2 Schematic representation showing direct and indirect effects of growth promoting bacteria
on plants (Ngoma et al. 2012)
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Table 3.3 Types of Growth promoting substances released by PGPR

PGPR Plant growth-promoting
traits

References

Pseudomonas putida IAA, siderophores, HCN,
ammonia,
exo-polysaccharides,
phosphate solubilization

Ahemad and Khan (2012a, 2012c)
and Ahemad and Khan (2011c)

Pseudomonas aeruginosa IAA, siderophores, HCN,
ammonia,
exo-polysaccharides,
phosphate solubilization

Ahemad and Khan (2011a,
2011k) and Ahemad
and Khan (2010d)

Klebsiella sp. IAA, siderophores, HCN,
ammonia
exo-polysaccharides,
phosphate solubilization

Ahemad and Khan (2011b, 2011f,
2011g)

Enterobacter asburiae IAA, siderophores, HCN,
ammonia,
exo-polysaccharides,
phosphate solubilization

Ahemad and Khan (2010a,
2010b)

Rhizobium sp. IAA, siderophores, HCN,
ammonia,
exo-polysaccharides

Ahemad and Khan (2012b),
Ahemad
and Khan (2011i), Ahemad and
Khan (2010c)
and Ahemad and Khan (2009b)

Mesorhizobium sp. IAA, siderophores, HCN,
ammonia,
exo-polysaccharides

Ahemad and Khan (2012d),
Ahemad
and Khan (2010e, 2010h) and
Ahemad and Khan (2009a)

Acinetobacter sp. IAA, phosphate
solubilization, siderophores

Rokhbakhsh-Zamin et al. (2011)

Rhizobium sp. IAA, siderophores, HCN,
ammonia,
exo-polysaccharides

Ahemad and Khan (2011e, 2011j)
and Ahemad
and Khan (2010f, 2010g)

Pseudomonas sp. A3R3 IAA, siderophores Ma et al. (2011a)

Psychrobacter sp. SRS8 Heavy metal mobilization Ma et al. (2011b)

Bradyrhizobium sp. IAA, siderophores, HCN,
ammonia,
exo-polysaccharides

Ahemad and Khan (2011f) and
Ahemad
and Khan (2011d, 2011h, 2011l)

Pseudomonas aeruginosa
4EA

Siderophores Naik and Dubey (2011)

Bradyrhizobium sp. 750, Heavy metal mobilization Dary et al. (2010)

Bacillus sp. PSB10 IAA, siderophores, HCN,
ammonia

Wani and Khan (2010)

Paenibacillus polymyxa IAA, siderophores Phi et al. (2010)

(continued)
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Table 3.3 (continued)

PGPR Plant growth-promoting
traits

References

Rhizobium phaseoli IAA Zahir et al. (2010)

Stenotrophomonas
maltophilia

Nitrogenase activity,
phosphate

Mehnaz et al. (2010)

Rahnella aquatilis Phosphate solubilization,
IAA, ACC
deaminase

Mehnaz et al. (2010)

Azospirillum amazonense IAA, nitrogenase activity Rodrigues et al. (2008)

Mesorhizobium sp. IAA, siderophores, HCN,
ammonia

Wani et al. (2008)

Serratia marcescens IAA, siderophore, HCN Selvakumar et al. (2008)

Enterobacter sp. ACC deaminase, IAA,
siderophore,
phosphate solubilization

Kumar et al. (2008)

Pseudomonas jessenii ACC deaminase, IAA,
siderophore, heavy metal
solubilization, phosphate
solubilization

Rajkumar and Freitas (2008)

Pseudomonas aeruginosa ACC deaminase, IAA,
siderophore, phosphate
solubilization

Ganesan (2008)

Azotobacter sp.,
Mesorhizobium sp.,
Pseudomonas sp., Bacillus
sp.

IAA, siderophore,
antifungal activity, ammonia
production,HCN

Ahmad et al. (2008)

Bradyrhizobium sp. IAA, siderophores, HCN,
ammonia

Wani et al. (2007a)

Rhizobium sp. IAA, siderophores, HCN,
ammonia

Wani et al. (2007b)

Mesorhizobiumciceri,
Azotobacter chroococcum

IAA, siderophores Wani et al. (2007c)

Pseudomonas, Bacillus Phosphate solubilization,
IAA
and siderophores

Wani et al. (2007c)

Klebsiella oxytoca IAA, phosphate
solubilization,
nitrogenase activity

Jha and Kumar (2007)

The beneficial effects of PGPRs on a wide range of crops including cereals, vegeta-
bles, oilseeds, and crops have been reported. Currently, these bacteria are used as
biological fertilizers and controllers for agricultural production. Therefore, a funda-
mental understanding of the performance and diversity of microorganisms before
using microbial soil technology in the rhizosphere is essential (Babalola 2010).
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3.3.2 The Influence of PGPR Bacteria on System
Architecture and Root Structure

The root system of most plants, in order to search for nutrients in the soil for survival
and growth, they have found a special expansion. The root is a complex organ of the
plant system fromdifferent parts like the tip of the root,meristem root, differentiation,
and elongation area and emerging area of the lateral roots are composed (Sadafi et al.
2002). These areas have a special role and are in plants distinct. For example, hairy
roots that are differentiated from specific epidermal cells play an important role
in better nutrition of the plant, gene expression research (Viterbo et al. 2007), and
measure the nutrients in the soil (Abdel-Latif et al. 2005).

An important feature of plants is their ability to perform useful interactions with
microbial organisms in the soil. For example, in root tip legumes, the most important
region is the onset of the uptake of Rhizobacteria and consequently the formation of
root nodes. For example, in root tip legumes, the most important region is the onset
of the uptake of Rhizobacteria and consequently the formation of root nodes. That
by this interaction the plant can live and non-living environmental stresses better to
endure and make more use of nutrients in the soil (Coventry et al. 2006). There are
many capillary and lateral roots in the cereals that are the site of activity of PGPR
plant growth-promoting Rhizobacteria. In fact, the plants utilizing these microbial
agents have beneficial properties including development, and they find the expansion
of capillary and lateral roots (Paulitz and Belanger 2001). Root system architecture
(RSA) from root system topology, the spatial distribution ofmain and lateral roots, the
number and size of roots are composed. Various factors include living and non-living
beings affect the RSA. Including these agents are PGPR bacteria. These bacteria
mainly change the root structure through hormonal interactions in favor of the plant
(Suresh et al. 2010). These bacteria can stimulate root growth through the production
of plant hormones, secondary metabolites, and enzyme balance and this way make
the acquisition of foodstuffs and better root performance.

One of the most visible effects of them is the decrease in growth rate, early roots,
and increase in number and length of lateral and capillary roots. PGPR bacteria with
nitrogen fixation, phosphorus solubilization, and siderophore production, improve
plant nutrition (Fig. 3.3) (Kour et al. 2021; Rana et al. 2019;Yadav et al. 2020b;Yadav
et al. 2021b). These microbial agents also, with the change in gene transcription
and the biosynthesis of metabolites in plant cells, cause changes in root physiology
(Suresh et al. 2010).
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Fig. 3.3 Impact of PGPR bacteria on root system architecture (RAS) (Rubin et al. 2017)

3.4 The Most Important Plant Growth-Promoting Bacteria

3.4.1 Azospirillum

Bacteria of the genus Azospirillum are generally known as plant hormone-producing
bacteria, polyamines, and amino acids in the culture medium. Plant hormones
produced by the genus Azospirillum affect the rate of respiration, metabolism, and
root growth and thus increase the uptake of water and nutrients in inoculated plants,
which can increase growth performance (Mohammadi et al. 2010). A bacterium
called Azospirillum, in cooperation with the roots of cereal family plants such as
wheat, stabilizes air nitrogen (Tilak et al. 2005). Also, the role of these bacteria in
the rapid development of the root system, strengthening the vigor of most seedlings
in the early stages of growth, increasing the germination percentage, increasing
the green area of the farm, increasing plant tolerance to abnormal environmental
stresses (drought, salinity, etc.) and living factors (many soil diseases) and ultimately
increased crop yield has been demonstrated (Lucy et al. 2004). This bacterium, in
combination with plants such as wheat, sorghum, andmaize, showed a yield increase
of about 10–30%, but this increase was attributed to the production of plant growth
hormones including auxin in addition to nitrogen production. These bacteria increase
the number and length of sublethal roots and lethal fibers and ultimately increase the
root uptake which results in increased absorption of water and nutrients by the plant
(Saleh Rastin 1999).
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3.4.2 Azotobacter

Azotobacter bacteria, Azospirillum, are the most important plant growth-promoting
bacteria. In addition to the biological stabilization of nitrogen, by producing signif-
icant amounts of growth hormones, especially auxin, gibberellin, and cytokinin, it
promotes the growth and function of crops (Zahir et al. 2004). Azotobacter is one
of the most useful soil bacteria which due to its abundance and spreading propaga-
tion, has been considered more than other types of nitrogen stabilizers. Research has
shown that Azotobacter as a seed inoculum is effective not only in nitrogen fixation,
but also in the production of growth hormones, antifungal compounds, siderophore,
and phosphate solubilization (Hokmalipour 2017).

Azotobacter is a gram-negative, aerobic, chemoorganotropic bacterium in rod,
spherical and elliptic shapes. It belongs to the Gamma-proteobacteria and Pseu-
domonads family and has seven species. Azotobacter lacks sporulation ability, but
usually forms cysts. Various species of Azotobacter are found from very hot and
humid regions to Polar Regions in the range of pH 3–9. However, they are mostly
found in neutral to alkaline soils. Azotobacter is able to stabilize molecular nitrogen
in a non-symbiotic manner. It can synthesize a variety of amino acids, vitamins and
plant growth hormones, and a variety of exopolysaccharides. The role of Azoto-
bacter in plant growth is due to the production of growth hormones, soluble phos-
phate solubility, increased elemental uptake, nitrogen fixation, increased resistance to
stress, and biocontrol of plant pathogens. Some Azotobacter strains have shown their
potential in bioremediation of contaminated soils (Garrity et al. 2005). In sustain-
able agricultural systems, the application of biofertilizers is of particular importance
in enhancing the production and maintenance of sustainable soil fertility. The term
biofertilizers refers to organic matter derived from animal manure, plant residues,
green manure, etc. as well as beneficial bacterial and fungal organisms. They are
known for their activity and are the most important biological fertilizers for growing
plant growth bacteria or so-called PGPR. This group of bacteria, in addition to
increasing the bioavailability of soil minerals through biological nitrogen fixation,
phosphorus and potassium solubilization, and inhibition of pathogens, affect crop
yield through the production of plant growth regulating substances and hormones
they put (Sturz andChristie 2003). Also, due to the effect of growth on the growth and
development of crops, these bacteria are also called performance-enhancing bacteria
(Vessey 2003).

Some species ofAzotobacter,Azospirillum, andPseudomonas are themost impor-
tant species of PGPR in the root environment (rhizosphere) which, besides biological
stabilization of nitrogen and solubilization of soil phosphorus by producing signifi-
cant amounts of excitatory substances and hormones a variety of auxins, gibberellins,
and cytokines affect the growth and function of crops (Zahir et al. 2004). Recent
studies have indicated that the production of indole acetic acid and cytokinin by
the use of tryptophan and basal adenine-secreted amino acids, hydrolysis of ethylene
precursor, 1-amino cyclopropane, 3-carboxylic acid (ACC) by enzymeC-deaminase,
and the production of hormonal and quasi-hormonal substances such as indole butyric
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acid, gibberellic acid, etc., are the most important mechanisms of these bacteria due
to the reaction of nitrite with nitrate respiration with ascorbic acid (Zahir et al. 2004).

The root of the plant is a water-absorbing organ and nutrients from the soil and
organs producing various compounds from including growth hormones is important
for plant growth and development. Research has shown that the growth of maize root
is due to auxin produced by Azotobacter crococci and also the growth of maize root
and other crops is due to the release of gibberellic acid and cytokinin by Azospirillum
lipoferum and Pseudomonas putida has been identified (Hall et al. 1996).

3.4.3 Phosphobacter

Phosphorus is an important nutrient for plant growth that is low in soil avail-
ability. Phosphorus is both organic and inorganic forms found in soil. Plant growth-
stimulating bacteria or PGPR bacteria in the soil and rhizosphere are plants that help
plant growth through differentmechanisms (Kour et al. 2020a, b). The ability of some
microsatellites to convert insoluble phosphorus into a usable form such as inorganic
phosphate is an important feature of PGPR that enhances plant performance. The
main mechanism for the dissolution of inorganic phosphate is the production of
organic acids, and in the organic phosphorus degradation, phosphatases play a major
role in soil. Food supply is a challenge as the population grows. The green revolution,
although it has been able to help people with their food needs, with the growing trend
of population and the need for more food, the need for another green revolution has
been felt with greater respect for environmental principles and their sustainability.
The green revolution that was created by the introduction and supply of chemical
fertilizers, along with increased production, posed a threat to the environment and to
humans.

Therefore, human beings have sought to use methods that are more environmen-
tally friendly to preserve their basic production and sustainability through sustainable
agriculture, with a greater emphasis on soil bio-potentials and capabilities. Turning
to biofertilizers instead of chemical fertilizers seems to be a good alternative. Phos-
phate biofertilizers are used according to the importance and role of phosphorus in
plant nutrition (Khan et al. 2007). Despite the abundance of phosphate compounds
in the soil, plants absorb phosphorus in the form of phosphate anion (H2PO4

− or
HPO4

2−) from the soil solution (Ezawa et al. 2002). Phosphorus has the leastmobility
in soil and plants. Root development, stem consistency, flower and seed formation,
fruit ripening, nitrogen fixation in legume plants, crop quality, and disease resistance
are all directly related to phosphorus nutrition (Fageria 2009) (Rana et al. 2020).
Phosphorus is one of the essential components of energy metabolism, part of nucleic
acids, and biological membranes. Basic biochemical processes such as photosyn-
thesis and respiration are activated by inorganic phosphate (Pi) or its organic deriva-
tives (Raghothama and Karthikeyan 2005). Phosphorus is the second most impor-
tant element in plant nutrition. Which has a significant role in many physiological
and biochemical reactions of plants (Fageria et al. 2013). Phosphorus stimulates
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nitrogen fixation in legume plants and is essential for the production of sugars (Saber
et al. 2005). Soil soluble phosphate concentrations are usually very low, with values
of 1 mg kg-1 or less (Paul 2007). The very low levels of phosphate absorbed in
the rhizosphere make it one of the most important growth-limiting factors in many
ecosystems. Mineral fixation of phosphate in the soil and the formation of organic
complexes is among the primary reasons for its low availability (Raghothama and
Karthikeyan 2005). The dominant form of phosphate in alkaline conditions is trical-
cium phosphate. Inorganic phosphate rocks such as fluorapatite and francolite are
sources of calcium phosphate that are insoluble in soil and do not supply the plant’s
needs. Phosphate dynamics in the soil are affected by physicochemical (adsorption
and desorption) and biological (non-motility and mineralization) processes (Fageria
2009; Paul 2007).

3.4.3.1 PGPR and Phosphate Solubilizing Bacteria

The microbial community of the soil produces its fertility through decomposition,
mineralization, storage, and affecting nutrient release due to the release of about
40% of substances Photosynthesis in the plant rhizosphere has provided this envi-
ronment with favorable conditions for the presence of themicrobial population; plant
growth-promoting bacteria or PGPR contain root-surrounding bacteria that promote
plant growth. Today, PGPR are used as microbial biogenic fertilizers or controllers
(Ping and Boland 2004). The mechanisms by which PGPR influences plant growth
are divided into direct and indirect effects. The indirect effect is mostly through the
production of microbial metabolites that have a negative effect on pathogens such as
antibiotics, siderophores, or HNC and inhibit the growth of pathogenic microsatel-
lites but increase their direct effects through pathways (Yadav et al. 2016). Synthesis
of plant hormones facilitates nutrient uptake, nitrogen fixation, reduction of root
membrane potential, synthesis of some enzymes such as (ACC deaminase) that
modulate the levels of plant hormones (Rodriguez and Fraga 1999). And also the
dissolution of inorganic phosphate and mineralization of organic phosphate can be
used in plants (Rodriguez and Fraga 1999; Timmusk and Wagner 1999). Evidence
of the role of rhizosphere microsatellites in dissolving inorganic phosphate has been
presented in the year 1903 (Illmer and Schinner 1992). Microsatellites increase
the availability of phosphorus to plants by mineralizing organic phosphorus and
dissolved sedimentary phosphates (Chen et al 2006; Pradhan and Sukla 2005).

Bacteria are much more effective in phosphate solubilization than fungi and have
a high population (Alam et al. 2002). Significant populations of phosphate solubi-
lizing bacteria exist in the soil and in the rhizosphere of the plant which includes
aerobic and anaerobic species with the predominance of aerobic species, and their
populations in the rhizosphere were significantly higher than non-rhizosphere soil
(Whitelaw 2000). Bacteria, B. megaterium, B. circulans, B. subtilis, B. polymixa,
B. sircalmous, P. striata, and Enterobactercan be identified as the most important
species (Kucey et al. 1989). Phosphate-solubilizing bacteria have been used since
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the year 1950 as biofertilizers. The relationship between plants and phosphate solu-
bilizing bacteria is known as a synergistic or intensifying relationship in nature.
Because, on the one hand, the bacteria provide soluble phosphate to the plant and on
the other hand, the plant, through its root secretions, releases the carbon compounds
needed most often (sugars) for bacterial growth (Pérez et al. 2007). Synchronous
use of phosphate solubilizing bacteria with other beneficial rhizosphere microflora
such as mycorrhizal fungi and nitrogen-fixing bacteria increase the growth of plants
compared to when they are alone more stimulated (Zaidi et al. 2003; Perveenet al.
2002). The co-operation of microsatellites in the rhizosphere of plants can improve
the uptake of available phosphates and also provide stabilized phosphate sources for
the plant (Tao et al. 2008). Studies show that Bacillus, Pseudomonas, and Rhizobium
are the most potent solvents are phosphates (Rodriguez and Fraga 1999). Organic
phosphorus compounds such as phytic acid may account for 20–80% of the soil
phosphorus. Almost half of the micronutrients in the soil and roots of the plants
mineralize organic phosphorus with their phosphatase activity. Acidic and alkaline
phosphatases Organic phosphate as a substrate becomes mineralized (Beech et al.
2001). Although the main mechanism in mineralization of organic phosphate soil
produces acid phosphatases (Rodrıguez et al. 2000a). In addition, the release of
organic anion and the production of siderophore can hydrolyze soil organic phos-
phorus (Yadaf and Tarafdar 2001). The degradability of organic phosphorus is largely
dependent on the biochemical and physicochemical properties of the molecule, for
example, nucleic acids, phospholipids, and phosphate sugars are readily degraded,
while phytic acid polyphosphates decompose slowly (Rodriguez and Fraga, 1999).
Phosphorus can be released from soil organic compounds by three enzymatic groups:

i–Non-specific phosphatases, which follow the dephosphorylation of phospho-
ester or phosphonidaride bonds in organic matter.

ii–Specific phosphatases such as phytases that release phosphorus from phytates.
iii–Phosphonatase and C-P Lias (Rodriguez et al. 2006).
Phytases (myo-inositol hexakisphosphate phosphohydrolase) belong to a specific

group of phosphomonosides that are able to release phosphorus from phytates. Phytic
acid was first discovered in 1903 and its salts are known as phytate (Mullaney and
Ullah 2005). In Fig. 3.4 release phosphate from the phytate molecule by phytase
enzyme.

Fig. 3.4 Hydrolysis of phytate in presence of phytase enzyme (Haefner et al. 2005)
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3.4.4 Bacillus

Bacillus bacteria have a wide range of potent antimicrobial metabolites such as
surfactin, fengicycin, bacillin, deficidin, macrolactin produce, and control soil-borne
plant pathogens (Pristchepa et al. 2006). These bacteria increase the growth and
induction resistance of the plant. Bacillus subtilis Cohn 1872 by producing anti-
fungal proteins, it has an inhibitory effect on growth plant pathogens in the culture
medium (Leben 1987). Bacillus subtilis bacteria marketed under different brand
names reduces 99% of superficial white matter disease cucumbers and squash.
Also, bacteria B. cereus Frankland, Bacillus lentimorbus Dutky, B. licheniformis
(Weigmann, & Frankland Emend, Gibson) by producing volatiles and degrading
enzymes chitin and glucan, decay reduces potatoes. Bacillus bacteria due to their
widespread presence in soil, tolerance of temperature changes, pH, environmental
salinity, and the production of endospore resistant forms are considered as suitable
agents in biological control. Species Bacillus is often found in soil and rhizosphere.
These bacteria produce siderophores, produce enzymes, produce antibiotics, and
induce systemic resistance to help control plant pathogens (Jacobsen et al. 2002).

3.4.5 Pseudomonas in Biological Control

Fluorescent Pseudomonas in the rhizosphere, due to the ability to protect plants
against fungal, bacterial, and nematode pathogens is important (Gangwar 2013).
These bacteria form the most important constituents of microflora beyond the root,
plants are considered andbecause of their rapid growth, easiermetabolism, and adapt-
ability, theyhavebeen the focus of biological research (Vacheron et al. 2013). Fluores-
centPseudomonas species, especially the speciesP. putida,Pseudomonas fluorescens
(Flugge) Trevisan are the most abundant bacteria in the rhizosphere. These bacteria
through the impact on the growth of the pathogen and the production of siderophore
since the late 1970s are of great importance in biological control (Baker and cook
1974). Mechanisms this group of bacteria is competition for iron through the produc-
tion of siderophore production of hydrogen cyanide (Nejad and Johnson 2000).
Secretion of extracellular enzymes such as chitinase, β 1,3 glucanases, protease,
and lipase production of antibiotics, production of siderophore pseudobacteri, and
povidorin (Jetiyanon et al. 2003) caused stimulate plant growth, competition for
food, and occupy microbial sites in the area beyond the root and induce systemic
resistance of the plant (Sun et al. 2010).
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3.5 Conclusion

In today’s world, alongside the problem of human societies providing food and
producing more food, there are other important issues such as climate change and
environmental problems, and the decline of genetic resources. The use of biological
agents such as fertilizers and bio-pesticides in the direction to reduce the consumption
of these hazardous compounds can have an important role in protecting the environ-
ment and agricultural fields. In addition to increasing the efficiency of these biolog-
ical agents using new biotechnologies like genetic engineering can also increase their
effectiveness. A lot of chemical changes in the soil, it is done by the soil microbial
biomass. Thus, microorganisms have a major control role in the cycle, and loss of the
nutrients is from the soil. Quantity and soil organic matter quality is one of the most
important factors in controlling the abundance and activity are microorganisms and
therefore the bedrock of many changes of microbial conversion in the soil is consid-
ered. Also, studies on the coexistence of growth-promoting bacteria with crops in
stress and non-stress conditions indicate the role of these bacteria in enhancing the
performance of host plants and their resistance to environmental stresses. So with
the development of power usage growth-stimulating bacteria in agriculture, one can
step towards sustainable agriculture and while producing acceptable performance, it
prevented environmental pollution and contributed to the survival and sustainability
of the ecosystem.
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Chapter 4
Phosphorus Solubilization: Mechanisms,
Recent Advancement and Future
Challenge

Zarrindokht Emami-Karvani and Zahra Chitsaz-Esfahani

Abstract Phosphorus deficiency is the limiting factor for crop productivity on more
than 40% of arable lands worldwide and using fertilizers is counted as the most
popular way to face this problem. The increasing food demand and searching for
efficient, cost-effective, and environmental friendly approaches to sustainable agri-
culturemade scientists and farmers take biofertilizers to account for a potent solution.
Phosphate-solubilizing microorganisms (PSMs) with the potential of transforming
insoluble forms of phosphate to soluble and bioavailable forms are good choices for
promoting plant growth with increasing soil soluble P as a major limiting macronu-
trient. A variety of bacterial and fungal species belongs to PSMs. These organisms are
either free organisms in the rhizosphere or live endophytic in external or internal parts
of plant tissues. These organisms can act either as free organisms in the rhizosphere
or live endophytic in external or internal parts of plant tissues. PSMs use several
mechanisms for solubilization and mineralization of inorganic and organic phos-
phates such as organic acid production, chelation, siderophore production, and excre-
tion of phosphatase and phytase enzymes. Phosphate-solubilizing microorganisms
stimulate plant growth by several mechanisms including solubilization of organic P
and mineralization of inorganic P, which release soluble P as a nutrient for plants,
production of growth-promoting phytohormones such as Indole acetic acid (IAA),
ACC deaminase, gibberline and cytokinins; and release of biocontrol agents such
as siderophores, antifungal agents and antibiotic. Preparation of profitable microbial
inoculants from PSMs, their field application, and challenges in the way of microbial
biofertilizer application are from the contents discussed in this chapter. To prevent
using biofertilizers failure, an appropriate amount of used inoculants for different
plant-soil conditions and different microbial interactions between applied PSMs and
other soil inhabitants should be investigated before application.
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4.1 Introduction

After nitrogen (N), phosphorus (P) is the most crucial key nutrition for plant growth
which directly affects many fundamental metabolic processes in the plant such
as photosynthesis, cell development, cell division, respiration, energy transfer and
macromolecular biosynthesis (Shenoy and Kalagudi 2005; Yadav 2021). Despite
the fact that phosphorus presents abundant in the soil in both organic and inorganic
forms, this macronutrient is the most limiting factor for plant development (Kour
et al. 2020c, 2021). The establishment of insoluble complex such as tricalcium phos-
phate in alkaline or neutral soils and aluminum phosphate and iron phosphate in
acidic soils makes phosphorus unavailable to plants root uptake (Barber 1995). This
phenomenon rapidly occurs after the application of phosphatic fertilizers (Chen et al.
2006) so that only 0.1% of soil phosphorous which contents 0.05% (w/w) of this is
available for plants (Alori et al. 2017).

Regarding thementioned problem and negative environmental effects of inorganic
phosphate fertilizers such as wastewater eutrophication and groundwater contamina-
tion (Kang et al. 2011), scientists seek to investigate management strategies to solve
the problem of phosphorus fertilization output, gain more crop yields and reduce
environmental pollution (Alori et al. 2017).

A variety of bacterial species, mainly present in the plant rhizosphere called plant
growth-promoting bacteria (PGPB), are known as lucrative microorganisms used
instead of synthetic chemicals which can greatly improve plant growth by providing
plant required nutrients and may overcome environmental health menace and help
soil productivity (Esitken et al. 2010). There are plenty of biological processes
containing the transformation of insoluble soil nutrients which results in solubi-
lization and mineralization of insoluble soil phosphorus for plant use. Aside from
chemical fertilization, this is the only practicable way to enhance plant-available
phosphorus.

In the soil rhizosphere, there is a large number of microorganisms, effective at
releasing phosphorus from different kinds of soil phosphorus through solubilization
and mineralization (Bhattacharyya and Jha 2012), called phosphorus-solubilizing
microorganisms (PSMs). These microorganisms enhance the bioavailability of soil
insoluble P compounds for plant uptake (Sharma et al. 2013; Singh et al. 2020a)
by solubilizing insoluble mineral phosphorus and mineralizing insoluble organic
phosphorus (Alori et al. 2017). In some cases, the plant growth-promoting ability of
PSBs has been exhibited bymeasuring siderophore and indole acetic acid production
(Park et al. 2011). To explain the mechanisms of solubilization of the insoluble P,
there are three valuable theories counting the sink theory, the organic acid theory and
the theory of acidification through H+ excretion (Zaidi et al. 2009a). This chapter
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especially focuses on the methods of phosphorus solubilization, its mechanisms,
recent developments and future challenges.

4.2 Importance of Phosphorus for Agriculture

Adequate levels of soil nutrients always have been a crucial agricultural matter.
Sustainable development of farming requires a vast investigation on all physical,
chemical and biological processes affecting nutrients availability in soil for plant
use (Pierzynski et al. 2005; Prasad et al. 2021; Sharma et al. 2021). Because of the
restrictions of P availability, phosphorus is generally recycled to diverse extents in
different ecosystems depending on soil type, climate, and ecosystem level (Filippelli
2002; Hesham et al. 2021). In this chapter, we especially focus on phosphorous
as the most important key element for plant growth and agriculture after nitrogen.
This element is necessary for all life on our planet. Dramatic growth of the human
population during the twentieth century hasmade a big food demandwhich is directly
dependent on the presence of phosphorus (Walan et al. 2014). It is interesting to know
that based on investigations, P deficiency is the limiting factor for crop productivity
on more than 40% of arable lands worldwide (Vance 2001) and using fertilizers is
counted as the most popular way to face this problem.

4.3 Phosphate Resources and Reserves

There are a handful of P pools on earth, counting ocean sediments, land sources,
mineral reserves and resources, terrestrial, oceanic and freshwater living organisms,
seawater and freshwater (Yuan et al. 2018). Literally, about phosphate, resource refers
to “Phosphate rock (PR) of any grade that may be produced at some time in the
future, including reserves” and reserve is “Phosphate rock that can be economically
produced at the time of the determination to make suitable products, reported as tons
of concentrate” (VanKauwenbergh 2010).While phosphate is found in various forms
such as calcite, quartz, dolomite, apatite and other deposits or other primary minerals
which are formed during the earth geological age, phosphate rocks are known as
sedimentary (carbonate apatite) and igneous (fire-formed (F− or C− orOH−-apatite))
are used for producing fertilizers (Samreen and Kausar 2019). Although igneous is
lower in grade (usually containing less than 5% P2O5), the ability to upgrade its
concentration to 35–40%P2O5 makes igneous phosphate rock the reserve of 10–15%
of phosphate fertilizers (Edixhoven et al. 2014). Sedimentary and igneous resources
are mainly located in a handful of countries such as China, the U.S. and Morocco
(Rodrı́guez and Fraga 1999), but its bioavailability for plants highly depends on pH
and soil types, so that soil acidity steadily discharges plant-available P. After the
U.S., respectively Morocco and China are the largest phosphate fertilizer producers
(Rodrı́guez and Fraga 1999; Samreen and Kausar 2019; Van Kauwenbergh 2010).
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Table 4.1 Common
phosphorous (P) minerals
found in acid, neutral and
calcareous soils

S. N. Minerals Chemical formula

Acid soils

Strengite FePO4·2H2O

Variscite AlPO4·2H2O

Neutral and calcareous soils

B-tricalcium phosphate Ca3(PO4)2

Dicalcium phosphate CaHPO4

Dicalcium phosphate
dehydrate

CaHPO4·2H2O

Fluorapatite Ca5(PO4)3F

Hydroxyapatite Ca5(PO4)3OH

Octacalcium phosphate Ca4H(PO4)3·2-5H2O

Sources Yadav and Verma (2012)

Besides, counting P as a finite non-renewable resource, it is acknowledged that the
world’s known sources of superior phosphate rock may be exhausted, within the
current century, if we continue its current rate of use (Cordell et al. 2009).

Phosphate plays a crucial role in plant growth. Although P is the 11th most abun-
dant element on the earth surface, usually there are low levels of soluble P in soils;
about 1 ppm or less (10 M H2PO4

−) because of its high reactivity which is due to
the occurrence of francolite. Between different forms of phosphate, that plant should
uptake, the greatest part of absorption belongs to the water-soluble forms of HPO4

2−
or H2PO4

− (Krauss and Saam 1984; Rodrı́guez and Fraga 1999). Common phos-
phorous (P) minerals found in acid, neutral and calcareous soils are shown in (Yadav
and Verma 2012) Table 4.1.

Water-soluble P (WSP) can easily mobilize to water-insoluble P after rebounding
with soil ingredients such as Fe oxides or hydroxides and Al hydroxides in acidic
soils and Ca carbonate in alkaline soils through chemical precipitation or physical
adsorption. Consequently, a crop grown can recover only 10–30% of the applied
phosphate fertilizer (Balemi and Negisho 2012). On another hand, using novel high-
yielding crop fertilizer varieties which were introduced in the 1960s resulted in
extracting much more nutrients from the soil, growing irrigation requirements and
using more fertilizers. Besides, phosphate and consequently phosphate fertilizers
price grow rapidly in 2007 (Walan et al. 2014). Thus, the mentioned facts and surface
water eutrophication due to excessive P from soil surface runoff, made scientists
investigate the alternative solutions (Chien et al. 2009).
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4.4 Soil Phosphorus Cycle

There are a handful of main sources of mineral phosphorous in the world. The first
one is an igneous rock in the lithosphere containing fluorapatite crystals. Another one
is sedimentary rocks, in which P is mainly associated with carbonate-fluorapatite,
then is sedimentary rocks inwhich P ismainly associatedwith carbonate-fluorapatite.
Apatite minerals are dominated by sediments of ocean and freshwaters (Filippelli
2008; Stumm 1973; Yuan et al. 2018). As it is mentioned before, in apatite minerals
phosphate presents in links with calcium cations. The reaction of carbonic acid
with apatite minerals results in weathering of phosphate rocks through the following
reaction:

Ca5(PO4)3OH + 4H2CO3 ↔ 5Ca2+ + 3HPO2−
4 + 4HCO−

3 + H2O

This reaction, known as chemical weathering, is a consequence of preparing raw
material by physicalweathering. Physicalweathering provides P, an unavailable form
of phosphorus for biota through soil erosion. But this phenomenon produces fine raw
materials whit large surfaces for chemical weathering which provides soluble forms
of phosphate for biota (Filippelli 2008;Yuan et al. 2018).Ocean sediments are another
large phosphor pool. Soils weathering andwaterways runoff deliver phosphorus from
land to the oceans. Meanwhile, riverine runoff, a very short part of P (only 0.5 ± 0.5
Tg P yr − 1) transports to the ocean via atmospheric transfer (Yuan et al. 2018).

Living organisms are the bridges between mineral and organic P cycles either in
terrestrial or aquatic environments. The organic cycle consists of the transformation
of P from soil to plants and animals through immobilization, and then returning to the
soil through mineralization by microorganisms after their death. Organic tissues are
oxidized by bacterial and fungal strains during mineralization, and resulted in P from
this reaction is released to the soil as bioavailable phosphate. During mineralization,
bacteria and fungi oxidize organic tissue and release P as bioavailable phosphate
to soil (Yuan et al. 2018). Soil organisms and plants root participate in phosphate
solubilization by producing CO2 and organic acids. Biochemical respiration is the
phenomenon in which CO2 releases in the soil and provides an acidic area around
degrading organic tissue (Schlesinger and Bernhardt 2013). This increase in soil
acidity results in rapid dissolution of P-bearing minerals and releasing P to the soil
for plant uptake. Secretion of phosphatase or making symbiotic lives with other
organisms (such as mycorrhizae) are other tactics using by plants to increase soluble
and bioavailable forms of phosphate around their roots (Yuan et al. 2018). The P
concentration of the soil solution at equilibrium state will provide maximum P for
plant uptake, highest at the slightly acidic to neutral pH range and are reduced
considerably in strongly acidic or alkaline soil conditions (Arif et al. 2017) (Fig. 4.1).
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Fig. 4.1 Phosphorus cycle (Arif et al. 2017)

4.5 Different Strategies to Increase Soil Soluble Phosphate
Requirement

Organic phosphate, obtaining from natural resources such as bones, vegetables and
manures is the first used strategy in history. This form of P is a crucial source of
immobilized P which accounts for 20–80% of phosphate in soils (Edixhoven et al.
2014). Since the 1940s, soil organic P has been widely researched (Condron et al.
2005). Organic P refers to P bonded with C in any way. The origins of soil organic
P are animal and plant dead remains and another part is produced by soil organisms
through their metabolism. Orthophosphate is the absorbed form of phosphate from
the soil by microorganisms. The absorbed P covalently bonds to C moieties through
some biochemical pathways (Goldwhite 1981). Depended on the type of P bond, we
classify organic P compounds into three types of orthophosphate esters, anhydrides
and phosphonates. Further, synthetic organic phosphate compounds could widely be
applied to soil as plant growth regulators or pesticides and affect the P cycle of the
soil (Condron et al. 2005). Specific aspects of soil organic P, organic matter include
plants, manure and microbial P dynamics as a conceptual model is shown in Fig. 4.2.

Based on the information obtained from organic phosphate, the first fertilizer
was produced in the laboratory by the germen chemist “Liebig” in 1840 through
dissolving bones in H2SO4 to form super-phosphate that increased soil P bioavail-
ability. Following this practice resulted in the restriction of bone supply very soon.
In 1847, extraction of P from rocks was started to defeat this problem (Samreen and
Kausar 2019). By 1853, England, the United States and Austria were the biggest
super-phosphate producers worldwide (Russel and Williams 1977). These days in
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Fig. 4.2 Conceptual model of soil organic P dynamics (Condron et al. 2005)

most of the countries, farmers are recommended to use large amounts of inorganic
phosphate fertilizers to achieve an insured level of bioavailable P in the soil so that
avoid crop yield limitations due to phosphate shortage. From consequences of this
inefficient insurance-based approach, we can name low rates of phosphate recovery
in soil due to P fixation phenomenon, fluctuations in crop response to the applied
fertilizer, large annual phosphate surpluses and this elements accumulation in soil
which forms residual P and indispensable environmental hazard (Withers et al. 2014).

A routine procedure of soil test P known as STP is used for monitoring soil P
fertility increase and maintenance. Using this method brings more efficient prac-
tices of P fertilizer (in case of timing, methods and amount of application) and
noticeably reduces dependence on P fertilizers relying on investigations about soil
potentials to reduce P demand, using inherent P present in soil, recycling and recov-
ering it (Withers et al. 2014). To overcome these problems, many researches are
done recently. For example, Heppell has recommended gaining more information
about soil characteristics and predict fertilizer placement and the needed amount to
apply using mathematical models. These models provide required analysis to eval-
uate strategies that cannot easily be gained at field scale experiments because of
money, time and location-specific limitations (Heppell et al. 2016).

The wet method is called to treating phosphate rocks with sulfuric acid after
mining and upgrading. Edixhoven has suggested using reactive phosphate rock as a
more suitable form of PR because of its chemical composition (containing accessory
minerals such as Ca) which helps rapid dissolution of P fertilizer in the soil. In
their study, Morocco phosphate rocks were introduced as an effective source of P
fertilizer, regarding its residual effects (Edixhoven et al. 2014). Further, this fact
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that agricultural dependence on phosphate fertilizers is very inefficient, regarding
the depletion of global phosphate rocks, this method not only is increasingly costly
and not able to respond to growing P demand, but also causes many environmental
problems (Withers et al. 2014).

4.6 Environmental Problems of Chemical Fertilizers

Fertilizers are used to provide and certify required nutrients for crops and they are
successful in this case. However, they may contain trace elements such as As, Cd,
and Pb which can accumulate in the soil after repeated application of fertilizers. The
further direct effect of this accumulation on soil quality, these trace elements harm
human health by entering the food chain processes (Jiao et al. 2012; Tiwari et al.
2021; Patil et al. 2021) (Fig. 4.3).

The bioavailability of trace elements in the soils is affected by several factors such
as soil pH, type of organic matter and cation exchange capacity (CEC). The number
of factors such as soil pH, type of organic matters and cation exchange capacity
(known as CEC) are effect trace elements bioavailability in soils. Long-term use of
phosphate fertilizers influences these factors by a significant decrease in soil pH and
increasing CEC. Besides, As accumulation in soils results in a competition between
P and As in soil, for plant absorption and solid-phase binding sites. Therefore, an As
accumulation is perceived in both shoot and root of wheat plants (Jiao et al. 2012).
This repetitive application also leaves a legacy of phosphate accumulation in soils,
wastes and sediments that easily gets into surface waters and causes widespread
eutrophication (Withers et al. 2014) in a way that an estimate on 100 world’s largest
lakes showed that total P (TP) average loads during 2005–2010 were 7% higher than
what it was during 1900–1995. It is interesting to know that in South America, this
number reached 79% (Fink et al. 2016).

Eutrophication has several negative impacts on the freshwaters ecosystem. Phyto-
plankton species’ dramatic growth is one of the most immediate impacts of this and
in acute cases, harmful algal blooms (HABs), death of fishes and increased concen-
tration of harmful metabolites which makes drinking water dangerous to use are
observed (Jetoo et al. 2015; Yuan et al. 2018; Kumar et al. 2021). Further loss of
biodiversity as a consequence of long-term eutrophication, there is also the occur-
rence of hypoxia in hypolimnia part of waters as a result of eutrophication. In a study,
it has indicated that 20% of 365 lakes worldwide, met hypoxic condition since the
middle years of the nineteenth century and is highly associated with total P release
(Jenny et al. 2016; Vonlanthen et al. 2012; Yuan et al. 2018).
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Fig. 4.3 Probability distribution of As, Cd and Pb content in commercial phosphate fertilizers in
USA (Jiao et al. 2012)
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4.7 Phosphate-Solubilizing Microorganisms

Phosphorus has a key role in many important biological processes such as
energy production, respiration, photosynthesis, biosynthesis of macromolecules and
nitrogen fixation (Khan et al. 2010; Yadav et al. 2020, 2021). But Phosphorus is a
limited factor due to its non-availability in soluble forms in many agricultural soils.
Soil microorganisms can affect the health of the soil and its nature by doing bene-
ficial or harmful activities. Microorganisms living in the rhizosphere participate in
certain processes, such as biodegradation, mineralization, decomposition, nutrient
immobilization, nitrogen fixation and release of nutrient (Rai et al. 2020; Yadav et al.
2018). Phosphate-solubilizing microorganisms (PSMs) applies to some microorgan-
isms include archaea, bacteria, actinomycetes and fungal strains that could liberate
soluble phosphorous from insoluble soil P and making it available for other living
organisms such as plants and other microorganisms (Pradhan et al. 2017; Saeid et al.
2018; Sujatha et al. 2020). It could be occurred by solubilization and mineralization
of inorganic and organic phosphates in soil (Arif et al. 2017; Khan et al. 2016; Khan
et al. 2007; Kumar 2016). A brief schematic model for the isolation of PSMs from
different sources is shown in Fig. 4.4.

These microorganisms could be as an alternative to chemical phosphorus fertil-
izer which is better than them, because these PSMs promote plant growth by
providing other plant requirements such as nitrogen via nitrogen fixation, phytohor-
mones synthesizing, biocontrol of plant disease, producing 1-aminocyclopropane-
1carboxylate (ACC) deaminase and reducing ethylene toxicity (Zaidi et al. 2009b;
Dikilitas et al. 2021; Suyal et al. 2021). Phosphate-solubilizing bacteria (PSB) are
also called phosphobacteria because they can increase the availability of orthophos-
phate to the plant by secreting P-hydrolyzing enzymes (Barra et al. 2018; Jorquera

Fig. 4.4 A brief schematic model for isolation of PSMs from different sources. Adapted from
(Zaidi et al. 2014)
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et al. 2008; Patel et al. 2010) and organic acids (Sharon et al. 2016). Rock Phosphate
(RP) is the most abundant form of phosphate worldwide. P-solubilizing microorgan-
isms such as Pseudomonas strita, Aspergillus awamori and arbuscular mycorrhizae
could be used effectively for RP dissolution (Kaur and Reddy 2017).

The interactions between plants and microorganisms and the ability of microor-
ganisms to promote the growth of plants is agriculturally and environmentally impor-
tant. This promotion can be caused by endophytic and rhizospheric bacteria and
fungi. These microorganisms are termed as plant growth-promoting microorganisms
(PGPM), plant growth-promoting bacteria (PGPB), plant growth-promoting fungi
(PGPF), plant growth-promoting actinobacteria (PGPA) or plant growth-promoting
rhizobacteria (PGPR) depending on the kind or the habitat of them. PGPMs can
act either as free organisms in the rhizosphere or live endophytic in external or
internal parts of plant tissues (Sujatha et al. 2020). Endophytes are microorgan-
isms (mostly bacteria and fungi) that present asymptomatically in plants (White
et al. 2019). Both organisms benefit during symbiotic association between plants
and endophytes, and there is a mutualistic relationship between them (Rana et al.
2019b). The plant provides food for the colonizing of endophytes, and endophytes
promote biosynthetic pathways to produce metabolites that are important in plant
growth (Sujatha et al. 2020). PGPM can absorb nutrients from the soil and transfer
them to the plant, stimulate plant development, increase plant resistance to various
environmental stressors such as oxidative stress, saline stress and tolerance to heavy
metals, reduce the pathogenicity of pathogens and increase plant resistance to disease
and suppresses the growth of competitor plant species (White et al. 2019).

Some of PGPM that have the ability to dissolve phosphate from organic and
inorganic forms are considered as PSMs (Ahemad and Kibret 2014; Barra et al.
2018; da Silva et al. 2018; Emami et al. 2020; Jorquera et al. 2008; Patel et al. 2010;
Rana et al. 2012; Sindhu et al. 2014). The bioavailability of inorganic phosphorus by
PSMs in the plant rhizosphere varies considerably due to plant species, soil conditions
and the amount of nutrient in the soil (Khan et al. 2007). The production of different
organic and inorganic acids is the main responsible mechanism for the phosphorus
solubilization (Saeid et al. 2018). The most dominant and efficient PSMs strains in
rhizospheric region include the P-solubilizing bacteria such as Bacillus polymyxa
and Pseudomonas striata and among fungi are Aspergillus niger, A. awamori and
Penicillium digitatum (Kaur and Reddy 2017).

Inoculating seeds, crops and soil with PSMs is an encouraging strategy to increase
the potential of world food production. Plant growth promotion could be done by
endophytic and rhizospheric microorganisms as microbial inoculants (da Silva et al.
2018). This strategy has not shown any environmental hazards. Because of signif-
icance role of inoculant in improving soil fertility, at the near future, the use of
phosphorus-solubilizing microorganisms as inoculant could be instead of chemical
fertilizers using conventionally in commercial agriculture (Alori et al. 2017). The
phosphaticmicrobial inoculants, sometimes termedmicrophos are viable bacterial or
fungal preparations that can be applied under different agro-ecological niches (Khan
et al. 2016; Zaidi et al. 2009b, 2014). In this section, the types of microorganisms
that can dissolve phosphorus and therefore can be used as fertilizer are introduced.
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In the following, the mechanisms of solubilization of inorganic phosphorus by PSMs
and mineralization of organic phosphorus will be discussed.

4.7.1 Phosphate-Solubilizing Fungi

Fungi are an important component of soil microbiota. In most soils, the biomass
of fungi is higher than that of bacteria, depending on the depth of the soil and
the nutrients condition. PSF have been isolated from different habitats such as
agricultural soil, forest soil, rhizosphere of different crop plants, coffee planta-
tion, saline soil, mine soil, terrestrial soil, hill soil, volcanic soils, arctic region,
mangrove area, husk waste and vermicompost (Sahoo and Gupta 2014; Abdel-
Azeem et al. 2021). According to their role and the region of colonization,
fungi can be classified as pathogenic, epiphytic, endophytic and mycorrhizal
fungi (Porras-Alfaro and Bayman 2011). Endophytic fungi belong to different
genera include Penicillium, Aspergillus, Trichoderma, Rhizopus, Fusarium, Cryp-
tococcus, Paecilomyces, Cladosporium, Rhizoctonia, Curvularia, Rhodotorula,
Cladosporium, Alternaria, Phaeomoniella, Ophiognomonia, Chaetomium, Acremo-
nium, Geomyces, Phyllosticta, Colletotrichum, Berkleasmium, Glomus, Wallemia,
Leptospora, Microdochium, Neotyphodium and Xylaria. These PSF have been
isolated from various host plants (Ameen et al. 2019; Elias et al. 2016; Islam et al.
2019; Noorjahan et al. 2019; Rojas et al. 2019; Sahoo and Gupta 2014; Sujatha et al.
2020; Rana et al. 2019a).

PSF can effect on phosphate solubilization in both free and endophytic forms.
Among PSMs, plant growth-promoting fungal stains (PGPF), have the ability to
solubilize insoluble P to soluble forms and make it available for plants by several
methods such as organic acid production, ion exchange and chelation processes.
They also could promote plant growth by different mechanisms (Khan et al. 2010;
Sujatha et al. 2020) (Fig. 4.5). So application of PSF with rock phosphate seems to
be a cost-effective method for phosphate availability in agriculture (Kaur and Reddy
2017).

Black Aspergilli and some of Penicillium species are filamentous fungi that
produce organic acid and have been reported to solubilize rock phosphates. Some
PSF and their habitat are shown in Table 4.2. One of the main responsible mecha-
nisms for phosphorus solubilization in PSMs is the production of different organic
and inorganic acids (Saeid et al. 2018). Organic acids produced by different PSF are
shown in Table 4.3.

4.7.2 Phosphate-Solubilizing Bacteria (PSB)

Phosphate-solubilizing bacteria belong to different genera such as Pseudomonas,
Mesorhizobium, Azotobacter, Beijerinckia, Enterobacter, Acinetobacter, Erwinia,
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Fig. 4.5 Mechanisms involved in plant growth promotion by phosphate-solubilizing fungi.
Adapted from Sujatha et al. (2020)

Serratia, Flavobacterium, Burkholderia, Arthrobacter, Microbacterium, Bacillus,
Rhizobium and Rhodococcus (Kour et al. 2020b; Singh et al. 2020c; Verma et al.
2016; Yadav et al. 2015a). These PSB are used as biofertilizers to increase plant
growth. Organic acid production is one of the most important mechanisms for phos-
phate solubilization (Yadav et al. 2015b). Different organic acids produced by PBS
are shown in Table 4.4.

4.7.3 Phosphate-Solubilizing Actinobacteria

Among PSMs, actinomycetes produced different substances such as antibiotics, anti-
fungi, anti-helminthes and phytohormones. On the other hand, these filamentous
bacteria reproductive in very different soils and could be grown in extreme condition,
because some of them could produce semi- resistance forms such as conidiospores
and sporangiospores. Like PSFs and PSBs, PSA could produce some plant growth-
promoting substances. Some researchers work on PSA and isolated different genus
according to their habitat (Alper et al. 2020; Chukwuneme et al. 2020; Faried et al.
2019; Fatmawati et al. 2019; Mesta et al. 2018; Nandimath et al. 2017; Pha.m et al.
2020; Putri et al. 2020; Wahyudi et al. 2019). The main mechanisms for phosphate
solubilization by actinomycetes might be either due to organic acid secretion causing
acidification of the surrounding medium or production of chelating agents such as
siderophores to form a stable complex with phosphorus adsorbents (Faried et al.
2019).
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Table 4.2 Some phosphate-solubilizing fungi and their habitat

P-Solubilizing fungi Habitat References

Aspergillus clavatus Agricultural soil; saline soil Chakraborty et al. (2010),
Singh et al. (2012)

Aspergillus melleus Agricultural soil Chakraborty et al. (2010)

Penicilium purpurogenum Agricultural soil Scervino et al. (2010)

Penicilium citrinum Hill soil; rhizosphere of
sugarcane; rhizospheric soils

Sharma (2011), Yadav et al.
(2011)

Penicilium. albidum
Penicilium frequentans

Volcanic soils Morales et al. (2011)

Penicilium restrictum Volcanic soils; hills soil Morales et al. (2011),
Sharma (2011)

Penicilium mellini
Penicilium olivicolo
Penicilium rugulosum

Hill soil Sharma (2011)

Penicilium notatum Rhizospheric soil and roots Malviya et al. (2011)

Aspergillus glaucus
Aspergillus sydowii

Himalayan soil
Himalayan soil, saline soil

Rinu et al. (2013), Singh
et al. (2012)

Cylindrocarpon obtusisporum
Cylindrocarpon didymum,
Paecilomyces marquandii,
Penicillium janthinellum

Coffee plants Posada et al. (2013)

Aspergillus glaucus,
A. niger
A. sydowii

Himalayan soil Rinu et al. (2013)

Aspergillus sp.
Penicillium sp.

Rhizosphere of banana Reena et al. (2013)

Aspergillus sp. Rhizosphere soil of
leguminous plant

Selvi (2013)

Aspergillus niger
Penicillium variable
Trichoderma harzianum
Fusarium

Soil Yasser et al. (2014)

Bipolaris tetramera Rhizosphere Fatima et al. (2015)

Penicillium bilaii Sand soil Ram et al. (2015)

Penicillium oxalicum
Aspergillus niger

Maize Rhizosphere, Soybean
rhizosphere

Li et al. (2016)

Aspergillus sp.
Penicillium spp
Fusarium

Rhizosphere soil Elias et al. (2016)

Talaromyces aurantiacus
Aspergillus neoniger

Rhizosphere soil Zhang et al. (2018)

(continued)
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Table 4.2 (continued)

P-Solubilizing fungi Habitat References

Aspergillus chevalieri
Fusarium moniliforme
Trichoderma harzianum

Rhizosphere soil, Agriculture
soil

Abdel-Ghany et al. (2019)

Aspergillus niger
Penicillium oxalicum
Talaromyces pinophilus

Soil Islam et al. (2019)

Aspergillus niger
Penicilium brevicompctum
Direx (Hs42)

Coffee plants Rojas et al. (2019)

Glomus multisubtensum
Rhizophagus intraradices

Rhizosphere soil Nacoon et al. (2020)

Aspergillus niger Different farm Mazrou et al. (2020)

Penicillium oxalicum Corn farm Wang et al. (2020)

Aspergillus, Penicillium,
Trichoderma, Piriformospora
curvularia

Different farm Sujatha et al. (2020)

Thermo-tolerant actinomycetes are more resistant to the high temperature of
composting than mesophilic organisms, so they are a better choice for phosphate-
solubilizing biofertilizer production which could be added to the biodegradation
of complex macromolecules in composting (Nandimath et al. 2017). Because of
their filamentous structure, such as filamentous fungi, they could save more water
than other bacteria in their hyphae and alive in drought stress. Drought stress is
alleviated by mediated drought-adaptive and phosphorus solubilizing actinomycetes
(Chukwuneme et al. 2020; Kour et al. 2020a). The isolated strains under drought
stress accumulate different osmolytes such as glycine, betaine, proline, sugars and
decreased lipid peroxidation and increased chlorophyll content (Kour et al. 2020a).
The isolated actinomycetes from different habitats are demonstrated in Table 4.5.

4.8 Mechanism of P-Solubilization

There are two major mechanisms for releasing P from different compounds by
soil microorganisms. Solubilization and mineralization are effective mechanisms
for releasing P from inorganic and organic compounds respectively. Another reac-
tion that performed by soil microorganisms is P immobilization, which provides
accessible P for uptake by plants. The notable mechanisms used by PSMs for P-
solubilization from inorganic compounds are (i) organic and inorganic acids, protons,
hydroxyl ions, CO2 and siderophores production that dissolve or complex with inor-
ganic compounds for release of P; and (ii) secretion of extracellular enzymes (Khan
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Table 4.3 Organic acids produced by phosphate-solubilizing fungi

Microorganism Organic acids References

Penicillium rugulosum
Aspergillus niger

Citric, gluconic, succinic Reyes et al. (2001), Vazquez
et al. (2000)

Aspergillus niger
Aspergillus clavatus
Penicilium conescens

Oxalic, citric, gluconic Alam et al. (2002)

Aspergillus flavus Aspergillus
niger, Penicillium canescens

Oxalic, citric, gluconic, succinic Rashid et al. (2004)

Aspergillus flavus Fumaric, gluconic, succinic,
acetic, Oxalic, citric

Rashid et al. (2004)

Aspergillus flavus Aspergillus
candidus, Penicillium
oxalicum

Glutaric, malic, gluconic, oxalic Shin et al. (2006)

Aspergillus niger
Aspergillus terreus
Aspergilluswentii, Fusarium
oxysporum
Penicillium sp.
Trichoderma isridae,
Trichoderma sp.

Lactic, maleic, malic, acetic,
tartaric, citric, fumaric, gluconic

Akintokun et al. (2007)

Aspergillus niger, Penicillium
bilaiae, Penicillium sp.

Oxalic, citric Arwidsson et al. (2010)

Trichoderma flavus
Trichoderma helicus
Penicilium purpurogenum,
Penicilium janthinellum

Acetic, butyric, citric, fumaric,
gluconic, glucuronic, lactic,
oxalic, propionic, succinic,
valeric

Scervino et al. (2010)

Aspergillus awamori S19 Oxalic, malic, citric, succinic,
fumaric

Jain et al. (2012)

Aspergillus niger FS1
Penicilliumcanescens FS23
Eupenicillium ludwigii FS27
Penicillium islandicum FS30

Citric, gluconic, oxalic Mendes et al. (2013)

Aspergillus sp.
Penicillium sp.

Acetic Syamsia et al. (2015)

Burkgolderia Acetic, oxalic, lactic, oxalic,
butyric

Istina et al. (2015)

Aspergillus niger Citric, oxalic Li et al. (2016)

Aspergillus niger
Aspergillus terrus

Itaconic Hossain et al. (2019)

Aspergillus niger Oxalic Kang et al. (2020)

Trichoderma spp. Lactic, fumaric, gluconic, citric,
D-isocitric, ascorbic, D-malic,
phytic acid

Bononi et al. (2020)
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Table 4.4 Organic acids produced by different phosphate-solubilizing bacteria

Bacteria Organic acids References

Bacillus amyloliquefaciens,
Bacillus licheniformis, Bacillus
atrophaeus, Paenibacillus
macerans, Pseudomonas
aeruginosa

Lactic acid, isovaleric acid,
isobutyric acid, acetic acid

Vazquez et al. (2000)

Enterobacter intermedium 2-ketogluconic Hwangbo et al. (2003)

Pseudomonas fluorescens Citric acid, malic acid, tartaric
acid, gluconic acid

Fankem et al. (2006)

Bacillus, Rhodococcus,
Arthrobacter, Serratia and one
Chryseobacterium, Delftia,
Gordonia, Phyllobacterium,
Arthrobacter ureafaciens,
Phyllobacterium myrsinacearum,
Rhodococcus erythropolis, Delftia
sp.

Citric acid, gluconic acid, lactic
acid, succinic acid, propionic
acid

Chen et al. (2006)

Burkholderia, Serratia, Ralstonia
and Pantoea

Gluconic acid Perez et al. (2007)

Burkholderia cepacia DA23 Gluconic acid Song et al. (2008)

Pseudomonas corrugate (NRRL
B-30409)

Gluconic, 2-ketogluconic acid Trivedi and Sa (2008)

Citrobacter sp. DHRSS Acetic and gluconic acid Patel et al. (2008)

Arthrobacter sp. (CC-BC03) Citric acid, lactic acid Yi et al. (2008)

Pseudomonastrivialis (BIHB 769) Gluconic acid, 2-ketoglutaric
acid, lactic acid, succinic acid,
formic acid, malic acid

Vyas and Gulati (2009)

Bacillus megatrium, Pseudomonas
fluorescens

Gluconic acid, phosphoric acid,
2-ketogluconic acid

Sharma et al. (2011)

Enterobacter sp. Fs-11 Malic acid, gluconic acid Shahid et al. (2012)

Bacillus sp. Indoleacetic acid, oxalic acid.
malic acid

Panhwar et al. (2012)

Pseudomonas sp. Formic acid, butyric acid,
propanedioic acid, gluconic acid

Chen et al. (2016)

Alcaligenes aquatilis,
Burkholderia cepacia

Formic acid, gluconic acid,
citric acid

Pande et al. (2017)

Firmicutes, Proteobacterium,
Actinibacterium

Citric acid, lactic acid, succinic
acid, acetic acid, formic acid,
oxalic acid

Wei et al. (2018)

Leclercia adeearboxylata,
Pseudomonas putida

Phosphoric acid Teng et al. (2019)

Pantoea, serratia, Pseudomonas,
Enterobacter

Oxalic acid, fumaric acide,
gluconic acid, citric acid,
succinic acid, acetic acid

Rfaki et al. (2020)

(continued)
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Table 4.4 (continued)

Bacteria Organic acids References

Bacillus sp, Burkholderia sp,
Paeni Bacillus sp

Gluconic acid, citric acid,
succinic acid, acetic acid,
tartaric acid, formic acid

Chawngthu et al. (2020)

Klebsiella variicola, Rhizophagus
intraradies, Sphingobacterium
thalpophilum, Ochrobactrum
pseudogrignonense, Burkholderia
tropica, Achrobacterium
xylosoxidans, Pseudomonas
aeruginisa

Phosphoric acid, gluconic acid,
oxalic acid, acetic acid, marlic
acid, lactic acid, tartaric acid,
DL-marlic acid

Sabaiporn et al. (2020)

Agrobacterium sp Fumaric acide, succinic acid,
tartaric acid

Li et al. (2020)

Adapted Zaidi et al. (2009a, b)

Table 4.5 The isolated actinomycetes from different habitat

Habitat Actinomycete genus isolated References

Millet (Sorghum
bicolour L.) under
drought stress

Streptomyces laurentii Kour et al.
(2020a)

Olive tree
Rhizisphere

Streptomyces sp. Alper et al.
(2020)

Maize plan Arthrobacter arilaitensis Chukwuneme
et al. (2020)

Roots of acacia Fodinicola acaciae sp. Pha.m et al.
(2020)

Surface of the
stone

Gordonia, Microbactrium,Micromonospora, Nocardia,
Streptomyces

Putri et al.
(2020)

Rhizosphere soil Streptomyces sp. Faried et al.
(2019)

Forest soil,
Rhizosphere soil

Actinibacter AH6, Streptomyces. sp. Hamim et al.
(2019)

Soybean
Rhizosphere

Streptomyces sp. ASR46, Streptomyces sp. ASR58,
Streptomyces sp. ASR75, Streptomyces sp. ASR76

Wahyudi et al.
(2019)

Soybean
Rhizosphere

Streptomyces panaciradicis, Streptomyces recifensis,
Streptomyces manipurensis, Streptomyces spCAH7

Fatmawati
et al. (2019)

Mongrove plants Rhizosphera mucronuta, Sunneratia caseoluris Mesta et al.
(2018)

Thermo-tolerant Streptomyces flavissimus, Streptoverticillium
olivoverticillatum, Streptomyces nogalater, Streptomyces
longisporoflavus, Streptomyces cellulosae

Nandimath
et al. (2017)
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Fig. 4.6 Mechanisms for phosphate solubilization by PSMs. Adapted from Khan et al. (2010),
Zaidi et al. (2009a, b)

et al. 2010; Zaidi et al. 2009b) Different mechanisms involved in the insoluble P-
solubilization by natural soil microbial communities are briefly shown in (Fig. 4.6).
There are three major processes in P cycle in the soil that microbial population play
important role in them: facilitate mineralization to immobilization, dissolution to
precipitation and sorption to desorption (Kaur and Reddy 2017).

4.8.1 Inorganic P-Solubilization

4.8.1.1 Acid Production and P-Solubilization

One of the most important mechanisms for solubilizing inorganic P is low molecular
mass organic acids (OA) production. These acids mostly are the products of organic
carbon sources metabolism by oxidative respiration or fermentation (Sharma et al.
2013).Organic acids generally separate into anion(s) and proton(s) in a pH-dependent
equilibrium. By shifting the equilibrium of the dissolution, the H+ ions prefer P-
solubilization resulting in the release of more P into the solution. Organic acids also
buffer the pH and continue to separate as protons. The major organic acids released
by P-solubilizing microorganisms are gluconic, oxalic, citric, lactic, and tartaric and
aspartic acids. Among these, gluconic acid and 2-ketogluconic acids seem to be the
most frequent acids in P-solubilization (Kalayu 2019; Khan et al. 2010, 2016). OA
produced by different fungal and bacterial PSM strains are listed in Tables 4.3 and
4.4 respectively. As shown in the Tables, the amount and type of organic acids are
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differing in different microorganisms. It seems that aliphatic acids are more effective
than phenolic, fumaric and citric acids, and tri- or dicarboxylic acids efficiency in
phosphate solubilization aremore thanmonobasic and aromatic acids (Kalayu 2019).

By OA production, pH is decreased and cation chelations are increased and bring
P into solution (Pradhan et al. 2017). In addition, organic acids have competed with P
for adsorption sites on the soil and finally, by acidification of microbial cells and their
surroundings, H+ is substituted for metal ions such as Ca2+, Al3+ or Fe3+ and release
P-ions form insoluble metal salts such as tricalcium phosphate (TCP: Ca3)PO4)2),
aluminum phosphate (AlPO4), iron phosphate (FePO4), etc., and phosphorus is
released. So, in addition to the acidification process, in some PSMs, especially
in fungi, chelation and reduction processes play important roles in P-solubilizing
activity. Functional groups particularly carboxylic acid in chelating agents such as
EDTA (Ethylene Diamine Tetra Acetate), DTPA (Diethylene Triamine Penta Acetic
acid) and NTA (Nitrilo-2,2’,2”-Tri Acetic acid) form a stable complex with metal
ions of insoluble phosphate salts such as Ca2+, Al3+ or Fe3+ and are influenced on
P-solubilization.

Someof the inorganic acids such asHClor nitric acid and sulfuric acid producedby
chemoautotrophs and H+ produced by proton motive force (PMF) during microbial
metabolism could effect by the same way of OA in solubilizing the insoluble P. The
inorganic acids convert TCP to di andmonobasic phosphate which aremore available
for plants. According to the sink theory, in a liquid culture medium, P-solubilizing
organisms release and assimilate P from the liquid and therefore, indirect dissolution
of calcium phosphate compounds from liquid culture is activated by continuous
removal of P (Sharma et al. 2013). H2S production is another mechanism that reacts
with FePO4 and produces FeSO4 with concomitant release of P. Another mechanism
is H+ production from NH4

+assimilation that could be an alternative mechanisms of
P-solubilization (Kumar 2016; Sharma et al. 2013).

4.8.1.2 Siderophores and P-Solubilization

Siderophores are low molecular weight agents secret by certain soil microorganisms
to solubilize iron from insoluble organic or inorganic forms. In iron-limiting condi-
tions, some microorganisms survive by secreting siderophores, which could effect
on solubilizing iron from minerals or organic compounds by active transport carrier
mechanism or mineralization (Arif et al. 2017; Kaur and Reddy 2017). Siderophores
have wide applications in different areas including agriculture, microbial ecology,
heavy metal bioremediation, biosensor technology and medicine (Saha et al. 2016).

In addition to iron, siderophores are chelate other ions by similar mechanisms
(Karmakar et al. 2018). Many PSMs produce siderophores (Alori et al. 2017; Ameen
et al. 2019; Chhabra and Dowling 2017; Chukwuneme et al. 2020; Saha et al. 2016).
As mineralization of organic compounds such as ferric phosphate to extract Fe from
them, P availability improves indirectly by siderophore producing PSMs (Kaur and
Reddy 2017; Zaidi et al. 2009b).
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4.8.1.3 Exopolysaccharides and P-Solubilization

Many microorganisms produce high molecular weight extracellular polymeric
substances (EPS) around their cell wall. This non-enzymatic mucilage has special
physicochemical characteristics and activities such as stability, suspending and
gelling ability and the ability to store water, so, EPS producing microorganisms
have many applications in various industries such as adhesives, pharmaceuticals,
food and beverage industries, oil and metal recovery from ore and industries (Yi
et al. 2008). EPS structural composition is heterogenous andmainly composed homo
or heteropolysaccharides with various organic and inorganic substitutes (Arif et al.
2017). In addition to organic acids and protons, EPS is an important factor in the
indirect dissolution of inorganic P such as TCP. In this process, P-solubilization
homeostasis is changed toward P dissolution by EPS, because EPS is holding free
P in the medium, therefore greater phosphorus is released from insoluble phosphate
(Yi et al. 2008).

In addition to the above mechanisms, EPS is attached and formed complexes
with soil metals and act as a chelating agent to release P from insoluble phosphates.
Further studies are needed for understanding the relationship between phosphorus
holding and EPS structure in different PSMs and its mechanisms.

4.9 Organic P-Solubilization

Organic P compounds and their mineralization play an important role in P cycling.
There are several enzymes that released phosphorus from organic P compounds in
the soil (Kaur and Reddy 2017):

(a) Phosphomonoesterases known as phosphatases are produced by different
PSMs. These enzymes dephosphorylate phosphoester or phosphoanhydride
bonds of organic matter. Acid phosphatases and alkaline phosphatases are
different phosphatases that are more frequent in acidic and neutral or alkaline
soils respectively. Plant roots are also produced acid phosphatases.

(b) Phytases release P from the phytate, the major organic P compounds in the soil
that is the major form of P in plants. Phytases are a kind of phosphohydrolases.
Phytate mineralization by soil microorganisms release P and make it available
for plants root. Microbial phytases have led to the promotion of the plants
grow during the supplementation exogenously, as well as the overexpression
in different plants (Singh et al. 2020b).

(c) Phosphonatases and C-P lyases, which break the C-P bond of organophos-
phonates. The organophosphonates are biogenic and xenobiotic compounds
characterized by the presence of a stable carbon to phosphorus (C-P) bond.

All the mechanisms including solubilization, immobilization and mineralization
that effect on phosphorus bioavailability are shown in Fig. 4.7.
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Fig. 4.7 Schematic representation of the mechanism of phosphate solubilization/mineralization
and immobilization by phosphate-solubilizing microorganisms. Adapted from Kaur and Reddy
(2017), Sharma et al. (2013)

4.10 Plant Growth Promotion by P-Solubilizing
Microorganisms

Various mechanisms are used by PGPR to act as biofertilizers, phytostimulators,
rhizoremediation agents or stress controllers (Lugtenberg and Kamilova 2009).
Generally, these mechanisms can be categorized into two major groups of direct
and indirect ways. Direct PGPmethods include activities that cause improvements of
mineral nutrients such as nitrogen fixation, phosphate solubilization, and iron seques-
tration by producing siderophores, production of organic plant growth regulators
such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, auxins, cytokinin,
gibberellins and ethylene. On another hand, indirect methods contain activities that
result in inhibition of phytopathogenic microorganisms like, production of HCN,
fungal cell wall degrader enzymes and a variety of antibiotic components (Arif et al.
2017; Kaur and Reddy 2017; Lugtenberg and Kamilova 2009) (Fig. 4.8).

In summary, phosphate-solubilizing microorganisms stimulate plant growth in
the following ways (Fig. 4.9) (Khan et al. 2014; Sattiraju et al. 2019; Sharma et al.
2013):

• Solubilization of organic P and mineralization of inorganic P, which releases
soluble P as a nutrient for plants

• Production of growth-promoting phytohormons:

– Indole acetic acid (IAA): PSMs produced IAA that uptake by plants. IAA
could effect on various stages of plant growth (Fig. 4.10).
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Fig. 4.8 Role of PGPR and mechanism of phosphate solubilization (Pradhan et al. 2017)

Fig. 4.9 PossibleMechanisms involved in plant growth promotion byPSMs. Adapted fromSharma
et al. (2013)

– 1-aminocyclopropane-1carboxylate (ACC) deaminase: cleavage the ACC, the
immediate precursor of ethylene by ACC deaminase will lead to reduced ethy-
leneproduction in plants.Reduce the amount of ethylene increases plant growth
(Fig. 4.11).

– Gibberellins: Some PSMs produce gibberline. Gibberlineis a growth regulator
that affects seed germination, stimulates the growth of plants and delays aging.
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Fig. 4.10 Role of IAA in plant growth. Adapted from Khan et al. (2014)

Fig. 4.11 The role of ACC deaminase in plant growth

– Cytokinins: cytokinins produced by PSM influence both cell division and cell
enlargement of plants and also affect seed dormancy, flowering, fruiting and
plant senescence.

• Release of biocontrol agents: Biological control agents produced by PSM are
generally considered more environmentally sound than pesticides and other
antimicrobial treatments.

– Siderophores: act as solubilizing agents for iron from minerals or organic
compounds under conditions of iron starvation.
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– Antifungal agents: DAPG (2,4-diacetylphloroglucinol), Pyrrolnitrin and many
other compounds are broad-spectrum antifungal metabolite that produced by
some PSMs (Sattiraju et al. 2019).

– Antibiotics: Oomycin A, pyoluteorin, pyrrolnitrin, tensin, tropolone, cyclic
lipopepdes, oligomycinA, kanosamine, zwittermicinA, xanthobaccin, viscosi-
namideare some antibiotics that produced by some PSM (Sattiraju et al.
2019).

– HCN: Hydrogen cyanide (HCN) blocks the cytochrome oxidase pathway and
is highly toxic to all aerobic microorganisms at picomolar concentrations.

– Lytic enzyme: microbial hydrolytic enzymes such as chitinase, β-1,3-
glucanase, peroxidase, protease and lipase produced by PSM can effectively
manage the plant pathogens and reduce them.

– Phenazines: Phenazines are heterocyclic pigments that contain nitrogen which
is produced by some PSM such as Pseudomonas, Streptomyces, Burkholderia
and Brevibacterium species. They could be employed as biocontrol agents for
phytopathogens (Sattiraju et al. 2019).

• Exopolysaccharide production
• Antioxidants production
• Nitrogen fixation
• Release of trace elements such as Zn, Fe and Cu.

Different growth-promoting substances produced byPSMsare shown inTable 4.6.

4.11 Genetic Manipulation of PSMs

So far several genes involving in phosphate solubilization have been reported and
characterized. Through cloning and manipulation of these genes a higher capacity
of phosphate-solubilizing activity by PSMs could be gained (Ingle and Padole 2017;
Rodríguez et al. 2006). Expression of phosphatase encoding genes and both mineral
phosphate solubilization and organic phosphate solubilization genes in for instance
rhizobacterial strains has given a good perspective of using them in the development
of sustainable agriculture (Zaidi et al. 2009a). The first step in this way was taken in
1987 by cloning of PS genes of Erwinia herbicola in an E. coli strain which gained
PS ability after transformation (Goldstein and Liu 1987). Observing emerging the
ability of gluconic acid production in the manipulated strain and sequencing of its
related gene resulted in detecting involvement of pyrroloquinoline quinone (PQQ)
synthase as an enzyme needed for producing a required co-factor for the formation
of glucose dehydrogenase (GDH)-PQQ (Rodrı́guez and Fraga 1999). This approach
continued by cloning of napA phosphatase gene driven from Morganella morganii
in Burkholderia cepacia IS-16 (Fraga et al. 2001).

As time passed several other genes coding phosphate-solubilizing mechanisms
were detected, analyzed and categorized which are shown in Table 4.7. These
researches greatly helped to achieve modified PS strains with a high capacity of
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Table 4.6 Growth-promoting substances released by phosphate-solubilizing bacteria

Phosphate-solubilizing bacteria Plant
growth-promoting
traits

References

Pseudomonas sp., Bacillus sp. IAA, siderophore Rajkumar
et al. (2006)

Mesorhizobiumloti MP6 HCN, IAA Chandra et al.
(2007)

Bacillus spp. IAA,
siderophores,
ammonia
production, HCN,
chromium
reduction, metal
solubilization

Wani et al.
(2007a, b)

Azotobacter sp.,Mesorhizobium sp., Pseudomonas sp.,
Bacillus sp.

IAA, siderophore,
antifungal
activity, ammonia
production, HCN

Ahmad et al.
(2008)

Pseudomonasaeruginosa ACC deaminase,
IAA, siderophore

Ganesan
(2008)

Pseudomonasjessenii ACC deaminase,
IAA, siderophore,
heavy metal
solubilization

Rajkumar
and Freitas
(2008)

Burkholderia ACC deaminase,
IAA, siderophore,
heavy metal
solubilization

Jiang et al.
(2008)

Enterobacter sp. ACC deaminase,
IAA, siderophore

Kumar et al.
(2008)

Acinetobacter sp., Pseudomonas sp. ACC deaminase,
IAA, antifungal
activity,
N2-fixation

Indiragandhi
et al. (2008)

Pseudomonasfluorescens ACC deaminase Shaharoona
et al. (2008)

Serratiamarcescens IAA, siderophore,
HCN

Selvakumar
et al. (2008)

Bacillussubtilis IAA, siderophore,
antifungal activity

Singh et al.
(2008)

Pseudomonas sp. ACC deaminase,
IAA, siderophore

Poonguzhali
et al. (2008)

Dyellaginsengisoli, Burkholderiakururiensis, Pandoraea sp.
strain ATSB30

Siderophore,
IAA, salicylic
acid, ACC
deaminase

Anandham
et al. (2008)

(continued)
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Table 4.6 (continued)

Phosphate-solubilizing bacteria Plant
growth-promoting
traits

References

Pseudomonasaeruginosa, PseudomonasPlecoglossicida and
Pseudomonasmosselii

ACC deaminase,
IAA, siderophore,
heavy metal
solubilization

Jha et al.
(2009)

Pseudomonasaeruginosa PS1, Klebsiella sp. strain PS19 IAA, HCN,
Siderophore

Ahemad and
Khan (2011a,
b)

Pantoeaagglomerance, Burkholderiaanthina IAA, ammoni,
HCN, siderophore

Walpola and
Yoon (2013)

Dematophoranecatrix IAA, HCN (Mehta et al.
2013)

Enterobacterium sp. strain NIASMVII IAA Sorty et al.
(2016)

Burkholderiacepacia, AeromomashydrophilaBacillus sp.
Pseudomonas sp.

HCN, ammonium
production
IAA, siderophore

Chibani et al.
(2016)

Klebsiella sp. strain M02, Klebsiella sp. strain M03, Klebsiella
sp. strain M04
Bacillusmegaterium strain M06, Bacillusmegaterium strain
M07, Bacillusmegaterium strain M08, Paenibacillus sp. strain
M09, Paenibacillus sp. strain M010

IAA
IAA, HCN
IAA, HCN

Zhang et al.
(2017)

Bacillus sp. strain STJP IAA,
siderophores

Prakash and
Arora (2019)

Aneurinibacillus Acc02, Paenibacillus ACC06 ACC Pandey and
Gupta (2019)

Acinetobacter guillouiae Nitrogenase
activity, IAA

Rana et al.
(2020)

Streptomycespseudovenezuelae, Arthrobacterarilaitensis IAA, ACC Chukwuneme
et al. (2020)

Bacillussubtilis Siderophore, IAA Wang et al.
(2020)

Bacillus sp., Burkholderia sp., Paenibacillus sp IAA Chawngthu
et al. (2020)

Bacillussafensis, Bacilluspumilus, Halobacillus, Pseudomonas HCN, IAA,
siderophore, ACC
deaminase,
antifungal activity

Mukhtar
et al. (2020)

Pantoea, Pseudomonas, serratia, Enterobacter IAA, HCN,
siderophore,
antifungal activity

Rfaki et al.
(2020)

Adapted from Zaidi et al. (2009b)
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Table 4.7 Genes involved in phosphate solubilization

Microorganisms Gene or plasmid Features References

Erwinia herbicola Mps Produces gluconic acid and
solubilizes mineral P in E.
coli HB101; probably
involved in PQQ synthesis

Goldstein and Liu
(1987)

Pseudomonas cepacia Gab Y Produces gluconic acid and
solubilizes mineral P in E.
coli JM109; No homology
with PQQ genes

Babu-Khan et al.
(1995)

Enterobacter
agglomerans

pKKY Solubilizes phosphate in E.
coli 109; does not lower pH

Kim et al. (1997)

Rahnella aquatilis pKIM10 Solubilizes phosphate and
produces gluconic acid in
E. coli DH5a

Kim et al. (1998)

Serratia marcescens pKG3791 Produces gluconic acid and
solubilizes phosphate

Krishnaraj and
Goldstein (2001)

Mornanella morganii napA, PRK293 Solubilizes phosphate and
produces gluconic acid in
Burkholderia cepacia IS-16
and E. coli
Increase in the extracellular
enzyme

Fraga et al. (2001)

Azospirillum sp. pqq-GDH Oxidation of glucose to
gluconic acid

Vikram et al. (2007)

Enterobacter asburiae gcd Solubilizes phosphate and
produces gluconic acid in
E. coli AT15

Tripura et al. (2007)

Basillus subtilis
CB8A

gdh, nifH Solubilizes phosphate and
produces gluconic, The
ability of CB8A in wide
range of temperature, pH
and varying salt
concentration can be
exploited for developing
multifunctional biofertilizer
in apple orchards.

Mehta et al. (2013)

Erwinia herbicola,
Pseudomonas
fluorenscens,
Acinobacter
calcoaceticus

pqq-E Solubilizes phosphate and
produces gluconic in
Herbaspirillum seropedicae
Z67

Wagh et al. (2014)

Burkholderia tropica PQQ-GDH Glucose dehydregenes
produces gluconic acid,
solubilizes phosphate

Bernabeu et al.
(2016)

(continued)
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Table 4.7 (continued)

Microorganisms Gene or plasmid Features References

Serratia sp. S119 pqq-E Produces gluconic acid,
solubilizes phosphate

Ludueña et al.
(2017)

Aneurinibacillus
aneurinilyticus
CKMV1

gdh, nifH Glucose dehydregenes
solubilizes phosphate

Chauhan et al.
(2017)

Burkholderia
cenocepacia 71-2

recA Solubilizes phosphate and
produces gluconic acid in
E. coli

Liu et al. (2019)

producing large clearing halos in plates and performing satisfying in field experi-
ments. In addition, these genetic manipulations can help better the survival of inoc-
ulant species in competition with other microbial populations in the field by giving
them the ability to obtain specific nutrients in a more efficient way (Zaidi et al.
2009a).

4.12 Industrial Production of PSMs as Biofertilizers
and Their Application

4.12.1 Isolation of PSMs

For the first step, soil samples including numerous organisms should be collected
from 12 to 15 cm deep in the soil and be kept in sterile bags. To determine micro-
bial diversity, each microbial population should be isolated in their standard media
through a specialized microbiological method (Fig. 4.4). Suitable culture mediums,
their chemical composition and growth conditions for the assessment of microbial
diversity are shown in Tables 4.8 and Table 4.9 respectively. It is needed to mention

Table 4.8 Recommended medium and growth conditions used for isolation and enumeration of
microbial populations

Microbes Medium Incubation
temperature (°C)

pH of medium Incubation period
(days)

Bacteria Nutrient agar 28 ± 2 7 ± 0.2 1–2

Fungi Martin’s agar 28 ± 2 7 ± 0.2 3–5

Actinomycetes Kenknight’s agar 28 ± 2 7 ± 0.2 5–7

PSM Pikovskaya agar 28 ± 2 7 ± 0.2 5–7

Azotobacter spp. Ashby’s agar 28 ± 2 7 ± 0.2 5–7

Rhizobia YEM agar 28 ± 2 7 ± 0.2 2–5

Almas Zaidi et al. (2014)
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Table 4.9 Chemical composition of media used for assessment of microbial diversity in soil

Amount (g/l)

Media
component

Pikovskaya
medium

NBRIP medium Ashby’s medium Yeast extract
mannitol agar

Dextrose 10.0 10.0 – –

Mannitol – – 20.0 10.0

Yeast extract – – – 1.0

Ca3(PO4)2 5.0 5.0 – –

CaCO3 – – 5.0 2.0

MgCl2·6H2O 5.0 5.0 – –

MgSO4·7H2O 0.25 0.25 0.2 0.2

KCl 0.2 0.2 – –

(NH4)2SO4 0.1 0.1 – –

K2HPO4 – – 0.2 0.5

K2SO4 – – 0.1 –

NaCl – – – –

Bromophenol
blue (BPB)

– 0.025 – –

Zaidi et al. (2014)

that for short time storage, the samples should be stored in 4 °C in sterile polythene
bags (Zaidi et al. 2014).

4.12.2 Scaling up of PSMs

After isolating high-quality PSMs in their specific medium in a laboratory scale
(50 mL capacity flasks), it is time to incubating them under shaking condition until
the time we meet 109 CFU/ml of live microorganisms. Then, 1–5% of the medium
should be transferred to a larger. The process should be continued in a similar way
to the last step of scaling up to fermenter. Fermentation, a term driven from the Latin
term“fervere”, refers to a process inwhich specificmicroorganisms, grown in specific
medium construction are used to produce specific metabolites (Anand et al. 2016).
For large-scale fermentation, there are two main types of processes. The first one
known as batch fermentation is a discontinues method of culture whereby the culture
is grown in a number of inoculums vessels and then producing microorganisms and
nutrients are transferred to the concerned fermentor only once at the beginning of
the fermentation. Afterward, the products and other tank containers will be taken out
after a specific period of time (Ghaffar et al. 2014; Suthar et al. 2017). The second is
continues fermentation in which substrates are continuously supplied to the culture
at a regular rate and similarly products are driven from the tank. No wonder higher
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Fig. 4.12 Steps for preparation and application of phosphate-solubilizing microbial inoculants.
Adapted from Sujatha et al. (2020)

productivity is achieved in this method and the process could be continued for a long
time (Bakri et al. 2012; Ghaffar et al. 2014).

Dividing fermentation into two groups of SSF (solid-state fermentation) and
SmF (submerged fermentation) is another type of classification depending on
the type of substrate used. For biofertilizers production, substrates used in SSF
method are usually bagasse, vegetable or fruit wastes, paper pulp and synthetic
media and about SmF fermentation, materials commonly used are liquid synthetic
media, vegetable or fruit extracts, dairy industries by-products, soluble sugar and
wastewater (Suthar et al. 2017). The steps for inoculant preparation are shown in
Fig. 4.12 and the process for the production of efficient biofertilizers containing
phosphate-solubilizing microorganisms is demonstrated in Fig. 4.13.

Fermenter temperature, pH, contamination-free environment, aerobic or anaer-
obic conditions, incubation period and nutrient supply should be in an optimal condi-
tion for the strains. Until the quantity of organisms reaches 109 CFU/ml, fermenters
should be checked on regular basis in case of probable contaminations and cell
density. A standard specification of phosphate-solubilizing bacterial biofertilizers
reported by FCO is shown in Table 4.10 (Suthar et al. 2017; Zaidi et al. 2014).

The next step is choosing and processing the suitable carrier material. Carrier
material is used to keep microorganisms in a good physiological condition and
transfer them from laboratory to rhizosphere or seed (Smith 1992).Among the variety
of carriers commonly used in biofertilizers formula (categorized in Table 4.11),
neutralized peat soil/lignite is counted as a more suitable carrier material (Zaidi et al.
2014). From the required characteristics of carriers we can name cost-effectiveness,
being easy to mix and packaging, having the ability to keep organisms viable, the
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Fig. 4.13 Protocol for isolation and development of effective inoculants of PSMs-based biofertil-
izers. Adapted from Sharma et al. (2013)

Table 4.10 Standard specifications of phosphate-solubilizing bacterial biofertlizers (FCO 1985)

S. No. Parameter Requirements

i Base Carrier-based in the form of moist/dry
powder or granules or liquid-based

ii Viable cell count CFU minimum 5 × 107 cells/g of powder,
granules, or carrier material or 1 × 108
cells/ml of liquid

iii Contamination level No contamination at 105 dilution

iv pH 6.5–7.5 for moist/dry powder, granulated
carrier-based and 5.0–7.5 for liquid-based

v Particle size in case of carrier-based
material

All material shall pass through
0.15–0.212 mm IS sieve

vi Moisture per cent by weight, maximum in
case of carrier-based

30–40%

vii Efficiency character The strain should have
phosphate-solubilizing capacity in the
range of a minimum of 30%, when tested
spectrophotometrically

In terms of zone formation, a minimum of
5 mm solubilization zone in prescribed
media having at least 3 mm thickness

Suthar et al. (2017)

water-holding capacity of at least 50%, easy to sterilize by autoclaving (1 h in 121 °C)
or gamma-irradiation and having the ability to remain in an unpolluted condition,
being safe for plants inoculated microorganisms, being easy to adherence to seeds
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Table 4.11 Different carriers used for inoculant production

Carrier material Inoculant bacterium Characteristics

Sterilized oxalic acid
industrial waste

Rhizobium Seed inoculation;
Rhizobium multiplication in
the carrier in ambient
temperature up to 90 days;
carrier sterilization resulted
in a significant increase in
grain yield, nodule number
and N content

Alginate-perlite dry granule Rhizobium Soil inoculation; Rhizobium
strains survived in dry
granules beyond 180 days;
the inoculant can be stored
in a dry state without losing
much viability

Composted sawdust seed Bradyrhizobium, Rhizobium and
Azospirillum

inoculation; good growth
and survival of the inoculant
strains

Agriperlite, expanded clay,
kaolin, Celite, Diatom, porosil
MP, MicroCelvermiculite

Agrobacterium radiobacter K84 Crown gall control. The
screening was performed to
find an improved
formulation of K84 cells;
the effect of carrier storage
temperature and carrier
water content on survival of
K84 was examined

Cheese whey has grown cells
in peat

Rhizobiummeliloti Seed inoculation; better
survival at various
temperature during storage
even under desiccation

Mineral soils Rhizobium Seed inoculants; Rhizobium
survived better at 4 C than at
higher temperature

Coal/charcoal Rhizobium/PS bacteria Seed inoculants

Granular inoculants amended
with nutrients

B. japonicum Soil inoculants; bentonite
granules, illite and smectite
granules, silica granules
amended with glycerol, Na
glutamate and inoculated
with either peat or liquid B.
japonicum inoculants;
enhanced early nodulation
of soybean and increased N
content of grain

(continued)
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Table 4.11 (continued)

Carrier material Inoculant bacterium Characteristics

Soybean oil or peanut oil
added with lyophilized cells

Rhizobium Seed inoculants; provide
more protection than
peat-based inoculants when
rhizobia are inoculated on
seeds and exposed to the
condition of drought and
high temperature

Perlite Rhizobium, Bradyrhizobium,
Bacillus

Seed inoculants; the
combination of a sucrose
adhesive with the perlite
carrier gave better survival
of bacteria on seeds;
produced a similar number
of nodules, nodule dry
weight, crop yield and
nitrogen content as
peat-based inoculants

Wastewater sludge Sinorhizobium meliloti Seed inoculants; result
showed the suitability of
using sludge as a carrier
because it had the same or a
higher potential than peat to
support the survival of S.
meliloti

Wheat bran, sugar cane
bagasse Soil

Rhizobium/Bradyrhizobium and
PS fungus, A. niger

Inoculants; the number of
microorganisms was the
highest with peat, followed
by bran and sugarcane
bagasse

Nutrient-supplemented pumice Rhizobium Seed inoculants; good
storage and handling
properties and could be
mixed directly with the
seeds during the sowing
process

Zaidi et al. (2014)

and having the ability of rapid release of organisms (Gomare et al. 2013; Zaidi et al.
2014).

Further solid-based biofertilizers (the group including mentioned carriers), there
is another group of biofertilizers which are of interest in recent years. These are
biofertilizers prepared by a liquid base for instance water, emulsion or oil. From
advantages of this group we can name having more shelf life (about two years),
having the ability to be stored at higher temperature (about 55 °C), having UV
toleration, being less likely to get contaminated, requiring ten times lower dosage
of application comparing with carrier-based fertilizers and being user friendly. After
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mixing well the inoculants with carriers, they become sealed, packaged and ready to
use (Nehra and Choudhary 2015; Suthar et al. 2017).

4.12.3 Methods of Microbial Biofertilizers Application

The term “microphos” is used for a bio-preparation of viable and efficient PSMs,
in a sufficient amount of organisms which used as biofertilizers (Zaidi et al. 2014).
Mainly, there are three methods of biofertilizers application. The first and most
traditional one is seed treatment in which plant seeds are coated by processed PSMs
using non-toxic adhesive solutions. Sucrose solutions, gum arabic or vegetable oils
are commonly used as adhesive solutions. The second is seeding root dip which is
suitable for transplanted crops. In this method, microphos is mixed with water and
then, for 5–10 min intended seedlings are dipped in the mixture before transplanta-
tion. Last method is main field/soil application. In this method, the chance of contact
between plant roots and inoculants increases due to the direct placement of granular
microphos into the groove under or beside the seed (Zaidi et al. 2014). Approaches
used formicrobial phosphatic biofertlizers production and their application are shown
in Fig. 4.14.

Fig. 4.14 Approaches used for microbial phosphatic biofertilizers production and their application
(Zaidi et al. 2014)
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4.13 Future Challenges in PSMs Application

Despite the satisfying effects of using PSMs to deal with soil P demand in laboratory
or greenhouse experiments, farmers may face some challenges in field trails. Here
we name some issues which should be considered by scientists and farmers for the
development of microbial biofertlizers and their efficient application. First of all,
complex interactions and competitions between inoculated strains and other micro-
bial soil inhabitants should be taken into account to avoid their poor colonization or
exclusion. Secondly, symbiotic associations with other potent and useful microbial
species and their controlled co-inoculation could positively affect these biofertilizers
efficiency. Next, regarding the fact that P solubilization and mineralization activi-
ties by microorganisms are affected by soil components and energy sources, under-
standing the type of P source present in the soil and the suitable PSmechanism based
on the source would be very helpful for a profitable selection of PS isolates. Last,
abundance and type of soil nutrients such as C and N and other soil physicochemical
properties such as pH and temperature should be assessed before application because
of its influence on phosphatases and phytases function and organic acids production
(Eida et al. 2017; Khan et al. 2010; Scervino et al. 2011).

4.14 Conclusion

To enhance the soil bioavailable P, adding chemical phosphate fertilizers to the soil is
themost popular wayworldwide. But thismethod is not efficient and is expensive and
poses serious risks to the environment. So scientists are looking for safety phytostimu-
lators as better alternative solutions. But thismethod is inefficient, increasingly costly
and is a serious threat to our environment in a way that made scientists investigate
alternative solutions. Using phosphate-solubilizingmicroorganisms known as PSMs,
not only reduces cultivation costs but also is environmental friendly and helps natural
soil fertility. These biofertilizers can insure our food security without damaging soil
dwellers by different mechanisms such as organic acids or enzyme production and
ammonium assimilation. Agricultural dependence on synthetic fertilizers can strictly
decrease with the application of PSMs because of their ability to supplying soluble
phosphate to plants and increasing crop yield.

Regarding the fact that PSMs are abundant in soils, investigations on develop-
ment of efficient methods to identify and isolate new and better agronomic PSMs
is required. Moreover, functional processes of PSMs in different ecological niches
should be recognized for more effective application and providing the conditions
for beneficial genetic manipulations. The gap between in vitro experiments and the
agricultural practice of these biofertilizers should be filled by the development of
simple processes for mass production and popularizing the application. To prevent
the failure of this method, the appropriate amount of used inoculants for different
plant-soil conditions and different microbial interactions between applied PSMs and
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other soil inhabitants should be investigated before application. Further, researches
on biocontrol potentials of these organisms are needed with the aim of substituting
them with chemical pesticides under different farming systems to get the full benefit
of these precious inoculants; andfinally, to popularize and commercialize the applica-
tion of microbial biofertilizers, development of technology advancements and inno-
vative researches are needed to reach more cost-effective and user-friendly methods
of production and application.
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Chapter 5
Potassium Solubilization: Mechanism
and Functional Impact on Plant Growth

Chanda Vikrant Berde, Sonal Suresh Gawde, and Vikrant Balkrishna Berde

Abstract A major constituent as well as an essential nutrient of all living cells is
potassium (K). This form of K in the soil, however, is not available for uptake by
plants. Chemical fertilizers are added to agricultural fields to provide the required K
but with negative impact on the environment. K-bearing minerals are solubilized by
potassium solubilizing bacteria (KSB) and the insoluble K is converted to soluble
K that is easily assimilated by plants. They solubilize K from insoluble forms like
mica, fledspar, and others by mechanisms that involve formation of organic acids,
siderophores, and also capsular polysaccharides. The diversity and abundance of
KSB is dependent on numerous factors, including soil type, climatic conditions, etc.
KSB are mostly found in the rhizosphere of plants. These PGPR can be utilized as
biofertilizers for sustainable agriculture and can be an efficient substitute to chemical
fertilizers.

Keywords Potassium solubilizing bacteria · Potassium · Plant growth ·
Bio-fertilizer · PGPR

5.1 Introduction

Feeding the increasing population will be the challenge in the future. Hence there is a
need to increase the fertility of the soil in order to have higher yields. Plant nutrients
that include nitrogen (N), phosphorus (P), and potassium (K) are supplied through
chemical fertilizers (Glick 2012). This leads to temporary increase in fertility. Plants
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do not take up all the nutrients applied to the soil. The excess fertilizer remains in the
soil or gets washed off. Excess unutilized fertilizers lead to increase in the salinity
of the soil which makes it unfertile (Sharma et al. 2021). For sustainable agricul-
ture, biofertilizers like phosphate solubilizing bacteria (PSB), potassium solubilizing
bacteria (PSB), and nitrogen fixers should be used (Kour et al. 2020, 2021; Hesham
et al. 2021; Yadav et al. 2021b).

Potassium is required for plant growth, for activation of numerous enzymes
involved in different processes such as photosynthesis, and also involved in increasing
the disease resistance and overcoming stress conditions (White and Karley 2010;
Almeida et al. 2015; Gallegos-Cedillo et al. 2016; Hussain et al. 2016; Yang et al.
2015). Potassium being the most abundant element occurring in the range of 0.04–
3%, however a very small percentage of this content is available to the plants for
uptake (Sparks and Huang 1985). Various forms of K are available in the soil,
including mineral, non-exchangeable, exchangeable and dissolved or solution, i.e.,
the ionic form. Thus, the K reserves in soil are ample but most of it being insoluble is
unavailable for plant uptake. Plants can only directly take-up solution K. Potassium
solubilizing bacteria (KSB) play a role in making K available to the plants in soluble
form, thus playing a crucial role in agriculture under K-limited soils (Verma et al.
2017). With continued usage of KSB in the soil, the need for chemical fertilizers
slowly becomes avoidable.

The efficiency of K solubilizing bacteria will depend on environmental conditions
and also on the available source ofK in the soil.MostlyKSB is added as a biofertilizer
along with K containing minerals, to ensure the presence of K for the activity of the
bacteria. Isolation, characterization, and K solubilizing mechanism studies of good
K solubilizers are thus required for application of these bioinoculants in sustainable
agriculture (Etisami et al. 2017).

5.2 Potassium in Soil

Potassium (K) is one of the essential macronutrients required for plant growth and
development. In the soil, potassium (K) is present mainly in four different forms,
namely, (a) K ions (K+) in soil solution which is exchangeable cationic form, (b)
form that is tightly held on the surfaces of clay minerals (illite) and organic matter,
(c) tightly held or fixed form by weathered micaceous minerals, and (d) form present
in the lattice of certain K-containing primary minerals (feldspar) (Sharpley 1989;
Ahmad and Zargar 2009). Only forms that are utilized by the plants directly for their
growth are the water-soluble and exchangeable K.

Mineral K makes up about 90–98%, which is again dependent on the soil type,
and this pool is unavailable for plant usage (Sparks and Huang 1985; Goldstein
1994). Unavailability of K are also due to reasons such as exorbitant use of chemical
fertilizers, increase in agriculture, loss of K from soil, and presence in bound form.
Feldspar (orthoclase and microcline) and mica (biotite and muscovite) are examples
of minerals containing K (McAfee 2008). The non-exchangeable form of K is found
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trapped in clay mineral sheets and making up about 10% of total soil K (Sparks
1987). K solution being the form that is soluble and can be assimilated by the plants,
however, leaches out from the soil. The uptake is either directly or with the help
of microbes. According to Sparks and Huang (1985), solution K in the soil ranges
between 2 and 5 mg per L. Soil type plays a role in the release and in the availability
of K concentrations.

K availability and release also depend on the soil type. K is found to be high in
black soil; it is medium in red soil, while in the laterite soils, the K concentration
is the lowest (Rehanul 2002). Over the course of time and continuous usage for
agriculture, the soils rich in K can become depleted or deficit in the metal due
to exorbitant usage. Other reasons for the depletion are wash-off, soil erosion, and
leaching of the solution K. This depletion results in the non-exchangeable form being
converted to exchangeable K (Sparks 1987; Sheng and Huang 2002; Prasad et al.
2021). According to the authors, the dynamic equilibrium and reactions involved in
gaining kinetic energy affect the K solutions, i.e., the water-soluble exchangeable K
proportions in soil. Hence, it is necessary to maintain K level in soils and find out
ways of having sufficient K supply for sustainable agriculture (Sindhu et al. 2014).

5.3 Potassium Requirement for Plant Growth: Function
and Deficiency

Crop production depends on the soil nutrient basin that gives mechanical support,
micro and macro nutrients as well as water required for plant growth. It plays several
significant roles, including production of plant enzymes, cell turgor maintenance,
improves photosynthesis, and benefits in sugar and starch transport through the
phloem (Usherwood 1985; Doman 1979; Marschner 1995; Pettigrew 2008). Potas-
sium presence helps in nitrogen uptake by playing a role in nitrogen fixation and
carries out the translocation of photosynthetic process taking place in the leaves to
the roots that harbor root nodules (Savani et al. 1995). Water and nutrients transport
via the xylem is another function of the metal. Potassium is also responsible for
numerous properties related to crop yield, such as grain filling, weight of kernel,
having good straw strength, and protection against plant pathogens by increasing
resistance to pest and diseases. Presence of K enables the plants to resist abiotic
and biotic stresses (Pettigrew 2008; Maqsood et al. 2013; Tiwari et al. 2021; Yadav
et al. 2021a). Potassium also helps in protein synthesis and is involved in number of
biochemical and physiological processes in plants. The most important role among
these is the regulation of stomata opening and closing (Hawkesford et al. 2012). Apart
from being responsible for enzyme activation, K is also involved in ATP synthesis.
According to Brar and Tiwari (2004), K plays a significant role in transport of carbo-
hydrates, photosynthesis, water uptake, pest and disease resistance, and helps to
sustain balance between monovalent and divalent cations. Khawilkar and Ramteke
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(1993) have elaborated on its significance in increasing the shelf life of crops apart
from rendering the crops disease resistant.

Though K is absorbed by plants in huge amounts than the other minerals, the plant
may suffer from deficiency symptoms if the uptake is not sufficient. Deficiency of
essential elements is the limiting factor affecting agriculture (Xie 1998; Zord et al.
2014). Many workers have reported K deficiency in number of crops (Meena et al.
2015; Xiao et al. 2017).

Deficiency of K is seen throughout the plant starting with the yellowing of leaves
in the lower parts of the plant which spreads upwards. It is called as yellow scorching
or firing which is actually chlorosis, seen along the margin of the leaves. Effects of
K deficiency are also seen in the roots which show poor and slow growth. The seed
size is small and significant reduction in yield observed. These changes are usually
not evident in the beginning and by the time symptoms become visible, the damage
cannot be reversed (Khanwilkar and Ramteke 1993). There is tremendous loss of
crop yield, and crop quality is also affected. Several factors are responsible for the
depletion of K in the soil and this leads to shortage of K availability to plants. In order
to overcome this problem, an alternative method of making K available to plants and
maintaining K level in soil has to be adopted.

5.4 Potassium Solubilizing Microbes

Different types ofmicroorganisms are present in the soil. The abundance of organisms
is more in the rhizosphere where they help the plant in various ways. The rhizosphere
consists of microflora that is able to carry out nitrogen fixation, phosphate solubi-
lization, and potassiummobilization and also benefit the plants in other ways (Yadav
2021). Among these, the K solubilizers promote growth by converting insoluble K
present in bound form to usable soluble form for the plants (Sperberg 1958; Zeng
et al. 2012). Lot of research has been focused on methods to isolate the solubi-
lizers, characterization of the selected strains and their application as biofertilizers
for agriculture improvement (Table 5.1).

A number of bacteria carry out K solubilization, namely Acidothiobacillus
ferrooxidans, Bacillus mucilaginosus, Bacillus edaphicus, Bacillus circulans,
Burkholderia sp., Pseudomonas sp., and Paenibacillus sp. (Sheng et al. 2008; Singh
et al. 2010; Liu et al. 2012; Basak and Biswas 2012). These bacteria are able to
solubilize K minerals such as biotite, feldspar, illite, muscovite, and mica. Muentz
(1890) gave the earliest evidence of microbial association in rock potassium solu-
bilization. Another report by Archana (2013) describes the growth of the cultures
Aspergillus niger, Bacillus extroquens, and Clostridium pasteurianum on muscovite,
biotite, orthoclase microclase, and mica. Some bacterial species such as the silicate
bacteria were reported to dissolve potassium, silicates, and aluminum from insoluble
minerals (Aleksandrov 1967).

Certain microbial strains present in soil are capable of solubilizing the bound K
fromminerals, namelymicas, illite, andorthoclases.KSBbrings about the dissolution
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Table 5.1 Potassium solubilization microbes from different host/habitats

Potassium solubilizing
microbes

Host/sample References

Acidithiobacillus ferrooxidans Feldspar Sheng and He (2006)

Agrobacterium tumefaciens Tobacco rhizosphere Zhang and Kong (2014)

Alcaligenes piechaudii Wheat Verma et al. (2015)

Aspergillus candidus Alluvial soil Banik and Dey (1982)

Aspergillus fumigatus Rock powder Lian et al. (2008)

Aspergillus niger Heavy metals Sperber (1958)

Aspergillus terreus Feldspar Prajapati et al. (2013a, b)

Azotobacter chroococcum Sudan grass Basak and Biswas (2010)

Bacillus altitudinis Soil Huang et al. (2013)

Bacillus amyloliquefaciens
SVNM9

Mica mine Gundala et al. (2013)

Bacillus coagulans PB16 Soil Saiyad et al. (2015)

Bacillus edaphicus Chillycotton Sheng et al. (2003)

Bacillus globisporus Soil Sheng et al. (2008)

Bacillus megaterium JK3 Iranian soils Keshavarz Zarjani et al. (2013)

Bacillus megaterium, Pepper and cucumber Han and Lee (2006)

Bacillus metallica Soil Saiyad et al. (2015)

Bacillus mucilaginosus
MCRCp1

Groundnut Sugumaran and Janarthanam
(2007)

Bacillus subtilis KT7/2 Rhizospheric soil Leaungvutiviroj et al. (2010)

Burkholderia cepacia Tobacco rhizosphere Zhang and Kong (2014)

Burkholderia cepacia GL13 Tobacco rhizosphere Zhang and Kong (2014)

Burkholderia pyrrocinia bamboo rhizosphere Ruangsanka (2014)

Burkholderia ubonensis bamboo rhizosphere Ruangsanka (2014)

Enterobacter aerogenes Tobacco rhizosphere Zhang and Kong (2014)

Enterobacter asburiae Tobacco rhizosphere Zhang and Kong (2014)

Enterobacter cloacae Soil Zhang and Kong (2014)

Enterobacter hormaechei Okra Prajapati et al. (2013a, b)

Frateuria aurantia Egg plant Nayak (2001)

Frateuria aurantia Brinjal Ramarethinam and Chandra
(2005)

Frateuria aurantia Agricultural soils Ramarethinam and Chandra
(2006)

Klebsiella variicola Soil Zhang and Kong (2014)

Microbacterium foliorum Soil Zhang and Kong (2014)

Myroides odoratimimus JM19 Tobacco rhizosphere Zhang and Kong (2014)

(continued)
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Table 5.1 (continued)

Potassium solubilizing
microbes

Host/sample References

Paenibacillus glucanolyticus Mica Sangeeth et al. (2012)

Paenibacillus mucilaginosus Illite Liu et al. (2012)

Pantoea agglomerans Tobacco rhizosphere Zhang and Kong (2014)

Pseudomonas aeruginosa Soil Sheng et al. (2003)

Pseudomonas chlororaphis Soil Yu et al. (2012)

Pseudomonas putida Tomato Ordookhani et al. (2010)

Pseudomonas syringae Maize Nadeem et al. (2007)

Stenotrophomonas maltophilia Wheat Verma et al. (2015)

Stenotrophomonas sp. HHS2-27 Wheat Verma et al. (2015)

Torulaspora globosa Rock powder Rosa-Magri et al. (2012)

of silicate minerals to release K by means of organic and inorganic acids, acidolysis,
polysaccharides, complexolysis, chelation, and exchange reactions. Organic acids
are reported to act directly on the rock K or chelate silicon ions from silica and
release K in solution (Friedrich et al. 1991; Ullman et al. 1996; Bennett et al. 1998).
This ability of the potassium solubilizing microorganisms (KSM) is exploited in
agriculture for crops that require greater K levels (Vandevivere et al. 1994; Barker
et al. 1998).

Reitmeir (1951) has reported the growth ofAspergillus niger, Bacillus extroquens,
and Clostridium pasteurianum on muscovite, biotite, orthoclase, microcline, and
micas, in vitro. Another report by Avakyan et al. (1986) and Li (1994) describes
the isolation of KSB from different samples. Bacillus mucilaginosus is reported
to produce organic acid for the solubilization of K minerals, such as micas, illite,
and orthoclases (Friedrich et al. 1991; Ullman et al. 1996). In another study, Lin
et al. (2002) showed an increase in uptake of K and P in tomato plants using B.
mucilaginosuswas significant as compared to control uninoculated plants. However,
Hosseinpour and Kalbasi (2002) reported high levels of K being present in Iranian
soils, thus making it advantageous for crops with high K demand. He and Sheng
(2006) described illite and feldspar solubilization using organic aids and capsular
polysaccharides produced by K solubilizers.

5.5 PGPR for Sustainable Agriculture

Plant growth promoting rhizobacteria (PGPR) has a very crucial role to play in
fertility of soil and eventually in increasing plant growth (Ahmad et al. 2008). PGPR
provide the plant the nutrients required for growth and production (Vessey 2003).
PGPR includes the various microflora that function in nitrogen fixation, phosphate
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mobilization, and potassium-solubilization, which are used as biofertilizers to supply
N, P, and K, respectively (Vessey 2003; Ekin 2010). A number of mechanisms have
been described which allow the PGPR to directly enhance plant growth (Table 5.2).
Themechanisms involved are solubilization ofminerals, such as phosphorus, produc-
tion of siderophores, hydrogen cyanide, and indole acetic acid (Yadav et al. 2018).

Table 5.2 Potential applications of potassium-solubilizing microorganisms for agricultural
sustainability

Microorganisms Crops Increased parameters References

Azotobacter
chroococcum

Forage Growth and acquisition Basak and Biswas
(2010)

Bacillus mucilaginosus Forage Growth and acquisition Basak and Biswas
(2010)

Bacillus edaphicus Wheat Growth and nutrient Sheng and He (2006)

Bacillus edaphicus Cotton rape Growth, nutrients
uptake

Sheng (2005)

Bacillus megaterium Peppercucumber Growth, uptake Han and Lee (2006)

Bacillus mucilaginosus Peppercucumber Growth, uptake Han and Lee (2006)

Azotobacter
chroococcum

Maize-wheat Growth, yield Singh et al. (2010)

Bacillus mucilaginosus Maize-wheat Growth, yield Singh et al. (2010)

Rhizobium
leguminosarum

Soybean Growth, yield Fatima et al. (2006)

Rhizobium
leguminosarum

Soybean Growth, yield Fatima et al. (2006)

Rhizobium
leguminosarum

Soybean Growth, yield Fatima et al. (2006)

Bacillus megaterium Chickpea Nutrient uptake and
yield

Rudresh et al. (2005)

Bacillus edaphicus
NBT

Cotton Nutrients uptake Sheng (2005)

Bacillus mucilaginous Sorghum Nutrients uptake Basak and Biswas
(2009)

Frateuria aurantia Egg plant Nutrients uptake Nayak (2001)

Bacillus edaphicus Chillycotton P and K contents Sheng et al. (2003)

Bacillus mucilaginosus Tomato Uptake and biomass Lin et al. (2002b)

Bacillus megaterium Egg plant Uptake, and yield Han and Lee (2005)

Bacillus mucilaginosus Eggplant Yield Han and Lee (2005)

Pseudomonas sp. 24 Maize Yield Chabot et al. (1996)

Rhizobium
leguminosarum

Maize Yield Chabot et al. (1996)

Rhizobium
leguminosarum

Maize Yield Chabot et al. (1996)
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The indirect mechanism involves biological control (Ahmad et al. 2008). Thus the
application of these microorganisms as biofertilizers sustainable agriculture could
increase the uptake of nutrients by plants and lead to increased crop production
(Meena et al. 2014a, b; Sindhu et al. 2014; Abdel-Azeem et al. 2021; Kumar et al.
2021). According to some reports, 72% of agricultural land in India has soil with
medium and low K availability, thus requiring external K fertilizer supplementation
(Ramamurthy and Bajaj 1969; Rehanu 2002). There are reports of use of KSB as
K-biofertilizers in China and India, where the soil is deficient in K (Xie 1998; Basak
and Biswas 2009).

There are numerous reports on the use of KSB as biofertilizer in agricultural
practices for different crop cultivation. KSB has been used for cultivation of cotton,
cucumber, groundnut, maize, pepper, rape, sorghum, Sudan grass, tea, wheat (Sheng
2005; Han and Supanjani 2006; Badr et al. 2006a; Sheng and He 2006; Sugumaran
and Janarthanam 2007; Basak and Biswas 2009; Basak and Biswas 2010; Singh et al.
2010; Abou-el-Seoud and Abdel-Megeed 2012; Bagyalakshmi et al. 2012a, b).

According to Singh et al. (2010), maize and wheat when co-inoculated with KSB,
served as a source of K for crop growth by solubilizing the waste mica (Singh
et al. 2010). It has been reported that mobilization of K from relatively hard K
minerals, i.e., hardness of more than 3 according to Mons’ hardness index, was more
challenging than mobilizing the relatively softer k minerals of hardness less than
3 (Sheng and Huang 2002). Most of the studies are therefore carried out with soft
K-bearing minerals. Apart from providing the essential nutrients for plant growth,
K solubilizing rhizobacteria produce antagonistic substances, biodegrade organic
matter, and participate in nutrient cycling (Meena et al. 2013, 2014b).

5.6 Mechanism of Potassium Solubilization
by Microorganisms

Microbial soil community can influence soil fertility through decomposition of
organic matter, mineralization, and release of nutrients (Parmar and Sindhu 2013).
Numerous microorganisms have been identified for their ability to solubilize K by
various mechanisms (Table 5.3). Some of these mechanisms include the production
of inorganic and organic acids, acidolysis, polysaccharides, complexolysis, chela-
tion, polysaccharides, and exchange reactions (Gerke 1992; Rai et al. 2020; Yadav
et al. 2020).

Most of the investigations describe the production of organic acids by bacteria
that are responsible for making mineral K available (Alexander 1977; Prajapati et al.
2013a, b; Maurya et al. 2014; Meena et al. 2014b). A strain of Bacillus megaterium
var Phosphaticum has been reported for higher crop yields via conversion of insol-
uble present in rocks in soluble forms (Bojinova et al. 1997; Schilling et al. 1998).
Production of organic acids is a major mechanism for making K available. Organic
acids produced bymicroorganisms include citric acid, formic acid, malic acid, oxalic
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Table 5.3 Mechanisms of K solubilization by potassium solubilization microbes

Microorganisms Mechanism of K solubilization References

Aspergillus candidus citric, oxalic Banik and Dey (1982)

Aspergillus fumigatus Oxalic, tartaric Banik and Dey (1982)

Bacillus circulans GY92 Lipo-chitooligosaccharides Lian et al. (2001)

Bacillus edaphicus Production of organic acids Sheng et al. (2008)

Bacillus megaterium Citric, gluconic Taha et al. (1969)

Bacillus mucilaginosus Mica through organic acids Basak and Biswas (2009)

Bacillus mucilaginosus Illite solubilization Han and Lee (2005)

Bacillus mucilaginosus Oxalate, citrate Sheng and He (2006)

Burkholderia glathei Siderophores, organic ligands Calvaruso et al. (2007)

Citrobacter freundii Citric, gluconic Taha et al. (1969)

Enterobacter hormaechei Organic acids Prajapati et al. (2013a, b)

Paenibacillus glucanolyticus Organic acids Sangeeth et al. (2012)

Paenibacillus mucilaginosus Tartaric, citric, oxalic acids Liu et al. (2012)

Paenibacillus mucilaginosus Tartaric, citric, oxalic Liu et al. (2012)

Penicillium frequentans Oxalic citric de la Torre et al. (1992)

Pseudomonas aeruginosa Acetate, citrate, oxalate Badr et al. (2006b)

Sphingomonas Acidification, complexation Uroz et al. (2007)

acid, acetic acid, etc. (Sheng et al. 2003). The organic acids act on the K compounds
and bring about its dissolution by giving out protons and forming by Ca2+ complexes.
Similarly, solubilization of K takes place by formation of organic acid complexes
and complex formation with metal ions like Fe2+, Al3+, and Ca2+ (Styriakova 2003).

Grandstaff (1986) and Surdam and MacGowan (1988) report solubilization of
aluminosilicate or quartz by producing organic ligands. Solubilization of K takes
place by the action of inorganic and organic acids as well as capsular EPS by
Bacillus, Clostridium and Thiobacillus (Groudev 1987). Similarly, Sheng and He
(2006) have reported the release of K from feldspar and illite by organic acids like
oxalate and tartarate by K solubilizing bacteria. The fungal species Cladosporoides,
Cladosporium, and Pencillium sp. have been shown to bring about solubilization of
clay silicates,mica, and feldspar by the action of protons, organic acids, siderophores,
and organic ligands. The acids produced include citric, oxalic, and gluconic acids.
The release of gluconic acid promotes dissolution of silicates such as albite, quartz,
and koalinite (Argelis 1993). Hu (2006) describes several organic acids produced by
the strain B. edaphicus. Oxalic acid caused dissolution of fledspar, while tartaric acid
and oxalic acid brought about dissolution of illite.
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5.7 Conclusions and Future Perspectives

Along with the minerals N and P, K is required essentially for plant growth. K
fertilizers are added to soil to meet the plant’s K requirements. However, the fertil-
izers are costly and also cause the lowering of soil sterility with overuse (Yadegari
and Mosadeghzad 2012; Zhang et al. 2013). Over the time, it leads to harm being
caused to the environment and eventually to mankind (Hu et al. 2010; Tuli et al.
2010). Nature-friendly, agriculturally profitable, and cost-effective solution for the
problem is obtained in the form of potassium solubilizing bacteria (KSB). Applied
as biofertilizer, the bacteria can solubilize insoluble minerals present in soil into
soluble available forms, readily utilized by plants. Therefore, application of KSB as
biofertilizer is thus an eco-friendly agriculture practice which acts with environment
safeguard practice as the core and is the essence of conscientious farming.

More research is required to make the application of KSBs in agriculture a more
rewarding and attractive venture. Research in the future should be focused on the
following aspects:

(i) More field studies are needed with proper standardization of KSB application
in situ.Application details and quantitated results of effects on yield, crop-wise
should be available (Parmar and Sindhu 2013).

(ii) PGPR should be studied for all activities such as nitrogen fixation, indole
acetic acid production, etc. along with K solubilization.

(iii) Study of the solubilization of other minerals along with K such as Fe, Mn,
etc.

(iv) Laboratory and greenhouse conditions should be varied as per the conditions
on field. Hence application procedure as per the field conditions should be
available.

(v) Study of the genes involved in solubilization process and the genetic engi-
neering of environmentally stable organisms with these genes could be a good
strategy for having stable bioinoculants as K solubilizing agents.

Thus knowing themechanisms aswell as detailed research leaving no loopholes in
the application of KSB for sustainable eco-friendly and profitable agriculture would
be the fruit of all the efforts put in.
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Chapter 6
Fe Chelation and Zinc Solubilization:
A Promising Approach for Cereals
Biofortification

Upendra Kumar, Priyanka, Rashmi Malik, Prexha, Yogita,
and Kamla Malik

Abstract Micronutrient deficiency, micronutrient malnutrition or hidden hunger is
an increasingly severe global challenge for humankind. As wheat, rice and maize
are the major staple food crops and are frequently consumed, it has become neces-
sary to biofortify cereal crops with micronutrients, especially iron and zinc, in order
to fulfill the requirements for better human health. Cellular and molecular mech-
anisms should be understood to maintain the homeostasis of micronutrients for
increasing iron and zinc in plants. For metal ions uptake under deficiency condi-
tions, plants have established strongly regulated two different strategies. Reduction-
based strategy-I is followed by non-graminaceous monocots and dicots, whereas
chelation-based strategy-II is followed by grasses. Strategy-II plants (graminaceous
species) facing Zn, Fe and other micronutrient deficiency have mechanism of Fe
chelation which depends on methionine derivative synthesis known as mugineic
acid family phytosiderophores. Graminaceous plants also show quantitative and
qualitative differences in MAs production. Wheat, rice and maize release only 2-
deoxymugineic acid (DMA) in a very small fraction, thus due to low Fe availability
these are reported as susceptible. Whereas, in low Fe availability, barley is reported
more tolerant due to production of large amounts of different types ofMAs, including
MA, 3-epi-hydroxymugineic acid and 3-hydroxymugineic acid. In graminaceous
plants, chelation and uptake of non-Fe metals are also facilitated by MAs, like Zn in
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the form of Zn (II)-MAs. Therefore, to solve the above problem, there is a require-
ment for alternative and eco-friendly technology such as plant growth-promoting
rhizobacteria (PGPR) and organic farming practices to enhance zinc solubilization
and its availability to plants.

Keywords Cereals · Fe and Zn deficiency · Chelation · Phytosiderophores ·
Biofortification

6.1 Introduction

The deficiencies of micronutrients or “hidden hunger” are a major concern in devel-
oping countries, mainly sub-Saharan Africa and South East Asia (Harding et al.
2018). These micronutrients mainly consist of vitamins and minerals. Iron, zinc,
iodine, folate and vitamin A are crucial micronutrients that lack in the diets of
developing countries populations. All these micronutrient deficiencies (MNDs) are
responsible for poor growth, prenatal complications, intellectual impairments and
increased risk of morality (Bailey et al. 2015; Kaur et al. 2020a, b). Among these
MNDs, iron deficiency is the most common in the world; approximately more than
30% of the world’s population, an estimated 2 billion people, are suffering from
the iron deficiency diseases. The recommended daily iron intake varies between 8
and 18 mg/day according to age, gender and body weight, and 27 mg/day for preg-
nant women. WHO estimated that 50% cases of anemia are due to iron deficiency
called iron deficiency anemia (IDA) (Picciano 2003; de Benoist et al. 2008). Iron
deficiency anemia is very common in women because of menstruation cycle and
child birth which results in heavy blood losses. Nutrition interventions made during
pregnancy and early childhood (under two years of age) have the greatest impact in
reducing vulnerability to disease and death due to poor nutrition.

To raise awareness about serious health problems such as iron deficiency anemia,
every year November 26 is celebrated as Iron Deficiency Day. Vitamin A defi-
ciency (VAD) causes blindness, xerophthalmia, night blindness and corneal ulcer-
ations (Sherwin et al. 2012). The WHO estimated that because of VAD 250–500
million children are blind, and it is also common in pregnancy in lower-income
countries with estimates ranging from 10 to 20%. Iodine is a trace mineral and plays
a key role in thyroid hormone synthesis. When daily iodine intakes in diet are lower
than 10–20 μg, hypothyroidism can occur and it is accompanied by goiter (Trumbo
et al. 2001). Worldwide ∼2 billion of people are estimated to have iodine deficiency
(Andersson et al. 2012). Zinc deficiency is one of the primary causes of morbidity in
developing countries (Hess et al. 2009). It leads to reduced growth, diarrhea, weak
immune system, and increased the risks of respiratory diseases affecting ∼2 billion
people worldwide (Gibson 2012; Prasad 2013). Folate deficiency at the time of preg-
nancy can lead to neural tube defect in fetus, decreased deoxyribonucleic acid (DNA)
methylation and cognitive problems (Martini et al. 2018).
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In most of the parts of the world, malnutrition is present in the form of under-
nutrition, which is caused by a diet lacking adequate calories, protein and essential
nutrients because of not enough food and/or of poor quality. Micronutrient deficien-
cies are affecting the health of over 2 billion people on the earth, and owing to poor
diets almost 150 million children under the age of 5 years are stunted due to poor
diets and 100,000 infants are born with preventable physical defects each year.

Even though deficiencies of micronutrients which are needed only in minute
quantities (i.e. micrograms to milligrams per day), they are the significant cause of
malnutrition and are associated with several health problems (World Health Orga-
nization 2009). It was found out that insufficient dietary intakes of these micronu-
trients can lead to malfunctioning of the brain, immune as well as reproductive
systems and energy metabolism. These deficiencies lead to learning disabilities,
deplete work capacity, serious illness and eventually death. Even modest levels of
deficiency of these nutrients in diet (which can be detected by biochemical or clinical
measurements) can cause serious detrimental effects on human health. MNM is a
serious global affliction that limits the work capacity of people and seriously hinders
economic development (Graham et al. 2000).

The most common deficient micronutrient found in the human diet is iron (Fe).
Anemia caused by Fe deficiency has major detrimental consequences for human
health. The children of anemic mothers have low iron reserves which lead to more
requirement of Fe than supplied by breast milk to lower growth impairment cause
by Fe deficiency. It is estimated that 800,000 deaths are attributable to Fe deficiency
anemia annually (Mayer et al. 2008). An estimated four out of ten pre-school chil-
dren in developing countries are anemic. Anemia affects an estimated 60% of the
population in sub-Saharan Africa, 19% in Latin America and the Caribbean, 76% in
South Asia and 40% in East Asia and the Pacific region.

Zinc (Zn) is essential for normal growth and reproduction of plants, animals and
humans. While mild to moderate Zn deficiency is common throughout the world,
one-third of the world’s population is at high risk and lives in low-income countries,
according to the International Zn Nutrition Consultative Group. Zn deficiency leads
to impaired growth, immune dysfunction, increasedmorbidity andmortality, adverse
pregnancy outcomes and abnormal neuro-behavioral development.

6.2 Key Problems Associated with Micronutrient
Malnutrition

In low-income or developing countries, the daily calorie intake of poor peoplemainly
constituted of carbohydrate-rich cereal-based food, which includes primarily cereal
crops, i.e., rice, wheat and maize, while a diversified diet including vegetables, fruits,
animal and fish products with high mineral content adds insignificant proportion. In
developing countries, the rise in micronutrient deficiencies is linked to the shift
in cultivation toward dominance by cereals as a consequence of green revolution.
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Pressure on a fixed land base to produce more food has driven a shift in production
toward cereals. The micronutrient content in cereal crops is inherently very low,
compared with many other food crops, and has further reduced by various processing
methods of crops such as milling and polishing during which nutrient-rich layer
(aleurone) gets removed. The wheat aleurone layer is the most promising fraction
from the outer layer of the grain with its unique benefits as described within the
European Health Grain project. Hence, the food systems dominated by cereals are
low in micronutrients (Graham and Welch 2000). Consequently, diet based only
on staple cereals is not sufficient to provide the recommended dietary allowance
(RDA). The wheat flour consumed contains a relatively poor amount of Fe and Zn,
an average of only 11.7 mg/kg Fe and 7 mg/kg Zn (Herman et al. 2002) and polished
rice contains an average of only 2 mg/kg Fe and 12 mg/kg Zn, whereas RDA for Fe
is 10–15 mg/kg and 12–15 mg/kg for Zn (Impa et al. 2013). In cereal-based diet,
the recommended amount of Fe and Zn for better nutrition is about 40–60 mg/kg,
whereas in the present scenario, the available amount is in the range of 10–30 mg/kg
(Cakmak et al. 2000).

The paradox for Fe is that in spite of the fourth most abundant mineral in earth
crust, it is not readily available to the plants because Fe is present in insoluble form
by making complexes of hydroxides, oxides and phosphates, hence their normal
concentration in plants is only 0.005% (Welch and Graham 2002; Meng et al. 2005).
Owing to high soil pH, nearly half of the world’s cereal growing area is affected with
Zn deficiency and one-third with Fe deficiency (Mori 1999).

6.3 Iron Uptake

In high pH and calcareous soils, Fe was found to be slightly soluble in aerobic condi-
tions despite its abundance (Marschner 1995). It was reported by (Takagi 1976) that
Fe-deficient graminaceous plants secreted Fe(III)-solubilizing molecules known as
mugineic acids (MAs) family phytosiderophores. When Fe acquisition mechanisms
in several plant species were reexamined by Romheld and Marschner, they placed
them into two categories: Strategy-I in non-graminaceous plants and Strategy-II in
graminaceous plants. These strategies have been identified that almost perfectly fit
the model scheme proposed by Romheld and Marschner (1986) (Fig. 6.1).

This strategy is utilized by all the higher plants except graminaceous family. The
dominated genes involved in these processes were ferric-chelate reductase oxidase
(FRO2) gene and other iron-regulated transporter (IRT1) genewhichwerefirst cloned
from Arabidopsis in 1990s. Since then, FRO2 and IRT1 homologous have been
discovered and cloned from numerous plant species. Strategy-I also involved other
processes that include excretion of proton and phenolic compounds from the roots
into the rhizosphere, which helps to increase the solubility of ferric ions or support
the reducing capacity of ferric Fe on the root surface. Among the various numbers of
H+-ATPase genes (HA), some induced in Fe deficiencywere thought to be functional
in Strategy-I. In non-graminaceous plants, genes involved in phenolic secretion were
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Fig. 6.1 Fe acquisition strategies in higher plants: Strategy-I in non-graminaceous plants (left) and
Strategy-II in graminaceous plants (right). Ovals represent the transporters and enzymes that play
central roles in these strategies, all of which are induced in response to Fe deficiency

not identified. With induction of these molecular components, other morphological
changes in root architecture such as formation of transfer cells and extra root hairs
were also seen under low Fe availability.

The Strategy-II response depends on biosynthesis and secretion of
phytosiderophores, which are specific to graminaceous plants. Phytosiderophores
are non-proteinogenic amino acid derivatives such as mugineic acid (Takagi 1976;
Marschner et al. 1986; Marschner 1995; Ueno et al. 2009), mainly secreted at
the root tip for a few hours after the onset of sunlight (Neumann and Romheld
2000). These chelates prefer to bind Fe but can also lead to binding Zn or copper.
Fe is reabsorbed by roots in the chelated form as Fe—phytosiderophore through
a specific transporter (Roemheld 1991; Von Wiren et al. 1993). Under severe Fe
and Zn deficiency, the production and secretion of mugineic acids (may represent
50–90% of the exudates) rise enormously in wheat, rice, maize, sorghum and
other graminaceous plants as well as correlated with the tolerance ability of plants
to Fe deficiency chlorosis and necrosis (Brown and Jolley 1989; Cakmak et al.
1994; Curie et al. 2001). However, the distribution of Fe among different chelators
depends not only on the affinity of the chelators toward Fe but also on their relative
concentrations in solutions (Yehuda et al. 1996).

6.4 Molecular Components Involved in the Uptake
of Micronutrients in Cereals

The graminaceous plants which are grown in conditions deficient in Zn, Fe and
other micronutrients depend heavily on methionine derivatives synthesis known
as mugineic acid family phytosiderophores (Mori and Nishizawa 1987) for Fe
chelation mechanism. The first component which synthesized from methionine by
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SAM synthetase is S-adenosylmethionine (SAM) (Shojima et al. 1989) and this
enzyme activity is similar in both the conditions, i.e., Fe deficiency and Fe suffi-
ciency (Takizawa et al. 1996). Therefore, constitutive SAM synthetase activity is
likely to be sufficient for mugineic acid (MA) synthesis. After this, enzyme nico-
tianamine synthase (NAS) produces one molecule of nicotianamine by trimerization
of three molecules of S-adenosylmethionine (Shojima et al. 1989). The mugineic
acids synthesis is crucial for grasses only; in contrast, monocots and dicots share
similar biosynthetic pathway up to NA. Thereafter, 3-keto intermediate is produced
by transferring of an amino group to NA by enzyme nicotianamine aminotransferase
(NAAT). Then by enzyme DMAS, 2′-deoxymugineic acid (precursor of all other
MAs) is produced from NA by removal of an amino residue from it. Hence, NAAT
andDMASare critical enzymes in this pathway (Takahashi et al. 2001), as the expres-
sion of the genes encoding these enzymes is most crucial in biosynthetic pathway of
MAs since it amplified MA, i.e., DMA (the first synthesized MA) (Curie and Brait
2003; Bashir et al. 2006).

Subsequently, other members of mugineic acids family were produced by hydrox-
ylation of 2′-deoxymugineic acid, requirement of which varies with plant species
(Bashir et al. 2006). Mugineic acid family phytosiderophores include mugineic acid
(MA), 3-epihydroxymugeneic acid (epi-HMA), 3-epihydroxy-2-hydroxymugineic
acid (epi-HDMA) and 2′-deoxymugeneic acid (DMA). Two barley cDNAs specifi-
cally expressed in Fe-deficient roots, HvIds2 and HvIds3 (iron deficiency-specific),
were shown to encode dioxygenases involved in the production of 3-epihydroxy-
2′-deoxymugineic acid and 3-epihydroxy-mugineic acid (Nakanishi et al. 2000;
Kobayashi et al. 2001). DMA is converted into mugineic acid by enzyme dioxy-
genase that is coded by gene Ids3. MA is more commendable for internal mineral
translocation because it is stable undermild acidic conditions (Kobayashi et al. 2009).
The genes for NAS (Higuchi et al. 2001), SAM synthetase (Takizawa et al. 1996),
NAAT (Takahashi et al. 1999), DMAS (Bashir et al. 2006), IDS2 (Okumura et al.
1994) and IDS3 (Nakanishi et al. 1993) have been cloned and characterized.

The varied differences in quantitative and qualitative production ofMAshave been
observed among graminaceae family. For instance, rice, maize and wheat secreted
only 2-deoxymugineic acids in small fraction, thus because of low Fe availability,
they are reported as susceptible. In contrast, barley is reported as tolerant in spite of
low Fe availability due to secretion of large amount of different Mas, which include
MA, HMA and epi-HMA (Singh et al. 1993). In graminaceous plants, MAs not only
facilitate chelation and uptake of Fe but also non-Fe metals such as Zn in the form
of Zn-III MAs (Suzuki et al. 2006).

After the chelation of Fe3+ by phytosiderophores (PS), a specialized transporter
YSL1 (Yellow-Stripe 1) located in the root cell’s plasmamembrane helps in the uptake
of metal-PS complex in grasses. The YSL1maize mutants defective in Fe-PS uptake
lead to interveinal necrosis (Curie et al. 2001) that signifies their role in mineral
transportation.

In contrast to the biosynthetic pathway of mugineic acids, the molecular mecha-
nisms of phytosiderophores secretion in the rhizosphere remain poorly understood.
It has been suggested that vesicular transport may be involved, since the appearance
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of swollen vesicles in Fe-deficient barley roots correlates with phytosiderophores
release. Therefore, at the molecular level, the present understanding reveals the core
genes responsible for Fe uptake, translocation and subcellular translocation, and
regulation in view of Fe shortage or excess in higher plants is listed in Table 6.1.

The severe yield loss and poor nutritional quality of grains in calcareous or salt
stressed alkaline soils occurred due to inefficient uptake of these micronutrients in
such conditions (Brown 1961; Cakmak 2008). According to requirement of plants,
approximately 10−8 M Fe is needed, but calcareous soils or soils having high pH hold
total soluble Fe below 10−10 M. As a result of this, most plants suffer Fe deficiency
like leaf interveinal chlorosis because they lack active mechanisms for extracting and
Fe uptake from soil (Kim and Geurinot 2007). Similarly, Zn deficiency symptoms
can be observed in plants growing in very limited free Zn2+ ions in soils (Haydon
and Cobbett 2007; Palmgren et al. 2008).

In case of cereals, the most useful micronutrients are present in husk, aleurone
layer as well as embryo. Therefore, it is a major difficulty to make these stored
nutrients bioavailable for human absorption. In addition, anti-nutritional factors such
as fibers, polyphenols, hemagglutinins, phytic acid and certain tannins present in
plant-based diets extremely reduce the micronutrients absorption (Kumar 2013).
Another most important anti-nutritional factor is phytic acid (Bouis 2000), which
causes reduction of the bioavailability of trace elements by chelation of minerals
such as Fe, P, Ca, Mg, Zn and K (Ekholm et al. 2003). These anti-nutrients also
cause detrimental losses in monogastric animals (like humans, pigs, fish and poultry)
because they cannot utilize phytic acid by degradation due to lacking of microbial
flora in their gut, whereas ruminants have possessed enzymatic degradation of phytic
acid in their guts and release chelated minerals. It was also observed that phytate ion
forms stable salts in seeds due to its high negative charge density and strong tendency
to chelate metal cations (Brinch-Pederson et al. 2002). Hence, the presence of phytic
acid further elevates deficiency of micronutrient in animal feeds and human diet and
acts as a strong anti-nutrient. The level of phytic acid is highest in wheat germ and
lowest in wheat flour (Ekholm et al. 2003).

There are certain organic acids, heme-protein, some amino acids, long-chain
fatty acids, β-carotene that promote Fe and Zn bioavailability (Graham et al. 2001).
Bioavailability of minerals is also dependent on the available forms ofmicronutrients
present in human body such as Fe exists as Fe+3 ions within ferrite protein which is
largely localized in leaves and amyloplasts of seeds. Ferritin-bound Fe has relatively
high bioavailability. The profile of soil also plays significant role in micronutrient
availability to plants. If the soil is deficient in Fe and Zn, the crop grown on such
soil also observed to have deficiency of micronutrients. The micronutrient content
in grains depends on the uptake of micronutrients by roots during grain develop-
ment followed by remobilization and redistribution to grain from vegetative tissue
across phloem. Movement of each element through phloem occurs differently. It has
been observed that Mn and Cu show low movement, Fe shows intermediate move-
ment and Zn shows good remobilization across phloem (Kochian 1991; Pearson and
Rengel 1995). Also it has been reported that at maturity, only 4–5% of the shoot Fe
is translocated in the grain of rice and wheat (Impa et al. 2013).
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Table 6.1 Major genes responsible for Fe homeostasis in graminaceous plants

Name Function Fe deficiency
response

References

TOM1 MAs efflux transporter Induced (strong) Nozoye et al. (2011)

YS1/YSL Fe(III)-MAs transporter Induced (strong) Curie et al. (2001)

NAS NA synthase Induced (strong) Higuchi et al. (2001)

NAAT NA aminotransferase Induced (strong) Takahashi et al.
(1999)

DMAS Deoxymugineic acid synthase Induced (strong) Bashir et al. (2006)

IDS2 Putativeepihydroxymugineic acid
synthase

Induced (strong) Nakanishi et al.
(2000), Okumura
et al. (1994)

IDS3 Mugineic acid synthase Induced (strong) Kobayashi et al.
(2001), Nakanishi
et al. (1993, 2000)

SAMS/MAT S-adenosyl-L-methionine synthetase Induced (weak) Kobayashi et al.
(2005)

MTN Methylthioadenosine/S-adenosyl
homocysteine nucleosidase

Induced Kobayashi et al.
(2005), Rzewuski
et al. (2007)

MTK Methylthioribose kinase Induced Kobayashi et al.
(2005), Sauter et al.
(2004)

IDI2/MTI Methylthioribose-1-phosphate
isomerase

Induced Suzuki et al. (2006),
Yamaguchi et al.
(2000a, b)

DEP Methylthioriblose-1-phosphate
dehydratase-enolase-phosphatase

Induced Kobayashi et al.
(2005)

IDI1/ARD Acireductone dioxygenase Induced Yamaguchi et al.
(2000a, b)

IDI4/AAT Putative aminotransferase catalyzing
the synthesis of methionine

Induced Kobayashi et al.
(2005)

FDH Formate dehydrogenase Induced Suzuki et al. (1998)

APRT Adenine phosphoribosyltransferase Induced Itai et al. (2000)

IDEF1 Positive transcriptional regulator Constitutive Kobayashi et al.
(2007)

IDEF2 Positive transcriptional regulator Constitutive Ogo et al. (2008)

IRO2 Positive transcriptional regulator Induced (strong) Ogo et al. (2006)

IRO3 Transcriptional regulator (putatively
negative)

Induced Zheng et al. (2010)
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Estimates of number of people affected by micronutrient malnutrition are high,
with up to 5 billion people suffering from Fe deficiency. The fraction of developing
country populations at risk of inadequate Zn intake is estimated to be 25–33% (Hotlz
and Brown 2004). The Copenhagen Consensus Conference [Copenhagen Consensus
2008 (www.copenhagenconcensus.com)] ranked the alleviation of Fe and Zn defi-
ciencies as a top priority. It is well established that plant product quality in the future
must include an improvement of nutritional content and availability. In this context, it
was proposed that feeding humans safely with enough Fe and Zn directly within their
diet could become possible by using Fe and Zn fortified crops (Newell-McGloughlin
2008). Reaching such a goal requires an integrated knowledge of the establishment
and control of micronutrient homeostasis in plants.

6.5 Zinc Solubilization

Zinc is a crucial micronutrient for plants which plays various important functions in
their life cycle. The deficiency of zinc in the soil is one of the very commonmicronu-
trient deficiencies and results in decreased crop production. Majority of the agricul-
tural soil is either zinc-deficient or contains zinc in a fixed form which is unavailable
to plants; as a result, reflecting zinc deficiency in plants and soils. Therefore, to solve
the above problem, there is a requirement for alternative and eco-friendly technology
such as plant growth-promoting rhizobacteria (PGPR) and organic farming practices
to enhance zinc solubilization and its availability to plants (Hesham et al. 2021;
Yadav 2021). Zinc-solubilizing bacteria (Zn-SB) are promising bacteria to use for
sustainable agriculture. Zn-SB have various plant growth-promoting (PGP) proper-
ties such as Zn solubilization, P solubilization, K solubilization, nitrogen fixation and
production of phytohormones, like kinetin, indole-3-acetic acid (IAA) andgibberellic
acid, besides production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase
and siderophores, hydrogen cyanide and ammonia. Zn-SB secretes different organic
acids that solubilize the fixed form of zinc to available form, which enhances plant
growth promotion, yield and fertility status of the soil (Yadav et al. 2020b, 2021).

6.6 Mechanism of Zinc Solubilization by PGPR

Zn-solubilizing PGPR were studied extensively to explore their mechanisms. In
general, PGPR use acidification, chelation, exchange reactions and release of organic
acids to solubilize the micronutrients (Chung et al. 2005; Hafeez et al. 2005). The
mobilization mechanism of Zn and Fe may possibly involve the siderophore produc-
tion (Burd et al. 2000; Wani et al. 2007; Tariq et al. 2007; Saravanan et al. 2011;
Abdel-Azeem et al. 2021; Yadav et al. 2020a) gluconate or derivatives of gluconic
acids, e.g., 5-ketogluconic acid (Saravanan et al. 2007a, b), 2-ketogluconic acid
(Fasim et al. 2002) and other organic acids by PGPR (Di Simine et al. 1998; Tariq

http://www.copenhagenconcensus.com
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Table 6.2 Biofortification of micronutrients using the plant growth-promoting rhizobacteria

Microbes Micronutrient Crops References

Anabaena sp. Zn, Fe, Cu, Mn Wheat Rana et al. (2012a)

Bacillus anthracis Zn Soybean Khande et al. (2017)

Bacillus aryabhattai Zn Maize Mumtaz et al. (2017)

Bacillus cereus Zn Soybean Khande et al. (2017)

Bacillus pumilus Zn Rice Jha (2019)

Bacillus sp. Fe Wheat Rana et al. (2012b)

Bacillus subtilis Zn Maize Mumtaz et al. (2017)

Bacillus sp. Zn Rice Shakeel et al. (2015)

Bacillus sp. Zn Maize Mumtaz et al. (2017)

Brevundimonas sp. Fe Wheat Rana et al. (2012b)

Calothrix sp. Zn, Fe, Cu, Mn Wheat Rana et al. (2012a)

Enterobacter cloacae Fe, Cu, Mn Soybean Ramesh et al. (2014)

Enterobacter cloacae Zn Rice Krithika et al. (2016)

Pantoea dispersa Fe Mungbean Patel et al. (2018)

Providencia sp. Zn, Fe, Cu, Mn Wheat Rana et al. (2012a)

Providencia sp. Fe Wheat Rana et al. (2012b)

Pseudomonas fluorescens Zn Black gram Sirohi et al. (2015)

Pseudomonas pseudoalcaligenes Zn Rice Jha (2019)

Pseudomonas putida Fe Mungbean Patel et al. (2018)

Pseudomonas sp. Zn Wheat Rehman et al. (2018b)

Source Kaur et al. (2020), with permission)

et al. 2007; Wani et al. 2007). PGPR-mediated biofortification can be achieved by
using various PGPR microbes isolated from several crops (Table 6.2).

It was found that soil–plant–microbe interactions are complex in nature and there
are various processes which affect the outcome that can influence the crop vigor
and yield (Hafeez et al. 2002; Pieterse et al. 2003). In broader scenario, the precise
mechanism still not completely understood through which PGPR promote plant
growth (Hafeez et al. 2014).

6.7 Biofortification

Biofortification is a method for increasing the availability of essential elements in the
edible portions of crops through agronomic or genetic and genomic interventions.
Biofortification is a novel method to fulfill the daily micronutrients requirement of
people. The major approaches used till date for biofortification of staple food crops
are: agronomic biofortification, conventional plant breeding and genetic engineering.
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Some of biofortified staple crops are: Vitamin A biofortified maize, cassava, sweet
potato, iron biofortified pearlmillet, beans and zinc biofortifiedmaize, rice andwheat
(Nestel et al. 2006). Biofortification has multiple advantages over supplementation
and food fortification (Ottaway 2008). First, it fulfils the daily required amount of
micronutrients in the diet as staple foods are dominantly consumed by poor people
and people living in rural areas have limited/less access to the fortified food available
in themarket. Second, one-time investment is required for development of biofortified
seeds, and these seeds are used by farmers for many years. Therefore, it is a cost-
effective approach as it reduces the use of expensive fertilizers. Third, biofortified
crops are highly sustainable (Rajendra 2009).

Among the various interventions to improve nutritional status of deprived human
beings, biofortification of the crops is the most promising, widely accepted, cost-
effective and easily affordable method (Zimmermann and Hurrel 2002; Lonnerdal
2003). Biofortification refers to the process of developing genetically improved food
crops that were rich in bioavailable micronutrients, either through genetic modi-
fication via conventional breeding or molecular approaches. Various micronutrient
initiative programs are runningworldwide andHarvest Plus is one of themwhichwas
started to challengemicronutrient malnutrition with the objective of improving nutri-
tional status in staple food crops with Zn, Fe and vitamin A by using plant breeding
strategy (Pfeiffer and McClafferty 2007). During the first phase of this program,
priority was given to rice, wheat, maize, sweet potato, cassava and beans, while in
the second phase to potato, barley, cowpeas, groundnuts, lentils, millets, plaintains,
sorghum, pigeon peas and yams. The biofortification of cereals is achieved through
combined techniques of conventional breeding,molecular breeding and genetic engi-
neering (Bouis 2000; Nestel et al. 2006). The simplest method of fortification relies
on the addition of the required micronutrient as an inorganic compound to the fertil-
izer but its applicability depends on various factors such as soil composition, mineral
mobility in soil, in plant and its accumulation site. Two other approaches involved
genetic engineering and conventional molecular breeding methods for nutritional
enhancement wheat, rice and maize (India Biofortification Program).

6.7.1 Agronomic Biofortification

Agronomic biofortification is also termed as ferti-fortification as it involves fertilizing
cropswithmicronutrients (Bindraban et al. 2015). In this, the amount ofmicronutrient
in the food crop is enhanced by physical application of mineral fertilizers that mainly
consist of iron, zinc and selenium. These mineral fertilizers can be applied directly
to the soil, seeds, foliar spray or by dipping seedlings into the solution of fertilizers.
By conducting various studies, it was found that foliar application is highly effective
in increasing micronutrient concentration in edible parts of crops compared to their
soil application (Cakmak et al. 2010). On the other side, soil application is highly
effective in enhancing the grain yields (Aro et al. 1995). This approach is simple
and easy to apply as it does not require any technical learning, but needs attention
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while choosing the source of nutrient, application method and effects of fertilizers
on the environment (Rengel et al. 1999). A major drawback of applying mineral
fertilizers is their repeated and regular application in every season, and thus less
cost-effective to poor farmers. In addition to application of mineral fertilizers, soil
microorganisms like Rhizobium, Azotobacter, Bacillus, Pseudomonas etc. can also
be used which can increase the nutrients uptake and their mobility from the soil to
the edible parts of the crops, and thus improve their nutritional value (Smith and
Read 2010). The nutritional status of different crops has been enhanced through
agronomical biofortification.

6.7.2 Breeding Approach Toward Biofortification

Biofortification using plant breeding approach involves improvement of micronu-
trients concentration and their bioavailability in staple food crops with the use of
conventional breeding and current biotechnological methods such asmarker-assisted
selections (Mayer et al. 2008). Biofortification with the use of conventional breeding
is oneof themost acceptedmethods of biofortification, as it involves crossingbetween
natural crop varieties. Sufficient genotypic variation for the trait of interest is the
primary need of conventional breeding. Conventional breeding involves crossing
between donor parent (contain high amount of micronutrient) and recipient parent
(into which desired trait have to be transferred) over several generations to generate
plant with desired micronutrients. Therefore, production of desired variety can take
up to 6–7 years (Stein et al. 2007). Due to less availability of natural genetic variation,
another method, that is mutational breeding, can be used to biofortify staple crops.
This technique enhances crop variety by creating genetic variability with chemical
mutagens such as ethyl methyl sulfonate (EMS), ethyl nitrosourea (ENU) or irradia-
tion that involves gamma rays, X-rays, UV rays etc. Recent breeding approach being
used worldwide is molecular breeding, also known as marker-assisted breeding. This
modern biotechnology technique uses the molecular marker (a segment of DNA)
linked to a particular trait of interest in order to screen nutrient-rich crop varieties. It
speed up the breeding process by selection of desired crop varieties at early stages
of development. The use of molecular breeding is increasing gradually, both by seed
companies and plant breeders. Using this approach multiple genes from different
varieties which code for different traits can also stack into single variety (Pray and
Listman 2006).

6.7.3 Biofortification Through Genetic Engineering

Genetic engineering is now being used as one of the most advanced weapons to
fight against micronutrient deficiency by generating transgenic by transferring genes
directly to elite genotypes. Improved knowledge about DNA has facilitated scientists
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for speedily exploiting the hidden secrets and benefits of different genes. However,
for the development of transgenic for nutrient biofortification, two criteria need
to be considered; first, the selection of widely adapted genotype of economically
important crop, and second, accumulation of nutrient in the edible portion of the
crop plant without having adverse effects on their physiological and developmental
characteristics (Vanderschuren et al. 2013). Genetic engineering approach has been
used in various crops for nutritional enrichment by focusing on increasing the uptake
and utilization efficiency of crop through modulation of reporter’s expression, and
reducing the concentration of anti-nutritional factors (Garg et al. 2018). Transgenic
iron and zinc rice has been developed and tested in confined field trials that can
provide 30% of the EAR for both nutrients (Trijatmiko et al. 2016). Golden rice,
which contains β carotene, is capable of providing more than 50% of the EAR for
vitamin A. Despite being available as a prototype since early 2000, however, golden
rice has not been introduced in any country, in large part due to highly risk-averse
regulatory approval processes (Wesseler andZilberman2014). This has been reported
that by improving the Fe, Zn and Se content of crops by utilizing the information
regarding plant geneticmakeup and applying transgenic approachwe could definitely
solve the problem of micronutrient malnutrition but it’s very expensive and will
require a lot of time. However, once these crops are being developed, there are no
more utilization of resource because the changes have been made permanent directly
at genetic level (Bilski et al. 2012). Although using genetic approaches we are able
to get desirable results, but using it for production of transgenic is not well accepted
due to acceptance issues related to transgenic crops. Moreover, recently it was found
that editing in plants is possible through various genome editing tools, like CRISPR-
Cas, ZFN, TALLEN, etc. and these tools can be further exploited to get our desirable
results (Jaganathan et al. 2018).

Various transgenic strategies for nutritional fortification of cereals included alter-
ation in metabolic pathway for either increasing the amount of desirable compound,
decreasing the number of competitive compounds or extension of the biosynthetic
pathway for the production of novel product used by various workers. It also involved
expression of recombinant proteins that make minerals to be stored in trivalent form
such as ferritin. This is a Fe storage protein consisting of 24 subunit shell around a
4500-atomFe core. Ferritin resisted the denaturation during gastrointestinal digestion
and also protected it from chelators during digestion, thus enhances Fe absorption.
Ferritin gene expression has been demonstrated in a variety of plants, including
Arabidopsis, soybeans, beans, cowpeas, peas and maize. Transgenic rice with 3 to
4.4 times higher grain Fe level than wild type has been reported (Goto et al. 1999).
In another study constitutive promoter along with soybean ferritin gene resulted
in elevated Fe level in the leaves of transgenic rice and wheat plants. Six-fold Fe
and 1.6-fold Zn content was increased by transgenic approach for overexpression
of the Fe storage protein ferritin soyferH2, overexpression of HvNAS1 for the over-
production of the natural metal chelator nicotianamine, and iron(II)-nicotianamine
transporterOsYSL2 under the control of an endosperm-specific promoter and sucrose
transporter promoter (Masuda et al. 2008). Two to six-fold increase in Fe content
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of endosperm of rice seed was observed in genetically transformed rice where nico-
tianamine synthase genes (NAS) and ferritin genes were expressed independently or
in conjugation for this increase.

Another aspect of biofortification and alleviation ofmalnutrition is bioavailability.
Even after achieving higher micronutrient content in edible tissue, how much of
these get absorbed by human gut. It was observed that phytic acid present in food
chelates metal cations such as Fe2+, Zn2+ and Ca2+ and forms phytin, thus reduces
their absorption in the human gut and acts as an anti-nutritional factor. Reduction
in phytic acid could be achieved through development of low phytic acid mutants
and development of thermostable phytase enzyme for solubilizing phytic acid. Low
phytic acid mutants have been identified in rice, barley, maize (Shi et al. 2008), wheat
and soyabean. Expression of phytase and reduction of phytate biosynthesis increased
the bioavailability of Fe and Zn in cereals grain. Nearly 55–60% reduction in phytic
acid phosphorus was reported in these low phytic acid mutants. In tortillas made by
lpa maize, 49% increase in Fe bioavailability has been observed as compared with
wild-type maize. Stable transgenics may be used for hybrid production in maize and
rice with improvement in phosphorus availability. In rice, the gene controlling MIPS
was under the control of RINO1 gene expressed in developing rice seeds specifically
in aleurone and embryo. Using antisense RINO1 technology, transgenic rice with
68% lower phytic acid, normal seed weight, and germination and plant growth has
been produced.

Production of transgenic seeds with higher phytase activity might also result
in enhanced minerals absorption. Maize seeds expressing phyA2 gene showed
2,200 units of phytase activity per kg seeds which was nearly 50-fold increase
over non-transgenic maize. Transgenic crops containing phytase genes from various
Aspergillus species have been produced in tobacco, soybean, alfalfa, wheat, rice and
canola seeds (Brinch-Pedersen et al. 2002). Differential gene expression, coding
sequence and copy numbers resulted in post zygotic sterility. In spite of some
advances with transgenic approach, there are certain constraints associated with it.
Stability in the expression of transgenic plants from one generation to next generation
is a key concern for biofortification program. Other problem refers to various socio-
economical and socio-political concerns related with the acceptance of transgenic
crops by farmers and common people. Issue associated with licensing and intellec-
tual property rights also creates troubles in popularization of these biofortified crops
and ultimately, they didn’t reach to the neediest people.

6.7.4 Molecular Breeding Techniques for Biofortification

Molecular markers are very useful tools for crop improvement and to reduce the time
required in varietal development in crop improvement programs and being utilized in
almost all the important crops. Cereals such as rice, wheat, maize andmillets are very
poor source of micronutrients. Wheat cultivars had very low Fe and Zn content in
grains, which largely distributed in embryos and the peripheral tissue of bran (Welch
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and Graham 1999). In contrast to this, non-progenitor species wheat is having good
genetic variability for Fe and Zn concentration, which ranged 2–3-fold higher than
that of wheat cultivars (Cakmak et al. 2000; Chhuneja et al. 2006; Rawat et al. 2009;
Kumar et al. 2015). Similarly, genetic variability for grain Fe and Zn concentrations
is present in variouswild relatives of rice. The Fe concentration in brown rice samples
ranged from 6.3 to 24.4 ppm with a mean value of 12.2 ppm, whereas for Zn, the
range was 13.5–58.4 ppm with a mean of 25.4 ppm. Some traditional varieties of
rice such as Jalmagna, Zuchem, XuaBueNuo, Madhukar were reported to have twice
the Fe and Zn content than that of elite cultivars. This variability was utilized for
developing biofortified varieties through plant breeding.

Useful variability of Aegilops kotschyi and other non-progenitor wheat was
screened (Chhuneja et al. 2006) and used for wheat biofortification for Fe and Zn
through classical and molecular breeding (Tiwari et al. 2010). Addition and substi-
tution derivatives of Ae. kotschyi group 1, 2 and 7 chromosomes had been developed
for high grain micronutrients (Fe and Zn) by molecular breeding (Tiwari et al. 2010;
Rawat et al. 2011). Variability from Ae. peregrina for high Fe and Zn was also
utilized (Neelam et al. 2011). Scientists at CIMMYT, Mexico have used synthetic
hexaploid wheat from crosses between T. durum and Ae. tauschii with high Fe and
Zn contents in breeding programs and developed wheat lines with higher level of
these micronutrients which were tested at agricultural fields in India, Pakistan and
other countries (Calderini andMonasterio 2003). However, the level of enhancement
of Fe and Zn using wheat synthetics has not been very impressive because of the
limited variability for Fe and Zn in the progenitor wild parents. Therefore, screening
of non-progenitor species for additional variability for micronutrients was required
and considered very important.

6.8 Biofortification of Wheat for Fe and Zn

Wheat (Triticum sp.) is the second major staple food crop of the world in terms
of food source and cultivated area. Various progenitor and non-progenitor species
were screened for utilization of their useful variability (Chhuneja et al. 2006) and
used for wheat biofortification for Fe and Zn by molecular breeding (Tiwari et al.
2010). In contrast to wheat cultivars, one of the species, Aegilops had possessed
a unique and distinctive genetic system for the micronutrient uptake, translocation
and sequestration. They secrete 3–4 times high amount of phytosiderophore than
wheat cultivars in both nutrient-deficient and sufficient conditions (Neelam et al.
2012). Since then, numerous alien addition, substitution and translocation lines in
wheat had been produced via transfer of variability through their several related wild
progenitor and non-progenitor species (Raupp et al. 1995; Friebe et al. 1996, 2000;
Qi et al. 2007). Wheat-Aegilops addition lines were reported to had higher content
of Fe and Zn than hexaploid wheat but lower than Aegilops species (Schlegel et al.
1998). Variability from Ae. peregrina was utilized by Neelam et al. (2011) for high
Fe and Zn content. Wheat-Ae. kotschyi addition/substitution derivative lines with 2S
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and 7U chromosome and wheat-Ae. peregrina addition/substitution derivative lines
with 4 and 7 group chromosomes were developed and reported to have high grain Fe
and Zn content in comparison to elite wheat cultivar (Tiwari et al. 2010; Neelam et al.
2011). Additionally, 5B, 6A and 6B chromosome substitution lines had also been
reported to have high grain Fe and Zn content compared to their recipient parental
line. Using wild and synthetic parents, durum wheat was also fortified for Zn and Fe
content (Cakmak et al. 2010).

Moreover, amphiploids (AABBSlSl) of Ae. longissima and T. turgidum also had
been developed possessing high Fe and Zn content (Tiwari et al. 2008). Synthetic
amphiploids of T. aestivum cv. Chinese Spring (PhI ) and WL711 with different
accessions of Ae. kotschyi (UUSS) were generated by using colchicine treatment
of sterile hybrids (Rawat et al. 2009). Scientists at CIMMYT, Mexico have utilized
synthetic hexaploid wheat in breeding programs from crosses between T. durum and
Ae. tauschiiwith higher Fe and Zn content, and the developed wheat lines containing
increased level of these micronutrients were then tested in agricultural fields of India,
Pakistan and other countries (Calderini and Monasterio 2003). However, enhance-
ment level of Fe and Zn using synthetic wheat has not been as expected due to limited
variability for Fe and Zn in the progenitor wild parents. Therefore, the requirement
of screening of non-progenitor species for additional variability for micronutrients
is very important step, for the development of biofortified varieties through plant
breeding.

Therefore, the addition/substitution lines possessing genetic material of Aegilops
species with high Fe and Zn are very crucial, but because of associated linkage drag,
these cannot be utilizeddirectly. Previously, a number of genes havebeen introgressed
showing resistance against various pests and diseases into wheat from related species
and exploited commercially (Marais et al. 2005; Kuraparthy et al. 2007; Schneider
et al. 2008). Similarly, to reduce linkage drag different methods have been used for
the precise transfer of potential gene (s) from the alien chromosomes.

6.8.1 Utilization of ph1b Mutant

The homoeologous pairing in wheat was prevented by ph1 gene which in contrast
allows pairing of homologous chromosomes. The manipulation of ph-gene system,
therefore, allows pairing of alien chromosomeswithwheat chromosomes. Numerous
approaches were developed and used for manipulating ph1 gene for induced homoe-
ologous recombination. One of them involves elimination of the Ph1 gene either
through use of nullisomy for 5B or using deletion mutants spanning the Ph1 locus
such as ph1b and ph1c (Sears 1977; Giorgi et al. 1983). Another alternative is Ph I

gene, transferred from Ae. speltoides to T. aestivum (Chen et al. 1994). Mutant for ph
was developed by irradiating the pollen by X-ray and pollinating them on mono 5B
plants (Sears 1977). Alien additions, substitutions, translocations, deletions, mono-
somes, ditelosomes and nullisomes of wheat were developed using ph1b line. The
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wheat ph1b mutation, which allows meiotic pairing between homoeologous chro-
mosomes, was deployed to induce recombination between wheat chromosome 2B
and goat grass 2S chromatin using a backcross scheme which is favorable for induc-
tion and detection of the homoeologous recombinants with introgression of small
goatgrass chromosome segments (Niu et al. 2011). Translocation lines of wheat were
generatedwith stem rust resistance that have Sr39 gene conferring resistance to seven
stem rust races (Yu et al. 2010).

6.8.2 Utilization of Mono 5B Line

Development of mono 5B lines can also be used for manipulating ph1 gene as 5B
chromosomes of wheat had ph1 gene on long arm (5BL) (Holm 1988). Forma-
tion of multivalent and random pairing between homologous and homoeologous
chromosome can occur due to absence of 5BL chromosome (Hobolth 1981) which
allowed pairing and recombination between the chromosome of wheat and related
species and therefore, introduce alien genetic variation into wheat. Examples of such
alien transfer were wheat-rye crosses (37%) and wheat-Aecolumneris crosses (50%)
(Lacadena 1967). Advanced lines of durum wheat where homoeologous D genome
replaced B genome were created by Joppa and Williams (1988). These lines were
used for homoeologous pairing. Homoeologous recombination was also observed
in triploids of Festuca arundinaceae var multiflorum (LmLmLmLm) hybrids using
GISH (Morgan et al. 2001).

6.8.3 Radiation-Induced Gene Transfer

The major barriers of alien gene transfer among wheat were hybrid sterility and
lack of recombination between alien chromosomes and wheat. Various strategies
were deployed for transferring alien segments that were smaller than the complete
chromosome arms. Irradiation treatments of various types have been used for fine
gene transfer from alien chromosomes into recipient lines (Michalak et al. 2008).
Pollen irradiation had also been used to obtain gene transfer (Snape et al. 1983).X-ray
irradiation at the dose of 2, 3 and 5 kradwas used for transfer of genes or chromosome
fragments in wheat (Snape et al. 1983). Grain quality and reduced plant height was
achieved by gamma rays at the rate of 10, 20, 30 and 40 krad (Singh and Balyan
2009). However, it was observed that use of pollen irradiation for transfer of gene
was more precise. It was also found that dose of irradiation determines fragment
length to be transfer, i.e., higher the dose, smaller the fragment transferred.

Aegilops germplasm has been utilized extensively for the wheat improvement,
and various addition, substitution, translocation lines for different chromosomes of
Aegilops species have already been reported bymanyworkers (Schneider et al. 2008).
A number of genes have been introgressed into wheat from related progenitor and
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non-progenitor species (Friebe et al. 2000;Marais et al. 2005; Sears 1956) transferred
Lr9 from Ae. umbellulata to wheat using irradiation. Since then various workers
have utilized wild wheat germplasm for different purposes of wheat improvement.
Some of the examples are Yr8 from Ae. comosa (Riley et al. 1968), wheat streak
mosaic resistance from Agropyrone longatum (Sebesta et al. 1972), Pm13 from Ae.
longissima (Ceoloni et al. 1988), Lr35 and Sr39 from Ae. Speltoides, H21 and H25
(Hessian Fly resistance) from rye, Pm29 from Ae. geniculata (Stoilova and Spetsov
2006), Lr57 and Yr40 from Ae. geniculata (Kuraparthy et al. 2007), Lr58 from Ae.
truncialis (Kuraparthy et al. 2007) and Pm19 and Pm35 from Ae. tauschii (Miranda
et al. 2007). Powdery mildew resistance locus Pm21was transferred fromHaynaldia
villosa to wheat using female gametes irradiation-induced transfer (Chen et al. 2012).

Genes for yield and quality improvement have also been transferred from wild
species to cultivars (Hajjar and Hodgkin 2007). Alien introgression of Lr57/Yr40
from Ae. geniculata and Lr58 from Ae. triuncialis to wheat was achieved without
linkage drag (Gill et al. 2008). Various cytological and molecular techniques have
been utilized to analyze the introgressed alien chromosomes and precise frag-
ments from wild germplasm to wheat. Recently, the 2S chromosomal fragment(s)
of Aegilops kotschyi (2Sk) have been transferred into the bread wheat genome in the
direction of developing biofortified wheat with high grain Fe and Zn content (Verma
2014).

6.9 Conclusion

Micronutrient deficiency, micronutrient malnutrition or hidden hunger is an increas-
ingly severe global challenge for humankind. As wheat, rice and maize are the major
staple food crops in temperate countries and is frequently consumed in developing
countries, it has become necessary to biofortify cereal crops with micronutrients,
especially iron and zinc, in order to fulfil the requirements for better human health.
With increase in knowledge about molecular and cellular mechanisms establishing
micronutrient homeostasis understood at most levels alleviates uptake of Fe and Zn
from soil, transport within plant, subcellular compartmentation and storage in edible
parts. On the other hand, different approaches like biofortification using radiations,
transgenics and other methods for alien gene transfer further enhance the prospect
of high percentage of micronutrients in cereal crops. Use of PGPR for the improve-
ments of micronutrients deficiency is promising due to its ecological, economic and
eco-friendly nature. The net increase in nutrient contents and yield has been reported
by the recent studies in the last decades for different grain yielding crops.
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Chapter 7
Soil Microbes in Plant Growth
Promotion and for Mitigation of Abiotic
Stress of Drought

Surendra Singh Jatav, Manoj Parihar, Abhik Patra, Satish Kumar Singh,
Manoj Kumar Chitara, Kiran Kumar Mohapatra, and Kiran Rana

Abstract A large proportion ofworld’s agricultural land is becoming less productive
or completely unproductive due to different environmental factors. Drought is one of
the major agriculture constraints which is caused by insufficient rainfall, prolonged
and frequent dry spells or changes in rainfall patterns. Drought impairs growth, water
relations and water use efficiency of plants, which further alters their morphological,
physiological and biochemical activities. Crop growth models predict that occur-
rence and intensity of drought will be more severe in future. In the current scenario,
to meet global food demands, various strategies have been formulated to cultivate
the crops under drought-affected area. Among them, the use of different microbial
community could be a viable strategy, which enables plants to combat with water
stress through various direct and indirect ways. The use of microbial inoculation
for drought stress management is considered as cost-effective and more eco-friendly
approach than traditional methods. Various rhizospheric soil microbes, including
arbuscular mycorrhizal (AM) fungi, N-fixing bacteria and plant growth promoting
microbes (PGPMs), help in stress resistance and better plant performance. PGPMs
represent a broad range of archaea, bacteria and fungi, which are having excellent
root association ability to produce different enzymes and metabolites for various
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abiotic stress tolerances. In the present chapter, the exploration of potential soil and
root microbiome and their mechanism of actions for drought tolerance in relation to
better plant growth and development have been discussed.

Keywords Drought · Phytohormone · Proline · PGPM · Rhizobacteria

7.1 Introduction

Drought or moisture stress is one of the devastating environmental tremors that has
expanded its frequency throughout in the last 25 years and has severely affected
food and nutritional security of the earth. Drought stress disturbs majority of the
agricultural lands in the world, and poses serious agriculture challenges by limiting
plant growth and productivity. Climate change has an extremely aggravating impact
on occurrences of drought. Lesk et al. (2016) estimated that drought stress could
decline 9–10% in grain productivity and by 2050, >50% crop productions under
global agricultural areas are adverse effect by water stress (Vinocur and Altman
2005). In agriculture, drought mainly occurs due to shortfall in precipitation along
with a higher evapotranspiration rate (Mishra and Cherkauer 2010) which limits
the accessibility of water for plant growth and development to accomplish normal
life cycle (Manivannan et al. 2008). However, by 2050, it is projected that global
human population reaches >9 billion and that will require a sustained increase in
food production to ensure nutritional safety (Foley et al. 2011; Gatehouse et al.
2011). Therefore, a renewed interest to find out alternative ways to water deficit-
related problems, i.e., drought and its impact on food and nutritional security gain
priority. In addition, solutions have to be pursued to improve plant tolerance under
drought environment and allow proper crop growth to meet the nutritional needs
under reduced water supply (Editorial 2010; Mancosu et al. 2015).

At any stage of growth, deficit water supply has harmful effects on crop produc-
tion. Restricted water supply decreases cell size, membrane toughness, induces O3−
species (ROS) and encourages defoliation, which results in lower plant growth and
development (Tiwari et al. 2017). Despite this, plants experience a range of physi-
ological and molecular changes during water deficiency, such as increased ethylene
level, greenness index, disruption of leaf mesophyll cells and interruption in photo-
chemical reaction (Lata and Prasad 2011).Water-deficit environment also leads to the
accretion ofO3− species that stimulate an alteration in cellmembrane activity, tertiary
and quaternary protein binding, and peroxidation of lipid molecules that ultimately
cause cell expiry (Tiwari et al. 2016). The crops have evolved many strategies that
help them to survive under water-deficit condition (Foyer and Noctor 2005), which
includes development of some specialized bio-chemical pathways inside the proto-
plasm (Apel andHirt 2004;Gill andTuteja 2010). Therefore,metabolic re-orientation
happens in cells (Shao et al. 2008; Bolto 2009;Massad et al. 2012) to expedite regular
catabolic and anabolic activities regardless to water stress situation (Mickelbart et al.
2015). Globally, extensive research is underway to establish tactics in dealing with
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water insufficiency, such as drought-resistance crops, planting calendar changes,
water management techniques, etc. (Venkateswarlu and Shanker 2009), and many of
them are expensive. Apart from this, another approach to reduce the adverse impact
of water insufficiency on plants requires application of microbes, namely bacteria or
arbuscular mycorrhizal fungi (AMF) (Forchetti et al. 2010; Marulanda et al. 2010).

Recent research suggests that plants are facilitated to alleviate the load of envi-
ronmental stress by the use of microbes in their inhabitants (Turner et al. 2013).
Research on biochemical, physiological and molecular interactions between plants
and microbes has shown that microbial interactions mostly control plant responses
toward abiotic and biotic stresses tolerance (Fig. 7.1) and boost up the crop produc-
tivity (Marulanda et al. 2010; Yang et al. 2009; Farrar et al. 2014). Nowadays, an
attempt has been made to utilize such useful microscopic organisms for better plant
growth promotion under the shifting environment (Yang et al. 2009; Nadeem et al.
2014).Among these plant–microbes association,AMF (Aroca andRuiz-Lozan 2012;
Azcón et al. 2013), N2-fixing microbes (Lugtenberg and Kamilova 2009) and PGPR
(Kloepper et al. 2004; Glick 2012) are well known. An advantageous community
of microbes colonizes the endo- and exo-rhizospheric region of the crops and stim-
ulates crop productivity by a combination of diverse mechanisms (Shahzad et al.
2017) which include various kinds of low molecular weight organic compounds that
assist crops to survive under changing climate (Pineda et al. 2013; Chauhan et al.
2015). In the present chapter, we have explored the potential microbial-mediated
mechanisms to mitigate drought stress in relation to plant growth and development.
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Fig. 7.1 Microbes-mediated mechanism of biotic and abiotic stress tolerance
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7.2 Drought Stress and Plant Performance

Drought is the main constraints for higher agricultural productivity and is likely
to increase further (Kour et al. 2020a; Yadav et al. 2021a; b). The environmental
changes are responsible for drought-like conditions. Thus, all the living beings will
be affected by drought, particularly plants, which don’t have organs that permit
them to move elsewhere when water and food become scarce. As a result, diverse
terrestrial ecosystemswill therefore be harshly influenced by drought stress.Drought,
the most common devastating environmental stress, has led to serious impact on crop
productivity in virtually all parts of the world.

In the current decade, drought condition has emerged as a severe problem in low
rainfall area (Hossain et al. 2013). Extreme drought is responsible for the modifi-
cation in physiological, vegetative and other metabolic activities in plant (Maqsood
et al. 2012; Yadav et al. 2020). However, there are many defense mechanisms in
plant which could be beneficial for the plant in response to drought stress. Drought
condition adversely influenced the plantmorphology, photosynthesis and antioxidant
enzymes activity; however, the severity of changes depends on plant growth stage
(Maqsood et al. 2013). In addition, plant root system is also a major organ against the
abiotic stress, as it absorbs available water and nutrients from the soil solution (Cseuz
et al. 2009) and plays a key role to alleviate the drought stress. Influence of drought
on root is reflected in several aspects, such as root morphology and further on plant
production. Du et al. (2020a) reported that drought stress enhances the root/shoot
(R/S) ratio in soybean seedlings and this might be due to upregulation of soluble
sugar and starch contents in soybean roots under soil moisture stress.

Under drought condition, plant leaves help in water utilization and contribute
significantly in survival and growth of plant (Grzesiak et al. 2013). Plants react to
drought stress at biochemical, morphological and molecular levels from the seed
emerging stage to harvest stage (Tiwari et al. 2017). Drought stress influences water
potential to turgor pressure and interferes with normal plant functions (Hsiao 2000)
by changing physiological characteristics of the plants. Furthermore, drought stress
also affects transport and availability of nutrients present in the soil solution, as it
decreases diffusion andmass flow of NO3

−, SO4
2−, Ca,Mg and Si (Selvakumar et al.

2012).According toRucker et al. (1995) drought can reduce effective leaf area,which
subsequently reduces the photosynthetic rate. Moreover, number, size and longevity
of leaf per plant can be shrunk bywater stress. Aboveground portions of vegetable are
more susceptible to drought stress than counterparts. Under water-deficit condition,
plants respond by shrinkage area and spiraling of leaves. However, reduction in
leaf size lowers down the photosynthetic activity (Farooq et al. 2009). Drought also
influenced the biochemical composition of plants, like lower nitrate reductase (NR)
activity, because of lower nitrate uptake from the soil system (Caravaca et al. 2005).

Drought can also cause pollen sterility, grain shrinkage, build-up of ABA in spikes
of drought-susceptible genotypes and abscisic acid (ABA) synthesis in the anthers. It
also decreases the biosynthesis of ethylene, which influences the growth and devel-
opment of plants through several mechanisms. Under drought stress, plants exhibited
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several changes such as lower straw yield, altered root morphology, decreased photo-
synthesis, transpiration rate and stomatal regulation with higher oxidative enzyme
activity (Conesa et al. 2016).Drought stress reduced soybean seedweight by reducing
biomass accumulation on organs and decreased biomass allocated to seed (Du et al.
2020b). In rose, water deficiency reduced the photosynthetic activity, shoot length,
weight and leaf surface, while it induced flowering in the early stages (Shi et al.
2019).

7.3 Microbes-Mediated Drought Tolerance in Plants

The below groundmicrobial communities substantially reduce the impact of drought
stress and enhance the persistence ability of various plant species (Table 7.1). This
could be achieved by altering the plant root system, through forming a diverse micro-
bial culture that affects crop development and yield (Schmidt et al. 2014). Structural
modifications of crop-linked microbial populations in root zone under water stress
condition help crops to adapt during water-deficit condition and develop tolerance
against stressors (Schmidt et al. 2014; Cherif et al. 2015; Hartman and Tringe 2019).
The responses of crops toward the drought-specific microbe could be an evolu-
tionary adaptation; however, frequent drought spells had contributed to the devel-
opment of sustainable crop-microbial interrelation which enhances both host and
microbe endurance ability. Soil attenuation is an alternate way to obtain drought-
tolerant community; in such cases, microbial communities develop resistance under
drought-exposed soils, and therefore the plants might have only one option to appoint
these useful microbes.

Lau and Lennon (2011) reported that plants grown under previously stressed
soils were more adaptable to survive in drought condition. Furthermore, plants
grown repeatedly in the same soil can improve their performance under water stress
conditions due to the recruitment of beneficial bacteria that persist in the soil and
may increase resistance against drought for other members of their species (Zolla
et al. 2013; Nadeem et al. 2019). Compared to control soil, pepper plant (Capsicum
annuum L.) grown under arid conditions revealed a complex community of drought-
tolerant microbial population in the endosphere, rhizosphere and root surrounding
soil (Marasco et al. 2012). Piper nigrum plants associated with microbial (bacterial)
strain from desert demonstrated greater resistance under drought stress over non-
inoculated plants which might be explained due to root enlargement of ~ 40% that
increasedwater absorption capacity (Marasco et al. 2013). Brassica rapa cultivated in
complex soil microbial communities showed increased chlorophyll content, flowers
and fecund compared to soil grown in control condition (Lau and Lennon 2011).

Under unfavorable conditions, plant growth and survival can be improved by
adding stress-tolerant bacteria, plant growth promoting microbiome (PGPM) and
AMF (Nadeem et al. 2014). Microbes use indirect and direct pathways to facilitate
growth and development of plants under stress situations. Furthermore, microbes use
various biochemical and molecular processes to promote growth and development.
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Table 7.1 Effect of various microbes on drought tolerance in various crops

Microbes Crop Results References

Trichoderma atroviride Maize Increase fresh and dry
weight of maize roots

Guler et al.
(2016)

Trichoderma harzianum Rice T. harzianum-rice plant
interaction alleviate
drought stress by
modulating proline,
SOD, lipid peroxidation,
growth attributes and
molecular interaction

Pandey et al.
(2016)

Trichoderma harzianum Rice Decreases proline, MDA
(malondealdehyde) and
H2O2 contents, and
increases phenolics
concentration, MSI
(Membrane Stability
Index), root and
seedling growth

Shukla et al.
(2012)

Bacillus amyloliquefaciens
and Azospirillum brasilense

Wheat Improved homeostatic
mechanism of the plant

Kasim et al.
(2013)

Mixture of Rhizobium tropici,
Paenibacillus polymyxa and P.
polymyxa

Bean (Phaseolus
vulgaris)

Increases plant growth,
nitrogen content and
nodulation

Figueiredo et al.
(2008)

Sinorhizobium medicae or
Sinorhizobium meliloti

Medicago
truncatula

Significant delay in
drought-related leaf
senescence in inoculated
relative to
non-inoculated plants
and increases
osmolytes concentration
during drought

Staudinger et al.
(2016)

Bradyrhizobium (B.
japonicum) and Rhizobium (R.
leguminosarum)

Sorghum
(Sorghum bicolor
L.)

Significantly increases
yield and yield attributes
of the plants

Rashad et al.
(2001)

Glomus intraradices Tomato Significantly increases
uptake of N and P in
both roots and shoots;
also increases shoot dry
matter and the number
of fruits

Subramanian
et al. (2006)

Glomus intraradices Soybean Increase osmotic
adjustment in roots and
alleviate oxidative stress

Porcel and
Ruiz-Lozano
(2004)

(continued)
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Table 7.1 (continued)

Microbes Crop Results References

Azospirillum lipoferum Maize (Zea mays
L.)

Seed and rhizosphere
inoculation with A.
lipoferum increases
plant height by 43.89%
and 35.33%,
respectively

Bano et al.
(2013)

Azospirillum spp. Maize (Zea mays
L.)

Provides better response
against water deficit

García et al.
(2017)

Bacillus subtilis Timothy (Phleum
pratense L.)

B. subtilis inoculation
increases shoot biomass
and root volume by 26.6
and 63.8% and
photosynthesis and
stomatal conductance by
55.2 and 214.9%,
respectively

Gagné-Bourque
et al. (2016)

Pseudomonas
putida and Bacillus
amyloliquefaciens

Chick pea (Cicer
arietinum L.)

Significant increase in
biomass of the plant,
and modulate enzymes
activity and microbial
diversity

Kumar et al.
(2016)

AMF species with Bacillus
thuringiensis

Lavandula dentate Increase plant growth
and nutrition while
decrease the plant
oxidative damage of
lipids

Armada et al.
(2016)

Bacillus spp. Sorghum Inoculation increases
growth in terms of shoot
length and root biomass
with higher chlorophyll
content than
un-inoculated plants

Grover et al.
(2014)

Bacillus subtilis Platycladus
orientalis (oriental
thuja)

Thus, inoculation of
cytokinin-producing
PGPR ↑ shoot dry
weight of normal and
drought seedlings by
34.85 and 19.23%, and
root by 15.445 and
13.99%, respectively

Liu et al. (2013)

(continued)



182 S. S. Jatav et al.

Table 7.1 (continued)

Microbes Crop Results References

Pseudomonas aeruginosa Mung bean (Vigna
radiata L.) R.
Wilczek)

Inoculated plants
showed increase in
growth attributes,
relative water content
and upregulation of
drought
stress-responsive genes
in comparison to
non-inoculated control

Sarma and
Saikia (2014)

Pseudomonas putida Chickpea (Cicer
arietinum L.)

Promotes plant growth Tiwari et al.
(2016)

Various strain of
Pseudomonas entomophila

Maize The strain GAP-P45
was found superior in
terms of influencing the
biochemical,
physiological and
growth parameter of the
seedlings under drought
stress

Sandhya et al.
(2010)

Azotobacter strains Maize Significantly increases
plant growth and
nutrient concentration

Shirinbayan
et al. (2019)

Bacillus megaterium,
Enterobacter sp., Bacillus
thuringiensis, and Bacillus sp.

Lavandula dentata
and Salvia
officinalis

B. thuringiensis
influences nutritional
(increase K content),
physiological (decrease
stomatal conductivity)
and metabolic (decrease
cellular oxidative
damage) plant activities

Armada et al.
(2014)

Pseudomonas libanensis
EU-LWNA-33

Wheat Positively prompting the
growth and
physiological attribute

Kour et al.
(2020b)

Streptomyces laurentii
EU-LWT 3-69; Penicillium sp.
EU-DSF-10

Sorghum bicolour
L.

Improving build-up of
diverse osmolytes such
as glycine betaine,
proline, sugars,
increased greenness
index, and declining
lipid peroxidation

Kour et al.
(2020a)

Acinetobacter calcoaceticus
EU-LRNA-72 and Penicillium
sp. EU-FTF-6

Setaria italica L. Efficiently alleviated the
antagonistic influence of
stress in foxtail millet by
build-up of glycine
betaine, proline, sugars,
and declining lipid
peroxidation

Kour et al.
(2020c)
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Rhizobacteria-mediated induced drought endurance and resilience (RIDER) is an
effective intervention that includes changes in plant physiological and biochemical
processes. Physiological pathways include improvements in phytohormone concen-
trations, antioxidant protection mechanisms and development of exopolysaccharides
(EPS), whereas these when related with bio-chemical modifications entail aggrega-
tion with many organic compounds (such as amino acids, sugars and polyamines)
and, moreover, synthesis of dehydrins and volatile organic compounds (VOCs)
(Ngumbi and Kloepper 2016; Vílchez et al. 2016; Kaushal and Wani 2016). During
occurrence of drought, crops enhance osmolytes concentration and thus improve
the osmotic balance inside the protoplasm (Farooq et al. 2009). Interestingly, those
osmolytes include substances exudates by microbes in the root zone. Osmo-tolerant
bacteria synthesize glycine betaine which functions along with crop and synthesize
glycine betaine underwater deficiency to improve resistance against water stress situ-
ation (Kour et al. 2019). These osmo-tolerant microbes generate indole-3-acetic acid
(IAA), which is another important compound to enhance plant growth and develop-
ment. This hormone is likely to cause increase in root proliferation under microbial-
inoculated drought-stressed plants (Yuwono et al. 2005), which promotes water
absorption. Under severe stress situation the positive effects of osmolyte-producing
rhizobacteria on plants were more immense. Yuwono et al. (2005) documented that
under severe drought circumstance, bacteria associatedOryza sativa plants recorded
higher root and shoot dry weight and number of tillers over the control. Bacteria that
live on root surfaces that produce 1-aminocyclopropane-1-carboxylic acid (ACC)
deaminase are said to alter the leaves and roots development response to drought,
possibly through affecting ethylene sensing. Achromobacter piechaudii inoculation
in tomato and pepper significantly improved the fresh and dry weights under drought
spell and this might be due to production of ACC deaminase through the bacteria
(Mayak et al. 2004).

It has been also stated that bacterial inoculation prevents a substantial drop inwater
content, and promotes root growth, leaf biomass, leaves surface area and formation of
proline in roots and leaf (Casanovas et al. 2002).Maize seedlings under drought stress
condition, associated with Azospirillum brasilense reported higher water content,
compared to control treatments.Moreover, these results weremore profound aswater
supply was decreased by 75% over 50% (Casanovas et al. 2002). Creus et al. (2004)
revealed that wheat cultivated under water stress environment with Azospirillum
inoculation recorded higher concentration ofMg, K and Ca in grain but contrastingly
decreases the crop productivity. Therefore, content and potential of water, relative
water content and apoplastic water fraction improved under inoculated wheat plants.
In the same experiment, measurement of cell wall elasticity indicates that an ‘elastic
adjustment’ is critical for increasing water stress mitigation (Creus et al. 2004). It
was widely believed that the inoculation of Azospirillum alters the host plant’s root
morphology, and thus enhanced drought tolerance potential. However, at present it
is not clear that how the microbes alter in crop root structure though it was believed
that bacteria secretes hormone-like chemicals, which played a crucial part in this
method (Dobbelaere et al. 1999; Cassán et al. 2001). Moreover, recently discovered
that bacteria produce nitric oxide (NO) gas, which acts as signaling molecule in
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IAA-mediated route for root proliferation (Creus et al. 2005; Molina-Favero et al.
2008). They reported that tomato plants inoculated with Azospirillum produces nitric
oxide, which helps to develop the lateral root and root hairs. Belimov et al. (2009)
stated that underwater-deficit condition,Variovorax paradoxus-inoculated pea plants
recorded higher growth, yield and water-use efficiency over un-inoculated plants and
this might be due to synthesis of ACC deaminase by the bacteria. TerHorst et al.
(2014) showed that Brassica rapa plants exposed to drought stress environments
were reported to increase microbial abundance and diversity around the root system
compared to plants grown under normal environment. Ullah et al. (2019) isolates
two thermophilic bacterial strains, i.e., Chloroflexi and Gemmatimonadetes which
thrives well under water stress condition and helps cotton plants to sustain various
physiological functions under drought stress.

For mitigating water stress in plants, fungal association played a vital role. AMF
symbiosis modifies hormonal synthesis, which alters plants physiological activity,
and thus alleviates water-deficit stress. This also increases photo-chemical reac-
tions performance to produce nutritional substances in drought stress situation
(Ruiz-Lozano et al. 2016). Shukla et al. (2012) reported that rice plants inoculated
with Trichoderma harzianum enhanced root proliferation under drought stress, thus
enhancing plants survival ability under water-deficit situation. In lettuce and tomato
plants, strigolactone level also reported to alleviate water-deficit situation by forming
a symbiotic association among crop-fungi (Ruiz-Lozano et al. 2016).

Inoculation of plants with PGPM encourages plant growth in water-deficient
conditions by controlling hormonal and nutritional equilibrium, by generating crop
hormonal regulators, and moreover, encouraging tolerance against biotic and abiotic
stress (Spence and Bais 2015; Dikilitas et al. 2021; Tiwari et al. 2021). In addition,
microbes stimulate crop productivity by capturing atmospheric N2, mobilization of P,
and by releasing hormones (Ahmad et al. 2011; Hesham et al. 2021). Plants adopted
few more pathways to cope with the unfavorable environment, such as solubiliza-
tion of nutrients, synthesis of exopolysaccharide, rhizobitoxine etc. (Vardharajula
et al. 2011). Under drought stress situation, rhizobitoxine encourages plant growth
and development by preventing the synthesis of ethylene (Kumar et al. 2009). Plant
growth promoting bacteria (PGPB) mediated drought tolerance in tomato (Solanum
lycopersicum L.) was studied by inoculation with Bacillus cereus AR156, and
enhancement in growth responses was documented (Wang et al. 2012). Conjoint
use of silicon (Si) and PGPB strain improved crop performances under water-deficit
situation relative to their individual application (Ullah et al. 2016). In tomato, Si and
PGPB inoculation increased absorption of K+, Ca2+ andMg2+, relative water content
and reduced electrolyte outflow. However, more field-based investigations need to
be performed to expose the morphological and physiological feedbacks induced by
PGPB, such as improvements in root architecture and drought tolerance. The associ-
ation of PGPR could promote maize productivity via the synthesis of plant hormones
by microbes in root zone that would improve root formation, leading to improved
water and nutrients uptake (Lin et al. 2020).
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7.4 Mechanism of Drought Tolerance by Soil Microbiome

There are several mechanism followed by beneficial soil microbes to mitigate
the drought stress as described in Fig. 7.2. This includes phytohormone produc-
tion, synthesis of volatile compounds by soil microbes, morphological alteration
of the root, 1-aminocyclopropane-1-carboxylate deaminase action, osmolytes accu-
mulation, exopolysaccharide performance, antioxidant resistance and molecular
approaches (Fig. 7.2).

7.4.1 Alteration of Phytohormones Production in Plants

Phytohormones (indole acetic acid, gibberellic acid, cytokinins, abscisic acid and
ethylene) are essential for the growth and development of plants (Egamberdieva
2013; Qu et al. 2020). Phytohormones play a significant role in the escape or survival
of stressful conditions in plants (Fahad et al. 2015; Abdel-Azeem et al. 2021; Yadav
2021). PGPRs such as Azospirillum lipoferum, Bacillus thuringiensis and Phyl-
lobacterium brassicacearum are capable of synthesizing phytohormones (indole-
3-acetic acid, cytokinin, abscisic acid and gibberellins) that stimulate cell growth,
cell division, increase water and nutrients uptake, as well as the stress transduction
signal pathways which lead to decrease leaf transpiration in various crops (Arzanesh
et al. 2011; Armada et al. 2014; Kaushal and Wani 2016). Some PGPR isolates
produced IAA that increased the root volume of the seedlings to mitigate drought
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stress (Hussain et al. 2014; Liu et al. 2020). Asghari et al. (2020) and Jochum et al.
(2019) informed Bacillus sp. (12D6) and Enterobacter sp. (16i) metabolized indole-
3-acetic acid (IAA) and salicylic acid (SA) under drought stress, significantly altering
root morphology and promoting growth in crops of wheat (Triticum aestivum) and
maize (Zea mays).

7.4.2 Functions of Volatile Compound

Accumulation of volatile compound occurs when plant are subjected to various
stresses (Holopainen and Gershenzon 2010; Raza and Shen 2020; Loreto and Schnit-
zler 2010). These volatile compounds stimulate signals for different metabolic reac-
tions both inside and in neighboring plants (Niinemets 2010; Poltronieri et al. 2020).
When Pseudomonas chlororaphis was present at rhizosphere of the Arabidopsis
plant, it induced drought tolerance by producing 2R, 3R-butanediol, volatile metabo-
lite that prevents water loss by inducing stomatal closure in the plant through an
SA-dependent mechanism, whereas no tolerance mechanism has been shown in the
absence of bacteria (Cho et al. 2008). Rhizobacteria emitted various volatile organic
compounds that cause similarly increased tolerance to abiotic stress (Garbeva and
Weisskopf 2020).

7.4.3 Modification in Root Morphology

Bacteria-mediated modifications in the root cell membrane elasticity was one of the
first measures in improved resistance toward drought stress (Dimkpa et al. 2009).
Plant growth-promoting rhizobacteria significantly increases the cell membranes
integrity by stimulating the antioxidant defense mechanism and mediate drought
tolerance (Gusain et al. 2015).

7.4.3.1 ACC Deaminase Productions

In ethylenemetabolic pathways, s-adenosylmethionine (S-AdoMet) is converted into
1-aminocyclopropane-1-carboxylate (ACC) by 1-aminocyclopropane-1-carboxylate
synthase (ACS) which acts as a precursor to ethylene. Ethylene maintains plant
homoeostasis in an endogenous way during drought, by controlling plant growth and
development (Gontia-Mishra et al. 2020). The sequestered plant ACC was depleted
by bacterial ACC deaminase to provide nitrogen and energy to bacteria. Lower
ACC content in the plant eliminates the negative impact of ethylene and encour-
ages plant growth under drought stress conditions (Glick 2005; Singh et al. 2020).
In pot and field trials, ACC producing bacteria abolished the influence of drought
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stress on the yield and yield attributes ripening of peas (Arshad et al. 2008). Simi-
larly, Bacillus licheniformisK11 inoculated pepper released ACC deaminase and six
separate stress proteins, which were detected by two-dimensional polyacrylamide
gel electrophoresis (2D-PAGE) to alleviate drought stress (Hui and Kim 2013). In
tomato plants, ACC deaminase producing Rhizo SF 48 provides greater resistance
against oxidative damage under moisture stress condition and promotes plant growth
(Gowtham et al. 2020).

7.4.3.2 Osmolytes Production

Plant drought tolerance is associated with metabolic modifications which lead to the
accumulation of several ideal electrolytes/osmolytes such as choline, carbohydrates,
proline, betaines, polyamines, quaternary ammonium compounds, and polyhydric
alcohols and other amino acids and water stress proteins such as dehydrine (Yancey
et al. 1982; Close 1996; de Vries et al. 2020). Under drought stress conditions, PGPR
secretes osmolytes that are synergistic with plant-produced osmolytes. It promotes
plant growth and development (Paul et al. 2008). Pseudomonas putida GAP-P45
inoculation improveddrymatterweight (DMW), relativewater content of leaf (RWC)
and leaf water efficiency due to greater proline accumulation in plants undermoisture
stress (Sandhya et al. 2010 and Gusain et al. 2015). Like proline, the metabolism
of trehalose in rhizobacteria is important for sensing plant growth, productivity and
tolerance to abiotic and biotic stresses, and its handling had a major agronomic effect
on crops (Rodriguez et al. 2009). Evident studies on Bacillus subtilis GB03, Kleb-
siella variicola F2 (Arabidopsis) and Pseudomonas fluorescens YX2 (maize) medi-
ated dry tolerance function by biogenesis and production of choline as a precursor
to glycine betaine metabolism, increases RWC and DMW (Zhang et al. 2010; Gou
et al. 2015). Moreno-Galván et al. (2020) observed that the induction of glutathione
reductase activity and proline accumulation were primarily responsible for drought
stress in Guinea grass.

7.4.3.3 Productions of Exopolysaccharide

The synthesis of EPS by rhizobacteria defends them from extreme climates and
allows them to thrive (Vives-Peris et al. 2020). Rhizobacteria releases EPS in
soil as capsular or slime materials that adsorbed to soil colloidal surfaces by
forming cation bridges, H-bonding, Waals forces and adsorption mechanism, and
improves soil aggregate stability (Tisdall and Oades 1982; Sandhya et al. 2009).
EPS offers a microenvironment that holds available water and prevents the environ-
ment from drying out, thereby protecting microorganism and roots against drought
stress (Hepper 1975, Selvakumar et al. 2012). Plants inoculated with EPS-producing
bacteria have shown increased accumulation of organic osmolytes underwater-deficit
stress (Khan and Bano 2019).
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7.4.3.4 Antioxidant Enzymes

Under drought stress, reactive oxygen species (ROS) are formed in plants. ROS inter-
acts with plant metabolites such as oligonucleotide, polysaccharide, protein, lipids
and DNA, which induce oxidative damage and disrupt the normal function of the
plant cells. In order to mitigate these effects, PGPRs application might be helpful
to enhance the resistance against drought by modifying the function of antioxi-
dants during water stress (Gusain et al. 2015). Gusain et al. (2015) recorded that
combined inoculation of Pseudomonas jessenii R62, Pseudomonas synxantha R81
and Arthrobacter nitroguajacolicus strain YB3 enhanced plant dry matter content
and increased stress-related enzymes such as superoxide dismutase (SOD), common
antioxidant enzyme (CAT), peroxidase, ascorbate peroxidase (APX) and malondi-
aldehyde in Sahbhagi and IR-64 rice cultivars (Oryza sativa L.) under drought stress
compared to control.

7.4.4 AMF-Mediated Drought Tolerance

Drought is susceptible to soil degradation and poses severe challenges to agriculture.
Most of the research in the past few years was focused on the symbioses mechanism
of AMF to defend plants from drought, showing that symbiotic relationship often
results in increased osmoregulator sequestration, nutrient uptake,water use efficiency
and dry matter production (Zhao et al. 2015). AMF induced drought tolerance in the
plant by the following mechanism.

7.4.4.1 Biochemical Changes

The AMFworks against drought conditions and promotes crop growth through regu-
lating their biochemical pathways. The first mechanism includes direct uptake of
water through hyphae and its transport to the root system and scavenging the ROS
generation such as hydroxyl radicals (OH) and singlet oxygen (Huang et al. 2017).
The second mechanism involves the synthesis of enzymatic antioxidant (catalase,
superoxide dismutase and ascorbate peroxidase) and non-enzymatic antioxidants
(tocopherol, glutathione, carotenoid, ascorbate and flavonoids) because of mutual
interaction (Bahmani et al. 2018; Xie et al. 2018). For example, AM symbiosis mini-
mized the oxidative stress in maize under droughts and benefitted the plants from
non-systematic oxidative stress (Barzana et al. 2015). Mutual symbiosis starts with
the transition of biochemical signals between the symbionts by physical interac-
tion, which induces preparatory reactions in the other symbionts (Ruiz-Lozano et al.
2016). The molecular dialog begins with a carotenoid-based plant hormone, i.e.,
strigolactones, released from plant, which regulates different plant developmental
processes (Lopez-Obando et al. 2015). The host plant initially secreted a labile rhizo-
spheric signaling molecule (Strigolactones) to stimulate AMF to recognize its host.
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AsAMFrecognizes strigolactones; it activates oxidativemetabolism,whichpromotes
mycelium production, and help to develop physical contact between the AMF and
the host plant (Mori et al. 2016; Peng et al. 2020). Phytohormone andABA level rises
in AMF-colonized plants under drought to deal with the stress. Simultaneously, plant
increases the expression of genes encoding D-myositol-3-phosphate synthase (IPS)
and 14-3-3-like protein GF14 (14-3GF), which are found to be involved in ABA
signaling transduction, and in the activation of 14-3-3 proteins and aquaporins in
Rhizophagus intraradices. Such results indicate that IPS and 14-3GF co-expressions
are responsible to perform the synergistic acts by symbiotic partners to improve
plant tolerance to drought (Li et al. 2016; Martin-Rodriguez et al. 2016). Zhang et al.
(2020) reported that jujube seedling inoculation with Pseudomonas lini and Serratia
plymuthica provides excellent protection against drought stress by regulating IAA
and ABA synthesis with lower ROS production which improves plant growth and
production. Under circumstances of drought, plants modify water connections by
synthesizing well-suited solutes (e.g., starch, proline, protein) to retain turgor pres-
sure and cellular functions for sustaining metabolic functions (Ouledali et al. 2019;
Boutasknit et al. 2020).

7.4.5 By Altering Root Morphology

The AMF enhances the ability of the plant to respond against drought condition.
It has demonstrated its capacity to restore water supply and increase the uptake of
plant nutrients bymycelium elongation under drought. Furthermore, improved water
content may result in greater root activity and hydraulic conductivity (Zou et al.
2017). In addition, AMF has the capacity to perform the task of anastomosis (the
capacity to cause inter-individual fusion of vegetative cells) which is considered to
be an essential mechanism for AMF persistence under dry conditions; in particular
anastomosis of damaged mycelium to regenerate the boundary after water-deficit
stress (Avio et al. 2006).

7.4.6 AMF-Mediated Water and Nutrient Uptake

Water movement occurs primarily through a gradation-driven movement across
plasma membranes, a mechanism induced and regulated by water channels called
aquaporins (AQPs) (Quiroga et al. 2017). Plant aquaporins play a significant part
in AM symbiotic relationship and can react directly to stress (Marjanovic et al.
2005). Expression patterns of AQP genes coding with AMF and drought stress
are observed in plant roots for certain plasma membrane-intrinsic proteins (PIPs)
(Aroca et al. 2007). Expression levels of AQP genes have continuously become docu-
mented in both root cortical cells that contain arbuscules and extraradical mycelia,
whilemolecular mechanism involves water and nutrients uptake through extraradical
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hyphae and improved root morphology (Zou et al. 2015). The AMF improves the
water and nutrients uptake to the plants under water-deficit situation and it could be
achieved by extending root outreach (Bagheri et al. 2018; Bahadur et al. 2019). Le
et al. and Boutasknit et al. (2020) documented that AMF inoculation has strength-
ened the nutrient deficit under sustained moisture stress by encouraging the absorp-
tion of essential macro- and micro-nutrients, organic solutes, stomatal conductance
and resistance against oxidative harm during drought and regeneration, primarily
phosphate.

7.4.7 Challenges to Use Microbial Bio-inoculants

Microbial bio-inoculants provide various benefits to the plants either by augmenting
plant growth through solubilization of nutrients or production of substances which
enhance plant performance, as well as resistance, under drought stress condition.
In addition to improving plant nutrients, beneficial bio-inoculants restore the soil
fertility without polluting the environment and dissimilar conventional chemical
fertilizers are utilized in crop fields; thus, they are environmental-friendly (Kour et al.
2020b). In addition, when carrying out these roles, certain bio-inoculants often limit
the environmental stresses, such as drought or moisture stress. Despite these benefits,
there are some challenges regarding availability, applicability and commercialization
of beneficial microorganism for sustainable agricultural production. However, many
microbial products are available in the markets (Table 7.2) but the effectiveness
of these microbes is also influenced by various soil physical properties (texture,
structure) as well as pH and chemical characteristics.

Another limitation is the lack of mass exploitation of these favorable microbes
for crop production. Furthermore, under stressed environments, extreme temperature
may distress the effectiveness of particular inoculants strains, except root colonizing
endophytic microbes having ability to produce biofilms. High temperatures could
also reduce the beneficial microorganisms in the soil since the microbe inoculum do
not have any defensive support.

However, certain strains perform excellently when applied solely but not neces-
sarily provide good results when used as consortium due to poor compatibility with
other microbes. Lastly, an appropriate carrier has to be used for the bio-formulation
of PGPR. To popularize these bio-inoculants among end-users, certain characteris-
tics, such as cost, presence of toxic elements, physical appearance, viability, effective
propagules density etc., need to be evaluated carefully.

7.5 Conclusion and Future Prospects

In order to enhance agricultural production,management of various biotic and abiotic
stresses is an important strategy. Therefore, use of soil biota such as PGP microbes
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Table 7.2 List of various microbial products available in the market

Microbial product Mechanism Application rate Suitable crops Country

MaxMicrobe Increase
N2-fixation,
systemic
resistance, iron
availability and
produce vitamins

1-2 mL/Gallon for
both growth and
bloom phase

All crops USA

EM-1 Microbial
Inoculant

Increase seed
germination, root
development,
nutrient
availability,
microbial activity
and improve
drought tolerance

One ounce per gallon
(2 TBS)

All crops USA

Bio Yield®

Biostimulant
Promotes growth
by increasing P
and providing
better plant
defense

Seed or furrow
application within
14 days of planting

Corn/Maize USA

Mycorrcin Improve plant
immune through
induced systemic
resistance (ISR)
pathway

For crops and fruits:
2–4 L/ha sprayed onto
the soil; For
vegetables: At
planting apply 6 L/ha
sprayed onto the soil

Mainly fruits,
vegetables,
sugarcane and
other crops

New
Zealand

Soil activator Improves nutrient
availability soil
microbial activity
and suppresses
disease

Vegetables: 5–10 L/ha
every 1–2 weeks from
emergence/transplant;
Fruit and nut
trees: 5–10 L/ha
monthly; Broad-acre
crops and pasture: 3–6
L/ha 1–3 times during
the season

Vegetables,
vines, fruit and
nut trees and
pasture crop

Australia

Humigene Improves soil and
plant condition
and microbial
activity

Foliar spray:
2-3 mL/L, soil
application: 1 L/acre
and seed treatment:
10 mL/kg

All crops India

Zaena Stress Relief
Bacterial Consortium

Alleviate plant
stress and
stimulates the
plant immune
system against
phytopathogens

Soil application or
seed treatment:
(10–20 mL/kg) or
spraying or drenching
(10 mL/L)

All crops India

Fitomare® Increases drought
tolerance and
reduces oxidative
damage

Foliar application Tomato Spain

(continued)
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Table 7.2 (continued)

Microbial product Mechanism Application rate Suitable crops Country

Plantsorb Improve plant
vitality and
growth through
alleviating
drought stress

Planting: 20 g/L,
surface application:
500 g/m2 and volume
application: 100 g/L

All crops Czech
Republic

could be a potential option to alleviate the plant stresses including drought stress.
Soil microbes follow various mechanisms such as production of the phytohormones,
solubilization of nutrients, production of ACC deaminase, siderophore, and various
compatible organic osmolytes and by increasing the availability of water to manage
the stress condition. More specifically, under stress environment, soil microbes influ-
ence the plant growth either directly or indirectly. Direct effect includes delivery
of certain microbe-based metabolic products or greater availability of soil nutri-
ents or water. While indirect mechanism includes the preventive measures against
plant pathogenic organism. Overall, we conclude that soil microbes have a great
potential to enhance the agriculture production under stress environment but their
proper exploitation through molecular and biotechnological approaches is required
for further identification and development of novel and efficient bio-products. In
addition, development ofmechanistic understandingwithmultidisciplinary approach
and extensive research is required to unlock the full potential of soil microbiome in
drought and other stress management.
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Chapter 8
Thermotolerant Soil Microbes and Their
Role in Mitigation of Heat Stress in Plants
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Tanmoy Shankar, and Kumar Anand

Abstract A growing worldwide population, urbanization and industrialization are
expanding the pace of transformation of arable land into no-man’s land. Providing
food to an ever-expanding populace is perhaps the greatest test that agriculturalists
and plant researchers are now facing. Ecological anxieties make this circumstance
much graver. In spite of the enlistment of a few resilience components, touchy plants
regularly neglect to make due under natural limits. New mechanical methodologies
are basic. Customary rearing techniques have a restricted potential to improve plant
genomes against ecological pressure. As of late, hereditary building has contributed
hugely to the advancement of hereditarily altered assortments of various harvests, for
example, cotton, maize, rice, canola and soybean. The distinguishing proof of pres-
sure responsive qualities and their resulting introgression or overexpression inside
delicate yield species is presently being broadly done by plant researchers. The design
of significant resilience pathways, similar to cell reinforcement chemicals, osmolyte
amassing, layer limited transporters for effective compartmentation of harmful parti-
cles and aggregation of fundamental components and opposition against irritations
or microorganisms is additionally a territory that has been seriously investigated.
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In this chapter, the role of microbial biotechnology for mitigation of heat stress in
plants are discussed.

Keywords Heat stress · Plant responses · Adverse impacts · Thermotolerant soil
microbes ·Mitigation of heat stress

8.1 Introduction

Biodiversity is a significant component of ecological preservation and is vital to
horticulture creation. Dangerous atmospheric deviations and their related impacts
can result in forced abiotic stresses; for example, limits of temperature ranges, dry
seasons and flooding, that will undoubtedly affect food creation. Environmental
change influences horticulture and the food creation framework frommultiple points
of view (Godfray et al. 2011). Harvest creation is influenced by climatic factors, for
example, rising temperatures, changing precipitation systems and expanded baro-
metrical CO2 levels. It is likewise influenced by natural factors, for example, the
lengths of the harvest development periods and the yield cycle. Over the course
of the twentieth century, fabulous increments in horticultural yields spared over a
billion people from starvation. Because of accomplishments in the Green Revolution
(Pingali 2012), it appeared that the world’s food requirements could bemet; however,
in spite of the fact that the quantity of undernourished individuals has diminished
consistently throughout the most recent decades, around 795million individuals stay
undernourished around theworld, the greater part ofwhom live in developing nations.
In any event, recognizing the advantages of the Green Revolution in helping to adjust
populace development and food creation, it became apparent before long that the
increase of horticulture through the selection of agro-advancements by ranchers had
prompted the debasement of delicate agroecosystems, due to the loss of soil fruit-
fulness, disintegration, natural lopsided characteristics, and contamination. These
issues were the outcome of the foolish and unbalanced utilization of the advances
created inside the Green Revolution, exacerbated by shallow formative arrangements
(Rahman 2015). Lamentably, almost fifty years after it began, the critical heritage
called the Green Revolution has in numerous areas turned into the debasement of
agricultural regular environments, and a significant part of the populace have not
received the guaranteed end-of-hunger rewards on those innovations.

Today, new ideal models have emerged, and one specifically—practical strength-
ening—has increased wide acknowledgment. As per Pretty and collaborators (2011),
feasible strengthening alludes to delivering more yields from a similar zone of
land while lessening the negative ecological effects and simultaneously expanding
commitments to regular capital and the progression of natural administrations. This
ideawas received by universal strategy and examination associations like theCGIAR,
SDSN, World Economic Forum, FAO, and the Montpellier Panel (Tittonell 2014).
One conceivable approach to accomplish horticultural increase without genuinely
trading off other biological system capacities, is to appropriate and sufficiently use
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a frequently dismissed asset—the dirt microbiome. Truth be told, organism-based
innovations have more than once been shown to increment horticultural profitability
and manageability without hurting nature (Velivelli et al. 2014). For that require-
ment, the inoculants of microbes are becoming progressively mainstream, and speak
to a genuine option in contrast to manufactured agrochemicals. Soil organisms of
numerous sorts: parasites, microorganisms, protists, nematodes, and also bacteria
flourish in the zone-encompassing roots of plants, as well as being affected by root
affidavits: “rhizosphere.” Indeed, natural particles discharged by roots of plants, such
as flavonoids, amino acids, carbohydrates and so on, are able to pull microorganisms
of the soil (Zhang et al. 2014). Some of these rhizospheric microbes advance plant
development and improvement, the most important ones (Mendes et al. 2013) being
known as plant development advancing microorganisms. These can be grouped into
a few classes: those ready to hinder or alienate plant microorganisms are designated
biocontrollers or bioprotectants; others discharge phytohormones, metabolites, and
advance development legitimately (biostimulants); numerous microbes can become
activated by using mineral supplements, as nutrients were synthetically inaccessible
(biofertilizers); another group may enact plant resistance frameworks (bioelicitors);
and last, numerousmicrobes can synthetically changepoisonous xenobioticsworking
as bioremediators (Glick 2012).

Intriguingly, a portion of these microorganisms can show creepy-crawly
pathogenicity, in this way functioning as bioinsecticides ready to shield plants from
root-taking care of creepy-crawlies (Kupferschmied et al. 2013). As it has been over
and again affirmed, a similar microorganismmay show a few of these attributes at the
same time (Ahemad and Kibret 2014). Some current acts of practical agribusiness
depend on the utilization of plant growth promoting microbes (PGPMs). The most
popular case of this are the nitrogen-fixing (NF) microorganisms. These fix N2 in the
root nodules of vegetables, which results in improvements to their development and
yield (Herridge et al. 2008). By 2012, biofertilizers dependent on NF microbes were
themost utilized far andwide, representingpractically 80%ofworldwidebiofertilizer
requests.

Phosphate-soluble microscopic organisms are another group of PGPMswhich are
accepting expanding consideration. This can promptly and successfully solubilizes
P sparingly dissolvable the hydroxyapatite, minerals and phosphatic salts, through
the arrival of natural acids such as gluconic acid and citrus acid (Sharma et al.
2013; Kour et al. 2021; Yadav et al. 2021b). These naturally occurring acids are
likewise assemblages of oxides phosphorus (P), aluminum (Al), iron (Fe), especially
bountiful in acidic soils, by productively chelating the metal particles (Johnson and
Loeppert 2006). Considerably less successive is the utilization of naturally occur-
ring phosphorusmicroorganisms, capable of hydrolyzing natural types of anhydrides,
phosphonates, and phosphate esters, by methods for explicit compounds (essentially
phosphatases) to discharge PO4

2− (Richardson and Simpson 2011). These take into
account the fact that natural types of P can establish up to 95% of the all-out soil
minerals, and that assets of salt of phosphates, appropriate for manure creation, are
diminishing, and what’s more, will be drained in the midterm (Scholz and Wellmer
2016). A few microbes can be soluble in inorganic P, and also can mineralize natural
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P at the same time. Other than microscopic organisms, a few parasites are addition-
ally extremely proficient at advancing plant development. Arbuscular mycorrhizal
growths were the most popular and contemplated. These are the growth of cells
underlying foundations of where they build up their trademark structures which
permit supplement trade between accomplices.

In the present chapter plant responses to heat stress, its adverse impacts and the
role of thermotolerant microbes are addressed for a sustainable crop production.

8.2 Plant Responses to Heat Stress

Stress due to temperature influences the vegetative and reproductive growth of plants
to a great extent (Tiwari et al. 2021; Dikilitas et al. 2021). Nowadays, under the
changing climatic scenario, this has become a major challenge to agricultural scien-
tists. As per the IPCC (Intergovernmental Panel on Climate Change 2007), day–night
temperature is going to increase by 1.8–5.8° by the end of the twenty-first century.
Such drastic changes not only cause heat stress to the plants, but also it will cause
sudden occurrences of drought, floods, and emergences of new pests and diseases.
This increasing trend in annual temperatures might be facilitated the drought situ-
ation by escalating the evapo-transpirational losses from the crops which would
negatively impact on the performance of cereals at the flowering stage (Ihsan et al.
2016). Over the last fifty years (1961–2014), there were losses in cereals, oilseeds,
pulses, fruit and vegetable production to the tune of 1.4, 0.5, 0.6, 0.2, 0.09%, owing
to having drought vis-à-vis heat stress (Mehrabi and Ramankutty 2017). Heat stress
can be defined as an extreme temperature episode which is of a higher range than the
optimal temperature range in plants (Yadav et al. 2021a). Recently, there have been
many approaches such as field experimentation, crop simulation modeling, big data
analysis as well as using various statistical tools, etc., to realize the adverse effects of
high stress due to heat on plants (Asseng et al. 2011). Heat stress in the plant causes
many abnormalities; among these are the development of infertile pollen, restricted
pollination, moreover, failure in embryo development—all major concerns. Booting
to grain filling are vital growth phases of wheat that show vulnerability to heat stress
(Alghabari et al. 2015, 2016).

8.2.1 Heat Stress on Plant Physiology

Critical physiological activities of crops like the germination of seeds, photo-
synthesis, transpiration, respiration, assimilate production and grain maturity are
controlled by the temperature (Zhao et al. 2013). Thus, temperature has a pivotal
role in crop production. All the crops require a certain range of temperature for their
optimal growth and development. Both primary and secondary metabolism rates are
largely altered by heat stress. The plant defense mechanism is stimulated by such
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adverse changes in the primary as well as secondary metabolites, and production of
these metabolites can give a good idea of the extent of stressfulness. The metabolic
processes of plants are influenced by temperature, and abrupt change of temperature
may cause poor performance in terms of growth and development of crops (Table
8.1). Under high temperatures, the concentration of free radicals at cellular levels
and reactive oxygen species (ROS) are generally amplified. Such increments result
in some of the abnormalities found in plants, such denaturation of enzymes, irregular
organelles shape, protein assembly and denaturation of enzymes (Ihsan et al. 2019).

8.2.1.1 Photosynthesis

Changes in temperature have a massive impact on photosynthesis in plants. Both
the dark as well as light reactions of photosynthesis is controlled by heat-sensitive
components. Photosystem II (PS-II) is the heat labile component of the electron
transport chain and a critical site to damage (Allakhverdiev et al. 2008). A rise of
temperature beyond 45° Champers PS-II. However, at mild heat stress, PS-I may
be affected very much (Haque et al. 2014). In wheat, heat stress causes losses in
chlorophyll content as well as disproportion in chlorophyll a/b (Shanmugam et al.
2013). With most of the cereal grains, high temperature at the grain-filling phase
ultimately reduces yield along with quality of the crops (Fahad et al. 2016a; Farooq
et al. 2011).

8.2.1.2 Plant Development

Heat stress in plants accelerates their biochemical reactions; thereby crop develop-
ment becomes faster and this phenomenon ultimately reduces the LGP (length of
growing period) (Fahad et al. 2016b, c). Optimal vegetative growth of the plant is
highly correlated with the formation of generative organs, because proficient photo-
synthesis as well as the buildup of stem reserves during this phase determines the
development of said organs. Optimum productivity can be accomplished by taking
into consideration the entire physiological and metabolic processes of each grain
type. This demands appropriate plans that concern every developmental phases
concurrently (Ihsan et al. 2019).

8.2.1.3 Pollens and Pollination in Crops

Heat stress affects the pollen grains the most (Wassmann et al. 2009). Pollen produc-
tion and its viability are decreased rapidly when the mean temperature is elevated
at 5 °C above the optimal in rice. Similarly, in maize, extreme heat stress (38 °C)
reduces pollen viability, kernel number, and ultimately lowers the yield of the crop
(Otegui 1995). In case of mustard, temperatures above 29 °C resulted in raceme
sterility. However, pollens are remaining viable up to 33 °C (Morrison et al. 2016).
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Table 8.1 Impact of thermo-stress on the growth, physiology and yield of cereal crops

Cereal
crops

Length
of
stress
period

Temperature
(°C)

Crop
physiological/yield
parameters

Interpretations Sources

Maize 15 h 33–40 Kernel weight High temperature at
early grain filling
phase resulted in
23% reduction

Edreira et al.
(2014)

15 ×
2 h

33–40 Kernel number Heat stress at
silking and anthesis
reduced kernel
number plant−1 to
the tune of 75 and
52%, respectively

Rattalino-Edreira
and Otegui
(2013)

15 ×
3 h

33–40 Kernel weight Heat stress at initial
grain filling reduced
weight of the kernel
about 23%

Edreira et al.
(2014)

16
– 18 h

– Harvest index (HI) High temperature
decreased HI to a
great extent, from
46 to 20%

Ordóñez et al.
(2015)

Wheat 1 h 35 Water-soluble
carbohydrate

Considerable loss in
carbohydrate
content (26%) was
recorded due to heat
stress

Talukder et al.
(2014)

2+ 5 h 40 Photosystem II
(PSII)

Quantum yield
(F’q/F’m) as well as
photochemical
efficiency (Fv/Fm)
of PSII was
hampered

Haque et al.
(2014)

15 h 38 Oxidative stress Toxic compound
like H2O2
concentration was
increased

Iqbal et al. (2015)

Sorghum 10 h 40 Ethanol production High temperature
stress during seed
filling stage
decreased ethanol
production about
9%

Ananda et al.
(2011)

(continued)
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Table 8.1 (continued)

Cereal
crops

Length
of
stress
period

Temperature
(°C)

Crop
physiological/yield
parameters

Interpretations Sources

Barley 30 min 45 Gene transcription Transcription of
following genes in
leaves; Cu/Zn-SOD,
HvAPX, HvCAT2,
HSP18, HSP17 and
HSP90 were
induced

Faralli et al.
(2015)

Cereal crops are especially vulnerable to heat stress during their seed-filling phase.
Thus, high temperatures above normal minimizes sizable quantity in crop produc-
tivity. Under high temperature stress, the biosynthesis of auxin is reduced. Therefore,
pollens become sterile (Sakata et al. 2010).

8.2.1.4 Fertilization and Grain Yield

Fertilization and the development of the embryo and endosperm are largely influ-
enced by thermo-stress and this declines crop productivity. Yield attributing char-
acters such as the number of grains and weight of the grains are reduced due to
heat stress (Farooq et al. 2011). In addition, owing to affecting physiological and
metabolic activities of the plant, temperature stress causes sharp reductions in crop
yield (Suyal et al. 2021) (Table 8.1). The periodicity and length of stress also regulate
the quantity of productivity, and results in inferior quality. Maize yield was reduced
by about 23% at a temperature range of 33–44 °C during the early grain-filling phase
(Edreira et al. 2014).

8.2.1.5 ROS (Reactive Oxygen Species) Production

Normal cellular homeostasis becomesdisrupted due to high temperature stress,which
sometime causes death of the plant. The main reason behind this is formation of
ROS which are accumulated in large amounts in the body of the plant in response
to signals of heat stress (Cvikrova et al. 2012). Thus, the defense mechanism of the
plant under thermo-stress, i.e., production of ROS, damages the cellular compounds
and alters the cellular metabolic processes (Ihsan et al. 2019). Higher concentrations
of ROSin plants results in the break-off of water via-a-vis ion homeostasis, and this
phenomenon eventually decreases the growth and development of the plant.
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8.3 Heat Stress Impacts on Crops

The impact is observed in growth and development. High temperature above the
threshold level with excessive radiation may harm the apical growth by scorching
of twigs and leaves. The typical symptoms such as sunburn may be observed, with
early senescence of leaves, less photosynthate production, retardation of growth and
staining of fruits (Fahad et al. 2017a; Vollenweider andGunthardt-Goerg 2005). Poor
germination and inferior plant stand are also observed because of heat stress. Seed
filling is inclusive of different metabolic processes such as assimilate production and
translocation and biosynthesis of seed reserves, and heat impacts greatly on these.
Heat stress influences the seed yield by reducing the number and size of seed, the
test-weight and quality (Akter and Rafiqul Islam 2017; Nguyen et al. 2016; Sehgal
et al. 2018). Temperature rises alter the water content in plant tissue, and under
soil moisture deficit conditions the reduction of water from plant tissues may create
serious problems in physiological and metabolic activities in plants (Machado and
Paulsen 2001). In general, both above- and below-ground plant parts are adversely
affected by water scarcity (Huang et al. 2012). Due to the reduction of root growth
in heat stress, nutrient uptake by plants is reduced (Basirirad 2000; Giri et al. 2017)
and activity of nitrate reductase declines, hampering the metabolism of nutrients
(Rennenberg et al. 2006; Yuan et al. 2017). Chlorophyll synthesis in plants is reduced
under high temperatures, resulting in less assimilate production (Dutta et al. 2009;
Wang et al. 2018). Different enzyme activities are also changed due to thermo-
stresses, causing an adverse impact on metabolism (Bita and Gerats 2013; Morales
et al. 2003; Nievola et al. 2017; Schulte 2015; Vu et al. 2001). The economic yield
of crops is reduced due to the improper conversion of sink from source (Farooq et al.
2009; Kim et al. 2020; Taiz and Zeiger 2006). Various crops respond differently, but
temperatures below or above the normal threshold levels impact on plant physiology
and metabolism, and ultimately growth and development processes are altered.

8.3.1 Cereals

In tropical climates heat stress is a common phenomenon and various cereal crops
respond to heat stress. The congenial climatic condition for rice (Oryza sativa) is a
warm temperature (20–30 °C) (Yoshida 1981). But when temperatures increase (to
above 35 °C), alterations in physiological and metabolic processes may occur. The
high temperatures cause spikelet sterility, chaffy grains and low yield (Nguyen 2012).
In rice, the rise in temperature decreases the flourishing of reproductive organs in
plants (Prasad et al. 2006). In general, the flourishing of yield-attributing characters of
rice is hampered due to thermo-stress and yield is reduced. When night temperatures
reach beyond the threshold, level tillering in rice is reduced, damage is caused to
chlorophyll content, N content in leaves is decreased with blockage of the PSII
reaction center, and an electron flow results (Fahad et al. 2016a). The temperature
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range for germination of wheat (Triticumaestivum) seed is considered as 12–25 °C
and the critical temperature for grain filling in rice is 35.4 °C (Porter and Gawith
1998). An increase in temperature beyond the threshold level is harmful in wheat
productivity also (Luo 2011; Zhao et al. 2017). Higher temperatures also enhance
transpiration and accelerates crop phenology (Eduardo et al. 2013).Heat stress during
the growth stage negatively impacts crop growth and assimilate production (Lobell
and Gourdji 2012). The ideal temperature for wheat was optimum at 20–30 °C and
declined beyond 30 °C in an experiment (Wardlaw 1974). Vegetative growth and
production of photosynthates are troubled in maize under high temperatures (Wahid
and Close 2007). The optimum temperature for growth is considered for maize as
34 °C (Kiniry and Bonhomme 1991) and above 35 °C the temperature is sensitive
for pollen viability (Dupuis and Dumas 1990). In sorghum (Sorghum bicolor), seed
set is hampered in high temperature stress (Prasad et al. 2006).

8.3.2 Pulses

A rise in temperature caused decreased productivity in common beans (Phaseolus
vulgaris) (Rainey andGriffiths 2005). Heat stress causes floral and pod abortion, poor
fertilization, pod set and seedfilling, resulting in smaller yields (Sita et al. 2017).High
temperatures also cause early senescence and reduced life cycles leading to decrease
in seed yield by 50% (Gowda et al. 2013). The threshold temperatures of lentil
(Lens esculenta) are >33 and <15 °C and beyond these temperatures terminal heat
stress (THS) is pronounced. Due to THS lentils show reduced biomass production,
poor pod set and fewer yields (Agrawal 2017; Bhaduri et al. 2017; Delahunty et al.
2016). Temperatures of over 35 °C cause inferior pollen viability, pod set, small seed,
reduced seedweight and poor productivity in chickpeas (Cicer arietinum) (Basu et al.
2009; Devasirvatham et al. 2010; Kumar et al. 2012; Wang et al. 2006).

8.3.3 Oilseeds

In the groundnut (Arachis hypogea), temperature influences the growth of the crop
and above 35°C growth of the crop is halted (Sreekanth et al. 2013). Thermo-stress
is known to decline yields of groundnuts as reported by Vara Parasad et al. (1999).
Temperature impacts on the formation of unsaturated fatty acid. In flax (Linum
usitatissimum), sunflower (Helianthus annuus) and canola (Brassica napus) low
temperature increases unsaturated fatty acid (Schulte et al. 2013). An increase in
temperature enhances the formation of oleic acid, but decreases linoleic and linolenic
acid formation in soybeans (Glycine max), sunflower and canola (Brassica napus)
(Schulte et al. 2013). In Brassica species erucic acid synthesis is temperature depen-
dent (Zohara and Schafferman 1995). Safflower (Carthamus tinctorius) is known as
a thermotolerant crop, but low temperature during the reproductive stage is harmful,
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and a temperature above 38 °C is also not beneficial (Sreekanth et al. 2013). Sesame
is a warm-season crop, but pollination and capsule formation is disturbed when
temperatures rise above 40 °C (Sreekanth et al. 2013).

8.3.4 Cotton

Temperature is a variable climatic parameter which impacts on the growth and
productivity of cotton (Hodges et al. 1993). Cooler temperatures enhance vegetative
branches, while warm temperature triggers fruiting branches (Reddy et al. 1992).
However increased temperature reduces metabolites accumulation and reduction of
crop duration (Reddy et al. 1996). High temperature also causes reduced boll size,
low lint content inside the boll, malformation and shedding of bolls (Oosterhuis 1999,
2002). Pollination and fertilization are crucial stages when high temperature stress
does harm (Snider et al. 2009). High temperature damages pollen, hampers growth
of the pollen tube, cause pollen indehiscence (Snider et al. 2009; Zahid et al. 2016),
decreases boll and seed numbers (Kakani et al. 2005), disturbs boll development
(Gokani and Thaker 2002; Gou et al. 2007; Singh et al. 2007), declines quality of
fiber (Haigler 2007; Murtaza and Shah 2007; Wang et al. 2014), adversely effects
length, strength and micronaire value of fiber (Bowman and Gutiérrez 2003; Gokani
and Thaker 2002) and reduces yield (Gutierrez et al. 2015; Reddy et al. 1996; Xu
et al. 2017). The mean daily temperature congenial for the development of fiber
in cotton bolls is 26 °C (Dai et al. 2015; Murtaza and Shah 2007) and if it exceeds
30 °C, the quality of fiber is degraded (Murtaza and Shah 2007). However, the photo-
synthetic ability of cotton decreased with mean daily temperature at 32 °C or more
(Crafts-Brandner and Salvucci 2000).

8.3.5 Sugarcane

Heat stress causes disturbance in growth and assimilate production and reduction
of water in tissues (Wahid and Close 2007; Morales et al. 2003; Srivastava et al.
2012) reduces the intermodal length of sugarcane (Saccharum officinarum) (Ebrahim
et al. 1998; Bonnett et al. 2006) and cane yield (Warland et al. 2006). In a study in
Australia, it was noted that under high temperatures (>32 °C) sugarcane produced
lower sucrose content (Bonnett et al. 2006). Further, high temperature adversely
influenced sprouting (Johkan et al. 2011), lower sucrose content in juice (Bonnett
et al. 2006) and damage of leaf margin and tip followed by the appearance of necrosis
and drying (Omae et al. 2012). But with low temperature, there was enhancement in
juice acidity (Pathak et al. 2018). Temperature also has a great impact on ripening, and
low temperature is favorable for ripening (Gawander 2007). Further, low temperature
is known to disrupt the structure of chloroplast and reduces photosynthesis (Li et al.
2018).
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8.3.6 Vegetables

High temperatures during stolon formation and tuberization cause yield loss in pota-
toes (Solanum tuberosum) (Li and Zhang 2020; Shimoda et al. 2018) because of
changes in physiological and metabolic processes (Camejo et al. 2005; Dahal et al.
2019). For tuberization an average temperature of 15–20 °C is considered as optimum
(Lovatt et al. 1997a, b). However, for tomatoes (Lycopersicum esculentum), ideal
temperature ranges for fruit set are 18° to 24 °C (Lovatt et al. 1998). Fruit weight
decreases with rise of temperature above 25 °C (Peetet al. 1997; Adams et al. 2001).
Fruit set is hampered at a temperature less than 14 °C (Adams et al. 2001; Higashide
2009). Sato et al. (2006) reported that pollen viability and fruit set was adversely
affected by abnormal temperature. Vegetative growth of tomatoes is also hampered
due to decrease in water content and root conductance (Morales et al. 2003) and
reduction of chlorophyll (Han et al. 2017). Under protected cultivation, the growing
of tomatoes with mean daily temperatures of 25–26 °C were ideal in the in the
Mediterranean summer season (Harel et al. 2014; Sato et al. 2006). The growth
of fruit of the capsicum (red pepper) (Capsicum annuum) was hampered above a
temperature of 30 °C, and above 33 °C deformities in fruits were noted, plus a
reduced number of fruits (Erickson and Markhart 2002). High temperature after
anthesis caused smaller fruits (Pagamas and Nawata 2008). In general, the temper-
ature required for germination for cucarbitaceous crops ranges from 15 to 38 °C
(Bannayan 2017; Ellis et al. 1985; Pacheco et al. 2017). A rise in temperature above
35 °C negatively influenced the development of floral parts and pollen viability in
pumpkins (Cucurbitamoschata) (Iapichino andLoy1987;Loy2004). For cucumbers
(Cucumis sativus), high temperature stress disturbed the biosynthesis of chlorophyll
(Dalal and Tripathy 2012; Tewari and Tripathy 1998). Further decreased photosyn-
thate production and starch content was noted in cucumbers due to high tempera-
ture stress (Ding et al. 2016). In celery, stress due to high temperature reduces the
biosynthesis of chlorophyll (Sharma et al. 2019a, b).

8.4 Thermotolerant Soil Microbes

The present scenario of climate change is no longer limited to research papers.
The IPCC (2014) has already stated that the negative effects on crop productivity
due to climate change are no longer negligible, and that the negative impacts are
expected to intensify over the coming years, as per several model-based studies
(IPCC 2013). It has been suggested by several workers that extreme climatic events
will become more and more frequent due to the changing climate scenarios (Gibelin
and Déqué 2003; IPCC 2014; Swain et al. 2014). Drought and heat waves are some
of the extreme events that are progressively becoming more and more common
in the agricultural systems. Such events severely affect the plants as well as the
microbial communities growing in the soil. The effect of the changes in the mean
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soil temperature over the mesophilic range on the soil-dwelling microbes is not fully
known at the present time (Hamdi et al. 2011). However, a range of studies have
been conducted in recent decades, especially on rhizospheric microbes, to study the
effect of changing temperatures as well as water regimes.

Soil is a dynamic body and a very complex biophysical system. Microbes consti-
tute the major biological part of the soil and might be held responsible for most
dynamic transformations in the soil. Researchers such as Thiele-Bruhn et al. (2012),
Pulleman et al. (2012) and many others have emphasized howmicrobial biodiversity
is central to the proper functioning of the soil–plant systems.Climatic events affecting
soil microflora are thus expected to induce significant changes in soil dynamics,
besides directly affecting agricultural systems.

Heat stress in the soil may often appear with the soil moisture stress. Events of
heat waves are thus characterized by high temperatures above 45 °C, coupled with
moderate to severe drought conditions. Plants are not only affected by heat waves
that persist for few days or weeks, but also by other events in the increment of the
soil temperatures, especially surface temperatures over the optimum for extended
periods. Loss of vegetative cover, low organic matter and little to no residue over the
soil surface can introduce soil to harsh weather conditions, and temperatures even
may touch 74 °C momentarily in several places. These conditions remain hugely
detrimental for the majority of soil microbes as most of them are mesophilic in
nature.

Long exposure to soil temperatures modifies the soil microbial community,
replacing the native soil organisms with thermophilic ones. However, short-term
heat exposure may be tolerated by some groups of microbes through genophytic as
well as phenophytic heat acclimations. A recent study reveals that thermotolerant
strains of soil microbes are quite ubiquitous in nature (Kumar and Verma 2018).

High temperatures may induce severe loss of cell water content and dehydration
of the cells of microbes. Temperatures above 50 °C may also induce damage to
the genetic material as well as to the protein structures, including enzymatic activ-
ities which can be lethal to the microbes. Thermotolerant microbes employ several
defensive strategies to defy the detrimental effects of thermo-stress. Production of
Heat Shock Proteins (HSPs), DNArepair mechanisms, use of molecular chaperons
and EPS-based biofilm production are some of the well-studied mechanisms of heat
tolerance in microbes. Microbes may opt for sporulation to produce dormant spores.
Pettersson and Baath (2003) reported that the changes induced in the soil micro-
biome community in the course of increasing temperature over a long period are
quite persistent, and did not volatilize on the omission of heat stress. Hartley et al.
(2008) also reported similar findings, and they concluded that microbial response
to soil warming is considerably faster than for soil cooling. A fungus is universally
more vulnerable to heat stress to bacteria.

In the present context of rising global mean temperatures as well as increasing
events of high soil temperatures, it has become increasingly useful to study ther-
motolerant soil microbes. In the recent past, several thermotolerant microbial
strains were identified worldwide. Aliclyvlobacillus acidoterrestris, Pseudomonas
cerdrina, Pseudomonas putida, Pseudomonas aeruginosa, Brevundimonas terrae,
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Anthrobacter nicotiniae, Burkholderia phytofirmans, etc., are some of the identified
thermotolerant organisms (Bensalim et al. 1998; Yadav et al. 2014; Meena et al.
2015). The ubiquitous presence of bacteria from genus Geobacillus and related
genera can grow up to 70 °C under laboratory environments. These bacteria are
common in soils in the mesophilic range as vegetative spores (Marchant et al. 2008;
Portillo et al. 2012; Santana et al. 2013). Khan et al. (2020) revealed positive impacts
of thermotolerant Bacillus cereus on the heat tolerance of soybeans. Actinomycetes
belonging to the genera Actinokinespora have been identified from China that can
tolerate temperatures up to 55 °C (Tang et al. 2012). Phosphate solubilizing activities
of thermotolerant soil bacteria such as Bacillus coagulans C45, B. licheniformis A3,
B. smithi F18were found up to 75 °C in lab conditions. FungusAspergillus fumigants
O4 and NTU-132 strains were reported to be active up to 65 °C with all enzymatic
activities intact (Chang and Yang 2009).

In the complex ecosystemof soil and plant, themicroorganisms can play important
roles in the soil nutrient dynamics, plant growth promotion and stress tolerance
activities. Proper and in-depth knowledge of such organisms may help to cope with
the temperature stresses being experienced and yet to be experienced in the near
future worldwide. With the advent of the widening horizons of knowledge about
rhizospheric organisms, thermotolerant microbes may be proven a boon from nature
toward a sustainable agricultural system in changing climatic scenarios.

8.5 Role of Thermotolerant Soil Microbes in the Mitigation
of Heat Stress

The rhizosphere is a limited soil volume within the close vicinity of plant roots.
It is the site of very important soil biological activities by microbes (Yadav et al.
2020; Yadav 2021). The complex chemical matrix of the root rhizosphere selectively
allows for the growth of certain colonies of the microbes within a specific plant–
soil environment (Haldar and Sengupta 2015). Microbial populations within the
rhizospheric zones are largely shaped by root exudates, signaling molecules in most
of the plants including crops like peas, maize, wheat, sugar beet, etc. (Canarini et al.
2019; Singh et al. 2020). Chaparro et al. (2013) have found a significant correlation
of the expression of microbial genes with the presence and absence of a wide variety
of root exudates at different stages of crop growth. Such relations suggest that not
only can a plant exert influence over the colonization of the microbes in the root
vicinity, but also can greatly modify its functions.

The influence of the rootmicrobiome on the suppression of disease-causing organ-
isms has been exhaustively studied for many years. However, recent advancements
in knowledge have revealed the significant roles of soil-dwelling microbes in abiotic
stress mitigation. Several organisms have already been identified that help the plant
in combating abiotic stress conditions. Some of the recent findings are presented
in Table 8.2. Out of several biotic and abiotic stresses mitigated by soil microbes,
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Table 8.2 Involvement of soil microorganisms in the impartation of stress tolerance to several
crops

Crop Stress Microbes involved References

Rice Salt Pseudomonas pseudoalcaligens,
Bacillus pumilus

Jha et al. (2011)

Heavy metal Bacillus subtilis, Bacillus
megaterium

Asch and Padham (2005), Terre
et al. (2007)

Osmotic Achromobacter brasilense Cassán et al. (2009)

Wheat Salt Aeromonas hydrophilia, Bacillus
insolitus

Ashraf et al. (2004)

Drought Azospirrilum
Burkholderia phytofirmans

Creus et al. (2004), Naveed
et al. (2014)

Osmotic Azospirrilum Pereira (2019)

Temperature Pseudomonas fluorescens,
Pantoea agglomerans,
Mycobacterium sp.
Bacillus amyliliquefaciens
Pantoea agglomerans

Abd El-Daim et al. (2014),
Egamberdiyeva and Höflich
(2003), Mukherjee et al. (2019)

Maize Salt Bacillus megaterium,
Azospirrilum, Pseudomonas
syringae, Enterobacter aerogenes

Marulanda et al. (2007),
Meziane et al. (2005), Nadeem
et al. (2007)

Drought Pseudomonas sp.
Achromobacter brasilense

Casanovas et al. (2003),
Sandhya et al. (2009)

Nutrient Azotobacter chroococcu,
Azospirrilum brasilens
Pseudomonas putida
Bacillus lentus
Burkholderia sp.
Streptomyces platensis
Bacillus polymixa Mycobacterium
phlei Pseudomonas alcaligenes

Adesemoye et al. (2008),
Egamberdiyeva (2007),
Oliveira et al. (2009)

Soybean Temperature Aeromonas hydrophilla
Serratia liquefaciens
Serratia proteamaculans

Feng et al. (2002)

Salt Pseudomonas sp. Kasotia et al. (2012)

Potato Temperature B. phytofirmans Bensalim et al. (1998)

Osmotic Bacillus sp. Gururani et al. (2013)

Tomato Flooding Enterobacter cloaceae
Pseudomonas putida

Glick (2014)

Drought Achromobacter piechauli Mayak et al. (2004)

Lettuce Drought Bacillus sp. Arkhipova et al. (2007)

Groundnut Salt Pseudomonas fluorescens Saravanakumar and
Samiyappan (2007)

(continued)



8 Thermotolerant Soil Microbes and Their Role … 217

Table 8.2 (continued)

Crop Stress Microbes involved References

Bean Drought Ensifer meliliti
Rhizobium tropici
Paenibacillus polymixa

Figueiredo et al. (2008)

Source Adapted from Dimkpa et al. (2009), Carmen and Roberto (2011), Choudhary (2012)

heat tolerance induced by thermotolerant microbes as a measure of plant heat stress
mitigation, is reviewed in detail in the scope of this chapter.

8.5.1 Heat Stress in Plants and the Thermotolerant
Microbiome

Abiotic stresses are great constraints for production of crops all over the world.
Under the present context of global warming and climate change, these stresses
have become more frequent in causing crop damage, and threaten food security in
many places. Heat stress, sometimes in combination with drought, often appears as
a menace to crop production (Fahad et al. 2017a; Hesham et al. 2021; Sharma et al.
2021). Changing patterns of rainfall and temperature regimes, and global warming,
etc., have aggravated such problems to a serious extent. Several optimistic reports
estimate that about 21–40% yield loss in staple crops like wheat and maize is due to
such stresses (Daryanto et al. 2016). Global wheat yield has been predicted to decline
by at least 6% with the enhancement of each degree Celsius rise in the atmospheric
mean temperature (Asseng et al. 2015).

Heat stress not only affects plants and crop production in indirect ways, but it
also impacts on soil microbial communities. Most mesophilic microbes undergo
severe stress under high temperature conditions in the upper soil layers coupled
with low water potentials in the soil. However, this naturally selects that only the
tolerantmicrobes can survive in the soil where these events aremore frequent. Recent
studies have found a significant contribution of this thermotolerant microbiome in
the impartation of heat tolerance in the plants growing on the soil. This constitutes a
symbiotic relationwith the rhizo-organismswith the host plants. Actually, the growth
andperformanceof themicrobial community are dependent on the easy carbon source
provided by the plant root exudates. The survival and proper functioning of the plant
favors the survival of microbial communities under stress conditions.
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8.5.2 Heat Shock Proteins and Heat Shock Transcription
Factors Mediated Heat Tolerance

Though the exact mechanisms on howmicrobes can impart thermotolerance to plants
are not yet exhaustively studied, some links have successfully been identified. Those
links may pose great opportunities for the development of a fair understanding of
the underlying facts and mechanisms. Heat Shock Protein 90 (HSP90), a molecular
chaperon, is confirmed to be this type of useful molecular link in the cross-talks
between plants and microbes, and imparts some degree of tolerance to plants (Picard
2002; Pratt and Toft 2003; Young et al. 2001). Altered levels of HSP90 in the plants
have been found to respond differently to environmental cues, especially tempera-
ture and light (Queitsch et al. 2000). Several other studies have successfully demon-
strated that manipulations in the levels of HSP90 may result in phenotypic changes
as well as heritable genetic changes, due to epigenetic modification in the organisms
(Queitsch et al. 2002; Sollars et al. 2003; Yeyati et al. 2007). Such dramatic changes
in the HSP90 buffering can be caused by several environmental cues, as well as with
several HSP90-specific small molecules released bymicroorganisms, such as several
fungal strains that may inhibit or may promote the function of HSP90 (Sangster and
Queitsch 2005; Turbyville et al. 2006). McLellan et al. (2007) have mentioned that
the thermotolerant rhizospheric fungus Paraphaeosphaeria quadrisepata induced
heat tolerance in Arabidopsis and wheat plants through modulation of the HSP90
chaperon with HSP90-specific inhibitor monocillin I (MON) and radiciol (RAD).
Inhibition of HSP90 invariably leads to the up-regulation and expression of major
heat responsive elements such as HSP70 and HSP101. The same mechanism was
also found to be successful in young maize plant subjected to temperature stress by
Gomes et al. (2003).

8.5.3 Plant Growth Regulator Mediated Heat Tolerance

Plant growth regulators (PRGs) play a great role in the responses of plants to environ-
mental conditions, including stresses. Plants’ response to stresses may act as the thin
silver lining between plants’ survival and death under severe stress conditions. All
of the major plant growth regulators such as auxin, gibberellin, cytokinin, ethylene,
ABA and brassinosteroid, as well as signaling molecules such as salicylic acid and
jasmonic acid, take an active part in the heat tolerance of plants (Ahammed et al.
2016; Xia et al. 2015). Among PGRs, the role of auxin as a thermo-protectant has
recently gained much attention. A significant interaction of auxin with HSPs and
plant heat stress transcription factors had already been found in Arabidopsis (Wang
et al. 2016). A reduction in theGA levels results in the inhibition of growth and conse-
quently enhanced stress tolerance due to accumulation of DELLA proteins (Hedden
and Thomas 2012). Cytokinins help in the promotion of cell division, maintenance
of the meristematic activity and regulation of redox potentials during heat stress
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(Gupta and Rashotte 2012; Werner et al. 2010). There are also roles of cytokinin in
the maintenance of stomatal conductance which enhances the transpirational cooling
to the plant (Macková et al. 2013). Cytokinins also have defined roles in dictating
HSPmetabolism and are found to be involved in imparting heat tolerance in Passi-
flora (Sobol et al. 2014). ABA act as signaling molecules, induce heat shock factors,
HSPs and act as growth moderators to induce heat tolerance in plants (Hu et al.
2010; Islam et al. 2018; Li et al. 2015). ABA is also known to have a role in stomatal
operation in plants (Gong et al. 1998; Hsieh et al. 2013; Hu et al. 2010; Tang et al.
2008).

Several microbial organisms are identified to produce plant growth-regulating
compounds that may help in the acquisition of thermotolerance in several plants. A
bacterial strain named Azospirillum brasilense Sp245 was reported to impart heat
tolerance inwheat under heat and drought stresses due tomaintenance of better tissue
water status and impartation of phenotypic plasticity due to production of auxins and
cytokinins (Choudhary 2011; Choudhary et al. 2016). A strain of Achromobacter
piechaudii ARV8 was reported to produce ACC deaminase enzyme which moder-
ated ethylene metabolism, and ultimately resulted in better heat tolerance as well
as salt tolerance of pepper (Gururani et al. 2013) (see Fig. 8.1). Removal of ACC
by ACC-deaminase reduces the deleterious effects of overproduction of ethylene
(Mayak et al. 1999). Khan et al. (2020) had demonstrated how a thermotolerant
bacterial strain Bacillus cereus SA1 isolated from roots of Echinochloa cruss-galli
imparts thermotolerance on soybean plants through moderations in the auxin and

Fig. 8.1 Role of rhizobacteria in ethylene metabolism of plants. Source Adapted from Choudhary
et al. (2016)
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gibberellin levels. They had also found that the strain yielded no significant differ-
ence in the plants’ hormonal balance under normal conditions. The effects were only
realized when the plants were subjected to heat stress. Such microbial strains are
non-pathogenic to the plants, and these situation-specific actions make them worthy
candidates for use in commercial biofertilizers or PGPR formulations to alleviate
heat stress from target plants.

8.5.4 Microbial Mediation of ROS

ROS stands for Reactive Oxygen Species and includes a range of active radicles
such as hydroxyl radicles, peroxide radicles, singlet oxygen, superoxide radicles
and so on (Gupta et al. 2017; Kalia et al. 2017). ROS are mainly the side products
of the plant’s natural metabolism under normal conditions, and plants have good
management of such radicles so that significant harm can be avoided (Apel and Hirt
2004). Under different stress conditions, the production of ROS exceeds the optimum
levels, resulting in cell damage, lipid peroxidation, membrane leakage, denaturation
of proteins, the degradation of pigments and storage food materials, and so on (Bose
et al. 2013; Li et al. 2018; Martínez et al. 2017; Van Ruyskensvelde et al. 2018). Such
damage significantly reduces the plant’s performance under stress as well as reducing
the plant yield (Park et al. 2017). ROS have been broadly studied in animal systems
and microbes for a long time. Recent developments in biology have extended the
study area for ROS to the higher plants. Studies have found important roles of ROS
as signaling molecules in plant systems (Lopes et al. 2016). However, such ROS
productions above plants’ antioxidative defenses may cause severe harm to plants’
internal structures and functions (Afzal et al. 2014; Guan and Lan 2018; Maritim
et al. 2003; Pisoschi and Pop 2015).

Studies suggest that the involvement of rhizospheric microbes is actively involved
in the ROSmetabolism of the plants under stressed environments (Kohler et al. 2009).
Plants inoculated with thermotolerant strains like Pseudomonas mendoina impart
greater thermotolerance than control groups of plants in terms of lesser membrane
damage due to increased SOD, POX, APX, etc., antioxidant enzymes (Bianco et al.
2009). Drought-tolerant strains of Pseudomonas entomophila, P. putida, P. montelii
and P. stutzeri had been found to improve the oxidative stress as indicated by low
oxidative damage, cell leakage, etc., in maize crops (Sandhya et al. 2010b). Inocula-
tionwithAzospirrilumbrasilense showed lower heat aswell as salinity stress in barley
plants in a similar way (Omar et al. 2009). Improved performance ofMedicago inoc-
ulated with IAA-overproducing heat-tolerant rhizobacteria has also been reported
and found well correlated with plants’ antioxidant activities (Bianco et al. 2009).
Thermotolerant strains of Azospirrilum brasilense NO40 and Bacillus amylolique-
faciens UCMB5113 have resulted in greater antioxidant activities in heat-stressed
young wheat seedlings (Abd El-Daim et al. 2014). The microbial moderations in
the molecular level as well as the genetic level to improve plant performance in the
oxidative stress, may be of great use as these stresses are general in almost every
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abiotic stress conditions including heat and drought as well as salinity stress (Carmen
and Roberto 2011).

8.5.5 EPS or Biofilm-Based Defense

EPS or exopolysaccharides are natural active components of the soil organic matter
(Gouzou et al. 1993). EPS constitutes a significant part of the extracellular environ-
ment for the microorganisms and often range from 40 to 95% of the total cell weight
in the case of bacteria (Flemming and Wingender 2001). Some of the rhizosphere-
dwelling organisms, viz., bacteria and fungi, produce EPS as cell exudates for their
defense, such as Pseudomonas (Sandhya et al. 2009, 2010b). Microbial EPS are
nearly 97%water in a complex polymermatrixwhich is very helpful for the organism
to achieve desiccation tolerance (Bhaskar and Bhosle 2005; Hunter and Beveridge
2005). Studies reveal such EPS production peaks under stress conditions such as
heat, salinity or drought in the soil. Such polysaccharides are known to physically
impact soil properties under themicroenvironment. It has been seen that soil structure
improves with EPS due to the excellent binding properties of the polysaccharides
(Bashan et al. 2004). A well-structured soil holds more water and dries more slowly,
delaying the onset of water stress. EPS also works as a biofilm and creates a conge-
nial microenvironment within its boundaries (Sandhya et al. 2009). Higher water
potential in the soil is much desired, especially in cases of heat stress. If the water
balance of the plant is properly maintained, transpirational cooling may work, and
the deleterious effects of heat stress may be avoided. Water stress acts as an environ-
mental cue for ABA signaling for stomatal closure and thus worsens the condition
of heat-stressed plants. A well-maintained cell turgor may thus keep the stomatal
function optimum for the continuation of the plant’s cooling system.

Thermotolerant strains of Bacillus ceres P2 and Planomicrobium chinense P1
have been found to produce enough EPS to positively impact on the rainfed wheat
under drought and temperature stress (Khan and Bano 2019). In a study conducted
byNaseem andBano (2014), strains of tolerant rhizobacteria such asProteus penneri
PP1, Pseudomonas aeruginosa PA2 and Alcaligens faecalisAF3 were found to form
mucilaginous EPS materials in the rhizosphere of drought- and heat-stressed maize
plants. They also claimed that such microbial consortia may be used in future to
combat drought as well as heat stress in commercial crops. Bensalim et al. (1998)
noted that plants treated with EPS-producing strains of Azospirrilum expressed more
resistance than the control group under combined water stress. Under conditions of
severe drought, EPS-producing bacterial strain YAA34 resulted in an increase in
the root tissue in sunflowers, due to lubrication provided to the root tips, and better
moisture retention in the rhizosphere (Alami et al. 2000).



222 S. Maitra et al.

8.5.6 Protective Molecules Moderation

Several studies have confirmed the roles of different small and largemolecularweight
compounds within the plant’s system to be actively involved in stress response and
mitigation. Most of them are nitrogenous compounds, small organic molecules, non-
protein amino acids, etc. (Parida and Das 2005). Accumulation of proline and glycin-
betaine were reported to have active roles in the stress response of the plants by
multiple workers (Kishor et al. 2005; Szabados and Savouré 2010; Verbruggen and
Hermans 2008). Inoculation of thermotolerant PGPR has been reported to enhance
proline and glycine-betaine in the plants, either through direct absorption ofmicrobial
origin compounds, or by up-regulation of the genetic control for higher production of
such molecules through several signaling molecules under stress (Barka et al. 2006;
Jha et al. 2011; Kohler et al. 2010; Sandhya et al. 2010a). However, the exact mech-
anisms of how microbes moderate the synthesis of plant origin protective molecules
remains largely as hypotheses based on the state of current knowledge.

8.5.7 Nutrient and Water Uptake

Often environmental stresses are in complex form rather than a single separated event
(Anisman andMerali 1999). For example, heat stress often appears with water stress
and both of these result in oxidative stress and nutrient deficiency (Sattar et al. 2020;
Zhou et al. 2017). Photosynthesis is one of the earliest processes hampered under
thermo-stress (Sharma et al. 2019a, b). Plants deprived of newphotosynthates combat
the stress with already-available resources. In such conditions, energy-consuming
processes like active uptake of nutrients are nearly halted. Further developments of
water stress in the soil also reduces nutrient availability to the plant roots (Bista et al.
2018; Prasad et al. 2021). Under severe stress, root cells also loses their integrity
to uptake nutrients properly. Besides the actual stress, plants suffer from nutritional
deficiencies which significantly affects the plant’s performance as a whole. Several
researchers have revealed that the plant’s nutritional status has a great role in the deter-
mination of the plant’s performance under stress conditions (Heidari and Jamshid
2010; Munns and Tester 2008). Several rhizobacteria and fungi have the capability
of making nutrients more available to plants even under stressed conditions. The role
of thermotolerant bacteria in the availability of soil phosphorus to plants has drawn
attention in recent days. Thermotolerant strains of Erwinia, Bacillus and Rhizobium,
and Pseudomonas are reported to be involved in phosphorus mineralization through
the production of organic acids (Rodríguez and Fraga 1999). Thermotolerant strains
ofBacillus smithi, Bacillus coagulans, Bacillus licheniformis, Aspergillus fumigatus,
and Streptomyces thermophiles were so good at phosphate solubilizing activity that
they were found suitable for commercial biofertilizers for high-temperature soils
(Chang and Yang 2009). Other groups of auxin-producing rhizo-organisms may be
attributed to the extended root growth and better uptake of nutrients and water. The
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roles ofmycorrhizae in nutrient andwater absorption have long been known. Some of
the root dwellers are also involved in the secretion of siderophores, and thus increase
the availability of iron and zinc (Carmen and Roberto 2011).

8.6 Use of Thermotolerant Soil Microbes for Agricultural
Sustainability

The sustainability of agricultural ecosystems is challenged by several factors today
(Zhao et al. 2008). Out of such factors, erratic climatic events are of huge concern.
Drought and heat stress have become frequently occurring events under the changing
climatic scenarios (Raza et al. 2019). Such abiotic stresses cause huge losses in the
agricultural productivity of different crops (Fahad et al. 2017b). Further, it has been
well predicted that an increase in the annual mean temperature by 1.5–2.0 °C may
result in a catastrophic situation for agricultural production, and the worst hit will
be staple crops like wheat, maize, rice, etc. (Gornall et al. 2010; IPCC 2013, 2014).
In particular, under-developed and developing countries have a higher risk of facing
climate-induced havoc on the agricultural systems (Abdallah et al. 2014).

Drought as well as heat-stressed plants in the agricultural systems can bemanaged
wisely to get optimum benefits out of a stressed system. Rhizospheric management
is one of the many suggested ways to mitigate thermo-stress and ensure the healthy
performance of crops. Thermotolerant microbes pose several positive points for their
adoption under stressed as well as normal conditions (Sandhya et al. 2009, 2010b).
Most of the thermotolerant genera of microbes found to have a positive impact on the
plant system are also found to be involved in the soil nutrient dynamics. The role of
strains such as Azotobacter, Azospirrilum and Rhizobium in biological nitrogen fixa-
tion is well known. Other strains like Aspergillus, Pseudomonas, and Burkholderia,
etc., have active roles in phosphorus and potassium dynamics in the soil (Bargaz
et al. 2018). EPS-producing microbes are involved in the betterment of soil phys-
ical structures. These rhizo-organisms have also been reported to have suppressive
effects on the pathogenic organisms. Induction of the systemic response of the plants
through various bio-signaling has also been reported by multiple workers in recent
times. Thermotolerant microbes need a special mention for their preferable use as
a compost enrichment, as they are able to withstand high temperatures (Chen et al.
2007; Etesami and Adl 2020; Kumar et al. 2016). These microbes do not lose their
activities in the high-temperature regime and keep the soil biological rhythm optimal,
besides helping the host plants to survive andwithstand environmental stress. Biofer-
tilizers enrichedwith these organisms can be produced for drier regions. Even though
extensive knowledge about the thermotolerant soil microbes and their roles in the
agro-ecosystem is not very clear, it is quite obvious from current knowledge that ther-
motolerant microbial diversity has a great potential to revolutionize the vulnerable,
fragile agricultural system for a food-secure and sustainable future.
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The plantmicrobiomes (epiphytic, endophytic and rhizospheric) have the capacity
to advance plant development, are alluded to as plant development advancing
microorganisms. The plant microbiomes which have been sifted through from
assorted sources have a place with every one of the three domains of archaea, micro-
scopic organisms and growths. Among three area frameworks, the individuals from
spacemicroorganisms are all arounddescribed and announced as fromvarious abiotic
stresses, for example, basic soil, saline soil, acidic soil, low temperature, high temper-
ature and drought. Among every one of the three space microorganisms, there are not
many reportedon archaea as plant development advancement; for example, halophilic
archaea, including the following, having the qualities of phosphorus solubilization
under hypersaline conditions.

• Haloterrigena
• Halobacterium
• Halostagnicola
• Halococcus
• Halolamina
• Haloferax
• Haloarcula
• Natronoarchaeum
• Natrialba
• Natrinema

The microorganisms related to the plant rhizosphere are named as rhizospheric
organisms and rhizospheric actinobacteria are generally predominant in nature. In
the investigationof variousmicrobial assortedvarieties in types of plantmicrobiomes,
it may very well be that the individuals from phylum actinobacteria have been
accounted for from various genera. These are as follows:

• Streptomyces
• Sanguibacter
• Rhodococcus
• Pseudonocardia
• Propionibacterium
• Nocardia
• Mycobacterium
• Micrococcus
• Microbacterium
• Frankia
• Corynebacterium
• Clavibacter
• Cellulomonas
• Bifidobacterium
• Arthrobacter
• Actinomyces
• Acidimicrobium
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Actinobacteria have been an enormous segment of soil microbiomes in the plant
root frameworks. TheActinobacteria have been detached from various sources study.
These are as follows:

• chickpeas (Cicer arietinum)
• maize (Zea mays)
• peas (Pisum sativum)
• rice (Oryza sativa)
• soybeans (Glycine max)
• sugarcane (Saccharum officinarum)
• sunflowers (Helianthus annuus)
• wheat (Triticum aestivum)

The gram-positive living beings with a high guanine and cytosine content have a
place within the phylum Actinobacteria, and establish probably the biggest phylum
inside the area of microscopic organisms, comprising six classes, and are as follows:

• Thermoleophilia
• Rubrobacteria
• Nitriliruptoria
• Coriobacteriia
• Actinobacteria
• Acidimicrobiia

Among 3900 unmistakable types of actinobacteria, thirty genera are as follows:

• Streptosporangium
• Streptomyces
• Saccharothrix
• Saccharopolyspora
• Rhodococcus
• Pseudonocardia
• Nonomuraea
• Nocardiopsis
• Nocardioides
• Nocardia
• Mycobacterium
• Micromonospora
• Microbacterium
• Leucobacter
• Kribbella
• Kocuria
• Kitasatospora
• Gordonia
• Geodermatophilus
• Corynebacterium
• Cellulomonas
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• Brevibacterium
• Brachybacterium
• Bifidobacterium
• Arthrobacter
• Amycolatopsis
• Agromyces
• Actinoplanes
• Actinomyces
• Actinomadura

Among all genera, Streptomyces have been generally prevailing with 961 distinct
species followed by Mycobacterium (186 species). Nineteen microbes and their
applications as bioinoculants have systems to expand the current yields for prac-
tical farming. Microorganisms as bioinoculants and biopesticides are an option in
contrast to synthetic composts to diminished natural contaminations. The microor-
ganisms have plant development-advancing properties, for example, nitrogen obses-
sion and other plant development-advancing characteristics like the solubilization
of P, K and Zn, and the creation of Fe-chelating mixes, phytohormones. Microbac-
terium, Microbacterium FS-01 and Pseudonocardia dioxanivorans CBI190 have
been secluded from the rhizosphere of different harvests, which contribute fixed
nitrogen to the related plants. Phosphorus is a basic component for the founda-
tion and advancement of plants since it improves the whole root framework, thus
improving the shoot. Phosphate solubilization is a typical quality among microor-
ganisms, for example, archaea, microbes and organisms. There are numerous reports
on PGP Actinobacteria with phosphate solubilizing traits and huge quantities of P-
solubilizing microorganisms have been accounted for which incorporate individuals
having a place with Streptomyce djakartensis TB-4 and Streptomyces sp (Yadav and
Yadav 2019).

In bioformulations, bacterial cells ought to have the option to endure numerous
ominous circumstances, for example, parching and extremely hot conditions. The
microscopic organisms ought to support high endurance rates and have the ability
to upgrade plant development during delayed timespans. For endurance, microor-
ganisms utilize different methodologies: for example, arrangement and capacity
of osmolytes or polyhydroxyl alkanoates (PHAs). Osmo-changed cells that hold
osmolytes, for example, trehalose or glycine betaine, showa lotmoregrounded ability
to manage drying out than non-osmomodified organisms, altogether improving their
plant advancement potential (Bonaterra et al. 2005). Microorganisms with over-
the-top PHA levels can endure harsh conditions better than those with lessened
levels, as PHAs offer cells the capacity to endure different antagonistic physic-
ochemical burdens (Morel et al. 2012). The perfect organism plant mutualistic
affiliation incorporates a diazotrophic microbial relationship with the developing
plant. Diazotrophs convert environmental nitrogen to alkali. Certain diazotrophs
and different PGPBs (Pseudomonas and Bacillus) likewise yield phytohormones,
siderophores, and phosphate-solubilizing atoms, among different edifices (Morel
and Castro-Sowinski 2013). Added substances and metabolites assume crucial jobs



8 Thermotolerant Soil Microbes and Their Role … 227

in making bioformulations progressively solid and powerful. Flavonoids are primer
biomolecules utilized in conjunctionwith rhizobial inoculants to advance nodulation.
The expansion of flavonoids to rhizobial inoculants improves nodulation, N2 obses-
sion, and the ability to battle abiotic stresses. Nodulation happens through discharge
of single LCO mixes by root-nodulating microscopic organisms called rhizobia.
The relationship among rhizobia and vegetable roots is known to be harmonious in
nature, and LCO biomolecules are crucial in this affiliation, affecting the harvest
yield emphatically (Oldroyd 2013).

8.7 Conclusion

Plant diseases can be usefully managed by creating and using biocontrol methods.
Bioformulation is one of these methods and is savvy and naturally benevolent.
Bioformulations from opposing microorganisms and other biocontrol specialists are
increasingly gaining credible significance and consideration universally, especially in
nations where soil-borne ailments present serious issues. The ideal plan and viability
of biocontrol specialists are major parts for the suitability of bioformulations. Plans
that have been created and broken down can be useful for smothering plant infections
and conceivably other plant–microbe blends. These bioformulations have extraor-
dinary potential as characteristic pesticides and can supplant substance fungicides.
A bioformulation can support item security, shield microscopic organisms against
various natural conditions, and furthermore, provide an underlying food source. Use
of PGPRs either to advance crop well-being or to control plant diseases relies upon
the creation of business that keep up the feasibility of the microorganisms for a
considerable timeframe. It is imperative to gauge the endurance of the immobilized
microorganisms in various transporters, and furthermore their ability to hold the
characteristics required for plant development advancement.

Utilization of consortia containing multitrait plant development advancing
microorganisms might be valuable in definition of novel bioinoculants that can offer
modest, sensible, and engaging substitutes for expensive agrochemicals. The inoc-
ulant business is confronting various difficulties to improve quality definitions that
offer a long timeframe of realistic usability and progressively reasonable and resis-
tive cells in rhizosphere environmental factors. More examination to investigate the
common-sense parts of large-scale manufacturing and definition are required so as to
create viable, steady, more secure, increasingly practical, and novel bioformulations.

The need of the present world is for high agricultural yields, and upgraded
creation of the harvest, and especially enrichment of the soil, obtained through eco-
accommodating means. Actinobacteria need to be investigated for the utilization
of bio-inoculants for various yields suffering under abiotic stresses, for example,
temperature, pH, drought and salt levels. Taking into account the clinical, biotech-
nological and natural significance of the Actinobacteria, a comprehension of the
developmental connections among individuals from this huge phylum, and what
remarkable biochemical or physiological attributes recognize types of various classes
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of Actinobacteria is of extraordinary significance and criticalness. The individuals
from Actinobacteria can be applied for biofortification of minerals for various grain
crops just as numerousmost predominantActinobacteria can be utilized as probiotics
as practical nourishments for human well-being.
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Chapter 9
Microbiomes of Hypersaline Soils
and Their Role in Mitigation of Salt
Stress

Salma Mukhtar, Dalaq Aiysha, Samina Mehnaz, and Kauser Abdulla Malik

Abstract Soil salinity is an important abiotic factor because of that crop yield is
reduced more 40% globally every year. With the increase in world food production,
it is very important to increase crop production and develop transgentic crops which
can grow in saline and arid soils. Salinity is a continuously increasing problem
in different parts of the world. Halophyte-associated microbial communities can be
explored to characterize halotolerant and halophilic plant growth-promoting bacteria
that can be used for the non-halophytic crops grown in saline conditions. Salt tolerant
PGPRs have the potential to stimulate plant growth and productivity by increasing
the availability of nutrients to the plants, production of phytohormones and nitrogen.
These bacteria also produce disease resistance in plants against bacterial, fungal,
or protist pathogens. This chapter gives an overview of halotolerant and halophilic
PGPRs isolated and characterized from the rhizosphere of different halophytes. Here,
we also discuss various direct and indirect methods of plant growth promotion used
by halotolerant and halophilic bacteria. This study also illustrates that halotolerant
PGPRs from hypersaline soils can be used as effective inoculants for different non-
halophytic crops such as wheat, rice, maize, and sugarcane grown in salt-affected
agricultural soils.
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9.1 Introduction

Salinization is the main problem that adversely affects the agricultural areas globally.
Salinity-affected lands comprise more than 6% of the total area of the world (Bui
2013; Rengsamy 2002). In Pakistan, about 6.5 million hectares of agricultural land
are affected by drought, salinity, and sodicity (Mukhtar et al. 2016, 2018a, 2019a, b;
Qureshi et al. 2008). Plant growth is usually reduced by an increase in soluble ion
concentrations in soil and photosynthesis and transpiration rate is reduced. High salt
concentration also affects the nutrients availability and plants metabolic pathways
and ultimately had bad effects on their growth. It also reduces the soil aeration and
permeability (Flowers and Colmer 2015; Munns 2005; Munns and Tester 2008;
Nassar and Horton 1999). Due to salinity stress, about 70% yield of economically
important crops such as wheat; rice, maize, barley, and sugarcane have decreased
(Acquaah 2007; Hasegawa et al. 2000; Sobhanian et al. 2011).

Various chemical and biological approaches have been used to utilize salt-affected
agricultural lands. The use of PGPRs (plant growth-promoting bacteria) to grow
different crops in these areas is an important approach (Hesham et al. 2021; Yadav
2021). Extremophilic PGPRs have unique proteins and enzymes that enable them
to survive under harsh conditions and promote plant growth (Flowers and Colmer
2015; Parida and Das 2005; Suyal et al. 2021; Yadav et al. 2021a). Salt tolerant
plants such as Urochloa mutica, Salsola stocksii, Kochia indica, Suaeda fruticosa,
and Atriplex hortensis have an important role in food supply, fuel production, and
finer content and as fodder crops (Ashraf et al. 2009; Khan 2003; Mukhtar et al.
2016, 2017a, 2018a). Halophytes can be used as fodder crops especially in areas
where agriculture is salinity affected and cannot be used for crop production and
may be considered as desert or barren land (Ahmad et al. 2009; Bui 2013; Bauder
and Brock 2001).

Microorganisms living in hypersaline environments have specific enzymes and
proteins and they can grow at different salt concentrations due to specific modifica-
tions in their metabolic pathways (Olsen et al. 1994; Pitman and Lauchi 2002; Podell
et al. 2013). Plant growth-promoting bacteria and ectomycorrhizal fungi play a vital
role in the physiology andmetabolismof the halophytes (Smith et al. 2015;Upadhyay
and Singh 2015; Tiwari et al. 2021; Yadav et al. 2021b). The root and rhizosphere of
salt-tolerant plants harbor a variety of PGP microorganisms that potentially increase
the availability of minerals and nutrients from rhizosphere through plant roots and
shoots (Khan et al. 2017; Mukhtar et al. 2019b; Rodriguez and Fraga 1999). PGPR
genera including Bacillus, Klebsiella, Pseudomonas, Enterobacter, Burkholderia,
and Serratia are also known as facultative bacterial strains that can reside inside
plant cells and form a mutual beneficial relationship (Gray and Smith 2005; Mukhtar
et al. 2019d; Ruppel et al. 2013; Singh and Jha 2016; Vokou et al. 2012). A number
of studies on hypersaline soils reported that Actinobacteria, Proteobacteria, and
Firmicutes are the most abundant bacterial phyla in the hypersaline environments
(Bodenhausen et al. 2013; Mukhtar et al. 2019d; Singh and Jha 2016).
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A number of studies have previously reported the physiological and genetic modi-
fications of salinity resistance in the halophytes, but only a few studies have focused
on soil microbiomes from hypersaline environments. So, our main focus is on diver-
sity and functions of soil and root microbiomes of salt-tolerant plants growing in
hypersaline environments. In this chapter, we also explain about 1. Various strate-
gies of halophilic microorganisms use to survive under hypersaline environments,
2. The role of soil microorganisms in salinity tolerance, and 3. the role of PGPRs
and pathogenic bacteria that are associated with the halophyte rhizosphere and root
endosphere.

9.2 Adaptations to High Salinity by Halophytes

Halophytes can grow in salt-affected areas by using different strategies, e.g., they
usually use exclusions or inclusion of salts from their tissues to main their internal
osmotic balance. They use energy to exclude the excessive salts from their cells
and tissues and protect themselves (Bittel and Robatzek 2007; Meng et al. 2018;
Mansour et al. 2008). Halophytes tolerate high salt concentrations by some basic
strategies, either by salt inclusion or exclusion (Chen et al. 2007). Concentrations of
sodium and chloride ions in plant cells usually range from 13 to 31 mM. A number
of sodium or hydrogen ion antiporters can create a proton gradient in these cells,
and this phenomenon helps halophytes cells to maintain their internal osmotic stress
(Nuccio et al. 1998; Queirós et al. 2009; Silva and Gerós 2009). Some salt-tolerant
plants use their vacuoles for sequestration of salts (Fig. 9.1). These plant cells have
more vacuolar space as compared to normal plant cells to store the excessive salts
(Flowers and Colmer 2015). Halophytes also utilize compatible solutes or small
molecules such as betaine, ectoine, proline, and trehalose to survive under high salt
concentrations (Maurel 1997). These osmolytes can be categorized according to their
structure and composition, e.g., they may be zwitterionic solutes, anionic solute, and
non-charged ions or solutes. Salt-affected plants also use special glands to survive
in saline environments (Fig. 9.1). These glands evaporate water and form crystals of
salts on leaf surface (Dou and Zhou 2005). Plant proteins such as aquaporins have
an important role in osmoregulation of halophyte plant cells. These proteins control
the movement of water and osmolyte molecules across the cell membrane of plant
cells (Bittel and Robatzek 2007).

9.3 Hypersaline Soil Microbiome

Hypersaline environments such as large Salt lakes, the Dead Sea, and the Khewra
Salt Mine are populated with salt-tolerant bacteria and archaea that have ability to
develop and maintain their osmotic balance even at high salt concentrations. The soil
microbiome of hypersaline environments plays an important role in nutrient cycling
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Fig. 9.1 Salinity tolerance mechanism of halophytes. Adapted from Xu et al. (2016)

and physicochemical properties of soil. Halophiles can survive under hypersaline
conditions, and they are able to grow at different NaCl concentrations (Amoozegar
et al. 2016; Dang et al. 2009; DasSarma and DasSarma 2015; Zamioudis et al. 2013).
Halophilic bacteria and archaea have ability to degrade pollutant compounds and help
the phytoremediation of contaminated soils in the hypersaline environments (Biswas
and Paul 2013; Irshad et al. 2014; Sánchez-Porro et al. 2003). The advancement in
sequencing techniques and different bioinformatics approaches help us to better
understand the microbial diversity and plant-microbe interactions from different
extreme environments including hypersaline and arid environments. The internal
osmotic balance of halophilic microorganisms has been affected by a change in pH,
salt concentration, temperature, and availability of different nutrients (Boutaiba et al.
2011; Qin et al. 2016; Janssen et al. 2015; Weyens et al. 2015).

Halophilic microorganisms usually use two strategies to adapt to hypersaline
environments (Fig. 9.2). Mostly halophiles can utilize small molecules or osmolytes
to maintain their internal osmotic balance. This is known as ‘compatible solute
strategy’ and osmolytes include betaine, glutmate, ammino acids, sugars and some
other molecules. Anaerobic halophilic and archaea use ‘salt in strategy’ to survive at
high salt concentrations. They have ability to accumulate inorganic ions speciallyCl−
and K+ (DasSarma and DasSarma 2015; Gupta et al. 2015; Koh et al. 2015; Ventosa
2006; Ventosa et al. 2012). Halophilic archaeal cells also have various pigmented
molecules, such as bacterioruberins that provides energy to the cells fromsunlight and
help the cells to exclude the salts from the cytoplasm. Halophilic archaea and bacteria
have plasmids that play an important role in osmoregulation of these organisms.
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Fig. 9.2 Various strategies used by halophiles to grow at high salt concentrations. Adapted from
Hänelt and Müller (2013)

Genes encode different traits include resistance for antibiotic and heavy metals,
adaptation to abiotic stresses, virulence, plant tumors, nitrogen fixation, and root
nodulation are present on the plasmids (Dziewit et al. 2015; Mukhtar et al. 2019c;
Youssef et al. 2014; Xin et al. 2000). These plasmids encode also different pigmented
molecules, e.g., cytochromes, enzymes, and phenotypic traits (Mukhtar et al. 2019c).
Halophiles usually use two-component systems to regulate their metabolic functions,
i.e., osmosensor and osmoregulatory enzymes and proteins. They have ability to
control the change in ion concentrations in and out of the cells (Delbarre-Ladrat
et al. 2014; Foo et al. 2015).

9.4 Role of Hypersaline Soil and Halophyte Microbiomes
in Salinity Tolerance

The soil regions around plant roots or rhizosphere influence the plant growth by
secretion of various compounds from roots. A great variety of organic molecules
and inorganic ions, such as amino acids, vitamins, sugars, hormones, and growth
factors are produced by root cells (Beneduzi et al. 2012; Goswami et al. 2016).
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These root exudates affect the microbial communities from the phyllosphere, endo-
sphere, and rhizosphere of plants (Gonzalez et al. 2015;Mukhtar et al. 2018b, 2019a,
b; Shi et al. 2012; Prasad et al. 2021). Microorganisms reside in the endosphere and
rhizosphere also depends on the plant types and it also changes with the different
developmental stages of plant (Chaparro et al. 2013; Chaparo et al. 2014; Dimkpa
et al. 2012; Mukhtar et al. 2018c). Microbiome of the same plant may vary with the
change in soil physicochemical properties and development stage of the plant. Plant
soil or rhizosphere harbors more microbial diversity as compared to root and leaf
endosphere microbiomes (Figs. 9.3 and 9.4). PGPRs have the potential to stimulate
the plant growth by providing the essential nutrients and minerals, production of
phytohormones (cytokinins, auxins, gibberellins, absicisic acids, and ethylene) and
siderophores in salinity-affected agricultural lands (Amoozegar et al. 2008; Boden-
hausen et al. 2014; Browne et al. 2009; Gonzalez et al. 2015; Mehnaz et al. 2010;
Mukhtar et al. 2019b; Susilowati et al. 2015).

PGPR bacteria from the hypersaline soils have potential to change atmospheric
nitrogen to nitrate compounds that can be easily used by the plants (Figs. 9.3 and
9.5). Some bacteria includingBradyrhizobium,Mesorhizobium, Azospirillum, Salin-
ibacter, Pseudomonas, Bacillus, and Serratia are the best examples of nitrogen fixers
(Ahemad andKibret 2014;Antón et al. 2002;Glick 2012;Kuan et al. 2016;Martínez-
Hidalgo and Hirsch 2017). Some endophytic bacterial genera from the root and leaf
can produce a variety of antifungal and antibacterial compounds and can be used

Fig. 9.3 The rhizosphere, phyllosphere, and endosphere microbiomes of salt-affected plants and
overview of their functions. Adapted from Mukhtar et al. (2019b)
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Fig. 9.4 Changes in composition of microbial communities in the soil samples around the plants
(BS), rhizospheric soil samples (RS), and root endosphere samples (R). Microbial diversity may
be lost or reduced from the rhizosphere or soil part to aerial parts of the plants and this is due to
the decrease in nutrient availability and various abiotic factors at the rhizosphere and root cells
interface. Adapted from Mukhtar et al. (2019b)

Fig. 9.5 PGPRs strains isolated from different salt-affected soils and plants and their plant
growth-promoting traits, such as phosphate solubilization, production of phytohormones, HCN,
siderophores, ACC deaminase, nitrogen fixation, exopolysaccharides, volatile organic compounds,
and halocins
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as biocontrol agents (Jaisingh et al. 2016; Mukhtar et al. 2019d). Halotolerant and
halophilic Bacilli and other bacterial genera also produce hydrolytic enzymes like
chitinase, protease, cellulase, amylase, and lipase (Biswas and Paul 2013; Gupta et al.
2015; Mukhtar et al. 2017b, 2018a; Shi et al. 2012). These PGPR strains also help
the plants to suppress the fungal pathogens like Alternaria spp., Aspergillus flavus,
and Fusarium spp. (Table 9.1).

9.4.1 Phytohormones Production

Halotolerant and halophilic bacteria produce a number of phytohormones including
auxins, abscisic acid, cytokinins, gibberellins, and ethylene. These bacteria promote
plant growth under salt-affected areas (Dodd and Perez-Alfocea 2012). Indole acetic
acid (IAA) produced by halophilic PGPRs enhances plant growth and length of
roots and shoots directly by increasing the cell differentiation and division processes
(Desale et al. 2014; Gauthier et al. 1992; Mukhtar et al. 2017a). PGPR genera
including Bacillus, Halobacillus, Enterobacter, Pseudomonsas, Halomonas, Micro-
coccus, and Serratia improved salt tolerance in economical important crops, such as
maize, wheat and sugarcane and increase the activity of various enzymes including
catalase and peroxidase, also increase the different nutrients and amino acids to the
plant roots (Bari and Jones 2009; Gontia et al. 2011; Mukhtar et al. 2017a, 2019d;
Susilowati et al. 2015). Halobacillus strains isolated from the hypersaline soils can
produce cytokinins and have an important role in increase shoot biomass under
salinity-affected conditions (Fig. 9.5 and Table 9.1). The cytokinin signaling in plant
cells especially in root cells is reduced because of abscisic acids’ production in shoot
and leaf cells (Arkhipova et al. 2007; Bari and Jones 2009; Goswami et al. 2016;
Ilangumaran and Smith 2017; Susilowati et al. 2015).

9.4.2 Mineral Solubilization

Halotolerant and halophilic PGPR can directly promote plant growth by increasing
nutrients supply to the roots (Figs. 9.4 and 9.5). A number of PGPR strains,
including Bacillus, Halobacillus, Halomonas, Enterobacter, Micrococcus, Pseu-
domonas, Virgibacillus, Pantoea, Rhizobium, and Serratia have the potential to
change inorganic forms of some important minerals into solubilize forms, e.g., P, K,
and Zn (Jaisingh et al. 2016; Mukhtar et al. 2017b; Richardson et al. 2009; Sharma
et al. 2013). These strains change inorganic phosphates into available organic phos-
phates and can be used as biofertilizers for various crops like rice, sugarcane, maize,
wheat, cotton, and barley (Heyndrickx et al. 1998; Goswami et al. 2016; Mukhtar
et al. 2019d, 2020a; Nautiyal 1999; Ramaekers et al. 2010; Siddikee et al. 2011;
Sgroy et al. 2009). PGPR strains, e.g., Pseudomonas, Bacillus, and Enterobacter,
produce organic acids including citric acid, oxalic acid, acetic acid, and lactic acid,
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Table 9.1 Halotolerant and halophilic bacterial strains identified from various salt-affected
environments and their potential for plant growth promotion

Halophilic bacteria Host halophyte PGP activity References

Halobacillus Psoralea corylifolia Production of IAA,
solubilization of
phosphate, and ACC
deaminase production

Mukhtar et al.
(2019d), Sorty et al.
(2016)

Halomonas Salsola stocksii and
Triticum aestivum

Mineral solubilization,
IAA, siderophore, and
HCN production

Orhan (2016),
Mukhtar et al.
(2019a)

Micrococcus Arthrocnemum
macrostachyum

N2 fixation, IAA
production, and mineral
solubilization

Navarro-Torre et al.
(2017)

Planococcus Salsola stocksii Mineral solubilization,
production of IAA, ACC
deaminase, and
siderophore

Mukhtar et al.
(2019a)

Oceanobacillus Atriplex amnicola Mineral solubilization,
production of IAA,
HCN, and siderophore

Mukhtar et al.
(2019a, d)

Marinococcus Salicornia europaea Nitrogen fixation,
phosphate solubilization,
IAA, siderophore, and
HCN production

Zhao et al. (2016)

Marinobacter Salsola stocksii Nitrogen fixation,
solubilization of
phosphate, IAA, HCN,
and ACC deaminase
production

Mukhtar et al.
(2019d)

Virgibacillus Atriplex amnicola and
Arthrocnemum
Macrostachyum

Mineral solubilization,
production of IAA and
siderophore

Mukhtar et al.
(2019a)

Halovibrio Aster tripolium Mineral solubilization,
production of IAA,
siderophore, and
biocontrol
Activity

Szymanska et al.
(2016)

Acinetobacter Psoralea corylifolia Auxin production, HCN,
and siderophore
production

Sorty et al. (2016)

Variovorax Salicornia europaea Auxin production and
siderophore production

Sharma et al. (2016)

(continued)
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Table 9.1 (continued)

Halophilic bacteria Host halophyte PGP activity References

Dietzia Suaeda salsa Auxin production and
nitrogen fixation

Yuan et al. (2016)

Pseudomonas Suaeda fruticose Nitrogen fixation, IAA,
and siderophore
production

Ullah and Bano
(2015)

Salinivibrio Salsola stocksii and
Atriplex amnicola

IAA, HCN, and
siderophore production

Mukhtar et al.
(2019a, d)

Serratia Aster tripolium Nitrogen fixation,
mineral solubilization,
production of IAA,
HCN, and siderophore

Amoozegar et al.
(2008), Szymanska
et al. (2016)

Arthrobacter Atriplex leucoclada Mineral solubilization,
production of IAA and
siderophore

Ullah and Bano
(2015)

Rhizobium Psoralea corylifolia Nitrogen fixation,
phytohormone
production, and
siderophore production

Martínez-Hidalgo
and Hirsch (2017)

Enterobacter Psoralea corylifolia Production of IAA,
HCN, and siderophore

Mukhtar et al.
(2020a), Qin et al.
(2014)

Agrobacterium Salicornia bigelovii Induction of plant stress
Resistance; mineral
solubilization, auxin
production

Zhang et al. (2013)

Nesterenkonia Salicornia strobilacea Nitrogen fixation,
mineral solubilization,
production of
phytohormones and
siderophore

Mapelli et al. (2013)

Brachybacterium Salicornia brachiata Mineral solubilization
and IAA production

Jha et al. (2012)

Pantoea Suaeda salsa Nitrogen fixation, auxin
production, HCN, and
siderophore production

Siddikee et al. (2011)

Brevibacillus Limonium sinense Mineral solubilization,
auxin production, and
biocontrol activity

Qin et al. (2014)

Haererohalobacter Salicornia brachiata Nutrient uptake,
production of HCN,
IAA, and siderophore

Susilowati et al.
(2015)

(continued)
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Table 9.1 (continued)

Halophilic bacteria Host halophyte PGP activity References

Lysinibacillus Prosopis
strombulifera

Nutrient uptake, auxin
production, and
siderophore production

Mukhtar et al.
(2019a), Sgroy et al.
(2009)

Cronobacter Salicornia sp. Nutrient uptake and
production siderophore

Shukla et al. (2012)

Azospirillum Kallar grass Nitrogen fixation,
antioxidant defense
enzymes production,
auxin, and siderophore
production

Reinhold et al. (1987)

Azotobacter Kallar grass Nutrient uptake, nitrogen
fixation, auxin
production

Malik et al. (1997)

when they solubilize inorganic phosphate into organic forms (Berendsen et al. 2012;
Sharma et al. 2013).

Some PGPR strains such as Bacillus, Pseudomonas, Burkholderia, Brevibacillus,
and Gluconacetobacter isolated from the saline environments have ability to solu-
bilize inorganic zinc and increase the availability of zinc to the plants as shown
in Table 9.1 (Fasim et al. 2002; Impa and Impa 2012; Navarro-Torre et al. 2017;
Parmar and Sindhu 2013; Qin et al. 2014). These bacteria directly promote plant
growth and act as chemo-attractants to the plant roots (Desai et al. 2012; Gandhi and
Muralidharan 2016; Zhao et al. 2016). Among the PGPR strains, potassium solu-
bilizing bacteria including Bacillus, Acidothiobacillus, Paenibacillus, Azospirillum,
Marinococcus, Serratia, Streptomyces, and Azotobacter have gained attraction as
biofertilizers for potassium deficient agricultural soils (Badar et al. 2006; Zhang
et al. 2013; Zarjani et al. 2013; Zhang and Kong 2014). These bacteria have ability
to increase the K availability in soils and thus decrease the use of inorganic or chem-
ical fertilizers. A number of studies have reported the use of potassium solubilizing
bacteria as biofertilizers for the growth, improvement of different crops including
rice, wheat, maize, sugarcane, and cotton (Etesami et al. 2017; Shakeel et al. 2015;
Shukla et al. 2012; Zeng et al. 2012).

9.4.3 Biological Nitrogen Fixation

Halophilic PGPRs have the potential to convert nitrogen gas into different nitrates
compounds that can be easily used by plants. Nitrogen fixation is considered as an
important plant growth-promoting trait (Fig. 9.5 and Table 9.1). Bacterial genera
including Azotobacter, Rhizobium, Mesorhizobium, Bradyrhizobium, Pseudomonas
Azospirillum, Bacillus, and Serratia are famous nitrogen fixers (Glick 2012; Malik
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et al. 1997; Martínez-Hidalgo and Hirsch 2017; Reinhold et al. 1987). These bacteria
can enhance plant growth through nitrogen-fixing process, production of various
phytohormones and siderophores. These bacteria can also suppress the plant diseases
caused by various bacterial and fungal pathogens (Wu et al. 2009; Mukhtar et al.
2020b). Rhizosphere-associated nitrogen-fixing bacteria genera including Azospir-
illum, Enterobacter, Azotobacter, Klebsiella, Pseudomonas, and Xanthobacter have
been characterized from a number of hypersaline environments. These bacteria have
been used as biofertilizers for economically important crops, such as maize, rice,
wheat, barley, and sugarcane (Brusamarello-Santos et al. 2012; Susilowati et al.
2015).

9.4.4 ACC Deaminase Production

PGPR strains including Oceanobacillus, Bacillus, Achromobacter, Halobacillus,
Halomonas, Micrococcus, Virgibacillus, and Planococcus can decrease the concen-
trations of ethylene because of ACC deaminase (1-aminocyclopropane-1-carboxylic
acid) (Fig. 9.5 and Table 9.1). Bacterial strains with a potential to produce ACC
deaminase can enhance plant growth in different abiotic stress conditions, e.g.,
water logging, drought, salinity, and contaminated soils. The enzymes including
ACC synthetase change S-adenosylmethionine in ACC deaminase and ultimately
this will be converted into ACC oxidase oxidase (Glick 2012; Goswami et al. 2016;
Mukhtar et al. 2020a; Qin et al. 2014). These bacteria can decrease the concentra-
tion of ethylene because of the ACC deaminase activity. PGPRs usually lower the
concentration of ACC outside the plant cells and helps them to maintain balance
between their internal and external ACC deaminase levels. They also play a role in
the good growth of plant roots by decreasing the ethylene inhibitory effect (Kim et al.
2007; Mukhtar et al. 2020a; Sorokin and Tindall 2006).

9.4.5 Siderophores and Hydrogen Cyanide Production

Iron is an important micronutrient that is required for different biochemical processes
such as photosynthesis, respiration, and nitrogen fixation. In saline and sodic soils,
iron availability is very low (Abbas et al. 2015;Kobayashi andNishizawa2012; Singh
et al. 2015; Yousfi et al. 2007). A number of PGPR bacterial strains produce small,
high-affinity Fe(III)-chelating compounds which as known as siderophores (Fig. 9.5
and Table 9.1). Siderophore production by halotolerant and halophilic PGPRs such
as Halobacillus, Bacillus, Halomonas, Pseudomonas, Halovibrio, Klebsiella, and
Rhizobiumhave been reported from various saline environments (Bhattacharyya and
Jha 2012; Haas and Défago 2005; Mirza et al. 2006; Vacheron et al. 2013).

Some halotolerant PGPRs including Aeromonas, Rhizobium, Bacillus,
Halomonas, Acinetobacter, Pseudomonas, and Enterobacter have the ability to
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produce antibacterial and antifungal metabolites such as HCN (hydrogen cyanide),
2,4-diacetylphloroglucinol, pyrrol-nitrin, gliotoxin, pyoluteorin, and tensin (Bhat-
tacharyya and Jha 2012; Drogue et al. 2012; Howell et al. 1993; Shen et al.
2013; Singh et al. 2015). These plant-associated bacteria help plants to produce
resistance against a number of bacteria and fungi (Fig. 9.5 and Table 9.1). HCN
producing bacteria have been identified and characterized from a number of environ-
ments (Barea et al. 2005; Szymanska et al. 2016; Taunton et al. 2000). Recent studies
on minerals from nation soils and rocks have reported that HCN producing bacteria
help plant roots to mobilize various minerals like P, K, and Zn in soil (Frey et al.
2010; Lapanje et al. 2012; Wongfun et al. 2014). In acidic soils, HCN not only plays
a role in iron sequestration but, mainly contributes to the mobilization of phosphate
in the soil and increases its availability to plants (Howell et al. 1993; Lanteigne et al.
2012; Ström et al. 2002; von Rohr et al. 2009).

9.4.6 Exopolysaccharides Matrix

A number of halotolerant PGPR strains including Halomonas, Halobacillus, Pseu-
domonas, Corynebacterium, Nesterenkonia, Acinetobacter, and Planococcus secrete
exopolysaccharides (EPS) which can be used for the attachment of soil particles or
root surfaces (Fig. 9.5 and Table 9.1). These bacteria play a major role in cellular
associations among microorganisms, plant-microbe interactions and protect plants
from bacterial, fungal and protist pathogens (Abd_Allah et al. 2018; Delbarre-Ladrat
et al. 2014; Llamas et al. 2012; Mapelli et al. 2013; Sorty et al. 2016). Exopolysac-
charides have a role in stabilization of soil structure, composition, and soil particles’
water-holding ability. EPS producing halotolerant and halophilic bacteria can be
used as biofertilizers for crops such as sugarcane, maize, wheat, and chickpea under
salinity-affected areas (Kumar et al. 2016; Mukhtar et al. 2019d; Oren 2015).

9.4.7 Halocins

Halophilic archaea and bacteria produce small proteinaceous bacteriocins which are
known as halocins (Fig. 9.5 and Table 9.1). These compounds are classified into
two types; peptides or microhalocins with a size of about 10 kDa or less and the
large proteins with bacteriocin properties and they have a size larger than 10 kDa.
These compounds have different functions. They play a crucial in protection of plants
against various fungal and bacterial pathogens in hypersaline environments (Besse
et al. 2015). They help to maintain plant-microbe interactions. They can function as
RNA or DNA endonucleases, affect transcription and translation processes, forma-
tion of pores and bacterial cell lysis (Meknaci et al. 2014; Subramanian et al. 2016).
Growth of some archaea and bacteria can be inhibited by a number of halocins. A
halo zone or inhibition zone is formed around the bacterial growth on the agar plate to
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show the effect of halocins. Halophilic archaeal strains such as Haloferax, Halobac-
terium, and Halococcus have different halocins including H4, R1, A2, G1, H6, and
C8. They are well-studied halocins from different hypersaline environments (Quadri
et al. 2016; Vurukonda et al. 2016). Using metagenomic and metatranscriptomic
analyses, a number of new halocins have been discovered recently. Some bacte-
rial strains such as Bacillus, Pseudomonas, and Halomonas also produce a variety
of halocins and affect the growth of plant when inoculated as biofertilizers under
salinity-affected lands. These compounds also change the plant proteome and affect
the energy metabolism pathways of plants (Mohan and Dubnau 1990; Zhang et al.
2008).

9.4.8 Polyamines and Volatile Organic Compounds

Many halotolerant PGPR strains such as Bacillus, Stenotrophomonas, Pseu-
domonas, Halomonas, Serratia, Variovorax, and Arthrobacter release volatile
organic compounds that can be used for plant protection against bacterial and fungal
pathogens and indirectly promote plant growth (Fig. 9.5 andTable 9.1). Inoculation of
PGPR strains Bacillus, Serratia and Pseudomonas increased photosynthesis rate and
the plant biomass of maize, wheat and sugarcane and reduce the emission of volatile
compounds (Park et al. 2015; Tahir et al. 2017; Raza et al. 2016; Sharma et al. 2016;
Zhuo et al. 2016).Bacillus volatiles andBacillus subtilis produce volatile compounds
that enhance the resistance against Ralstonia solanacearum induced bacterial wilt in
salt-stressed tobacco and Arabidopsis (Aslam et al. 2011; Tahir et al. 2017; Xie et al.
2014). The volatile compounds secreted by halotolerant PGPRpromote the growth of
plants by increasing the chlorophyll content and proline and decreasing root Na+ ions
accumulation. Polyamines produced by certain halotolerant and halophilic bacteria
also enhance the plant growth (Mukhtar et al. 2019d; Ullah and Bano 2015). Inocula-
tion with Bacillus megaterium BODC15 strains and Bacillus subtilisOKA105 strain
positively affect the growth of plant and increase the plant length and biomass by
mediating the increase in cellular polyamines in Arabidopsis (Kadmiri et al. 2018;
Zhang et al. 2007; Zhuo et al. 2016).

9.5 Conclusion and Future Prospects

Halophytemicrobiome functions in amore eco-friendly andpromote the plant growth
in salinity-affected agricultural areas. Halotolerant and halophilic PGPRs play a
vital role in the maintenance of biogeochemical cycles. The composition of micro-
bial communities associated with the rhizosphere of halophytes changes with the
increase in soil salinity. Halotolerant and halophilic PGPRs have ability to survive
under hypersaline conditions because these microorganisms have special genetic
and physiological modifications for their survival. PGPRs isolated from the saline
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soils, rhizosphere, phyllosphere, and endosphere of halophytes have the potential to
stimulate plant growth by phytohormones hormones production, mineral solubiliza-
tion, nitrogen fixation, siderophores, HCN, ACC deaminase and volatile compounds
production and biosynthesis of exopolysaccharides. These PGPR traits affect the
metabolic pathways in plants and act as signals to different abiotic stress responses.
So, in this way, they help the plants to grow well under hypersaline conditions.
These microorganisms can be potentially used as reclamation and plant protection
of salt-affected soils. Halotolerant PGPR bacteria and fungi can be used for growth
promotion of plants and also improve the yield of non-halophytic crops that are
grown under salinity stress conditions. Halotolerant PGPR-based biofertilizers can
be considered as a better strategy for sustainable crop production under salinity-
affected agricultural lands. Co-inoculation of halotolerant PGPR bacteria and fungi
for a long time period (at least 3 years) can improve the plant growth and yield under
different abiotic conditions.
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Chapter 10
Psychrotrophic Soil Microbes and Their
Role in Alleviation of Cold Stress
in Plants

Yachana Jha, Anjali Kulkarni, and R. B. Subramanian

Abstract The psychrotrophic microbes having plant growth-promoting ability is
used to enhance the ability of plant to develop tolerance against different stresses
including cold stress, but the real mechanism behind such improved tolerant ability
for protecting the host plant is not clearly known till date. The effect of plant-
associated psychrotrophic bacteria has been studied in the maize, on the nutrient
status, lipid profile of cell wall and lignin content to establish a correlation between
lipid profile and cold stress tolerance. The cold stress also results in cell dehydration
due to frizzing effect on cell content, which will block all the cell biochemical activ-
ities. So the effect of psychrotrophic bacteria on the osmotic and oxidative stress in
cold stressed maize plant has been studied to minimize the adverse effect of stress.
The study showed that psychrotrophic bacteria is capable to change lipid profile as
well as the cell membrane properties of plant under cold stress and help plant to
better survive under stress.

Keywords Alleviation · Cold stress · Psychrophiles · Psychrotolerant

10.1 Introduction

The production of crop plant has been affected by a multitude of environmental
factors including abiotic and biotic factors, and it further get exacerbated with the
increasing human population (Yadav et al. 2020). These factors include drought,
salinity, flooding, heat, low temperature, high radiation, extreme pH, deficient or
excess of essential nutrients, and gaseous pollutants (Kour et al. 2020b; Hesham
et al. 2021; Yadav et al. 2021a). These abiotic factors havemultidimensional effect on
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plant growth as generation of osmotic stress, oxidative stress, disturbed homeostasis
of the cell, and cell death (Kour et al. 2019). Among these, low temperature stress
is the most common stress in hill regions and the main abiotic factors that badly
reduced the production of crop by imparting direct or indirect effect nearly on all
aspect of the plant life by altering the plant physiology and metabolism (Pandey
et al. 2017; Yadav et al. 2015; Dikilitas et al. 2021). To minimize the effect of cold
stress responses in plants, there is multilayer effect—the primary effect is plant cell
membrane rigidification—for the protection of intracellular organelle.

The secondary effect of cold stress results in reduced enzyme activity due to
altered protein complexes and stability of enzymes such as enzymeof photosynthesis,
respiration, and ROS scavenging enzymes (Yadav et al. 2016). They ultimately affect
important functions like photosynthesis, respiration, photo-inhibition due to consid-
erable membrane damage (Jha 2019a; Kumar et al. 2019). Finally, cold stress alters
the enzymes activity and expression of gene, to induce the conformational change
in RNA. Cold stress has been divided into two groups as chilling stress and freezing
stress and freezing stress has more damaging effect on plant than chilling stress.
The most damaging effect of freezing stress is formation of intracellular ice crystals,
which induce water efflux, leading to cell dehydration, may cause plant death. Plants
being sessile have to modify their metabolic pathway for better survival under such
stress. Most temperate plants have developed cold adaptation, but till date several
crops having great economic importance lack the ability of cold acclimation. There
are several cold stress signal transduction pathways such as lipid signaling cascades,
protein kinase, Ca2+, protein phosphatase, and generation of ROS. So the need of
hour is to develop climate-smart crops, flexible to climate change, require a multi-
plicity of physiological interactions. During cold acclimatization, plant develops cold
tolerance ability by induction of protective metabolite likes proline, soluble sugar,
and LEA, etc. (Hussain et al. 2018).

Microorganisms are early forms of life, which are competent to carrying several
important metabolic reactions for other organisms like plants, animals. Higher
eukaryotes would be able to survive and flourish due to past microbial associa-
tion and activities that help in degradation of complex bio-molecule, incorporation
of important organic matter, or recycling of key minerals. Microorganisms have
diverse action on other organisms as they may be pathogenic, or produce antimi-
crobial agents or enzymes. Also microorganisms are able to grow on a wide range
temperature and divided into three groups on the basis of its temperature require-
ment for their growth. The microorganisms are able to grow on ambient temperature
between 20 and 45 °C are mesophiles, survive at a temperature between 50 and 70
°C are thermophiles and found at temperature range between −16 and 40 °C are
psychrotrophs or psychrophiles (Torsvik and Øvreås 2008). Such psychrotrophic
microbes directly or indirectly help host plant in cold adaptation in diverse agri-
cultural conditions due to their versatility and can have biotechnological potential
applications in agriculture practice (Suyal et al. 2021) (Tiwari et al. 2021).
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10.2 Isolation and Inoculation of Psychrotrophic Bacteria
in Maize

Earth has very diverse environment range from polar sea ice (−89.2 °C) to heat
desert (+54 °C), but prominently our earth is a cold, marine planet. About 20%
of the earth’s surface is covered with snow consisting of polar ice sea, glaciers,
ice sheets, permafrost soils, and 70% of the earth consists of the ocean’s water
having temperature of −1 to +5 °C. So the earth is habitats for large proportion
of cold-adapted microorganisms from diverse groups of bacteria and fungi like
Mucoromycota,Bacteroidetes,Proteobacteria,Actinobacteria, and blue green algae,
etc. Psychrotrophic is a group of bacteria that has the ability to grow and multiply
at extremely low temperature at the range of 0 to −20 °C and reside even in perma-
nently cold regions like deep sea and at polar regions (Yadav et al. 2019). The plant
able to grow at low temperature has several adaptations including association with
psychrotrophic microbiomes with plant. Such associations are mostly symbiotic in
which fungus or bacteria physically reside within the plant tissue without causing
any detrimental effect to the plant host (Jha 2019b).

Common multifunctional PGP attributes of the plant psychrotrophic bacteria
comprise solubilization of insoluble mineral nutrients, siderophores production, and
modulation of phytohormones, to enhance the ability of host plant to acquire toler-
ance against the abiotic and biotic stress (Gaiero et al. 2013; Verma et al. 2015). Some
plant-associated psychrotrophic bacteria also has gene to convert the dinitrogen gas
into ammonium and nitrate form to be used by the host plant for its growth.

In this study, such favorable plant-associated psychrotrophic bacteria are isolated
from the roots of Suaeda nudiflora plant from the different sites of mount Abu hill
station near Gujarat Rajasthan border in the month of December (Jha and Subra-
manian 2011). Serial dilution technique has been used for isolation of bacteria in
semi-solid NFb medium with Fluconazole (0.015% w/v), then transferred on NFb
agar plate with Fluconazole and bromothymol blue. After plating the plates are
incubated in BOD incubator for 96 h at 15± 1 °C and isolated pure culture are main-
tained at 4 °C. The selection of the psychrotrophic bacteria for further experiment
has been done on the basis of its growth temperature range and plant growth promo-
tion ability. The identification of the isolates of interest is carried by morphological,
cultural characteristics, biochemical tests, and molecular analysis. The molecular
analysis of the isolates has been done by sequencing of 16S rDNA gene followed by
BLAST analysis and phylogenetic profiling. The obtained sequences are submitted
to gene bank having Gene Bank accession number: HM756642 has been identified
as Lysinibacillus fusiformis strain YJ4 and HM756643 as Lysinibacillus sphaericus
strain YJ5.

The ability of these root residing psychrotrophic bacteria in plant growth and
modulation of metabolites to provide protection to host plant in cold stress has
been studied on maize plant. The maize seedling has been inoculated with selected
psychrotrophic bacteria as per our published method (Jha and Subramanian 2013).
The seed of selected maize variety Pioneer 30 V92 has been obtained from the Main
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Maize station Gujarat. The healthy seed has been properly surface sterilized and the
seed completely free from contamination has been further inoculated with selected
psychrotrophic bacteria. The co-inoculation of sterilized maize seeds with isolated
psychrotrophic bacterial inoculums has been carried out in 20mlHoagland’s nutrient
medium in culture tube and tubes are placed in culture roomat 27 °C at 12 h light–dark
cycle for a week (Jha et al. 2012).

The root association of psychrotrophic bacterial with maize has been confirmed
by root staining with 2, 3, 5-triphenyl tetrazolium chloride stain overnight (Jha and
Subramanian 2018). The presence of psychrotrophic bacteria in the root has been
observed in the cross sections of the stained root under an image analyzer microscope
(Carl Zeiss) as red-colored cells. The effect of the psychrotrophic bacteria on maize
growth promotion has been analyzed in green house, and the result of the study
shows the positive effect of the psychrotrophic bacteria as in Table 10.1. Common
effect of low temperature on plants is low rate of seed germination, poor growth,
appearance, less number of tillering, but inoculation with both the psychrotrophic
bacteria reduced the effect of cold stress in maize. But the cold stress also has effects
on the reproductive stage results in delayed heading and pollen sterility, which is
responsible for reduced crop production (Suzuki et al. 2013). Such psychrotrophic
bacteria has positive effect on plant growth and also has the ability to act as biological

Table 10.1 Effect of psychrotrophic bacteria on plant growth parameter of maize under cold stress
(n = 5)

Treatment Germination % Root length (cm) Shoot length (cm) Dry weight (gm
Plant−1)

Normal

No inoculation 74.2d 1.81 cd 39.2d 2.02d

Inoculation with
L. fusiformis

82.1bc 2.13c 41.5c 2.13c

Inoculation with
L. sphaericus

91.3b 2.35ab 43.6ab 2.32ab

Inoculation with
L. fusiformis + L.
sphaericus

96.2a 2.33a 45.1a 2.41a

Cold stress

No inoculation 52.2 cd 1.34 cd 28.1 cd 1.43d

Inoculation with
L. fusiformis

63.4c 1.41c 31.4c 1.49bc

Inoculation with
L. sphaericus

67.3b 1.49ab 34.2ab 1.58b

Inoculation with
L. fusiformis + L.
sphaericus

69.3a 1.53a 35.3a 1.62a

For each Parameter, values in columns followed by the same letter are not significantly different at
(P ≤ 0.05)
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control agent against different pathogens under cold stress, so psychrotrophic bacteria
can be used as an eco-friendly tool for crops production at its full potential cultivated
under the cold stess (Yadav 2017).

10.3 Effect of Cold Stress on Physiological Response
of Plants

Low temperature is responsible for major injuries caused in plant which limits plant
growth and yield. However, low temperature stress has been categorized into freezing
stress (temperatures below 0 °C) and chilling stress (temperatures above 0 °C) having
different effects on plant cell. In freezing stress, cell aqueous content gets converted
into ice crystalswithin the cell,which causemetabolic dysfunction aswell asmechan-
ical damages to plants cell (Li et al. 2018; Yadav et al. 2021b). While chilling stress
generally causes cellularmembrane damages, leafwilting, chlorosis, necrosis, reduc-
tion in photosynthesis, oxidative stress, and finally reduced plant growth (Verma et al.
2017). However, plants develop tolerance toward freezing and chilling stress by
evolving multilayer mechanisms as accumulation and production of osmoprotectant
such as soluble sugars, amino acids, carbohydrates, and cold-induced stress-related
proteins. All ecological stresses including cold stress are initially recognized by
specific receptor on the cell membrane of the plant cell and are transduced signal
for the activation of related downstream signaling pathways cascade for the induc-
tion of protection mechanism. Plasma membrane is chief barrier between the plant
cell and external environment and first to experience the deleterious effects of cold
stress. Cold stress generally results in alteration in lipid composition of the plasma
membrane and alters the fluidity of the membrane to protect the plant cell from
chilling stress. But lipid composition of plasma membrane has crucial role in main-
taining the stability and function. The major function of cell membrane is not only
in protection, metabolism, homeostasis, but it also has function in signal recognition
and signaling cascades for protein-lipid interactions as a main regulatory activity
under stress condition (Sunshine and Iruela-Arispe 2017).

Plant under stress can able to survive by themultilayermodifications starting from
morphological, physiological, biochemical, and molecular level. After sensing stress
plant signal molecules like enzyme kinase, phosphatase, ROS, lipid, and calcium
signaling cascades get activated to induce the transcription factors for the stress-
responsive genes of major targets of the stress. Such specificity is achieved by timely
and combined activity of several related signaling pathways. Calcium is a secondary
messenger for the activation/ inactivation of specific transcriptional factor by initi-
ating a phosphorylation/dephosphorylation cascade. Transcriptional factor has the
ability to regulate the expression of function of specific gene for the survival and
adaptation of plant under stress (Hoang et al. 2017).
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10.3.1 Effect of Psychrotrophic Bacteria Nutrient Availability
for Plant in Maize Under Cold Stress

Plant nutrient dynamics is directly related to worldwide climate change of various
types of extremities like drought, cold, salinity, etc. The acquisition, assimilation, and
distribution of important nutrient in the plant depend on the availability of nutrients
in the soil and disturbed by change in climatic factors (Jha 2019c). The climatic
factor-like cold stress affects the plant nutrient dynamics in different plant parts,
including mobilization from senescing leaves or transportation to important organs.
The redistribution ofmineral nutrients, water fluxes, and assimilation of food is badly
affected by cold stress.

The psychrotrophic bacteria are plant growth promoters having different multi-
functional growth promotion attributes such as ability for biological nitrogen fixation
to produce siderophores, phytohormone, and solubilize phosphate and potassium,
resulting in an increased availability of important major mineral nutrient ions for
the plant’s growth (Singh and Yadav 2020; Kour et al. 2021). The association of
psychrotrophic bacteria with plant under cold stress and their effect on the biological
growth response is complex. Among major mineral nutrient, nitrogen and potassium
are the most important nutrient for the plant and are required for synthesis of amino
acids and functioning of proteins. So, in this study, the isolation of psychrotrophic
bacteria which has been done on the NFb media indicates that these isolates have
nitrogen fixation potential. The use of such N2-fixing psychrotrophic bacterial asso-
ciation for enhanced plant growth and yield is a sustainable technique under cold
stress as well as in normal condition. The foliar contents of K, P, Ca, and N have been
estimated in the leaves of maize inoculated with psychrotrophic bacteria. The foliar
concentration of K, P, Ca, and N has been determined by digital flame photometry
using specific filter after digesting 1 g plant material in tri-acid mixture in the ratio
of 9:3:1. The plant associated with psychrotrophic bacteria has significantly higher
foliar concentration of K, P, Ca, and N under normal and cold stress conditions. The
plants treated with psychrotrophic bacteria always show elevated levels of foliar N
and K (Table 10.2).

Potassium is an osmotically active solute; it contributes to water retention and
absorption in the plant cell for maintaining central metabolic activity of cold stressed
plant (Jha 2018a).Also potassium is one of the important cofactor formanymetabolic
enzymes necessary for central metabolic pathway. The psychrotrophic bacteria that
reduced the uptake of cations in the inoculated maize plant under cold stress is the
most interesting result of this study. Cations like Na+ and Ca2+ adversely affect the
properties of plant cell membrane and membrane transport, which ultimately change
the cytoplasmic Ca2+ activity. All such effect collectively alters the plant physiology,
as water and ion transport, nutrition uptake and photosynthate distribution under cold
stress. So the selection and inoculation of psychrotrophic bacterial consortium can
confer tolerance to plant against adverse environmental condition and also improve
other nutrient availability. The use of microbial bioinoculants or biofertilizers of
such psychrotrophic bacteria with diverse multifunctional plant growth promotion
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Table 10.2 Effect of psychrotrophic bacteria on minerals concentration of maize under cold stress
(n = 5)

Treatment N(mg kg−1) P(g kg−1) K(g kg−1) Ca(g kg−1)

Normal

No inoculation 22.3cd 1.72d 53.1d 15.2a

Inoculation with L. fusiformis 23.1c 1.83bc 56.3c 13.4cd

Inoculation with L. sphaericus 24.5b 1.93b 57.4b 13.8bc

Inoculation with L. fusiformis + L.
sphaericus

25.4a 2.11a 59.2a 14.1b

Stressed

No inoculation 17.3d 1.43cd 45.2d 16.4a

Inoculation with L. fusiformis 18.2c 1.54c 46.3bc 14.2 cd

Inoculation with L. sphaericus 19.6ab 1.59b 47.2ab 13.3bc

Inoculation with L. fusiformis + L.
sphaericus

20.1a 1.61a 47.8a 14.2b

For each Parameter, values in columns followed by the same letter are not significantly different at
(P ≤ 0.05)

attributes is required for enhancing or maintaining the current rate of crop and food
production for sustainable agricultural agroecosystems (Woo and Pepe 2018).

10.3.2 Effect of Psychrotrophic Bacteria on Photosynthetic
Parameters in Maize Under Cold Stress

Plants being sessile are regularly exposed to different environmental stresses, which
affect their growth and production. Environmental stress is one of the important
parameters for crop production as it directly affects the physiological processes
related to stress injury. Tolerance to environmental stress is an organized inte-
grated event coordinates between various levels of anatomical, biochemical, cellular,
morphological, and physiological events. One of the most important physiological
and metabolic activities of plant is photosynthesis for the synthesis of carbohydrate
and is highly sensitive to low temperature (Hajihashemi et al. 2018). Photosynthesis
is the principal process on the earth carried out by the plant for the production
of food due to the presence of chlorophyll. The photosystem I (PSI) and photo-
system II (PSII) of chlorophyll have the ability to trap light energy to generate redox
potential for the production of ATP. Low temperature that result in limited photon
density induces the reduced photosynthetic capacity of stressed plant. Cold stress
rapidly reduced chloroplasts equilibrium by inducing imbalances in the antenna
complexes and PSII. To maintain the photon density, stressed plant typically hoards
higher concentration of ancillary pigments like carotenoids and chlorophyll a/b
under cold stress. Carotenoids also help in protection of photon sequestering protein
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complex from changing temperature-induced injuries (Banerjee and Roychoudhury
2019). The effect of psychrotrophic bacteria on the concentration of carotenoids and
chlorophyll pigment in maize under cold stress has been determined by chloro-
phyll extraction method from 0.5 g fresh leaves. The supernatant of the extract
has been taken to determine the concentration of carotenoids and chlorophyll a/b
by taking absorbance at 470, 663, and 645, respectively. The result of the study
showed that cold stress has remarkable effect on the concentration of light-harvesting
pigments, but psychrotrophic bacteria significantly increase the chlorophyll content
in the inoculated plant compared to untreated control (Table 10.3).

Cold stress primarily results in loss ofmembrane fluidity of plant cell. Plants under
cold stress that are not able to maintain fluidity of membrane resulted in membrane

Table 10.3 Effect of psychrotrophic bacteria on the total chlorophyll content, chlorophyll a,
chlorophyll b, carotenoid content and rate of photosynthesis of maize under cold stress (n = 5)

Treatment Total
chlorophyll
content
(g kg−1)

Chlorophyll a
(g kg−1)

Chlorophyll b
(g kg−1)

Carotenoid
(mg kg−1)

Photosynthesis
(µmol m−2s−1)

Normal

No
inoculation

1.83 cd 6431d 6372d 1.76d 24

Inoculation
with L.
fusiformis

1.97c 6781c 7844bc 1.87c 27

Inoculation
with L.
sphaericus

2.12ab 7646ab 8192b 2.01ab 27

Inoculation
with L.
fusiformis +
L. sphaericus

2.42a 7813a 8613a 2.22a 29

Stressed

No
inoculation

1.22d 2124 cd 3243d 0.92 cd 18

Inoculation
with L.
fusiformis

1.34c 2243c 3462bc 1.04c 20

Inoculation
with L.
sphaericus

1.39ab 2342ab 3581ab 1.13b 21

Inoculation
with L.
fusiformis +
L. sphaericus

1.42a 2397a 3525a 1.26a 23

For each Parameter, values in columns followed by the same letter are not significantly different at
(P ≤ 0.05)
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damage of cell and organelles including chloroplast, having deleterious effect chloro-
phyll content, electron transport in membrane, thylakoid structure, photosynthetic
enzyme activities and stomatal closure. The cold stress that limits the stomatal
conductance resulted in reduced rate of photosynthesis for sugar production. The
effect of psychrotrophic bacteria on stomatal conductance, photosynthetic rate, and
sugar accumulation has been analyzed by an open-system portable photosynthesis
meter (Li-Cor 6400) in the maize plant under cold stress. The result showed that
all the photosynthesis-related parameters like stomatal conductance, photosynthetic
rate, and sugar accumulation in maize are adversely affected by cold irrespective
of psychrotrophic bacteria inoculation as shown in (Table 10.3). The observation
showed that stomatal conductance, rate of photosynthesis, and sugar accumulation
are significantly higher inmaize plants inoculatedwith psychrotrophic bacteria under
normal condition, but under cold stress also it has positive effect. Cold stress has
multiplemetabolic and physiological effects and all these combined effect on reduced
photosynthetic efficiencies of plant under cold stress and this reduction in photosyn-
thetic capacity generally accompanied with augmented accumulation of sugar (Jha
2019f),which act as osmoprotectant to provide protection to plant against low temper-
ature (Slama et al. 2015) and help in maintaining the fluidity of membrane require
to increase the unsaturated fatty acids content for proper function of chloroplast.

10.3.3 Effect of Psychrotrophic Bacteria on Membrane
Permeability–Electrolyte Leakage
and Malondialdehyde Content

Plant cell membrane is one of the most dynamic structures and is the main targets of
environmental stresses like cold stress, having numerous biophysical and biochem-
ical activities. Cold stress generally results in changes in membrane fluidity, decrease
in enzymatic activity, alteration of metabolic processes as well as reduction of
photosynthetic capacity. The major adverse effect of cold stress is damage of
plasma membrane of the plant cell, which further gets argument due to cold stress-
induced dehydration. The lipids and protein are the two major component of plasma
membrane, having two types of lipid, i.e., unsaturated and saturated fatty acids. And
there is direct relation between concentration of concentration of unsaturated and
saturated fatty acids and temperature. Higher concentration of unsaturated fatty acids
provides membrane fluidity, whereas higher concentration of saturated fatty acids is
responsible for membrane rigidity. Cold stress also causes changes in the lipid and
fatty acid composition of higher-plant membranes (Barrero-Sicilia et al. 2017). Such
alteration in the fatty acid composition results in enhanced proportion of unsaturated
fatty acids like linolenic acid/galactolipids under cold stress. For low-temperature
acclimation accumulation of high concentration of unsaturated fatty acid like phos-
phatidilglycerol, protect the major membrane phase transition and also reduced the



276 Y. Jha et al.

phase transition temperature of the membrane lipid content, ultimately enhance the
membrane stability index under cold stress.

Such alterations in the fatty acid composition also alter the permeability and
integrity of themembrane, aswell as cell compartment,which affect the rates of solute
and electrolyte leakage. The intracellular electrolyte leakage rate act as an indicator
for the cold stress-induced cell membrane damage. Leakage points domain repre-
senting alters lipid configurations due to cold-induced changes in cellmembrane. The
effect of psychrotrophic bacteria on membrane stability index, electrolyte leakage,
and malondialdehyde (MDA) accumulation in maize leaf has been analyzed under
cold stress. The thiobarbituric acid is the end product of lipid peroxidation reac-
tion that has been used to determine the malondialdehyde (MDA). Cold-induced
changes in cell membrane are indicated by the extent of cell membrane lipid perox-
idation in plant cell membrane as malondialdehyde (MDA). Membrane stability
index (MSI) has been estimated by using fresh leaves (0.1 g) in two sets of 10 cm3

of double-distilled water. The electrical conductivity has been recorded for both the
sets, subjected to 40 °C for 30 min (C1) and at 100 °C for 10 min (C2) and are
considered by formula

(MSI) = [1 − (C1/C2)] × 100

Plant response to stress is accompanied by electrolyte leakage, which is directly
related to K+ efflux from the stressed cell. The electrolytic K+ efflux is mediated
by plasma membrane cation conductance and will result in irreversible loss of K+

ion from the plant roots under influence of stress response. Cold stress remark-
ably increases the MDA content and decreases membrane stability index in maize,
but inoculation with psychrotrophic bacteria decreased the lipid peroxidation and
increases the membrane stability index in maize under cold stress as a decrease
in MDA content has been observed (Figs. 10.1 and 10.2). Cell membrane is the
first component of plant cell that gets exposed and damaged by cold stress and
peroxidation of polyunsaturated fatty acids which takes place resulted in malon-
dialdehyde (MDA) production in the plant cell. So malondialdehyde (MDA) can
serve as an important indicator of damage of cell membrane and deterioration of
cellular metabolism. The entire physiological and biochemical processes including
cell membrane function of the plant get affected due to coexistence of osmotic and
cold stress. The altered cell permeability that causes leakage of ions out of the
cell indicate massive damage in cell membrane and has been used as an important
parameter to analyze the stress tolerance ability of the plant (Jha 2018b).
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Fig. 10.1 Effect of psychrotrophic bacteria on membrane stability index maize under cold stress
(n = 5)

Fig. 10.2 Effect of psychrotrophic bacteria on lipid peroxidation in maize under cold stress (n =
5)
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10.3.4 Effect of Psychrotrophic Bacteria on Phytohormones
Modulation Under Cold Stress

Every living organism including plant has ability to sense the external and internal
stimuli and respond accordingly for its proper growth and development (Wolters and
Jurgens 2009). Different group of chemical signal molecules produced in very low
concentration by the plant to adjudicate the plant responses toward such stimuli is
phytohormones, which play a major role in inducing plant acclimatization according
to surrounding environments by allocation of nutrient and source/sink transitions
to maintain growth its development. However, the phytohormones that are one of
the most important endogenous substances have ability to regulate the biochemical,
physiological as well as molecular activity of the plant in response to stress. Phyto-
hormones are considered as a critical regulator bio-molecule for the survival of plant
under changing environment. Phytohormones like gibberellins, cytokinins, auxin,
abscisic acid, jasmonic acid, and ethylene have key function in the elastic growth
and development (Yadav 2021).

The psychrotrophicmicrobes growing optimally atwarmer temperatures that have
also ability to grow and remain functional at extreme low temperature has its own
significant role for agroecosystems at high-altitude. At high-altitude, there are cold
conditions having transitional in nature. The plant’s root growing in any environment
mostly remains crowded by variety of microbes for acquiring nutrient. The associ-
ation of such microbes promotes the growth of host plant by multiple mechanisms
like siderophore production, induction of systemic resistance toward plant pathogen
(Jha 2019d), as well as reduced production of ethylene. The psychrotrophic bacteria
having ACC demaniase activity facilitate the deamination of the precursor molecule
for ethylene production as well as able to produce many other important stimula-
tory phytohormones in the plant root cell. The phytohormone auxin and cytokinin
produced by psychrotrophic bacteria induce denser root hair, which enhance the
uptake of mineral nutrients and water from soil.

The pytohormone produced by the plant has a critical role in the growth and devel-
opment of plant which is of different types having different functions as well as work
in different concentrations at different sites (Egamberdieva et al. 2017). The pyto-
hormone like indole acetic acid, gibberellins, cytokinins, indole acetic acid, abscisic
acid, and ethylene are accountable for the synchronized corresponding develop-
ment of plant as per its genetical potential. The pytohormone produced by the plant,
helps plant to respond to environmental stimuli by modifying the physiological and
metabolic activities for the survival of the plant in response to changes in the envi-
ronment. Plant hormone like auxin is responsible for root initiation and delayed plant
senescence (Jha 2020). Bioactive gibberelline involved stem elongation, flowering,
leaf expansion, and plant growth. Cytokinins are basically involved in cell enlarge-
ment, cell division and also in nutrient mobilization, chloroplast biogenesis, leaf
senescence and regulate stomatal closure under cold stress.

In this study, both the psychrotrophic bacteria have the ability for the auxin and
gibberellic acid production in tryptophan containing medium and an increase has
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been recorded with time (Table 10.4). The plant inoculated with phytohormone
producing plant-associated psychrotrophic bacteria can help plant to survive and
deal with water scarcity as well as to grow at its full genetic potential in cold stress,
by stimulating modification of root architecture for enhanced uptake of mineral
nutrient and water. Plant stress hormone like abscisic acid can influence the different
processes such as seed dormancy, germination rate, senescence in leaves, and cell
division. Critical signaling is carried out by jasmonic acid (JA) for different devel-
opmental processes and defense responses, while salicylic acid (SA) is involved in
broad range of abiotic stresses. The plant hormone ethylene and Abscisic acid have
directly and indirectly involved in a wide range of abiotic stress including cold stress
(Jha and Subramanian 2020).

The production of ethylene starts with precursor 1-aminocyclopropane-1-
carboxylate (ACC) and the plant hormone ethylene endogenously regulates plant
homoeostasis under stress, having detrimental effect on plant growth (Rana et al.
2020). The immediate precursor of ethylene that has been degraded by the enzyme
ACCdeaminase resulted in reduced level of ethylene in plant. Several psychrotrophic
bacteria have the ability for the production of ACC deaminase and are responsible for
the degradation and sequestion of plant ACC, to acquire nitrogen and energy for its

Table 10.4 Effect of psychrotrophic bacteria on Auxin, Gibberelline, ACC deaminase, proline and
glycine-betaine content of maize under cold stress (n = 5)

Treatment Auxin (µg
ml−1)

Gibberelline
(µg ml−1)

ACC
deaminase
(µg ml−1)

Proline (µg
mg−1 FW)

Glycine-betaine
(µ mol g−1 FW)

Normal

No inoculation 0.562cd 0.862cd 0.534d 0.23d 0.876cd

Inoculation with
L. fusiformis

0.624c 0.915ab 0.574cd 0.28c 0.927abc

Inoculation with
L. sphaericus

0.647ab 0.978bc 0.634ab 0.33ab 0.989ab

Inoculation with
L. fusiformis +
L. sphaericus

0.704a 1.013a 0.686a 0.37a 1.213a

Stressed

No inoculation 0. 322d 0.624cd 0.762a 0.27c 0.936d

Inoculation with
L. fusiformis

0.447c 0.656c 0.794ab 0.31ab 0.969bc

Inoculation with
L. sphaericus

0.463b 0.693b 0.762abc 0.36a 0.983b

Inoculation with
L. fusiformis +
L. sphaericus

0.496a 0.711a 0.744d 0.36a 1.017a

For each Parameter, values in columns followed by the same letter are not significantly different at
(P ≤ 0.05)
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growth and establishment. The psychrotrophic bacteria reduce the harmful effect of
ethylene by degrading the immediate precursor of ethylene and promote plant growth
(Jha et al. 2014). Abscisic acid is other important stress phytohormone,which consid-
erably increases in plant under cold stress to develop stress tolerance and to adapt
in such stressful condition (Ng et al. 2014; Tiwari et al. 2020). By increasing water
influx into roots and decreasing leaves transpiration, abscisic acid is able to alter the
turgor pressure. The phytohormones like gibberellic acid, auxin, ACC deaminase,
and abscisic acid have been produced by both the isolate in this study. And under
continuous stress, the production of abscisic acid and ACC deaminase activity also
increases both the isolates (Table 10.4).

10.3.5 Effect of Psychrotrophic Bacteria on Osmotic Stress
Management of Plants Under Cold Stress

All stress directly or indirectly reduced the crop yield by 50–80%, depending on
the type of crop and stress period. Both biotic and abiotic factors are responsible
for different types of stress on the agricultural crops (Subrahmanyam et al. 2020).
One of the most important abiotic factors is cold or low temperature and the average
minimum temperature over 64% of the total land area on Earth is less than 0 °C
(Rihan et al. 2017). SO cold stress adversely affects plant growth and development
and decreases crop yields worldwide. Plant growing in such condition may develop a
sequence of comprehensive metabolic and physiological events to withstand in cold
stress. Plant induce production of protective substances or proteins, such as cold-
resistance proteins, soluble sugars, proline and other osmoprotectants to regulate
osmotic potential, the stability of cell membranes, turgor pressure, reactive oxygen
species (ROS) scavenging and ice crystal formation.

The accumulation of low molecular weight organic compounds to maintain the
osmotic pressure of the plant under osmotic stresses is osmoprotectants. It has no net
charge at physiological pH, highly soluble and nontoxic even at high concentrations,
responsible for maintaining driving gradient for turgor pressure and water uptake.
Osmoprotectants not only help in osmotic adjustment, but also having chaperone-like
activity, helps in metabolic detoxification and scavenging of reactive oxygen species
(ROS) (Jha 2019e). It also plays a major role in stabilizing membranes and proteins
during oxidative stress. Osmoprotectants are chemically divided into three groups—
quaternary ammonium compounds, amino acids, polyols, and sugars. Chemically
osmoprotectants are classified into three category quaternary ammonium compounds
(e.g., glycine-betaine), polyols or sugars (mannitol, trehalose, fructans, d-ononito)
and amino acids (e.g., Proline). However, in plant accumulation of mannitol, proline
and glycine-betaine in cytosol and chloroplast has been commonly reported under
osmotic stress, but with increase in stress it has also been reported in the few other
organelles. Proline as an organic osmolyte remains widely distributed in plants and
act as the most common protection material. Free Proline stabilize cellular structures
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and maintain osmotic balance in plants under cold stress. For osmotic adjustment in
plant under cold stress, proline and betaine are well known compatible solutes that
helps in osmotic adjustment for the proper metabolic activity. But some important
crops are not able to accumulate osmoprotectants like proline and glycine-betaine
due to deficit in the enzymes involved in its biosynthesis cannot withstand such stress
(Kour et al. 2020a).

The effect of psychrotrophic bacteria on accumulation of osmoprotectant like
glycine-betaine and proline has been studied. The result of the study showed that
important crop like maize develop the potential for osmoprotectants like glycine-
betaine and proline after getting inoculated with isolated psychrotrophic bacteria
(Table 10.4), to promote the survival of plant under stress (Jha 2017a, b). An increase
in proline and glycine-betaine content has been reported in the maize plant and the
concentration of non-conjugated like glycine-betaine and proline has been remark-
ably high in the seedling under cold stress. Psychrotrophic bacteria play an essential
role to save plant under cold stress by regulating the metabolism to develop toler-
ance against such stress. With continuous increase in world population and limited
agricultural land, its need of the hour to make use of frost covers soil for cultivation
by using novel stain of such psychrotrophic bacteria, which play an essential role in
improving crop growth under osmotic stress.

10.3.6 Effect of Psychrotrophic Bacteria on ROS Scavenging
Activity in Plants Under Cold Stress

Plant growing under cold stress needs improved production of heat for its survival,
which is fulfilled by enhanced rate of respiration. Increased respiration directly
increases oxygen consumption and generation of a group of free radicals and reac-
tive ions derived from molecular oxygen is known as ROS. Generation of ROS
causes alteration of the redox state, cellular oxidative damage and change several
metabolic activity by affecting activity of metabolic enzymes (Jha et al. 2014). About
one percent of oxygen consumed by the plant is used for the production of ROS
in different subcellular loci such as chloroplasts, peroxisomes, and mitochondria.
ROS have dual role in plants, i.e., beneficial and harmful according to its concen-
tration. ROS play the role as second messenger for intracellular signaling cascades
for regular response of the plant, when generated at low/moderate amount, whereas
at concentration it has deleterious effect on surrounding bio-molecules. ROS have
multifunctional roles in cell under normal condition, therefore the threshold level of
ROS needs to be maintained in the regular cell activity, which needs a tight equilib-
rium between ROS production and scavenging. And detoxification of excess ROS in
plant has been carried out with the help of efficient antioxidative system including
enzymic and nonenzymic antioxidants. The enzymatic antioxidants comprise cata-
lase, peroxidase, superoxide dismutase, and nonenzymic antioxidants which include
ascorbate, glutathione, carotenoids, tocopherols, and phenolics within the plant cell.
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ROS have been generated in both stressed and unstressed cells at diverse locations
in cell organelles. The expected leakage of electrons from the electron transport chain
of mitochondria, chloroplasts and plasma membranes results in generation of ROS
and ROS is also produced as a byproduct of different metabolic activities that take
place in different cellular compartments. To avoid oxidative stress production and
removal of ROS need to be strictly regulated and when its level exceeds the threshold
level that resulted in oxidative stress in that cell. Reactive oxygen when generated in
excess amount will randomly react with important bio-molecule of the cell.

The ester linkage between the fatty acid and glycerol and unsaturated (double)
bond between two carbon atoms of fatty acid is potential target of ROS attack on the
lipid molecules. The plasma membrane of cell contains polyunsaturated fatty acids
in its phospholipids that are the common site for attack by ROS. The attack of ROS
on proteins may cause modification of proteins directly and indirectly. Direct modifi-
cation involves modulation of a protein’s activity through carbonylation, disulphide
bond formation, glutathionylation, and nitrosylation. Indirect modification involves
conjugation with breakdown products of peroxidation of fatty acid. The most impor-
tant bio-molecule DNA is also a potential target for ROS-induced damage in cell
and DNA encoded information for the proper functioning of cell. Any alteration in
DNA resulted in corresponding change in the information, which seriously affects
the cell function and ultimately the organism. Excessive ROS also react with lipid
and protein component of cell and cell membrane and affect the inherent properties
of cell membrane like protein cross-linking, ion transport, membrane fluidity as well
as loss of enzyme activity, inhibition of protein synthesis, which finally resulted in
cell death of the stressed plant exposed toward the cold stress.

There is a need of an hour to determining the roles of antioxidant enzymes
on the tolerance of cold stress is by determining the response of the antioxidant
genes for its up or down-regulation in plant under cold stress. Such response may
be due to differential induction of gene responsible for production of enzymes or
due to change in the chromosome locus responsible for regulated activity of antiox-
idant genes or due to physical distinction among the genes of antioxidant enzymes
or due to differential response of the multigene of antioxidant enzymes family or
due to nucleotide difference ORF in the genes of antioxidant enzymes under cold
stress. The function of antioxidant enzymes in cold acclimation biochemically is
due to contribution of signal transduction pathway. The excessive ROS generated
under cold stress are effectively neutralized by antioxidant enzymes to alleviate
cold stress-induced injury in plant. There are several reports on the over-expressing
a variety of antioxidant enzymes like catalase, peroxidase, superoxide dismutase
which increased the stress tolerance ability of the plant against the abiotic stress and
protect various important cell organelle like peroxisomes, chloroplasts, endoplasmic
reticulum, plasma membranes and plasma membranes for ROS activity at such site
(Jha and Subramanian 2015).
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10.4 Conclusion

Cold stress-induced damage of the agriculture crop is not a problem of a particular
geographic location, but also persists significantly in temperate regions, which results
in remarkable economical loss in throughout the regions. To develop technique for
better tolerance against the cold stress in agricultural crop is need of hour to meet
the increasing food demand in the existing situation of continuous environmental
alteration for the increasing world population. The microbes are the most versatile
organismandable to grow in all environmental condition in associationwith organism
growing in that environment. So isolation of indigenous psychrotrophic bacteria is
associated with plant having plant growth promotion ability from the stress-affected
region, to be used as biological option for sustainable crop production under cold
stress is an eco-friendly tool. The vast microbial diversity which is highly promising
option for use of competent and favorable soil microbes in the agriculture field is the
latest possibility for sustainable organic production, and cold-adapted microbes are
concerned a special attention among the agricultural scientist due to their enhanced
ability for adaptation toward the low temperature with high plant growth promotion
potential.
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Chapter 11
Strategies for Abiotic Stress Management
in Plants Through Soil Rhizobacteria

Vinay Kumar, Balram Sahu, Deep Chandra Suyal, P. Karthika,
Manali Singh, Dipti Singh, Saurabh Kumar, Ajar Nath Yadav,
and Ravindra Soni

Abstract Soil is among the most challenging ecosystems for microbiologists in
terms of microbial diversity and community size. Prokaryotes are the most abundant
organisms in the soil and constitute the largest component of the soil biomass. In
their native ecosystem, microorganisms live under different kinds of interactions
that decide their survival and functioning. Both positive and negative interactions
may operate under natural conditions. While negative interactions are inhibitory
for microbial growth and development; positive ones are among the beneficial and
sometimes obligatory for the growth of some other microorganisms. Therefore, these
soilmicrobial communitiesmay affect plant growth anddevelopment in severalways.
They may have a direct or indirect role in plant growth and development through
the synthesis of different chemical regulators in the rhizosphere’s proximity. Under
direct mechanisms, they help the plants in macro/micronutrient uptake as well as
by modulating plant hormone levels. Indirectly microbes may boost plant health by
declining the detrimental effects of the biotic as well as abiotic stress. Among them,
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understanding the microbe-mediated abiotic stress tolerance mechanisms in plants is
one of the major challenges in the field of agricultural research. Abiotic stresses like
chilling injury, drought, high temperature, heavy metal toxicity, and salinity pose a
major constraint to plant growth and crop production under natural field conditions.
Because of the global food demand and limited resources, it becomes essential to
generate deeper insights into the stress-alleviating mechanisms and the approaches
employed by the plants, so that they can be explored for sustainable agricultural
plants.

Keywords Abiotic Stress · Agriculture ·Microbes · Omics · Plant

11.1 Introduction

Plant-microbes interactions have been realized of greatest importance by the natural
selection of microbial populations most suited to its growth. Since plants of agricul-
tural importance are required to be adopted in diverse agroclimatic zones for sustain-
able harvest, therefore, it becomes necessary to characterize new bio-inoculantsmore
precisely adopting new and advanced molecular biology and other specified tools
(Verma et al. 2017; Yadav 2021). Soil rhizosphere forms the connecting link between
plant and microbe interaction. These interactions may be harmful (as in the case of
plant-pathogen interaction) or can be beneficial (as in the case of mycorrhiza-plant
root interaction) (Suyal et al. 2015a; Tomer et al. 2017; Dash et al. 2019). It is the
ecologically most diverse niche in soil profile inhabiting numerous microorganisms
(bacteria, fungi, algae, protozoa, nematodes, viruses, and archaea), which signifi-
cantly influences plant growth (Yadav et al. 2021b). Among all these microorgan-
isms, bacteria are the most abundant microbes found in the rhizosphere and also they
have a greater influence on different plant physiological processes, which is termed
as beneficial (Tomer et al. 2016; Goel et al. 2017a; Jeyakumar et al. 2020; Kour et al.
2019). It has been reported that the bacterial population is 10–1000 times higher in the
rhizosphere as compared to bulk soil because plant root secretes many metabolites
(in form of organic acids, sugars, amino acids, vitamins, sterols, phenolics, and plant
growth regulators), which serve as nutrients for bacterial growth (Goel et al. 2017b,
2018a; Kumar et al. 2019; Yadav et al. 2020d). Due to the rich availability of nutri-
ents, a healthy competition arises among different bacterial genera for colonizing the
root rhizosphere. Not only they help in the uptake of several nutrients from the soil
but they also help in plant growth promotion activities by producing several chem-
icals like hormones, siderophores, antibiotics, bacteriocins, and enzymes. Besides
acting as biocontrol agents, these bacteria are also helpful in the alleviation of abiotic
stresses (Giri et al. 2015; Joshi et al. 2017; Goel et al. 2018b; Kour et al. 2020c, d).
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11.2 Abiotic Stresses in the Plants

In the recent past, several diversified and promising “omics” technologies have
emerged that have proved persuasive for elucidating how the plants modify them-
selves at the molecular level for facing the abiotic stresses. For example, drought is
known to impose oxidative stress on the plants that arise from the reactive oxygen
species (ROS) formation due to inadequate CO2. It thus disrupts the photosynthetic
machinery of the plants (Kumar et al. 2017; Meena et al. 2017; Kour et al. 2020b;
Yadav and Yadav 2018).

11.3 Mitigation of Abiotic Stresses

The plants involve several genes and enzymes to overcome abiotic stress (Tiwari
et al. 2021). Conventional breeding approaches are frequently used to transfer the
stress-associated genes among the plants. However, alternatively, microorganisms
can also be used to improve stress tolerance (Dikilitas et al. 2021; Hesham et al.
2021; Yadav et al. 2021a). Several plant growth-promoting rhizobacteria (PGPR)
have been studied for their role to mitigate the abiotic stress. The term plant growth-
promoting rhizobacteria (PGPR) defines soil bacteria that colonize the rhizospheric
region of plants, living in, on, or near plant tissues that vitalize the growth of the plant
by various mechanisms. Although, a plant has rich micro-biodiversity associated
with it, supplementing the rhizosphere of crop plants with plant growth-promoting
rhizobacteria has shown remarkable improvement in crop health and subsequently
its productivity. Since that time, there has been tremendous development in the field
of PGPR and numerous microorganisms have been identified that have significant
positive effects on various crops (Kumar et al. 2014, 2018; Rajwar et al. 2018; Joshi
et al. 2019; Rai et al. 2020).

PGPR affects the health of the plants in two ways. First is the direct association
of PGPR with its beneficial effects on the host plant and second is the indirect way
of antagonizing plant pathogens. Direct stimulation includes several mechanisms
such as the production of 1-aminocyclopropane-1-carboxylate (ACC)-deaminase to
reduce ethylene levels in the roots of developing plants; production of regulators
which directly enhance the plant growth like auxins, gibberellins, cytokines, and
various volatiles; biological nitrogen fixation (symbiotic and non-symbiotic); solu-
bilization of insoluble mineral-like phosphorus and other nutrients (Yadav 2017)
(Singh et al. 2020). Rhizospheric microorganisms facilitate the uptake of specific
trace elements such as iron by secreting siderophores. Furthermore, several microor-
ganisms are known to alleviate abiotic stress, viz. cold stress in plants (Suyal
et al. 2014a, b; Rawat et al. 2019; Yadav et al. 2020b). Biocontrol is the indirect
stimulation, which includes antagonistic and inducing plant systemic responses to
phytopathogenic microorganisms and interfering in the bacterial Quorum Sensing
(QS) systems, etc. (Dash et al. 2019). Trichoderma has emerged as a very successful
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biocontrol agent, which is commercially available and is in wide use (Sharma et al.
2019).

Microorganisms employseveral strategies tomitigate abiotic stresses (Meena et al.
2017). Among them, stimulation of root growth through the production of indole
acetic acid (IAA) and/or nitric oxide under drought, nutrient deficiency, and salinity;
productionofACCdeaminase to reduceplant’s ethylene level under stress conditions,
and modification in the cell wall and membrane during stress are the most common
(Yadav et al. 2020c). A list of abiotic stresses and the microbe-mediated tolerance
mechanism is mentioned in Table 11.1.

The beneficial microbes including PGPR and microbial endophytes have been
isolated and characterized using culture-based and culture-independent metage-
nomics techniques. Unculturable microbes for sustainable agriculture have been
reviewed in the recent past (Goel et al. 2017b, 2018a). In addition to the rhizosphere
microbiome, root and root compartments (Rhizoplane and Endosphere) associated
microbes reported having an important role in plant growth development and toler-
ance to various biotic and abiotic stresses (Goel et al. 2017a, 2018b; Rana et al. 2020;
Subrahmanyam et al. 2020).

11.4 Salinity, Alkali Stress, and Acidic Stress

Soil salinity and alkalinity often exist meanwhile because of the complexity of soil
property. Salinity stress is an important yield-limiting factor that poses a significant
threat to agriculture worldwide. It involves a huge accumulation of salts near the
root zone/surroundings, which causes an osmotic effect followed by specific toxi-
city (Visser et al. 2005; Sharma et al. 2021; Yadav et al. 2020a). It is important to
understand the genetic variations that exist in a plant in response to salinity stress
and their linked traits are crucial for improving the adaptation of plants to the saline
environment (Pareek et al. 2020). Studies have been conducted to identify the key
proteins, enzymes, TFs involved in the stress perception and adaptation and found
involvement of roles of receptor-like kinases, membrane-bound histidine kinases,
calcium channels, aquaporins, and mechano-sensitive phospholipase Cas osmosen-
sors in stress perception (Nongpiur et al. 2020). Microbial communities associated
with plants have successfully been applied for enhancing crop production and stress
tolerance in the plants (Yang et al. 2009; Yadav and Saxena 2018).

The available report showed the inoculation of rhizospheric and endophytic
bacteria can modulate the effect of salt stress. Inoculated Azospirillum in maize
showed modulation of salt stress by increasing the higher K+ /Na+ ions ratio
(Hamidia et al. 2004). Similarly, inoculation of Bacillus sp. TW4 to pepper led
to aid from osmotic stress (Sziderics et al. 2007). Arabidopsis thaliana inoculated
with Micrococcus yunnanensis and Paenibacillus yonginensis showed more abiotic
stress tolerance than the uninoculated plants (Sukweenadhi et al. 2015). Recently, the
saline-alkaline stress tolerance capability of the plants was found to enhance signifi-
cantly byBacillus licheniformis and other PGPR. It was concluded that certain signal
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transduction pathways of the plants helped them to adapt to adverse conditions (Zhou
et al. 2017).

11.5 Drought Stress

Drought causes accumulation of ROS, which leads to oxidative damage in plants.
Furthermore, it may reduce the crop yield and causes monetary losses to the farmers.
Rhizospheric microorganisms have shown a great potential to reduce drought stress
in plants. As plant health is associated with the diversity and community structure
of the phytobiome (Berg et al. 2017), the strong root microbiome under drought
stress will have significant consequences on plant health (Kour and Yadav 2020).
It has been observed that Gram-positive to Gram-negative bacteria ratio is likely to
increase during drought stress (Chodak et al. 2015). Further, Fuchslueger et al. (2014)
have analyzed the effect of drought stress on soil microorganisms and plants. Inoc-
ulated plants have shown enhanced growth and development. The term “microbe-
mediated Induced Systemic Tolerance (MIST)” can be used to reveal the chemical
and physical changes in the plants which have been induced by the microorganisms
under drought tolerance. Further, the production of phytohormones, viz. abscisic acid
(ABA),ACCdeaminase, cytokinins, and indole-3-acetic acid (IAA) also contribute to
stress tolerance. 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing
microorganisms can regulate plant ethylene levels and thus offer drought stress
tolerance to the plants (Raghuwanshi and Prasad 2018). This enzyme hydrolyzes
the 1-aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of ethylene
in the plants (Raghuwanshi and Prasad 2018; Kour et al. 2018). Furthermore, this
activity can ameliorate the harmful effects of ROS(Ojuederie et al. 2019). Achro-
mobacter piechaudii was found to produce ACC deaminase to alleviate the effect
of oxidative stress on tomato and pepper crops (Mayak et al. 2004). Similarly, inoc-
ulation of Bacillus spp. and Enterobacter spp. significantly enhanced the drought
stress tolerance by reducing the accumulation of ACC in Mucuna plants (Saleem
et al. 2018).

Another term “RIDER” (rhizobacteria-induced drought endurance and resilience)
can also be used to represent the morphological, biochemical, physiological, and
molecular adaptations to produce the stress alleviation associated antioxidants,
enzymes, and the proteins to survive under stress conditions (Gupta et al. 2019; Kour
et al. 2020a). Microbes-mediated alleviation of drought stress have been reported in
several crops. Vurukonda et al. (2016) reported that the PGPR inoculated crops under
stressed conditions have produced higher biomass, proline, free amino acid, and
sugars. Similarly, in soybean crops, Pseudomonas putida inoculation has enhanced
plant growth and development by alleviating drought stress (Kang et al. 2014). Bacte-
rial mediated adaptation of plants to drought tolerance has been studied at the molec-
ular level and by overexpressing bacterial polysaccharide synthesis (EPS) gene of
Rhizobium sps in sunflower (Alami et al. 2000) and trehalose-6-phosphate synthase in
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rhizobia in common bean (Suárez et al. 2008) showed enhanced tolerance to drought
stress.

11.6 Cold Stress

Cold is a major class of physical stress that influences most of the parameters of
a living cell including enzyme kinetics, macromolecular interactions, membrane
fluidity, and solute diffusion rates.

11.6.1 Mechanisms of Bacterial Cold Adaptations

Adaptations in bacteria refer to the evolution of the molecular mechanisms to carry
out the vital processes of life under the changing physiochemical conditions as conse-
quences of environmental stress. Microorganisms growing in extreme habitats are
equipped with long-term adaptations and are so adapted to the environment that
those cannot grow without a stressed environment. Bacteria also have to evolve for
the other additional stresses which are associated with low temperature.

Cold stress affects the stability of the secondary structure of nucleic acid hence
affecting the vital process of transcription, translation, and RNA degradation (Suyal
et al. 2018, 2019b). During this cold stress, bacteria modify their cellular physiology
andbiochemistry. Low temperature triggers the cold shock response inwhich bacteria
adapt to the cold stress (Kumar et al. 2020; Suyal et al. 2021; Yadav et al. 2017).
During the initial cold response, growth arrest is observed for 3–6 h. This phase
of growth arrest is termed as the acclimation phase, where only the cold-inducible
proteins (CIPs) are expressed and the rest of the protein expression is downregulated.
After the acclimation phase, the cell down-regulates the expression of cold-inducible
proteins, resumes the expression of the other proteins and starts dividing normally.

CIPs prevent secondary structure formation and facilitate the degradation of struc-
tural RNA. Among the CIPs, some proteins from the small acidic protein family of
7.4 kDa are most strongly induced under cold stress and are termed as cold shock
proteins (CSPs). CSPs bind to only single-stranded RNA or DNA and not to the
double-stranded conformation. All CSPs have nucleic acid binding domains termed
as cold shock domain (CSD), which facilitates their binding to the nucleic acid
(Phadtare and Inouye 2008). Binding of CSPs to RNAmaintains the single-stranded
conformations thus protecting the cell from cold-induced secondary structure forma-
tion. In mesophilic organisms, CSPs are transiently induced during cold shock and
soon after the acclimatization, their expression is downregulated (Hebraud and Potier
1999). However, in psychrophiles, they are constitutively expressed and act as cold
adaptive proteins (CAPs) (D’Amico et al. 2006).

Induction of the CSP expression in bacteria under cold stress is complex and
does not have a specific sigma factor as present in other types of stress adaptations.
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Immediate expression of theCIPs due to cold response is based on the selective ability
of CIPs mRNA to change the conformation under low temperature so that they are
accessible to translational machinery. The most commonly studied CSP is the Csp
A, which is the major protein formed under cold acclimatization. It is reported that
about 13% of the total cell proteins under cold stress is Csp A (Barria et al. 2013). At
a temperature of more than 15 °C cspA, mRNA has the conformation which is not
translated and easily recognized by the cellular RNAdegradingmachinery. However,
at 15 °C and lower temperature, cspA 5’ untranslated region (5’UTR) undergoes the
structural rearrangements and escapes the cellular RNA degradation mechanism and
gains accessibility to the translation by exposing the translation initiation region
(Barria et al. 2013).

Moreover, all psychrophilic microorganisms do not have CSPs. Antarctic
psychrophilic archaea, Methanococcoides burtonii, have small RNA chaperones
proteins that were found to be upregulated under cold stress (Cavicchioli et al. 2000).
These RNA chaperones function similarly to the CSPs and have nucleic acid binding
TRAM domain instead of the CSD domain (Williams et al. 2009). Thus, these RNA
chaperones are referred to as Ctr (cold-responsive TRAM domain) proteins which
are major cold adaptive proteins in psychrophilic archaea (Zhang et al. 2017).

Further production of antifreeze proteins (AFPs) and accumulation of compounds
that inhibit ice-crystallization are other means of cold adaptation in bacteria (Gilbert
et al. 2004).AFPs are a diverse groupof proteinswith the ability tomodify ice-crystals
via Van der Waals interactions and/or hydrogen bonds. During cold acclimatization,
many psychrophiles are known to accumulate antifreeze proteins. Moreover, the
bacterium survived freezing temperatures ranging from−20 °C to−50 °C and could
secrete an antifreeze protein into the growth medium at 5 °C.

11.6.2 Membrane Adaptation in Psychrophiles

Membrane permeability and fluidity both are reported to decrease at low temper-
atures. In response to the low-temperature elastic liquid, cell membrane turns into
a rigid gel-phased state which influences the membrane transport and several other
functions negatively (Phadtare 2004). Dysregulations of themembrane proteins were
reported soon after the exposure to the low temperature, suggesting the role of
membrane proteins in sensing the cold stress (Shivaji and Prakash 2010). Further, low
temperature causes the phase separation of the phospholipids in the cell membrane
which increases the membrane permeability and decreases membrane fluidity. The
lipids of psychrophilic bacteria contain polyunsaturated fatty acids or other long-
chain hydrocarbons with multiple double bonds. These fatty acids remain more
flexible at low temperature than saturated or monounsaturated fatty acids (Allen
et al. 2009). Bacteria increases the unsaturation of lipids in their cell membrane
by the biosynthesis of unsaturated fatty acids or by decreasing the pre-existing
saturated fatty acids. Several-fold overexpression of the desaturase gene has been
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reported in Exiguobacterium sibiricum (Rodrigues et al. 2008). The high propor-
tion of unsaturated fatty acid has been documented previously in Colwellia, Mari-
nomonas, Moritella, Psychromonas, and Shewanella (Margesin and Miteva 2011).
Carty et al. (1999) observed the increase in unsaturated palmitoleate over laurate
under cold stress. In M. burtonii, desaturase is absent hence in this bacterium lipid
biosynthesis is altered under the cold stress resulting in fewer saturated isoprenoid
lipids.

11.6.3 Transcription and RNA Degradation/stabilization
Under Cold Stress

The majority of the CIPs are involved in the metabolism of RNA, which regulates
the stability of RNA and transcription process. Differential expression of the CIPs
under cold stress is due to the low-temperature-induced negative supercoiling of the
DNA. This induction is the result of the activity of histone-like HU protein (HupB)
and gyrase (GyrA). Exogenous expression of the DNA gyrase inhibitors showed the
decreased expression of the CIPs (Prakash et al. 2009). However, how HupB and
gyrase GyrA sense the low temperature is least explored. CSPs were also reported
in the maintenance of chromosome structure (Chaikam and Karlson 2010).

Low-temperature-induced RNA metabolism up-regulates the expression of
nucleic acid chaperones. CspA and CspE act as transcription anti-termination by
inhibiting the RNA hairpin formation thus preventing premature termination (Barria
et al. 2013). Similarly, NusA is reported to function as an anti-terminator under
cold stress (Li et al. 2013). Transcription factor RpoS, a stress-induced protein was
also reported to regulate the gene expression under cold temperatures (White et al.
2008). Small RNA-binding proteins (Rbps) are the other class of CIPs other than
CSPs, which help in cold adaptation and majorly found in cold-adapted cyanobac-
teria and rare in bacteria. Rbps have a single glycine-rich RNA-binding motif, which
is previously reported to regulate the transcription terminations. Osmotic stress and
cold stress both reduce the availability of free water thus Rbps are expressed in both
stresses.

Under cold stress, RNA degrading enzymes are upregulated in psychrophilic
bacteria. Previously, overexpression of RNases was reported in the psychrophilic
bacteria Psychrobacter arcticus and Methanococcoides burtonii were isolated from
the permafrost environment (Allen et al. 2009). This strategy conserves the biosyn-
thetic precursors and also functions as quality control for the degradations of
irreparably damaged RNA and proteins.

Several cold-induced proteins are molecular chaperones that are inevitable for the
stability ofmRNAunder low temperatures. CspA is amajor chaperone thatmaintains
the mRNA in linear form thus facilitating RNA degradation through ribonucleases.
However, Csp E works exactly the opposite of the CspA, thus protecting the RNA
from degradation (Van Assche et al. 2015). CspE has been reported to bind to the
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RNA and interfering with the degradation by PNPase and RNA internal cleavage
by RNase E. Previously, ATP-dependent DEAD-box RNA helicases (DeaD) were
reported to unwind the secondary structure of RNA formed under low temperature,
which then, in turn, is further degraded by the PNPase and RNase R exoribonuclease
(Bernstein et al. 2004). DEAD-box helicase (DeaD) of E. coli has been studied to be
incorporated in the degradosome complex under cold stress (Iost and Dreyfus 2006).
Under in vitro studies, DeaDwas reported to interact with the CspE. Thus both DeaD
and Csp E work together in association. Further, DeaD was also reported to have
helicase activity and shown to affect the ribosome maturation under cold stress. In
vivo deletion of the DeaD leads to the depletion of the 50S ribosomal subunit thus
affecting the ribosomal turnover.

Under cold stress, PNPase increases twofold in the cell and plays a crucial role
in cell survival. PNPase inhibits the expression of the CSPs soon after the cold
acclimatization phase. The high concentration of Csps was found even after the
acclimatization phase in the mutants lacking PNPase and DeaD helicase. These
findings suggested theCspmRNAdegradation functions of these proteins.Moreover,
RNase R exoribonuclease is the only ribonuclease of E. coli that can complement the
DeaD deletion phenotype. This is the only ribonuclease in E coliwithout the helicase
activity which can degrade the secondary structure of RNA. The cold shock domain
of the RNaseR assists in the unwinding of the secondary structure of the RNA. Thus
RNase R is important for the degradation of the secondary structure of RNA under
cold temperature.

11.6.4 Translational Regulations Under Cold Stress

Low temperature inhibits the translation of protein except for the cold-inducible
proteins. This block on translation is induced through the binding of Py protein to
the 30S subunit of ribosomes. Thus ribosomal units remain sequestered with the Py
proteins and the functional ribosomes capable of forming 70S initiation complex
decrease.

Further, temperature-induced secondary structure formation in the mRNA hides
the Shine Dalgarno sequence on the mRNA, thus negatively affecting the translation
process. However, under the cold shock response, IF3 stimulates the translation
of only cold shock mRNA with the help of IF1. IF3 preferentially stimulates cold
shock mRNA translation and IF1 enhances the effect of IF3 without influencing
translational specificity. Besides this, IF3 is also reported to have some role incorrect
protein folding. The evolution of this mechanism is the basic requirement for cold
adaptation.

Under cold stress stability of tRNA is one of the major factors determining the
rate of translation. Dihydrouridine is reported to enhance the flexibility and stability
of tRNA in some cold-adapted archaea and bacteria (Saunders et al. 2003). Further,
trigger factor (TF), assists in cotranslational protein folding, which is evident by the
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fact that E. coli cells overexpressing this protein are more resistant to cold stress than
the TF mutants (Castanie et al. 2014).

11.6.5 Protein Adaptation to the Cold

Proteins from psychrophilic microorganisms have higher activity in cold tempera-
tures compared to the mesophilic and thermophilic homologs (Siddiqui and Cavic-
chioli 2006). Psychrophilic organisms exhibit a wide range of adaptations (Yadav
et al. 2019). They contain cold-active enzymes that show greater amounts of α-
helix and lesser amounts of β-sheet secondary structure than mesophilic counterpart
because β-sheet secondary structures tend to bemore rigid thanα-helices. The greater
α-helix content of cold-active enzymes provides greater flexibility for catalyzing the
biochemical reactions at cold temperatures.

To retain the functional enzyme activity at low-temperature psychrophilic
enzymes have a specific amino acid composition, which leads to the different
secondary, tertiary, and quaternary structural properties (Saunders et al. 2003). Cold-
active enzymes containmore polar amino acids, lesser hydrophobic amino acid, lower
arginine/lysine ratio, weaker interdomain and intersubunit interactions, more and
longer loops, decreased secondary structure content, more glycine residues, fewer
prolines in loops, more prolines in α-helices, fewer and weaker metal-binding sites,
fewer disulfidebridges, fewer electrostatic interactions (H-bonds, salt bridges, cation-
pi interactions and aromatic-aromatic interactions than their mesophilic and ther-
mophilic counterparts. Proteins of psychrophilic archaea contain more noncharged
polar amino acids (especially Gln and Thr), lesser hydrophobic amino acids (particu-
larly Leu) and increased exposure to hydrophobic residues (Siddiqui and Cavicchioli
2006).

11.7 Heavy Metal Stress

Rhizoremediation is a process where degradation of hazardous pollutants occurs by
bacteria surrounding the rhizosphere plant roots (Kingsley et al. 1994). It is a natural
process but it can also be improved by cautiousmanipulation of the rhizospherewhich
can be accomplished by using suitable plant–microbe pairs (Mackova et al. 2006),
which in turn supplement to phytoremediation process (Kuiper et al. 2004; Kumar
et al. 2019). Rhizoremediatioin also represents an interactive consortium between
plant and rhizobacteria which comprises two important processes, i.e., phytostimu-
lation and photodegradation. A successful rhizoremediation process is the resultant
of various factors like plant age, chemical stress in soil (Yee et al. 1998), the compo-
sition of root exudates containing organic photosynthates as the carbon source for
the microbe. Among these, alcohols, amino acids, sugars, proteins, organic acids,
nucleotides, flavanones, phenolic compounds, certain enzymes are good examples
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(Kuiper et al. 2004; Pilon-Smits 2005), which ultimately affect the metabolic activi-
ties of rhizospheric microbes. These plant-produced carbon compounds are utilized
by microbes to maintain plant nutrient recycling, resistance against plant microbial
diseases, and tolerate toxic compounds.

Though the associative roles of rhizospheric microflora on the enhancement of
different metal uptake by plants have been reported in past decades, the detailed
mechanism of selective metal reclamation is still unclear. In the verge of finding
possible mechanism underlying heavy metal such as arsenic (As) tolerance, detox-
ification, and accumulation, different ecotypes of Pterisvittata, a hyperaccumulator
fern has been studied (Lei et al. 2012; Wang et al. 2012). Small biomass and slow
growth rates of such hyperaccumulating plants made the scientific community to
come up with an alternative heavy metal bioremediation process by exploiting the
mutualistic symbiosis between rhizobium and legume (Carrasco et al. 2005), which
can equally effective in restoring heavy-metal-contaminated sites (Teng et al. 2015)
as well as cost-efficient (Checcucci et al. 2017).

International Agency for Research on Cancer (IARC) and the US Environmental
Protection Agency (EPA) have declared arsenic as a toxic carcinogenic metalloid.
The two major plants acceptable inorganic form of arsenic are the reduced form,
arsenite (As3+), and the oxidized form, arsenate (As5+) (Cullen and Reimer 1989).
Rhizobacteria-mediated chemical and microbial transformation of the two forms of
arsenic (Han et al. 2017) results in arsenic accumulation in plants (Jia et al. 2014),
which affects the bioavailability of the As in the rhizospheric soil, translocation in
the plants (Shrivastava et al. 2016) and consequently As phytotoxicity (Sarkar et al.
2016).

Plant growth-promoting (PGP) bacteria secrete substances like siderophores,
phytochelatins, and many other compounds which may hinder metal availability
and complex formation by binding themwith their anionic functional groups (Tomer
et al. 2016) thus, attracting researchers to study the effect of the association between
PGP bacteria and plant to alleviate metal toxicity (Kong and Glick 2017). Arsenic
an example of which Guarino and Sciarrillo (2017) experimented by taking Acacia
saligna along with rhizospheric bacteria which aided the phytostabilization of heavy
metals in the roots of Eucalyptus camaldulensis. The results reported by Sun et al.
(2017) regarding the microbe-assisted phytoremediation i.e., rhizoremediation was
astonishingly higher than either of phytoremediation and microbial bioremediation
alone which also influenced soil fertility positively due to enzymatic exchanges
that took place between the plant and microbes. The increasing phytoextraction and
phytostabilization resulted from this association between plant and plant-surrounded
rhizobial population allowed the plants to thrive on metal contaminated soils (Kong
and Glick 2017) by trace metal mobility and availability to the plants (Idris et al.
2004). Bacterial responses to metal ions such as biosorption, precipitation, and enzy-
matic metal transformation replaced traditional remediation methods that do not
provide acceptable environmental restoration for the removal of metals from soils.
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Fig. 11.1 Multi-omics approaches for addressing the impact of abiotic stresses on host and their
mitigation strategies using microbial approaches

11.8 Omics Strategies

The “omics” approaches, viz. genomics and metagenomics, transcriptomics and
metatranscritomics, proteomics and metaproteomics, metabolomics, and phenomics
help to unravel the interactions of the microorganisms with the plants. Moreover,
they are useful in real-time monitoring of the cellular processes. Nowadays, next-
generation sequencing technologies are contributing to these studies (Kumar et al.
2019). The description of some omics approaches is given in Fig. 11.1.

11.9 Genomics and Metagenomics

The genomics and metagenomics facilitate detailed studies of microbial diversity
and community structure. However, the majority of themicroorganisms on the planet
Earth are unculturable. In any environmental sample only 1–2% of microorganisms
can be cultivated in the laboratory; the remaining 98–99% of the microorganisms
cannot be cultivated by routine cultivation techniques and referred to as unculturable
(Soni et al. 2016; Suyal et al. 2019a, c). Microbial diversity can be measured using
techniques such as traditional plate counting and direct counting, molecular-based
methods, and fatty acid analysis. However, the culture-dependent methods are not a
good choice for the analysis ofmicrobial diversity, because only 1–2%of the bacterial
diversity in soil can be recovered by plate counting. To circumvent the problems of the
genomics approaches, the culture-independent methods, especially metagenomics
can be employed for understanding the diversity, population structure, and ecological
roles of unculturable microorganisms in detail. The groundbreaking work of Carl
Woese, which reported the 16S rRNA genes as evolutionary chronometers, created
a new branch of microbial ecology referred to as metagenomics. Sequencing of
the 16S rRNA gene started the new era of microbiology as even the unculturable
microorganisms could be identified through metagenomics without culturing them
(Suyal et al. 2015a, b).

“Metagenomics” is defined as the functional and sequence-based analysis of
the collective microbial genomes present in an environmental sample (Handelsman
2004).Different environments including soil, fresh andmarine aquatic habitats, feces,
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oral cavity, rumen, glacier ice and cold deserts have been the focus of the metage-
nomics (Kodzius and Gojobori 2015; Soni et al. 2016; Suyal et al. 2019a). With the
development in the sequencing facilities and enormous potential of the technique,
hardly any ecosystem is left within the human access which is not studied through
metagenomics. Thus, metagenomics has enormous potential in microbial diversity
analysis, which helps to answer the fundamental questions of microbial ecology.

Metagenomics plays a vital role in agriculture. The microbial communities in the
soil are responsible for the health of plants and thusmake a direct impact on yield. The
manipulation by selecting the ideal combination of the microbes and crops will help
to increase the yield parameter. Further,metagenomics studies on different phosphate
solubilizers (Rajwar et al. 2018) and nitrogen fixer and siderophore producers (Joshi
et al. 2019) and other microbial communities take part in biogeochemical cycling
also seem to be very productive about microbial ecology and ecosystems.

Although metagenomics has the prospective to generate marvelous amounts of
information, and this information needs to be decoded by bioinformatics explanation.
Of course, recovered sequence information ismade available via public databases, but
this is often in a less useful form than the original datasets. Opening up metagenomic
datasets for examination by a large group of researchers, whose interests span a
greater breadth ofmicrobial functions, seems to be a fairly easy step that could greatly
amplify the understanding gleaned from large-scalemetagenomics initiatives. Recent
studies have been reported to use Metagenomics approaches in analyzing microbial
diversity and functions (Kumar et al. 2019).

11.10 Transcriptomics

Transcriptomics can be defined as the analysis of the transcriptome, that is, the tran-
scripts produced by the genome under a given set of conditions. This technique
has shown a high potential to identify the patterns of gene expression by a cell
under two different conditions. Wang et al. (2012) have used this approach to under-
stand the role of Rhizobium in drought tolerance in different crops. Similarly, tran-
scriptomics of Stenotrophomonas rhizophila has identified a plant growth regulator
spermidine during abiotic stress tolerance (Alavi et al. 2013). Further, Mark et al.
(2005) have shown the influence of sugar beet exudates on Pseudomonas aeruginosa
transcriptome. One important attribute is response traits that define an organism’s
response towards the environment fluctuation and is measured across the environ-
ments. Furthermore, Defez et al. (2016) have performed next-generation RNAse-
quencing studies on Sinorhizobium meliloti and revealed that the abiotic stresses
induces the IAA overproduction in the cells.
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11.11 Proteomics

All the protein complements expressed in a cell under certain physiological condi-
tions at a particular time are referred to as the proteome. The proteome is much
more complex than the transcriptome and genome. The comprehensive analysis
of expressed proteins from a cell, a multicellular system, an extracellular environ-
ment, and/or a large set of recombinant clones IS known as proteomics. Traditional
techniques of proteome analysis were complex, less sensitive, and time-consuming.
Presently mass-spectrometry-based proteomics is high throughput and widely used
for the complete protein characterization (Suyal et al. 2014b, 2017). Thus, high-
throughput proteomics deals with the protein characterization with reduced time and
with increasing depth of proteome coverage. Proteomics is an excellent method-
ology for a better understanding of the regulation of biological systems by identi-
fying several proteins as a signal of changes in physiological status due to stress or
elements/factors responsible for stress alleviation (Soni et al. 2016). Mass spectrom-
etry has emerged as one of the most sensitive tools for protein characterization, quan-
tification, and post-transcriptional modification (PTM) studies (Suyal et al. 2018,
2019b). The development of mass spectrometers that can ionize and precisely deter-
mine the mass of peptides is what made it possible to link proteins with genome
data. Traditionally, the characterization of proteins in the complex samples was
done through the protein separation in two-dimensional polyacrylamide gel elec-
trophoresis (2D PAGE) followed by the identification of the protein spots through
mass spectrometric techniques (Soni et al. 2016; Kumar et al. 2017). However, this
method is labor-intensive, time-consuming, and has poor resolution, thus not suitable
for the high-throughput analysis. Further, proteins expressed in a very low amount
cannot be detected by 2D PAGE, thus their identification remains obscure through
traditional techniques of proteome analysis. Online linking of liquid chromatography
to mass spectrometer provides a high-throughput solution for protein characteriza-
tion. In high-throughput LC–MS technique, the power of liquid chromatography
(LC) provides a better separation of thousands of proteins in a complex sample,
whereas the mass spectrometer provides the subsequent protein identification with
higher sensitivity and precision (Suyal et al. 2018, 2019b).

Several previous studies documented the bacterial cold adaptation through the
proteomics approaches (Williams et al. 2009; Suyal et al. 2014b, 2019b). The
proteome of several cold-adapted PGPR has been analyzed, viz. Pseudomonas
migulae S10724 (Suyal et al. 2014b); Pseudomonas palleroniana N26 (Soni et al.
2015; Suyal et al. 2018); Dyadobacter psychrophilus B2 (Suyal et al. 2017); Pseu-
domonas jessenii MP1 (Suyal et al. 2017), and Rhodococcus qingshengii S10107
(Suyal et al. 2019b) under cold stressed conditions. Moreover, high-throughput
proteomics has been widely used for the biomarker development of the various
biological pathways (Lu et al. 2016; Suyal et al. 2019b). However, very few high-
throughput proteomics studies were conducted on the psychrophilic bacteria, previ-
ously. Therefore, the comparative proteomic study of the psychrophilic bacteria could
reveal the novel cold-adapted proteins expressed under cold stresses.
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Environmental proteomics or metaproteomics is a special tool for the analysis
of the structure and function of the proteins associated with the plant–microbe
interactions that are directly extracted from the environment. It might be useful
in the comparative protein analysis of the stressed as well as non-stressed plants.
Furthermore, it may be explored to unravel the microbial metabolism, enzymes,
metabolic pathways, and protein networking involved in signal transduction (Wang
et al. 2012). The proteins of Piriformospora indica associated with drought stress
by higher antioxidant production in barley were analyzed (Ghabooli et al. 2013).
Further, the elucidation of the proteins expressed during the association with the
diazotroph Gluconacetobacter diazotrophicus and sugarcane under drought stress
revealed that bacterial inoculation was able to activate the signaling genes and confer
drought resistance in sugar cane (Vargas et al. 2014).Nevertheless,Heyer et al. (2013)
have conducted metaproteome analysis for revealing the mechanisms of microbial
functioning in the biogas plants.

11.12 Metabolomics

Metabolomics is the identification and characterization of the metabolites produced
by the organism under a particular set of conditions. Plant–microbe-soil interac-
tions involve the exchange of chemical compounds for metabolism, signaling, and
symbiosis. Therefore, metabolomics becomes an important research tool to char-
acterize the metabolites and their mechanisms involved in plant growth promotion
and development under abiotic stresses (Jorge et al. 2016). This branch of science
explores different analytical techniques, viz. chromatography, mass spectrometry,
and spectroscopy to generate a profile of the metabolites under given conditions.
This technique also quantifies the abundance of the metabolites and thus can be
useful in diagnosing plant diseases also. Moreover, it also offers an excellent way
to characterize the novel metabolites. Abiotic stress may alter the metabolism of
the living organisms, which further results in a change in the secretion pattern of
metabolites. Metabolomics can also be used with metagenomics to predict the func-
tions of the genes. Contreras-Cornejo et al. (2009) have showed that Trichoderma
spp. produces auxins under stressed conditions and helps in plant growth promo-
tion. Recently, Kang et al. (2019) have explored metabolomics to characterize the
metabolic behavior and physiological changes in the wheat genotypes under drought
stress conditions.

11.13 Phenomics

Phenomics is a documentation of phenotypic variation within an organism in
response to a given condition. It is the result of the interactions among different
genetic/genotypic elements of the organism with the environmental factors, viz.
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developmental stages, temperature, salinity, drought water, or nutrient limitation.
It is an important tool to unravel the interactions among the organisms that can be
explored for crop management. Novel imaging techniques and their advancements
have made it possible to analyze several phenotypic traits. Hassani et al. (2018)
have discussed the significance of phenomics in correlating microbial communities
and plant health. Moreover, Rouphael et al. (2018) have developed high-throughput
phenotyping to characterize the effect of bio-inoculants. However, phenomics needs
lots of advancements in terms of high-throughput and high-dimensional technologies
to employ it at a global scale.

11.14 Conclusion

Multi-omics strategies can be explored to address the challenges that arises due to
abiotic stresses in the plants. Moreover, keeping in mind the sustainability issues,
microbial applications are financially savvy, renewable, and globally recommended.
This chapter besides providing an insight into the various stresses, gives an overview
of the role of omics technologies in abiotic stress tolerance. Further, the identifica-
tion and characterization of stress-tolerant bio-inoculants will remain the priority to
achieve agricultural sustainability under stress conditions.
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Chapter 12
The Omics Strategies for Abiotic Stress
Responses and Microbe-Mediated
Mitigation in Plants

Sagar Maitra, Preetha Bhadra, Ajar Nath Yadav, Jnana Bharati Palai,
Jagadish Jena, and Tanmoy Shankar

Abstract An abundance of metabolomics information on the plant stress reactions
has been collected and countless metabolic pathways are proposed to be directed in
different abiotic stresses. Be that as it may, there are fewer evidences that metabolites
andpathways tentatively demonstrated towork in abiotic stress resilience.Aprofile of
metabolites doesn’t predict precisely whether there is any related metabolic pathway
which can be upregulated or downregulated since both the responses can prompt the
buildup of a metabolite. Those may be illuminated by contrasting the information on
themetabolomics that can be derived from either transcriptomic or proteomic or both
investigation and exercises of explicit proteins. Quality to metabolite administrative
systems of glucosinolate blend and essential digestion under sulfur-and nitrogen-
restricted conditions were likewise finished up. Furthermore, the guidelines of the
information on the omics pathway in different abiotic stresses have been summerized.
The examinations utilizing proteomics along with secretomics and metabolomics
are moderately uncommon in the reaction field of plant stress. A portion of the
varieties communicated as alterations of cytogenetical and phenotypical in plantswas
recovered from the culture by callus tissue. Cell culture and tissue culture conditions
can limit or boost the degree of somaclonal varieties. Throughout the years, numerous
varieties as changes in the genomes of plants have been normally advanced.
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12.1 Introduction

Plants are considered to biosynthesize specific (customarily called auxiliary)metabo-
lites to adjust to ecological burdens, for example, biotic and abiotic stresses. Most
specific metabolites incited by abiotic stress typically display antioxidative action
in vitro, but their capacity in vivo is to a great extent yet to be affirmed (Yadav et al.
2020b). In this chapter, the late advances in the distinguishing proof of the job of
abiotic stress-responsive particular metabolites with an accentuation on flavonoids
have been featured. Coordinated “omics” examination, focused on metabolomics
with a progression of plant assets varying in their flavonoid aggregation, indicated
tentatively that flavonoids assumed a significant job in antioxidation in vivo. More-
over, the outcomes additionally recommend the job of flavonoids in the vacuole. To
getmore inside and out bits of knowledge, compound and organic provokes should be
tended to for the recognizable proof of obscure specific metabolites and their in vivo
works. Natural stresses, for example, biotic and abiotic are not kidding dangers to
agricultural crops (Lobell et al. 2014).

Most outstandingly abiotic stresses are dry spell, saltiness, cool, high light/UV-
B, heat, air contamination, overwhelming metal, mechanical injury and nourishing
lack (Dixon and Paiva 1995; Vickers et al. 2009; Kumar et al. 2019b; Suyal et al.
2021) that bring about a worldwide decline in yields prompting poor return from
crops (Suzuki et al. 2014). To comprehend and improve harvests, researchers have
concentrated on the flagging observation, transcriptional guidelines, and articula-
tion of useful proteins in the pressure reaction instruments utilized by plants against
abiotic stresses (Hirayama and Shinozaki 2010). Furthermore, post-translational,
post-transcriptional, and epigenetic guidelines have been examined. The amassing
role of little atoms with antioxidative movement in vitro has regularly been talked
about, or the role they play in alleviating the collection of receptive oxygen species
(ROS) actuated by abiotic stresses. This conversation has advanced under the guess
that the response in vitro may happen in vivo. Incorporated “omics” examination
focused on metabolomics (coordinated metabolomics) can be a ground-breaking
procedure to recognize the elements of qualities associated with the metabolic proce-
dures of plants (Saito 2013). Logical systems for narrowing down expected qualities
and distinguishing their capacities aremoderately developed and transcriptome coex-
pression investigation and untargeted examination in metabolomics utilizing freak
lines have become typical (Saito et al. 2008). The subsequent stage is to recognize the
capacity of particular metabolites, which is a demanding task. Further, the ongoing
advancement in the understanding of the capacity of abiotic stress-responsive partic-
ular metabolites with an accentuation on flavonoids as a delegated case of suchmixes
is also an important consideration in this regard.
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Abiotic stresses are caused because of the inconvenient consequences for
endurance, biomass creation, collection, and yield of most harvested grains. They
are found to be the prime reason for misfortunes in numerous crops around the world
(Athar and Ashraf 2009). Dry season, saltiness, elevated metal levels in soil, and
outrageous temperatures have found to be the major natural variables among all
abiotic stress factors that cutting-edge agriculture needs to remain alive (Kour et al.
2020c; Kumar et al. 2019a; Tiwari et al. 2021; Yadav et al. 2020a). Around 50–70%
yield decrease in significant harvest is brought about by them. The crop species,
growth stages, and duration of stress periods are important concerns in this regard
(Jaleel et al. 2008). The most normal reactions that are activated in plants exposed to
various abiotic stresses remember to change for quality articulation, anatomical and
morphological alterations, diminished productivity of photosynthesis, decreased N
digestion ability, modified exercises of many identified chemicals and also plasma
film attributes, cell metabolic modifications, excess production of metabolites, and
expanded blend of stress-incited novel proteins. Among all these abiotic stresses,
drought or water deficit is the most intense and answerable for declined crop produc-
tivity around the world. Water stress impacts plants in various ways such as plant
development and plant improvement, loss of layer respectability, stomatal conclu-
sion, shade content, osmotic adjustments, water relations, limit photosyntheticmove-
ment by lessening CO2 deluge, osmolytes proline, aggregation of abscisic acid
(ABA), sorbitol, mannitol, arrangement of radical searching mixes (glutathione,
ascorbate, a-tocopherol, and so on), amalgamation of newly found mRNAs, and
proteins (Osakabe et al. 2014), just as the reduction in an electron transport chain
and carboxylation exercises of the chloroplasts situated inside the cells of mesophyll
(Feller and Vaseva 2014). Salinity has been found to be the second most harming
stress after drought that diminishes crop growth and productivity. High salt focus can
invade unfavorable consequences like germination of seeds, seedling vigor, vegeta-
tive development, blossoming and natural product set, and at the end cause poor yield.
The ionic stress and osmotic pressure are the two significant impacts prompted by
salinity (Munns and Tester 2008).

Plants respond to different abiotic stresses variously, and the impact of stresses
is observed in the growth and developmental processes of different crops. Recovery
from the stresses is important for the optimum flourishment of plants, and there are
possible mitigation and adaptation options. The chapter deals in the omics strategies
for abiotic stress response and microbe-mediated mitigation in plants.

12.2 Abiotic Stress Response in Plants

12.2.1 Salinity Stress

Globally in all agro-climatic regions, salt-affected lands are found. They also occurr
at various altitudes, from below sea level to 5000 m above the soil surface of rising
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mountains like the Tibetian Plateau (Singh and Chatrath 2001). About 800 million
ha of arable area is globally exaggerated by salinity (Munns and Tester 2008). Soil
salinity is such a condition when soil consists of more concentrations of soluble salts,
viz., chloride and sulfates of Sodium (Gaba et al. 2017). When the electrical conduc-
tivity (EC) of the soil is ≥4 dS/m which creates an osmotic pressure of 0.2 MPa, it is
called saline soil (USDA-ARS 2008). In saline soils, because of sodium ion accumu-
lation, necrosis and chlorosis appear in plants which are actually ion toxicity (Munns
2002). Generally, all soils and irrigation water contain some dissolved salts (Kotuby-
Amacher et al. 2000), but in dry regions salinity is a great threat to crop production
(Acosta-Motos et al. 2017). Salts originate in many ways like mineral weathering,
non-judicious use of irrigation water, chemical fertilizers, and soil amendments (e.g.,
organic manures and gypsum). Under mild salinity, very less or no impact has been
observed on crop growth (Maggio et al. 2001).

During the last two decades, the salinity of soil and water became more problem-
atic due to faulty land and water management (Cirillo et al. 2016; Munns et al. 2015).
Most of the plants are glycophytes and cannot flourish under high soil salinity and
even died with 100–200 mMNaCl. Glycophytes under salt stress tend to exclude the
salt, and halophytes accumulate salts by measuring ion content in the plants (Zhu
2007). But euhalophytes can gather salt up to a certain extent in the cell sap when
the osmotic potentials remain less than that in the soil moisture. The stress response
to salinity is noted in the root system of plants, and growth is checked due to water
and nutrient shortage (Munns 2005). Under salinity conditions, plants show greater
absorption of sodium and chlorine ions, and deficiency of calcium and potassium is
noted leading to nutrient unbalances (Marschner 2005); thus, salinity causes ionic
toxicity and osmotic stress. Further, salinity causes oxidative stressmediated by reac-
tive oxygen species (ROS) (Isayenkov 2012) and ultimately harms crops (Hernández
et al. 2003; Mittova et al. 2004).

The impact of stress due to soil salinity on plants can be explained in two ways:
more concentration of salt within the plant itself causes toxicity and alters different
physiological andmetabolic activities like nutrient uptake and assimilation, andmore
amount of salt in soil affects moisture extraction by roots (Isayenkov and Maathuis
2019; Munns 2002). Greenway and Munns (1980) stated that saline soil consists
of more chloride, which caused identifiable symptoms like leaf blade scorching,
whereas leaf mottling and leaf necrosis were the symptoms of accumulation of sodic
salts. Accumulation of excessive quantity of salts in plants affects the transpiration
that ultimately causes a reduction in plant growth (Hanin et al. 2016). The rate of
leaf expansion reduces due to salinity stress, and it also closes leaf stomata causing
a reduction in photosynthesis. This actually occurs due to the shortage of soil mois-
ture because of the osmotic stress (Rahnama et al. 2010). The toxic concentration
of Na+ accumulates in leaves and reduces the longevity of photosynthetic tissues
which results in growth retardation (Munns 2002; Tavakkoli et al. 2010). Further,
soil salinity brings down the photosynthetic pigments in plants and reduces photosyn-
thesis (Misra et al. 2006; Murillo-Amador et al. 2007; Sultana et al. 2000; Taffouo
et al. 2010; Tort and Turkyilmaz 2004). Another effect is an increase or decrease
of protein content in plants which is influenced by the change in salt concentration
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(Chen et al. 2007; Kapoor and Srivastava 2010). There are variations in salinity toler-
ance among the monocotyledonous and dicotyledonous plants; however, dicot plants
show better salinity tolerance than monocot ones. Among all cereal crops, barley is
highly tolerant and rice is sensitive to soil salinity (Byrt et al. 2018; Zagorchev 2014).

12.2.2 Drought Stress

The effect of drought stress on plants depend on the duration and intensity, including
the time period of a plant’s life cycle (Kocoń 2015). Drought stress causes 30–50%
yield reduction because of high temperature,which results in high evapotranspiration,
low humidity, increased respiration, and enzyme activity in the plants (Bagheri 2009;
Fahad et al. 2017; Lamaoui et al. 2018; Kour et al. 2020b). Most of the plants absorb
nutrients from the upper horizon of the soil profile, which is reduced due to drought
(Rasmussen et al. 2020; Schoonover and Crim 2015). Drought stress is also to some
extent related to stress due to salinity on plants, as salts and ions are accumulated on
the topsoil around the rhizosphere induceng ion toxicity and osmotic stress (Kamran
et al. 2020). Due to drought, mesophyll cells become dehydrated and the abscisic
acid is stored in the chloroplast, synthesized more in guard cells and mesophyll cells
(Christmann et al. 2005; McAdam and Brodribb 2018). With the loss of guard cells,
stomata closes during drought (Daszkowska-Golec and Szarejko 2013; Malcheska
et al. 2017; Kour et al. 2020a). Dehydration in plants causes discoloration of leaves
and increases leaf stomata numbers and trichomes (Bagheri 2009; Christophe et al.
2011). Drought causes a decrease in carbon assimilation via photosynthesis (Flexas
and Medrano 2002; Wang et al. 2018). Compared to the vegetative stage, drought
stress is more important for the reproductive stage (Kabiri 2010; Sehgal et al. 2018;
Yang et al. 2019). Drought influences on plant nutrition as nutrient uptake decreases
due to water shortage (Bista et al. 2018; Cramer et al. 2009; Ge et al. 2012; Mariotte
et al. 2020; Waraich et al. 2011; Kour et al. 2021).

There are several reasons for decline of nutrient uptak and these are reductions of
nutrient supply through mineralization (Sanaullah et al. 2012; Schimel and Balser
2007; Prasad et al. 2021) and because of lessening mass flow and diffusion in the
soil (Chapin 1991; Lambers et al. 2008). There are adverse impacts of stress due to
drought on vegetative growth of the plants such as a decrease in plant height and a
reduction in leaf area and plant dry weight (Apel and Hirt 2004; Farooq et al. 2009;
Nadeem et al. 2019; Zheng et al. 2016). Water deficit inhibits water flow from the
xylem to other growing tissues and declines plant cell turgidity resulting in decreased
cell elongation and leaf area (Nonami 1998; Schuppler et al. 1998; Saradadevi et al.
2017; Taiz and Zeiger 2003). Under drought stress, starch is converted into sugar (Du
et al. 2020; Hong-Bo et al. 2006; Sircelj et al. 2005; Thalmann and Santelia 2017).
Further, the synthesis of different amino acids (arginine, proline, lysine, histidine,
glycine, etc.) and polyamines is also affected by drought (Rabe 1990; Majumdar
et al. 2016).
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12.2.3 Submergence and Flood Stress

Flooding can be further classified based on the height of the water stagnation (covers
only the root) and submergence (when water covers some portion of the shoot also)
(Sasidharan et al. 2017), and movement of oxygen from the air to plant tissues is
inhibited (Lee et al. 2011). Sasidharan et al. (2017) reported that naturally a hypoxia
condition is created at <21% O2. Under anaerobic conditions, both photosynthesis
and translocation of carbohydrates are diminished (Kramer and Kozlowski 1979).
Totalmineral nutrient absorption and concentration of primary nutrients likeN, P, and
K in plants decline in flood intolerant species under inundated conditions (Kempen
et al. 2017; Liu et al. 2014; Trought andDrew 1980a, b). In alkaline soil, P availability
is less due to high soil pH. But flooding results in a change in soil pH and improves
P availability to plants (Tian et al. 2017). Prolonged flooding increases P availability
but reduces the total uptake as roots decay (Ruiz et al. 2020; Zhang et al. 2017a,
b). Submergence alters phytohormone synthesis in plants leading to an increase in
ethylene (Lee and Yoon 2018), auxins (Nakayama et al. 2017; Wample and Reid
1979), and abscisic acid (Peres et al. 2019; Shaybany and Martin 1977). Synthesis
of these phytohormones in shoots in more quantity ultimately reduces the synthesis
and translocation of gibberellins and cytokinins (Binenbaum et al. 2018; Park et al.
2017).

Flooding stress on plants impacts root growth more than the shoot (Fukao et al.
2019). Further, flooding results in the inhibition of seed germination, leaf initiation
and proliferation, internode elongation, cambial growth, and root growth (Vishal and
Kumar 2018). Various types of unwanted compounds gather in inundated soil which
may cause phytotoxicity. Sulfides, CO2, soluble iron, andmanganese are produced by
the roots (Pires et al. 2018). The anaerobic microbial metabolism produces methane,
ethane, propylene, unsaturated acids, hydroxy and dicarboxylic acids, fatty acids,
aldehydes, diamines, ketones, and heterocyclic compounds. Ethylene is formed by
flooded plants and as a result of microbial metabolism in soil (Ravanbakhsh et al.
2018). Plants under flooded condition maximize ethylene synthesis that increases
cellulose activity leading to aerenchyma tissue development (Steffens andRasmussen
2016). Under flooding conditions, many woody and herbaceous plants regenerate
new roots on both submerged roots and stems (Zhang et al. 2017a, b).

12.2.4 Heat Stress

Heat stress can be explained as the rise in temperature above the threshold level to
cause an adverse effect on the permanent growth and development of plants (Wahid
et al. 2007). Heat stress depends on intensity, duration, and temperature rise. Heat
stress can be considered when there is a quick increase in 10–15 °C above typical,
ambient temperature. Soil temperature rises when air temperature is more with the
water deficit due to drought (Sekhon et al. 2010; Simoes-Araujo et al. 2003). In
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general, air temperature above 30 °C results in water shortage and limits plant
growth and sustainable agriculture (Farooq et al. 2012;Mittler 2006; Rojas-Downing
et al. 2017). In maize, photosynthesis is inhibited at a high leaf temperature above
38 °C, when the temperature is increased suddenly than gradually (Crafts-Brander
and Salvucci 2002; Qu et al. 2018). Both heat stress and drought stress cause
hindrance in nutrient uptake and photosynthesis. Wheat crop in both late and
early sown conditions affects different developmental stages like tillering, jointing,
booting, anthesis, and grain filling (Lamaoui et al. 2018; Hossain 2013a). In rice, the
high temperature causes spikelet sterility, chaffy grains, and low yield (Nguyen et al.
2012). In Uttar Pradesh, India, there was a rise of minimum temperature during the
monsoon season by 0.06–0.44 °C over a decade which adversely affected rice yield,
particularly when the temperature prevailed more than 35 °C during the reproductive
stage of the crop (Bhatt et al. 2019). Both drought and heat stresss together cause
rapid water loss from plant and soil surfaces (Wahid et al. 2007), while inadequate
water supply to fulfill the demand of evaporation can also cause heat stress (Koop
and Tadi 2020; Pei et al. 1998).

12.2.5 Low Temperature Stress

Low temperature stress including chilling and freezing temperature exposure of
plants severely disturbs the plant community and ecosystem biodiversity limiting
plant quality andyield aswell as their economic value (Chen et al. 2014). Low temper-
ature stress, i.e., 0–15 °C mainly causes cellular damage that limits the productivity
and distribution (Theocharis et al. 2012; Yadav et al. 2017, 2020d). Low tempera-
ture stress influences crop growth and development badly limiting crop productivity
(Zaynab et al. 2017). Low temperature mainly affects plant growth in two ways, i.e.,
sub-optimal temperature and cellular dehydration due to freezing of the cellularwater
content (Beck et al. 2007). Sub-optimal temperature and sub-freezing temperature
also affect cell division and elongation, photosynthesis, water transport, hormonal
balance, etc., negatively impacting the yield (Khan et al. 2015a, b ). They also affect
the metabolic processes, i.e., change in enzyme and antioxidant activity, membrane
fatty acid composition, and gene regulation (Kazemi-Shahandashti et al. 2014). One
of the sensitive features is the damage of the cell membrane through electrolyte
leakage and during low temperature stress. The actively dividing cell numbers and
mitotic index of apices and basal part of young leaves declines (Lukatkin et al. 2012).
Strauss et al. (2007) reported that the inhibition of cell growth significantly modifies
plant developmental structures.

Cold temperature stress hampers the growth and development of plants by
declining the action of enzymes, accumulating ROS, damaging membrane integrity,
inhibiting chlorophyll biosynthesis, and ultimately impairing the photosynthetic
activity (Liu et al. 2011; Xia et al. 2009; Dikilitas et al. 2021; Yadav et al. 2019). Khan
et al. (2019) reported that there is a significant decrease in net assimilate production,
transpiration rate, stomatal conductance, and internal carbon dioxide concentration
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of plants due to cold stress. Cakmark et al. (2005) mentioned that the minimization
of photosynthetic transport, sink activity, and senescence-related enzyme activity
were also affected by low temperature stress. It also affects and inhibits the D1
precursor necessary for PSII complex activation and repair (Kanervo et al. 1997).
Higher activity of Catalase and Peroxidase activity were observed in cold-resistant
plants (Luo et al. 2001). In wheat, the increase in catalase activity was observed in
low temperature stress conditions (Khan et al. 2015a, b; Zhang et al. 2010a). At cold
temperature, enhanced production of ROS leads to lipid peroxidation (Maeda et al.
2005). Khan et al. (2015a, b ) reported that increased activity of antioxidant enzymes,
i.e., SOD, CAT, and POX, and a lowered activity of lycopene and beta carotene
content in Lycopersicon esculantum fruit are observed under low-temperature expo-
sure. The low-temperature treatment also causes an increase in H2O2 content (Khan
et al. 2015a, b ). An increase in α-tocopherol activity was also noted in maize under
cold stress (Leipner et al. 2000).

Cold acclimation triggers signaling pathways activating genes that make changes
in the composition of sugar, proteins, prolines, membrane lipid compositions,
osmolytes, and peroxides (Askari-Khorasgani et al. 2019). Cold acclimation also
induces enzymes and antioxidant activity, stabilizes cellular components, macro-
molecules that prevent chilling and freezing injury, dehydration, and spread cold
tolerance and existence rate (Kwon et al. 2007; Ouellet and Charron 2013; Strim-
beck et al. 2015). Acclimation of plants to low temperature stress is also character-
ized by the increase in the potential of plants to produce more quantity of osmolytes,
i.e., alcohols and soluble sugars as well as the nitrogenous compounds, namely
glycine betaine and proline (Peng et al. 2008; Thomashow 1999). Stress-induced
coldregulated proteins (CORs), i.e., dehydrins contribute to stress tolerance byABA-
dependent pathway (Agarwal et al. 2006; Choi et al. 2000; Uno et al. 2000) and
maintain ionic homeostasis by ROS removal and membrane stabilization (Agarwal
et al. 2006).

12.2.6 High Light Stress

Solar radiation has the primary importance with respect to crop growth, yield, and
quality. The duration and intensity of solar radiation cannot bemanaged andmodified
in an open field, and the plant should adapt to light stress. Acclimation toward light is
a dynamic process that involves the response of plants to light at various time scales
in many cell compartments (Dietz 2015). Light intensity directly disturbs the crop
growth and allocation of photosynthates (Kromdijk et al. 2016). High light intensity
is responsible for photo-oxidation, photo-inhibition, and photo-damage resulting in
early maturity and reduction in productivity (Tian et al. 2015). After the saturation
light intensity, photosynthetic activity is severely reduced (Mathur et al. 2014). High
light intensity may lead to ROS formation that increases photo-damage of chloro-
phyll molecules (Foyer et al. 1994; Trivellini et al. 2017) and in response to which
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plants must increase the production of carotenoid concentration to protect chloro-
phyll molecules from high light stress (Horton and Ruban 2005). High light intensity
with high temperature often results in the damage of photosystems (Chen et al. 2017).
Tikkanen et al. (2014) and Widiastuti et al. (2015) reported that the PSII is mostly
susceptible to photo-inhibition under extraordinary light stress, and the D1 protein
is the primary target of the photo-inhibition process (Adir et al. 2003). To sustain
photosynthetic activity, D1 turn-over mechanism should be activated (Keren and
Krieger-Liszkay 2011).

There is a report of an increase in both soluble sugar and anthocyanin accumulation
under high light conditions. Albert et al. (2009) reported enhancement in leaf antho-
cyanin up to 3 mg g−1 under a high light intensity of 750 μmol m−2 s−1. Kataoka
et al. (2004) reported doubling of leaf sucrose content under high light exposure
of Phalaenopsis. Jaipargas et al. (2016) observed increased peroxule-mitochondria
interactions in plants under high light intensity. Lee and Back (2018) mentioned that
the expression ofmelatonin-induced genes andmelatonin content are increased under
high light stress. Perez-Lopez et al. (2018) recorded increased phenolic compound
concentration under high light intensity with raised CO2 concentration. Lu et al.
(2017) reported a significant decrease in RUBISCO activity, net photosynthetic rate,
electron transport,maximal photochemistry efficiency, and an increase in PSII energy
dissipation under high temperature and high light stress in the tomato plant. High
light intensity directly or indirectly affects chlorophyll fluorescence (Maxwell and
Johnson 2000) which is one of the three processes of energy directing by chloro-
phyll molecules, i.e., dissipation as heat, energizing photosynthesis, and fluorescence
remission (Müller et al. 2001). It is also reported that in high light intensity, the non-
photochemical quenching (NPQ) increases significantly (Miyake et al. 2005). It was
also reported about increase in anthocyanin and carotenoid concentration in high light
stress conditions by Gould et al. (2000) and Hatier and Gould (2008). An increase
in F0 and decrease in variable to maximal florescence (Fv/Fm) were reported during
full stress conditions by Maxwell and Johnson (2000).

12.2.7 Soil Acidity Stress

Among different abiotic stresses, soil acidity stress ranks second after drought
adversely affecting the growth and development of plants. Globally, a wide extent of
arable land is under acidic soil reaction (Kochian et al. 2004). The benefits of agri-
cultural systems in tropical regions are often limited with soil acidity that reduces
macro-nutrient availability and microbial activity (Lambridge et al. 2007) and also
creates problems of Mn and Al toxicity (Churka Blum et al. 2013). When the pH
value of soil comes below 5.0–5.5, the soil reaction is said to be acidic and it is quite
critical for the normal growth and development of most of the crops (Edmeades et al.
1995). Lower the soil pH results due to increase in H+ ion concentration directly
shows the toxic effect for most of the plants (Kidd and Proctor 2001) linked with
biochemical and morpho-physiological plant attributes (Felle et al. 2009; Hinsinger
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et al. 2003), increase in aluminum toxicity (Kochian et al. 2015; Rao et al. 2016;
Sairam et al. 1998) causing reduced root growth (Hiscox and Isrealstam 1979; Sairam
1994), and limiting the availability of different soil nutrients (Menconi et al. 1995)
with reduced plant growth (Hernandez et al. 1993). Acidic soil reaction also disrupts
germination (Deska et al. 2011; Lee et al. 1998), water uptake, nutrient uptake, and
assimilation (Bahrami et al. 2012; Bian et al. 2013).

At the cellular level, low pH affects the integrity of plasma membrane,
cytoskeleton structure, cell division, DNA synthesis, signal transduction pathway,
etc., (Garcia-Oliveira et al. 2013), impaired activity of enzymatic antioxidants (Nahar
et al. 2017) and enzymes, i.e., esterase, phosphatases, and glucosidase (Taranishi
et al. 1974). There is a positive correlation found between acidic pH and the avail-
ability of micronutrients like Fe, Cu, Al, Mn, and Zn in toxic amounts (Ginocchio
et al. 2009). Along with Al toxicity in low pH, plants respond to Fe and Mn toxi-
city. Tolerant cultivars can precipitate excess Fe in their roots and facilitate essential
nutrient absorption and assimilation (Ayeni et al. 2014; Sikirou et al. 2016). Mn
toxicity disrupts chloroplast structure and hampers transpiration and CO2 fixation
due to stomatal dysfunction (Havlin et al. 2005; Hong et al. 2010). Production of
excess ROS due to low pH stress causes oxidative damage including degeneration of
biomolecules and programmed cell death (Hasanuzzaman et al. 2018). Low pH also
seems to alter the enzymatic antioxidant activity, i.e., activity of SOD, CAT, APX,
MDHAR, DHAR, GR, GPX, GST, POD, and non-enzymatic antioxidant activity,
i.e., AsA, GSH of the cell (Hasanuzzaman et al. 2012).

12.2.8 Heavy Metal Stress

Heavymetals are elements of higher density and cause toxicity at a low concentration
(Kao 2015; Khan et al. 2015a, b ). The contamination of heavy metals in agriculture
is mainly due to injudicious fertilizer and agro-chemical application and improper
management of sewage and sludge, smelter dust and effluents from industries, and so
on (Herawati et al. 2000). Lead and cadmium substitution in biomolecules leads to
the inhibition of growth resulting from metabolic disturbances (Farooq et al. 2016).
In response to adaptation mechanism for tolerance to heavy metals, some mecha-
nism gets activated in plants, that is, protein repairing, metal chelation, subcellular
compartmentation, cell wall binding, and metal pumping (Herawati et al. 2000; Hall
2002; Farid et al. 2017b). The examples of heavy metal stress are DNA damage in
leaf and root tip of Vicia faba (Lin et al. 2008), DNA damage by Cd interfering tran-
scription (Sarkar 1995), damage in a photosynthetic protein complex, and decreased
Hill reaction on increasing Ni concentration in Zea mays (Ghasemi et al. 2012),
injury to macro-molecules on the formation of ROS (Emamverdian et al. 2015;
Lombardi and Sebastiani 2005), alteration in chloroplast structure and activity of
PSII (Ventrella et al. 2011; Khan et al. 2016a, b) due to dissociation of O2-evolving
complex, reduction in chlorophyll molecule with more concentration of Zn (Li et al.
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2013), unstructural changes in chloroplast due to Cr toxicity, decreased WUE and
rate of photosynthesis due to Pb toxicity (Ahmad et al. 2011), etc.

Heavymetal contaminated soil and water affect crops and cause damage to photo-
synthetic apparatus, cellular organelles, cell membranes, disrupt electron transport
chain, and generate ROS (Farid et al. 2017a; Per et al. 2016; Yadav 2010). ROS in
plant physiology is also considered as a “double-edged sword” (Mittler 2017), as it
causes oxidative damage to the tissues as well as signals important developmental
processes, i.e., polar growth (Mangano et al. 2016), cell wall modification (O’Brien
et al. 2012), transcriptional activities (Xu et al. 2014a), and protein kinase cascade
(Pitzschke and Hirt 2009). The basic response of plants to heavy metal stress is the
production of ROS (Rizwan et al. 2016) in excessive amounts and to mitigate the
effect of ROS and maintain cellular homeostasis. Plants also activate certain enzy-
matic antioxidants (SOD, CAT, APX, GR) and some non-enzymatic antioxidants
(AsA, GSH, α-tocopherol, ascorbic acid, proline, phenolics, carotenoids, flavonoids,
etc.) (Akram et al. 2017; Anjum et al. 2012; Mahmood et al. 2010; Sofo et al. 2010)
under heavy metal stress conditions. Glutathione plays a major role in heavy metal
tolerance, i.e., synthesis of metal-binding phytochelatins (Mohamed et al. 2012;
Zhang et al. 2010b) and acts as a promising regulator for detoxification of reac-
tive oxygen species in different heavy metal contaminations (Khan et al. 2016a, b;
Nakamura et al. 2013; Noctor et al. 2011). To cope with the heavy metal stress
in plants, genetic activation is observed as beneficial as the AtNramp cDNA gene
isolated from Arabidopsis which is found responsible for Cd resistance (Thomine
et al. 2000). There are other genes, i.e., PC synthase gene (Moffat 1999) and the
cDNA GmhPCS1 gene encoding homophytochelatin synthase in soybean (Oven
et al. 2002). GSH has a major role in gene-level detoxification response of heavy
metal contamination, i.e., mRNA level gene participation in GSH synthesis (Semane
et al. 2007), removal of excess H2O2 by AsA-GSH cycle (Noctor and Foyer 1998),
and optimal GSH/GSSG ratio for optimal growth (Szalai et al. 2009).

12.3 Physiological and Molecular Response of Plants
Against Stress

Plants respond to different environmental conditions by sensing, managing or
adapting the situation and their responses to abiotic factors that comprise some
collaborative crosstalk of physiological and metabolic processes in miscellaneous
biosynthetic pathways (Haldar and Sengupta 2015; Meena et al. 2017; Yadav 2021).
Adaptation, defense, acclimation, and repair are important mechanisms of stress
response (Sun and Zhou 2018). Roots remain in close contact with soil and are
highly sensitive to abiotic stimuli and on the basis of nature and degree of stress,
react accordingly (Khan et al. 2016a, b). The response of plant stress by roots is
a very complicated phenomenon in which physiological, cellular, metabolic, and
genetic changes may occur (Atkinson and Urwin 2012). In case of stress due to
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high temperature, drought, salinity, and frost, water deficit is observed in plant cells
which leads to phenotypic, molecular, and biochemical changes in plants against
these abiotic stresses (Xu and Zhou 2006; Yadav et al. 2020c). Under open environ-
ment conditions, plants face a number of stresses due to abiotic factors individually
and in combinations of these stresses. Plants respond to these stresses by specific gene
expression and complex metabolic processes (Haak et al. 2017a; Ma et al. 2020).
Plant growth stage and biotic factors also influence in responding to abiotic stresses
to express tolerance or susceptibility (Pandey et al. 2017; Rizhsky et al. 2004).

Many agricultural crops are grown under sub-optimal environments that create
hindrance in the expression of exact genetic potential (Bailey-Serres et al. 2019; Bray
et al. 2000). In case of stress due to water deficit, the occurrence of peroxidation
influences adversely the metabolism of antioxidants (Xu et al. 2014b). Under water
stress, with the application of irrigation water, peroxidation is decreased leading to
stomatal opening and regrowth of plants (Mamnabi et al. 2020; Xu et al. 2010),
but simultaneously H2O2 accumulation in roots occurs (Bian and Jiang 2009; Huang
et al. 2017). Variation in response to water stress among plant species and the enzyme
superoxide dismutase (SOD) play an important role in themetabolismof antioxidants
(Xu et al. 2015; Laxa et al. 2019). Salinity is another threat (Isayenkov andMaathuis
2019; Voesenek and Pierik 2008) and causes oxidative stress to plants in the presence
of ROS (Isayenkov 2012). The adverse effect of salinity is observed in terms of
ion-independent growth reduction by stomatal closure, shyness of cell enlargement
(Rajendran et al. 2009), and enhancement of cytotoxic ion, resulting in premature
senescence, lowering metabolic activities, and ultimately causing cell death (Roy
et al. 2014). The gene expression pattern in salinity stressed cells is changed (Dinneny
et al. 2008; Kurotani et al. 2015; Munns 2005; Razzaque et al. 2019).

In soils with elevated salinity, osmotic potential is decreased resulting in ion toxi-
city to plants. The situation negatively impacts seed germination and poor seedling
vigor, facilitates early senescence of leaves, and causes the death of plants (Acosta-
Motos et al. 2017; Flowers and Colmer 2015; Stepien and Johnson 2009). Salinity
reduces amino acids, namely methionine, cysteine and arginine, and productivity in
arid and semi-arid conditions (Sadak et al. 2015). Under salinity stress conditions,
the Salt Overly Sensitive (SOS) stress signaling pathway is observed (Hasegawa
et al. 2000; Park et al. 2016; Rolly et al. 2020). Proline accumulation is known as a
mitigation strategy against salinity stress (Chun et al. 2018; Evelin et al. 2019). Vari-
ation of hormones, presence of nitric oxide (NO), accumulation of glycine betaine,
and stimulation of antioxidant enzymes are some changes commonly noted in salt-
stressed plants (Ahmad et al. 2016; Gupta and Huang 2014; Sharma et al. 2019). All
these ultimately hamper growth and productivity mainly due to the non-availability
of fresh water and nutrients from the soil.

Climate change and global warming are ongoing problems that rise atmospheric
temperature and badly impact physiological, biochemical, and morpho-anatomical
activities of plants (Kaushal et al. 2016; Menezes-Silva et al. 2019). Besides, some
genetic changes may occur due to thermostress (Meena et al. 2017; Raza et al.
2019). High temperature adversely affects germination; assimilating production and
membrane permeability (Raza et al. 2019). Some more prominent responses of heat
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stress are changes in phytohormone (Sharma et al. 2019; Prerostova et al. 2020) and
metabolite concentration (Austen et al. 2019; Escandón et al. 2018), enhancement
in production of ROS (Choudhury et al. 2017; Huang et al. 2019), aggregation and
denaturation of protein (Huang and Chenping 2008; Wang et al. 2004), augmenta-
tion in heat shock expression (Hemantaranjan et al. 2014; Guo et al. 2016), greater
protein disposal and degradation (Haq et al. 2019), and shyness of protein synthesis
(Altschuler and Mascarenhas 1982) and enzymes (Kaushal et al. 2016; Yuan et al.
2017). Further, excess light intensity also causes stress to plants by prompting photo-
oxidation that increases the production of ROS to effect enzyme activities (Jalil and
Ansari 2018; Koini et al. 2009; Li et al. 2009).

A combination of different stresses is less harmful than individual stress to plants
and in nature generally, a combination of different stress factors occurs (Pandey
et al. 2017). Combined stresses may reduce the adverse effects of each other and
in this way, ultimate stress to plants is decreased (Ramegowda and Senthil-Kumar
2015). Tominimize the adverse effects of stress, phytohormones play important roles
(Egamberdieva et al. 2017; Sytar et al. 2019). Different signals given by proteins for
tolerance of stress are controlled by hormones (Priya et al. 2019; Verma et al. 2016).
Further, beneficial microbes influence the response to abiotic stresses, and the study
of omics clearly indicates the kind of interaction between plants and microbes.

12.4 Role of Microbiomes in Plant Defense
and the Immune System Against Stress

Microbes play a pivotal role in the adaptation of different abiotic stresses in plants,
and both plants and microbes get the benefit to combat the stresses (Yadav et al.
2021). Researchers investigated the importance of microbes in easing abiotic stress
in plants (Abd El-Daim et al. 2019; Bulgari et al. 2019). Because of inherent genetic
and metabolic capabilities, microbes alleviate stresses to plants (Enebe and Babalola
2018; Hartman and Tringe 2019; Ojuederie et al. 2019). Different Rhizobacteria
bring alteration in hormones, proteins, antioxidants, enzymes, and polysaccharides
that help the plant to recover the abiotic stresses (Ilangumaran and Smith 2017;
Khan et al. 2018a, b; Vurukonda et al. 2016) and the phenomenon is known as
Rhizobacteria-induced drought endurance and resilience (RIDER) (Jalil and Ansari
2018; Kaushal 2019; Meena et al. 2017). Other than bacteria, fungi also perform
in abiotic stress recovery to plants (Lata et al. 2018; Kollist et al. 2019; Millar
and Bennett 2016). A brief account of the role of microorganisms in abiotic stress
mitigation is presented in Table 12.1.
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12.5 Omics Approaches for Mitigation of Abiotic Stress

In nature, plants are found to be the most unpredictable, sessile living beings and
are subsequently uncovered to various ecological stresses from the post-regenerative
to the vegetative stage (Jakab et al. 2005; Mosa et al. 2017; Parida et al. 2018).
These ecological elements have been found to have a detrimental influence on
plant development, advancement, and efficiency. Due to these stresses, there are
serious decreases in the yield and efficiency of the plant because of the physio-
logical, molecular and cellular developments (Singh et al. 2018; Xiong and Zhu
2002). These ecological factors are commonly isolated into two classes, biotic and
abiotic stresses. The abiotic stress factors incorporate differences in temperatures,
higher irradiance, different heavymetals, drought, salinity, and ultraviolet (UV) light
and hypoxic conditions (Singh et al. 2018). The profound term, i.e., biotic pressure
includes primarily viruses, bacteria, fungi, nematodes, rodents, insects, and so on. In
the current situation, abiotic stresses are ready to generate unfavorable conditions as
they seriously diminish the yield of crops and profitability. Intergovernmental Panel
on Climate Change (IPCC) has already clearly reported on that (http://www.ipcc.ch).
This may presume sooner rather than later abiotic stresses obviously will decrease
of the yields as a result of an unnatural weather change, water consumption, anthro-
pogenic activities, and deforestation (Singh et al. 2018). During the last two decades,
it has already been found that other integrative “omics” approaches have profoundly
picked up energy in the research field of plant sciences, peptide sequencing to nucleic
acid sequencing, computational molecular biology, innovation in mass spectrometry
(MS) and statistical analysis (Fig. 12.1).

Fig. 12.1 Stress conditions
in plants

http://www.ipcc.ch
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Approaches of omics have risen as basic devices to detect and comprehend the
atomic frameworks of the plants and their capacities, pick up experiences into natural
systems, and advance the translational examination (Kumar and Shanker 2018;
Parida et al. 2018). These approaches have been planned for describing the pool of
plant’s biomolecule in light of the fact that these particles assume jobs in keeping up
homeostasis just as flagging reactions to modifying conditions. Albeit at first much
work advanced in genomics, it turned out to be certain performed basic method-
ology including the investigation of different levels of omics that include proteomic,
metabolic, and transcriptional profiles, and the transition appropriations of those
are fundamental for an increasingly exhaustive comprehension (Shen et al. 2018).
Because specialized advances were found in the exploratory conventions, informa-
tion examination, representation methods, the articulation, and movement of any
quality, their associating accomplices and controllers in the entire framework can be
learned whenever (Sussman et al. 2009). This coming of omics-basedmethodologies
has in this way prompted examinations on naturally significant examples moving to
a great extent from the “theory-driven” to the “information and information-driven”
approaches (Mousavi et al. 2016; Zhang et al. 2017a, b). The “Omics” study can be
divided into many issues which are been described in Fig. 12.2.

Fig. 12.2 The omics strategies for abiotic stress responses in plants
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12.5.1 Genomics

Nowadays, the largely available genomic data of genes of plants are provided
globally. Almost all partial or maybe complete sequences of complementary DNA
(cDNAs) mostly provide the dimension of the transcriptome on a firm basis. There
are three important databases, which are as follows.

• National Center for Biotechnology Information (NCBI)
• The Institute for Genomic Research (TIGR) Gene Indices, www.tigr.org; Sputnik,

http://mips.gsf.de/proj/sputnik.
• Unigenes, http://www.ncbi.nlm.nih.gov/.

These serve to organize the available data from different resources, the plant
expression sequence tags (ESTs), along with the characterization of genes which are
non-redundant clusters of genes.

Genomics has been found to be the basic part of “omics” that manages all the
genomic investigation and uncovers significant information about the living organ-
isms (Gilliham et al. 2017). Some analysts have distinguished groupings of quality
and intragenic conditions, and structures of qualities (Duque et al. 2013). This devel-
opment of the studies of genomics have immensely helped by fast advancements in
the innovation of the sequencing of the genome that has started in the year 1970s
(original), proceeded into the mid-1990s and what’s more, at present uses third-age
sequencing advancements (El-Metwally et al. 2013, 2014). This investigation of
genomics includes a progression of steps counting DNA extraction, intensification,
sequencing, gathering, quality appraisal, and above all, basic and practical comment
of the genome. This entire system gives significant information on the structure of the
genomes of living beings. Utilitarian genomics has been effectively used in recog-
nizing different qualities associated with the plant abiotic stress reactions (Govind
et al. 2009; Ramegowdaet al. 2013, 2014; Zhang et al. 2017a, b;Wang et al. 2018). A
large number of those qualities were effectively being used to creating abiotic stress
open-minded harvest botanicals (Agarwal et al. 2014; Chen et al. 2012; Gilliham
et al. 2017; Shankar et al. 2013). Moreover, the immense online genomic informa-
tion created in time serve as an establishment for genome editing, transcriptomics,
and proteomics (Alter et al. 2015; Mochida and Shinozaki 2010, 2011).

The investigation of ESTs created from cDNA libraries of focused study on the
salinity of rice by Bohnert et al. (2001) demonstrated that there was an expansion
in identified transcripts with cell salvage, protection, transport, vitality, and diges-
tion, yet most of the stress-inducible qualities couldn’t be appointed a capacity.
In an examination performed to recognize salt pressure-inducible ESTs got from
the polymerase chain reaction (PCR) deduction in salinity-independent rice, 384
qualities have been distinguished as salt responsive, approximately 5% of which
were additionally established by Northern blotting investigation. Practically, half of
these qualities were recognized for association in the stress reaction, detoxification,
development, and improvement (Shiozaki et al. 2005). Furthermore, countless ESTs

http://www.tigr.org
http://mips.gsf.de/proj/sputnik
http://www.ncbi.nlm.nih.gov/
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identified with abiotic stress in rice have been distinguished (Babu et al. 2002; de los
Reyes et al. 2003; Sahi et al. 2003, 2006).

12.5.2 Metagenomics

The quantity of different microorganisms that are found to be colonized in plants can
also reach in the density of a cell, a lot higher than the quantity of a plant cell. So
also, the quantities of microbial qualities present in the plant rhizosphere are higher
than the quantity of qualities present in a plant. The individuals from the microbiome
rhizosphere and exhibit noteworthy impact on seed germinations, seedlings vigor,
development and other advancements of plants, frequency of sicknesses and by and
large efficiency by method of supporting supplement take-up, applying resistance
against abiotic and biotic stresses and guideline of the plant insusceptible framework
(Bakker et al. 2013; Berendsen et al. 2012; Berg et al. 2014; Lakshmanan et al. 2014;
Mendes et al. 2013; Perez-Jaramillo et al. 2016; Turner et al. 2013). There are reports
accessible where it was found that in just hardly any case of the normal determina-
tion in plants helps in gaining the obstruction against subterranean pathogens and the
plant to a limited degree relies on the rhizospheric microorganisms for its protection
against pathogens (Cook et al. 1995). The additional reports have mentioned that the
particular microbial consortia present in the soils secure the plants from contamina-
tion by pathogens or are borne into them. Consequently, the plants gracefully have
the carbon resources from which the rhizospheric microorganisms may be fed and
thus decide their structure (Berendsen et al. 2012; Nelson 2004).

It was reported that two Open Reading Frames (ORFs) demonstrated a match
with phasin and Clps, while these two shortened ORFs demonstrated a match
with permease and poly-3-hydroxybutyrate synthase. Association of these partic-
ular ORFs appears in an encoded protein indicated to coordinate with almost 81%
character to ATP-subordinate ClpS from Erythrobacter sp. NAP1 and Clp protease
connector protein. These had moderated areas of the ClpS family (pfam02617,
COG2127, PRK13019, PRK00033). Another found encoded protein indicated to
coordinate with almost 55% character, phasin from Erythrobacter sp. SD-21 and this
had monitored spaces of COG5490, pfam09361, the Phasin2 family. While another
small encoded protein demonstrated a match with almost 63% personality to poly-
3-hydroxybutyrate synthase from Erythrobacter sp. SD-21, it had shortened saved
areas for PHA_synth_I, PhaC Poly (3-hydroxyalkanoate) synthetase (COG3243),
PHA_synth_II, poly(R)-hydroxyalkanoic corrosive synthase, class II (TIGR1839)
and poly(R)-hydroxyalkanoic corrosive synthase, and class I (TIGR01838). Another
shortened encoded protein appeared coordinatewith almost 78%personality to antic-
ipate as permease, (YjgP/ YjgQ) from Novosphingobium aromaticivorans DSM
12444. This had shortened spaces for anticipated permease YjgP/YjgQ family
(pfam03739) and anticipated permeases (COG0795) from permease YjgP/YjgQ
family.
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12.5.3 Transgenomics

Non-specific cleavages, causing alleged “askew”changes, canhappenduringgenome
altering and speak to a test that must be survived, particularly for clinical applications
and in crop rearing. A fewmethodologies planned for dispensing with askew impacts
and improving the explicitness of CRISPR/Cas9 were found to be reported (Fu et al.
2014; Ran et al. 2013). These blends of a changed adaptation of Cas9 (D10A, Cas9
nickase; Cas9n) and deliberately planned gRNAs (guide RNA) can work excellently
in the explicitness of CRISPR/Cas9 (Jinek et al. 2012; Ran et al. 2013) and are
powerful in staying away fromaskeweffects (Mali et al. 2013; Pattanayak et al. 2013).
The gRNAs, shortened at the 5′ end (17–18 nucleotides), can likewise diminish ask
mutations (Fu et al. 2014). Further, it has also been accounted for that advancement
of gRNA and Cas9 articulation levels can increment specificity (Fu et al. 2014;
Pattanayak et al. 2013; Ran et al. 2013). In plant genome altering, askew effectiveness
has been assessed utilizing Cas9 nickases (Fauser et al. 2014; Schiml et al. 2014),
whereas off-targets may be maintained at a strategic distance by utilizing two nearby
sgRNA target successions to manage the Cas9 nickases to produce a DNA twofold
strand break (DSB) at the objective locus. In any case, these remaining parts form
a region where further examinations are as yet expected to dispense with askew
impacts in plant genome altering.

Plasma film proton (H+)-ATPases are assumed to perform a significant job in the
age of proton slopes in plant cells, enacting different auxiliary transporters including
the take up of particles and metabolites (Osakabe et al. 2014; Palmgren 2001). There
are 11 individuals from the plasma filmH+-ATPases in Arabidopsis, AHA1–AHA11
(Baxter et al. 2003), which are made out of N-terminal and C-terminal spaces in the
cytoplasm and a transmembrane area comprising 10 helices including phosphoryla-
tion and nucleotide-restricting sites (Pedersen et al. 2007). The C-end is the major
administrative space associated with the hindrance of H+-ATPase, and enactment is
constrained by phosphorylation in this locale and resulting connection with 14-3-3
proteins (Svennelid et al. 1999). Two predominant changes in the ost2 locus annul
stomata react to abscisic acid (ABA), prompting constitutive movement of the proton
pump (Merlot et al. 2007).

12.5.4 Proteomics

Proteomic examinations have given the recognizable proof of different responsive
proteins of abiotic stress from those some of them may lead to be downstream
regulators of the translation factors distinguished at the level of transcription. In
addition, proteomics based on Mass Spectroscopy permit isoform explicit protein
distinguishing proof, and thus can isolate explicit and imparted probabilities in a
particular protein family. The degree of location is regularly monitored in transcrip-
tomic examinations. Therefore, proteome-wide distinguishing proof and practical
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examination of proteins have turned out as an extra experience into the discoveries
which are being acquired at the level of transcription and thereby profound superior
comprehensive pathways of the abiotic stress reaction in plants. It has been summed
up that different proteomic examinations have been performedwith underlying foun-
dations of various plant species developed under dry spell high saltiness, flooding or
cold conditions.

Abiotic stress researches in plants are profound with an extraordinary scope of
proteomic and transcriptomic examinations which give far-reaching data on adjust-
ment articulation quality and profile of proteome during and following the condi-
tion of stress (Hakeem et al. 2012; Mizoi et al. 2012). At the level of transcripts,
the reaction of abiotic stress was mostly concentrated from 30 min to 1 day after
the acceptance of stress (Kilian et al. 2007). Precisely, the examinations done with
near approaches in proteomics have been performed regularly on plants given to a
specific pressure or for one day. This proteomic and trascriptomic time slips have been
considered to be most likely to be dependent on the required time for the process of
interpretation in the eukaryotes (Berthelot et al. 1973). Roughly, the qualities found
to be receptive to flood are nearly half; extraordinary temperatures and salinity have
been found to encode the controllers of transcription (Kilian et al. 2007; Mizoi et al.
2012). In this manner, translation factors have massively featured as abiotic stress
controllers at the level of RNA investigations (Jaglo-Ottosen et al. 1998; Kasuga
et al. 1999; Seki et al. 2001).

The effect of the invasion of salt on relative phosphoprotein enrichement has
been considered by Kwon et al. (2006). Some of the activities have identified that
there is a change in the post-translational improvement of some obstruction of citrus
to salt stress (Tanou et al. 2009). The data have been found in addition to main-
taining some agreement (Wu et al. 2013). Many researchers have also analyzed
the proteome of the extracellular structure of drying out concentrated on the plants
of rice (Pandey et al. 2010). Some articles indicated that the proteins related to
hailing alterated sugar absorption and modified Reactive oxygen species (Pandey
et al. 2010). In A. thaliana, Brassica juncea, Glycine max L., and Linum usitatis-
simum, various researchers have commented to allude to get the understanding of
the effect of the utilization of techniques in proteomics in Cadmium stress (Alvarez
et al. 2009; Hradilova et al. 2010; Semane et al. 2010; Hossain et al. 2012; Ahsan
et al. 2012). Different researches, furthermore, surveyed the effect of Aluminum,
Boron, and Chromium (Alves et al. 2011; Duressa et al. 2011; Sharmin et al. 2012;
Wang et al. 2013). On a similar note, A. thaliana, has been pondered by Yanguez
et al. (2013) that the understanding of micro-RNAs efficiency under the temperature
stress on the seedlings which were being used the genome-wide examination. In
addition, the chickpea proteomic profile presented to cold stress conditions and also
had been surveyed being completed (Heidarv and Amiri 2013). Moreover, consid-
ering the profile of protein in the nuclear of chickpea presented in the condition
of drought (Subba et al. 2013). There are also researches that considered nuclear
proteome relevant to this (Jaiswal et al. 2014). This found efficiency of sub-deadly
ROS weight on the micro RNAs which was moved using the ribosome impressions
arranging and it was done in the species A. thaliana (Juntawong et al. 2014). The
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research considered that under the drought conditions, there was an upregulation in
some phosphorylated proteins, transporters, chaperones, and interpretation factors
in the left phosphor proteome of wheat (Zhang et al. 2014). It has also dismem-
bered that the tips of roots of soybean for nuclear phosphor proteome during the
flood condition, uncovered about of different twenty seven phospho-proteins (Yin
and Komatsu 2016). The uncovered proteins like H-2, 3 and 4 were controlled differ-
ently by critical chromatin upgrading. Wang et al. (2016) have found the different
isoforms of S-adenosylmethionine synthetase in soybean in drought conditions and
flooding also. The fibrillins proteins were conveyed differently under the drought
stress (Kosmala et al. 2012; Urban et al. 2017). The researchers have thought to
isolate the proteome from the leaf of chickpea. Besides, it also has been shown under
the conditions, for instance, stresses related to temperature, dry season, and salinity
on the leaf proteome (Santisree et al. 2017). They point around the proteins situated
in the position of 590,797 and 248 were controlled differently, with the comparison
of free imprint quantitative approaches of proteomics. It has also been reported that
the proteome of chloroplast of dry season concentrated on tomato plants has been
declared the crosstalk between the proteins from chloroplast with nuclear hailing
proteins (Tamburino et al. 2017).

12.5.5 Metabolomics

Metabolomics is one of the promising methodologies which gives a biochemical
preview of a life form’s phenotype. Metabolomics permits the orderly recogniz-
able proof and evaluation of low-atomic weight particles that are firmly connected
with significant toxicological and wholesome attributes. Information on qualities,
proteins, and transcriptomes are insufficient to distinguish a cell totally; it is impor-
tant to contemplate the wide scope of essential and optional metabolites present
in a cell. Various investigations have been performed to comprehend the job of
metabolites under high saltiness and drought conditions in plants. Methods like Gas
Chromatography-Mass Spectrometry (Kaspar et al. 2011), CE-MS (electrophoresis-
Mass spectrometry (Lee et al. 2012a, b), and NMR (Schripsema et al. 2010) have
been utilized to read metabolites for stress reaction in plants. In many cases, the
studies showed both abiotic and biotic stress reactions, among them there are no
definite solutions for abiotic stresses.

In five cultivars of cherry tomato assortments, water stress came about in dimin-
ished shikimate and phenolic mixes (Sánchez-Rodríguez et al. 2011). Low oxygen
stress can be actuated by capacity of foods grown from the ground under a closed
environment. In another examination, the metabolic reaction of plant organs to low
oxygen levels was analyzed and refined tomato cells were utilized for the metabolic
examination to low oxygen. It was uncovered that low oxygen stress modified the
metabolic profile of tomato cells by collecting the glycolysis intermediates notwith-
standing expanded lactate and sugar alcohols (Ampofo-Asiama et al. 2014). The mix



342 S. Maitra et al.

of metabolomics, linkage planning considerations, and metabolome-based genome-
wide affiliation considerations (mGWAS) give thorough understanding into the
degree of common variety in digestion and its hereditary and biochemical control in
tomato (Zhu et al. 2018). As of late, Nunes-Nesi et al. (2019) led an examination to
recognize leaf mQTL in tomato that were conceivably significant as for stress reac-
tions and plant physiology. The examination recognized 42 positive and 76 negative
mQTL which were engaged with the guideline of leaf essential carbon and nitrogen
digestion (Nunes-Nesi et al. 2019). In reality, metabolomic concentrates in tomato
have expanded comprehension of a few metabolite systems and pathways identi-
fied with numerous financial attributes. The utilization of metabolomics to consider
abiotic stress will help to explain hidden atomic components related with stress.

Carbon/nitrogen digestion-related proteins, for example, α-mannosidase, trios
phosphate isomerase, malate dehydrogenase, UDP-sugar pyro phosphorylase, phos-
phoglucomutase, NADP-malic catalyst, and UDP-glucose-6-phosphate dehydroge-
nase, were accounted for to be increasingly bountiful in foundations of soybean
(Toorchi et al. 2009; Alam et al. 2010; Mohammadi et al. 2012), the wild water-
melon (Yoshimura et al. 2007), and grape seed (Mohammadi et al. 2012) one day
after dry season treatment. These has been mirrored an expanded vitality request just
as improved cell exercises in the root tissues at this phase of the pressure. At the same
time, local increment in root development rate was watched, which was additionally
upheld by the bounty of development of root related to little G-protein relatives, for
example, Ran GTPases (Yoshimura et al. 2007). This root lengthening can be the
sign of an exertion by the root to ingest water from profound soil layers.

In plants, 250,000 metabolic substances were being seen (Kim et al. 2010). In
this different condition of stress in plants, the number of absolutes, focus, and the
metabolites have been essentially improved. These changes in quality articulation are
legitimately reflected in the plant metabolite profiling. Picking up information on the
significant metabolites that assume a fundamental job in the development, advance-
ment, endurance, and their tweaking in the beginning of different abiotic stresses
were exceptionally significant. These opened the degree for different distinguishing
proof of practical markers of metabolomics which were found to be significant for
abiotic stress (Freund and Hegeman 2017; Lafitte et al. 2006; Obata and Fernie 2012;
Kumar et al. 2016; Parida et al. 2018). Different scientists have utilized the omics
of metabolisms for dealing with the study of the profiles of metabolics in the plants
in the named conditions (Bowne et al. 2012; Muthuramalingam et al. 2018; Shen
et al. 2018; Skirycz et al. 2010; Srivastava et al. 2013a, b; Urano et al. 2009; Witt
et al. 2012; Yang et al. 2014). Subsequently, it turned into a key apparatus in under-
standing the sub-atomic component hidden pressure reactions. Urano et al. (2009)
oppressed the plants, Arabidopsis thaliana, to stress in the high temperature and
uncovered collection of a few metabolites, such as proline, raffinose, the family of
gamma-aminobutyrate, oligosaccharides, and a fewmetabolites of tricarboxylic acid
cycle. Also, researchers exhibited that the transcriptional guideline of subordinated
of ABA was answerable to the actuation of metabolic stress-related pathways. It has
been contemplated that the transient profile changes putrescine, erythritol, proline by
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oppressing A. thaliana to gentle osmotic pressure (Skirycz et al. 2010). They addi-
tionally announced a normal connection between metabolites, the transcriptional
reaction. Also, Verslues and Juenger (2011) uncovered osmolytes amassing during
a dry season pressure reaction.

The researchers certified the capacity of beta chain amino acids as good osmolytes
in different tissues of plants under pressure conditions. This aggregation of different
proteins depends on the drying-up seriousness. This was affirmed by the amino
acid profiling of maize and wheat submerged drying up (Bowne et al. 2012; Witt
et al. 2012). In contrast, Colmsee et al. (2012) set up an information asset stage,
in particular, OPTIMAS-DW to respond to various inquiries of maize science. It
very well may be utilized to handle various information spaces as well with respect
to the reconciliation of transcriptomics, metabolomics, proteomics, and ionomics
information.

Amiour et al. (2012) utilized the coordination of proteomics, transcriptomics,
and metabolomics studies to distinguish factors directing the control of digestion
of nitrogen. So also, Srivastava et al. (2013a, b) archived an investigation on the
quality of superoxide dismutase in the transgenic plant, Populus. Studies have given
information on the handling stage that produced framework data on the level of
ROS digestion. Some study area was focused to understand the uses of different
omics approaches of the optional digestion (Yang et al. 2014). AbdElgawad et al.
(2019) announced a-tocopherol improvement in the shoot of maize and also lofty
decreament of ascorbic acid in the wake of exposing plants to salt stress.

Moreover, Wang et al. (2015) affirmed that in the seedlings of virginia, there was
an upgradation of level of proline in the condition of saltiness. Shen et al. (2016)
detailed the quick decreament in carbohydrate metabolism pathway, i.e., glycolysis
in the grain under salinity. Besides, theywatched in the peach plant that the collection
of proline was presented in high temperature. As of late, Sun et al. (2018) evaluated
the distinctions in the metabolome of maize with subsequent exposing to various
stresses like heat, salinity, and dry spells. They concluded that the impact of individual
stresses is unique in relation to the mix of stresses dependent on the metabolomics
information. Khan et al. (2018a, b) evaluated an impact on chickpea of dry season
on the metabolome of assortments utilizing untargeted innovation of the profiling of
metabolics. The research revealed the huge decrease in relative water, development,
dry weight, and content of chlorophyll. It has also revealed that a critical upgradation
to the allantoin and expanded amino acids chains declined the sweet-smelling aspartic
levels, amino acids, and also glucosamine.

12.5.6 Transcriptomics

Since the improvement of NGS, transcriptomes have been generally concentrated
to pick up bits of knowledge into the atomic instruments by which plant species
adjust to their conditions. Right now, transcriptome information investigations of
plants act in different life forms under assorted conditions, including introduction
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to abiotic stresses. Most transcriptomes consider including abiotic stresses that have
been acted in model plants, with a couple of studies looking at crops rewarded with
a couple of various worries at a specific plant advancement stage (Cohen and Leach
2019; Coolen et al. 2016; Kang and Yeom 2018; Liu et al. 2015; Ma et al. 2017a, b;
Rasmussen et al. 2013). Accordingly, similar restricted transcriptome investigations
for plants reacting to various abiotic stresses have been performed.

Numerous investigations have uncovered subtleties of the signal transduction
pathways that are actuated by individual stresses (Haak et al. 2017b). For instance,
abscisic acid (ABA) and related pathways are actuated by dry spell stress, the ICE-
CBF-COR flagging pathway is started by cool obstruction, and the SOS pathway
is instigated by salt stress (Chinnusamy et al. 2007; Jiet al. 2013; Shinozaki
and Yamaguchi-Shinozaki 2006). Besides, comparable administrative segments
including shared quality articulation designs, physiological markers, and phenotypic
attributes have been demonstrated to be associated with dry season, cold and high-
saltiness stresses. In some plant species, the acceptance of cold opposition addition-
ally advances dry spell obstruction and high-saltiness resilience, which is predictable
with an expansion in the degrees of osmotic pressure mixes and anti-carcinogenic
agent catalyst activities (Hossain et al. 2013b). In different investigations, a cover
between the articulation examples of stress-responsive qualities in citrus (Oliveira
et al. 2011), grape (Vitis vinifera) (Zandkarimi et al.2015), poplar (Populus sp.) (Yoon
et al. 2014), tea (Camellia sinensis) (Wang et al. 2017a, b),Arabidopsis thaliana (Seki
et al. 2002), maize (Zea mays) (Li et al. 2017a, b), and other plant species were seen
after dry spell, cold and high-saltiness stress enlistments.

Overexpression of stress opposition qualities engaged with one kind of stress can
improve protection from different burdens, further recommending complex cross-
guidelines of various pressure-flagging pathways. For instance, the overexpression
of DREB2a, which has been recognized as a dry spell obstruction quality, in trans-
genic A. thaliana and Lotus corniculatus rummage plants, brought about improved
resilience to both dry season and salt stresses. Under stress, the transgenic plantswere
taller and had longer roots, raised degrees of solvent sugars and a lower substance
of malondialdehyde contrasted (Zhou et al. 2012). Antioxidase GPX3, ordinarily
thought to be a crucial forager of responsive oxygen species (ROS), additionally
assumes a significant job in ABA-intervened stomatal conclusion under dry spell
worry because of the oxidation of ABI1 and ABI2 by GPX3 (Miao et al. 2006;
Zhou et al. 2013). Past investigations have uncovered qualities and pathways that
were associated with different abiotic stresses and possibly helpful contender for
hereditary building to improve numerous pressure resistance.

Transcriptome examination has been broadly applied to investigate and recog-
nize differentially communicated qualities (DEGs) engaged with plant development,
natural product improvement and stress hormone regulation (Kumar et al. 2016;
Wang et al. 2017a, b; Rehman et al. 2018). The accessibility of the apple draft
genome grouping gives a chance to definite investigation of stress opposition quali-
ties and their interpretation; notwithstanding, as opposed to A. thaliana (Matsui et al.
2008; Sham et al. 2014), maize (Shan et al. 2013), and rice (Oryza sativa) (Rabbani
2003), little has been accounted for about transcriptome changes in apple in light of
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dry spell, cold and high saltiness. Here, we depict RNA-seq examinations of apple
plants developed under dry spell, cold or intense high-saltiness stress to distinguish
shared administrative pathways, key useful qualities or sign transduction segments
engaged with the mentioned burdens.

Muthusamy et al. (2017) broke down the guideline of transcriptions and articula-
tion levels difference of warmth stun wheat protein 20 (HSP20) relatives under dry
spell, salt, or warmth stress. One research was carried out in cassava with a wide
genome transcriptome examination and anticipated around 299 putative individuals
frommyeloblastosis (MYB) quality family (Ruan et al. 2017). Also, they announced
the differential articulation of numerous MYB qualities exposed to conditions of dry
and cold spells. Researchers stated that four individuals from a superfamily reacted
on the treatment of ABA. In addition, it was found that in dry conditions, MeMYB2
went about as a negative control and in cold resistance utilizing RNAi innovation
(Ruan et al. 2017). Some studies have distinguished and assessed in cotton plants,
the differential articulation example of around 17 individuals from the family of
PIN efflux. Moreover, it was announced the qualities of containing salicylic and the
response of auxin components in those advertiser areas. In another occurrence, Shen
et al. (2018) utilized innovation of genomic studies for evaluating the levels of artic-
ulation of HD-Zip quality plant, tea, and five unique medicines. As of late, Wang
et al. (2013) distinguished around 95 grape essential helix-circle helix (bHLH) qual-
ities utilizing a wide genomic investigation which considered a difference of bHLH
family. Moreover, the 22 and 17 bHLH qualities were found and that were prompted
under osmotic pressure and the cold pressure, individually. Three different qualities
were identified with optiomal metabolite amalgamation utilizing GO work explana-
tions. These quality advertisers can contain G-box components that assume the job
of recognization (Wang et al. 2017a, b).

12.5.7 Lipidomics

Lipidomics has been utilized to describe living thing types and their metabolic move-
ment over expanded time scales. Biogeochemistry, one of the most well-known
regions of ecological lipidomics to date, is the investigation of changes across time;
what’s more, space in the dissemination of concoction components (e.g., C, O, N, S,
and P) instigated by creature action. Deciding the huge scope effects of biological
systems on the earth requires a comprehension of themetabolic procedures that move
substance components from one sub-atomic structure to another, and consequently,
influence essential vehicle and capacity. Lipids can be saved in fossilized substrates,
silt, and icy masses, in this way giving significant data on biological system forms
and their impact at geographical time scales not realistic by means of visual assess-
ment of fossil records (Ouahabi and Grimalt 2017). Without a doubt, unsaturated
fats, specifically soaked species, can stay flawless for hundreds of a huge number of
years (Nes 2012).
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At the point when Chlamydomonas reinhardtii starved for nitrogen in fixed
stage within the sight of exogenous acetic acid derivation, those cells experience a
15-overlap increment in lipid body creation inside 48 h, and these lipid bodies
comprise 90% triacylglycerol and 10% free unsaturated fat (Liu et al. 2013). A
difference in starch/lipid proportion with expanded lipid creation was seen under
nitrogen hardship conditions, even in a hereditarily starchless freak C. reinhardtii
(Li et al. 2010a). RNA-seq and hereditary examination illustrated that three acyl-
transferases, namely DGTT1, DGAT1, and PDAT1, were found to have a job in
triacylglycerol collection in C. reinhardtii under nitrogen starvation (Boyle et al.
2012). Sulfur, phosphorous, zinc and iron lack likewise brought about expanded
lipid content in C. reinhardtii and the other numerous algal species (Guschina and
Harwood 2006; Khozin-Goldberg et al. 2006; Kropat et al. 2011; Reitan et al. 1994;
Urzica et al. 2013). In any case, intense and complete nitrogen hardship additionally
stops development of algal biomass. An ongoingmetabolic building report presumed
that shunting carbon antecedents from the starch union pathway is more compelling
for expanded triacylglycerol combination than adirect control of lipid pathways (Li
et al. 2010b). In the meantime, encompassing temperature has a noteworthy impact
on the intracellular unsaturated fat of green growth, for example, Chlorella vulgaris
and Botryococcus braunii; be that as it may, there was no impact on the substance
of acidic lipids sulfo-quinovosyl-diacyl-glycerols and phosphatidyl-glycerols in C.
reinhardtii when temperature changed (Sato et al. 2000; Sushchik et al. 2003). Light
can likewise influence the lipid digestion in green growth. Normally, when green
growth developed at various light power, it can incite the development of various
types of lipids (Fabregas et al. 2004; Khotimchenko and Yakovleva 2005).

Most as of late, it was indicated that under fractional nitrogen hardship, biochem-
ical rebuilding of pathways empowersC. reinhardtii cells to hold typical paces of cell
division with a considerably more adjusted guideline of lipid biosynthesis (Lee et al.
2012a, b). This report had just dissected the guideline of biosynthetic catalysts and
essential metabolites (Lee et al. 2012a, b), yet not the impact of halfway supplement
weight on the redesigning of complex lipids. We along these lines presently supple-
ment this investigation by thoroughly breaking down the family member creation
of complex lipids in C. reinhardtii utilizing shotgun lipidomics, a technique that
has been demonstrated to be an amazing asset in worldwide lipid investigation in
an assortment of animal types and organs (Han et al. 2005; Schwudke et al. 2007).
Shotgun lipidomics utilizing triple quadrupolemass spectrometrywith directmixture
as of now gives 158 clarified lipid species in plant extricates (Welti et al. 2005).

Such focused-on techniques are an exact, however, may miss novel or unreported
lipid species. In particular, the lipid structure of C. reinhardtii had been concen-
trated with increasingly great instruments, for example, slight layer chromatog-
raphy (Giroud et al. 1988; Giroud and Eichenberger 1989; Vieler et al. 2007; Li
et al. 2012) and hardly any examinations with chromatography coupled mass spec-
trometry (Vieler et al. 2007; Liu et al. 2013). Many lipid species were identified
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including digalactosyldiacylglycerols (DGDG), phosphatidylglycerols (PG), phos-
phatidylinositols (PI), monogalactosyldiacylglycerols (MGDG), l, 2-diacylglyceryl-
3-O-4′- (N, N, Ntrimethyl)-homoserine (DGTS), phosphatidylethanolamines (PE),
sulfoquinovosyldiacylglycerols (SQDG), and triacylglycerols (TAG).

12.5.8 Micromics

The class of noncoding ribo nuclic acids, micro RNAs (miRNAs), that control the
endogenous post-transcription. They are assumed to have roles in each part of flag-
ging (Sharma et al. 2017), improvement (Hernandez and Sanan-Mishra 2017), and
natural reactions (Hernandez and Sanan-Mishra 2017). Suggesion has been given on
the originated reaction ofmicro-RNAs associationwith abiotic stress (Jones-Rhoades
and Bartel 2004). These are being announced that in Arabidopsis, the upregulation
of miR395, specifically during starvation of sulfate. This particular miRNA was
seen as focusing on the sulfate compounds which acted as tansporters in osmosis
(Jones-Rhoades and Bartel 2004). A short time later, numerous analysts addition-
ally announced the job of different miRNAs in abiotic stress resilience (Chauhan
and Kumar 2016; Hivrale et al. 2016; Khaksefidi et al. 2015; Song et al. 2017).
Almost 400 micro RNAs are being accounted for in the stress of abiotic conditions
in different species of plants from various families like Solanaceae, Apocynaceae,
Poaceae, Papaveraceae, Rosaceae, Amaranthaceae, etc. The micro RNAs react
in tissue protein, related to stress, genes of genotype, and micro-RNA-subordinate
way (Zhang 2013) to abiotic condition.

The micro-RNA development works on plants varies in pathway since they do not
have a Drosha homolog. Rather, the RNase III chemical DICER-LIKE 1 (DCL1),
which is homologous to creature Dicer, is required for miRNA development (Papp
et al. 2003; Park et al. 2002; Reinhart et al. 2000; Xie et al. 2004). In plants, DCL1
is limited in the core and can make both the principal pair of cuts made by Drosha
and the second pair of cuts made by creature Dicer. As for creature Dicer, a dsRNA-
restricting area protein accomplice, HYL1, has been ensnared in DCL1 work in
plant miRNA development (Papp et al. 2003; Vazquez et al. 2004). The subse-
quent miRNA/miRNA* duplex is traded from the core by HASTY (HST), the plant
ortholog of Exportin 5, furthermore, finishing its get-together into the RISC in the
cytoplasm (Park et al. 2005; Peragine et al. 2004). Not all creature miRNAs ended
with free 2 and 3 hydroxyl gatherings as they had a methyl bunch on the ribose of the
last nucleotide. The terminal methyl bunch is included by the S-adenosyl methio-
nine (SAM)-subordinate methyltranferase HEN1, and the change of the miRNA by
HEN1 either shields the miRNA from further change or debasement, or then again
may encourage its gathering into the RISC (Boutet et al. 2003; Yu et al. 2005). In
plants, RNA-subordinate RNA polymerases may utilize little RNAs as preliminaries
to blend twofold abandoned RNA from deviant single-abandoned transcripts, raising
the likelihood that the terminal methoxy alteration on miRNA serves to forestall
miRNA from going about as preliminaries.
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12.6 Conclusion

Plants are presented to an assortment of abiotic stresses all through their lifetime
on earth. Be that as it may, people began to consider abiotic stress reactions and
resilience following the training of economically important plant species to boost
crop yield. Numerous upsetting conditions cause aggregation of low atomic weight
natural mixes, perfect solutes or osmolytes, stress-explicit proteins, LEA proteins,
heat-stun proteins, phytochelatins andmetallothioneins, and bring about actuation of
numerous detoxification chemicals. Albeit totally extraordinary plant species have
variable limits for pressure resilience, and a couple of them can effectively endure
extreme burdens and still total their life cycles, most developed yield plant species
are exceptionally delicate and either bite the soil or experience the ill effects of
efficiencymisfortune in thewake of being presented to extensive stretches of stresses.
Accordingly, the understanding and improvement of stress resistance in crops present
a difficult fundamental examination issue as well as have noteworthy effect on rural
efficiency. Although significant endeavors have been made during this course, a few
examination holes should be satisfied.

Genome altering is reforming crop rearing to the cutting edge for its few valuable
highlights, for example, usability, exactness, straightforwardness, high particularity,
and okay objective impacts. Genome altering as a progressed sub-atomic science
strategy can create absolutely focused changes in any plant yield. It has given acces-
sibility to an assortment of alterations of genome in various ways, and these are
critical for thinking about an ideal framework. In various advancements previously
reported to the improvement of genome-altering instruments and the improvement
of new achievements, genome altering vows may get on quickening reproduction
and achieving the expanding worldwide food interest. Additionally, change in envi-
ronmental issues plays incredible adaptability, also in the development flexibility of
crops and creation frameworks. For the utility of genome altering devices to improve
in the harvest, the resistance of plant for abiotic stress, yield upgradation, quality
of crops, healthy benefits, and another significant agronomic characteristic will be
unmistakable work zones. All the work is being done by utilizing genome altering
innovations where been primer and does need other improvement for using this effec-
tively in all stages which prompts expanding to the track adequacy, along these lines
the worldwide food security for the developing population in the whole world.

Framework science approaches have given an increasingly all-encompassing
perspective on the atomic reaction in plants once presented to abiotic stress, and
furthermore, the incorporation of different omics to have uncovered another zone
of communications and guidelines. The joining of numerous omics innovations and
coexpression association investigation of qualitieswill be useful in quickening abiotic
stress resistance research soon. Coexpression examinations are helpful in which they
have uncovered key administrative centers that can be controlled to deliver various
phenotypes. The linkage of key administrative center points to phenotypic qualities
will be taken into consideration increasingly for fast advancement in the hereditary
control and yield output of harvest plants. Framework science is in a creating stage
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but then the future appears to be extremely optimistic as it offers a stage to help
the worldwide exploration endeavors devoted to gathering data about every single
segment of a given framework. The job of formal numerical and computational
models in frameworks approaches renders the job of bioinformatics progressively
significant for framework science research. Subsequently, it can be securely antici-
pated the framework thatwill turn out to be considerable in progressively inescapable
in future.
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Chapter 13
Plant Probiotics: Technical Challenges
and Emerging Solutions for Enhancing
Food Crops

Ramna Zia, Malik Nawaz Shuja, Muhammad Ali,
and Muhammad Sohail Afzal

Abstract The increased and non-judicious use of pesticides and fertilizers has asso-
ciated complications on the human, animal and plant health. They may accumulate
in water and soil to reduce diversification of croplands, limit nutrients availability
and diminish genetic diversity of the associated microbes, flora and fauna. Chemical
pesticides and fertilizers are also known to impart global warming, insect, animal
and human genetic disorders and diseases. Plant probiotics, thereby enhancing plant
health, growth and production, not only reduce/minimize the use of chemical pesti-
cides and fertilizers but also are helpful reclaiming the soil beneficial for all living
organisms. However, there are certain shortcomings and challenges associated with
the use of plant probiotics. This chapter circumvents the studies covering, in general,
the origin, classification, mechanism of action, and in specific, the perspectives and
challenges using plant probiotics.

Keywords Biofertilizer · Phytohormone · Plant growth promoting rhizobacteria ·
Rhizobiome · Siderophores

13.1 Introduction

Lack of resources to feed the continuously increasing human population of the world
is a major problem. In this scenario, agriculture is one of the main resources of food
production, and through this we may overcome the problem by the production of
enough food and nutrients. But the reality is not the same as as per our expectations.
Rigorous agriculture has increased the pests and disease occurrence and promoted
the use of pesticides. This wide-ranging agriculture is based upon the practice of
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increased levels of fertilizers (Devi et al. 2020b). These pesticides and fertilizers
contaminate the ecosystem affecting the humans, animals, plants and accumulate
in the water and soil (Thakur et al. 2020; Kumar et al. 2021; Sharma et al. 2021).
So many problems are associated with the intensive agriculture, including reduction
of the diversification of croplands, shortage of soil nutrients, genetic diversity loss,
contribution to global warming etc. These issues are becoming more serious in those
areas where population is increasing day by day, like in Asia and Africa (Pimentel
et al. 2012). With the advent of different food production procedures, food safety
and eminence, the consumers have become more mindful and conscious (Trienekens
and Zuurbier 2008).

Probiotics are considered as useful live bacteria of gut and yeast which are bene-
ficial for the digestive system. Also, these probiotics are good for plants and soil too.
Specifically, when the harmful microorganism overcomes the useful microbes then
disease may occur. The same case applies to the plants and the soil. In contrary to
the microbes stealing the nutrients and infect the soil, probiotics are the microbes
that not only help the plants against harmful microbes but also convert the organic
materials for the growth and health of plants.

Probiotics are usually useful microorganisms, especially the bacteria. They are
recommended for the treatment of almost every disease, starting from digestion and
even includes depression. But the probiotics are not only useful for the animals or
humans, they also maintain the balance among useful and harmful bacteria in soil
and plants. Useful microbes help the plants to grow healthier, attain larger size and
stronger defense mechanism (Kour et al. 2021; Yadav et al. 2021b). Plant probiotics
are the microorganisms which produce beneficial effects on the plants when they are
administered to plants in specific amounts (Bashan and De-Bashan 2005; Jiménez-
Gómez et al. 2016). In addition, they also belong to the bacterial group plant growth
promoting rhizobacteria (PGPR) as they can colonize the plant roots (García-Fraile
et al. 2017; Güneş et al. 2014; Kour et al. 2019; Yadav 2021).

Plant growth promoting bacteria (PGPB) and rhizobacteria (PGPR) promote plant
growth by performing various activities, while probiotics (for life) have been defined
as livemicroorganismswhich,when administered in adequate amounts, confer health
benefits to the host according to the World Health Organization (WHO). By defini-
tion, the term plant probiotics should replace PGPB or PGPR, but these terms are
well established among the researchers in the last two to three decades. The term
PGPR or PGPB as plant probiotics do not make any big difference. The question
that arises here is why one want to do this?? Just to make it catchy for the consumers
(i.e. farmers), many biofertilizer companies are already doing this, or to attract the
researchers working with gut microbes toward the plant–microbe interactions study,
as the former considered being bit low-ranked research in comparison to later. So,
we can say that PGPB and PGPR are quite informative and simple terms to address
the group of bacteria which improves plant growth, health and productivity. PGPB
and PGPR are well-known terms and informative enough. Earlier, they were plain
biofertilizers, and then bioinoculant arrived and now slowly the plant probiotic. For
example, taking picture of self with auto click camera was very much there earlier,
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but suddenly, a ‘selfie’ using cell phone is rage. Who knows, a change of word could
attract more customers to biofertilizers, hopefully.

Some plant probiotics are endophytes microbes living inside the plant cell. Plant
endophytes perform similar functions for plants as probiotics do for humans in
enhancing resistance against disease. Many endophytes like the bacteria that fix
nitrogen (N) help the plants to absorb nitrogen from soil and air (Rana et al. 2020).

According to recent studies, the crop production has increased many folds by
using different bacterial strains. It has shown that these strains not only increased
yield/production of plants, they also have many nutritional benefits associated with
it. The microorganism-based products reported recently include, but not limited to
using, Pseudomonas, Azotobacter and Bacillus (product name Phylazonit MC®)
having positive effect on tomato yield (Le et al. 2018),Azospirillum brasilense,Pseu-
domonas fluorescens (product name Rhizoflo premiumMaìz™) for increased maize
grain yield (Di Salvo et al. 2018), Paenibacillus mucilaginosus for N, phosphorous
and potassiummobilization in soybean (Ma et al. 2018),P. fluorescens, Pseudomonas
sp., Serratia sp., andEnterobacter sp. for increased crop height and arial/pod biomass
in oilseed rape (Lally et al. 2017),Bacillus siamensis in sweet pepper improvedN use
efficiency (Pastor-Bueis et al. 2017a), Pseudomonas oryzihabitans and Bradyrhizo-
bium japonicum increased soybean plant growth (Kuzmicheva et al. 2017), Azorhi-
zobium sp., Azoarcus sp. and Azospirillum sp. (product name TripleN®) wheat crop
resilience to environmental stresses (Dal Cortivo et al. 2017), Serratia marcescens,
Microbacterium arborescens, and Enterobacter sp. increased wheat growth and
yield, Pseudomonas aeruginosa for N uptake efficiency in sunflower (Arif et al.
2017), Pseudomonas rhodesiae, Paenibacillus polymyxa, Rahnella sp., and Serratia
sp. for improved crop height of switch grass (Shanta et al. 2016). For extensive lists
on the efficacy and significance, see Marcia et al. (2019); Stamenković et al. (2018);
Olivares et al. (2017); Glick (2015) and Ferreira et al. (2019).

The role of bacteria in improving the food and crop quality is also reported in
different studies. In order to achieve the benefits to the plants, specific and effi-
cient PGPR is selected. And for this selection, the relation and interaction among
plants, bacteria and different environmental factors are considered. The environ-
mental factors are deeply associated intensewith the growth and efficiency of bacteria
(Trivedi et al. 2012). Plant probiotics help the plants to live in stressful environ-
mental conditions. Like these microbes help the plants to survive with less water,
hotter weather and in saltier soil, the types of stresses which are becoming common
nowadays. To conclude, the microbial communities which are associated with plants
depend on the ecosystem development factors. The objective of this chapter is to
analyze the importance of plant probiotics in the context of changing agriculture
trends and the growing world population, while considering environment, health and
sustainability.
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13.2 Overview of Plant Probiotics

13.2.1 Origin of Plant Probiotics

The term plant probiotic bacteria (PPB) was first introduced by the Haas and keel to
indicate a group of useful microbes benefiting plants. These microorganisms mainly
help the plants in the following main three ways: (i) Increasing efficiency in niche
establishment, (ii) the capability to generate induced systemic resistance (ISR) in
the host, and (iii) defending against incompatible pathogens. This term PGPB was
proposed by Kloepper and Schroth (1980) (Kloepper et al. 1980a). PGPB are natu-
rally occurring soil bacteria having the ability to increase productivity and immunity
in plants in a beneficial way (Prasad et al. 2021). The main roles of these bacteria
are, but not limited to:

(a) Supplying nutrients to the plants
(b) Initiating the plant growth by the production of phytohormones
(c) Reduce the activity of plant pathogens
(d) Improvement of soil structure
(e) Bioaccumulation or microbial stealing of the inorganic compounds to form

soil.

13.2.2 Classification of Plant Probiotics

Plant probiotic bacteria are classified into two subgroups based on their relationship
and interaction with the host plants:

i. Free-living rhizobacteria that live outside the plant cell, thereby increasing the
plant cells growth with the help of metabolites that they release in rhizosphere.

ii. Endophytes that live inside the plant cells that directly exchange themetabolites
with the host cells, thereby increasing the growth of plant effectively.

Endophytic bacteria lives within the plant tissues or the intracellular spaces (Gray
and Smith 2005; Hardoim et al. 2015). But in some cases, they penetrate inside
the host cells by forming a true mutualistic relationship with host. Rhizobia are the
best-known mutualistic symbiotic bacteria to fix the N for host plant. They form the
symbiotic associationwith the leguminous plants in a specialized root structure called
root nodules (Brewin 1991). A large number of microorganisms especially bacteria
are present in rhizosphere. They have symbiotic and non-symbiotic relationship with
the plants by which they not only benefit the plants but also get nutrients for their
own survival. That’s why rhizosphere is called as the “House of microbes” due to
the presence of a large number of microbes and microbial activities. Rhizobiome
is the community of microorganisms which are linked with the plant roots. Their
composition differs according to the stages of growth of plant roots. These microbes
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can be pathogenic and beneficial too (Kundan et al. 2015). Plants probiotic bacteria
benefit the plant by nutrient uptake through different ways:

(a) Changing the nutrients of soil
(b) By making nutrients accessible to plants
(c) By increasing the plants access to those nutrients (Menendez and Garcia-Fraile

2017).

Along with these, the plant probiotic bacteria also have many other features to
promote the plant growth, for instance, the phytohormone biosynthesis (Menendez
and Garcia-Fraile 2017).

13.3 Mechanism of Action of Plant Probiotics

Plant growth can be improved by rhizobacteriawith the help of differentmechanisms,
which are basically divided according to their mode of action (Fig. 13.1) given as
below:

i. The synthesis of the elements which are taken directly through plants

Fig. 13.1 Mechanism of
action used by the plant
growth promoting bacteria in
plants
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ii. The measure of the nutrients
iii. The initiation of the resistance against plant stress
iv. Inhibition of plant diseases.

The plant probiotics have two types of mechanism of actions which are direct and
indirect. They are described in detail as follows.

13.3.1 Direct Mechanism of Action

In the direct method, those bacterial traits are used which help in the direct growth
of the plants. They include the production of auxins, N fixation, ACC deaminase (1-
aminocyclopropane-1-carboxylate deaminase), cytokinin, gibberellin, phosphorus
solubilization and sequestration of Fe by the bacteria siderophores (Mondal et al.
2020; Hesham et al. 2021). These mechanisms help the plant to improve their growth
and quality directly, but these actions vary from species to species on different plants.
Organic compounds which stimulate and improve the plant growth are called as the
plant growth regulators. At very low concentration, they stimulate plant growth by
interactingwith the physiological andmorphological processes. Somedirectmethods
are explained in the following sections.

13.3.1.1 Nitrogen Fixers

N is quite abundant on the Earth. But it is required in very less amount to the plant for
the formation of proteins and synthesis of amino acids. Some prokaryotes have the
ability to convert the atmospheric nitrogen directly into organic nutrients which are
taken up by plants. Nitrogen fixation is the process in which atmospheric nitrogen is
converted into the utilizable nitrogen that changes to ammonia. Biological nitrogen
fixation usually takes place at mild temperatures with the help of nitrogen-fixing
bacteria (Rana et al. 2019b). The complex of enzymes which help in the N-fixing
process is called as “Nitrogenase complex”. Alongwith the free-living rhizobacteria,
members of the genera Azospirillum, Azotobacter, Beijerinckia, Bacillus, Paeni-
bacillus, Burkholderia, Gluconacetobacter and Herbaspirillum are also N-fixing
microorganisms. The members of genus Azospirillum are found in the temperate
zones and linked with the cereals by growing their crop yield. They are also related
to the sugarcane and leguminous plants (Sahoo et al. 2014; Tejera et al. 2005).
Members of genus Azotobacter are involved in N fixation in the rice crops as well
as some species of this genus has also been involved in several cereals, like oat,
barley, wheat, rice, oil plants and other plants as the biofertilizers to improve their
growth rate (Wani et al. 2013). Some species from the genera Gluconacetobacter,
Azospirillum and Herbaspirillum are elaborated as the endophytes in the sugarcane
plant for N fixation. The members of the genus Herbaspirillum are also involved as
the endophyte in several crops for N fixation, and these traits make them suitable for
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application. Many species also live inside the root tissues and form connection with
the root nodules and fix the nitrogen, for example, symbiosis between rhizobia and
legumes and cyanobacteria and cycads (Chowdhury et al. 2015; Kao et al. 2003).

13.3.1.2 Phytohormone Biosynthesizer

Phytohormones are the chemical messengers that play important roles in the growth.
They are organic molecules involved in many processes of the plant development at
different stages. These phytochromes help in shaping the plant, affect the seedgrowth,
senesces of leaves and flower sex is determined by them. They also affect the gene
expression, levels of transcription method, cell division and growth of cell. During
the plant growth, all themajor activities like flower formation, seed development, cell
division, ripening of fruit and response to stress all are controlled by phytohormones
(Tiwari et al. 2020). Under many stressful conditions, PGPB helps in altering the
levels of phytohormones in response. Many endophyte bacteria have the ability to
synthesize these phytohormones. Biosynthesis of the phytohormones by different
microorganisms may cause the plant pathogenesis. But many beneficial bacteria
have the ability to produce these hormones for the positive growth of the plants
(Trewavas 1981; Tiwari et al. 2020). Some beneficial phytohormones involved in the
plant growth and development include auxins, cytokinin, gibberellins and ethylene.

Auxins are the phytohormones which are produced by different bacteria and these
hormones help in coordination between different activities in plant cell body. Indole-
3 acetic acid (IAA) is one of the well-known auxins which is most active in plants
(Spaepen et al. 2007). Cell elongation, cell division, differentiation and extension
are the major roles of the IAA in the cell. Members of Bacillus sp., which produce
auxin in plants exert the positive effects on the development of several crops, like in
potato and rice. IAA is synthesized by different pathways and is mostly produced in
the buds and young leaves. It also plays a broader role in leaf and stem abscission
and is known to help in DNA synthesis. Tryptophan plays an important role in the
production of IAA as a negative feedback process (Suman et al. 2016).

Cytokinins also play an important role in the cell division of roots and shoots of
plants. They usually help in improving the cytokinesis in plant cells (Kour et al. 2020).
They also increase the sensitivity of vascular cambium and enhance the vascular
differentiation and apical dominance in root cells so that farmers use the cytokinin
for increasing the overall growth of plants (Arkhipova et al. 2007). Members of the
Bacillus sp. also produce cytokinin in different plants, like in cucumber. In the same
way the thuja seedlings which are inoculated with the cytokinin have more resistance
against stress than simple seedlings.

Gibberellins are naturally produced by plants and mostly increase the seed germi-
nation in plants (Rai et al. 2020). They are also involved in stem and leaf growth,
as well as in the flower induction process. They also help in the fruit development
process and enhance the process of seed germination, sex expression and stem elon-
gation (Bottini et al. 2004). Bacillus cereus enhances the growth rate in red pepper
plants by producing gibberellins.
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At the end, ethylene is the simplest molecule known for the regulation of several
processes in the plant. It induces many different physiological changes in plant cells
during growth. Ethylene increases the fruit ripening and flower blooming process.
It also helps in the leaf abscission. Moreover, it also helps in the seed germination
process as well as in the formation of secondary root and elongation of root hairs too.
According to the species of plants and the types of tissues, the production of ethylene
also varies. By the breakdown of methionine, which is present in all plant cells, the
ethylene is formed. Mostly in the darkness it is produced in dividing cells. The most
important effect of ethylene is fruit ripening and that’s why it is also called as aging
hormone in plants. Ethylenehas a simplest structure and it is produced in plants during
the extreme conditions like extreme temperature, flooding and radiations exposure
etc. (Tiwari et al. 2021;Yadav et al. 2021a) (Suyal et al. 2021). Some bacteria produce
ACC deaminase in stressed conditions to regulate the production of ethylene. To
obtain ammonia and α-ketobutyrate, the ethylene precursor (ACC) is hydrolyzed.
This obtained ammonia and α-ketobutyrate is then used for N and carbon source in
plants. Therefore, bacteria maintain the ethylene level in the plant cells to prevent
the plants from negative effects of high concentration of ethylene. Ethylene which
is produced as a result of stressed conditions is called as “stress ethylene” (Sharaff
et al. 2020). ACC deaminase was first obtained from the Pseudomonas and they
help the wheat seedlings in growth. Rhizobia and related species also produce ACC
deaminase. However, by using the ACC deaminase in combination with Rhizobium
increases the growth and quality of mung beans under saline stress conditions. In the
sameway,whenSerratia andPseudomonasACCdeaminase are used in combination,
they increase the product yield of wheat plants under saline conditions (Zahir et al.
2009).

GenusPaenibacillus, Enterobacter and relatedEnterobacteriales andRhizobia all
of them are known as phytohormones producers in different crops, like rice, barley,
wheat, pepper, tomato, red carnation, wheat plant crops, lettuce, carrot etc. (Yanni
et al. 2001, 2016).

13.3.1.3 Nutrient Mobilizers

Plant probiotic bacteria usually act as the phosphorus (P) and potassium (K) solu-
bilizers in the plant cells. They also help in the siderophores production within pant
cells. After N, P is the second largest essential nutrient required in plants for their
growth. Due to its insolubility in soil, this element is provided to plants exogenously
in the form of chemical P fertilizers. But it becomes insoluble rapidly when this
is applied as fertilizer and plants can’t uptake it (Yadav et al. 2020). Since most
of the soils don’t have phosphorus in adequate amounts and farmers cannot afford
the expensive phosphate fertilizers, therefore, the P-solubilizing bacteria (PSB) are
a great replacement of these toxic and environment destructive P fertilizers. To
solubilize the phosphate, bacteria mainly use two methods, that are:
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a. Releasing the organic acids and affecting the mobility of phosphorus by ionic
interaction

b. By release of phosphatases which unbind the phosphate group from the organic
compounds.

Many of the soil bacteria like genera Micrococcus, Pseudomonas, Bacillus,
Paenibacillus, Deftia, Azotobacter, Klebsiella, Pantoea and Flavobacterium are the
common bacterial species which act as the efficient phosphate solubilizers. Many
other species of plant probiotic bacteria also act as the beneficial microbes and
improves the growth of strawberries, ornamental plants, legumes, tomato and pepper
(Peix et al. 2001; Schachtman et al. 1998).

The third most demanding essential nutrient for plants is K after N and P. Insol-
uble K forms are also available produced by some forms of rhizobacteria (Verma
et al. 2017). Many types of K-solubilizing bacteria are present in nature. Along
with Firmicutes, there are many examples of K-solubilizing bacteria including the
genera Bacillus and Paenibacillus. Bacillus increased K uptake in wheat plants.
Paenibacillus is known to increase the dry weight of the black pepper. In the same
way, the plants inoculated with Bacillus and Paenibacillus showed more growth rate
and increased plant biomass. Plants with the K-solubilizing bacteria also have more
chlorophyll in their leaves. Moreover, in the cucumber, eggplant, pepper, groundnut,
tea plants and in the tobacco plants the K-solubilizing bacteria shows the posi-
tive effects on growth and development. By increasing the K content in the plants
increases the process of translocation. A higher volume of fruits is obtained through
the translocation of carbohydrates from leaves to the fruit (Bagyalakshmi et al. 2012;
Zhang and Kong 2014).

Iron is one of the most abundant elements, but it is not available to plants in
adequate amount. It is present mostly as ferric ions which are not soluble in water.
However, plants require the large amount of iron for their growth. Siderophores
are the small iron chelating peptide molecules with low molecular weight (~400–
1000 Da) and they have side chains with which ferric ions can bind easily. In case
of Fe3+ deficiency, these siderophores fulfill the deficiency with the help of soil
microbes. In stress conditions, they are known to help plants to cope with stresses.
Furthermore, they could be species-specific. The mechanism of supplying the Fe
to plant cells through the soil microbes is not known yet. The strains of Rhizobia
are well-known siderophores and they improve the health and growth of carrot,
lettuce, pepper, tomato, strawberry, red carnation and chickpea. Siderophores like
Phyllobacteriumendophyticum (promotes strawberries production), strains of genera
Micrococcus and Stenotrophomonas (improve the growth of canola and maize) and
Chryseobacterium (supplies Fe to famished tomato) help in improving the growth
and production of plants (Maheshwari et al. 2019; Radzki et al. 2013).
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13.3.2 Indirect Mechanism

Disease control through the application of microorganisms is an environment-
friendly approach (biological control). The biocontrol bacterial ability is known to
help improving plant growth indirectly. This indirect use is of considerable interest in
(i) the development of understanding these primary mechanisms and which biocon-
trol bacteria is used, and (ii) use of the biocontrol bacteria commercially instead of
chemical pesticides.

13.3.2.1 Antibiotic and Antifungal

In the indirect methods, the plant growth promoting bacteria involves the ability
to lessen the harmful effects of certain plant pathogens on the plant growth. The
production of antibiotic and lytic enzymes is the main feature of the plant growth
promoting bacteria. This production of antibiotic compounds prevents the propa-
gation of fungal and other pathogenic components in plants. They can also reduce
the deleterious effect of plant pathogens on the growth rate. Lytic enzymes, like
chitinase, cellulases, 1,3-glucanases, proteases and lipases, can lyse the cell walls
of many harmful bacteria. In the same way, many antibiotics are also produced in
resistance to many propagating pathogens in the plants (Kundan et al. 2015; Devi
et al. 2020a).

But the main disadvantage of depending too much on antibiotics producing
bacteria as biocontrol agents is the development of resistance against the specific
antibiotics. To prevent this, scientists have applied the hydrogen cyanide producing
biocontrol strains and one or more antibiotics at a time. This method is so useful
because due to much less bioactivity of hydrogen cyanide, it acts with bacterially
encoded antibiotics synergistically. Bacteria also act as the antagonistic agents by
the production of more than one type of antibiotics against the phytopathogens and
fungi, including Botrytis cinerea, Sclerotium rolfsii, Fusarium oxysporum, Phytoph-
thora sp., Rhizoctonia solani, and Pythium ultimum (Frankowski et al. 2001; Glick
et al. 2007; Kim et al. 2008).

13.3.2.2 Induced Systemic Response

PGPB also have the ability to trigger another phenomenon in plants which is called
as induced systemic resistance (ISR) and it is phenotypically likely for the process
of systemic acquired resistance (SAR). SAR occurs when defense system initiates
in response to an infection by pathogens in plants (Pieterse et al. 2009).

ISR is the mechanism in which at some particular sites of plants (where infection
occurs) the resistance increases many times than other parts. In the process of ISR,
the defense occurs only when pathogens attack on plants and only ISR positive plants
react faster against the pathogenic attack. ISR is considered as the first line of defense
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as it is not generalized response and is not specific any particular pathogen. Within
the plant, ISR involves the jasmonate and ethylene signaling, and these hormones
activate the defense systemof host against the attack of different pathogens (Verhagen
et al. 2004).

13.3.2.3 Production of Siderophores

Another mechanism is the production of siderophores to prevent the plants from
some pathogens by reducing the amount of iron which is available to pathogens.
Siderophores are the small peptide molecules having side chains and functional
groups for binding with ferric ion. They act as iron chelators and iron carriers
(Rana et al. 2019a). They have high affinity for some ligands. Large number of
siderophores have been screened and used by microbes and they might be species-
specific too. PGPBwhich secrete the siderophores prevent the plants by proliferation
of pathogens through the production of siderophores with a high affinity for iron.
These siderophores bind to most of the Fe+3 into the host plant. This prevents the
pathogens from attaining the iron for their growth. So, pathogens can’t thrive into
host due to lack of iron because this lack of iron cause them to lose the ability to
act as pathogen. The effectiveness of this method is based on the reason that PGPB
siderophores have much higher affinity for iron than fungal siderophores (Kloepper
et al. 1980b).

13.3.2.4 Competition

Although it is not easy to demonstrate but some evidences show that competition
among PGPB and pathogens reduces the chances of disease and infection stern-
ness. For example, non-pathogenic microbes which are present abundantly colonize
rapidly on plant surfaces and use most of the available plant nutrients. This makes
difficult for pathogens to grow efficiently. Like in the series of experiments, scientists
showed that when plants are treated with leaf bacterium Sphingomonas sp., it prohib-
ited the bacterial pathogen Pseudomonas syringae from triggering the pathogenic
effects (Innerebner et al. 2011).

13.3.2.5 Quorum Quenching

For the detection of similar bacteria in the environment, bacteria follow the process
of quorum sensing. In the growing bacterial cells, when they acquire the desired
cell density, the mature bacterium senses the cell density through chemical signaling
and starts altering the metabolism through turning on the different related genes. In
this way, the proximally corresponding bacteria start working in a coordinate way
(Cornforth et al. 2014).
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Mostly, bacteria synthesize lowmolecular weight chemical molecules called auto
inducers which are secreted outside the cell. By the increase of bacterial cell popula-
tion, the level of auto inducers also increases. It increases to a threshold level and at
this level they bind to the bacterial cell receptors and causes change in gene expres-
sion of bacteria. Through this change, the pathogenic bacteria become more virulent
at a specific cell density. By disturbing the quorum sensing, the increase in virulence
of pathogens can be decreased or stopped to inhibit plant growth (Chan et al. 2011).

For the quorumquenching, there aremanymethods.Oneof them is using lactonase
producing PGPB. Lactonase degrades the plant pathogens which produce autoin-
ducers. Seedlings are also pre-treated by these PGPB to avoid the pathogens. This
clever trick is successful in laboratory till now but haven’t applied in field yet (Glick
2015).

13.3.2.6 Phage Therapy

The lysis of some bacterial pathogens can be done easily by using the bacteriophages.
And this process of treating bacterial infection with the phages is called as phage
therapy. This process is used against plant pathogens in case of plant wilt diseases.
It can also be done by the use of bacterial viruses (Álvarez and Biosca 2017). The
bacterial phytopathogen must be identified well to make this trick successful. It is
also possible to isolate such bacteriophages which can lyse the only targeted strain
and won’t disturb the other strains. In this method, a mixture of two or three different
types of bacteriophages which are against the targeted pathogen is sprayed over the
diseased plant. We use the mixture of two or three different strain to avoid the risk
of formation of bacteriophage resistant mutants of the targeted pathogen. It might
happen due to the presence of different binding sites of bacteriophages on the target
cell surface (Glick 2015).

Bacteriophages are sprayed onto the targeted plant in the dusk when UV light
intensity is so low because bacteriophages are so sensitive to UV light. Andwith such
precautionary measures, bacteriophages needed to spray daily, weekly or monthly
to avoid the pathogenic attack on the plant (Buttimer et al. 2017). Recently, few
bacteriophages have been licensed as biocontrol against bacterial spot of pepper
and tomato causing bacterial pathogen Xanthomonas campestris pv. Vesicatoria,
cancer disease causing pathogen Pseudomonas syringaepv. Actinidae in kiwi fruit,
and bacterial speck causing pathogen Pseudomonas syringae pv. Tomato in tomato
crops (Linus et al. 2017; Peitl et al. 2017; Yu et al. 2016).

13.4 Plant Probiotics and Plant Nutrient Content

Nowadays, scientists are working on different methods to improve the quality of
food for a better and healthy life. They are trying to improve food quality by getting
food with more nutrients in different ways, just like vitamins are essential for life and
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their deficiency in food and body can result in many severe issues. Due to importance
of vitamins the WHO presented a proposal to improve the essential vitamins and
nutrients in the food to overcome such malnutrition problems.

Vitamins are the most essential nutrient and are highly recommended to intake in
daily dose. Berry crops are considered as one of the good sources of the vitamins in
our diet. Berry crops also have the anticarcinogenic and antimutagenic properties. By
introducing the plant (PGPB) in berry crops the amount of vitaminB9 increases to the
double level and makes the fruit nutrient filled. According to the literature, it is also
revealed that some vitamins have the antioxidant properties. For instance, strawber-
ries are a good source of antioxidants, specifically due to their anthocyanin contents.
By inoculating the plant growth promoting bacteria in combination with mycorrhizal
fungi results in increased level production of anthocyanin in the strawberries.

Tomatoes are the best-known antioxidants. They are one of the most cultivating
crops in the world which are used for such studies. The amount of vitamin C and
phenols increases in the tomatoes when they are cultivated with the induction of
B. licheniformis. Basil is a medicinal plant and used worldwide for cooking. Its
antioxidant activity increases when it is treated with three bacterial species: Pseu-
domonas sp., Bacillus lentus and Azospirillum brasilens. Also, a noteworthy change
in leaf chlorophyll is also observed. Peppers are economically significant agricultural
crop and they are also well-known antioxidants. Peppers show higher antioxidant
properties when they are introduced with Rhizobium leguminosarum (Silva et al.
2014).

Carotenoids play an important role in the prevention of plants from the photoox-
idative damage and maintain the structure of the plant. A red-colored carotenoid
named lycopene is present in tomatoes and act as anticarcinogenic compounds in
human diet. Nowadays, scientists are trying to increase the carotenoids in crops (due
to their importance) by using the biofertilizers which are based on bacteria.

PGPB have acquired multiple ways through which they facilitate the plants
through nutrients availability and absorption, and further enhance quality and growth.
For example, they fix N, solubilize phosphate and produce phytohormones for nutri-
ents uptake and improving absorption in plants. By using the PGPB, the usage of
chemical fertilizers can be reduced to protect our environment and can increase the
plant growth (Bhardwaj et al. 2014).

Vegetables, rich in dietary nutrients, fibers and phytohormones can also be
improved by using the PGPB. For example, broccoli vegetable is full of dietary
nutrients and phytohormones and is used widely all over the world. By applying
the PGPB (Bacillus cereus, Brevibacillus reuszeri and Rhizobium rubi) to the roots
of broccoli increases the yield rate of it. As well as, these bacteria also increase
the amount of nutrients (N, P, K, Ca, S, Zn, Mg, Fe and Cu) and chlorophyll in
the vegetable (Yildirim et al. 2011). In the same way, the strains of Azospirillum
brasilense Sp7 and Bacillus sphericus can be used as biofertilizers to increase the
nutrients content (N, P,K, Ca andMg) and they also increase their growth and product
yield rate (Vayssières et al. 2009).
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13.5 Plant Growth Promoting Probiotics and Omics
Technologies

Different advanced technologies have empowered us to gain familiarity about struc-
ture and functioning of microbes which are associated with plants growth. For the
selection of efficient bacterial strains having improved traits like uptake of nutrients
and biotic and abiotic tolerance, the advancements in omics technologies are helping
a lot by exploring the metabolic and regulatory network in plant–PGPB interac-
tions. Omics technologies help to disclose the whole accompaniment of DNA, RNA,
proteins and metabolites of the soil microbes which affect the plant development and
help in stress lenience. Microbiome affects those plant traits which are involved in
growth and development. This microbiome is shaped by various factors involving
temperature, pH and exudates from microbes (Lakshmanan et al. 2014). Potential
PGPB can be linked with enhancement of plant health with the help of multiple data
taken from bioinformatics, statistical tools and in silico models. Association of a
specific group of bacteria with a treatment group can be enabled by the statistical
tools (Rebollar et al. 2016).

For the management of microbiome to heighten plant functioning and increase
the soil health, omics technologies play an imperative role in the rhizosphere engi-
neering (Fig. 13.2). Through rhizosphere engineering the bacteria are engineered by
known signaling networks and players which are tangled in plant–PGPB interaction
and this led to negligible or no environmental impacts (Baltrus 2017; Quiza et al.
2015). The identification of novel mechanisms which are involved in the interactions
among plants and PGPB can be done by massive genomic sequencing. Many of
the plant and pathogen species are completely sequenced, assembled and annotated.
For example, the two bacterial species, Pseudomonas and Xanthomonas, contribute
to plant–microbe interaction expressively (Quirino et al. 2010). Proteins which are
involved in plant innate immunity are identified by the extracellular proteome map
of PGPB Bacillus amyloliquefaciens FZB 42 and it plays an important role in the
establishment of plant–microbe interaction (Kierul et al. 2015).

Growth of microbes is enhanced by the specific plant genotypes. Now the rhizo-
sphere can be re-engineered by inoculation with microbes with the help of new
tools. These inoculating microbes form a connection with innate microbiome which
is vanished due to unnecessary use of chemical fertilizers (Wallenstein 2017). For
example, the mainmolecule surfactin which acts as a signalingmolecule for commu-
nication with other microorganisms and stabilizes the metabolism of carbon and
synthesis of fatty acids is released by Bacillus amyloliquefaciens strain. To under-
stand the mechanisms of biotic and abiotic stress tolerance in PGPB-inoculated
plants, the comparative proteomic studies can be helpful (Zhi et al. 2017).

Metagenomics and meta-transcriptomics provide the ability to study the common
microbial functions that are based on the individual microbial population and exist
in a microbial community. A latent approach to screen the communication between
different strains at the molecular level is the system-wide omics technology paired
with computational approaches (Müller et al. 2016). Machine learning approaches
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Fig. 13.2 Applications of OMICS technologies and plant probiotics

can also be used to predict the ratio of productivity which is based on PGPB
composition (Chang et al. 2017).

Metabolomics offers comprehensive information concerning biological pathways
which are involved in each experiment. It also gives evidences about gene to metabo-
lite interaction. For example, Streptomyces hydrogenans strain, which is a soil
microbe, produces a compound which acts against the Meloidogyne incognita and
fungal phytopathogens as the potential nematicidal agent (Kaur et al. 2016). For the
prediction of gene function and regulatory networks, metabolomics has provided
many tools with the help of other omics like transcriptomics and proteomics. Overall
proteomics and metabolomics can be used for the screening of those significant
PGPB strains which can be used for the crop management and commercialization of
bioformulations (Urano et al. 2010).

To analyze the protein–protein and protein–metabolite interactions and for the
construction of gene networks, the data from transcriptomics, metabolomics and
proteomics can be used widely. Similarly, next-generation techniques are also used
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to study efficient significance of the PGPB antibiotic resistance and its significance
to plant growth endorsing activity. Omics technologies not only help in finding
out the protein and biological pathways for crop growth improvement but also
unveil the PGPB working and their interaction with host plant and soil in different
environmental conditions (Crofts et al. 2017; Pretali et al. 2016).

13.6 Perspectives and Challenges of PGPB Applications

Development of PGPB on the commercial scale was initiated more than 100 years
ago. In the beginning of 1900s, Bacillus thuringiensis was the very first commer-
cial asymbiotic which was discovered as an insect pathogen. The first commercial
biopesticide was the Sporeine, which is a compound based on B. thuringiensis. In
1983, it was available in France. In the 1960–1970s, the serious development of
industrial products started which were based on B. thuringiensis. Due to tremen-
dously increased practice of chemical fertilizers, the damage to natural environment
has increased to a hazardous level. Because of this unsafe usage of chemical fertil-
izers and the increased knowledge about plants and soil relationship, it has increased
the development and use of biofertilizers on large scale. The progression has also
initiated the segregation and assortment of best plant growth promoting competences
by direct or indirect methods to improve the plant growth.

Since 1950s in many countries, new types of fertilizers based on PGPB have been
available due to their positive and best effect on agricultural growth. The process of
development of PGPB is so complex as it requires highly trained and experienced
specialists of various fields. On the commercial scale the product must be produced
on large scale, well preserved and formulated in a way to ensure the biocompatibility
for commercial delivery (Fig. 13.3).

13.6.1 The Global PGPB Market

The markets of biofertilizer and biopesticide are divided on the basis of type of
product, active ingredients on the product, application method, geography and type
of crops. The PGPB are commercially used as biofertilizers and biopesticides.
According to the Transparency Market Research report that up to 2014 the market
value of global pesticides was US $1.72 billion. It is expected to touch US $4.17
billion by the year 2023. Out of the total chemical market, the biofertilizers market is
representing only 5% currently. It is due to dominance of N-fixing organisms over the
global biofertilizer market because nitrogen is an essential compound for the plants.
According to survey, in 2013 the North American region had the highest demand
for biofertilizers. Also, it is reported that the highest growth for biofertilizers in the
years 2013–2019 is in the region of Asia Pacific (Yaish et al. 2016).
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Fig. 13.3 Stages of development of plant probiotics at commercial scale and in laboratory

13.6.2 Challenges with Commercial Application of PGPB
Products

According to literature study, the use of PGPB as biofertilizers and biopesticides
is increasing day by day in agriculture. In many developing countries, bacteria are
used effectively mainly due to the additional benefits, like they produce renewable
environment-friendly compounds that may enhance soil fertility as well as activate
the soil biology. Furthermore, PGPB also can reduce the load of abiotic stress in the
soil (Bharti et al. 2016; Sharma et al. 2016; Timmusk et al. 2014, 2015; Timmusk
and Wagner 1999).
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One of the main points is the specificity of the PGPB, as the conventional chem-
icals for agriculture are broad spectrum products and have effects on multiple types
of organisms. But on the other hand, PGPB are highly targeted and specific. This
can result in variable results by efficiency and eminence of the product. Several new
approaches will be required to apply the PGPB products for the growth, shipping,
storage and application of these products when they are taken out of laboratories and
greenhouse to field and large-scale commercialization field. In the same way, one
popular myth is that bacteria are not good for health and they only cause diseases.
That’s why before the commercialization this must be addressed widely so that
society could accepts the positive aspects and benefits of PGPB in agriculture.

13.6.3 Challenges in Product Registration

The process of regulation and documentation of the PGPB products is not without
complications and is time taking. Any PGPB product cannot be used commercially
without registering itwith the health department. The active agentwithin the biofertil-
izer must be registered and authorized by directorate general for health and consumer
affairs. This process may take from months to several years. Different countries
respond with the different requirements according to their soil fertility and climate.
High fees are implemented, and this differs country wise.

13.6.4 Antibiotic Resistance of PGPB

Many of the bacterial strains isolated from the soil are used in the greenhouse condi-
tions and as inoculants to improve the plant growth. But these bacterial species
have the antibiotic resistance genes (ARGs). These ARGs are more dominant in the
Proteobacteria and Bacteroidetes and may create hurdles in the application of PGPB
in the field (Crofts et al. 2017; Kang et al. 2017). Overuse of the antibiotics in the
animals farming and in the pharma engineering is the main cause of spreading of
ARGs in the soil. Many of the known PGPB contain more than one chromosomal
and plasmid-borne ARGs, based on genome sequencing data. In some soil, bacteria
plasmids contain the bac gene which persuades the resistance against bacitracin
produced by Bacilli (Li and Ramakrishna 2011).

In the major groups of reported PGPB, antibiotic resistance associated with these
microbes is ignored widely. So, there is an imperative need to contemplate these
adverse facets before applying them into the field. To exploit the advantageous
features which are linked with PGPB, various methods are used. It includes the
use of microbes having a little of ARGs and optimization of metabolite production
for the plant growth in the PGPB. In the same way to avoid antibiotic resistance,
genome editing tools like CRISPR/Cas9 can also be used (Perron et al. 2015; Van
Goethem et al. 2018).
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Fig. 13.4 Mechanisms
involved in the antibiotic
resistance of plant probiotics

In the soil bacteria,modern anthropogenic activities are also contributing in antibi-
otic resistance. In these strains such types of genes are present which deliberate the
resistance against tetracycline, penicillin, carbapenem, cephalosporin, beta-lactam,
aminoglycoside and chloramphenicol, as they are naturally produced by soil bacteria.
In the antibiotic resistance different mechanisms are involved including interfer-
ence with cell wall synthesis (e.g., β-lactams and glycol-peptides), cell membrane
inhibitors (polymyxins and daptomycin), protein synthesis inhibitors (tetracycline,
chloramphenicol, aminoglycosides) and nucleic acid synthesis inhibitors (fluoro-
quinolones and rifampicin). Many bacteria also show the intrinsic resistance against
antibiotics (Fig. 13.4). For example, many gram-negative bacteria show intrinsic
resistance to antibiotics because they cannot cross the outer membrane. As in the
case of vancomycin, which targets the D-Ala-D-Ala peptides involved in the pepti-
doglycan cross linking is only effective in gram-positive bacteria and not in the
gram-negative bacteria (Cytryn et al. 2017; Koskiniemi et al. 2011). It is not clear
yet either antibiotic resistance is due to exposure of antibiotics in PGPB or due to
production of antibiotics by PGPB. But some evidences indicate that the reason for
this resistance is the presence of ARGs.

13.7 Conclusion and Future Prospects

The main objective of PGPB application is the production of important properties
like biological activities to target the plant. This needs advanced approaches so that
the product can find the targeted location easily. In the last decade, technology has
provided us advancements to comprehend the interaction between PGPB and crop
plant. Due to increasing costs of agrochemicals and demand for green technologies
in the society, there is a high demand of the PGPB, and it is increasing day by day.
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According to an estimate, about 12% increase per year in PGPB has been reported
in the global market (Calvo et al. 2014).

Insights into themechanism bywhich PGPB improves plant growth have revealed
an understanding about different angles of disease suppression by these biocontrol
agents. But despite of these researches and knowledge, the results are not always the
same as expected when applied to the field. So, there is a need to find out the natural
microbiome of each plant and then design the PGPB only specified to that plant
which will be based on plant’s needs and environment. The productive efficiency of
a PGPB must be more enhanced by considering the soil conditions. At present, the
commercial production is achieved by using many PGPB like Burkholderia, Pseu-
domonas, Rhizobium, Azospirillum, Azotobacter, Bacillus and Serratia sp. in a large
scale. But under the field conditions, the main holdups are consistency, shelf life and
efficiency of the PGPB. For example, gram-negative bacteria have shorter life span
compared to the gram-positive bacteria. So more basic research is needed in future
to maximize the shelf life of PGPB while enhancing the plant colonization. Some of
the PGPB are also reported as the opportunistic human pathogens like Burkholderia
cepacia and Pseudomonas aeruginosa. These PGPB cause risks for human health
ecologically. Before the manufacturing of such kind of PGPB at the commercial
scale they must be addressed appropriately. Another aspect which needs to be high-
lighted is the optimization of the fermentative process to produce microorganisms at
industrial scale. The cost of growth media to produce microbes must be cheap and
feasible and for that residues can also be used (Pastor-Bueis et al. 2017b).

As PGPB can provide multiple benefits including high production rate of crops,
pathogen control and soil remediation, there is a need and potential to identify the new
PGPB specifically from the extreme environments for their downstream applications.
Further advancements in the high throughput technology to identify, characterize and
find out the production of microbes will lead to efficient and increased utilization
of PGPB in the field. The future of PGPB is based on its acceptance as a green
technology. Green technology provides better commercial and ecological paybacks
as compared to the chemical manures. Now as a main player of the green technology,
there is a window for PGPB to be successful in the upcoming days. But it is the one
side of the coin. On the other side of coin, the possible negative impacts of PGPB due
to antibiotic resistance and the lack of long-term studies on the effect of PGPB on the
soil microbes can be seen clearly. At present this facet of the PGPB is unheeded by
the scientists fully with the available knowledgewhich is not adequate and equivalent
to the tip of an iceberg.

Finally, these apprehensions can be addressed by directing the field trials of
PGPB for several years. Theoretically, it is possible to achieve multiple responses
by applying microbes onto plants. However, it is sometimes difficult to observe the
same effects of microbes onto plants in the field even if it is observed in lab under
controlled conditions. Also, by considering the changes in plant growth and PGPB
by using the omics technologies which is tailed by the study of targeted biomacro-
molecules (genes, proteins andmetabolites) the future of PGPBcan be revolutionized
(Ramakrishna et al. 2019).
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Chapter 14
Biofertilizers: Microbes for Agricultural
Productivity

Fatemeh Salimi and Javad Hamedi

Abstract The world has witnessed explosive population growth, which requires an
efficient food supply. To this end, various efforts have been performed in agricul-
ture among which the applying chemicals with anti-pest and fertilizing activity was
a strategy of choice. However, implementation of such compounds has shown to
have serious drawbacks, from the reduction of naturally occurring organisms which
control the pests to the concerns arisen from environmental pollution. Therefore,
the discovery and development of biological strategies have attracted much atten-
tion. Accordingly, there are well-known plant growth-promoting microorganisms
(GPMs) with great potentials in improving the growth of plants via providing nutri-
tion and alleviating biotic and abiotic stresses. Herein, a comprehensive study was
performed to gather together the most updated knowledge on these mechanisms.

Keywords Agricultural applications · Biofertilizers ·Microbiomes · Sustainability

14.1 Introduction

Different soil properties such as its texture, structure, and nutritional ingredients
directly influence plant growth, among which, the latter property shows great
importance. There are non-minerals (hydrogen, oxygen, and carbon), and minerals
(macronutrients and micronutrients) obligatory for the growth and development of
plants. Carbon dioxide and water provide non-minerals for the plant (Taiz 2010),
while the latter is obtained from the soil. Since plants consume large amounts of some
macronutrients such as nitrogen, phosphorus, and potassium, these components exist
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Fig. 14.1 Essential mineral and non-mineral nutrients for plant growth

in very lowquantity in nutrient-depleted soil, while othermacronutrients like calcium
and magnesium are found abundantly in the soil under normal conditions, especially
whenever lime is applied to reduce soil acidity. Macronutrients, e.g., sulphur, and
micronutrients including boron, copper, iron, chloride, manganese, molybdenum,
and zinc are released by the slow procedure of organicmatter decomposition (Hänsch
and Mendel 2009; Yadav et al. 2021) (Fig. 14.1).

Bioavailability of these nutrients for plants is dependent on their amounts in the
soil, the soil composition, as well as its physicochemical characteristics like nutrient
and water retention, and oxygen content of the soil which are influenced by soil
texture, the proportion of soil ingredients or components like sand, silt, clay and
organic matter (Bronick and Lal 2005). High content of clay and organic matter
leads to a considerable level of nutrient and water retention, and in some cases, it
results in waterlogged soil and thus depletion of oxygen content. In this condition,
aerobic respiration and nitrate production are ceased. On the other hand, nutrient
uptake becomes difficult in soil containing a high level of sand, due to their leaching
and entering to groundwater (Galloway et al. 2008). Soil structure, aggregation of
soil particles, determines productivity; because it directly affects the movement of
water and oxygen, availability of nutrient, and microbial activity within the rhizo-
spheric regions of plants (Bronick and Lal 2005). Soil pH is also an influential
factor in the bioavailability of nutrients. Themacronutrients andmicronutrients show
less bioavailability at high and low pH levels. The slightly acidic pH range due to
promoting root growth, nitrogen fixation, and sulfur conversion to sulfate, releasing
minerals, and increasing carbonates, sulfates, and phosphates solubility, is suitable
for plant growth (Taiz 2010). In sum, the soil contains essential elements, and its
physical, chemical, and biological characteristics influence plant growth (Fig. 14.2).
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Fig. 14.2 Availability of macro and micronutrients in various pH. Distance of upper and lower
lines indicates its bioavailability for living organisms

14.2 Fertilizers as Plant Growth Boosters

It has been predicted that the world population will be undoubtedly increased to 10
billion around 2050,with an annual increase of 97million (Conway 2012). Therefore,
the inevitable increasing demand for food and the falling ratio of cultivable lands will
be a serious challenge. According to FAO, an unacceptably high portion of people are
undernourished (FAO 2010). To ameliorate this need, fertilizers and pesticides have
been consumed to achieve enhanced productivity through promoting plant growth
and preventing product loss due to pests.

14.2.1 Chemical Fertilizers

Chemical fertilizers, cost-effective formulation of nitrogen, phosphate, and potas-
sium, have been widely used over centuries. These fertilizers provide nutrition in
the form of bioavailable organic/inorganic salts, and their application appeared as a
quick improvement in plant growth. In addition to nutrients including, phosphate,
nitrate, ammonium, and potassium salts, heavy metals like Hg, Cd, As, Pb, Cu, Ni,
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and Cu; natural radionuclides like 238U, 232Th, and 210Po also exist in chemical fertil-
izers. Netherlands, Egypt, Japan, China, UK, Germany, France, USA, Italy, India,
Greece, Indonesia, and Turkey are using 665.5, 624.8, 373.2, 301.5, 287.5, 205.4,
180.1, 160.8, 126.4, 121.4, 115.4,106.9, and 100.4 kg per hectare chemical fertilizer
(N + P + K), respectively (Savci 2012).

Over time, it has been revealed that prolonged usage of chemical fertilizers has
resulted in the gradual loss of their effectiveness and corresponding environmental
problems were also emerging (Kumar et al. 2021; Sharma et al. 2021; Xiang et al.
2012). In this situation, more chemical fertilizers should be applied to achieve the
same productivity. Also, the production process of chemical fertilizer results in the
release of hazardous substances including sulfur oxides, nitric oxides, and fluorine
compounds into the environment. Continuous application of chemical fertilizers can
profoundly modify the salinity and pH of the soil, decline soil mineral and its water
retention capacity, which can lead to gradual deterioration. It has been observed that
extended or continuous supply of a considerable amount of nitrogen fertilizer can
cause plant tissue softening, leading to increased sensitivity of plants to pests and
diseases (Adesemoye et al. 2010; Chen 2006).

Whenever excessive amounts of chemical fertilizers are applied, and plants cannot
assimilate them; several physical and chemical procedures are activated to decrease
their concentrations in soil. Rinsing out, leaching, volatilization, immobilization,
replacement, precipitation, andmicrobiological conversions are some of these strate-
gies which may lead to the dispersion of hazardous chemicals into the air and
aquatic ecosystems and cause long-lasting serious environmental problems, e.g.,
eutrophication of waters.

Considerable rate (50–70%) of nitrogenous contamination is due to nitrogenous
fertilizer. Unabsorbed nitrogenous fertilizers are converted to nitrate through micro-
bial nitrification. Generated soluble nitrate reaches the depth of soil and enter the
groundwater due to its high solubility and negative charge. Leached nitrate, reactive
nitrogen species, nitrites, and nitrosamines in ground and surface waters are some of
the life-threatening compounds. High levels of nitrates, nitrites, and nitrosamines can
aggregate in crops and adversely impose human and animal health. High-level nitrate
(more than 50 mg NO3−/L) in drinking water cause inflammation of the digestive
and urinary systems, methemoglobinemia, and some related diseases in infants and
ruminant animals. Also, it increases the risk of metabolic diseases including cancers,
respiratory disorders, cardiovascular ailments, goiter, congenital disabilities, diges-
tive system disease, and the rate of infections with West Nile virus, malaria, and
cholera (Galloway et al. 2008).

High buffering feature of soil has resulted in less obvious effects of chemical fertil-
izers on it; however, over time its deterioration occurs, and in turn, leads to decreased
soil quality, normal structure, and composition due to losing its buffering potential.
Also, the accumulation of toxic substances in the soil is lethal for living organ-
isms, like microorganisms and earthworms. This biologically passive soil possesses
negligible organic matter and less liberation of nutrients as much as biologically
active soil, and because of this, interactions of living organisms are disrupted in this
condition (Chandramohan et al. 2013). Prolonged consumption of nitrogen fertilizers
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like ammonium sulfate, which produces acid, dramatically reduces soil pH. Also, the
diversity ofmicrobial species in the rhizospheric regions are changed in acidic soil. In
this condition, activities of plant growth-promoting microorganisms like decomposi-
tion of organic matter and symbiotic interaction with plants are reduced or inhibited.
Ammonium sulfate fertilizer extremely acidifies the soil, and its extensive use will
result in Mg deficiency (Fageria et al. 2010).

One of the most problematic matters during applying chemical fertilizers is
groundwater contamination (Galloway et al. 2008). Nitrates are generated from the
breakdown of nitrogen fertilizers, and because of their water-solubility feature, they
easily move within the soil and can persist in that position for a long time leading to
ecosystem deterioration (3).

Besides detrimental effects on human and animal life, terrestrial and aquatic
ecosystems are affected by the extensive use of chemical fertilizers. For instance,
large fractions of nitrogen fertilizers are oxidized, and nitrogen monoxides and nitric
oxides are generated through denitrification process, which results in the depletion
of the ozone layer and increases the probability of skin cancer. Also, nitric acid can
be created after using urea and ammonium salt, the most current forms of ammo-
nium, and in combination with sulphuric acid leading to the generation of acid rains
which adversely affects ecosystems and results in erosion and depletion of the soil.
High levels of water-soluble potassium impose an adverse effect on the soil pH and
structure as well as seed germination. In this condition, uptake of other minerals and
nutrients is ceased and the quality of the crop is declined (Savci 2012).

Rampant fertilization using phosphorous fertilizers disrupts its balance and leads
to the accumulation of phosphorous in sites of application. Applied ammonium phos-
phates and superphosphates containing calcium phosphate, readily relocate under
acidic conditions and plants could consume themas the phosphorous source.While in
alkaline conditions, phosphorous compounds are potently attached in the phosphorus
retarded reactions between soluble phosphates, and aluminum, iron, manganese, and
calcium ions. The result of these reactions (including phosphate sorption, adsorp-
tion, retention, precipitation, or immobilization) is the production of insoluble and
unleachable salts. Therefore, they cannot travel within the soil tissue. Therefore,
these processes profoundly decrease the availability of plants to phosphorous. This
process makes the continuous application of phosphate fertilizers inevitable. Exces-
sive and accumulated phosphates accelerate eutrophication in terrestrial and aquatic
ecosystems, which can impose lethal effects on their inhabitants.

Eutrophication creates an oxygen-free environment that is not suitable for drinking
and profoundly reduce living species in the marine ecosystems as well as causes
proliferation of unwanted species and unfavorable odor (Chislock et al. 2013). In
addition, trace amounts of cadmium, chromium, lead, uranium, and radium exist in
phosphate fertilizers. The prolonged application of this fertilizer can enhance the
concentrations of these pollutants. These hazardous compounds pollute the soil and
water, and whenever they enter the surface water or are absorbed by plants, can, in
turn, enter into the human body through the food chain and create life-threatening
problems (Fig. 14.3) (Khan et al. 2018).
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Fig. 14.3 Advantages and disadvantages of chemical fertilizers

Although extensive usage of chemical fertilizers has adverse effects on human
and animal health and ecosystems, the inevitable need for chemical fertilizers by the
agriculture industry is obvious. Lack of their use can lead to insufficient nutrients
for the world population. Therefore, there is a pivotal need for alternative fertilizers
which sustainably and eco-friendly flourish agricultural yield.

14.2.2 Organic Fertilizers

Conventional agriculture via chemical fertilizers anddevastating agricultural imposes
adverse effects on human and animal health, microbial habitats, and beneficial
insects. It leads to the deterioration of soil and terrestrial ecosystems, and ozone
layers. Also, it has been proven that its efficiency is unsustainable (Fricke and Vogt-
mann 1993; Mäder et al. 2002). Therefore, alternate farming methods are being
applied to recover soil quality and ameliorate environmental degradation. One of
these new eco-friendly approaches with self-sustainability features is organic agri-
culture. FAO/WHO has defined organic agriculture as a comprehensive production
management system which uses it, the health of agro-ecosystem that is characterized
by improved biodiversity, balanced biogeochemical cycles, and enhanced animal and
microbial activities in soils. In organic agriculture, sustainablemanagement practices
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Fig. 14.4 Advantages and disadvantages of organic fertilizers

in all aspects of farm management by considering regional conditions and applying
locally adapted systems such as agronomic, biological, and mechanical methods
should be implemented (FAO/WHO 2015).

In this regard, naturalmeans like growing cover crops,mainly leguminous species,
are applied. Organic fertilizers like composts and manure act in a different way in
comparison to chemical fertilizers, e.g., they supply nutrients in a lower concen-
tration (like potassium) (Fricke and Vogtmann 1993; Hernández et al. 2010) and
slower release rate (like nitrogen because of low rate of mineralization) (Hernández
et al. 2010). In sustainable agriculture, maximum yield cannot be achieved by solely
relying on organic fertilizers. Therefore, through the combined usage of chemical–
organic fertilizer along with biofertilizers, production yield can be maximized in
a sustainable approach (Qin et al. 2015; Shafi et al. 2012; Song et al. 2015). The
advantages and disadvantages of organic fertilizers are presented in (Fig. 14.4).

14.2.3 Biofertilizers

Applying manure, crop rotation with legumes, and water managing to increase soil’s
nutrient content through their naturally occurring microorganisms are some of the
ancient strategies to improve the fertility of lands (Franche et al. 2009; Morrison
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and Cozatl-Manzano 2003; Suthar et al. 2017). Microbial fertilizers were developed
and commercialized in the late nineteenth century for the first time (Bashan 1998;
Kilian et al. 2000) to ameliorate the unfavorable aspects of excessive usage of chem-
ical fertilizers. Applying biofertilizer results in a reduced application of chemical
fertilizer (Singh and Adholeya 2003).

Biofertilizers and green manure, intercrop, or organic supplemented chemical
fertilizers are not the same concepts (Bhattacharyya and Jha 2012; Halpern et al.
2015). They are formulated with different types of beneficial microorganisms or their
latent forms, which once applied, colonize the rhizospheric region or the inner parts
of the plant and perform agriculturally-important activities including conversion of
nutritionally critical nutrients from unavailable to bioavailable form (nitrogen and
phosphate),mineralizationof sulphur, zinc, potassium, and iron, producingdegrading
enzymes, antibiotics and phytohormones, induction of resistant mechanisms in the
plants, secretion of growthhormones throughwhich enhance cropyield up to 10–40%
(Ahemad and Kibret 2014; Bhardwaj et al. 2014; Bhattacharjee and Dey 2014; Gaur
2010; Kour et al. 2019b, 2021; Lugtenberg and Kamilova 2009; Mishra et al. 2013a;
Owen et al. 2015). Since the biofertilizers have low cost and renewable properties,
they can be supplied along with chemical fertilizers to cut down their use, intensify
their beneficial activities, and reduce their deteriorating activity on the ecosystem.
Biofertilizer provides various inorganic substances with low bio-availability. There-
fore, this strategy is more cost-effective for farmers than synthetic fertilizers (Kour
et al. 2020). Co-application of phosphate solubilizing bacteria and bacteria with
potassium solubilizing activity along with rocks containing low soluble phosphate
and potassium enhanced yield and assimilation of nitrogen, phosphate, and potas-
sium by various plants in phosphate and potassium limiting conditions (Han and Lee
2005; Han et al. 2006; Vassilev et al. 2006a). There are several types of biofertilizers,
including microorganisms with the ability of nitrogen fixation, phosphate solubiliza-
tion, phosphate mobilization, and promotion of plant growth (Mondal et al. 2020;
Yadav 2021). It is proven that combined application of chemical, organic, and biofer-
tilizers canmeet the increasing need of enhancing world population to foods at a time
when agriculture-based industries are facing various environmental concerns (Suthar
et al. 2017).

However, despite the tremendous application of biofertilizers, their application is
limited due to many factors such as the unpredictability of results, difficult identi-
fication, and traceability of microbial strains in the field, limited knowledge about
interactions amongmicrobial cells and plants, and the technical process of large scale
production (Bashan et al. 2014; Lucy et al. 2004; Owen et al. 2015). In addition to
bacterial grazers, especially naked amoeba, nematodes can also modify the effec-
tiveness of microbial inoculum (Malusa et al. 2010). One of the important obsta-
cles in applying biofertilizers is that behavioral characteristics of microorganisms
are changed in a microbial community compared to a situation that they exist in
pure culture. These constraints are encouraging reasons to conduct extensive and
comprehensive studies on biofertilizers (Fig. 14.5).
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Fig. 14.5 Advantages and disadvantages of biofertilizers

14.2.3.1 Major Constituents of Biofertilizers

Each type of biofertilizer contains various beneficial microorganisms, including
plant growth-promoting rhizobacteria, fungal strains like mycorrhiza and cyanobac-
teria (Table 14.1). These microorganisms can suppress the adverse effects of
phytopathogenic organisms and abiotic stresses on plant growth and development via
various strategies such as facilitating nitrogen, phosphate, iron, zinc, and potassium
acquisition, modifying phytohormone levels, which, in turn, can flourish agricul-
ture in an eco-friendly manner (Kour et al. 2019a; Singh et al. 2020; Thakur et al.
2020; Tiwari et al. 2020, 2021). According to themechanisms bywhich biofertilizers
augment plant growth, they are divided into various groups including biofertilizers
containing microorganisms with nitrogen fixation ability (Rhizobium, Bradyrhizo-
bium, Azospirillum, and Azotobacter), phosphate mobilization ability (Mycorrhiza),
growth promotion activity (Pseudomonas), phosphorous solubilization capability
(Bacillus, Pseudomonas, Aspergillus, Penicillium, Fusarium, Trichoderma, Mucor,
Ovularopsis, Tritirachium, and Candida), and biofertilizers with compost enriching
activities (Humicola fuscoatra, Aspergillus flavus, Aspergillus nidulans, Aspergillus
niger, Aspergillus ochraceus, Fusarium solani, and F. oxysporum).

Biological fertilizers can be made either by a single microorganism or a mixture
of them. Results would be better if applying single microorganism which shows
simultaneous mechanisms to promote plant growth, e.g., simultaneous capability of
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Table 14.1 Active agents in various types of commercial biofertilizers

S. no. Commercial biofertilizers

1 Nitrogen-fixing biofertilizers containing Rhizobium, Bradyrhizobium, Azospirillum or
Azotobacter

2 Phosphate solubilizing biofertilizers containing Bacillus, Pseudomonas or Aspergillus

3 Phosphate mobilizing biofertilizers containing Mycorrhizae

4 Plant growth-promoting biofertilizers containing Pseudomonas sp.

5 Phospho-bacterium and Mycorrhizae

6 Rhizobium and phosphobacterins

7 Cyanobacteria

8 Aspergillus niger 1107 phosphate solubilizing fungus

9 Bacilluscereus strain RS87

10 Azoarcus and Zoogloea

11 Vesicular arbuscular mycorrhiza

12 Azospirillium brasiliense

13 Azospirillium amazonense

14 Acetobacter diazotrophicus

15 Derxia gummosa

16 Torulospora globasa

17 Thiobacillus

18 Trichoderma sp.

19 Paecillomyces sp.

20 Pseudomonasfluorescens

Source Mahanty et al. (2017)

phosphate solubilization and biological control of filamentous fungi (Vassilev et al.
2006a), simultaneous ability to solubilize phosphate and biological control ofTricho-
derma strains (Altomare et al. 1999), simultaneous assimilation of both inorganic
and organic nitrogen along with phosphate or other micro- and macro-elements by
arbuscular mycorrhiza fungi (AMF) (Hawkins et al. 2000; Smith and Read 2008)
have been reported. On the other hand, biofertilizers containing mixed microbial
inoculum can promote plant growth through various strategies. These microbial
strains are produced in individual fermentation processes and then mixed with each
other (De Roy et al. 2014). For instance, the co-application of Penicillium spp. and
AMF, Penicillium and Rhizobium spp., AMF with rhizobia, Rhizobium and phos-
phate solubilizing bacteria, AMF/Rhizobium/phosphate solubilizing fungus can be
named, which leads to enhanced growth of cereals (Babana and Antoun 2006; Kucey
1988) and legumes, respectively (Alagawadi andGaur 1988;Downey andVanKessel
1990; Rice et al. 2000; Wang et al. 2011).

In some cases, the yield of fertilized plants by biofertilizer containing arbuscular
mycorrhiza fungi and free-living bacteria with nitrogen fixing ability or various
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PGPR was equal to plants which were fertilized with chemicals (Adesemoye et al.
2008; Malusa et al. 2007; Wu et al. 2005; Xavier and Germida 2003). Biofertilizers
with several plant growth-promoting mechanisms can obtain more acceptance from
farmers andmarkets who prefer to usemultifunctional products and present a product
for several purposes, respectively (Vassilev et al. 2006b).

Plant Growth-Promoting Rhizobacteria (PGPR)
Rhizospheric bacteria are divided into three groups according to their interaction
with plants, including commensal, parasite, and beneficial association (Rai et al.
2020). In commensalism, bacteria harmlessly colonize on the root surface (Verma
et al. 2017). No observable effect is imposed on the physicochemical properties of
plants (Beattie 2007). Phytopathogenic rhizobacteria establish a parasitism inter-
action with host plants through producing phytotoxic substances which adversely
affect the physicochemical properties of plants. Beneficial rhizobacteria are consid-
ered an available part of the rhizospheric reign. They grow in the vicinity of
host plants and stimulate their growth through multifaceted activities like solubi-
lizing the nutrients, fixing atmospheric nitrogen, producing phytohormones and lytic
enzymes, stimulating the growth of beneficial microorganisms like mycorrhizae,
limiting phytopathogens, acting as biocontrol agents (Franco-Correa et al. 2010),
removing phytotoxic substances or alleviating salinity, drought, and flooding stresses
(Bashan and De-Bashan 2010; Khalid et al. 2004), thus they are identified as plant
growth-promoting rhizobacteria (PGPR).

A few of their characteristics like high adaptability to various environmental
conditions, fast growth rate, and considerable ability to degrade an extended spec-
trum of natural and xenobiotic compounds lead to their successful competition
with autochthonous, and especially phytopathogenic microorganisms. Rhizobacteria
with aggressive root colonization potential, ability to stimulate plant growth, and
biocontrol activities can be considered as PGPR (Vessey 2003).

According to their association with root cells of the plants, PGPR are divided
into extracellular plant growth-promoting rhizobacteria (ePGPR) and intracellular
plant growth-promoting rhizobacteria (iPGPR) (Martínez-Viveros et al. 2010).
ePGPR frequently exist within the rhizoplane or in the spaces between the cells
of the root cortex, while iPGPR are exclusively present within the specialized
nodular structures of root cells. ePGPR belong to Agrobacterium, Arthrobacter,
Azotobacter, Azospirillum, Bacillus, Burkholderia, Caulobacter, Chromobacterium,
Erwinia, Flavobacterium, Micrococcus, Pseudomonas, and Serratia genera (Gray
and Smith 2005), while iPGPR belong to Frankia, Allorhizobium, Azorhizobium
(Azorhizobiumcaulinodans) (Dreyfus et al. 1988),Bradyrhizobium (Bradyrhizobium
japonicum) (Guerinot and Chelm 1984),Mesorhizobium (Mesorhizobium chacoense
(Velázquez et al. 2001),Mesorhizobium pluriforium (de Lajudie et al. 1998), Sinorhi-
zobium (Sinorhizobium arboris (Nick et al. 1999), Sinorhizobium fredii (Chen et al.
1988), and Sinorhizobium medicae (Rome et al. 1996)), and Rhizobium (Rhizo-
bium cicero (Nour et al. 1994), Rhizobium etli (Segovia et al. 1993), Rhizobium
fredii (Scholla and Elkan 1984), Rhizobium galegae (Lindström 1989), Rhizobium
gallicum (Amarger et al. 1997), Rhizobium giardinii (Amarger et al. 1997)) genera.
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Fungi
Fungal biofertilizers comprise a single fungus or mixture of fungal strains and
through direct or indirect mechanisms improve the growth of plants and yield of
crops (Devi et al. 2020). Mycorrhizal hyphae extend into the soil through infecting
plants growing in their vicinity and impose their improving effect on plant growth
by penetrating nutrient depletion zone and increasing bioavailability or mobility of
elements (Chiariello et al. 1982).

A mycorrhiza, a fungal distinct morphological structure, generates mutualistic
association with roots of host plants like herbs, shrubs, trees, aquatic, xerophytes,
epiphytes, hydrophytes, many crops, and forest tree species (Rai et al. 2013). In
this association, roots of host plants are intracellularly or extracellularly colonized,
either by endomycorrhizal fungi or ectomycorrhizal fungi, respectively. Applying
biofertilizers containing mycorrhizal fungi probably results in carbon storage in soil
via altering kinetic properties of the root, improving its ability to uptake nutrients
which consequently leads to improved quality of soil organic matter to support more
agricultural productivity (Smith and Smith 1997).

They are various endomycorrhiza, they are categorized into arbuscular, ericoid,
arbutoid, monotropoid, and orchidmycorrhizae. Arbuscular mycorrhizal (AM) fungi
are frequent in the terrestrial ecosystem from the arctic to the tropics (Gerdemann
1968). Studies have shown their high occurrence in symbiotic association. They
possess high diversity due to the diversity of plant species, soil characteristics,
and seasonal conditions (Smith and Smith 2012). They belong to the Glomeromy-
cota phylum (Schuessler et al. 2001). Gerdemannia, Acaulospora, Scutellospora,
Entrophospora, Gigaspora, Glomus, Archaeospora, Geosiphon, Paraglomus, and
Sclerocystisare AM forming genera. After arbuscular mycorrhiza colonization on
the root cortex, highly branched structures like arbuscules are formed inside the cells
where nutrient exchange occurs between plant and fungus (Balestrini et al. 2015).

Fungi alleviate biotic stresses like parasitic fungi and nematodes (Duchesne et al.
1989) and abiotic stresses due to drought, salinity, and flooding and enhance the
resistance of plants against heavymetals, promote plant productivity and agricultural
productivity mainly in low-nutrient and stressful conditions through mobilizing P,
supplying macro and micronutrients like P, Ca, Zn, S, N which are inaccessible to
plant roots (Augé et al. 2015; Meier et al. 2015; Porcel et al. 2012; Rana et al. 2019a;
Sharma et al. 2019). It has been revealed that AM symbiosis induces the expression
of Pi transporters in plants (Walder and van derHeijden 2015;Xie et al. 2013). Fungal
hyphae have a higher penetration ability than plant roots which able them to obtain
nutrients which are away from plant roots. In turn, plants supply carbohydrates for
AM fungi (Allen 2011).

Trees with ectomycorrhizal (ECM) fungi inoculated roots due to rapid absorbing
and accumulating nitrogen, phosphorus, potassium, and calcium show better growth
parameters than nonmycorrhizal plants. These fungi accelerate the degradation of
the complicated minerals and organic matter in the soil and their transmission to the
tree. Also, they enhance the tolerance of trees to biotic and abiotic stress including,
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drought, high temperatures, extreme pH of the soil, and toxins. Pisolithus tincto-
rius and Piriformospora indica are ECM fungi with multifaceted plant growth-
promoting activities (Schwartz et al. 2006). There aremany fungal biofertilizers such
as fungal species which exert their plant growth improving effects through solubi-
lizing phosphorous (Aspergillus spp.,A. tubingensis,Penicillium spp.,Fusarium spp.,
Trichoderma spp., Mucor spp., Tritirachium spp., and Candida spp.), solubilizing
potassium (Aspergillusfumigates, A. niger, A. terreus, and ectomycorrhizal fungi),
solubilizing zinc (Saccharomyces spp., Oidiodendron maius and Aspergillus niger,
Penicillium simplicissimum), mobilizing phosphate (ectomycorrhiza and Arbuscular
mycorrhiza), and enriching compost (Trichoderma spp.,Penicillium spp.,Aspergillus
spp., Pleurotus spp., Chaetomium spp., Humicola fuscoatra, and Fusarium spp.)
(Lian et al. 2008; Whitelaw 2000; Raj 2007).

Cyanobacteria
Biofertilizers containing microalgae, especially cyanobacteria promote plant growth
and soil condition via various strategies. They improve the nutrient quantity
of soil through secreting phytohormones like auxin (Nostoc, Hapalosiphon),
gibberellin, vitamins like vitamin B12 (Cylindrospermum sp. Tolypothrix tenuis,
Nostoc muscorum, and Hapalosiphon fontinalis), amino acids (Rodríguez et al.
2006a, 2006b; Roger and Pierre-Adrien 1982), fixing nitrogen and releasing nutri-
ents after their death and decomposition. Anabaena azollae with lignolysis ability
release phenolic compounds once applyied as biofertilizer. Nostoc linkia, Anabaena
variabilis, Aulosira fertilisima, Calothrix sp., Tolypothrix sp., and Scytonema sp. are
nitrogen-fixing cyanobacteria, which can be utilized for rice cultivation (Prasad and
Prasad 2001). Anabaena fixes nitrogen (up to 60 kg/ha/season) in association with
water fern Azolla and enhances organic matter content in the soils (Moore 1969).

Cyanobacteria contain considerable amounts of macro and micronutrients, as
well as amino acids. They can be considered as a suitable alternative for chem-
ical fertilizers to alleviate their environmental polluting effects (MM 2001). Algae
via producing organic acids can increase the bioavailability of soil phosphate. The
physicochemical properties of soil can be improved via algal biofertilizers. They
enhance water holding capacity and aeration of soils through their jelly structure and
filamentous structure, respectively. Soil salinity is reduced after their application.
They can act as viable biocontrol agents by preventing the growth of weeds. Since
cyanobacteria are capable of degrading various kinds of pollutants and possess simple
growth requirements, they can be applied to rehabilitate deteriorated ecosystems
(Subramanian 1996).

14.2.3.2 Biofertilizer’s Mechanism of Action

As mentioned, microbial cells in biofertilizers improve plant growth via various
mechanisms which will be discussed hereafter (Tables 14.2, 14.3, and 14.4) and
(Fig. 14.6) also summarized these mechanisms.
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Table 14.2 Plant growth-promoting activities of microbial cells by increasing bioavailability of
nutrients

Microorganisms Mechanism of action for plant growth
improvement

Azoarcus sp. Nitrogen fixation

Azorhizobium

Azospirillum sp.

Azotobacter sp.

Beijerinckia sp.

Burkholderia sp.

Frankia sp.

Gluconacetobacter diazotrophicus

Herbaspirillum sp.

Bacillus polymyxa

Cyanobacteria

Paenibacillus sp. Potassium solubilization

Bacillus sp.

Aspergillus fumigates, Aspergillus niger,
Aspergillus terreus

Acidothiobacillus ferrooxidans

Phyllobacterium sp. Phosphate solubilization

Rhizobium leguminosarum

Mesorhizobium mediterraneum

Bradyrhizobium sp.

Bradyrhizobium japonicum

Arthrobacter sp.

Burkholderia sp.

Enterobacter asburiae

Acinetobacter sp.

Flavobacterium sp.

Microbacterium pseudomonas

Rhodococcus sp.

Erwinia sp.

Aspergillus tubingensis, Aspergillus niger,
Aspergillus terreus, Aspergillus awamori,
Aspergillus fumigates, Aspergillus tubingensis,
Aspergillus melleus

(continued)
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Table 14.2 (continued)

Microorganisms Mechanism of action for plant growth
improvement

Penicillium bilaji, Penicillium albidum, Penicillium
italicum, Penicillium simplicissimum, Penicillium
frequentans, Penicillium oxalicum, Penicillium
rubrum, Penicillium expansum, Penicillium
citrinum

Fusarium moniliforme, Fusarium udam

Trichoderma viridi, Trichoderma harzianum,
Trichoderma virens, Trichoderma asperellum

Mucor ramosissimus, Mucor mucedo, Mucor
hiemalis

Tritirachium album, Tritirachium egenum

Candida krissii, Candida scotti

Ectomycorrhiza Phosphate mobilizing biofertilizer

Arbuscular mycorrhiza

Acaulospora spp.

Scutellospora spp.

Enterophospora, Gerdemannia, Gigaspora sp.

Saccharomyces spp. Zinc solubilising biofertilizers

Oidiodendron maius

Penicillium simplicissimum

Aspergillus niger

Sources Hayat et al. (2010), Meena et al. (2017)

14.3 Making Nutrient Available for Plants

Biofertilizers augment plant growth through enhancing the bioavailability of nutri-
ents in the rhizospheric regions gradually. They increase nutrient availability and
prevent nutrient leaching out via fixing nitrogen, solubilizing phosphate, potassium,
and zinc and producing siderophores as well as decompose organic material (Prasad
et al. 2021).

14.3.1 Fixation of Nitrogen

Nitrogen is a critical macronutrient for plant growth and productivity, which plants
require to construct macromolecules like proteins and nucleic acid. Most portion
of nitrogen (78%) exists in the atmosphere as N2 which is an unavailable form for
plant assimilation. N2 should be converted to bioavailable organic form (ammonia) to
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Table 14.3 Plant
growth-promoting activities
of microbial cells by
producing or modulating
phytohormones

Microorganisms Mechanism of action for plant
growth improvement

Azobacter sp. Cytokinin synthesis

Bacillus sp.

Rhizobium leguminosarum

Bacillus sp. Auxin synthesis

Bacillus sp. Gibberelin synthesis

Sphingomonas sp.

Paenibacillus polymyxa

Pseudomonas fluorescens

Rhizobium leguminosarum

Paenibacillus sp. Indole acetic acid synthesis

Rhizobium leguminosarum

Aeromonas veronii

Agrobacterium sp.

Alcaligenes piechaudii

Azospirillum brasilense

Azotobacter sp.

Comamonas acidovorans

Enterobacter cloacae,
Enterobacter sp.

Bradyrhizobium sp.,
Bradyrhizobium japonicum

Mycobacterium sp.

Kluyvera ascorbata SUD 165

Serratia mercescens

Azospirillum brasilense

Bacilluscirculans P2, Bacillus
sp. P3, Bacillusmagaterium P5
Bacillus. sp. Psd7

Streptomycesanthocysnicus

Azospirillumlipoferum strains
15, Pseudomonasaeruginosa
Psd5
Pseudomonaspieketti Psd6,
Pseudomonas fluorescens
MTCC103

Sources Hayat et al. (2010), Meena et al. (2017)
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Table 14.4 Plant
growth-promoting activities
of microbial cells by
inhibiting phytopathogens
and increasing resistance of
plant

Microorganisms Mechanism of action for plant
growth improvement

Bacillus sp. Siderophore production

Chryseobacterium sp.

Phyllobacterium sp.

Pseudomonas fluorescens

Rhizobium sp.

Streptomyces sp.

Mesorhizobium loti MP6

Pseudomonas tolaasii

Serratia mercescens

Kluyvera ascorbata SUD 165

Rhizobium meliloti

Bradyrhizobium sp.

Bradyrhizobium japonicum

Pseudomonas sp. ACC deaminase synthesis

Rhizobium sp.

Alcaligenes sp.

Bacillus pumilus

Enterobacter cloacae

Pseudomonas cepacia

Pseudomonas putida

Pseudomonas sp.

Variovorax paradoxus

Bacillus sp. Induction of plant stress
resistanceMycobacterium sp.

Pseudomonas sp.

Rhizobia sp.

Rhizobia sp. Hydrogen cyanide production

Bacillus sp. Antibiotic production

Pseudomonas sp.

Pseudomonas sp. Chitinase and β-glucanases
productionSinorhizobium sp.

Sources Hayat et al. (2010), Meena et al. (2017)
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Fig. 14.6 Variousmechanisms bywhichmicrobial cell forming biofertilizers improve plant growth

compensate the loss of N from soils or ecosystems by awell-known process known as
biological nitrogen fixation (Tairo and Ndakidemi 2013). This process, exclusively,
can be performed by nitrogen-fixing organisms, also known as diazotrophs, including
bacteria and cyanobacteria through an oxygen-sensitive enzymatic complex known
as nitrogenase system (Rana et al. 2020; Smith and Newton 2013). A consider-
able amount of ammonia (2.5 × 1011 kg) is annually produced through this system
(Schlesinger and Bernhardt 2013). The amount of biologically fixed nitrogen can
be affected by environmental conditions or different plant-microbe combinations.
Biological fixation of nitrogen tremendously declines volatilization, leaching, and
denitrification process. Biological nitrogen fixation can be done via free-living and
symbiotic microorganisms. Some nitrogen-fixing microorganisms possess intimate
endophytic associations with host plants and some nitrogen fixers, who live in
close association in the rhizospheric region, and do not form intimate endophytic
symbioses.

The nitrogen fixing ability of Rhizobia species like Rhizobium, Allorhizobium
Sinorhizobium, Bradyrhizobium, Azorhizobium, andMesorhizobium), as endophytes
of leguminous plants, have been extensively studied (Gopalakrishnan et al. 2015;
Laranjo and Oliveira 2014; Rana et al. 2019b). N2-fixing endophytes are highly
found in the legume class, but are not restricted to this class (Carvalho et al. 2014).
Recently, many investigates have reported the isolation of endophytes from various
non-leguminous plants. Restriction of a specific compartment has not been observed
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in the endophytes of non-legumes. It has been observed that they colonize in various
parts of plants, including, roots, stems, and leaves. The obligative or facultative asso-
ciation among these microorganisms and host plants can be created. The stomata or
cracks at the site of lateral root emergence are sites through which these microorgan-
isms can enter into various tissues of plants (Glick 2015; Gaiero et al. 2013). Entering
endophytes into the plant’s tissues caused a more favorable environment for the plant
in the rhizospheric region (Reinhold-Hurek 2011). Since, they easily access to nutri-
tional elements and low concentration of oxygen needed for nitrogenase activity. In
return, the endophytes encourage the productivity of the host plants by fixing nitrogen
and supplying compounds with growth-promoting activity. In recent years, the
number of identified endophytic diazotrophs has been significantly enhanced.Various
bacteria belonging to different genera, such as Pseudomonas, Azospirillum, Azoto-
bacter, Klebsiella, Enterobacter, Alcaligenes, Arthrobacter, Burkholderia, Bacillus,
andSerratia, have been reported to augment the growth of plants via various strategies
(Glick 2015)

Nitrogen-fixing microorganisms can be either symbiotic or non-symbiotic.
Symbiotic microorganisms (Rhizobium, Frankia, and Azolla) form a symbiotic
relationship with leguminous and non-leguminous plants (Ahemad 2010; Glick
2015), while asymbiotic nitrogen fixers are free-living (Azotobacter, Beijer-
inckia) or endophytic (Gluconacetobacter, Azospirillum, and Herbaspirillum)
microorganisms (Bhattacharyya and Jha 2012). There are many nitrogen-fixing
microorganisms including Achromobacter, Alcaligenes, Arthrobacter, Acetobacter,
Azomonas, Beijerinckia, Bacillus, Clostridium, Enterobacter, Erwinia, Derxia,
Desulfovibrio, Corynebacterium, Campylobacter, Herbaspirillum, Klebsiella,
Lignobacter, Mycobacterium, Rhodospirillum, Rhodopseudomonas, Xanthobacter,
Mycobacterium, and Methylosinus which are associated with non-legumes(Wani
1990).

Some symbiotic bacteria with nitrogen fixing ability have been extensively
studied, which includesRhizobia, Bradyrhizobium, andFrankia. A large portion (70–
80%) of biological fixation of nitrogen is performed by symbiotic microorganisms
(Ishizuka 1992). Below are the descriptions of some symbiotic nitrogen fixers.

14.3.1.1 Rhizobium

Rhizobium is the best-known group of microorganisms which via symbiotic rela-
tionship with legume crops fixes nitrogen (50–100 kg/ha) and belongs to Rhizo-
biaceae family which consists of Allorhizobium, Azorhizobium, Bradyrhizobium,
Mesorhizobium, Rhizobium, Sinorhizobium,Devosia, Methylobacterium, Ochrobac-
trum, and Phyllobacterium, Burkholderia, and Cupriavidus genera. Commercial
rhizobial fertilizers, for legume crops, were first introduced in the 1890s. Rhizo-
bium is an aerobic, non-sporulating, Gram-negative, rod-shaped, and fast-growing
bacterium which forms nodules in the leguminous plant (Allito and Alemneh 2014;
Lindström et al. 2006; Lindström and Martinez-Romero 2007).
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Plant roots attract the rhizobia via their exudates. They colonize the roots of legu-
minous plants. An infection thread passes the root cortex toward a cluster of dividing
cells that will become a plant root primordium. In this symbiotic relationship, the
plant produces flavonoids that induce rhizobial nod genes and subsequently signal
nodulation through the expression of nod, nol, and noe genes, leading to nodule
formation, wherein nitrogen is biologically fixed. Besides N2-fixing activity, rhizobia
augment plant growth through mobilizing inorganic and organic P. In selecting
biofertilizers, the high ability of their strains to fix nitrogen and compete with
phytopathogens microorganisms should be considered. Under unfavorable condi-
tions (acidic or basic soil) in which the population of symbiotic rhizobia is low
(100 rhizobia per gram of soil), inoculation with compatible rhizobia is likely to
prove highly advantageous. While in the presence of high densities of the rhizobial
population, the inoculation is likely to be unnecessary, and investment in inoculation
practice might be wasted (Abdel-Lateif et al. 2013; Abiala et al. 2013).

14.3.1.2 Bradyrhizobium

One important group of the symbiotic nitrogen fixers is Bradyrhizobium. They are
slow-growing soil-dwelling microorganisms which fix nitrogen, and in turn, use
carbohydrate derived from plants in a symbiotic association. It has been shown that
nodule formation and availability of nutrients in the soil can be enhanced once the
application of inoculum consists ofBradyrhizobium and certain PGPRs probably due
to auxins and siderophores productionwhich consequently promote plant growth and
increase its tolerance to the phytopathogens (Youssef and Eissa 2014).

14.3.1.3 Frankia

Many commercial drugs are derived from these bacteria. Recent investigations
have revealed the significant importance of actinobacteria in producing medically
(Salimi et al. 2018a, b, 2019), industrially (Imanparast et al. 2018), and agricul-
turally important compounds or enzymes (Hamedi and Mohammadipanah 2015).
One of these outstanding genera is Frankia. Frankia, a N2-fixing actinobacteria,
fix nitrogen via nodulation of actinorhizal plants (more than 280 species of woody
plants) including the Elaeagnaceae, Casuarinaceae, Datisticaceae, Coriariaceae, and
Myricaceae families, whereas nodulation occurs occasionally in Betulaceae, Rham-
naceae, and Rosaceae (Benson and Clawson 2000). These plants are woody trees
or shrubs except for Datisca and can impose a pivotal role in agroforestry and land
reclamation. The Frankia genus belongs to the family Frankiaceae. These bacteria
produce differentiated structures, vesicles, where nitrogen is biologically fixed. Some
parameters like the age of themicrobial inoculum, its concentration, and preservation
strategy may greatly affect inoculum efficiency.

Plant survival and performance can be improved through inoculation and nodu-
lation before seedling transplanting (Prat 1992). They infect host plants through
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two various strategies: intracellular and intercellular root invasion (Wall and Berry
2007). Earlier occurs via the signal exchange between Frankia and the host plant
which results in root curling and invagination ofFrankia growing filaments into them
and their subsequent encapsulation by a cell wall deposit. Besides nitrogen fixation,
Frankia via releasing plant growth regulators, hydrogen cyanide, siderophores or
increasing availability of phosphate improves plant growth. Frankia inoculum can
be preserved as lyophilized or frozen in glycerol (Fontaine et al. 1986; Franche et al.
2009).

14.3.1.4 Gluconoacetobacter Diazotrophicus

Gluconoacetobacter diazotrophicus also known asAcetobacter diazotrophicus, fixes
nitrogen in a symbiotic association with sugarcane as the host plant. It belongs to the
Acetobacteriaceae family. Its inoculation leads to cut off chemical N fertilizer usage
for at least two successive years (Muthukumarasamy et al. 2002).

14.3.1.5 Cyanobacteria and Azolla

Nitrogen can be fixed in plant roots via associate interaction by heterocystous
cyanobacteria, including Nostoc and Anabaena. A significant amount of nitrogen
(36% of global N2 fixation) is symbiotically fixed via an aquatic cyanobacterium,
Trichodesmium (Gallon 2001).Cyanobacterial nitrogenfixation in heterocysts fulfills
the nitrogen requirement of plants, and in turn, the plant supply carbohydrates
derived from their photosynthetic activity. Asymbiotic association can be gener-
ated among cyanobacteria and fungi, liverworts, ferns, as well as flowering plants
(Roychowdhury et al. 2014). Until the end of the 1970s, symbiosis of Azolla–
Anabaena was the crucial nitrogen source to cultivate rice in China. Also, it can
serve as an applicable source of nitrogen. It imposes its growth-promoting on plants
via producing phytohormones like auxin, indole acetic acid, and gibberellic acid and
providing a considerable level of iron, zinc, phosphorus, potassium, molybdenum,
and other micronutrients. It has been reported inhibitory effects of three cyanobac-
teria including Anabaena oryzae, Nostoc calcicola, and Spirulina sp. on galls and
egg masses (Al Abboud and Alawlaqi 2014; Mishra et al. 2013).

The effect of microorganisms, that non-symbiotically fix nitrogen, on agricultural
productivity andyield is tremendous.Non-symbiotic nitrogenfixers compensate their
access to plant derived nutrients decreasing their distance from the host (rhizoplane)
or entering into the plants (endophytes). Azotobacter sp., Azospirillum, Azoarcus
sp.,Gluconacetobacter diazotrophicus,Herbaspirillium sp., Achromobacter, Aceto-
bacter, Alcaligenes, Arthrobacter, Azospirillum, Azomonas, Bacillus, Beijerinckia,
Clostridium, Corynebacterium, Derxia, Enterobacter, Klebsiella, Pseudomonas,
Rhodospirillum, Rhodopseudomonas, and Xanthobacter are non-symbiotic nitrogen
fixers (Saxena and Tilak 1998). In the following, some of these non-symbiotic
nitrogen fixers are presented in detail.
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14.3.1.6 Azotobacter

Free-living microorganisms like Azotobacter, Clostridium, Rhodospirillum, and
Klebsiella which are known as asymbiotic nitrogen fixers are present in the rhizo-
spheric region. Azotobacter, as a well-known asymbiotic nitrogen fixer belongs to
the family Azotobacteriaceae, establishes a mutual relationship with plants in which
they fix nitrogen and absorb organic compounds from plant exudate. It has been
reported that Azotobacter through producing and releasing vitamin B and various
plant hormones like gibberellins, naphthalene acetic acid (NAA), promotes root
growth and minerals uptake and simultaneously inhibits root pathogens (Math-
ivanan et al. 2015). The Azotobacter has been found in the rhizospheric region of
some crop plants like vegetables, sugarcane, rice, maize, bajra, and plantation crops.
A.chroococcum, via multiple mechanisms other than nitrogen fixation like produc-
tion of vitamin, growth substance, antifungals, and siderophore (Martinez-Toledo
et al. 1988), promotes plant growth. Azotobacter indicum through producing a lot
of antifungal compounds inhibits some pathogenic fungi in the rhizosphere hence
considerably decreases the seedling mortality (Martin et al. 2011). Occurrence of
Azotobacters has been reported in soils with neutral or alkaline pH. A. chroococcum
is a common species in arid soils. Other reported species include A. vinelandii, A.
beijerinckii, A. insignis, and A. macrocytogenes. A sizable proportion of root colo-
nized Azotobacter penetrates the root tissues and lives in an associate relationship
with the host plants. However, any visible nodules or outgrowth on root tissue is not
created (Bhat et al. 2015).

14.3.1.7 Azospirillum

Azospirillum with ten species including A. lipoferum, A. brasilense, A. amazonense,
A. halopraeferens, A. irakense, A. largimobile, A. doebereinerae, A. oryzae, and A.
melinis is one of the non-symbiont nitrogen-fixing bacterial genus (20–40 kg/ha)
(non-nodule forming bacteria), belong to the Spirilaceae family and colonizes a
great variety of annual and perennial plants (Mehnaz 2015). In these microorgan-
isms, nitrogen fixation occurs under microaerophilic conditions. These bacteria have
an interrelationship with roots of corn, wheat, sorghum, and other grasses (Montañez
et al. 2012) especially plant with C4 dicarboxylic pathway of photosynthesis which
their growth and nitrogen fixation occurs in the presence of the aspartic andmalic acid
as well as the organic salts (Mishra and Dash 2014). It seems that Azospirillum is not
limited to a specific plant and can be considered as a general root colonizer; therefore,
they are suitable for pearl millet, sorghum, maize, sugarcane, etc. Azospirillum can
increase the growth of different crops including, sunflower, carrot, oak, sugarbeet,
tomato, eggplant, pepper, cotton, wheat, and rice due to fixing nitrogen, as well as
producing growth-promoting compounds including, IAA, gibberellins, and cytokinin
by which development of root and nutrient (N, P, and K) uptake are enhanced. It has
been shown that maize inoculation with A. brasilense sp. 245 enhanced the produc-
tion of various phytohormones which had been led to a substantial enhancement of
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maize growth. It has been shown that commercial production and field application
of Azospirillumis simple. Its inoculum can be cost effectively produced and applied
as peat formulation (Steenhoudt and Vanderleyden 2000).

14.3.1.8 Nitrogen-Fixing Endophytes

There is increasing evidence which proves the presence of endophytic nitrogen-
fixing bacteria (108 CFU per g of dry weight). They cause no disease and damage.
Nitrogen-fixing endophytes are bacteria belonging to Azoarcus, Gluconacetobacter,
and Herbaspirillum genera. These bacteria successfully multiply and spread within
plant tissues (Rana et al. 2019c). They colonize on the root cortex of host plants like
rhizospheric bacteria. Then, using hydrolytic enzymes, they penetrate endodermis
to colonize the steel, from which they may be subsequently translocated to the aerial
parts, and in turn, will systemically spread in xylem vessels and shoots. Endophytic
diazotrophs colonize the apoplast, like the intercellular spaces, the xylemvessels, and
lignified xylem parenchyma, as well as dead cells, such as those comprising lysige-
nous aerenchyma in rice and kallar grass. G.diazotrophicus and H. frisingense are
some examples of endophytic nitrogen-fixing bacteria in sugar cane and C4- grami-
neous plantMiscanthus sinensis, respectively (Franche et al. 2009). Azoarcus, is also
an endophytic nitrogen fixer, which can enter into the host plant (Leptochloa fusca
L Kunth) and live endophytically. Biofertilizer containing Azoarcus can efficiently
be used under salinity stress in soils with low fertility.

14.3.2 Phosphate Solubilizing Activity

Phosphate is the second indispensable macronutrient for growing plants. The low
frequency of its soluble form limits the growth of terrestrial plants that require phos-
phate to synthesize macromolecules and perform the transfer of energy, respira-
tion, photosynthesis, and signal transduction (Hesham et al. 2021; Khan et al. 2010;
Subrahmanyam et al. 2020). Phosphate abundance is 400–1200 mg kg−1 of soil.
Phosphate application can deeply affect crop yield due to its fundamental role in
the growth and reproduction processes of plants. In general, chemical phosphatic
fertilizers are applied to supply phosphates to the soil. Studies have shown that a
low portion of phosphatic fertilizers (30–35%) is utilized by the plants, while its
significant portion (65–70%) is turned into insoluble, immobilized, or precipitated
forms and consequently unavailable to the plants. Therefore, available phosphate is
less than plant requirement (Angus 2012). Aluminum and iron phosphates, as well as
calcium phosphates, are most of the insoluble phosphate forms in acidic and alkaline
soils, respectively. The insoluble forms are found as inorganic material like apatite or
organic forms such as phosphomonoesters, phosphotriesters, and inositol phosphate
(Mahdi et al. 2012). The abundance of phosphate in soluble form is usually very
negligible (1 ppm) (Goldstein 1994).
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Monobasic phosphoric acid (HPO4
2−)] and dibasic [dihydrogen phosphate

(H2PO4
−)] are less frequent, soluble, and bioavailable forms of phosphate in the soil.

Insoluble phosphate compounds (both organic and inorganic) should be converted
to bioavailable form to avoid continuous usage of phosphate chemical fertilizer and
its degrading effect on the ecosystem and also to elevate agricultural yields in soils
with less bioavailable phosphorous. This crucial requirement can be provided using
a biofertilizer containing phosphate solubilizing microorganisms (Rodríguez et al.
2006a, 2006b). Acidification of soil via producing low molecular weight organic
acids like glycolic acid, citric acids, gluconic acid, 2-ketogluconic acid, malonic acid,
oxalic acid, succinic acid, and propionic acid which make inorganic phosphorus into
their soluble form occur by the activity of these bacteria. They play a crucial role
in providing phosphorus to the plants. Hydroxyl and carboxyl groups are existing
organic acids with low molecular weight. They can chelate the cations bound to
phosphate and convert insoluble phosphorous to its bioavailable form (Glick 2012).

Phosphate solubilizing bacteria belong to various genera including, Pseu-
domonas, Bacillus, Rhizobium, Burkholderia, Achromobacter, Agrobacterium,
Micrococcus, Acetobacter, Flavobacterium, Arthrobacter, Enterobacter, Beijer-
inckia,Microbacterium,Rhizobium,Mesorhizobium,Flavobacterium,Rhodococcus,
Serratia, Phyllobacterium, and Erwiniacansolubilize insoluble and inorganic phos-
phate compounds such as rock phosphate, dicalcium phosphate, tricalcium phos-
phate, hydroxyl apatite (Goldstein 1986; Otieno et al. 2015; Rodriguez and
Fraga 1999a). Higher frequency of bacteria with phosphate solubilizing activity is
commonly found in the rhizospheric regions in comparison with nonrhizosphere soil
due to a higher amount of organic substrates in rhizospheres which attract phosphate
solubilizing bacteria (PSB) (Youssef and Eissa 2014). In addition, PSB augment
the growth of plants via inducing biological nitrogen fixation by nitrogen-fixing
microbial cells (Mohammadi and Sohrabi 2012).

Also, various P containing organic substances can be applied as a promising P
resource for requirements of plants after mineralization process where organic P is
hydrolyzed to its inorganic form by means of enzymes like phosphatase (phospho-
hydrolases) (Rodriguez and Fraga 1999), phytase (Richardson 1997), phosphonoac-
etate hydrolase (McGrath et al. 1998), d-α-glycerophosphatase (Skraly and Cameron
1998), and C-P lyase (Ohtake et al. 1998). A considerable level of acid phosphatases
is created by rhizospheric microorganisms like bacteria belong to Rhizobium (Abd-
Alla 1994), Enterobacter, Serratia, Citrobacter, Proteus, and Klebsiella (Thaller
et al. 1995), aswell asPseudomonas (Gügi et al. 1991) andBacillus genera (McComb
et al. 2013).

14.3.3 Potassium Solubilizing Activity

Potassium (K) is the third essential element necessary for the growth of plants. Ortho-
clase, mica, illite, and muscovite are the insoluble source of K in soil. Soluble potas-
sium exists in very low concentration in the soil (Parmar and Sindhu 2013; Yadav
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et al. 2020b). In soluble-potassium limiting conditions, plant growth and production
rate significantly declined. To enhance the bioavailability of potassium to plants, a
combination of high K containing clay mineral with K solubilizing bacteria can be
applied to meet the K requirement of plants in the agricultural industry (Shrivas-
tava et al. 2016). These microorganisms via producing organic substances solubilize
potassium, thus enhance the concentration of soluble K in soil solution. Frateuria
aurantia, Bacillus edaphicus, Paenibacillus glucanolyticus, Bacillus mucilaginosus,
Acidothiobacillus sp., Pseudomonas sp., Burkholderia sp., and Paenibacillus sp. are
well-known as potassium mobilizing microorganisms (Prakash and Verma 2016;
Priyadharsini and Muthukumar 2016; Raghavendra et al. 2016; Rawat et al. 2016).
Also, these microorganisms produce diverse amino acids, compounds with plant
growth-promoting activity (IAA and gibberellic acid), and vitamins, by them plant
growth and productivity are increased (Dotaniya et al. 2016)

14.3.4 Zinc Solubilization

Zn is one of the crucial elements which is required in low amount. Deficiency of zinc
declines the growth and yield of crops. Hence, Zn containing fertilizers, with soluble
zinc sulfate (ZnSO4), are currently used. On this matter, applying Zn solubilizers
extremely affect the reproduction andquality of crops. The reaction of used zinc fertil-
izers with soil constituents converts them into bioavailable. Several events, including
cation exchange of acidic soil, chemisorption in alkaline soil (Zn-CaCO3) or making
a complex with organic ligands immobilize the zinc in soil and decline its abundance
in soil. Most well-known biofertilizers containmicroorganismswhich supply signifi-
cant macronutrients like nitrogen, phosphate, and potassium, while the unmet need to
micronutrient like Zn also negatively affects plant growth, development, and produc-
tivity. Therefore, biofertilizers containing Zn solubilizing microorganisms like B.
subtilis, Thiobacillus thiooxidans, and Saccharomyces sp. are severely required. It
has been shown that better responses can be achieved through co-application of these
strains with Zn fertilizers or Zn containing oxides (Zinc oxide, Zinc carbonate, and
Zinc sulfide) (Samoon et al. 2010).

14.3.5 Iron Sequestration

Iron is one of the pivotal growth elements for nearly all living organisms, including
animals plants, bacteria, and fungi (Rajkumar et al. 2010). In the presence of oxygen,
iron mainly presents as ferric iron (Fe3+) and probably generate insoluble hydrox-
ides and oxyhydroxides. Therefore, a large amount of the iron is not in bioavailable
form for plant and bacterial assimilation (Rajkumar et al. 2010). The low abundance
of bioavailable iron in terrestrial ecosystems creates an extreme competition. Plants
frequently produce and excrete water-soluble organic compounds (siderophores)



432 F. Salimi and J. Hamedi

with low molecular weight, that chelate Fe3+ and maintain it in solution. The
root surface receives Fe3+ from siderophores and reduces it to Fe2+ and conse-
quently absorbs it. Also, bacteria produce and release siderophores, high-affinity
iron chelator, to scavenge iron by the formation of soluble Fe3+complexes. They
can be considered as agents with iron solubilizing activity from minerals or organic
compounds in iron-limiting conditions (Ahemad and Khan 2011; Rajkumar et al.
2010). They can be categorized into two types including extracellular and intracel-
lular iron chelators. Enterobactin is one of the strongest siderophores (Hider and
Kong 2010).

Microbially derived siderophores also can be applied by plants; hence they can
augment the growth of plants under iron limited condition. Plants can assimilate
iron provided by microbial siderophores via diverse strategies like chelating and
releasing iron, direct uptake of siderophores-Fe complexes, or ligand exchange
reaction (Thomine and Lanquar 2011). Several isolates belonging to Pseudomonas,
Enterobacter,Bacillus, andRhodococcus genera are siderophore producingmicroor-
ganisms. Siderophores producing Phyllobacterium strain, Pseudomonas fluorescens
C7, and Chryseobacterium sp C138 promote the growth and quality of strawber-
ries and Arabidopsis thaliana, respectively (Parray et al. 2016). More importantly,
biofertilizer containing siderophore producing microorganisms like Pseudomonas,
Bacillus sp. and Streptomyces can be applied as biological agents for biocontrol.
They limit the reproduction and activity of phytopathogens via producing high iron
affinity siderophores. Through this mechanism, phytopathogens like Fusarium oxys-
porum cannot meet their iron requirement, and therefore, their reproduction will be
limited (Bashan and De-Bashan 2005; Saraf et al. 2014).

14.3.6 Production of Volatile Organic Compounds

Producing volatile organic compounds (VOCs) is one of the interesting strate-
gies which is applied by biofertilizers to promote plant growth and its resistance
towards fungal pathogen and pathogenic nematodes as well as abiotic stresses.
Acetoin, 2,3-butanediol cyclohexane, 2-(benzyloxy) ethanamine, benzene, methyl-
decane-1-(N-phenylcarbamyl)-2-morpholinocyclohexene, dodecane, benzene(1-
methylnonadecyl), 1-chlorooctadecane, tetradecane, 2,6,10-trimethyl, dotriacon-
tane, and 11-decyldocosane are some of these compounds (Effmert et al. 2012;
Kanchiswamy et al. 2015; Ryu et al. 2003).

Rhizobacterially-produced VOCs act as signaling molecules to trigger the plant
responses and form plant–microbe interactions and elicitor agents of induced
systemic resistance (Ryu et al. 2003; Sharifi andRyu2016).ReportedVOCproducing
microorganisms are Bacillus subtilis GB03, B. amyloliquefaciens IN937a, Pseu-
domonas, Serratia, Arthrobacter, and Stenotrophomonas and Enterobacter cloacae
JM22. It has been reported that some of these VOC producing microorganisms can
promote the growth of Arabidopsis thaliana (Choudhary et al. 2016).
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Some rhizosphericmicroorganisms includingRhizobium,Pseudomonas,Bacillus,
andAeromonas genera can produce hydrogen cyanide (HCN), a bioactive compounds
with an adverse effect on the reproduction of phytopathogens or weeds whose usage
will protect the host plants (Ahmad et al. 2008; Das et al. 2017; Flury et al. 2017;
Nandi et al. 2015; Sivakumar et al. 2012; Zachow et al. 2017). It has been found
that HCN production is common in Pseudomonas (88.89%) and Bacillus (50%)
genera (Ahmad et al. 2008). Since, produced HCN has no adverse effect on host
plants, HCN producing microorganisms can act as biocontrol agents. In most cases,
these microorganisms also produce compounds with antibiotic activity or cell wall
degrading enzymes which along with HCN can synergistically suppress the growth
of phytopathogens. On the other hand, low level of HCN cannot effectively prevent
the proliferation ofmost fungal phytopathogens (Ramette et al. 2006) but can prevent
phytopathogens to become resistant (Olanrewaju et al. 2017). HCN impose its toxi-
city effect due to the inhibitory effect on cytochrome c oxidase and other critical
metalloenzymes (Nandi et al. 2017). Recently, it has been revealed that promoting
the activity of HCN on the growth of plants is mostly related to its role in increasing
the bioavailability of phosphate for the pioneer plants (like French sorrel) living in
oligotrophic alpine environments (like granite-based substrate) (Rijavec and Lapanje
2016).

14.3.7 Production of Hydrolytic Enzymes

Many microorganisms can improve plant growth by suppressing the growth of their
pathogens. Production of hydrolytic enzymes such as chitinase, glucanase, protease,
and cellulase (Suyal et al. 2021; Yadav et al. 2016). Producing hydrolytic enzymes
are one of the critical strategies by which microorganisms control pathogen growth
(Jadhav and Sayyed 2016; Jadhav et al. 2017). Awide range of polymeric compounds
like chitin, proteins, cellulose, and hemicellulose in the cell wall of the targeted
phytopathogens can be hydrolyzed via these enzymes (Mabood et al. 2014).

14.3.7.1 Chitinase Production

Chitin is an insoluble unbranchedβ-1,4-β-linked polymer ofN-acetyl-d-glucosamine
(C8 H13O5N)n and is the second most plentiful naturally occurring polymer (Huang
et al. 2005). Chitinase producing microorganisms can be considered as promising
biological control agents and prevent fungal related plant diseases. Chitinase
producing fluorescent Pseudomonas and Streptomyces sp. isolates can control ragi
blast disease and sheath blight disease in rice, respectively (Chaiharn et al. 2018;Negi
et al. 2017). Chitinasescategorized into three classes according to their mode action:
β-1,4-N-acetyl-glucosaminidases, endochitinases, and exochitinases. Chitin degra-
dation can be achieved through endochitinases via randomly cleaving at internal sites
of chitin micro-fibril orexochitinases via progressive release of diacetylchitobiose in
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a stepwise manner without releasing monosaccharide or oligosaccharides (Harman
et al. 1993; Manocha and Balasubramanian 1994).

14.3.7.2 Glucanase Production

β-1,3-Glucanases-producing microorganisms like Paenibacillus terrae NK3-4 can
efficiently degrade another important cell wall component of fungi and yeasts, β-
1,3(1,6)-Glucans (Simmons 1994; Yu et al. 2019). This polysaccharide consists of
a β-1,3-linked backbone with some branches via β-1,6-linkages. They are classified
into two groups, according to their mode of action: sequent removing of glucose
residues from non-reducing end or randomly breakdown of linkage at random sites
and releasing smaller oligosaccharides can be conducted via exo- or endo-β-1,3-
glucanases, respectively. (Jadhav and Sayyed 2016).

14.3.7.3 Cellulase Production

Bacillus cereus, Bacillus subtilis, Bacillus thuringiensis, and Streptomyces sp. can
impose their biocontrol activity via degrading the 1,4-β-d-glucosidic bonds in cellu-
lose (Patagundi et al. 2014; Sadeghi et al. 2017). Cellulose consists of β-d-glucose
units which are bonded via 1,4-β-linkages. These microorganisms also play a pivotal
role in nature through the recycling of this abundant polymer. The rigid, insol-
uble, crystalline cellulosic microfibrils are formed via abundant intra- and inter-
molecular hydrogen bonds. Various hydrolytic enzymes including endoglucanases,
exo-glucanases, and β-glucosidases are involved to completely degrade cellulose into
β-glucose (Lynd et al. 2002).

14.3.7.4 Protease Production

Protease or proteinase plays a crucial role in degrading the cell wall of
phytopathogenic fungi. This enzyme degrades the protein matrix where chitin and/or
fibrils of β-glucan (major components of the cell walls) are present. The polymer is
hydrolyzed to peptide chains and/or their amino acids by this enzyme. Also, several
proteases via inactivating extracellular enzymes of phytopathogenic fungi, suppress
their growth (Al-Askar et al. 2015; Jadhav and Sayyed 2016).

14.3.8 Production of Hormones

Phytohormones, plant hormones, are organic substances that affect physiological,
biochemical, and morphological characteristics in plants including growth, differen-
tiation, and development of cells, tissues, and organs (Damam et al. 2016; Peleg and
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Blumwald2011).These compounds canbe considered as chemical signals to commu-
nicate cellular activities in higher plants (Voß et al. 2014), and their synthesis is tightly
regulated. Some well-known examples are auxins, ethylene, gibberellins, abscisic
acid (ABA), and cytokinins, which play a critical role at very low concentrations
(<1 mM). They are active in plants in a short period of time and are mainly produced
in special parts of the plant and transferred to another part. Since these chemical
compounds affect the growth of the plant, they are also recognized as regulators of
plant growth. Under stress conditions, plants or their rhizospheric microorganisms
produce or modulate phytohormone levels to coordinate various signal transduction
pathways and consequently ameliorate the adverse effects of environmental stresses
(Kazan 2015).

Microbial produced phytohormones are known as exogenous phytohormones.
Microbial production of plant hormones such as auxin and cytokinins are reported
by a lot of rhizospheric microorganisms (Ahemad and Khan 2011). Also, phytohor-
mones improve defense response of plants through stimulating cell division, exten-
sion, differentiation, photosynthesis, and pigment formation, inducing seed and tuber
germination, increasing the development rate of xylem and root (Gupta et al. 2015;
Ljung 2013; Spaepen and Vanderleyden 2011). Azospirillum is a well-known plant
growth-promoting bacterium with the ability to excrete phytohormones including
gibberellins, cytokinins, and auxins (Tien et al. 1979).

Root surface area and its length can be enhanced bymicrobial IAA, which enables
the plant to achieve more nutrients from the soil (Ahemad and Khan 2012b). The
plant cell wall is affected by rhizobacterial IAA and its loosening lead to facili-
tated exudation of plant exudates, which assure sufficient bacterial growth (Ahemad
and Khan 2012a). Inoculating auxin-synthesizing Bacillus spp. positively affects the
growth of Solanum tuberosum (Ahmed 2010). Seed germination, floral induction,
development of flower and fruit, and growth of leaf and steam are affected by another
pivotal phytohormone, gibberellin. Gibberellin-producing Sphingomonas sp. LK11
positively affects plant growth characters (Khan et al. 2014). It has been reported that
cytokinin-producing Bacillus subtilis strains caused draught resistance of inoculated
plants. It has been shown that Bacillus amyloliquefaciens RWL-1, an endophyte,
synthesize ABA. Hence, it has the ability to enhance the salinity tolerance of Oryza
sativa. Biofertilizers containingphytohormoneproducingormodulatingmicroorgan-
isms can offer economic and ecological advantages to boost agricultural production
(Shahzad et al. 2017).

Ethylene is a significant phytohormone that affects the ripening of fruits and the
abscission of leaves (Reid 1981). Elevated level of aminocyclopropane-1-carboxylate
(ACC) synthesis, that is, the precursor of ethylene, is observed in plants under stress
conditions like low temperature, drought, flooding, infections with pathogens, and
the presence of heavy metals which creates physical or chemical perturbation in
various tissues of plants (Li and Glick 2005), and for this reason, wounding hormone
is its other name (Salisbury 1992). Increased level of ethylene halts the growth of
stem and root, fixation of nitrogen in legumes, and causes premature senescence and
consequently decreases the yield. In this regard, there are some rhizosphericmicroor-
ganisms which produce aminocyclopropane-1-carboxylate deaminase, a pyridoxal
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phosphate-dependent enzyme. This enzyme can hydrolyze the precursor of ethylene,
ACC, to ammonia and α-ketobutyrate then use them as nitrogen and carbon sources.
Therefore, ACCdeaminase producingmicroorganisms via reducing the level of ethy-
lene precursor, ACC, improve the growth of plants in the presence of biotic and
abiotic stresses (Glick 2014). So, plant growth-promoting microorganism’s ability
to hydrolyze ACC possesses profound significance in declining the adverse effect of
environmental stressors.

Synthesis of this enzyme is induced in the presence of ACC. ACC deami-
nase is encoded by AcdS gene which is found in Actinobacteria, Deinococcus-
Thermus, three classes of α, β, and γ Proteobacteria, various fungi belonging to
Ascomycota and Basidiomycota, and in some Stramenopiles (Nascimento et al.
2014). Of possessing microorganisms, different bacteria (Alcaligenes sp., Bacillus
pumilus,Pseudomonas sp., andVariovorax paradoxus, aswell asAzoarcus,Azorhizo-
bium caulinodans,Azospirillum spp.,Gluconacetobacter diazotrophicus,Herbaspir-
illum spp., Burkholderia vietnamiensis.) and some yeast (Hansenula saturnus and
Issatchenkia occidentalis) (Minami et al. 1998; Palmer et al. 2007), as well as fungi
(Penicillium citrinum, Trichoderma asperellum, and Phytophthora sojae) (Jia et al.
1999; Singh and Kashyap 2012; Viterbo et al. 2010) and archaea like Pyrococcus
horikoshii (Fujino et al. 2004; Singh et al. 2015) can be considered. Also, it has been
known that even certain plants like Arabidopsis thaliana (McDonnell et al. 2009)
are ACC deaminase producing organisms.

These ACC deaminase producing microorganisms efficiently augment the growth
rate, physiological characteristics, and quality of plants, especially in presence of
salinity stress. ACC deaminase synthesizing Pseudomonas putida UW4 reduced
post-submergence ethylene production. Therefore, it has been concluded that plant
response to environmental stressors can bemodified by rhizospheric bacteria (Ravan-
bakhsh et al. 2017). According to other studies, a salt-tolerant bacterium with ACC
deaminase activity, Enterobacter sp., was isolated from the rice field and was
reported to promote rice seedling growth in salinity stress (Sarkar et al. 2018).
In another study, ACC producing endophyte, Pseudomonas migulae 8R6, limited
phytoplasma-induced damages, and consequently Flavescence dorée disease in
periwinkle (Gamalero et al. 2017).

It has been revealed that a salt-tolerant endophyte SMR20 with the capability
to produce ACC deaminase, Brachybacterium paraconglomeratum, isolated from
Chlorophytum borivilianum reduced salt stress-induced damage in the host plant
and delayed chlorosis and senescence and improved yield. In addition, this bacterium
modifies the levels of indole-3-acetic acid and abscisic acid in plants (Barnawal et al.
2016).

14.4 Environmental Stress Relief

Various biotic (bacterial and fungal phytopathogens, pests, and herbivores) and
abiotic stresses (hostile conditions of ecosystem like drought, water logging, extreme
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temperatures, salt stress, oxidative stress, air pollution, heavy metals, pesticides, and
unfavorable soil pH) affect plant growth and its productivity during their growth
and development which lead to a reduction of agricultural yield (Rastegari et al.
2020a, 2020b; Suman et al. 2016; Yadav et al. 2020a). Reactive oxygen species
(ROS) including H2O2, O2

−, and OH− radicals are generated in stress conditions and
their elevated level created oxidative stress, which consequently imposes its dele-
terious effect on plants (CH 2018). They can alleviate this oxidative stress through
various strategies like producing and accumulating poly-sugars, proline, glycine-
betaine, abscisic acid, and up-regulating enzymatic and nonenzymatic antioxidants,
like superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase,
ascorbic acid, α-tocopherol, and glutathione (Agami et al. 2016).

In these conditions, plant inoculation by biofertilizers can providemore protection
against these stresses throughmicrobial activities, including the release of substances
that can improve soil structure, inhibiting the causative agents of biotic stress via
modulating phytohormones and inducing systemic resistance (Yang et al. 2009). In
addition, beneficial microorganisms can ameliorate the toxic effect of heavy metal
on plants through various strategies like binding mechanisms. It has been reported
that Pseudomonas putida and Pseudomonas fluorescens alleviate the toxic effect of
cadmium contamination on barley plants through their ability to scavenge cadmium
ions from soil (Baharlouei et al. 2011).

Microbial induced modifications lead to increased survival and productivity of
plants. Some examples have validated the protective effect of biofertilizers, e.g.,
Azospirillum inoculation enhanced the growth of wheat and faba beans under saline
stress. One group of microbial substances which alters the structure of soil, and
imposes an improving effect on the growth of plants in the presence of water stress
is a microbial polysaccharide. For example, inoculation of sunflower and wheat
plants with exopolysaccharide producing Rhizobium sp. and Pantoea agglomerans
resulted in better growth parameters in comparison with uninoculated plants. It has
been reported that Pseudomonas strains via enhancing the assimilation of Mg2+,
K+, and Ca2+, declining uptake of Na+, and enhancing the synthesis of endogenous
indole acetic acid have improved asparagus seedling growth and seed germination in
presence of water and salt stresses. Several reactive oxygen species generated during
water stress cause injury to the photosynthetic mechanisms of the plant (Heidari
and Golpayegani 2012). In this regard, biofertilizer containing Pseudomonades,
Bacillus lentus, and Azospirillum brasilense through increasing expression of enzy-
matic antioxidants and enhancing the amount of chlorophyll in leaves ameliorate this
stress. Therefore, biological fertilizer can augment the photosynthetic activity of the
plant, and improve its physiological properties in presence of unfavorable conditions
(Heidari and Golpayegani 2012).

Improving leaf water status, especially in the presence of salt and drought stresses,
is another strategy to improve plant growth (Ahmad et al. 2013; Naveed et al. 2014).
Biofertilizers via improving stomatal conductance of plant leaf enhance its ability
in utilizing water and surviving under drought conditions. Pseudomonas aeruginosa
has improved the growth of Vigna radiata plant in drought conditions (Naveed et al.
2014; Sarma and Saikia 2014). It has been demonstrated that Bacillus megaterium
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and Pantoea agglomerans enhanced the ability of maize roots to absorb water under
salinity stress (Gond et al. 2015; Marulanda et al. 2010). Azospirillum brasilense
also has enhanced the salt resistance of the jojoba plant rooting (Ahmad et al. 2013;
Gonzalez et al. 2015; Naveed et al. 2014)

Biotic stresses impose their deleterious effect on co-evolution, dynamics of popu-
lation, nutrient cycling in the ecosystem, ecology of natural habitat, and health of
horticultural plant (Gusain et al. 2015). Bacillus spp. (like Paenibacillus polymyxa
strains B2, B3, and B4, Bacillus amyloliquefaciens strain HYD-B17, B. licheni-
formis strain HYTAPB18, B. thuringiensis strain HYDGRFB19, P. favisporus strain
BKB30, and B. subtilis strain RMPB44) and Pseudomonas sp. Decrease the growth
and activity of phytopathogens by their antimicrobial metabolites or competition.

Pseudomonas sp. and rhizobacteria produce antimicrobial compounds and
proteins with toxic properties against Gaeumannomyces graminis var. tritici
(inducingwheat take-all) and crop insect pests, respectively (Strange andScott 2005).

Phenazines, phenazine-1-carboxylic acid, phenazine-1-carboxamide, pyrrolni-
trin, pyoluteorin, 2,4diacetylphloroglucinol, rhamnolipids, oomycin A, cepaci-
amide A, ecomycins, viscosinamide, butyrolactones, N-butylbenzene sulfonamide,
pyocyanin are antifungal agents produced by Pseudomonas strains also produce
antibacterial compounds (pseudomonic acid and azomycin), antitumor antibi-
otics (cepafungins and FR901463). Karalicine is an antiviral derived from Pseu-
domonas (Ramadan et al. 2016). Surfactin, iturins, and bacillomycin are antibacterial
compounds derived from Bacillus sp. (Wang et al. 2015).

B. cereus UW85 and B. thuringiensis subsp. kurstaki HD-1 can be applied as
biological agents to control the damping-off of alfalfa and gypsy moth, respectively
(Broderick et al. 2000; Handelsman et al. 1990). Photorhabdus and Xenorhabdus
inhibit harmful insects. Pseudomonas sp. and Bacillus subtilis produce siderophores
that can be considered as biocontrol agents, which limit fungal pathogens like
Fusarium wilt that is produced by Fusarium oxysporum in potato (Haggag et al.
2015).

Tolerance of plants to the attack of herbivores can be elevated by symbiosis
with rhizobacteria. It is likely that these bacteria via supplying additional nitrogen
make synthesizing cyanogenic defense compounds possible. These synthesized
compounds repel leaf-chewing herbivores (Godschalx 2017). Also, chitinases and
β-glucanases-producing microorganisms like Sinorhizobium fredii KCC5, Pseu-
domonas fluorescens LPK2, and Pseudomonas spp. via degrading chitin and β-
1,4-N-N-acetylglucosamine inhibit Fusarium udum (causative agent of fusarium
wilt), Rhizoctoniasolani, and Phytophthoracapsici (destructive crop pathogens),
respectively (Ramadan et al. 2016).

14.5 Factors Influencing the Efficiency of Biofertilizers

One of the considerable properties which has resulted in limited application of biofer-
tilizers is their unpredictable function under different agro-environmental conditions,
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which may seriously reduce their plant growth promotion potential. There are some
less investigated factors including the production process of biofertilizers, interaction
of host plant and microbial strains, competition condition of the soil, which involved
in this phenomenon (Bashan 1998; Owen et al. 2015). Reducing the unfavorable
properties of the biofertilizers and improving the influential factors on biofertil-
izer efficiency can encourage the farmers to use them. Biofertilization program by
selecting strains according to their high root colonization, abundant sporulation, or
growth augmentation in pot experiments without considering affecting factors like
field conditions can lead to non-conclusive results.

14.5.1 Effect of the Plants on the Efficacy of Biofertilizers

One of the determinant factors on biofertilizer efficiency is the interaction of micro-
bial biofertilizers with plants. Crop species and environmental conditions of the
field are two main factors that govern the interaction between microorganisms and
plants (Dodd and Ruiz-Lozano 2012). Promoting and inhibitory effects of plants are
significantly depending on their phenological growth phase and physiological and
nutritional status. These situations directly affect the release of compounds from
the roots. These compounds in plant exudates impose quantitative and qualitative
modifications in the rhizospheric region due to the growth promotion or inhibition
of specific rhizospheric bacterial communities (Dennis et al. 2010; Hartmann et al.
2009; Uren 2000; Van Overbeek and Van Elsas 2008). In P-deficiency, plants stim-
ulate hyphal branching and colonization of AM fungi through releasing inducing
chemicals (Akiyama et al. 2002; Akiyama et al. 2005). Genistein, a phenylpropanoid
compound, and phenolic acids are influential compounds in root exudates that stim-
ulate AMF root colonization and change soil microbial communities, respectively
(Cesco et al. 2010; Qu and Wang 2008).

14.5.2 Effect of Soil Conditions on the Efficacy
of Biofertilizers

Another critical factor in successful biofertilizer establishment is the soil in which
microbial cell is introduced. Chemical (pH, nutrient content) and physical (texture)
properties of soil profoundly affect biofertilizer establishment, colonization, and
plant growth-promoting activities (Fierer and Jackson 2006; Girvan et al. 2003;
Lauber et al. 2008). Acidic soils have a less diverse microbial community in compar-
ison to neutral soils because of the narrow pH growth tolerance of bacterial taxa
(Fierer and Jackson 2006; Rousk et al. 2010). Acaulospora species are exclusive
to acidic soils in the tropics. Therefore, broad-range microbial species like Glomus
intraradices can assure the efficiency of biofertilizers. Because it has been adapted to
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an extended range of environmental conditions, especially harsh situations including,
unfavorable pH and temperature and less available nutrients (Antunes et al. 2011).

14.5.3 Effect of Interaction of Soil Microorganisms
with Autochthonous on the Efficacy of Biofertilizers

Successful fertilization can be achieved by characterizing microorganisms, their
activities, and the interrelationship between them and soil particles. However, there is
limited knowledge about the ecological interactions of autochthonous soil microor-
ganisms andmicroorganisms derived biofertilizers (Malusà et al. 2016). Oncemicro-
bial cells forming biofertilizers are introduced in the soil, they are faced with an
extreme competition condition due to the presence of indigenous microorganisms.
Therefore, the exact evaluation of ecological interactions among indigenous soil
microorganisms and introduced microbial inoculants is so critical in determining
the biofertilizer’s efficiency in the short- and long-period of time. For this purpose,
various indicators of soil microorganisms, including their biomass, activity, commu-
nity structure, and diversity should be comprehensively analyzed (Trabelsi and
Mhamdi 2013).

It must also be noted that the observed relationships between inhabitant and inoc-
ulant microorganisms would depend considerably on the methods used to show the
dynamics of terrestrial microbial communities (Trabelsi and Mhamdi 2013). Simul-
taneous use of metagenomic approaches and culture-dependent methods can lead
to the identification of a number of microbial taxa. However, identification of their
related function is still very complicated. The evaluation of coding genes of signif-
icant enzymes or main genes in the interaction process between the introduced and
native microorganisms may help to gain such information.

It has been revealed that diverse taxonomical or functional classes of
autochthonous soil microorganisms are affected by complex inoculum through
various strategies. Roots colonization of biofertilizers can be achieved through
successful competition with indigenousmicroorganisms. In these competitive condi-
tions, the ability to produce biofilm or having motility can be advantageou for colo-
nizing root and competition. Therefore, to use these beneficial characteristics, a
sufficient amount of microbial cells should be present to produce specific chemicals
and consequently gain these properties through turning on quorum sensing (Gera and
Srivastava 2006). Some of the soil habitants like protozoan grazing, bacterial grazer,
fungi, and insects in soil adversely affect biofertilizer efficacy through reducing their
number and colonization ability (Finlay 1985). It has been observed that the popu-
lation of nematodes has been increased after applying biofertilizers (Malusá et al.
2012). Colonization of wheat rhizosphere by Pseudomonas species and Bacillus
subtilis was greatly declined by nematode species (e.g., Caenorhabditis elegans,
Acrobeloides thornei, and Cruznema sp.) (Knox et al. 2003).
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14.5.4 Effect of Farmers’ Practices on the Efficacy
of Biofertilizers

Another important factor in biofertilizer efficacy is the overall fertility or nutritional
conditions of the soil. Some microbial inocula like Glomus are more mostly found
in fertile soils, with a great amount of nutrients (Hayman and Stovold 1979). In
most cases, applying a large amount of chemical fertilizers for a long term increases
the nitrogen, phosphorus, and/or potassium accumulation in the soil, modifies inter-
action of plant and microbial cells, and simultaneously imposes adverse effects on
colonization, establishment, and activities of soil microbial communities including
autochthonous soil microorganisms and biofertilizer microbial cells (Gosling et al.
2006). For example, low levels of AMF colonization have been observed in maize,
soybean, and wheat which were grown on chemically fertilized soils (Duan et al.
2010). The genera Scutellospora, Acaulospora, and Gigaspora are more frequent
in soils with low level of nutrients (Hartmann 2006; Johnson et al. 2005; Mäder
et al. 2002; Oehl et al. 2004). Long-term applications (10 or 90 years) of chemical
phosphate fertilizers or irrigation with wastewater result in P-accumulation in the
soils, which declined colonization and population of AM fungi (Cheng et al. 2013;
Ortega-Larrocea et al. 2001). Moreover, in the presence of sufficient bioavailable
nitrogen and phosphate, the growth of AM fungi is more likely suppressed, they
show mutualistic symbiosis in soil with sufficient bioavailable nitrogen, along with
limited P (Johnson et al. 2010).

Therefore, it has been proposed that to achieve efficient colonization of microbial
inoculum and their corresponding activities, the quantity of applied chemical fertil-
izers must be reduced (by 20–50%) (Adesemoye et al. 2009; Jeffries et al. 2003).
It was shown that most efficiencies of biofertilizer, which consists of two strains of
Pseudomonas fluorescens on wheat, were achieved when it is applied via 25% of
recommended NPK fertilizers dose (Shaharoona et al. 2008).

Inmost cases, organic fertilizers likemanure, compost, stillage, and vermicompost
extract stimulated colonization and growth of several microbial communities via
plant growth-promoting activities (Canfora et al. 2015; Esperschütz et al. 2007;
Toljander et al. 2008). Although some organic fertilizers reduce AMF richness like
sewage sludge (Esperschütz et al. 2007; Toljander et al. 2008), application of some
agrochemicals such as aliette, ridomil, benomyl, and benlate has some adverse effects
on AM fungi development (Sukarno et al. 1996).

14.5.5 Other Factors Affecting the Efficacy of Biofertilizers

It has been shown that colonization and mycorrhiza-mediated nutrient uptake are
detrimentally influenced by tillage, monoculture, and intensive agriculture detrimen-
tally (Perron et al. 2001). Method of inoculum application has a significant role in its
efficiency (Date 2001; Deaker et al. 2004). To achieve the best results, newmachines
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are developed or existing machines are adapted to efficiently applying various phys-
ical forms of biofertilizers in specific conditions, e.g., inoculation of horticultural
crops or big trees by liquid biofertilizer containing AMF is performed (Malusà et al.
2016; Malusa and Sas 2009).

Biofertilizers can be introduced through the foliar application, treating seeds,
mixing with soil or organic matter like vermicompost, spraying through hydraulic
atomization system (Bhattacharjya and Chandra 2013; Świechowski et al. 2012).
Each of these strategies has a considerable effect on biofertilizer efficiency.

The number of delivered spores and their efficacy is influenced by water volume
and adjuvants (Bailey et al. 2007). According to the possible recovery period of
PGPR (30–40 days after inoculation), it has been suggested that it is suitable to repeat
biofertilizer inoculation (2–4 times) during the growing season, with an interval of
3–4 weeks (Bashan et al. 1995).

In some cases, the activities of biofertilizers are slower than that of chemical fertil-
izers. The activity of a biofertilizer depends on various factors including inoculant
delivery system, skill of farmers, viability of biofertilizer under adverse climatic,
transport condition, and storage management. Generally, developing biofertilizers
needs high investment costs. Moreover, occurring mutation during the production
process is deemed as a major limitation of biofertilizers. It must also be noted that
low awareness of the farmers can cause poor resource generation by the industries
(Singh et al. 2016).

14.6 Production Process

As mentioned previously, biofertilizers can have one or more microbial strains.
Preparing the microbial inoculum has a considerable effect on the final product
efficiency and quality (Bashan et al. 2014; Stephens and Rask 2000). Recently, the
application of complex microbial consortia in diverse annual and horticultural crops
has attracted more attention due to favorable results on legumes and non-legume
plants. For example, rhizobiawith arbuscularmycorrhizal fungi (Alagawadi andGaur
1988), (AMF), Rhizobium and phosphate solubilizing bacteria (Wang et al. 2011),
Rhizobium and a phosphorus solubilizing bacteria (Prasad and Chandra 2003), AMF
with free-living bacteria with a nitrogen-fixing ability (Adesemoye et al. 2008; Barea
et al. 2002) and biofertilizer simultaneously containing AMF and various PGPR for
diverse annual and horticultural crops (Malusa et al. 2007) are successful examples
of biofertilizer with complex inocula. In selecting strains to prepare a consortium
for a biofertilizer, it should be noted that the applied strains not only should not
inhibit the growth of each other, but also coapplication of them must lead to higher
colonization (Vestergård et al. 2008).

In designing a biofertilizer for a specific agrogeographical condition, adaptation
of the microbial cells to ecosystem conditions should be investigated (Malusá et al.
2012; Zoppellari et al. 2014). Along with the selection of suitable and efficient
microbial cells, the type of fermentation process which profoundly affects the shelf
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life of a biofertilizer is also important. In this period, the microbial cells in inoculant
should preserve their survival and plant growth-promoting activities at an acceptable
level (Bashan et al. 2014). One of the critical involved factors in biofertilizer shelf
life is a multistep process, which is called formulation.

A suitable formulation containing additives (Bashan et al. 2014; Herrmann and
Lesueur 2013;Malusá et al. 2012) which by protectingmicrobial cells during storage
and transportation enhance their persistence in soil or even improve themicrobial cell
efficacy using nodulation elicitors (Legume biofertilizers) (Smith and Smith 2012)
and colonization and establishment inducing metabolites like strigolactones assures
biofertilizer efficiency (Manikandan et al. 2010; Skorupska et al. 2010). It has been
shown that biofertilizer in the shape of granular inoculants represents better results
under unfavorable conditions of the soil (Rice et al. 2000). Easier distribution of
microbial cells in liquid inoculants can lead to their shorter shelf life (Bashan et al.
2014; Date 2001; Stephens and Rask 2000). Encapsulation of PGPR in alginate or
other polymers with various compositions and structures was introduced (Vassilev
et al. 2005); however, limit industrial application was seen (Bashan et al. 2014; John
et al. 2011).

14.7 Fermentation Process

In order to commercialize a biofertilizer, suitable and efficient microbial strains
should be selected and characterized. Large-scale production of these strains should
be performed and the desired inoculantsmust be prepared (Sethi andAdhikary 2012).
Mass production of microbial cells for biofertilization can be produced through
fermentation processes including, submerged fermentation (SmF) and solid state
fermentation (SSF) (De Roy et al. 2014).

Selecting a suitable and affordable nutrient medium is an essential prerequisite
for a successful biofertilizer production process. Cost-effective substrates like liquid
synthetic media, vegetable extracts, soluble sugars, fruit and dairy by-products, and
wastewater can be used in submerged fermentation for large-scale production of
biofertilizers (Subramaniyam and Vimala 2012). Low-cost substances or even indus-
trial waste like agro-industrial wastes can be used as the substrate to mass production
ofmicrobial cells for biological fertilizers throughSSF. In this fermentation,microor-
ganisms are grown on solidmaterials such as sterilized peat or calcinated claywithout
the presence of free water (Gowthaman et al. 2001). In this strategy, tight contact
between microorganisms and agro-industrial wastes provides the highest substrate
concentrations for fermentation.

Also, fertilizers can be produced without a complicated formulation process by
mixing microbial cells with agricultural by-products. Industrial wastes, like whey,
molasses, bagasse, paper pulp, wheat bran, rice, and rice straw, vegetable and fruit
wastes can be efficiently applied as low-cost substrates to solubilize insoluble, inor-
ganic, and low-grade phosphate rocks by various fungi in solid state fermentation
(Mendes et al. 2015; Pandey et al. 1999). Prepared biofertilizer using agro-industrial
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waste materials through solid state fermentation can enrich the soil with organic
substances, minerals, and bioactive compounds. It has been revealed that a mixture
inoculum of bacterial and fungal microorganisms accelerates the mineralization
process of solid waste and their action results in the highly nutrient-rich final product
(Cariello et al. 2007; Singh et al. 2011).

Agricultural residues which are treated by microorganisms have a significant
ability to reinstate fertility and microbial diversity of disturbed soils. Some fermen-
tation parameters, including pH, temperature, and incubation period, should be
optimized in a pilot-scale study to achieve the best production yield.

14.8 Biofertilizer Formulation

The formulation process is a crucial multistep approach in commercializing new
biofertilizers and directly affects their efficiency, stability, and quality (Bashan et al.
2014). During the formulation process, microbial cells (one or more strains) are
mixedwith certain carrierswhich preserve the cells and their activities under not opti-
mized storage conditions (unfavorable temperature and light exposure) (Herrmann
and Lesueur 2013). Good formulation assures successful multiplication of microbial
cells, extending their shelf life, and enhances their activity to a higher rate after inoc-
ulation to the host plants (Arora et al. 2010). Since formulated biofertilizer largely
consists of substances as carriers, they significantly affect the success or the failure
of the inoculation.

Being non-toxic, non-pollutant, biodegradable, and biocompatible are critical
prerequisites of carriers for formulation. They should be stable and preserve micro-
bial survival under harsh conditions, having adjustable pH, sufficient shelf life, fine
grinding in order to mix with other constituents (nutrients, adjuvants), and consist of
low-priced substances (Catroux et al. 2001; Herrmann and Lesueur 2013). In desir-
able formulation, controlled release of microorganisms into the soil can be achieved.
Also, applying this formulation can be performed via standard seeding machinery
(Malusá et al. 2012). Adherence of microbial cells on the seeds can be improved by
using adhesive material, which is known as stickers. Organic, inorganic, or synthetic
substances can be used as carriers. Generally, they are categorized into four key
classes including soils (inorganic soil peat, clays, coal, and lignite), herbal waste
(farmyardmanure, wheat bran, charcoal, composts, cellulose, soybeanmeal, soybean
and peanut oil, press mud, and corn cobs), inert materials (ground rock phosphate,
vermiculite, perlite, bentonite, calcium sulfate, polyacrylamide, and alginate), and
lyophilized microbial cultures and old dried bacteria (Bashan 1998).

It is possible that a formulated biofertilizer be made from a mixture of mentioned
carriers. Besides, the carriers and stickers, some macro- and micronutrients such as
carbon ormineral resources, hormones, and fungicides, which are known as additives
may be added during biofertilizer formulation (Arora and Mishra 2016). Additives,
like skim milk (Vassilev et al. 1997), xanthan (Lorda et al. 2007), or sodium alginate
(Tittabutr et al. 2007) provide nutrient and moisture, as well as inactivate toxic
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compounds, delay inoculant desiccation and improve its quality, stability, and shelf
life (Manikandan et al. 2010).

Five formulations are currently used for biofertilizers, including peat formula-
tions, liquid formulations, granules, and freeze-dried powders as well as the most
recent strategy of stabilization (Bashan 1998).

14.8.1 Peat Formulations

Peat is composed of partially decayed vegetation that is accumulated for a long time.
Microbial cells can successfully grow on it as a nutrient-enriched and protective
environment (Bashan et al. 2014). Used peat in the formulation process should have
acceptable content of organic matter and water retaining capacity. They must be free
from toxic substances for microorganisms, plants, animals, and humans), should
be cost-effective, highly adsorptive, and simply sterilizable. Peat processing steps
include drainage, sieving, and drying (~5%). Drying must be performed at the lowest
possible temperatures to avoid the release of hazardous compounds. After the drying
process, they are passed through a 250-μm sieve, and their pH is adjusted at pH 6.5–
7.0 by liming (Roughley 1976). Then sterilization of the prepared peat is conducted,
and a sufficient quantity of liquid inoculum is added to the peat to achieve a final
moisture content of 40–55%. Microbial inoculated peat is incubated for a period
of time to allow bacterial multiplication in the carrier which is known as maturing
or curing and has a tremendous effect on bacteria survival during storage and on
seeds (Okon and Baker 1987). In order to increase the uniformity of biofertilizer
coverage on seed, sticking agents including polymeric materials like polysaccharides
(like Arabic gum or carboxymethylcellulose), polyalcohol derivatives, or caseinate
salts are incorporated into the peat (Albareda et al. 2008; Stephens and Rask 2000).
These adhesive agents should be free from hazardous compounds for plant seed or
microorganisms, be dispersible in water, and improve microbial cells’ survival rate
and adherence to the seeds.

Microbially treated peat is generally applied on-site on the seeds just before
sowing. The seed coating by microbial inoculated peats can be performed using
cement mixers, and mechanical tumbling machines (Schulz and Thelen 2008). Some
peat characters like its undefined and complex content, which are source-dependent,
poor controllability on the quantity of microorganisms applied per seed, its costly
processing, and probable release of toxic substances during its sterilization interfere
in the consistent quality of peat formulations and influence the growth and survival of
microbial cells (Bashan et al. 2014; Tittabutr et al. 2007). Extensive use of peat poses
an adverse impact on the environment and ecosystem where it has been extracted
(John et al. 2011). Cork industry derived compost by better ability in preserving
the survival of various microbial cells in rhizospheric soil or on the seeds can be a
suitable alternative to peat (up to six months) (Albareda et al. 2008).
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14.8.2 Liquid Formulations

Easy handling and application either on seeds or in soil are some of the prop-
erties which make liquid formulations popular. These are various types of these
formulations including, aqueous (broth cultures), mineral or organic oils, oil in
water, or polymer-based suspensions (Herrmann and Lesueur 2013). Its physical
form makes adding nutrients and cell protectants, including sucrose, glycerol, and
Arabic gum, possible, which can improve its performance (John et al. 2011; Sahu and
Brahmaprakash 2016). In comparison to peat formulations, they are easily sterilized,
compatible with machinery on large farms, and eventually, these features enhanced
their field efficacy (Bashan et al. 2014). Biofertilizer in liquid formulations needs
more specific storage conditions (cool temperatures) (Stephens and Rask 2000).

14.8.3 Granule Formulations

Another formulation can be made using marble, calcite, and silica grains. For this
purpose, created granules are wetted with an adhesive and coated with the microbial
cells (Bashan et al. 2014). To have a high-quality end product, a microbial culture
containing suitablemicrobial cells should be prepared (Herrmann andLesueur 2013).
Being less dusty and easier and controllable handling and application are some of
the granule advantages compared to peat formulation, although the bulkier size of
granules allows cost-effective transport and storage. To avoid direct contact of micro-
bial cell coated granules with the chemicals or pesticides, they are put in a furrow
near to the seed to facilitate lateral root interactions (Bashan et al. 2014; Herrmann
and Lesueur 2013). Granular inoculants have more survival rate under unfavorable
soil conditions such as soil acidity, moisture stress, or cool, wet soils than other
formulations (Rice et al. 2000).

14.8.4 Freeze-Dry Formulations

Biofertilizers can be formulated in shapes of freeze-dried powders using various
nontoxic and cost-effective, organic, inorganic, or synthetic carriers (Bashan et al.
2014). These carriers physically or nutritionally through supplying a protective
surface or a specific substrate, respectively, provide temporarily niche for micro-
bial cells of biofertilizers in soil. Therefore, they have an enormous significance
(Arora et al. 2010). These carriers should have high moisture absorption capability,
pH buffering capacity, and being sterilizable to assure delivering the right number of
viable cells in good physiological condition (Bashan et al. 2014).
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14.8.5 Cell Immobilization Formulations

Cell immobilization is a new promising approach which has also been implemented
in the formulation of biofertilizer preparations (Jain et al. 2012; Stockwell et al.
2011). In this approach, microbial cells are attached, entrapped or immobilized into
a matrix through various strategies including flocculation, adsorption on surfaces,
covalent bonding to carriers, cross-linking of cells, and encapsulation in a natural or
synthetic polymer gel-like polysaccharides, a protein material, polyacrylamide and
polyurethane (Cassidy et al. 1996). Chemical compounds should have the ability to
interact with other constituents for encapsulation. Polyacrylamide and alginate are
the two commonly used chemicals in preparing encapsulated biofertilizers. Among
these, alginate is a naturally occurring polymer with biodegradability and nontoxic
feature. To perform encapsulation using alginate, microbial cells should be dispersed
into the alginate solution and the microbial cells incorporated alginate matrix is
prepared through dropping mixed solution into cationic solution. Shelf life and inoc-
ulation efficacy can be extended via adding nutrients and other additives (Malusá
et al. 2012). Then dried beads are packaged (Date 2001). Many strategies including
spray drying, solvent extraction/evaporation, coacervation, extrusion, emulsion tech-
nique, thermal gelation, pre-gel dissolving methods have been presented to precisely
define the size, shape, and texture of the beads (Park and Chang 2000).

Encapsulation through protecting cells (bacteria, fungal spores, or small frag-
ments of hypha) in a nutritive shell against mechanical and environmental stresses
(like unfavorable pH, temperature, organic solvent, or toxins), as well as predators,
assures biofertilizer efficiency (Bashan 1998; Jain et al. 2012; John et al. 2011) and
contamination can be minimized through providing aseptic conditions. PSB encap-
sulation enhanced their efficiency in P solubilization (Jain et al. 2012). Due to a
concentrated situation, low volume, and extended shelf life of encapsulated biofer-
tilizers, their transportation, and storage (room temperatures) are easier than other
formulations (John et al. 2011). Once the introduction of the encapsulated microbial
cell into the soil occurs, they slowly degrade the capsules, which gradually released
into the soil (Bashan 1998). In these regards, smaller beads (microencapsulation)
enhance the application efficacy via providing direct contact with seeds (John et al.
2011). High production costs and technical handling are the limitations of this formu-
lation. Gels consist of chemical components like fluidized bed, magnesium silicate,
or cellulose-based gel revealed some promise, but none have been adopted on-farm
(Jawson et al. 1989).

14.9 Advances in Formulation

It has been revealed that limited formulations cannot meet the need of diverse
microorganisms to present new biofertilizers with better efficiency, stability, shelf
life, lower cost, easier application, handling, and storage. Therefore, an extended
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range of materials including organic (water sludge, composts, sawdust, sugarcane
bagasse, whey, coal, or enriched agro-industrial residues) and inorganic substances
(clays, lapillus, volcanic pumice, or diatomite earth) are being evaluated to develop
new carriers (Albareda et al. 2008; Malusá et al. 2012). Some of them have many
drawbacks, e.g., sludge wastewater due to the presence of hazardous heavy metals
(Malusá et al. 2012).

Various formulated biofertilizers can be applied through different routes. For
instance, the seed can be directly inoculated by dry biofertilizers or be soaked
with water, then mixed with peat powder (sprinkle method). In another approach,
suspended biofertilizer can be added to the seeds and mixed with them (slurry
method). Biofertilizer with peat formulation can be suspended in water and sprayed
into the furrow during sowing. Moreover, biofertilizer and adhesive can be supplied
as slurry to seeds and coated with ground material like lime. Finally, soil can directly
be treated by biofertilizers (Bashan 1998).

14.10 Packaging and Quality Control

The nature of the packaging material for biofertilizers can affect its quality. These
materials should allow the exchange of oxygen while limiting the water passage.
The packaging shouldminimize biofertilizer contamination during storage and trans-
portation (Roughley 1976). Unfavorable quality and unreliable efficiency under field
conditions are the critical factors in biofertilizer failure to gain farmer’s acceptance
(Herridge 2008; Tarbell and Koske 2007). For example, it has been revealed that
90% of all commercial legume biofertilizers have no practical effect on the legume
production yield (Catroux et al. 2001). Contamination is another extensive problem in
commercialized biofertilizers. Herrmann and Lesueur (2013) analyzed 65 commer-
cial biofertilizers among which only 37% are containing “pure” and the remaining
products (63%) were contaminated with one or more bacterial strains (Herrmann
and Lesueur 2013). It has been reported that a significant portion of the commer-
cialized biofertilizers (40%) do not contain pure strains or do not have the claimed
strains. Lack of facilities to produce and store high-quality inoculants generates these
problems and often leads to inconsistent field results (Bashan 1998). In this regard,
systems of quality control are greatly required for ensuring that efficacious biofer-
tilizers are entered into the markets. Quality control and quality assurance systems
remove low-quality inoculants from markets. Therefore, consistent results can be
obtained in field conditions and better global acceptance can be achieved (Bashan
1998; Bhattacharyya and Jha 2012).

In addition, sufficient information including the name of the microorganisms,
guaranteednumbers, nutrients, andother used components content, registration infor-
mation, lot number, expiry date, dosage and method of application, instructions for
disposal, precautions of use of commercialized biofertilizers should be represented
on its label to evaluate the quality and the efficacy of a biofertilizer by farmers and
make sure to purchase an effective product (Gemell et al. 2005; Husen et al. 2016).
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Accordingly, there is a great need to educate manufacturing workers and farmers
to assure the quality requirements and a successful crop inoculation, respectively.
To prepare biofertilizers with a stable and reproducible efficacy under a wide range
of field conditions, it should contain pure isolates and contains no opportunistic
pathogens for human, animals, and plants and possesses long term shelf life and its
microbial cells should be potently propagated under an extended range of environ-
mental condition (Catroux et al. 2001; John et al. 2011; Lupwayi et al. 2006). A list
of several commercial biofertilizers is presented in (Table 14.5).

14.11 Conclusion and Future Prospects

Since the emergence of civilization, 10,0000 years ago, increasing the quality and
quantity of agricultural products is one of the main concerns of humans. To achieve
these goals, chemical fertilizers have been extensively used; however, their unfa-
vorable effects were revealed on ecosystems. Although organic fertilizers have no
adverse effect on soil and its organisms, their labor-intensive and time-consuming
preparation makes them unsuitable for application on large scale as a commercial
approach. Therefore, it needs promising, safe, and commercial alternatives without
environmental adverse effects. Biofertilizers can be considered as cost-effective
fertilizers that act in an eco-friendly manner without imposing adverse effects on
plant growth and terrestrial and aquatic micro- and macro-organisms, improve soil
fertility and its texture, and therefore, can flourish agriculture-related industries.
But effective large-scale production and storage strategies should be invented and
applied to produce biofertilizers that can be resistant and effective in a wide range
of environmental conditions like high temperature and aridity.
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Table 14.5 Commercial biofertilizers, their company and microbial strains

Product Company Microbial strains

Cell-Tech Novozymes Rhizobia

Nitragin Gold Novozymes Rhizobia

TagTeam Novozymes rhizobia + Penicillium bilaii

Accomplish Loveland Products, Inc PGPR + enzymes + organic acids
+ chelators

Nodulator BASF Canada Inc. Bradyrhizobium japonicum

NodulatorN/T BASF Canada Inc. Bacillus subtilis MBI 600 +
Bradyrhizobium Japonicum

Nodulator PRO BASF Canada Inc. Bacillus subtilis + Bradyrhizobium
japonicum

Nodulator XL BASF Canada Inc. Rhizobium leguminosarum biovar
viceae 1435

Bioboots Brett-Young Seeds Delftia acidovorans

Bioboots (soybean) Brett-Young Seeds Delftia acidovorans +
Bradyrhizobium sp.

EVL coating EVL Inc. PGPR consortia

Nitrofix LabiofamS.A. Azospirillum sp.

Bioativo Institutode Fosfato
Biológico (IFB) Ltda.

PGPR consortia

VitaSoil Symborg PGPR consortia

Azotobacterin JSC “Industrial
Innovations”

Azospirillum brasilense B-4485

Mamezo Tokachi Federation of
Agricultural Cooperatives
(TFAC)

rhizobia (in peat)

R-Processing Seeds Tokachi Federation of
Agricultural Cooperatives
(TFAC)

rhizobia (coated legume seeds)

Hyper Coating Seeds Tokachi Federation of
Agricultural Cooperatives
(TFAC)

rhizobia (coated grass legume
seeds)

Life Biomax PGPR consortia

Biomix Biomax PGPR consortia

Biozink Biomax PGPR consortia

Biodine Biomax PGPR consortia

Grotop PSB Powder MD Biocoals Pvt. Ltd. Phosphate Solubilizing
Microorganisms (Bacillus sp.),
Powder 107–109 cfu g−1 and
Liquid 109 cfu ml−1

(continued)
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Table 14.5 (continued)

Product Company Microbial strains

Bio Promoter Mani Dharma Biotech
Private Limited, Tamil Nadu

Bacillus megaterium + Aspergillus
niger

Multiplex Nalapak Multiplex Bio-Tech Pvt.
Ltd., Karnataka

Homogenous mixture of
Azotobacter + Azospirillium +
phosphate solubilizer + potash
mobilizer

Ambiphos Ambika Biotech & Agro
Services, Madhya Pradesh

Phosphate solubilizing
microorganism (Aspergillus niger)

Biophos Biotech International
Limited, Delhi

Bacillus megaterium var.
Phosphaticum

BioP-P Sundaram Overseas
Cooperation, Gujarat

Phosphate solubilizing
microorganism (2 × 108 CFU g−1)

PSM Shree Biocare India, Shree
Biocare Solution Pvt Ltd,
Gujarat

Phosphate solubilizing
microorganisms

Multiplex Sagar (Compost
Poly Culture)

Multiplex Bio-Tech Pvt.
Ltd., Karnataka

Homogenous mixture of
Azospirillum + Trichoderma +
Pleurotous

Enriched compost Culture Organic Biotech Pvt
Limited, Maharastra

Trichoderma harzianum +
Aspergillus + Penicillium

Bio-manure Culture Uno Natural and Greens
Private Limited, Tamil Nadu

Trichoderma harzianum +
Aspergillus

LignoBiocompost Culture Peak Chemical Industries
Limited, West Bengal

Trichoderma resei, Phanerochaete
chrysosporium and Aspergillus
awamori

Sources Kabaluk et al. (2010), Pal et al. (2015)
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Chapter 15
Biopesticides: Microbes for Agricultural
Sustainability

Fatemeh Salimi and Javad Hamedi

Abstract The human population is growing over time. In this regard, the agricul-
tural yield should be improved and effective strategies must be intended to mini-
mize crop loss to meet the food demand of this population. One of the detri-
mental groups that adversely affect agricultural yield is pest. Therefore, pesticide
application can be considered as a promising approach in diminishing pests corre-
sponding to damages to agricultural yield. Although improper and extensive usage
of non-biodegradable chemical pesticides can adversly affect ecosystem and health
of human, animal and non-target organisms. Therefore, alternative strategies should
be considered to augment plant growth, preserve agricultural yield and compen-
sate for reduced consumption of chemical fertilizers. The most suitable substituent
for chemical pesticides is biopesticides. They are formulated pesticides containing
various microorganisms (nematodes, bacteria, fungi and viruses) or plant, animal,
bacteria and fungi-derived compounds that ecofriendly control insect, weed, nema-
tode and plant disease by various mechanisms and, therefore, gaining importance
all over the world. Some of the biopesticides have equal efficiency comparing with
chemical pesticides while having no pathogenicity or toxicity on non-target micro-
and macroorganisms, so they can be applied near harvesting time. In addition, due
to their decomposability feature, they do not remain in agricultural products and
do not compromise air, groundwater and soil quality. Microorganisms in biopesti-
cides impose their effects via producing antimicrobial compounds, lytic enzymes or
compete with phytopathogens for uptake nutrients, attachment, establishment, and
colonization on plants. Interfering in communication of pathogens via degrading of
chemical signal messenger or inducing resistance in plants are other strategies which
are applied by biofertilizers. In this chapter, we reviewed the types of biofertilizers,
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their mode action and their limitation as well as molecular and culture-based moni-
toring strategies, fermentation procedures by which microbial cells are multiplied,
types of formulation, their advantages and limitation are also discussed.

Keywords Agricultural applications · Bacteria · Biopesticides · Fermentation ·
Formulation · Fungi

15.1 Introduction

Agricultural productivity can be enhanced through applying high-yielding varieties,
optimum irrigation, managing fertilization and minimizing pest-associated losses. In
best condition, a meaningful portion of agricultural productivity is lost because of the
influential effect of the pests. It has been estimated that pests cause a dramatic reduc-
tion in rice (51%), wheat (37%), maize (38%), potato (41%), cotton (38%), soybean
(32%), barley (32%) and coffee (29%) (Sharma et al. 2001). According to Food and
Agriculture Organization (FAO), pests, weeds and phytopathogens are responsible
for a significant loss (20–40%) of the world’s potential crop production annually
(Fao 2012). Therefore, effective crop protection strategies should be intended to
minimize crop loss in the field (pre-harvest losses) and during storage (post-harvest
losses) (Oerke 2006). It seems that two-thirds of all crops will be lost if not using
pesticides (Deedat 1994). Before the development of chemical pesticides, natural
enemies of those specific pests were considered as a crucial strategy to biologically
control pests and their corresponding damages to agricultural yield. Pesticide usage
has profoundly improved the yield and quality of agricultural production.

According to FAO definition, the pesticide is any pure compound or their mixture,
which is applied to prevent, destroy, repel or mitigate insect pests (insecticides), plant
diseases, weeds (herbicides), rats, fungal infections (fungicides) or other unwanted
organisms and interfering agents in the critical process of production, processing,
storage, transportation or marketing of food and agricultural commodities to increase
crop yield. They can act as a regulator of plant growth, defoliant, desiccant or preser-
vation compounds, which preserve the agricultural products from spoilage during
storage and transport. Pesticides are divided into two groups: chemical and biolog-
ical pesticides according to their origins (Thakur et al. 2020). However, they can
be also categorized into distinct classes according to their target organism (insecti-
cides, herbicides, fungicides, rodenticides and fumigants), chemical structure, phys-
ical state, mode of action and application route. Chemical fertilizers that act very
effective, affordable and rapid play an undeniable role in the yield of agriculture to
meet the enhancing requirement of increasing world population to the food. Mean-
while, the use of biofertilizers is promising and increasing due to the limitations of
chemical fertilizers.

Improper and extensive usage of non-biodegradable chemical pesticides including
chlorinated hydrocarbons, organophosphates and carbamates can impose deleterious
effect on human and animal health (neurological, psychological, behavioral and
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immune systemdysfunctions and hormonal imbalances, reproductive systemdefects,
genotoxicity and blood disorders) as well as ecosystems via enhancing hazardous
residue through food chain, contaminating soil and groundwater (Barnawal et al.
2016; Sharma et al. 2021), destroying soil quality and fertility, creating hard water,
emerging pesticide-resistant insects, mites, pathogenic fungi, pathogenic bacteria,
pathogenic nematodes and weeds (which is due to modification of their target recep-
tors involved in pesticide activity and results in consecutive failures of the commer-
cial controlling agents to gain an effective rate of control when applied based on
the label recommendations and necessitate new pesticide) (Kogan et al. 1982),
reducing biodiversity as well as beneficial microbial activities like nitrogen fixa-
tion and disturbing biological balances by their non-specific effect on non-target
organisms and acute poisoning (Carvalho 2017). In addition, through their non-
specific action, it is possible that they induce a harmful effect on non-target organisms
like insects/pests predators or parasites. Therefore, alternative strategies should be
considered to augment plant growth, preserve agricultural yield and compensate for
reduced consumption of chemical fertilizers like organochlorine, organophosphate,
carbamate, pyrethroid, halogenated insecticides (Smith and Gangolli 2002) through
inhibiting the growth of detriment pests. Biological pesticides are environmentally
friendly alternatives to chemical pesticides (Gupta and Dikshit 2010; Kumar et al.
2021; Yadav 2021).

By revealing various adverse effects of chemical pesticides, a lot of studies are
conducting to find and introduce efficient and safe biocontrol agents as biopesti-
cides. Biopesticides are formulated pesticides containing various microorganisms
(nematodes, bacteria like Bacillus thuringiensis and Bacillus sphaericus, fungi like
Trichoderma and virus-like nucleopolyhedrosis) or plant, animal, bacteria and fungi-
derived compounds that ecofriendly control insect, weed, nematode and plant disease
by non-toxic mechanisms and, therefore, gaining importance all over the world for
turf, field crop, orchard and garden (Grewal et al. 2005). A lot of bacterial (>100),
entomopathogenic fungal (>800), viral (>1000) and protozoan species (>1000) have
been known as insect pathogens. Biopesticides are frequently used along with other
controlling substances like chemicals (Senthil-Nathan 2015).

Biopesticides have equal efficiency comparing with chemical pesticides while
having no pathogenicity or toxicity on non-target macroorganisms (including preda-
tors, parasitoids, pollinators, animals and humans), beneficial microorganisms,
communities and ecosystems as they have a narrowactivity spectrum (target-specific)
and their toxic action is mostly specific on pest of interest; also they can be applied
near harvesting time. In addition, they have no residue problem that is an issue of
substantial concern for consumers. They are usually effective in very small quan-
tity and, therefore, biofertilizer application leads to lower exposures of non-target
organisms and minimized pollution problems. In some cases, the establishment of
biopesticides in a pest population or their habitat assures efficient control of pest in
subsequent generations or seasons. Biopesticides can promote plant growth and agri-
cultural yield by acting at the same time as biofertilizers and improving the growth of
plant roots and beneficial microorganisms (Hesham et al. 2021; Yadav et al. 2021).
They do not decline air, groundwater and soil quality because of their naturally and
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quickly decomposability feature. Finally, they can be considered as a constituent of
integrated pest management (IPM) (Usta 2013).

The introduction of live organisms or their derived compounds as a commer-
cial pesticide requires comprehensive investigations including systematic studies on
biological agent properties, its pesticide mechanism and its probable pathogenicity
on non-targetmacro- andmicroorganisms. Ecological investigations on the dynamics
of diseases in pest population of interest should be conducted due to the significant
effect of environmental factors on disease outbreaks; also a wide range of studies
should be evaluated biopesticides persistence and dispersal potential. High-qualified
technologies should be considered for large-scale production of viable agents or their
derived products to make biopesticides without contamination.

Since the formulation tremendously affects biopesticide efficiency and shelf life,
extensive studies should be performed to design a suitable formation. In this regard,
dry formulations are preferred comparing to liquid ones. In addition, the speed of
killing pests should be improved to meet farmers’ requirements.

Co-application of biopesticides along with chemical pesticides may be inappro-
priate, in some cases due to incompatibility occurrence, which includes the adverse
effect of chemical compounds on the living organism. There are some physic-
ochemical conditions like heat, desiccation or exposure to ultraviolet radiation,
which deactivate biopesticides. Formulation and storage procedures can profoundly
affect the efficiency of biopesticides. Since applying one biopesticide cannot control
several pests due to their pest-specific activity, it is possible that their potential
market be limited. Also, complicated production, formulation, and storage processes
of biopesticides lead to their high cost in comparison with chemical pesticides
(Fig. 15.1).

15.2 Classification of Biopesticides

According to active ingredients in the biopesticides or their origin, they can be divided
into three categories including microbial pesticides (bacterial, fungal, viral, nema-
tode, protozoan), biochemical pesticides including compounds derived from animals
or plants and plant-incorporated protectants, which are the results of incorporation
of pesticide coding genes into the plant’s genetic material.

15.2.1 Microbial Pesticides

It has been estimated that the portion of bacterial, fungal, viral, predator and other
biopesticides from global biopesticide market is 74%, 10%, 5%, 8% and 3%,
respectively (Thakore 2006). Active ingredients in microbial pesticides, whether
the microorganism itself or its product, maybe native or genetically engineered.
Currently, 73 active microbial ingredients with significant pesticide activities have
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Fig. 15.1 Advantages and disadvantages of biopesticides

been registered by the United States Environmental Protection Agency (US EPA).
Microbial pesticides include mainly biofungicides (Trichoderma, Pseudomonas,
Bacillus), bioherbicides (Phytophthora) and bioinsecticides (Bacillus thuringiensis)
(Gupta and Dikshit 2010). They inhibit pests through synthesizing specific toxic,
antibacterial or antifungal bio compounds, blocking attachment, establishment and
colonization of other microbial cells via parasitism or competition. Insecticides
usually have specific activity on various species of moths, butterflies, beetles, flies
and mosquitoes. A lot of microbial insecticides can preserve their bioactivities in the
presence of synthetic chemicals, which make their usage as a mixture possible to
achieve better pest management (Kachhawa 2017).

Microorganisms through producing various antimicrobial compounds like
cyclolipopeptides, phenolic compounds, bacteriocins or degrading enzymes against
pathogenic bacteria and fungi limit their growth. Production of fengycins (produced
by Bacillus subtilis) (Fan et al. 2017), pyrrolnitrin (produced by Pseudomonas
cepacia) (Cartwright et al. 1995) herbicolin, pantocins (produced by Pantoea
agglomerans and Pantoea vagans) (Ishimaru et al. 1988; Smits et al. 2010; Wright
and Beer 2001) and lytic enzymes (produced by some yeast and fungi like Tricho-
dermaharzianum) (Batta 2004) are someexamples for this strategy,which are applied
by several microorganisms. In another strategy, they compete with plant pathogens
for assimilation of nutrients, attachment, establishment and colonization on plants
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(Sharma et al. 2009). Some microorganisms like Pichia and Trichoderma via inter-
fering in communication of pathogens through degrading of chemical signal messen-
gers (which are essential for communication through quorum sensing e.g. acyl-
homoserine lactones) (Molina et al. 2003) or inducing resistance in plants (through
producing either elicitors or messenger molecules e.g. salicylic acid) (Spadaro and
Gullino 2004) limit the unfavorable effect of pests on plants (Harman et al. 2007).
Viral-based biopesticides that containing fungal, bacterial or insect viruses can limit
the growth of phytopathogens through parasitism and lysis of pathogenic bacteria,
fungi or insects (Ghabrial and Suzuki 2009).

15.2.1.1 Bacterial Pesticides

Bacterial pesticides are the most common and cost-effective pesticides. These pesti-
cides are usually applied as biological agents to kill insects, insecticides; also they
can also be used to control unwanted bacteria, fungi or viruses. Producers mostly
belong to Bacillaceae, Pseudomonadaceae, Enterobacteriaceae, Streptococcaceae
and Micrococcaceae genera (Tanada and Kaya 2012). Bacterial pesticides colonize
various organs of plants including roots and leaves to obstacle phytopathogen attach-
ment, establishment, colonization and finally pathogenesis (O’Brien et al. 2009).
Microbial insecticides specifically kill particular species of moths and butterflies or
species of beetles, flies and mosquitoes. For this purpose, they should come into
contact with pests of interest or be ingested by them. In this regard, bacteria via
producing endotoxins specifically damage the digestive system of insects.

Most commercial microbial pesticides are produced by the subspecies and strains
of the Bacillus genus, which frequently exist in soil and possess wide genetic biodi-
versity. They can create spores that are tremendously tolerant dormant forms able
to resist extreme temperatures, pH, drought and starvation. Therefore, they could be
significant sources of potential microbial biopesticides (Piggot and Hilbert 2004).

Almost 90% of commercial pesticides in the USA are B. thuringiensis (Bt)
containing pesticides (Kumar and Singh 2015). B. thuringiensisis an aerobic, Gram-
positive, spore-producing soil bacteriumwhose biopesticides are extensively applied
to control agriculturally and medically important insects (Mazid et al. 2011). Its
biopesticide action is based on the production of crystalline inclusions that contain δ

endotoxins or cry proteins during sporulation. They have no toxicity to other organ-
isms, including vertebrates and beneficial insects. A different mixture of proteins is
produced by each strain of B. thuringiensis, which are capable to particularly destroy
one or a few related species of insect larvae. The generated toxin can bound to the
receptors of larval gut, so lead to its starvation. Whenever the insect feeds on the
B. thuringiensis contaminated foliage, Cry proteins are hydrolyzed in the midgut
of insect and consequently an active endotoxin is produced and its attachment to
receptor sites on epithelial cells in the gut is resulted in ionic disbalance of the cell
via forming transmembrane pores or ion channels. This event leads to cell lysis due
to osmotic shock. Paralysis of the insect’s mouthparts and gut is considered as subse-
quent symptoms (Lambert et al. 1992). High efficiency and environmental safety of
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B. thuringiensis and cry proteins make them suitable alternatives to chemicals with
pesticide activity to kill insect pests (Roy et al. 2007).

The extensively applied microorganisms with effective biopesticide activity are
strains of B. thuringiensis. They can efficiently kill three genera of mosquitos
including, Culex, Culiseta and Aedes. B.thuringiensis var. tenebrionis strain Xd3
(Btt-Xd3) also exhibited biopesticide activity on Agelasticaalni (Eski et al. 2017). It
has been proved that the bacteria can survive for a considerable time. Five percent
of applied B. thuringiensis can survive after a year in the form of spores. Nowadays,
using genetic engineering, insect-resistant crops such as cotton, maize, potato and
rice have been produced through transferring coding genes of the insecticidal crystal
proteins into their genetic material. The first developed B. thuringiensis insecticidal
agent was a mixture of B. thuringiensis spores and its toxin. B. thuringiensis-based
formulated pesticides are present in solid (powdery or granulated) or liquid forms.
These products contain spores and toxin crystals and are used on feeding sites of
larvae like leaves (Usta 2013).

Another Bacillus with larvicidal characteristics is B. sphaericus. This bacterium
is frequently found in the soil and has been applied to biologically control Culex
and Anopheles populations in diverse geographical regions. Although there are B.
sphaericus resistant insects like Psorophora, Aedesaegypti and Ae. albopictus. It is
first isolated from Simulium in Nigeria with low larvicidal activity. B. sphaericus
1593, which was isolated from dead mosquito larvae in Indonesia exhibit a signifi-
cantly higher mosquitocidal activity on Culexquin quefasciatus. This strain has been
applied as an insecticide in the field as part of vector control programs (Kellen et al.
1965). This bacterium produces a fetal pro-toxin during its sporulation, which is
causative agent of fatal cellular alterations in the cells of insects. It has been revealed
that some toxins may be located in several parts of the cell like cell wall but the spore
possesses the most concentration of the toxin (Brownbridge and Margalit 1987;
Charles et al. 1993). Vectolex is a commercial biopesticide with a larvicidal activity,
which contains B. sphaericus.

Pseudomonas syringaeVan Hall with the commercial name of Bio-Save has been
used to control fungal infection in various fruits like apples, pears and citrus (Koul
et al. 2001). Antinsectan compounds derived from actinobacteria and some fungal
strains (e.g. milbemycins, actinomycin A, nikkomycin, piericidins, aplasmomycin,
avermectins, citromycin, spinosyns, various cyclic peptides, etc.) and other bacteria
(e.g. aminolevulinic acid, thiolutin, thuringiensin, xenorhabdins) are compoundswith
antifeedants, toxic, growth inhibitory effect and physiological disrupter activities on
various pests (Dowd 2001; Kirst 2010; Koul and Dhaliwal 2003). In this regard,
avermectins and spinosyns are some of the commercialized compounds (Tables 15.1,
15.2, 15.3 and 15.4).

15.2.1.2 Fungal Pesticides

Fungal biopesticides are containing fungal strains, which are capable of controlling
insects, pathogenic fungi or bacteria, nematodes and weeds (Table 15.5). These
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Table 15.1 Biopesticides derived from bacteria belonged to Bacillus genus

Microorganisms Trade name Host range

Bacillus thuringiensis var.
kurstaki(Bt)

Bactur, Bactospeine, Bioworm,
Caterpillar Killer, Dipel,
Futura, Javelin, SOKBt,
Thuricide, Topside, Tribactur,
Worthy Attack, Lepidocid,
Rokur, Bio-Dart, Biolep, Halt
Taciobio-Btk, Imperial,
Tuneup, Gumulmang, Biobit,
Bychung, Bigule, Samgong
BT, Shuricide, Youngil BT

Larvae of moths and butterflies

Bacillus thuringiensis subsp.
Kurstaki ABTS 351, PB 54,
SA 11, SA12, and EG 2348

Batik, Delfin Lepidoptera pests

Bacillus thuringiensis subsp.
kurstaki BMP 123

BMP 123
Prolong

Lepidoptera pests

Bacillus thuringiensis
subspp. Aizawai and kurstaki

Agree Lepidoptera larvae

Bacillus thuringiensis subsp.
Israelensis

VectoBac, Tacibio, Technar,
Aquabee, Bactimos, Gnatrol,
LarvX, Mosquito Attack,
Skeetal

Mosquito, Lepidopteran pests,
Sciarids, larvae of Aedes and
Psorophora mosquitoes, black
flies, and fungus gnats

Bacillus thuringiensis var.
tenebrinos

Foil, M-One, M-Track,
Novardo, Trident

Larvae of Colorado potato
beetle, elm leaf beetle adults

Bacillus thuringiensis var.
aizawai

Certan, Biocan, Salchungtan,
Scolpion
Solbichae, Tobagi

Wax moth caterpillars and
Lepidopteran pests

Bacillus thuringiensis subsp.
Aizawai GC-91

Turex Lepidoptera pests

Bacillus thuringiensis subsp.
Tenebrionis NB 176

Novodor Coleoptera pests

Bacillus popilliae and
Bacillus lentimorbus

Doom, Japidemic, Grub Attack Larvae of Japanese beetle

Bacillus sphaericus Vectolex CG, Vectolex WDG Larvae of Culex, Psorophora,
and Culiseta mosquitos, larvae
of some Aedes spp.

Bacillus subtilis Defender, Bibong, Ecogent,
Ecosmart
Topsaver, Teras, Holeinone,
Ibsalim
Greenall, Cillus, Shootingstar,
Jaenotan
Gamair SP, Alirin-B,
Phytosporin

Powdery mildew, gray mold,
Alternaria blight, large patch,
brown patch, Pythium blight,
Phytophthora blight, Root rot,
mildew, bacterioses,
phytophtorosis, seed molds
anthracnose and
microsporiosis

Bacillus subtilis 101 Shelter Root and leaf diseases

(continued)
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Table 15.1 (continued)

Microorganisms Trade name Host range

Bacillus subtilis 102 Artemis Root and leaf diseases

Bacillus subtilis 246 Avogreen Root and leaf diseases

Bacillus subtilis QST 713 Serenade Botrytis spp.

Bacillus subtilis WG6-14 Bactophyt SP Bactophyt SP

Bacillus subtilis IPM-215 Bactophit Mildew, root rots

Bacillus pumilus Ecosense Phytophthora blight

Paenibacillus polymixa Topseed Phytophthora blight and
powdery mildew

Source Usta (2013)

Table 15.2 Biopesticides derived from bacteria belonged to Pseudomonas genus

Microorganisms Trade name Host range

Pseudomonas fluorescens ABTEC Pseudo, Biomonas,
EsvinPseudo, Sudo, Phalada
104PF, Sun Agro Monus,
Bio-cure-B, PlanrizKS

Root rots, mildew, bacterioses,
anthracnose phytophtorosis and
microsporiosis

Pseudomonas chlororaphis Cedomon, Cerall Pyrenophora teres,
Pyrenophora graminea, Tilletia
caries, Septoria nodorum and
Fusarium spp.

Pseudomonas syringae Pentafag–M Erwinia amylovora,
Pseudomonas spp.,
Xanthomonas spp.

Pseudomonas sp. DSMZ
13134

Proradix Root rots

Pseudomonas chlororaphis
MA 342

Cerall Cereal diseases

Pseudomonas aureofaciens AGAT-25, Pseudobacterin 2Z,
Agat 25K, Gaupsin

Root rots, mildew, septoriosis,
brown rust, ear fusariosis,
cercosporosis,
pseudoperonosporosis and
larvae of harmful insects, scrub,
mildew, fruit rots

Table 15.3 Biopesticides derived from bacteria belonged to Streptomyces genus

Microorganisms Trade name Host range

Streptomyces colombiensis Mycocide Powdery mildew, gray mold, brown patch

Streptomyces kasugaensis Safegrow Sheath blight, large patch

Streptomyces griseoviridis K61 Mycostop Fusarium wilt, Botrytis grey mold, root rot,
stem rot, stemend rot, damping off, seed rot,
soil-borne damping off, crown rot,
Rhizoctonia, Phytophthora, wilt, seed
damping off and early root rot
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Table 15.4 Biopesticides derived from bacteria belonged to other genera

Microorganisms Trade name Host range

Agrobacterium radiobacter Crown Gall Inoculant Crown gall

Aureobasidium pullulans Aureobasidium pullulans Fire blight and
postharvest diseases in
apples

Klebsiella oxytoca and Bacillus
mucilaginosus

Kleps Enhance resistance to
root diseases

Flavobacterium, Phytobacteriomycin Phytoflavin-300 Bacterioses and fungal
diseases

Salmonella enteriditis subsp. Danysz
(LABIOFAM 101-04)

BioratG Rats

Actinomyces levendula Phytobacteriomycin Root rots and bacterioses

Pseudomonas fluorescens,
Streptomyces albus, and Micrococcus
roseus bacterial complex

Bactophil Seed germination
diseases

Achromobacter album Albobacteryn Sprouting inhibition

fungi kill and control various pests via producing antimicrobial compounds, enzymes
or parasitism e.g. Trichoderma produces and releases cell wall degrading enzymes
(Kawalekar 2013; Kumar 2015; Sharma et al. 2019).

Insect-associated fungi are known as entomopathogenic fungi (also known as
mycoinsecticide agents) and classified into four main groups including Laboul-
beniales, Pyrenomycetes, Hyphomycetes and Zygomycetes (Sharma 2012). These
fungi have commensalism or symbiotic relationship with insects (Pucheta and
Navarro 2016). They attack, infect and consequently kill the interested insects and
regulate their population. Entomopathogenic fungi control sucking pests including
aphids, thrips, mealybugs, whiteflies, scale insects, mosquitoes and mites via their
infecting and killing. Beauveria bassiana, Metarhizium anisopilae, Nomuraeari-
leyi, Paecilomyces farinosus and Verticillium lecanii are some of the most widely
used entomopathogenic fungi. Theypenetrate through integument (cuticle), ingestion
woundsor trachea and then enter to hemolymphandgenerate toxins (Meadows1993).
They are regarded as crucial agents in controlling insect populations. There are a lot
of obligate and facultative fungal pathogens for insects (90 genera and almost above
750 species). The first commercial mycoinsecticide ‘Boverin’ contained Beauveria
bassiana, white muscardine fungus, along with the declined amount of trichlorophon
has been successfully applied to inhibit the second-generation outbreaks of Cydi-
apomonella L. (Ferron 1971). Various studies have been conducted on B. bassiana.
Spores of this fungal strain germinate, grow and proliferate in the body of insects and
via producing lethal toxins and draining nutrients lead to their death (Wakefield et al.
2010). Insect-pathogenic fungus Metarhizium anisopliae can successfully control
the population of adult Aedesa egypti and Aedesa lbopictus through reducing their
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Table 15.5 Commercial fungal biopesticides

Microorganisms Trade name Host range

Fungi

Beauveria bassiana Botanigard, Mycotrol,
Naturalis,Myco-Jaal, Biosoft, ATEC
Beauveria, Larvo-Guard, Biorin,
Biolarvex, Biogrubex
Biowonder, Veera, Phalada 101B
Bioguard, Bio-power, Bb Plus, Bb weevil,
Sparticus, Ceremoni, Boverin

Aphids, fungus gnats,
mealybugs, mites, thrips,
whiteflies, coffee berry
borer, diamondback
moth, thrips,
grasshoppers, whiteflies,
aphids, codling moth
larvae of most pest
mosquito species, thrips,
greenhouse whitefly,
two-spotted spider mite,
insect pests, larvae of
Colorado potato beetle

Beauveria bassiana
strain GHA and
Bacillus thuringensis

Bitoxibacillin Colorado potato beetle

Metarhizium anisopliae Green Muscle, ABTEC, Verticillium
Meta-Guard, Biomet, Biomagic, Meta,
Biomet, SunAgroMeta, Bio-Magic

Locust, Coleoptera and
lepidoptera, termites,
mosquitoes, leafhoppers,
beetles, grubs

Paecilomyces
fumosoroseus

Nemato-Guard
Priority
Bangsili

Whitefly, two-spotted
spider mite, greenhouse
whitefly

Paecilomyces
fumosoroseus Apopka
97

Preferal WG Greenhouse whiteflies
(Trialeurodes
vaporariorum)

Paecilomyces
fumosoroseus Fe9901

Nofly Whiteflies

Monacrosporium
thaumasium

Ddangumi Root knot nematode

Lecanicillium
muscarium

Mycotal, Vertalec Whiteflies, thrips, aphids
(except the
Chrysanthemum aphid:
Macrosiphoniella
sanborni)

Paecilomyces lilacinus Bio-Nematon, Yorker, ABTEC,
Paceilomyces, Paecil, Pacihit, ROM
biomite, Bio-Nematon

Nematodes and Whitefly

Paecilomyces lilacinus
251

PL Plus Nematodes

(continued)



482 F. Salimi and J. Hamedi

Table 15.5 (continued)

Microorganisms Trade name Host range

Trichoderma
harzianum

Eco-77, Eco-T, Promot, Romulus,
Rootgard, Trichoplus, Trykocide,
TrianumP, Trichodex, Rootshield,
Gliocladin, Biozim, Monitor, Trichoguard,
NIPROT, Bioderma
Biovidi, EswinTricho, Biohit
Tricontrol, Ecoderm, Phalada 106TV
Sun Agro Derma, Defense SF
Mycofungicyd, T-Gro

Root diseases
Botritiscinerea,
Collectotrichum spp.,
Fulviafulva, Monilialaxa,
Plasmoparaviticola,
Pseudoperonospora
cubensis, Rhizopus
stolonifer, Sclerotinia
Sclerotiorum

Trichoderma
aspellerum (ICC012)
(T25) (TV1) (formerly
T. harzianum)

Tenet Fungal infections
(Pythium, Phytophthera,
Botrytis and Rhizoctonia)

Trichodermaatro
viridae

Binab T Pellets, Esquive Botrytis cinerea, pruning
wound infection
Chondrostereum
purpureum. Fungal
infections (Pythium,
Phytophthera, Botrytis,
Rhizoctonia)

Trichoderma gamsii Remedier Fungal infections
(Pythium, Phytophthera,
Botrytis, Rhizoctonia)

Verticillium lecanii Verisoft, ABTEC, Verticillium,
Vert-Guard, Bioline, Biosappex, Versitile
Ecocil, Phalada 107 V, BiovertRich
ROMVerlac, ROMGurbkill,
SunAgroVerti, Bio-Catch, Mycotal

Whitefly, coffee green
bug, homopteran pests
Whitefly, thrips, scale
insects, Mealybug

Verticillium albo-atrum
(WCS850) (formerly
Verticillium dahliae)

Dutch Trig Dutch elm disease

Ampelomyces
quisqualis

Bio-Dewcon Powdery mildew due to
fungal pathogens

Coniothyrium minitans
C ON/M-91-05

ContansWG Sclerotinia sclerotiorum,
Sclerotinia minor

(continued)

life span (Shi and Feng 2004). Now, there are many commercial fungal biopesti-
cides mostly from Zygomycota, Deuteromycota (Samson et al. 1988), Oomycota
and Chytridiomycota (Barr 2001).

Fungal spores germinate on the integument surface and begin an infection, then
they deteriorate the insect’s cuticle via excreting various degrading enzymes like
proteases, chitinases, quitobiases and lipoxygenases and accelerate the penetration
process through mechanical forces, which is initiated via a specialized structure
formed in the germinative tube, appressorium. The emergence of hyphal bodies in
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Table 15.5 (continued)

Microorganisms Trade name Host range

Gliocladium
catenulatum J1446

Prestop, PrestopMix Damping off, gummy
stem blight, grey mold,
root rot, stem rot, wilt,
storage diseases, foliar
diseases, seed rot

Pseudozyma flocculosa
PF-A22 UL

Sporodex Powdery mildew

Pythium oligandrum Polyversum Polyversum

Coniothyrium minitans
CON/M/91-08

Contans Sclerotinia

Arthrobotrys spp. Nematophagin Nematodes

Chaetomium spp. Chetomic Root molds, grey and
white molds, fusariosis,
common and silver scrub
and rhizoctoniosis

Ampelomyces
quisqualis

Cufect Powdery mildew

Yeast

Candida oleophila O Nexyl Post-harvest diseases

Source Usta (2013)

insect body, which disseminate through the hemocoel, is accompanied with their
invasion to various muscle tissues, fatty bodies, mitochondria and hemocytes, which
lead to the death of the insect within 3–14 days after infection. Fungi invade to insect
organs after insect dying and consequently, fungal hyphae pierce the cuticle from the
interior of the insect and appear at the surface, where spore formation is initiated in
favorable environmental conditions (Diaz et al. 2006). In addition, some fungi kill
insects via producing toxins like cycloheximide and novobiocin.

It has been shown that Talaromyces flavus SAY-Y-94-01 can act as a biopesti-
cide on Anthracnose, which is caused by Glomerella cingulata and Colletotrichum
acutatum (Ishikawa 2013). Entomopathogenic fungi can be used in the conidia or
mycelia forms.

15.2.1.3 Viral Pesticides

Viral pesticides contain viruses with the ability to attack insects and other arthro-
pods. A lot of viruses (>1000) have been isolated from insects (Srivastava and
Dhaliwal 2010) (Table 15.6). These entomogenous viruses are divided into two
categories, including inclusion body (IV)- and non-inclusion body (NIV)-producing
viruses. Inclusion body-producing viruses are further subdivided into polyhedrosis
and granulosis viruses, which produce polyhedral and granular bodies, respectively.
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Table 15.6 Viral pesticides (Usta 2013)

Microorganisms Trade name Host range

Gypsy moth nuclear plyhedrosis
(NPV)

Gypchek virus Gypsy moth and caterpillars

Adoxophyes orana BV-0001
granulosis virus

Capex Summer fruit tortrix
(Adoxophyesorana)

Cydiapomonella granulosis
virus

BioTepp, Cyd-X, Cyd-X
Extra

Codling moth (Cydia
pomonella)

Spodoptera exigua
nucleopolyhedrosis virus

Spod-X GH Spodopteraexigua

Zucchini Yellow Mosaic Virus,
weak strain

Curbit Yellow mosaic virus

Anticarsia gemmatalis
nucleopolyhedrosis virus
(AgNPV)

Baculo-Soja, Baculovirus,
Nitral, Coopervirus PM,
Protégé

Anticarsiagemmatalis and
Lepidopterans

Tussock moth NPV TM Biocontrol-1 Tussock moth and caterpillars

Pine sawfly NPV Neochek-S Pine sawfly larvae

Pseudomonas resinovorans
bacteriophage

Agriphage Insect pest control

Helicoverpa armigera
nucleopolyhedrosis virus

Helicide, Virin-H, Helocide,
Biovirus-H, Helicop, Heligard

Helicover paarmigera

Spodoptera litura
nucleopolyhedrosis virus

Spodocide, Spodoterin,
Spodi-cide
Biovirus-S

Spodoptera litura

Source Usta (2013)

Polyhedrose viruses based on their inhabitance are categorized as nucleopolyhe-
drosis viruses (NPV) or cytoplasmic polyhedrosis virus (CPV) (GF. 2013). Thir-
teen NPV-based biopesticides are registered (Thakore 2006). It has been validated
that Spodoptera exempta (Walker), nucleopolyhedrosis (SpexNPV) possess signif-
icant killing ability on armyworms (Mushobozi et al. 2005). Commercial viral
pesticides are containing baculoviruses, nucleopolyhedrosis viruses, granuloviruses,
acoviruses, iridoviruses, parvoviruses, polydnaviruses, reoviruses, cytoplasmic poly-
hedrosis viruses, nodaviruses, picrona-like viruses and tetraviruses. Elcar™was first
viral insecticide containing Helicoverpa zea NPV (HzSNPV), which is compara-
tively extent range baculovirus and control many pests which attacking to soybean,
sorghum, maize, tomato beans and cotton species. These pests mostly belong to
Helicoverpa and Heliothis genera (Rhodes et al. 1997; Usta 2013).

More than 10% of all viral insecticides contain baculovirus (Moore et al. 1987)
which up to 100 insect species are sensitive to it (Usta 2013). These viruses are rod-
shaped and have envelope and circular, supercoiled double-stranded DNA genomes
(GF 2013). A lot of baculoviruses have been isolated from Lepidoptera (butterflies
and moths), Hymenoptera (sawflies) and Diptera (mosquitoes) (Herniou et al. 2011).
They are considerably selective and specifically kill insects and some arthropods
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and exhibit efficient horizontal transmission. Therefore, they are considered as safe
for vertebrates and plants. There is no report on their pathogenicity in vertebrates
and plants (Krieg et al. 1980). After viral infection, the expression of its protein
can occur in three early (0–6 h), late (6–24 h) and very late (up to 72 h) phases.
Produced proteins are assembled in late phase to form occlusion bodies. A lot of
virions of NPVs are packaged within each occlusion body and form polyhedra while
the granulovirus is packaged in one small occlusion body, to develop granules. Once
consumption of occlusion bodies (OBs) by insects, their dissolution is triggered
under the alkaline condition of insect mid-gut that is resulted in the disruption of
covering proteins and release of virion in the midgut lumen (Adams 1991). Then,
the released virions enter the midgut cell nucleus where viral proliferation occurs.
Various tissues like the hemolymph, fat bodies, nerve cells and hemocytes may be
infected by new virions. In this situation, viruses replicate in the nucleus of infected
cells. New virions are occluded into polyhedral in the nucleus. Polyhedral containing
virions are accumulated into the host and host become to a bag of viruses which with
its liqueferation viruses are released and can infect other insects. Dead hosts are
contained a high quantity of virions. It is possible that more than 100 occlusion
bodies present in a single caterpillar. Negative geotropism is observed in infected
larvae before their death which facilitates widespread dissemination of virions.

Environmental conditions affect the speed with that death occurs (3–7 days in
optimum conditions and 3–4weeks in unfavorable environmental conditions) (Kach-
hawa2017). Some characteristics of baculovirus-based biopesticides like their killing
speed, short stability in field conditions, and high production costs can limit the
application of these biopesticides (C 2012; Mills 2010; WJ 2011). Some strate-
gies can be applied to decline these limitations. For example, killing speed can be
improved through applying genetic engineered baculoviruses instead of wild types.
High cost, pest-specific activity of viral pesticides, which make control of several
different pests difficult, low-speed action and instability of occlusion bodies under
ultraviolet rays (280–320 nm) of the sun can limit their acceptance by farmers.
In this regard, baculoviruses should be encapsulated with UV protectants to make
certain a longer field life (Usta 2013). Transgenic baculoviruses have coding genes
of hormones, enzymes or insect-specific toxins (El-Sheikh et al. 2011a, b). Engi-
neered baculoviruses containing juvenile hormone esterase have shown promising
results since this enzyme leads to a reduced level of juvenile hormone. In this
condition, insect feeding and pupation are prevented. However, short half-life of
juvenile hormone esterase in the hemolymph has restricted the application of these
recombinant baculoviruses (El-Sheikh et al. 2011a, b).

Other influential viral-based pesticides are alphabaculovirus Anticarsia
gemmatalis multiple nucleopolyhedrovirus (AgMNPV) and Cydiapomonella gran-
ulovirus (CpGV), which are applied to control Anticarsia gemmatalis (velvetbean
caterpillar as a very important soybean insect pest in Brazil) and codling moth,Cydi-
apomonella (pest of fruits such as apple, pears andwalnuts), which are causing agents
of huge economic loss, annually (Arthurs et al.; Moscardi et al. 2011; Yang et al.
2012). It has been shown that viral-pesticide can augment the efficiency of chemical
pesticides to control resistant pest e.g. combination of HaMNPV with endosulfan
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(organochlorine insecticide) has exhibited acceptable results in controlling Cotton
Bollworm, H. armigera, which is resistant to a wide range of insecticides (Joußen
et al. 2012; Mironidis et al. 2013) as well as transgenic Bt cotton (Luttrell 2012).
These viral biopesticides have been commercialized in China. Large-scale produc-
tion of baculovirus is conducted in an open field or laboratory through collecting
infected larvae or feeding reared larvae with baculovirus contaminated food (Elvira
and Caballero 2010) (Table 15.6).

15.2.1.4 Nematode Biopesticides

Entomopathogenic nematodes are other organisms that can be applied as biopes-
ticides against weevils, gnats, white grubs and different species of the Sesiidae
family (Koul 2011). They are soft-bodied, non-segmented roundworms that have
an obligate facultative parasitism relationship with insects. These nematodes are
frequently found in the terrestrial ecosystem. Species belonging to Heterorhabdi-
tidae and Steinernematidae families have been efficaciously applied as bioinsecti-
cides in the management of pest population (Grewal and Shapiro-Ilan 2005). They
are considered as a good biopesticide candidate for integrated pest management due
to no toxicity effects on humans, their host-specific activity and low possibility of
resistant insect emergence (Shapiro-Ilan et al. 2006).

Entomopathogenic nematodes have a free-living lifestyle in their infective juve-
nile stage. In this stage, they penetrate into the host insect via spiracles, mouth, anus
or intersegmental membranes of the cuticle, and subsequently enter into the hemo-
coel (Bedding 1982). Species belong to Heterorhabditidae and Steinernematidae
families are associated with bacteria of Photorhabdus and Xenorhabdus genera,
respectively (Ferreira 2014). In this step, they release their symbiotic microbial cells
into the hemocoel of insects. Released microbial cells reproduce in the hemolymph
of insect and lead to insect death within 24–48 h. Nematodes continue to feed on
the tissue of died host then mature, and consequently multiply. It is possible that one
or more generations have emerged within the host cadaver. Released infective juve-
niles can infect other hosts and consequently resume their life cycle (Bedding 1982).
Entomopathogenic nematodes like Steinernema carpocapsae, Steinernema riobrave,
Steinernema glaseri, Steinernema scapterisci, Heterorhabditis bacteriophora and
Heterorhabditis megidis have been produced in large scale using solid state or liquid
fermentation (Lacey and Georgis 2012). Optimization of the application parameters
and development of effective strains in order to attain acceptable control of pests via
nematodes should be conducted with extensive research (Table 15.7) (Usta 2013).

15.2.1.5 Protozoan Biopesticides

Protozoa are microscopical single-celled organisms and are scarcely applied as
biopesticides against an extent spectrumof pests. Entomopathogenic protozoans are a
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Table 15.7 Biopesticides containing entomogenous nematodes

Microorganisms Trade name Host range

Steinernema feltiae
(Neoaplectana carpocapsae) S.
riobravis, S. carpocapsae and
other Steinernema species

Biosafe, Ecomask, Scanmask,
also sold generically
(wholesale and retail), Vector

Larvae of a wide variety of
solid welling and boring
insects

Heterorhabditis heliothidis Currently available on a
wholesale basis for large-scale
operations

Larvae of a wide variety of
solid welling and boring
insects

Ampelomyces quisqualis AQ10 Bio-Dewcon, AQ10 Powdery mildew and leaf
diseases

Paecilomyces lilacinus PL 251 BioActWG Common plant parasitic
nematodes

diverse group of organisms that includemore than 1000 species, which attack inverte-
brates like insects and also are known as microsporidians (WM1988). Microsporidia
are omnipresent, obligatory intracellular parasites that are responsible for diseases in
diverse species of insects.Nosema andVairimorpha genera are capable of attack lepi-
dopteran and orthopteran insects (Solter et al. 2012). Their act is slow and specific.
They produce spores. Germination of spores has occurred in the midgut, and their
released sporoplasm invades to the target cells then a chronic infection is triggered by
which debilitates their host via reducing their nourishment, vigor, fertility and length
of life. A lot of investigations have been conducted on microsporan protozoans as
possible constituents of integrated pest management programs. Nosemapyrausta is
a useful microsporidian that declines fertility and length of life of the adults and also
kills the larvae of European corn borer (Siegel and Ruesink 1986). It is sold under
the trade names of NOLOBait, Grasshopper and Attack against European corn borer
caterpillars, grasshoppers and Mormon crickets. In sum, germinated spores in the
inset midgut develop a polar filament and their sporaplasm is injected into a midgut
cell. Then, more spores are generated and infect other tissues. These spores are elim-
inated along with feces and preserve their viability. They are ingested during larval
nourishment; therefore, the infection cycle is repeated in midgut cells of the new
host.

15.2.2 Biochemical Biopesticides

Biochemical pesticides are biological compounds that biologically control pests
through non-toxic strategies. Sex-pheromones of insect which can interfere with
their mating and population build-up, diverse scented extracts which can attract
insect pests to traps and also various vegetable oils or extract or their synthesized
analogs are some examples of biochemical pesticides (Ritter 2009).
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15.2.2.1 Semiochemicals

Semiochemicals are message-bearing substances that can be derived from plants or
animals in nature, which can cause a behavioral response like attraction to others
or nutrients, locating a mate and sending an alarm in individuals of the same or
other species (Chandler et al. 2011; Nerio et al. 2009). Jasmonic acid and sodium
alginate application can lead to crop protection through inducing the production of a
natural mixture of herbivore-induced plant volatiles and attracting natural enemies.
One group of biochemical pesticides is insect pheromones. These chemicals are natu-
rally used by an insect to inter-species communication. Identified sex pheromones
can biologically control more than 30 target species pheromones. These chemicals
themselves do not kill a target pest. They spread through the air and via attracting
insects to traps, which contain a lethal pesticide or disruption mating impose their
biopesticide activities. Many pheromones with biopesticide activities have been
known and successfully applied in pest management programs (Dhaliwal et al. 2012;
Witzgall and Cork 2010). Better pest management can be achieved via conducting
a comprehensive study on mechanisms of the communication systems, behavior,
mating systems and physicochemical characteristics of target insects as well as their
substantial difference with non-target ones.

15.2.2.2 Insect Growth Regulators

As the name denotes, these biochemical pesticides can alter the growth and
development of insects. Juvenile hormone-based insecticides are one group of
the insect growth regulators, by using them, the developing process is disrupted.
For example, precocene through interfering with the action of juvenile hormone-
producing glands prevents the emergence of a reproductive adult (Yankanchi and
Gadache2010). The compoundswith inhibitory effects on chitin synthesis can restrict
the production of a new exoskeleton by insects after their molting. Therefore, they
cause insect death through unprotecting the elements and from prey (O’Brien et al.
2009;Yankanchi andGadache 2010). Cayenne has deterrent activity, others via suffo-
cation or enhancement of the natural immune systemof crop control pests (Kawalekar
2013; O’Brien et al. 2009).

15.2.3 Botanical Biopesticides

These compounds are derived from whole plants neem, custard apple, tobacco,
pyrethrum or some parts of them like leaves, barks, seeds, flowers, roots, oil or
extract with the ability to control pests (Byrappa and Divya 2012; Kovach et al.
1992). Botanical-based pesticides have diverse composition, target pest and mode of
action and were used to control pest in the field or protect the crop and stored prod-
ucts from pests, especially insects for a long time. A large number of plants (>6000)
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with insecticidal characteristics are known, and some of them are commercialized
(O 2012). Nicotine (Nicotianata bacum Linnaeus); Rotenone (Lonchocarpus derris
Benth and Tephrosia vogelii Hook f.) and Pyrethrum (Tanacetum cinerariifolium
Trevir) are the first known botanical pesticides (Khater 2012). Botanical pesticides
can be regarded as safer pesticides compared to synthetic pesticides because of their
volatile property, low environmental risk, and a minimum residue that minimizes
their adverse effects on non-target organisms like predation and pollination insects.

One group of commercialized botanical pesticides is Azadirachtin compounds,
which are derived from the neem tree and can be applied on several food and crops
in order to control whitefly, thrips, scale and other pests (Sarwar and Tofique 2012).
The extraction method and extracted compounds profoundly influence the pesticide
activity of neem-based biopesticides. Extracted compounds can be a repellent, regu-
lator of growth, inhibitor of ovipostion or toxin for pests of interest (Isman 2006).
Neem leaves (against wide range of pests) (Immaraju 1998), leaf extracts of Clero-
dendrum serratum L. and powdered leaves and leaf extracts of Olax zeylanica Wall
(against Sitophilus oryzae (L.)) (Fernando andKarunaratne 2012),Cichorium intybus
L., Melilotus parviflora L., Chenopodium album L. (on Trogoderma granarium
Everts) (Sarwar and Sattar 2012), methanolic extracts of medicinal plants (against
wheat pest), Tribolium castaneum Herbst (Padin et al. 2013), Phthorimaea oper-
culella Zeller against the potato tuber moth (Thakur and Chandla 2013), extract
of the species Clitoria ternatea (butterfly pea) (against Helicoverpa spp.) (Mensah
et al. 2014), stilbenes derived from grapevine extracts (against Spodoptera littoralis)
(Pavela et al. 2017) and olive mill waste (against various pests) are some examples
of botanical pesticides (El-Abbassi et al. 2017).

However, quality control, product standardization and phytotoxicity are the prob-
lems in the commercialization of botanical pesticides. For example, tomato, brinjal
and ornamental plants are sensitive to a high concentration of neem oil. Also, all plant
extracts with pesticide activities are not safe for humans and animals, e.g. Aconitum
spp. and Ricinus communis, possess considerable toxicity for humans and Tephrosia
vogelii, and impose adverse effects on fish (Stevenson et al. 2012).

15.2.3.1 Genetically Engineered Plants

One eco-friendly strategy to decline the yield loss of crops due to phytophagous
arthropod pests is genetically engineering plants to possess genes encoding
insecticidal toxins and successfully produce their corresponding products. Plant-
incorporated protectants are transgenic plants in whose genome a coding gene of a
pesticide is incorporated e.g., insertion of Bt gene, protease inhibitor, lectins, chiti-
nase into the plant genome has been conducted. Therefore, these transgenic plants
themselves can synthesize pesticide substances. These transgenic plants generate
biodegradable pesticides with no detrimental effect on animal and human health
and, therefore, can decline the application of chemical pesticides. For example, the
lethality ofBt endotoxins is significantly related to the alkaline condition of the insect
gut. This characteristic assures inactivity of these toxins in vertebrates, mostly in
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humans (Zhang et al. 2006). Plants incorporated protectants can profoundly enhance
food, feed and forage production.

15.3 Improvement of Biocontrol Agents

Once the introduction of biocontrol agents, they should be survived, establish and
colonize in the environment (rhizospheric region or phyllosphere) where they are
applied. But their survival, establishment and colonization are affected by fluctu-
ations of biotic (host species, nutritional status and competition with indigenous
microbiota and pathogens) and abiotic (temperature, wetness and relative humidity)
factors. These factors can lead to variability in efficacy or even lack of performance
of biological agents and consequently their limited acceptance by farmers (Lugten-
berg and Leveau 2007; Sundin et al. 2009). Colonization of biocontrol agents can be
augmented by enhancing nutrients or inhibiting the growth of the competingmicroor-
ganisms. This purpose can be achieved through applying nutrients or inhibitors along
with biocontrol agents in their formulation to increase multiplication, survival rate
and adaptation of biocontrol agents or suppress competing or antagonistic indige-
nous microbiota (Druvefors et al. 2005; Guetsky et al. 2002). The inhibitory effect
of P. fluorescens 62e on Erwinia amylovora (causing agents of fire blight infec-
tions) was augmented by applying glycine and Tween 80 (Cabrefiga et al. 2011).
Applying chemical compounds with stimulatory effects on beneficial characteristics
of rhizobacteria like proline synthesis by P. fluorescens is another example of this
strategy (van Veen et al. 1997).

Improving the efficiency of biocontrol agents via increasing their adaptation to
environmental conditions is another approach. These conditions include unfavor-
able conditions like drought, salinity, freezing and high temperature. Adaptation
of biological agents can be enhanced through their cultivation under suboptimal
conditions to induce their tolerance mechanisms such as osmoadaptation via accu-
mulating compatible solutes (sugars, polyols, heterosides, amino acids and amino
acid derivatives) in their cells (Csonka and Hanson 1991; Miller and Wood 1996).
This strategy has been applied to adaptPantoea agglomerans EPS125,Pseudomonas
fluorescens EPS62e (Bonaterra et al. 2005) and Candida sake CPA-1 (Teixidó et al.
1998) to saline, water and osmotic stresses. It is possible that the combination of
the above strategies is applied through culturing biocontrol agents in a fermenter by
supplementing the salts and osmolytes or adding specific nutrient to the harvested
cells to prepare a liquid or dried formulation (Montesinos and Bonaterra 1996). Also,
applying amixture of compatible biocontrol agents can give better efficiency through
controlling pathogens via various activities under an extended spectrum of environ-
mental conditions (Stockwell et al. 2011). Finally, the efficiency of biocontrol agents
can be improved through genetic engineering to enhance the expression of antibiotic
compounds, which has been represented for T. harzianum or P. fluorescens (Flores
et al. 1997; Girlanda et al. 2001) or produce new compounds (Walsh et al. 2001).
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15.4 Safety, Detectability and Fate in the Applied
Ecosystem

It is critical to determine survival rate, dispersal, genetic stability and horizontal gene
transfer as well as effects of biofertilizers and biopesticides on the resident micro-
biota and fauna, and environmental impact of biocontrol agents including natural or
genetically modified organisms before their commercialization and extensive use in
agricultural environments. These characteristics should be monitored and validated
after the release of biocontrol agents in field conditions via well-designed ecological
monitoring programs (Van Elsas et al. 1998). This is while lack of a suitable method
to analyze all populations of autochthonous microbiota to estimate which one is
essential for qualitatively and quantitatively evaluation of the microbial community
structure after the released biocontrol agents makes the monitoring difficult. Toxicity
tests are crucial to assure the safety of biocontrol agents toward humans and animals.
In this regard, microbial agents should not be phenotypically and genotypically
similar to opportunistic microorganisms e.g., strains of Burkholderia cepacia (Parke
and Gurian-Sherman 2001), Pseudomonas putida (Aumeran et al. 2007), Pantoea
agglomerans (Rezzonico et al. 2009) and Aureobasidium pullulans (Gostinčar et al.
2011) that there is not considerable differences between their environmental and
clinical isolates, may cause opportunistic infections. Interestingly, some of these
microbial cells are frequent in nature and are inhabitants on the surface of many
plants (C 1965).

Fate and behavior of released microorganisms as biocontrol agents in the envi-
ronment should necessarily be monitored to evaluate risk assessment, investigation
on traceability, residue analysis and environmental impact, which are perquisites for
registration and subsequent commercialization of microbial pesticides (De Clercq
et al. 2003). In this regard, various monitoring methods should be applied for accu-
rate identification of biocontrol agents and their population dynamics over time.
These methods should be capable of distinguishing biocontrol agents from the native
inhabitants into the microbial community.

Culture-based methods, immunological assays, microsatellite markers examining
(Doube et al. 1995; Plimmer 1999), the methods based on fluorescent antibodies
or fluorescently labeled oligonucleotide probes, or transforming biological control
agents via fluorescence (gfp) or bioluminescence (lux) reporter genes, PCR-based
methods including 16S or 18S rDNA sequencing, real-time PCR (qPCR), BIO-
PCR method, combined qPCR and plate-counting methods, reverse transcription
(RT) coupled to qPCR, nucleic acid sequence-based amplification (NASBA), loop-
mediated isothermal amplification (LAMP) are several strategies tomonitormicroor-
ganisms of interests in soil, rhizospheric region, the phyllosphere and post-harvest of
fruit. Although, some of them have limitations like being time-consuming (culture-
based methods) and expensive (immunological assays, microsatellite markers exam-
ining), possibility of genetically modified microorganism persistence in the environ-
ment (methods based on transforming biological control agents via fluorescence or
bioluminescence (lux) reporter genes), failure to do quantitative analysis (simple
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PCR-based methods), lack of distinction between dead and live cells (conven-
tional qPCR) and inability to estimate population (BIO-PCRmethod) constrain their
application (Malusà et al. 2016).

15.5 Commercialization of Microorganisms as Biocontrol
Agents

Large-scale production and formulation are influential steps in biopesticides biotech-
nology, which can preserve its pesticide activity for a long period (Burges 1998;
Powell and Jutsum 1993). To industrially produce biocontrol agents, a suitable
submergedor solid-state fermentation, and appropriate formulation, e.g. liquid, dried,
peat, encapsulated types should be selected. In addition to microbial cells, a formu-
lated microbial pesticide contains other ingredients called inerts. Therefore, these
compounds should possess no hazard for human and animal health, ecosystems, and
be free from allergens (Nerio et al. 2009).

Solid-state fermentation (SSF) is generally identified as the most effective and
environmentally safe biotechnological strategy for mass production of high-quality
biocontrol products like Bacillus thuringiensis in a cost-effective manner through
employing agro-industrial wastes like wheat bran, rice bran, rice husks, soybean
powder, fish wastes, molasses and protein hydrolysates (Morris et al. 1997; Vassilev
et al. 2015). Seeds can be coated using fermentation products containing spores.
Naturally occurring polysaccharide gels can be used to encapsulate spores. In addi-
tion, these spores can be introduced into compost. It has been revealed that the spores
produced in SSF have higher efficiency to reduce phytopathogens and significantly
preserve survival under unfavorable environmental conditions than that of produced
spores in submerged cultivation (Pascual et al. 2000). SSF was used for multiplica-
tion of Coniothyrium minitans, a biofungicide against the soil-borne plant pathogen
e.g. Sclerotinia spp. and production of it urin, an antifungal compound (Balakrishnan
and Pandey 1996).

Microbial pesticides can be presented as liquid formulated products containing
microbial suspensions in water oils or emulsions, which retained viability and effi-
cacy for several months. Microbial pesticides in the liquid formulation should be
preserved under refrigerated conditions (Abadias et al. 2003). Microbial pesticides
can also be presented as wettable powders, dust or granules (Schisler et al. 2004).
Storage and transportation conditions of microbial pesticides in the dry formula-
tion are easier than liquid ones. Dehydration is a perquisite to obtain stable micro-
bial pesticides in the dry formulation. The dehydration can be performed through
freeze-drying, spray-drying and fluidized bed-drying.

To prevent cell damages during dehydration process, the compounds like sulfox-
ides, alcohols, monosaccharides and polysaccharides, amino acids, peptides and
glycoproteins with protective activity must be added to preserve cell survival during
dehydration (DJ 1993). Among these dehydration techniques, freeze-drying is less
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damaging but expensive method while, spray-drying is most damaging due to great
water loss and temperature gradients, which creates a stressful condition for cells, but
it is a cost-effective method. The third technique, the fluidized-bed drying, has been
successfully used for desiccation-tolerant yeast. This method is cost-effective and
less stressful in comparison with spray-drying (Larena and Cal 2003). In encapsu-
lation formulation, microbial strains are surrounded by a protective inert layer such
as alginate, carrageenan or cellulose (Bashan et al. 2002). Via encapsulating, the
microbial cells can be protected from abiotic stress and released gradually.

Biopesticides should be introduced in the plant ecosystem, where they should
be survived and colonized near or within entry sites of the pathogen in the host
plant. Formulated biopesticides can be introduced through helper insects, coating
the seeds or root microbial colonization of seedlings before transplanting, spraying
or drenching plants with formulated biopesticides. To control post-harvest disease,
treatment of products with microbial pesticide can be conducted before and after
harvesting. Biocontrol agents can be applied with either low initial population
(inoculative and augmentative strategies) or high population (inundative strategy).
The success rate of applied biopesticides is directly dependent on the frequency
of pathogen and introduced biological agents as well as pathogen aggressiveness
(Francés et al. 2006).

In general, the determination of several characteristics including biological char-
acteristics, efficiency, particular analytical strategies, residues, traceability and poten-
tial unfavorable effects on human health, non-target organisms and ecosystems is an
essential perquisite for registration and commercialization of microorganisms as
biocontrol agents. These measurements are pivotal to decline the number of regis-
tered biocontrol agents to ones withmore selectivity, no toxicity for consumer health,
animals and any non-target organisms, and no adverse effect on the environment
(Gullino and Kuijpers 1994).

It was estimated that many commercial microbial biopesticides (90%) are derived
from Bacillus thuringiensis, an entomopathogenic bacterium (Kumar and Singh
2015). It possesses a small portion (5%, $3 billion) of the global market of pesti-
cides (Marrone 2014; Olson 2015). There are 200 and 60 commercial pesticides in
the USA and European Union market, respectively. The annual increase in global
usage of biopesticide is 10% (Kumar and Singh 2015). The universal market of
biopesticides will be increased over time, and dependence on chemical pesticides
will be decreased by their substitution with biopesticides with equal efficiency. The
global acceptance of biopesticides is increased due to their less detrimental effects
on human and animal health as well as environment, their specific activities on target
pests, their effectiveness in small amounts and their quick decomposition without
leaving hazardous residues. It has been predicted that global market size of biopesti-
cideswill be equalizedwith chemical ones between the late 2040s and the early 2050s
(Marrone 2014; Olson 2015). Therefore, annual growth rates of biopesticides must
outpace chemical pesticides. In this regard, comprehensive and systematic studies
should be conducted to find and introduce new biological agents as biopesticides.
Therefore, the collaboration of enterprises and research institutes is necessitated.
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In addition, new guidelines should be considered to facilitate registration (from the
aspect of time and cost) of biopesticide products (Czaja et al. 2015).

15.6 Conclusion and Future Prospects

Biopesticides compared to their chemical counterparts are more suitable to preserve
quality and quantity of agricultural yield. Since they have no harmful residue and do
not contaminate terrestrial and aquatic ecosystems. By using these ecofriendly pesti-
cides, resistant weed, insects, mites, pathogenic fungi, bacteria and nematodes do
not appear. Due to biopesticide-specific activity, non-target organisms remain healthy
and biodiversity as well as beneficial microbial activities can be preserved. Despite
havingmany considerable advantages, biopesticides have some limitationswhich can
be alleviated through comprehensive studies on screening novel and efficient biolog-
ical agents, determining their pesticidemode action, creating high-performance tech-
nologies to produce these biological agents or their derived compoundswith high effi-
ciency and without contamination, finding most efficient formulation. Also, appro-
priate strategies should be intended in order to biological agents (or their derived
compounds) can be adapted, survived, established and colonized in the presence
of biotic and abiotic stress conditions like chemical pesticides, heat, desiccation
or exposure to ultraviolet radiation. Adapted biological agents can be applied in
various ecosystems or along with chemical counterparts, which can augment their
pest controlling efficiency. These adaptations to environmental conditions also can
be achieved by applying suitable fermentation process, their cultivation under subop-
timal conditions, their formulation or even genetic engineering of biological agents.
Comprehensive investigations of these fields can lead to a constant and acceptable
performance of biological agents and consequently their acceptance by farmers.
Finally, accurate monitoring methods are extremely needed to detect population
dynamics of biological agents over time, their dispersal, genetic stability as well as
effects of biopesticides on the resident microbiota and fauna.
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Chapter 16
Mycorrhiza: Plant Growth-Promoting
and Biocontrol Agent Ability Under
the Abiotic Stress Conditions

Tayyaba Hussain, Muhammad Usmaan, Muhammad Numan,
Aamir Abdullah Khan, Faiza Abbas, and Alvina Gul

Abstract Agriculture is the fundamental element among humans which leads to
crop productivity and stability of the environment. Cutting edge techniques open
doors to new dimensions of the research into soil microbiomes to find new ways to
explore worthy resources. Microbiome explicitly has an uplifting role in host inter-
action. Mycorrhizal associations in particular have a remarkable innovation toward
agricultural sustainability. Among them, arbuscular mycorrhizal fungi are surged
above all other associations of host–microbiome interaction. Although it primarily
depends upon gene manipulation and its expression of both host and associated
microbe, AMF has an imperative role in controlling the pathogenic stress and plant
growth advancement, viz., synthesis of essential secondary metabolites along with
vital antioxidants that have a splendid impact on promoting plant growth and making
a nutrient-rich rhizosphere. AMF symbiosis ameliorates myriad biotic and abiotic
stresses ranging from salinity, drought (which leads to ROS stress), nutrient scarcity
and heavy metal toxification which are highly lethal to plant’s health and produc-
tivity. However, there is a need to unravel the function of arbuscular mycorrhizal
fungi and peculiarities to overcome combine stresses. An eco-friendly approach is
the need of time, such as the use of arbuscular mycorrhizal fungi, for better yield and
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production. However, future studies are being focused on arbuscular mycorrhizal
fungi-mediated preferment of crop quality.

Keywords Mycorrhiza · AMF · Symbiosis · Plant health · Biotic stress

16.1 Introduction

Food security is the top priority of all nations in the world. Before “Green Revo-
lution” crop yield was too low to meet the market demand and a number of acres
were used to produce food merchandise. After the “Green Revolution” agriculture
division heightened across the globe and crop yield also increased (Garibaldi et al.
2017). Inorganic chemicals gained more importance due to their high impact on crop
productivity which leads to major health hazards in humans. Organic farming is the
best considering human health but not preferable in developing countries due to its
low yield per unit area of production. However, inorganic farming destroys nature
continuously because of the extensive practices of chemical pesticides, insecticides,
and non-organic fertilizers. Modern farming approaches and the use of genetically
modified crops along with good agronomic practices enable us to ensure food secu-
rity in the future. Precision agriculture with sustainability is the need of the hour to
enhance crop productivity (Stevenson et al. 2013; Hesham et al. 2021; Sharma et al.
2021). During growth and development, plant faces different stresses and interacts
with various micro and macro-organisms. Some of them are harmful which may
collapse the overall plant’s health quality and have an antagonistic effect of nutrients
availability. Beneficial microbiomes live with plants by making different associa-
tions. Soil-dwelling microbes have a great influence on plant growth and lead to
yield improvement, when they act as a biocontrol agent as well as a growth stimulant
reported by Berendsen et al. (2012), Mendes et al. (2013), Yadav et al. (2020, 2021).

However, it is not being fully exploited yet, but modern techniques such as NGS
and othermolecular techniques have started a new generation of research that enables
us to explore their potential within the context of the agriculture sector (Fig. 16.1).

16.2 Evolutionary History: Fossil Evidence

Evolutionary history showed that microbial activity has a crucial impact on plant
growth promotion and it also helps to adopt the ecological niche (Yuan et al. 2010).
History of research reported that symbiotic associations, likeRhizobium, actinorhizal,
and mycorrhizal associations, are considered as primary and beneficial mutualistic
microbial and plant root associations (Diouf et al. 2003). Historically, (Pirozynski
andMalloch 1975) stated that plant and fungus associations are responsible for plant
movement onto land and these associations were also observed in fossil records to be
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Fig. 16.1 AMF colonization with plant

400 million years old. Moreover, Sapp (2004) clarified that in the meantime, symbi-
otic relationships are declared as a fundamental association for the plant’s health
and developmental growth. It is illustrated from recent findings that most flora in the
ecosystem is in correlation with microbial community (bacteria, yeast) as it interacts
through leaves surfaces in the atmosphere or through roots surfaces in the rhizosphere,
directly influencing the plant growth (Van Der Heijden et al. 2006). Modern studies
reveal that eukaryotic cell evolution is also a result of primitive microbe interaction.
In 1800 A.D. with the help of DNA-based technology, researchers observed that cell
organelles such as plastids and mitochondria were derived from the association of
primitive microbe (Nozaki 2005). The endurance of microbial interaction with plant
tissues suggested that plant machinery in not working autonomously. Plant tissues
act as a host for diverse communities of microbes that enhance their adaptability to
different ecological zones (Brachmann and Parniske 2006).

16.3 Fungal Symbionts

Mycorrhiza means fungal interaction with any part of the plant, especially with
roots. Different types of symbiotic relationships were observed among fungi and
plants including mutualism, commensalism, and parasitism (Lewis 1985). Among
all these associations mutualistic approach is more beneficial since it results in wider
host adaptation to various environments and also strengthens their health to copewith
different stresses such as heat, drought and disease tolerance, and enhanced nutrient
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acquisition (Read 1999; Devi et al. 2020). Plant vegetative growth is enhanced
by arbuscular mycorrhiza fungi symbiosis as reported by Paszkowski and Gutjahr
(2013). Particularly, root morphology showed a quick response toward arbuscular
mycorrhiza fungal association-colonization. The tap root system is well adapted
toward AMF symbiosis as compared to the fibrous root system. However, explic-
itly, it largely hinges on the plant’s adaptability and its particular traits (Yang et al.
2015); whereas, enhanced root growth in mycorrhizal plants has greater hindrance
toward pathogenic infections (Vos et al. 2014), making the host plant more resis-
tant and compensate for the loss caused by soil-borne pathogens. Nematode also
plays an indirect role in biocontrol strategy through the root conservation system via
mycorrhizal arbuscules formation (Elsen et al. 2003).

16.4 Mycorrhiza

Fungal association with roots of higher plants by the mutualistic approach extended
in rhizosphere zone and surrounding soil, and this particular symbiotic interaction
is termed as mycorrhiza. A scientist named Frank in 1885 named this association
as “mycorrhiza”. All fungi in an arbuscular mycorrhizal association that produce
mutualistic interaction with 80% of vascular plants belong to the phylum Glom-
eromycotan (Simon et al. 1993). After contact with host root tissues, fungi penetrate
and establish its mycelial network through the epidermis of the cell in cortical of
parenchyma (Powell 1984). Fungus penetration inside root tissues takes place via
three differentmodalities: through intracellular hyphae originate, penetration through
radical hair, or it enters through external layers of cells that are usually dead or flake
off as represented in Fig. 16.2 and reported by Bonfante et al. (1982). After this, a
mycelial network develops and starts penetrating in the root’s cells and in this way
arbuscular structure is formed within 7–12 days of infection (Gadkar et al. 2001).
So, this site is responsible for the exchange of metabolites and acts as a reservoir of
nutrient accumulation.

Being more abundant and common in agriculture than any other, AMF plays
a paramount role in maintaining the sustainability of the environment via recy-
cling of organic matter and make nutrients available by biodegradability of complex
organic compounds. Collectively, all such properties of microorganisms enhance
plant growth promotion to cope with the devastating conditions of environment. So
by using techniques like microbes and PGPM improves crop health and reduces
the health hazard of its consumers. These two are the best substitute for inorganic
pesticides and fertilizers. Therefore, to ensure food security and sustainable agri-
culture in future, plant–microbe interactions are an important concern of the hour
(Govindasamy et al. 2011). Food quality and crop yield can be improved by using
microorganisms and stress-tolerant plant growth-promoting mycorrhiza (PGPM) in
the changing climatic conditions. Also, through sustainable agriculture practices and
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Fig. 16.2 This figure elaborates associations of AMF with the roots of the plant. AMF is shown
on the right side developing arbuscules inside of the plant’s root. While the other side of the figure
is depicting the association of ectomycorrhizal fungi which fully covered the plant root tissue with
a new tissue of fungus called the mantle (on the left), and hyphae seems to be surrounding the
plant’s cell in the cortical region of the root. At the bottom fungus-forming mantle with the bunch
of hyphae piercing into the plant cells can be seen

using PGPM, we can save 20–25% cost of production by limiting inorganic pesti-
cides and fertilizers. These practices of crop production can enhance the income of
farmers and ensure organic agriculture.

16.5 Virtual Soil Diorama

Generally, three types of propagules are involved in colonization ofAMFwith plant’s
root; these are spores, fragments of mycorrhizal hyphae, and arbuscules (Fig. 16.2).
These propagules extended in the soil with an extensive network of mycelium. In the
first phase of colonization of AMF, hyphae formation is initiated through soil-borne
propagules, i.e., mycorrhizal root segments or resting spores or from AM plant in
the vicinity. Under the application of AMF and the use of plant growth-promoting
microbes (PGPM), plant growth is significantly boosted.Moreover, these approaches
paved the way for the best survival of plants and AMF in a changing environment.
AMF is capable of altering the root exudates in rhizospheric soil from the perspective
of its composition and distribution (Hage-Ahmed et al. 2013). But its specificity
doesn’t depend only upon AMF (Kobra et al. 2009). However, it contributes to the
automatic regulation of symbiotic interaction among both plant and fungal partners
reported by Schaarschmidt et al. (2013). This evidence is supported by Lioussanne
et al. (2008) that it significantly depends on the level of maturity of AMF, i.e.,
colonizing the lure of Phytophthora nicotianae zoospores to root exudates of R.
irregularis colonized diverted to repellence.
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16.6 Abiotic Stresses

Abiotic stresses significantly impart changes in physiological, biochemical, morpho-
logical, and molecular properties of the plants, which critically damage the plant’s
health as reported by Zhao et al. (2001), Kour et al. (2019), Dikilitas et al. (2021),
Tiwari et al. (2021). Myriad of stresses, likewise saline stress along with water
scarcity, oxidative and high-temperature stress results in the induction of many lethal
cellular changes (Wang et al. 2003). Homeostatic equilibrium in the plant body is
primarily affected by drought and salinity stress that leads to osmotic stress eventually
(Zhu 2001). Denaturation and accumulation of cellular protein is the effect of high-
temperature stress mainly and if ignored, it leads to unrecoverable narcosis. Usually
heat effects by causing mutation lead toward abnormal transcription and translation,
resulting in the induction of heat shock proteins and its expression toward thermo-
tolerance intimation (Hirt and Shinozaki 2003). Metabolic processes are largely
pretentious by low-temperature stress which alters the structure as well as the func-
tion of proteins by changing the properties of membranes and particularly affecting
the signaling mechanism among secondary metabolites along with halting enzy-
matic functions (Heino and Palva 2004). Unique transport mechanism is adopted
by plants to uptake Cu—a heavy metal. Furthermore, chaperones act as a medium
of intracellular transport of Cu to storage vesicle, where it specifically targets the
enzymes.

Likewise, Cu/Zn_SOD and receptors of ethylene. Besides this, the copper radicle
is highly lethal as it paved the path to programmed cell death (PCD), and this hype is
seen inmanyoxides, e.g., hyperoxide,H2O2 accompaniedby the compositionofOH−
ion (Polle and Schützendübel 2004). Overall, all stresses converge into an “oxidative
stress” which ultimately results in denaturation of proteins, structurally and morpho-
logically (Smirnoff 1998). Production of ROS and its accumulation clearly indicates
the warning sign of stress, either biotic or abiotic. Hence its accumulation is the root
of all fundamental stresses associated with all biochemical processes. ROS causes
severe damages to biological molecules such as DNA, proteins, and lipids. On the
other hand, ROS is imperative to regulate signals under stress. Therefore releasing of
ROS is the initial response of the plants toward any stress (Rodriguez et al. 2005). But
symbiotic relationship with plants assists in combating variety of abiotic stresses,
few of them are enlisted in Table 16.1.

16.7 Mycorrhizal Fungi as Biocontrol Agent

Increased application of chemical pesticides on crop plants resulted in increased
environmental pollution. So we must use alternative ways to combat biotic stresses
such as biocontrol measures, which are more prominent among all strategies. In
this context soil microbiota is gaining more importance. In agriculture, different
strategies are used to control the soil-bornediseases, such as soil fumigation, chemical
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Table 16.1 Elaborates on the diversity of symbiotic association of fungi to mitigate environmental
stresses subjected to higher plants

S. no. Fungal endophytes Environmental stress Host plant
species

References

1 Neotyphodium sp. Drought Fest perennial Morse et al. (2002)

Ryegrassuca
pratensis

F. arizonica

2 Neotyphodium lolii Water scarcity P. ryegrass Ravel et al. (1997)

3 Neotyphodium
coenophialum

Drought stress T. fescue De Battista et al.
(1990)

4 Neotyphodium
uncinatum

Water stress M. fescue Malinowski (1995)

5 Curvularia sp. High temperature
and water scarcity

L. esculentum Rodriguez et al.
(2008)

8 C. protuberate Famine stress T. aestivum Rodriguez et al.
(2008)Citrullus

lanatus

9 C. protuberata High temperature L. esculentum Rodriguez et al.
(2008)

10 Rhizophagus
intraradices

Famine stress Zea Mays Zhao et al. (2015)

fungicides, seeds certification, resistant cultivars, and crop rotation. A lot of problems
are associated with this strategy to control the pathogens on a persistent basis, due to
lack of resistant cultivars (Azcón-Aguilar and Barea 1997). Therefore, to eradicate
the soil-borne pathogens, botanists are working to use substituted approaches by
adding microbiota to the soil medium to surge the healthy plant’s yield potential
(Grosch et al. 2005). Adding beneficial microorganisms in the soil increases the
competition of space, water, and nutrients, with soil-borne plant pathogens. Some
of the antibiotics attack the pathogens and some increases the immunity of the host
plant to combat arduous situation.

Meanwhile, different microorganisms are used as biocontrol measurement of
pathogens (Berg et al. 2007). Researchers have reported different mechanisms of
biocontrol by arbuscular mycorrhiza fungi. These mechanisms include chemical and
physical changes in plants such as nutrient exchanges,morphological changes in roots
and biochemical changes in the rhizosphere (Hooker et al. 1994). Concerning biocon-
trol, AMF is well adapted to induce a systemic-induced system, particularly in plants
(Cordier et al. 1998). Furthermore, system-induced resistance is well-defined as the
inexorable induction of resistance or tolerance to infectious plants by a pathogen inoc-
ulation.Moreover,MAMPs are responsible for disease resistance byAMFelaborated
by Zamioudis and Pieterse (2012).
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16.8 Plant Growth-Promoting Mycorrhiza Impact
on Plant’s Health

Abiotic stresses are scientifically controllable by the application of PGPM and
AM concerning plant growth (Nadeem et al. 2014). To promote healthy plant
growthmicrobes use diversemolecular and biochemical mechanistic approaches; for
example, through inoculation of PGPM, hormonal and nutritional balance of plants
is regulated that enchants their growth and also induces resistance against pathogenic
organism in plants (Spence and Bais 2015). Like metabolic reactions produced by
PGPM in plants suppress the population of pathogens in plant vicinity, for example,
siderophores secreted in the rhizosphere by soil microbes suppress the growth of the
pathogens by reducing the iron availability to certain pathogens (Złoch et al. 2016).
Moreover, they also strengthen the plant’s growth development, readily available
phosphates, fixing atmospheric nitrogen and by generating hormones (Ahmad et al.
2011). Other approaches like mobilization of nutrients and synthesis of exopolysac-
charide and rhizobitoxine enable the plant to survive in harsh environments. Ethy-
lene production inhibited under stress conditions by rhizobitoxine also promotes
plant growth and development (Kumar et al. 2009). Besides hormones, enzymes are
also produced by plants microbes to boost their mechanism to fight with stresses;
for example, glucanase, chitinase, and ACC-deaminase are produced under stress
conditions (Farooq et al. 2009).

16.9 Characteristics of Arbuscular Mycorrhizal Symbiosis

AMF symbiotic association with the plants is confirmed about 400 million years
ago (Selosse et al. 2015). Such associations are customary like series of biolog-
ical processes, which resulted in worthwhile effects in agriculture biota and natural
ecosystem (Van Der Heijden et al. 2015). Among all associations, AMF is the oldest
mutualistic interaction that helps to maintain plant health and survival. Nutrition
uptake of fungi from the host cell takes place through the mycelium network that
extends in the root system of plants. Mycelium network of fungi interacts with
numerous plants that are from different species, and this type of association is recog-
nized as a common mycorrhizal network (CMN). Hyphae networks make CNN the
prime module of the ecosystem due to its splendid effects on flora, especially the
invasive plants (Pringle et al. 2009), thus resulting in relocation of nutrients between
fungi and the plants (Fig. 16.3).

This is how AMF has a paramount impact to establish tolerance for plants against
environmental and biotic stresses (Navarro et al. 2014). They can restore the fertility
of the soil and flourish the soil features along with improved plant health (Alqarawi
et al. 2014). Furthermore, Hashem et al. (2015) reported that changes in the phys-
iological traits of the plant are brought by AMF colonization that enhances the
plant’s ability to combat stress conditions. Barrow (2012) findings elaborated that
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Fig. 16.3 AMF and its impact on plant and soil health

AMF is deliberated as a normal growth promoter of the bulk of global vegetation.
Researchers suggested AMF inoculation, due to its constructive role in sustainable
production acts as a biofertilizer. Moreover, it has been analyzed that soil containing
infectious threads of AMF forms exhibit more persistent masses and prolonged extra
radical hyphal threads in contrast to the soil with the non-AMF association (Syam-
siyah and Herawati 2018). It has been presumed that glomalin soil protein (GSP)
has great water-holding capacity in the soil that is subjected to various abiotic stress,
which afterward stimulates the growth of plant immediately by controlling the water
level (Wu et al. 2014). Moreover, Sharma et al. (2017) compromises 30–40% carbon
content and its associated compounds that shield soils from erosion and desiccation
due to upgrading soil water-holding capability.

Development-related functions such as stomatal conductivity, leaf water capacity,
relativewater content (RWC), (PSII) performance, and assimilation of carbondioxide
are influenced by the inoculation of AMF (He et al. 2017; Chandrasekaran et al.
2019). The objective of AMF is to increase the resistance to water tension through
biochemical modification of the aerial parts of plants (Bárzana et al. 2012). AMF
association also assists in reducing the retention of dry matter and boosts the uptake
of water content, thus uplifting the plants resistance to stress, such as drought and
saline stress. Application of AMF for the betterment of plant growth in different
environmental conditions will make a major difference to organic agriculture to
encourage production and optimize yield (Fig. 16.4) flowcharts. Castellanos-Morales
et al. (2010) reported that rhizospheric beneficial microorganisms not only boosts
the crop nutrients availability but also improves the crop quality with the same pace.

In exemplification, AMF association in strawberries explicitly increases the
concentration of secondary metabolites which led to the improvement of antioxidant
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Fig. 16.4 AMF association has a direct positive approach toward better productivity of the plant, as
plant growth promotion, biocontrol agent, plant stress tolerance, soil health, and uptake of nutrients

properties. By influencing and developing carotenoids and other volatile compounds,
AMF contributes in enhancing the nutritional value of the crop yield that have been
identified as beneficial effects of AMF on tomato production as cited by Bona
et al. (2017). Improved content of vitamin C organic acids, sugar flavonoids, and
minerals results in enhanced plant’s yield (Zeng et al. 2014). Mycorrhizal symbiosis
causes decreased anthocyanin aggregation, along with photosynthetic pigment, i.e.,
chlorophyll, and other mineral nutrients like carotenoids, absolute solvable pheno-
lics, tocopherols as reported byBaslam et al. (2011). Later findings of Lu et al. (2015)
illustrated that arbuscular mycorrhiza has been used in large-scale field maize, yam
and potato production. Hijri (2016) confirmed that AMF has significant potential to
increase crop yields. For edible plants, AMF has a pivotal role to boost the synthesis
of useful organic compounds that are quite essential for a balanced food production
chain. Furthermore, they stated that AMF’s abiotic stress mitigation may occur by
soil pH conservation, thereby preserving its horticultural interest.

16.10 Mycorrhiza Cope with Abiotic Stresses

Mycorrhizal hyphae assist the host plant by protecting it from water scarcity via
higher water uptake mechanism established by the hyphae that remarkably extends
into the soil as well (Abdel Latef andMiransari 2014). It is of paramount importance
in sustaining the greater proportion ofK/Na (Porcel et al. 2012), especially in osmotic
stress. Besides, sodium ion concentration in soil is substantially high, hindering
directly with myriad of other transporters, particularly in root plasma like potassium
selective ion channels (Evelin et al. 2012). In summation, the uptake of essential
mineral elements, e.g., iron, sulfur, copper, and zinc get reduced in numerous enzy-
matic processes, including protein synthesis (Maathuis and Amtmann 1999). Plants
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respond effectivelywithAMFassociation, especially by increasing the surface area of
mineral absorption. It ultimately leads to high accumulation of potassium ion which
assists in balancing the low Na+/K+ ratio. This is how mycorrhizal association with
plants protect its biological functioning fromdamage (Kapoor et al. 2019). Numerous
organic solutes (glycine, soluble sugars, proline, and betaine) play a pivotal role in
the establishment of fungi–plant colonization (Kapoor et al. 2019). Production of
such metabolites not only provides assistance to maintain the osmotic level but also
plays a key role in detoxification of ROS, andmaintains integral membrane function-
ality and stability of the enzyme and other proteins (Sanchez et al. 2008). Table 16.2
explicitly explains how symbiosis is conducive for plants in combating abiotic stress.

16.11 Arbuscular Mycorrhiza as Biocontrol Agent

Phyto-pathogenic microorganisms play a key role in the substantial loss of crop
productivity. Numerous applicationswere applied at discrete levels of plant growth to
control the phyto pathogenicity (Thakur et al. 2020).However, continuous use of such
practices contributes significantly to the deterioration of the ecosystem (Bødker et al.
2002). Meanwhile, over time plant pathogenic microorganisms develop immunity in
contradiction of these agrochemicals which are arduous to overcome. Subsequently,
biological approaches as part of integral management considered as an impeccable
substitute for the excessive use of agrochemicals. Moreover, the use of arbuscular
mycorrhiza is accepted worldwide as a biocontrol tool for pathogenic microorganism
(Harrier and Watson 2004). This concept was also assisted by Feldmann and Boyle
(1998) when they analyzed the converse relationship among colonization of roots
of G. etunicatum (that belongs to begonia species) and vulnerability specifically to
the powdery mildew fungus named Erysiphe cichoracearum. On the other hand,
Filion et al. (1999) findings elaborated that the growth rate of F. oxysporum f. sp.
chrysanthemi is limited by extraradical mycelium of G. intraradices. Similarly, in
one more research, Slezack et al. (2000) reported Aphanomyces euteiches to have
AMF as a mutualistic approach with Pisum sativum declaring best defense against
pathogens. In ramification, Trotta et al. (1996) reported that most common fungi
used as model organism, i.e., Phytophthora spp., plays a pivotal impact in analyzing
and demonstrating the control measures for plant diseases.

Moreover, Caron and co-workers (1985) depicted that AMF is responsible to
reduce the risk of disease in plants supported by experiments conducted on tomato
when they interact G. intraradices as an AMF and F. oxysporum as a pathogenic
fungus. Another evidence provided by Torres-Barragan et al. (1996) elaborates that
it is a healthy approach to delay the inception of the onion by the pathogen, i.e.,
Sclerotium cepivorum by two weeks. This pathogen is responsible to infect onion
with white rot disease. Their conclusion is supported by Newsham et al. (1995)
as they experimented Vulpia ciliate by pre-inoculating with the AMF Glomus sp.
before subjecting it into the natural grass ecosystem. Later, it was indicated that this
approach leads to the significant reduction of infection with F. oxysporum.
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16.12 Mycorrhizae-Mediated Biocontrol Mechanisms

16.12.1 High Nutrient Uptake

AMF association assists in developing the immune system against various diseases.
It also accounts for the advancement of nutrition uptake, especially phosphorus and
nitrogen (Baum et al. 2015).Myriad endophytes have been acknowledged to enhance
plant growth promotion when they act synergistically with arbuscular mycorrhiza
(Puppi et al. 1994). Plant’s residues decaying and recycling nitrogen from leaf litter in
(15 N–13C) labeled Lolium perenne leaves significantly surged due to AM symbiont
glomus (Hodge et al. 2001).

Phosphorous is chiefly consumed by plants in the form orthophosphate (Pi) but
unfortunately it is merely available in the soil, approximately 10 mM (Bieleski 1973;
Kour et al. 2020). This is because solubility andmobility of this compound is low, and
the rhizosphere has greater chances of phosphorous depletion. Arbuscular mycor-
rhizal fungi play a pivotal role to overcome phosphorous deficiency by mutual inter-
action with plants. This improvement has been upgraded by using isotope dilution
approaches specifically 32P/33P-based isotopes (Barea 2010). In summation, fungal
partners are assisted by plants in the maximum uptake of phosphorous (Barea et al.
2014). It has been reported that high phosphorus content has a crucial role to establish
AMF symbiosis (Bever et al. 1996).

Moreover, along with phosphorous uptake, arbuscular mycorrhizal fungal partner
also assists plants to overcome nitrogen deficiency via both organic and inorganic
nitrogen sources (Mohanta and Bae 2015). Peptidases and proteases enzymes are
released by fungal partners into the soil that catalyze and freed the bounded nitrogen
organically and make nitrogen available to plants (Behie and Bidochka 2014).
Furthermore, nitrogen transporters are upregulated in plants that accompany fungal
translocation of nitrogen. In the case of Sorghumbi color, ammonium ion transporters
are reported to be unregulated in cortical cells containing arbuscules and the expres-
sion of ammonium ion transporters in plants SbAMT3; and SbAMT4 is confined only
in cells containing arbuscules (Koegel et al. 2013). Likewise, NO3

− transporters
expression was also reported in arbusculated cells in M. truncatula (Gaude et al.
2012; Behie and Bidochka 2014). Respective corresponding and specific expression
by plants and fungal NH4

+ and NO3‾ transporters in mycorrhizal infectious cortical
cells are highly conducive in bringing fungal nitrogen transmission to plants (Behie
and Bidochka 2014).

16.12.2 Competition for Nutrients and Space

The main factor associated with pathogenic clampdown in mycorrhizal plants is
competition among the nutrients like carbon, which is essential for both mycorrhiza
and rhizosphere soil microorganisms (Vos et al. 2014). Furthermore, it is estimated
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that 4–20% of the carbon content is transferred from the host plant to AMF from
total assimilated carbon, reported by Hammer et al. (2011). Various studies reported
different aspects of AMF in association with plants and the way it guards the host
plant against deleterious pathogens. As aforementioned, it all depends upon the char-
acteristics of the host plant and AM species. Similarly, Lerat et al. (2003) support this
view by reporting results of AMF which adopt different measures of biocontrol due
to differences in the carbon sink among various AMF species. It has been concluded
that Phytophthora is unable to penetrate into tomato plant which has an association
with AMF (Cordier et al. 1998). On the contrary, it is testified by Vos (2012) that
arbuscular mycorrhizal fungus-rhizophagus irregularis is unable to build a strong
biocontrol effect on pathogenic nematode Rhadopholus similis and Pratylenchus
coffeae in banana.

16.12.3 Phytoalexins and Phytoanticipins

Under defense mechanism plants produce various natural hormones like “phytoalex-
ins” which do not possess the protagonist approach toward any symbiotic mutu-
alistic association. Formally, it was known that in response to microbial infection
phytoalexins are produced by plants (Wyss et al. 1991). They exhibit lipophilic nature
which helps them cross the plasma membrane and carry out their activity inside the
cell (Braga et al. 1991). Interestingly, secondary metabolites, i.e., coumaric acids,
lignin, ferulic, syringic phenolics, viz., iso-flavonoids, or flavonoids surged up to the
mark by mycorrhizal colonization with roots of the host plant (Morandi 1996). As
compared to control, plants show great defense against F. oxysporum which leads
to high beta-glucosidase and phenylalanine activity with entire phenol content in
their roots, reported by Dehne and Schönbeck (1979). Moreover, phytoalexins are
imperative to neutralize the counter effect of pathogens in plants having arbuscular
mycorrhizal association in contrast to the control ones (Caron et al. 1986).

16.12.4 Hydrolases, Antibiosis, and Antioxidant Enzymes

AMF assists in exploring the genes that are associated with the defense mechanism
in plants having mycorrhizal association (Lambais and Mehdy 1995). Mycorrhiza
contributes to the induced assembly of hydrolytic enzymes such as superoxide dismu-
tase chitinase, b-glucanase, and chitosanase in tomato roots against thePseudomonas
parasitica in host defense mechanism, reported by Pozo et al. (2002). The productive
relationship among the level of glucanase action and fighting against phytopathogens
in host tissues was analyzed by Graham and Graham (1991). Formally, it is being
reported by Filion et al. (1999) that anonymous antimicrobial substances synthesized
by G. intraradices are conducive to rheostat conidial germination of F. oxysporum f.
sp. chrysanthemi under the non-influential effect of pH.
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On the other hand, it is a cosmopolitan belief that antioxidants have salient role in
building the symbiotic associations among plants and fungi, particularly in abiotic
stress defensemechanisms (Rouhier and Jacquot 2008). There aremany antioxidants,
enzymes such as superoxide dismutase ascorbate or thiol reliant on peroxidase, cata-
lases dehydroascorbate reductase, glutathione reductases, monodehydroascorbate
reductases. Low molecular weight antioxidants involve ascorbate glutathione and
tocopherol compounds (Rouhier et al. 2008). The enzymes such as thiol-dependent
peroxidases, catalases, and ascorbate- or superoxide dismutases have specificity to
eradicateROSvia renaissance of the twomain redoxmolecules in the cell, glutathione
and ascorbate dehydroascorbate reductases, and monodehydroascorbate reductases
and glutathione reductases (Rouhier and Jacquot 2008). A thought-provoking feature
of the chemistry among antioxidants and oxidants is that it befalls in all subcel-
lular partitions together with plastids and mitochondria, two spots of catholic ROS
production (Navrot et al. 2007).

16.13 Conclusion

Thegenotypeof the host plant and fungi species has a paramount role inAMFassocia-
tion and their potential toward plant growth promotion and its productivity. Bioactive
compounds are largely produced by fungal symbionts which have the protagonist
effect on humans, as well as on other living creatures. Henceforth, environment has
a profound effect on AMF and its associated host, likewise availability of nutrients,
water supply, and fluctuation of temperature. It has been observed that instead of
unfavorable growth conditions, plants having minor ratio of AMF association, espe-
cially vegetable crops, show significant growth rate. This is because this mutualistic
symbiosis is conducive to promote plant growth and enhance tolerance under abiotic
stress conditions and, meanwhile, increase immunity against pathogenic organisms.
Mycorrhiza plays a significant role in plant growth promotion, both individually or
mutualistically. It could be used on commercial scale as bioinoculants and biocon-
trol agents for crop production under normal and stressed environments. Further-
more, bioactive compounds as a by-product of symbionts are potentially useful for
bioremediation.

16.13.1 Prospective Research

It has been observed that AMF has a high potential against phytopathogens but on the
same ground, there are restrictions toAMF as a biological tool for this purpose. Bever
et al. (1996) demonstrated that the abundance of diverse communities of arbuscular
mycorrhizal fungi surely has a great potential of biocontrol against phytopathogens.
Meanwhile, the versatility of AMF in the rhizosphere has been largely influenced
by the genotype of the host plant and crop rotation level. Myco-trophic host is most
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suitable for AMF colonization and imitation as compared to plants that are not
adapted to myco-friendly environment. Endophytic symbionts are biological tools
that have great potential to be used as genetic markers, vectors. It can be used wisely
to overcome the scarcity of food—the global challenge. Moreover, they can be used
commercially as a source of natural antioxidants and secondary metabolites. There
is a need to explore its hidden treasure in antiviral compounds, anti-carcinogenic
compounds, and antibiotics. AMF can also aid in producing immune-suppressants.
Its all-rounder ability to combat future challenges should be traced and launched.
It’s a need of time to dive deep in nature and explore proficient endophytic fungi
to mitigate abiotic stress and develop tolerance against it. Plethora of endophytes is
presumed to exist in nature in distinct extreme environmental conditions that have
not been discovered yet, and ecological perspective to such myco-organisms is not
well understood. Bioengineering is an interesting feature to be adopted to enhance
biological competences of plants. This strategywill have an impeccable impact on the
plant-fungal association and might be conducive to the betterment of the agriculture
industry.
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Chapter 17
Entomopathogenic Soil Microbes
for Sustainable Crop Protection

Neelam Thakur, Preety Tomar, Simranjeet Kaur, Samiksha Jhamta,
Rajesh Thakur, and Ajar Nath Yadav

Abstract The insect pest nuisances in the agricultural industry are most likely as
old as the agriculture itself. Insects are the most ubiquitous and versatile among all
living organisms and are responsible to develop successful survival mechanisms as
compared with other living fauna that also share the same planet. Themain reason for
insect’s dominance in the world is their huge adaptability. A large number of agro-
chemical insecticides, pesticides and herbicides are used against these insect pests,
which are neurotoxicants and affect all living organisms with soil fertility. Food
security, energy renewability, rural livelihood and agricultural sustainability depend
mainly on soil richness or fertility. Global increase in the population and degradation
of environment possess a challenge in crop production and it is a need to find solu-
tions for abiotic stress, pests and pathogens. These demands for food cannot prevail
until the fertility of the soil is restored. In addition, today’s prime public worry is
about environmental pollution, mostly caused by the use of chemical synthetic pesti-
cides, herbicides and fertilizers. Hence, a cleaner and greener approach against crop
production and protection is essential by the use ofmicrobial biopesticides.Microbes
are a vital part of soil not only involve in transforming nutrients within the soil but
also influence the multiple functions and are among the commonly used eco-friendly
means of pest management. There are some specific microbes that help the plants in
rhizospheric soil to grow healthy in that environment by performing various mecha-
nisms. The direct mechanism consists of fixation of nitrogen, production of different
enzymes and phytohormones and solubilization of someminerals in the rhizospheric
soil, whereas indirect mechanism comprises inhibiting phytopathogens. Originated
from a variety of naturally occurring microbes such as viruses, bacteria, fungi, nema-
todes, rickettsia and protozoan etc. microbial biopesticides protect our crops from
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diseases and pests thus enhance crop productivity and soil fertility. They make it
possible to increase yield as well as the productivity in a sustainable way. Ultimately,
results in more production give food to our ever-growing world population with a
novel opportunity to protect this planet. The significance of rhizospheric microor-
ganisms may be huge as they are capable of managing the pest population, nutrient
acquisition and nutrient transformation, thus results in crop sustainability.

Keywords Biological control · Commercialization · Entomopathogenic ·
Microbial pesticides · Rhizospheric microbes · Sustainable agriculture

17.1 Introduction

Insects are the most ubiquitous and versatile among all living organisms and are
responsible to develop successful survivalmechanisms as comparedwith other living
fauna that also share the same planet. Insect’s biological success in nature is quite
obvious. Now, more than 1 million insect species are identified, which is the highest
in number as compared to the total vertebrate population 62,000 species, including
fishes, amphibians, reptiles, birds and mammals. The main reason for insect’s domi-
nance in the world is their huge adaptability, which enables them to inhabit every
imaginable environment where existence can be present and stay alive under adverse
ecological conditions. The appliance of extremely toxic insecticides to eradicate
harmful insects is termed as ‘insect pests’ or ‘pest insects’ and exerted a large selec-
tion force on insects (Kumar and Shivaraju 2009). In results the insects developed the
adaptability for survival against these toxicants and that phenomenon is well known
as insecticide resistance within insects. Almost 30–50% of crop yields be vanished
due to the damage caused by insect pests and also some insects have the possibility
to cause approximately 50–100% loss in outbreaks (Oerke et al. 1994). Reductions
in the agricultural losses caused by pests are the potential vicinity for rising food
production, and in these circumstances, we take advantage of the rhizospheric ento-
mopathogenic microbes to decrease the level of losses due to the insect pests. It is
difficult to reduce the losses caused by the pest due to less resources and limited
area (Pandey and Seto 2015). Over the next four decades, the world’s population
will reach to a predictable increase of 10 billion. So the instant and the main concern
of the agriculturist is to attain high production in such a way that it is ecologically
sustainable and worthwhile.

There are large numbers of agrochemical insecticides, pesticides and herbicides
introduced in the world market for the management of these insect pests. But there
are many factors that are found at risk for the use of these agrochemicals. Some of
the factors include resistance among the insects against conventional insecticides,
adverse effects on human health, environmental issues and less awareness among
the people towards the use of synthetic chemical insecticides, which results in de-
registration and cancelation of certain insecticide formulations (Nicholson 2007;
Thakur et al. 2020). Therefore, an alternate and eco-friendly method is required to
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improve the quality and quantity of agricultural goods, which leads to sustainable
crop protection (Yadav et al. 2020;Heshamet al. 2021;Kumar et al. 2021).Keeping in
mind the ill effects of insecticides, there is a need to develop biopesticides, which are
environment friendly, highly effective and easily decomposable. The use of natural
enemies against arthropod pests is a successful biocontrol method under the inte-
grated pest management (IPM) technique (Pilkington et al. 2010). Biopesticides
are obtained from natural resources and living organisms such as plants and animals.
These biopesticides manage the insect pest population through non-toxic mechanism
as they are produced from the microbiomes. Microbial biocontrol agent (MBCA) is
an alternativemethod against chemical pesticides. The presence of epizootics through
microbiomes controls the population of pest species. Nowadays, entomopathogenic
microbiome is also employed as an effective method of pest control under inte-
grated pest management (IPM). Bacteria, fungi, protozoa, nematodes and viruses
are widely used to manage the population of insect pests (Evans 1986; McCoy et al.
1988; Rastegari et al. 2020a, b).

Microbial biopesticides include a live organism which is natural enemies or their
by-products are used for the control insect pests, whereas the microbial biofer-
tilizers of living microbes which are used to enhanced crop productivity (Kour
et al. 2020a,2020b; Mondal et al. 2020; Rai et al. 2020; Yadav et al. 2021). Host
specificity of these biopesticides provides an effective solution, which is an eco-
friendly approach to pest management. Presently, microbial biopesticides are used,
which include bacteria, viruses, fungi, protozoan and nematodes (Islam and Omar
2012; Verma et al. 2017, 2018; Yadav et al. 2017). There are about more than 100
pathogenic species of bacteria that have a potential tomanage the population of insect
pest among which entomopathogenic bacteria Bacillus thuringiensis acquire the top
position (Abtew et al. 2015). Although B. thuringiensis have been identified for its
entomopathogenic properties but there is a requirement of industrial efforts too for
the detection of new strains and specific toxins. Entomopathogenic bacteria consist
of Serratia, Burkholderia, Chromobacterium, Streptomyces, Saccharopolyspora,
Yersinia andPseudomonas species. Groups of entomopathogenic fungi (EPF)mainly
include Beauveria (Vuillemin), Trichoderma, Metarhizium (Metschnikoff), Isaria
(Wize), Hirsutella, Verticillium (Zimm.), Lecanicillium and Paecilomyces. EPF
acquire an important place as a biocontrol agent under IPM because of their large
host range, path of pathogenicity and capability to manage both insect pests having
a chewing type of mouth parts as well as sucking type of mouth parts (Khan et al.
2012). Among viruses, baculoviruses have the insect-killing properties. Two genera
of entomopathogenic nematodes (EPNs)were also reported to have insecticidal prop-
erties. These are genus Heterorhabditis and Steinernema. Both of these genera have
a symbiotic association with bacteria Photorhabdus and Xenorhabdus (Koul 2011;
Ruiu 2018). Entomopathogenic microbiomes in general are eco-friendly, more suit-
able, specific, cheaper and do not show any harmful effect on the non-targeted organ-
isms and human health as well (Rekha et al. 2020; Yadav et al. 2018). The reason
behind their use is that they are capable of living in the natural environment. So
they are much better adapted than conventional insecticides. Development of new
effective biopesticides will lead to reduced trust on chemical synthetic pesticides in
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Fig. 17.1 Rhizospheric microbiome present in the soil, Mendes et al. (2013)

this manner decrease crop protection cost by farmers, at the same time as benefiting
the public health and environment.

Rhizosphere is the portion of soil, which is directly in touch with plant roots.
Lorentz Hiltner in 1904 gave the term rhizosphere (rhiza: root and sphere: area of
influence). This region of soil is concentrated with diverse groups of microorganisms
(Hartmann et al. 2009; Kour et al. 2019) (Biswas et al. 2018; Singh et al. 2020; Yadav
2021). Flora and fauna are the two important groups of organisms having macro and
micro soil-inhabiting organisms (Fig. 17.1). Nearly 1011 microbial cells along with
more than 30,000 prokaryotic organisms have been found near the marginal area of
the soil (Mendes et al. 2013).

17.2 Background of Entomopathogenic Microbes

Entomopathogenic microbes are the organisms that are pathogenic to insect pests.
These organisms have the capability of killing the insect pests and are now used
as biocontrol agents in IPM. Entomopathogenic microbes include bacteria, fungi,
viruses, nematodes and protozoa. Entomopathogenic bacterial use for the killing of
insects starts in the 1960s. Goldberg and Margalit (1977) discovered the pathogenic
effect of B. thuringiensis against the larvae of dipterans (De and Barjac 1978). In
1800s, the existence of EPF has been studied in silkworm industries of France.
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Agostino Bassi (1773–1856) reported that in silkworms, muscardine disease is
caused by Botrytis bassiana (Beauveria bassiana). The idea of using fungus for
the management of insects strikes from the study of diseases in silkworm industry.
During this study, it was observed that fungus is not only killing silkworms
but also virulent to other insects (Ainsworth 1956; Audoin 1837). Elie Metch-
nikoff (1845–1916) reported Entomopthora anisopliae (Metarhizium anisopliae)
as disease-causing agent in wheat cockchafers in Russia. This fungus is also used
for the control of weevils in sugarbeet (Krassilstschik 1888). Pasteur (1874) and
LeConte (1874) also proposed the insecticidal properties of fungus. Steiner found
the first insect-killing nematode Aplectana kraussei in 1923, which is now regarded
as Steinernema kraussei. Neoaplectana glaseri Steiner (1929) isolated as the second
entomopathogenic nematode by Glaser and Fox (1930). These discoveries are not
gaining people’s attention toward the pathogenicity in insects until Neoaplectana
carpocapsae and DD-136 strain were isolated from the larvae of codling moth
(Dutky andHough 1955;Weiser 1955).Nematodes have a symbiotic associationwith
bacteria, families Steinernematidae are symbiotically associated with Xenorhabdus
genus of bacteria and bacterial genus Photorhabdus is symbiotically associated with
family Heterorhabditidae (Akhurst and Boemare 1990; Boemare 2002). Due to this
mutualistic association, nematodes are regarded as effective biocontrol agents.

17.3 Entomopathogenic Microbes

17.3.1 Entomopathogenic Bacteria

Bacteria are prokaryotic (without nucleus), single-celled organism, neither animal
nor plant, few micrometers in their length and exist in communities of millions.
One gram of soil contains approximately 40 million and one milliliter sample of
freshwater also holds about 1 million bacterial cells. Dormant survival cells (spores)
are produced by few bacterial cells as mentioned below (Fig. 17.2).

Bacterial populations pathogenic to insect pests can cause major damage to the
target insect population (Lacey et al. 2001) and are known as entomopathogenic
bacteria. These single-celled bacteria are very minute, primitive creatures of approx-
imately 1 μm to several μm in size. These rod, spiral and cocci-shaped bacteria
possess inelastic cell wall. Some bacteria lack cell walls and showing variability
in their morphology. There are more than 100 species of bacteria, found to be
pathogenic to insect pests. Among the entomopathogenic groups of bacteria Bacillus
thuringiensis (Abtew et al.), B. popilliae, B. Sphaericus and B. cereus are used as
biocontrol agents nowadays. Families of bacteria having the properties of pathogen-
esis comprise Bacillaceae, Enterobacteriaceae,Micrococcaceae, Pseudomonadaceae
and Streptococcaceae (Fig. 17.3).

Some of these bacterial families are highly lethal to the various insect pests.
Among these virulent families, Bacillaceae contain the genus Bacillus having B.
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Fig. 17.2 Classification of entomopathogenic bacteria

Fig. 17.3 Different species responsible for causing pathogenicity in various insects
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popilliae species, which is responsible for causing the milky spore disease in
the scarab beetles. Even one more species B. sphaericus is highly infectious to
mosquitoes. Pathogenicity of B. thuringiensis is also well known. They are viru-
lent against a wide range of insect pests mainly lepidopterans and are world widely
distributed as biocontrol agents. Even there are more than 40 commercial formula-
tions of Bt are available in the market accounting for 1% of total global insecticide
productions (Evans 2008). As the bacterium enters inside the host body through spore
consumption, it produces cry proteins having δ-endotoxins, which are responsible
for the death of the insect. These δ-endotoxins communicate with the receptor in
the epithelium cells of insect midgut and form crystal-like inclusions (Pigott and
Ellar 2007). Lysinibacillus sphaericus cause injury to the epithelial microvilli in the
midgut of the insect (Charles et al. 2000).Paenibacillus larvae causing pathogenicity
in honey bee colony and are responsible for causing American Foulbrood (AFB), a
destructive disease (Davidson 1973). Ruiu (2013) reported the pathogenic effect of
the Brevibacillus laterosporus on a wide range of antimicrobial communities as well
as on some invertebrate species. They show their pathogenic effect against different
insect orders namely Lepidoptera, Diptera and Coleoptera. They are also injurious
against bacteria, fungi, nematodes and molluscs. Clostridium bifermentans is highly
pathogenic against black flies and mosquitoes as it has Cbm71 protein showing a
similar effect like delta endotoxins of B. thuringiensis (Barloy et al. 1996; Nicolas
et al. 1990).

Endosymbionts Xenorhabdus and Photorhabdus bacteria also live in mutual
symbiotic association with nematodes of genera Steinernema and Heterorhabditis.
As the nematode gets entered into the insect body, it releases the bacteria inside hemo-
coel. The bacteria then release insect-killing toxin aswell as antimicrobial substances
that have high efficacy against insect pests and other developing microorganisms
(Waterfield et al. 2001).

Serratia species also produce enzymes such as lipases, chitinases and proteases
that show insecticidal properties (Kwak et al. 2015). Serious damage to the cells of
the gut has been caused by Pseudomonas entomophila that infects the insect larvae
through oral path. Post ingestion responses of immune system have been observed
in an experiment overDrosophila melanogaster (Vodovar et al. 2005). Burkholderia
spp. lives in mutual association with some insects in their gut region and their effect
on the egg-laying capacity has been observed in bean bugs (Kil et al. 2014; Kim et al.
2013;Martinson et al. 2011). Cordova-Kreylos et al. (2013) discovered a new species
B. rinojensis and reported their insecticidal properties. Insecticidal effect of a strain
of Chromobacterium spp. has been reported on different insects including Aethina
tumida, Bemisia tabaci, Diabroticaundecim punctata, Plutella xylostella, Leptino-
tarsa decemlineata and Nezara viridula (Martin et al. 2007a,b). Streptomyces spp.
produces substances like antimycin A, flavensomycin, macrotetralides, piericidins
and prasinons, which are toxic against insect pests (Box et al. 1973; Craveri and
Giolitti 1957; Kido and Spyhalski 1950; Oishi et al. 1970; Takahashi et al. 1968).

Avermectins produced by Streptomyces avermitilis shows its effect on the gamma-
amino butyric acid (GABA) receptor present on the peripheral nervous system of
insect, which inhibits the neurotransmission and results in neuromuscular paralysis
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Table 17.1 List of some biopesticides produced by entomopathogenic bacteria

Bacterial species Commercial formulations Target species

Bacillus thuringiensis subsp.
israelensis

Tacibio
Technar

Lepidopteran pests
Fungus gnats

Bacillus thuringiensis subsp.
kurstaki

Bio-Dart
Biolep
Halt
Taciobio-Btk

Lepidopteran pests

Bacillus subtilis Soil-borne pathogens

Bacillus firmus Bacillus firmus I-1582 WP5 Nematodes

Pseudomonas fluorescens ABTEC Pseudo
Biomonas
Esvin Pseudo
Sudo
Phalada 104PF
Sun Agro Monus
Bio-cure-B

Plant soil-borne diseases

(Bloomquist 1996; Turner andSchaeffer 1989). Insecticidal spinosyn-Aderived from
Saccharopolyspora spinosa is highly effective against dipterans and lepidopteran
insect pests (Kirst 2010; Mertz and Yao 1990) (Table 17.1).

17.3.2 Entomopathogenic Fungi

A fungus is a eukaryotic organism that absorbs nutrients directly and digests food
externally via cell wall. Among the biocontrol agents, entomopathogenic fungi
(EPF) were the earliest known for pest control (Fig. 17.4). About 90 genera of
EPF contain more than 700 species having insect-killing properties (Khachatourians
and Sohail 2008). Samson et al. (1988) reported that the Zygomycota, Ascomycota
and Deuteromycota contain the fungal pathogens having insecticidal properties. Roy
et al. (2006) classified the EPF into two divisions.

It is reported from the earlier studies that more than 500 fungal species are
responsible for insect pathogenicity. Some of them are Beauveria, Entomophthora,
Metarhizium, Neozygites, Nomuraea and Verticillium (Deshpande 1999). EPF attain
a greater position amongst the biocontrol agents due to its lethal nature against various
pests in field conditions. They are used against both insect pests those having chewing
type of mouth parts as well as against sap-sucking insects. The route of infection by
EPF completely differs from the othermicrobial biocontrol agents. After breaking the
host cuticle, they entered into the hemocoel and causing pathogenic effects. Chitin,
proteins and fatty acids are the three major components of insect cuticle. Degrada-
tion starts with the secretion of cuticle degrading enzymes mainly chitinase, lipase
and protease (Khan et al. 2012). The severity of pathogenesis by EPF depends upon
several factors discussed below (Fig. 17.5) (Boucias et al. 1998).
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Fig. 17.4 Classification of entomopathogenic fungi

Fig. 17.5 Extremity of
pathogenesis by
entomopathogenic fungi



538 N. Thakur et al.

Inside the host integument, adherence and penetration power are the primary
steps of a successful infection (Shahid et al. 2012). The major fungal biocontrol
agents includeMetarhiziuma nisopliae, Beauveria bassiana, Isaria fumosorosea and
Lecanicillium.M. anisopliaewas reported to be the most effective biological control
agent and is applied against beetles, termites, spittlebugs and locusts (Bischoff et al.
2009). A naturally occurring entomopathogen is B. bassiana, which has been used
against many arthropod pests. This microbial biopesticide shows a significant effect
against the orthopterans and lepidopterans (Charnley and Collins 2007; Faria and
Wraight 2007). Among fungus as an insecticide (mycoinsecticides), B. bassiana and
M. anisopliae contribute 33.9% and Isaria fumosorose contributes 5.8% while B.
brongniartii contributes 4.1%, respectively (Faria and Wraight 2007) (Table 17.2).

17.3.3 Entomopathogenic Viruses

A biological agent that has an extraordinary capacity to reproduce inside the living
cell is known as virus (Dimmock et al. 2016). Genes having DNAand RNAare the
core elements of virion particle, which are enclosed in protein coat called capsid.
Insect-specific viruses are mainly responsible for causing high pathogenicity in the
caterpillar’s stage of several insects. Insects acquire infection by the consumption
of virus particle whereas infection from one insect to other is transmitted during
mating and ovipositioning. A number of plant pests have been destroyed by rod
like target-specific baculoviruses. They are also responsible for causing mortality
in the lepidopteran insect pests of cotton, rice and vegetables (Nawaz et al. 2016).
Baculoviruses as a successful pest controlling agent were accidentally introduced
beforeWorldWar II.Among 73 known families of viruses, 13 Baculoviridae families
belong to entomopathogenic viruses (Murphy et al. 1995). These 13 families show
high pathogenicity against Diptera, Hymenoptera, Isoptera, Lepidoptera, Neuroptera
and Orthoptera. Nucleopolyhedrovirus (NPV) and Granulovirus (GV) are the two
genera of family Baculoviridae (Murphy et al. 1995). In India, the population of
Helicoverpa spp. and Spodoptera spp. was controlled usingNucleopolyhedroviruses
(NPV) in citrus, cotton, cocoa, maize, groundnut, legumes, sorghum potato, tobacco,
tomato and other vegetables.

Bioinsecticide developed from the NPV is a substitute in place of chemical pesti-
cide and is the best option for the control of insects that become resistant to chem-
ical pesticides. Resistant insect populations of Helicoverpa zea and Helicoverpa
armigera were destroyed using NPV-based bioinsecticides (Kranthi et al. 2002).
Bioinsecticides developed from26baculoviruses are being employed for themanage-
ment of Hymenopteran as well as Lepidopteran insect pest population worldwide
(Lacey et al. 2015). Production of NPVs for commercialization is done under small
cottage industries and under commercial units of medium size in India (Rao et al.
2015). In Hyderabad at International Crop Research Institute for Semi-Arid Tropics
(ICRISAT), training has been provided to the farmers for the production of Helicov-
erpa armigera nucleopolyhedrosis virus (HaNPV). The crude extract than filtered
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Table 17.2 List of some commercially available biopesticides derived from entomopathogenic
fungi

Fungal Strain Brand Country Target organism

Aschersonia
aleyroides

Whitefly

Beauvaria
brongniartii

Betel France Scarab beetle larvae

B. bassiana Mycotrol WP,
Naturalis L,
Myco-Jaal,
Conidia

USA, India,
Germany

Whiteflies/thrips/aphids/white
grub,
Diamonback moth,
Coffeeberry borer

Conidiobolus
thromboides

Vektor 25SL South Africa Aphids/Thrips/
Whiteflies

Hirsutella thompsonii Mycohit India Acari

Isaria fumosoroseus Pae-Sin,
PFR-97

Mexico
USA

Whiteflies

Lecanicillium
longisporum

Vertalec Netherlands Aphids

L. muscarium Mycotal Netherlands Whiteflies/Thrips

Lagenidium
giganteum

Laginex USA Mosquitoes

Metarhizium
anisopliae

Metaquino,
Bioblast,
DeepGreen

Brazil, USA,
Colombia

Spittle bugs, Termites, White
grub

M. anisopliae var.
acridum

Green Muscle South Africa Locust, Grasshoppers

M. flavoviride Biogreen Australia Scarab larvae

M. anisopliae + B.
bassiana + I.
fumosoroseus

Tri-Sin Mexico Psyllid

Nomuraea rileyi Numoraea 50 Colombia Lepidoptera

(Copping (2004); Kabaluk and Gazdik (2005); Khachatourians (1986); RL (2014); Zimmermann
(2007)).

out and is applied over the field. In India and Nepal, NPV production units were
established in 96 villages so that rural farmers get benefits from them (Ranga Rao
et al. 2007). Although GV is not available for marketing in India but still during
research, it was found that they are very effective for the management of Chilo infus-
catellus in sugarcane (Rao and Babu 2005). Jayanth (2002) also demonstrated that
they are effective for the management of diamondback moth larvae (Table 17.3).
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Table 17.3 List of some commercially used entomopathogenic viruses along with their target
organism

Types of virus Target organism

Cytoplasmic polyhedrosis virus Helicoverpa armigera

Nuclear polyhedrosis virus Amsacta albistriga, Antheraea mylitta, Corcyra cephalonica,
Dasychira mendosa, Helicoverpa armigera, Plusia peponis,
Pericallia ricini, Pseudaletia separate, Plusia chalcites,
Spodoptera litura, Spilosoma obliqua,
Spodoptera mauritia

Pox virus Amsacta moorei

Granulosis virus Achaea janata, Cnaphalocrocis medinalis, Chilo infuscatellus
Pericallia ricini and Phthorimaea operculella

17.3.4 Entomopathogenic Nematodes

Nematodes are worm-like unsegmented invertebrate organisms that are distributed
worldwide. They exhibit a huge range of habitats like soil, water (fresh as well as
marine), plants and animals. Hugot et al. (2001) illustrated that nematodes exhibit
more than 25,000 spp. among which terrestrial and free-living forms possess 10,000
spp., vertebrate parasitic forms include 12,000 spp. and about 3,500 spp. are para-
sitic to the non-chordates. Entomopathogenic nematodes (EPNs) are themicroscopic
worms that have the ability to kill insects. Entomopathogenic nematodes belong
to order Rhabditida and families Heterorhabditidae and Steinernematidae present
naturally in soil habitat and find their host via signal responses (chemical and phys-
ical) (Shapiro-Ilan et al. 2012). Both of these families have species, which have
been successfully used as bioinsecticides in pest management programs (Ehlers and
Shapiro-Ilan 2005) as they are known to be non-pathogenic to humans and are highly
specific to their host (Shapiro-Ilan et al. 2006). Rao and Manjunath (1966) first
demonstrated DD-136 strain of Steinernema carpocapsae in India for the manage-
ment of lepidopteran insect pests of apple, rice and sugarcane. Exotic strains of
Heterorhabditis bacteriophora and S. carpocapsae were sold in the market with
the trade names ‘Soil Commandos’ and ‘Green Commandos’. These exotic strains
were applied for the management of root pests as well as against several foliar
insect pests. Survey on indigenous EPN species was done and the EPN strains of
mainly H. bacteriophora, H. indica and S. carpocapsae were found to be effective
against various soil-dwelling insects pest under field conditions at ICAR-NBAIR,
Bengaluru (Sankaranarayanan andAskary 2017). Kalia et al. (2014) first reported the
pathogenicity of S. thermophilum towards the eggs of lepidopteran insects at IARI,
New Delhi (Table 17.4).
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Table 17.4 List of some entomopathogenic nematodes used as biological control agents

EPNs species Target insects

H. bacteriophora Cutworms, flea beetles, black vine weevil, citrus root weevils, white grubs,
corn rootworm,

H. indica Grubs, fungus gnats, root mealybug

H. zealandica Scarab grubs

H. megidis Weevils

H. marelatus Black vine weevil, cutworms, white grub

S. kraussei Peach tree borer, black vine weevil, shore flies

S. scapterisci Mole crickets (Scapteriscus spp.)

S. glaseri Black vine weevil, banana root borer, white grubs

S. feltiae Shore flies, fungus gnats (Bradysia spp.), western flower thrips

S. riobrave Mole crickets, citrus root weevils

S. carpocapsae Armyworms, billbugs, banana moth, cutworms, chinch bugs, codling moth,
crane flies, cranberry girdler sod webworms, dogwood borer

17.3.5 Entomopathogenic Protozoan

Single cellular, eukaryotic organisms having nucleus is protozoan. They show vari-
ability in their size and shape. Very little interest has been given to the ento-
mopathogenic group of protozoans. A highly diverse group of entomopathogenic
protozoans contain about 1000 protozoan species called microsporidians, which
attacks arthropods and other invertebrates (Brooks 1988). There are some protozoa
that cause pathogenicity in several arthropods includeNosema, Theileria,Haemogre-
garina and Babesia. Nosema locustae cause mortality in cricket and grasshopper,
European corn borerwasmanaged byNosema pyrausta. Population of fall webworm,
armyworm, cabbage looper and corn earworm were killed by Vairimorpha necatrix
(Hoffmann and Frodsham 1993; Tanada and Kaya 1993; Weinzierl and Henn 1989).
Nosema fumiferana is the only species of microsporidium that is responsible for
causing up to 70% of infection in spruce budworm (Wilson 1982).

17.4 Entomopathogenic Microbes and Their Modes
of Action

The entomopathogenic microbes are insecticidal in nature and have specific foraging
strategies as well as mode of action. The mode of action of different ento-
mopathogenic microbes viz entomopathogenic bacteria, fungi, nematode and virus
is explained with the help of the following figures (Figs. 17.6, 17.7, 17.8, 17.9).

The process of pathogenesis initiates with the attachment of pore to the larval
body and is a series of developmental changes within the body of host. The fungus
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Fig. 17.6 Mechanism of action by entomopathogenic fungi

exhibits the cuticle degradation and formation of appressorium hydrophobins. The
death of host insect is caused by toxins production by fungus and the host tissue
destruction (Hasan 2014).

The δ-endotoxins are produced throughout sporulation by the bacteria and their
ingestion by the larval stage results in toxicity. The toxins cause severe damage to
the tissues and end in gut paralysis. The lepidopteran larva dies in the end due to
starvation (Zhu et al. 2000).

The first-generation juveniles of Heterorhabditis are hermaphrodites (Smart
1995), whereas in Steinernematids, they are amphimitic in nature. In case of
hermaphrodite of Heterorhabditis, the eggs hatch inside the uterus and feed
on maternal tissue leading to intrauterine birth with the death of mother. This
phenomenon is usually triggered by the presence of less number of adults in the
internal environment and is called endotokia matricida.
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Fig. 17.7 Mechanism of action by entomopathogenic bacteria

17.5 Mass Production of Entomopathogenic Microbes

17.5.1 Mass Production of Bacteria

Different types of methods have been used for mass production of sufficient bacteria,
which are given below:
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Fig. 17.8 Mechanism of action by entomopathogenic nematodes

• In vivo production
• Solid substrate fermentation
• Liquid fermentation
• Objectives of fermentation for spore-forming and non-spore-forming bacteria.

17.5.1.1 In Vivo Production

To control the population of Japanese beetle, Popillia japonica for the first time
bacteriumPaenibacillus (Bacillus) popilliaewas registered in the USA (Klein 1992).
This bacterium caused milky disease in the larvae of the beetle and the in vivo
method of production was elaborated by Fleming (1968) and defined by the hands of
Koppenhöfer et al. (2012). Till today, this in vivo production of milky spore powder
is in use for control of insects in the home lawn and organic markets (Stahly and
Klein 1992).
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Fig. 17.9 Mechanism of action by entomopathogenic viruses
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Solid substrate fermentation (SFF)

In the production of microorganisms, the solid substrate generally contains porous
material amended with nutrient and moistened grains. For solid substrate fermenta-
tion, mainly grains are used as a fine medium for the production of microorganisms
in the F & B industries. When there is no water, the process of SFF involves moist
solid substrate for the production of mycoinsecticides, fermented enzymes and food
(Mitchell et al. 2009).

Liquid fermentation

Liquid fermentation is the most common method used for the mass production of
bacteria. This method can be modified for its use in the laboratory to large-scale
commercial massive production according to the requirement. In this biomass of
cells, some other secondary products from the soluble nutrients are produced. For
the growth of bacteria—carbon, nitrogen, other trace elements are suspended in
water and desired strain is obtained after undergoing the process of sterilization and
inoculation. Bacterial cell growth can be described in four stages later inoculation.
These stages are—lag, log, stationary and death stage.

In Lag stage—the adaption of cell to physiochemical environment with slight
replication occurs. InLog stage—the development and splitting of cell in exponential
manner occur. In Stationary stage—the cell growth is halted or dawdles due to the
accumulation of toxicmetabolites on substratum. InDeath stage—due to exhaustion
of energy reserves the cell or the culture dies.

Liquid fermentation of Non-spore-Forming Bacteria and Spore Forming

Theaimof fermentation is to produce an active ingredient for biopesticide production.
The method of fermentation is different for non-spore and spore-forming bacterial
production. In the case of spore-forming bacteria e.g. Bacillus thuringiensis—the
most important step is the yield of toxin, for non-spore-forming bacteria e.g. S. ento-
mophila—the development of a maximum of living cell in the fermenter. Visnovsky
et al. (2008) first introduced the liquid fermentation of non-spore-forming bacterium,
S. entomophila. The bacterium develops on carbohydrates rather than proteins. For
the improvement of fed batch method, yeast extract can be used for enhancement of
cell yield. Classical batch fermentation for S. entomophila is carried out at 30 °C,
aerated to sustain dissolved oxygen levels less than 20%, and completed in 26–28 h
as soon as the fermentation is well developed in the stationary growth stage. A fully
developed fermentation will generate a cell yield of less than 5 × 1010 CFU/mL
corresponding to less than 30 g/L dry weight of cell (Jackson 2017). The develop-
ment of Bt occurs through batch fermentation with a sir feed of less than one volume
of air per volume of liquid per minute and primary concentration of glucose of 18 g/L
(Couch and Jurat-Fuentes 2013). A kind of variance is shown by different strains of
Bt on media in terms of toxin production and sporulation. This helps in the selection
of strain from wild or cultured strain (Monnerat et al. 2004, 2007).
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17.5.2 Mass Production of Fungi

The mass production of fungus regulates on a strategy that delivers stabilized, viable
and virulent propagules in large numbers (Jackson et al. 2010). Certain parameters
that need to be retained in mind while the mass production of the fungus. These
parameters are:

1. Selection of fungal propagule development
2. Maintenance of culture
3. Sterility of the process
4. Nutrients composition and quality
5. Selection of strain.

17.5.2.1 Solid-State Fermentation

Production of aerial conidia by the method of solid-state or substrate fermentation is
the primary method of current times. This method is used by the pilot scale to large
industries. In this method, aerial conidia are the end product of down-streaming
process. This process is known by other names such as solid-substrate fermentation
and solid-state fermentation. This type of fermentation is simple but labor intensive
in nature (Feng et al. 1994).

17.5.2.2 Liquid Fermentation

In most of the cases of entomopathogenic hypocrealean fungi, a pattern of dimorphic
growth is observed in liquidmedia. This growth pattern resembles the developmental
stages of fungus inside the insect hemocoel.

Types of liquid fermentation:

1. Submerged liquid fermentation (SLF)

a. Blastospores
b. Submerged (Microcycle) Conidia
c. Microsclerotia

2. Aerial conidia by liquid surface fermentation (Jaronski and Mascarin 2017).

In SLF, the fungus is immersed in an aerated liquid medium, which is disturbed
constantly. This disturbance leads to the formation of blastospores, microsclerotia
or microcycle conidia. For the case of stationary liquid fermentation, the sporula-
tion process occurs on a tranquil liquid. This produces aerial conidia and mycelium
(Jaronski 2014). Submerged liquid fermentation scales up the production mani-
folds in terms of commercial availability and is less time-consuming than solid-state
fermentation.
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17.5.3 Mass Production of Nematodes

In the literature, the first record on mass culture of EPNs dates back to 1931 by
Glaseri after discovery of nematodes infected Japanese beetles from the golf course,
New Jersey (Glaser and Fox 1930). He also succeeded in the EPNs production on
agar plates for the biological control of the Japanese beetle (Gaugler et al. 1992). In
Australia, Commonwealth Scientific and Industrial Research Organization (CSIRO)
was the first to control an insect pest using the EPN species S. carpocapsae (Divya
and Sankar 2009). It was earlier commercially used to control few other species
as the black vine weevil, Otiorhynchus sulcatus (Fabricius), the currant borer moth,
Synanthedon tipuliformis (Clerk), in ornamentals and in black currants (Bedding and
Miller 1981).

Bedding and Miller (1981) revealed that in the last 20 years, EPN production has
seen a progressive upliftment. From commercial point of view, in vitro technology
was utilized but in case of small-scale cottage setups, in vivo production has played
an eminent role.

Smart (1995) and Ehlers and Shapiro-Ilan (2005) utilized the technique of in vivo
and in vitro technology for culturing of EPNs. They attained the desired result by
innoculatin, a suitable host with specific virulent strain. EPNs can be easily reared for
field trials and laboratory culture using as bait insect. Thiswork is a bit labor intensive
but serves the purpose well in research laboratory. Georgis et al. (2006) compared
the two mass-production technologies and concluded that in vitro production as far
more programmed, less labor oriented, with advanced technology as well as capital,
therefore most suitable for commercial production. A number of commercial EPN
products are available in the American, European and Asian markets nowadays for
environmentally favored suppression of insect pests.

For culturing of EPNs, certain factors may be kept in mind to avoid any hindrance.
These factors are temperature, humidity, applied concentration, host density and
method of inoculation (Woodring and Kaya 1988). It is estimated that the EPNs
obtained from inoculation in insects are of greater quality and virulence (Grewal
et al. 1994; Shapiro-Ilan et al. 2002).

In vivo mass production optimizes the White trap method given by White (1927)
andwas later on reconstructed byDutky et al. (1964). The redescription of themethod
was given by Poinar (1975) and a modification in it by Kaya and Gaugler (1993). In
thismethod, IJs emerge out from insect cadaver in thewater after bursting. This water
containing the IJs is harvested and IJs are recovered from it (Gokte-Narkhedkar et al.
2008). The most favorable host for EPN mass production is the greater wax moth
and rice moth. Other susceptible hosts are silkworm, root grub, cotton bollworm and
armyworms (Flanders et al. 1996) (Ali et al. 2008). Georgis and Kaya (1998) for the
first time formulated EPN product in 1979 with a shelf life of 30 days.
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17.6 Genetic Improvement in Entomopathogenic
Microorganisms

Genetic perfection of entomopathogenic microbiomes can conquer the delimita-
tions of easily available microbial pesticides. Biotechnology gifted us unique gene
resources and tools to integrate them with genetically improved variety. The concept
of cross-species genetics (genetic variation among the species that are going to be
extinction results in a superior population) has unwrapped new gates for boundless
opportunity (HS 2018). In order to grow and keep feasible bioprocesses, microbial
stains are required that can be able to tolerate different hassles for maintaining high
productivity and yield. Microbial strains require constant genetic fortification for
keeping or achieving high production. As we are aware that the wild strains have
very a low production rate but contain desirable characteristics that are required in
biotechnological applications. Thus, different strategies have been applied to geneti-
cally improvemicroorganisms to solve problems and directly or indirectly to increase
productivity and consequently the profitability of the bioprocess (Paes and Almeida
2014). The improvement of product formed by microorganisms requires four key
factors, which are: (i) enhance tolerance against toxic compound, (ii) driving carbon
flux, (iii) raise in substrate uptake and (iv) generation of novel products.

In this era, integrated approach and synthetic chemical pesticide-free farming are
in trends to deal with agricultural crop pests. The use of entomopathogenic microbes
such as fungi (Beauveria and Metarhizium), bacteria (Bacillus thuringiensis
Bt), viruses (Nuclear polyhedrosis virus) and nematodes (Steinernema spp. and
Heterorhabditis spp.) is gaining the prominent position in biocontrol methods. We
can say that the above-mentionedmicrobes provide a better alternative against chem-
ical pesticides (Vurro and Gressel 2007). Now a day in agriculture, various tools are
engaged for the genetic enhancement of entomopathogenic microbes using proto-
plast fusion, vector-mediated transformation, electroporation, biotransformation etc.
(Fig. 17.10).

17.6.1 Protoplast Fusion

The word protoplast mainly refers to the algal, fungal and bacterial whose outer cell
wall removed, either mechanically or enzymatically and may be accomplished by
definite lytic enzymes (Verma et al. 2000). This fusion has occurred as a result of
physical phenomenon in which two or more protoplasts come together either in the
presence of fusion agents or spontaneously. In plant cells, spontaneous protoplast
fusion has also been recorded (Usui et al. 1974). This fusion is a flexible method to
induceor to support genetic recombination amongvarious eukaryotic andprokaryotic
cells (Bhojwani et al. 1977). It is a significant tool used in gene manipulation, as it
breaks down the barriers to genetic swap forced by traditional mating systems results
in the production of even intergeneric or inter-specific hybrids. This technique has
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Fig. 17.10 Genetic improvements in entomopathogenic microorganisms Kotnik et al. (2015)

huge potential for genetic study in stain enhancement and is mostly used against
microorganisms (Muralidhar and Panda 2000). It is feasible to transfer few valuable
genes viz; nitrogen fixation, disease resistance, high product formation, herbicide
resistance, frost hardness, drought resistance, rapid growth rate, protein quality, cold
and heat resistance from one particular species to another through protoplast fusion.
Genetic recombination technique has been prepared by joining the genes extracted
from different strains of living beings (organisms) to get ideal possessions of the
organisms (Fowke et al. 1979; Lee and Tan 1988).

17.6.1.1 Methods of Protoplast Fusion

Protoplast fusion is classified into two main categories:

• Spontaneous fusion
• Induced fusion.
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Spontaneous fusion:

Protoplast at some point in isolation commonly fuses spontaneously and this natu-
rally occurring phenomenon is known as spontaneous fusion. At the time of enzy-
matic treatment, protoplasts from adjacent or nearby cells combine together by their
plasmodesmata and result in multinucleate protoplasts.

Induced fusion

Fusion of freely inaccessible protoplasts obtained from dissimilar sources by using
fusion inducing agents (chemicals) is generally called as induced fusion. Typically
protoplast is not able to fusewith one another due to the presence of negative charge in
the region of outer plasma membrane (−10 to−30 mV). Due to these same charges,
protoplast has the affinity to resist each other. Thus, this particular type of fusion
also needs chemicals that really overcome the presence of electronegativity in the
inaccessible protoplast and permit them to mingle or fuse (Narayanswamy 1994).
Isolated protoplast may be encouraged to fuse in three different ways:

• Mechanical fusion
• Chemo fusion
• Electrofusion.

Mechanical fusion

In this process, isolated protoplast is brought together mechanically into an inti-
mate physical contact under the microscope by using perfusion micropipette or
micromanipulator.

Chemo fusion

Several chemicals have been used for the induction of protoplast fusion viz; polyethy-
lene glycol, sodium nitrate and calcium ions (Ca++). Chemical fusogens are respon-
sible for isolated protoplast to stay with each other, which leads to rigid agglutination
followed by the fusion of protoplast (Jogdand 2001). In the presence of fusogenmedi-
ators, it is essential to soak the cells in an alkaline (pH09.0–10.4) solution to stimulate
the chemical protoplast blend into two or more viable protoplasts (Muralidhar and
Panda 2000; Navrátilová 2004). Microbiological polyethylene glycol (PEG) is used
as a fusogen agent, mainly due to its fabulous binding property and stability action.
Calcium (Ca2+) is one of the common divalent ions and is used in combination with
PEG.After the fusion, hybrids obtained are studied on the basis of their genotypic and
phenotypic characteristics (Navrátilová 2004). Gene expression can also differentiate
the protoplast fusion after identification. The finding of unique genotype specifies
the incidence of gene recombination through cell fusion and also distinguishes the
individual organization of the hybrids in terms of metabolite construction of parental
strains or enzymatic activity to estimate the recombination profitability (Muralidhar
and Panda 2000). Chemofusion is very cheapwith non-specific fusion that may cause
giant fusion products, which can be cytotoxic and non-selective.
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Electrofusion

The electrofusion technique is based on the reversible electrical breakup of the cell
membranes. In microseconds (small-time period), rupturing is observed approxi-
mately between 0.5 and 1.5voltages, when membranes are polarized in electric field
(Zimmermann and Scheurich 1981). In this, fusion membrane-bound polarization is
repealed by applying electric current to the medium having protoplasts and results in
the unplanned reversal of polarity that facilitates induction in protoplast. This process
is not applied against fungal transformation. Two capillaries of glass microelectrodes
are usedwith protoplast alongwith gentle electric stimulation to blend the protoplast.
Low strength electric field i.e. 10Kvm−1 is responsible for dielectrophoretic dipole
production inside the protoplast suspension, which directs pearl chain activities of
protoplast. The application of high strength electric field (100 Kvm−1) results in
electric collapse of successive fusion (Jogdand 2001; Ushijima et al. 1991). In cell
viability, as compared to chemofusion, electrofusion showed advantageous charac-
ters as it is simpler, quicker and not involved in a large number of chemical agents
(Navrátilová 2004).

17.6.2 Electroporation

Electroporation is one of the modern invasive methods, which uses microsecond
length pulses to modify the permeability of cell membrane and forming pores or
nanoscale defects (Bertacchini et al. 2007; Rubinsky 2007). The procedure of elec-
troporation is either reversible or irreversible. In reversible procedure, the use of
an electric field at definite parameter temporarily permeabilizes its membrane and
allowing the cell to come back to its natural position. In irreversible process, stronger
electric field can cause them to permanently permeabilize of cell membrane, which
ultimately leads to cell death (Rubinsky 2007). Exposure in biological membrane
towards high electric field induces regular and elevated permeability and conduction
of electric charge (Stampfli 1958). Electroporation is often used for the transfor-
mation of microorganisms by establishing new coding DNA. Even though some
microorganisms can spontaneously transform themselves to acquire foreign gene
for replication and allow passing them for a division. There is the availability of
sufficient stimulus for controlling the artificial transformation. Natural membrane
polarity stops the entry of foreign DNA into a cell as a result of well-developed
defense mechanism. In this technique, intermediate fact or sin membrane polarity
caused the electric field, which results in uptake of recombinant DNA in the media
cell. These transformed cells can be cultured or identified without any difficulty in
electroporation technique. There are four applications that utilize and allow both
endogenous and exogenous molecules to eradicate or penetrate the cell. (1) Genetic
transformation, (2) Inactivation inmicroorganisms, (3) Biomolecule’s extraction and
(4) Acceleration in the drying of biomass (Kotnik et al. 2015) (Fig. 17.11).
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Fig. 17.11 Electroporation
in genetic transformation.
Kotnik et al. (2015)

17.6.2.1 Inactivation in Microorganism

In this application, microorganisms that are able to show strong pulses of electric
field have extensive inhibition in their performances, which consist of their growth,
division and synthesis of toxic substances. In this technique, the contamination is not
recorded particularly in food preservation, where chemicals or radiation is avoided.
Today, the wide application of processing food preservation is heating; due to which
both taste and nutrients are affected, which results in deteriorating the value of food
(Haberl et al. 2013). In electroporation-based inactivation, amild heating takes place,
nutrients and/or taste values are not affected (Haberl et al. 2013).

Genetic transformation

In genetic transformation, exogenous DNA is established on the basis of reversible
electroporation, the foreign genes are expressed in their new host cells and they are
inherited for cell division. This can turn the host microorganisms into “factories”
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of biomolecules, adapt them to a new environment or serve to study the role of
individual genes (Kotnik et al. 2015).

Bimolecular electroextraction

In electroextraction, any multicellular tissues or microorganisms are electroporated
to the extent, which are required for the releasing of biomolecules. On other hand, it
is also viable with reversible electroporation. In the majority of cases, it is essential
to limit electroporation to point that keeps away from quick breakdown of exposed
cells and, in this way, there is the development of debris with contaminating extract
Kotnik et al. 2015).

Genetic transformations in microorganisms produced spontaneously by taking
foreign gene, leading them to division, duplicate and utter them. Many approaches
have been attempted ranging from chemical and mechanical to thermal, but in view
of the fact that, in mid-1980s, transformation is based upon electroporation and
have prevail due to its high efficiency and relevant to the broadest range of bacterial
microorganisms (Aune and Aachmann 2010). In tremendously diverse bacteria, in
early 1990s, electro transformationwas also confirmed and efficient against Archaea,
unicellular fungi (yeasts) and unicellular algae (microalgae). In Archaea, generally,
electroporation is not applicable. Halophilic Archaea may be unfeasible for electro
transformation as it cannot tolerate NaCl concentration less than 1 M, but in suspen-
sions of such salinity, the electric field is necessary for genetic transformation. In
some other Archaea, despite attempts are at optimization, researchers are unable
to detect transformants (Lucas et al. 2002). In yeast and microalgae, transforma-
tion efficiency is normally inferior then bacteria (Kilian et al. 2011). In recent time,
successful electro transformation has been observed against recently documented
taxonomic phyla of bacteria, Archaea, microalgae and yeasts (Kotnik et al. 2015)
(Table 17.5).

17.6.3 Biolistic Transformation

In biolistic transformation, important microparticles like tungsten or gold are coded
with DNA, and these particles are accelerated and collided with fungal cell or spores
at very high velocity. At elevated pressure, these particles are inserted into host
cells, and this transformation is also called bombardment. This bombardment can
turn out to be cognizant for both short-lived and constant transformation. Different
aspects involved in the efficiency of bombardment in multiple interaction prototypes
(Sanford et al. 1995). Some important variables for biological parameters are growth
condition, cell density and cell type. Whereas, the instrumental settings depend upon
target distance, particle type and size, pressure level and vacuum (Gouka et al. 1997).
Biolistic transformation is more powerful amongst all the genetic transformations.
This technique takes very little time as compared to other transformation methods
like protoplast. The particle bombardment is found to be an easy, efficient, convenient
method among those organisms, which are not cultured easily andwhere the isolation
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Table 17.5 List of successful electro transformation against recently documented taxonomic phyla
of bacteria, Archaea, microalgae and yeasts Kotnik et al. (2015)

Phylum Species

Bacteria

Cyanobacteria Arthrospira platensis, Fremyella diplosiphon,
Synechococcus elongatus

Firmicutes Bacillus cereus, Clostridium perfringens,
Enterococcus faecalis, Streptococcus pyogenes,
Lactobacillus casei,

Chlamydiae Chlamydia trachomatis, Chlamydia psittaci

Thermotogae Thermotoga martima

Actinobacteria Corynebacterium, Brevibacterium lactofermentum,
Mycobacterium smegmatis, diphtheria

Deinococcusthermus Thermus thermophilus, Deinococcus geothermalis

Bacteroidetes Bacteroides uniformis, Prevotella Ruminicola, Bacteroides
fragilis

Fusobacteria Fusobacterium nucleatum

Planctomycetes Planctomyces limnophilus

Proteobacteria Campylobacter jejuni, Escherichia coli, Sinorhizobium
meliloti, Salmonella enteric, Yersinia pestis

Spirochaetes Serpulina hyodysenteriae, Borrelia burgdorferi

Tenericutes Mycoplasma pneumonia

Chlorobi Chlorobium vibrioforme

Unicellular Fungi (yeasts)

Basidiomycota Cryptococcus neoformans, Pseudozyma antarctica,
Pseudozyma flocculosa

Ascomycota Candida maltosa, Ogataea polymorpha, Pichia pastoris,
Saccharomyces cerevisiae, Schizosaccharomyces pombe

Archaea

Euryarchaeota Methanococcus voltae, Pyrococcus furiosus

Crenarchaeota Metallosphera sedula, Sulfolobus acidocaldarius,
Sulfolobus islandicus, Sulfolobus solfataricus

Unicellular Algae (microalgae)

Rhodophyta Cyanidioschyzon merolae

Chlorophyta Chlamydomonas reinhardtii, Chlorella ellipsoidea,
Dunaliella salina, Chlorella vulgaris, Scenedesmus
obliquus

Heterokontophyta Phaeodactylum tricornutum, Nannochloropsis sp. W2J3B
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of protoplast is hard. Although these instruments are very expensive but can be used
for easy transformation of fungi like Aspergillus nidulans and Trichoderma reesei
(Barcellos et al. 1998; Hazell et al. 2000).

17.6.4 Vector-Mediated Transformation

In vector-mediated transformation, plasmids are used as gene carriers. In this, specific
gene of interest is situating into the plasmid that allowed host cell infection, so that
gene gets incorporated into its genome of all the types of vector-mediated trans-
formations, mainly Agrobacterium tunefaciens-mediated transformation (ATMT) is
frequently used. In this process, plasmids are used for the transformation of gene,
which is considered to create gene cassettes. Further, these definite geneswith nuclear
cyclic DNAcoding against an array protein are concerned with host infection. A defi-
nite gene of interest is introduced into plasmids to allow infecting host cells; hence,
the genes get integrated into its genome in a variety of vector-mediated transfor-
mation. A. tumefaciens is one of the soil-borne bacteria having Ti plasmid, which
incorporate T-DNA to host plant genome that may be the reason of tumor in many
plants. In A. tumefaciens, the T-DNA is replaced with the gene of interest mark
with a suitable marker and assembles them to hit the host cells so that the target
gene gets inserted into the host genome. Transformation is mostly used in plant cells
but later on, this is used for transforming the fungi (De Groot et al. 1998). In this
process, hygromycinis used as a resistance marker for transforming the Aspergillus
awamori, in which A. tumefaciens is approximately 600 times more capable than
the conservative protoplast fusion. At present, synthetic plasmids are used from
different other sources apart from the various bacterial plasmid vectors like pAN52-
1 N, pAN52-4, pAN52-1. An introduction to vector-mediated transformation has
converted fungal transformation scenario by the addition of new gene sources that
have enormous potential. Fungal adhesions facilitate the binding of spores to insect
cuticle, as is done by the killing action of entomopathogenic fungi. Vector-mediated
transformation and protoplast fusion equally popular in the provisos of their utility.

17.7 Effect of Entomopathogens in Combination
with Other Microorganisms

In agricultural ecosystems, major challenges to yield and production are the damages
caused by insect pests and pathogens that result in reduced soil fertility throughout
the world. Under an optimum field condition, the application of a single biopesti-
cide might be found effective but it can be further improved by combining multiple
beneficial soil organisms (Imperiali et al. 2017). It was observed that insect pests
get resistant by the continuous exposure to same biopesticides again and again. So



17 Entomopathogenic Soil Microbes for Sustainable Crop Protection 557

there is a requirement of the addition of a new combination to manage the insect pest
population. Steinhaus (1951) reported that the combinations of entomopathogenic
bacteria Bacillus thuringiensis (Abtew et al.) and polyhedrosis virus can signifi-
cantly manage the population of alfalfa caterpillar (Colias philodice) in California.
Ansari et al. (2008) observed the interaction among EPNs (Steinernema glaseri
and Heterorhabditis megidis) and EPF (Metarhizium anisopliae CLO 53) against
the larvae of Hoplia philanthus (third instars). They found that combined applica-
tion of these entomopathogens shows significantly increased larval death. Ansari
et al. (2008) also reported 100% larval mortality in third-instar black vine weevil
(Otiorhynchus sulcatus) when EPNs are applied at the same time or a week or
2 weeks after, along withM. anisopliae. Imperiali et al. (2017) studied the effect by
combining ofArbuscularmycorrhizal fungi (AMF),Pseudomonas bacteria and ento-
mopathogenic nematodes (EPNs) againstOscinella frit in wheat plants. Noskov et al.
(2019) applied microbial metabolites along with pathogenic fungi for the control of
themosquito (Aedes aegypti) population.A synergistic influencehas beenobserved in
the killing of mosquitoes by combining these agents. Vega et al. (2012) also observed
the effect of entomopathogens by combining the nematode H. bacteriophora along
with fungi B. bassiana and M. anisopliae against the larvae of Phyllophaga vetula.
A significant increase in mortality has been observed. Wu et al. (2014) also reported
the effect of combined dosage of entomopathogens against Cyclocephala lurida
(third instar larvae). It was observed that the combination of these entomopathogens
controls the pest population similarly as observed by using imidachloprid insecticide.
The use of entomopathogens including bacteria fungi and nematodes in combination
is an integrated approach to control the pest population for sustainable agriculture.

17.8 Role in Sustainable Crop Protection

Entomopathogenic biopesticides play a vital role in pest management strategy under
Integrated Pest Management (IPM) system. Chemical or synthetic insecticides have
been used for pest control since the nineteenth century and they have actually
controlled the pest population undoubtly. But the continuous use of these chemical
insecticides is toxic, not only to the human but also to the environment. Application
of these insecticides leads to the emergence of new problems like resistance in insect
spp. soil quality degradation and other environmental hazards. Due to the excessive
use of chemical pesticides in agricultural land, yield of productive land is declined.
According to the UN population depiction, the population will reach 9.1 billion
in 2050. To fulfill the food demand of such an increasing population, sustainable
agriculture is required. The use of biopesticides developed from entomopathogenic
microorganism is an alternative to synthetic pesticides (Birech et al. 2006). More-
over, biopesticides developed from entomopathogens are non-toxic, environment
friendly, easily degrade in the environment and do not cause resistance ((Leng et al.
2011; Tadele and Emana 2017). As people are more concerned about the health
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hazards caused by chemical pesticides so they prefer organic food products (Okun-
lola andAkinrinnola 2014). Application of these entomopathogens promotes sustain-
able agriculture through sustainable pest management (Nawaz et al. 2016; Singh and
Yadav 2020). These biopesticides when sprayed over the field have no side effects
on the consumer and applicant (Damalas and Koutroubas 2016). It is, therefore,
concluded that in IPM, entomopathogenic biopesticides can successfully control the
pest population and can replace the chemical insecticides for insect control (Şesan
et al. 2015).

17.9 Limitations, Challenges and Opportunity

The incidence of disease due to insect pests has increased manifold in this era of
modern agriculture. The natural ecosystems are now prone to instability with the out
shinning fashion of the agroecosystems. In natural environments, there are certain
checkpoints that help in regulating the potential pest species. To enhance the produc-
tivity and ease of application, the adaptation of certain ways of agriculture has now
contributed to the degradation of the environment. The practice of monoculture has
also resulted in the elevation of population densities of pest, which were restricted
otherwise in the natural conditions. Irrigation techniques, warm temperature in the
glasshouse, introduction of new cultivars and use of a broad spectrum of chem-
ical pesticides are some of the practices that cause soil infertility, decrease in the
number of certain natural predators and also develop new resistant pest strains. The
pest population is naturally controlled by entomopathogenic microorganisms such as
bacteria, viruses, nematodes and fungus. These are classified as classical biological
control agents of insect pests and their efficiency can be multiplied by using habitat
manipulation (Kalha et al. 2014).

17.9.1 Limitation

• Lack of awareness midst farmers
• Less knowledge about insecticidal activity
• Difficulty in mass production
• Cost and availability of commercial products
• Effects of biotic and abiotic constraints.

Due to the increasing awareness, farmers are acquainted with the use of para-
sitoids and predators as biological control agents against insect pests but there is a
lack of knowledge regarding the use of microorganisms. The present knowledge of
insecticidal activity in case of Bt is scarce. There is an enhancement in a number and
diversity of Bt populations with the help of vegetable, crop and seasonal variation
but still, their impact on the environment is unknown. Entomopathogenic microbes
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tend to take more effort for their mass production as they have a particular require-
ment of substrates like specific media, baits or even living tissues. This increases
the level of difficulty in mass production and also multiplies the cost of production.
With this, the cost of biopesticides is high in comparison to chemical pesticides.
The inconspicuous use and popularity of biopesticides have also contributed to the
less readily available of these microbial formulations in the market. Therefore, the
amount of money and time consumed in attaining these bioformulations is also one
of the limiting factors. Sometimes, the farmers with large upholdings or farm found
it difficult to use biopesticides for a longer duration period.

The high specificity of these microbial organisms can be challenging in terms
of application strategies as different types of combinations of formulations will be
applied to control the array of insects. This can be problematic, time-consuming and
stressing for farmers.

The environmental factors play amajor role in the life cycle ofmicroorganisms and
also in the production of commercial formulations. The virulence and life span are
dependent on the biotic and abiotic environmental factors. The efficacy of microbial
pesticides against the target pests is prone to reduction or degradation in exposure
to desiccation, heat, temperature and ultraviolet radiation. The time and scrutiny
of procedure play a prominent role in the successful application case of certain
biopesticides.

The evolutionary process of living organisms especially the target pest can face a
big change in this scenariowhere it is in persistent exposure to toxins. The chemical or
biological control can lead to the development of certain type of resistance in insects.
The annihilation of target pest population can cause the acquisition of tolerance to
exposed toxins in the surviving population; therefore, it results in the speeding of
evolution.

In every niche, all the communities are interdependent, interference in one can
cause disturbance in life process of others. So, the change in the insect population
can cause long-lasting damage to higher trophic levels and functions of ecosystem.
One of the results of this may be the advent of secondary pest, for example:

• Use of Bt cotton has increased the population of sucking pests like whiteflies
• In China, the problem of myriads
• In India, the prominence of mealy bugs (Kalha et al. 2014).

17.9.2 Challenges

• Registration and Regulation policies
• Effect on non-target organisms
• Proper technique of use
• Increase in shelf life
• Commercial availability
• Techniques to enhance mass production.
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The introduction of exotic species and the disruption patterns caused by the use
of microbial pesticides can be a serious issue of concern in future. In addition to this,
the less knowledge regarding the long-term effects of biological control agents has
raised certain doubts in the mind of conservationists. Therefore to save indigenous
fauna and to keep a check on the activities of these biopesticides, it is important to
develop some regulations and form regulatory bodies for its monitoring worldwide.
There is a need to strictly implement regulatory policies for commercial biopesticides
and biological control agents and their registration should opt for detailed study of
their activities against insect pests, and also their impact on the environment should
be analyzed thoroughly to avoid shortcomings in the future. Ecological models for
the prediction of deleterious impact of the release of biological agents can be of great
help.

The effect of microbial pesticides on non-target organisms such as parasites,
predators and other invertebrates and vertebrates is less evident. The laboratory
studies may result in some ill effects but in natural conditions, it is not prominently
recorded. There could be a certain possibility of indirect or direct consumption of
these biopesticides by the pollinators or other non-target organisms. Therefore, it is
required to study the influence of usage of biopesticides on soil, plant, animals and
other non-target organisms.

The population of biological control agents is required in large numbers for the
production of commercial bioformulations. In order to increase the number, there is
a need to develop better mass-production techniques. With time, the shelf life and
virulence of biopesticides tend to decrease, and therefore, the production strategies
also need to look into these aspects.

17.9.3 Opportunity

• Entomopathogenic microorganisms are ubiquitous in nature
• Ideal for Integrated Pest Management programs
• Efficiency can be improved
• Genetic improvement can play a big role.

Entomopathogenic microorganisms reside in a very diverse habitat and can be
easily isolated from the most ecological niches of the world with few exceptions.

These entomopathogens can be formulated commercially in a way to lessen the
usage spectrum of chemical pesticides. They are an excellent alternative to harmful
chemical pesticides due to their beneficial characteristics. If selected carefully along
with a planned application strategy, they can play an inevitable role in Integrated Pest
Management. In this regard, there is a need to strengthen the research knowledge
and overcome the drawbacks of production, efficiency and application in the field.

Genetic engineering can be operated as a tool for improving the efficacy and viru-
lence of biological control organisms. The genetically improved strains of biological
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control agents with the amalgamation of traditional and newly developed genetic-
engineered techniques can solve the problem like less shelf life and decrease in
virulence with time. This opportunity can be utilized to develop better biopesticides
and this may lead to a rise in their popularity commercially.

In recent years, a lot of attention is shifted toward the biological control agents,
because of this worldwide, new subspecies/strains are being identified and registered,
but their development in commercially available products is still lacking behind.
So there is a lot of potential in the field of identification of toxic genes and the
development of commercial products.

The advancement of molecular techniques upholds the opportunity to construct
genetically improved strains with high virulence against a broad spectrum of insects.
The discovery of new biological control agents will help in attaining the goal of
sustainable agriculture and solves the problems of environmental degradation, pest
resistance and deterioration of human health.

17.10 Conclusion and Future Prospects

The rapidly increasing human population needs an amplified quantity of fiber and
food from the shrinking agricultural land. Today, current agriculture has mostly
achieved these objectives, however; the strengthening of agriculture through the
selection of high yielding variety, development of advanced irrigation facilities and
the use of increased amount of agrochemicals throughout the last two to three decades
have also increased crop losses due to the disease, insect pests and weeds. Interac-
tions among soil microbial and crops’ grown are a significant approach to raise
food production in support of the ever-growing world’s population at the least envi-
ronmental costs or at the present scenario of global climate change. There are two
main strategies for controlling the soil microorganism, which are based either on the
progress made in the development of microbial inoculants or on the strategy for the
naturally existing soil microbial populations. Particular importance is being waged
in formulation, quality control and on the manners of application of soil rhizospheric
microbiomes.

It again desires to be highlighted that insects are flexible and extremely successful
living organisms. Whatever policies we may accept, they will move toward similarly
successful responses. We have to constantly specialize the armory of missiles acces-
sible at our command, thus we are capable to increase an upper hand in our struggle
against a large number of insect pests. Sustainable crop production is one of the
system that might be applied constantly for many years, that soundly depends on
the potential within the limitation of a particular area, does not excessively drain
its resources or humiliate/ degrade environment, best use of its materials and energy
also ensure reliable and good yields and give profits the local residents at economical
costs. This sustainable system characterizes a logical way between the extremes of
ultra-intensive agrosystems and low productivity organic farming. Green revolution,
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which tackled the food–security calamity of the 1960–1970s, concerned with scien-
tific novelty and energetic promotion of varies with high yielding that possibly will
alter fertilizer inputs to grain production, however it does not involve the use ofmicro-
bial biopesticides. The evergreen revolution is only possible to satisfy the feeding of
population throughout the world by means of sustainable cropping systems, a deter-
mined and incorporated effort from farmers, scientist and policymakers required to
generate awareness and regulatory environment where sustainable technologies like
Integrated pest management (IPM) are required to meet the fiber and food needs of
the twenty-first century. Computer-based systemsmight be installed at the Panchayat
level that can help the local farmers in the pest identification, also forecasting the
population of pests and series of choices available in pest management with their
advantages and limitations. This technique will help the poor farmers in the pest
identification and management option based on their resources and requirements.

The future aspects aremainly for the upgrading ofmicrobial biopesticides through
their high production with ecological stability. To enhance the efficacy of microbial
pesticides in IPM, a systematic investigation must be carried out in diverse agroeco-
logical regions to categorize naturally occurring microorganisms. Thorough surveys
are essential on the possessions, pathogenicity and mode of action of pests. Envi-
ronmental studies are mainly required on the kind of infections in insects as the
ecological factor plays a major role in expansion of diseases and eventually manages
the population of insect pests. Proper pains must be prepared to reduce the loss of
infectivity of pathogens due to the presence of photo-inactivation. Studies on the
safety of insect pests to other animals, plants and beneficial insects have to be under-
taken. The interaction of insect-associated microbes should be thoroughly studied
for the development of better IPM approaches. The self-disseminate nature of the
pathogens in time and space would certainly confirm to be a benefit in sustainable
agriculture.
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Chapter 18
Global Scenario of Soil Microbiome
Research: Current Trends and Future
Prospects
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Jalaja S. Kumar, and Ajar Nath Yadav

Abstract The current chapter is focused on the microbiome investigations that have
been used to understand the linkages between soilmicrobiota and their environments.
Advanced molecular “Omic techniques” such as metagenomics, metatranscrip-
tomics, metaproteomics andmetabolomics have been employed to understand in situ
microbiomes and their interactions with soil-ecosystem services at micro-scales. The
potential advances in “Omics approaches” are facilitated by high-throughput next-
generation sequencing techniques and the current work discussed upon implementa-
tion of these technologies in soil microbiome research at global scale. In this chapter,
we have summarized recent advancements and the current state of knowledge in
soil microbial diversity and soil-ecosystem functioning. Different high-throughput
sequencing technologies, molecular “Omic techniques” and their limitations in soil
microbiome research have been addressed. Genome-centric metagenomic approach
was highlighted over gene-centric approach to understand soil microbiomes and their
functions hitherto. Impacts of different physical, chemical and biological factors on
soil microbial communities were reviewed in the current chapter. It is suggested that
soil microbiomes can be exploited to alleviate the negative impacts of environmental
changes for increased crop production.
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18.1 Introduction

Soil is one of the most complex ecosystems that harbor billion of microbiota. Soil
microbial communities perform crucial roles in the elemental cycling of micro and
macronutrients which are vital for the functioning of the above-ground ecosystem
(Prasad et al. 2021). Nevertheless, systemic understanding of the soil microbial
ecology is difficult due to the high degree of spatial heterogeneity that is present
at micro-scales (Raynaud and Nunan 2014). DNA-based microbial taxonomy using
phylogenetic markers (ribosomal RNA gene, ITS, etc.) were enumerated around 106

different archaeal and bacterial species and approximately 1 billion microbial cells
in 10 g of soil (Roesch et al. 2007; Schloss and Handelsman 2006). Further, Trevors
2010 estimated around 10−9 genomes and 10−12 prokaryotic genes in a gram of soil.
Recent metatranscriptomics and subsequent taxonomic annotation of agricultural
soils revealed complex microbiota from the diverse origin, in the following order:
Viruses < Eukaryotes < Archaea < Bacteria (Sharma and Sharma 2018).

It is said that only 1% of soil bacteria are cultivable in the laboratory and is
known as a great plate count anomaly. The major fraction (99%) of soil microbiomes
is uncultivable in nature. Therefore, understanding the factors driving soil micro-
biome structure and their interactions (physical, chemical, biological, etc.) across
a contrasting ecological gradient is difficult by using conventional microbiological
tools. Recent advancements in high-throughput sequencing technologies enlightened
the previously unknown soil microbiome compositions without the necessity for
cultivation and enable us to study complex soil microbiomes in detail using metage-
nomics/transcriptomics (Thompson et al. 2017a, b). In this approach, genomic mate-
rial DNA or RNA will be extracted from the microbiota of soil sample of interest
followed by high-throughput sequencing of gene or transcript. Later the data will
be accurately annotated and corresponding cellular or ecological functions will be
precisely identified (Prosser 2015). The inferences drawn in these studies could be
implemented in sustainable agriculture and other land-use management practices
(Fig. 18.1).

According to Prosser (2015) “metagenomics and metatranscriptomics are defined
as the characterization of all genes and RNA transcripts, respectively, in a given
soil/environment sample”. Further, he has pointed that “single-gene/amplicon-
specific high-throughput sequencing studies are sometimes described as “metage-
nomics” but include data for only one gene and, therefore, do not encompass the
holistic element of the omics”. During the past decade, many “omics” studies have
been conducted to elucidate the soil microbiomes in a wide variety of environments.
In this chapter, we especially highlighted the importance of omic approaches to
address the soil microbiomes and ecosystem function. Different high-throughput
sequencing technologies and their characteristics have been well summarized in
Table 18.1. Further rhizospheric microbiomes and the effect of different environ-
mental perturbations on soil microbial diversity and activity have been discussed
(Fig. 18.2 and Table 18.2). Potential opportunities available in soil microbiome
research are highlighted at the end (Fig. 18.3).
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Fig. 18.1 Bacterial counts per unit in different habitats

18.2 Soil Microbiome Research in the “Omics” Era

Recent advancements in sequencing technologies along with increased computa-
tional power, including a significant reduction in sequencing costs have facilitated a
substantial number of soil microbiome studies (Table 18.3, Jansson and Hofmockel
2018; Kang et al. 2019; Gans 2005; Wu et al. 2011; Prosser 2015; Fierer 2017).
Further, high-throughput sequencing studies have succeeded in enlightening the
previously unknownmicrobial diversity of soil microbial communities across a wide
variety of soil habitats (Thompson et al. 2017a, b).

The global scenario of soil microbiome research commonly involves three
different kinds of sequencing strategies: (1) high-throughput amplicon-based
metataxonomic sequencing studies, which involves amplification of targeted regions
of phylogenetic markers such as “intergenic spacer region” for Eukaryotes and
16S ribosomal RNA gene (16S rRNA) for archaea and bacteria (2) metage-
nomics/metatranscriptomics which involves high-throughput sequencing of the
metagenome or transcriptome in a specific soil (3) metaproteomics which focuses
on the detection of fragmented and separated proteins followed by sequencing with
the combination of liquid chromatography-mass spectrometry (LC-MS), and (4)
metabolomics wherein detection of metabolites through nuclear magnetic reso-
nance spectroscopy (NMR) ormass spectrometry (LC-MS).Applications of different
advanced technologies used in the soil microbiome research were comprehensively
summarized in Table 18.3. These molecular approaches unraveled the physiological
mechanisms behind unculturability and identified the factors suitable for growth
promotion of previously uncultivable microorganisms in the laboratory (Stewart
2012; Biswas and Sarkar 2018; Yadav et al. 2015).

DNA-based high-throughput sequencing of 16S rRNA gene (V3–V4 region)
demonstrated that dominant bacterial taxa in agriculture soils were found to be Acti-
nobacteria, Gemmatimonadetes, Proteobacteria, Acidobacteria and Chloroflexi. pH
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Fig. 18.2 Effect of a change in environmental condition on the response of soil microbiomes
as revealed by metagenomics and metatranscriptomics. The concept illustrated in this figure was
adopted, modified and redrawn from Prosser (2015)

was found to be one of the major soil characteristics that confer bacterial commu-
nities in agriculture soils. A significant positive correlation was found between soil
pH, soil bacterial α-diversity and abundance of operational taxonomic units. Results
demonstrated that soil pH is a relatively more important factor than nutrients in
shaping soil bacterial communities in agricultural soils.

Metatranscriptomics revealed that the diversity of the rhizospheremicrobiome has
differed from bulk soil and in between plant species, for example, Pea had a stronger
effect on the rhizosphere microbiome than wheat and oat resulted in a different
rhizosphere community. A comprehensive understanding of the microbial commu-
nities of the paddy soils driving methane metabolism via the formation hydrogen
and acetate has been established by RNA-based metatranscriptomics (Masuda et al.
2018). Deepmetatranscriptomics analysis revealed that in the anoxic layer,Deltapro-
teobacteria, Planctomycete, Acidobacteria actively generated hydrogen; Further,
Acidobacteria, Betaproteobacteria, Alphaproteobacteria and Deltaproteobacteria
generated acetate; Utilizing both hydrogen and acetate as substrates for methanogen-
esis, the archaeal genera such as Methanoregula, Methanocella and Methanosaeta
actively produced methane in anoxic layers. Subsequently, in the oxic layer, methan-
otrophs related toMethylogaea andMethylocystis readily oxidizedmethane (Masuda
et al. 2018).
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Fig. 18.3 Different soils ecological engineering approaches for local ecosystem management. The
figure was adopted from Bender et al. (2016)

In a study, Sharma et al. (2019) demonstrated a high expression of microbial tran-
scripts in agricultural and organic soils with diversified metabolic functions. This
study provided insights about certain molecular markers which are indicative of
metal and pesticide contamination in soil. It was observed that Archaea had rela-
tively a greater role than bacteria in the soil nitrification process of polluted environ-
ments. Particularly, over-expression of aromatic hydrocarbon-degrading transcripts
indicates the importance of soil microbiomes in the biodegradation of pollutants in
agroecosystems (Sharma et al. 2019).

Community shifts in the structure and composition of the soil microbiomes are
considered as biological indicators for assessing long-termpollution of soils (Subrah-
manyam et al. 2011, 2014b, 2016; Ros et al. 2020; Liu et al. 2018; Kumar et al.
2020a, b, c, 2021). RNA-basedmetatranscriptomics of agriculture soils indicated that
higher expression of transcripts related to heavy metals bioremediation (e.g., thiore-
doxin reductase, mercuric ion reductase, cobalt-zinc-cadmium resistance protein,
etc.). Enhanced RNA transcripts in soils were related to soil C, N, P and S cycles
(e.g., PstA, PstB SoxX, SoxD, SoxA, SoxB, etc.). Large quantity of the transcripts
involved in soil denitrification suggesting its key role in the loss of nitrogen in agricul-
ture soils. Transcripts of sulfur metabolic pathways demonstrated a higher expres-
sion of alkane sulfonate monooxygenase, arysulfatase and sulfonate monooxyge-
nases. This is indicative of active sulfur metabolism wherein microbiomes in these
ecosystems were able to acquire sulfur from organosulfur substances. Higher abun-
dance of pesticides and heavy metal degrading bacteria such as Pseudomonas, Strep-
tomyces Achromobacter, Bacillus, Sphingobium, Serratia, Micrococcus, Desulfob-
ulbus,Ralstonia,Acinetobacter,Desulfobacterium,Thiobacillus Rhodospirillum and
Arthrobacter were noticed in agricultural soils (Sharma and Sharma 2018; Yadav
et al. 2020).
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Metabolomics has the potential to characterize the plant–soil biochemical interac-
tions in the soil ecosystem. Metabolomics has advantages over conventional “Omic
technologies” by determining key metabolites which are utilized by both plants and
microbes. However, only a few metabolomics studies were conducted in soil micro-
biome research (Li et al. 2014).Maizemetabolomic analysis revealed that inoculation
of plant growth-promoting bacteria upregulated the hormone biosynthesis, photosyn-
thesis and TCA cycle metabolites. The ability of plant growth-promoting bacteria
to transform soil metabolic pathways could be utilized to enhance production and
productivity of agriculture crops in polluted soils (Li et al. 2014).

Metaproteomics indicated that proteins expressed in the agriculture crops rhizo-
sphere are unique and are not identified by existingMS/MALDI-TOF. Very complex
interactions were observed between microbiomes and plants in a crop rhizosphere.
Functional analysis of proteins revealed several pathways andmetabolic signal trans-
ductions involved in the soil biotic community (Wang et al. 2011). Metaproteomics
of maize soils identified the upregulation of several proteins related to plant devel-
opment and stress response (Li et al. 2014). Applications of omic techniques in soil
microbiome research were comprehensively reviewed by many authors (Biswas and
Sarkar 2018; Krishna et al. 2019).

18.3 Different Sequencing Technologies in Soil Microbiome
Research

Although Sanger sequencing has been used for decades in soil microbial ecology,
it has certain limitations such as time consuming, not economic and is not a
high-throughput technology. Consequently, it is essential to develop economic
high-throughput sequencing methodologies that will provide information on the
soil microbiomes and their functions in different realms. In the recent past, new
sequencing technologieswere evolved and subsequently commercialized by different
firm’s viz. Applied Biosystems, Thermo Fisher Scientific, Roche Life Sciences
and Illumina (Table 18.1). Generally, these methods were referred to as next-
generation (NGS) or second-generation sequencing technologies which revolution-
ized soil microbiome research. Many sequencing platforms employing NGS have
been developed, including Illumina/Solexa platform, Ion Torrent technology, SOLiD
and pyrosequencing (Krishna et al. 2019), PacBio etc. Comprehensive details for
different sequencing platformswere summarized in Table 18.1. Different sequencing
technologies and their chemistry have been reviewed by previous authors (Ambardar
et al. 2016; Thompson and Steinmann 2010; Krishna et al. 2019).
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18.3.1 “Gene-centric” Versus “Genome-centric”
Metagenomics

Molecular analysis and investigation of individual target genes obtained from
metagenomes are known as “Gene-centric” metagenomics. Most of the soil micro-
biome research at the global scale involves a gene-centric approach. It mainly targets
amplicon-specific sequencing of phylogenetic markers such as 16 rRNA, ITS, etc.
So that it could not be possible to establish the origin of the genes like which
genes originated from which genome. Therefore, it is difficult to establish a link
between soil function andmicrobial phylogeny based on the taxonomic genes. Subse-
quently, it is difficult to reestablish interrelated metabolic pathways operating in
complex soil microbiomes with the help of gene-centric metagenomics. The main
technical limitation in the sequencing of single-cell genome is difficulty in anno-
tating a full coverage of genome assembly. These limitations can be addressed with
genome-centric metagenomics.

In contrast to gene-centric’ metagenomics, “genome-centric” metagenomics is
considered to be a holistic approach as it aims to obtain complete sequences of
genomes in a given soil sample through single-cell genomics or theDenovo assembly
of individual genes. Fewdisadvantages of genome-centric’metagenomics involve the
risk of formation of chimeras during genome assembly, in which segments of other
microbial genomes are assembled. These limitations can be minimized by bioinfor-
matics and technological advancements. Kougias et al. (2018) employed a genome-
centric metagenomics approach and reported a spatial distribution of lignocellulose
degrading microbiota with diverse metabolic functions. Most recently “genome-
centric metagnemics” were employed to resolve microbial diversity of denitrifica-
tion pathways, coral reefs and the response of bacteria to operational disturbances
in activated sludge (Gao et al. 2019; Pérez et al. 2019; Glasl et al. 2020). A detailed
account of Gene-centric’ versus “genome-centric” metagenomics was discussed by
Prosser (2015).

Metatranscriptomics provide us to understand the functional roles of microor-
ganisms in soil-ecosystem services. Nevertheless, the diversity and composition
of microbiomes in diverse soils are rarely addressed owing to enormous habitat
complexity and micro-scale heterogeneity. Furthermore, recent advancements in
computational biology and the development of algorithms such as Check-M,
MetaBAT and MaxBin, etc., facilitate us to reconstruct metabolic pathways of
microbial genomes in complex soil microbiomes (Kang et al. 2019; Wu et al. 2011).

18.3.2 Functional Potential of Soil Microbiomes
to Environmental Changes/Disturbances

Understanding soil microbiomes and their potential multifunctionality under
contrasting environmental factors such as nutrient availability, pH, temperature,
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moisture, etc., is a complex subject in soil ecology (Yadav et al. 2020). It is essen-
tial to understand the dynamic responses of global soil microbiomes to physical,
chemical, biological changes including soil-plant-microbe interactions for devel-
oping/predicting long-term soil-ecosystem models. However, small numbers of
investigations have employed multi-omics technologies to decipher the impact of
soil contamination/environmental changes at functional and taxonomic levels in the
soil microbiome (Jiao et al. 2019). Identifying the factors for microbial community
stability such as “resilience (the degree of rate of recovery after disturbance) and
resistance (inherent capacity of insensitivity to disturbance)” is of paramount impor-
tance for forecasting microbiome response to environmental stress. Comprehensive
details on concepts of microbiome resilience and resistance were reviewed by Shade
et al. (2012). Measuring the soil microbiome response to a disturbance has been a
subject of interest for many decades.

Agricultural ecosystems are currently facing various anthropogenic and envi-
ronmental perturbations such as climate change, pollutants, heavy metals, antibi-
otics pesticides, fertilizers and organic residues (Trenberth et al. 2014; Callaway
et al. 2011, Subrahmanyam et al. 2014a, c; Prasad et al. 2012; Singh et al. 2020)
(Table 18.2). Soil microbes play significant roles in driving the global biogeochem-
ical cycles (C, N, P, S, Fe, etc.) and recycling of organic and inorganic elements
(Falkowski et al. 2008; Subrahmanyam et al. 2014b). Sincemicrobes plays a crucible
in soil-ecosystem functioning, it is imperative to elucidate spatio-temporal dynamics
of soil microbiomes and their diversity under contrasting disturbances. This infor-
mation is required to mitigate environmental pollution and mitigate agro-ecosystem
contamination.

Metatranscriptomics is considered to be advanced technology to capture func-
tional gene expression patterns in soil microbiomes and subsequently investigates
their responses to environmental perturbations. The effect of a change in environ-
mental condition/disturbance on the response of soil microbiomes as revealed by
metagenomics andmetatranscriptomicswas comprehensively illustrated in Fig. 18.2.
A small change in the soil environment (temperature, pH or any disturbance) is
unlikely to change any significant soil microbiome community composition. This
could be due to physiological plasticity and flexibility within the prevailing micro-
biome (Terzaghi and O’Hara 1990; Prosser 2015). However, a little environmental
change in the soil-ecosystem could lead to a subtle change in bothmetabolic profiling
and activity which can be reflected in metatranscriptomics. Such type of responses
would not be traced in metagenomes as discussed earlier (Prosser 2015); Amoderate
environmental impact could lead to a change in the distribution of the different
phylotypes at the metagenomics level. However, at the metatranscriptomics stage,
one can notice a relative change in the expression of new genes which belong to
phylotypes adapted to environmental disturbance. A change in the relative expres-
sion of existing transcripts was also noticed at the metatranscriptomics level. Large
and extreme changes in the soil environment could possibly make either expression
of new RNA transcripts (At metatranscriptomics level) or extinction of susceptible
phylotype or the invasion of new species at metagenomics level. Extreme changes
in the soil-ecosystem may also induce mutations/adaptations in existing phenotypes
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subsequently expression of new genes contributes to a different kind of metatran-
scriptome.Table 18.2 summarizes the important observations inmicrobiome research
with response to soil physical, chemical and biological disturbances.

The diversity and species richness of soil bacterial communities differed by type
of the ecosystem (Table 18.2; Fierer et al. 2009, Fierer and Jackson 2006). The differ-
ences in microbiome structure were largely explained by soil pH. Higher bacterial
diversity was observed in neutral soils whereas lower bacterial diversity was noticed
in acidic soils (Wu et al. 2017). Results suggested that microbial biogeography is
primarily controlled by edaphic variables which are different from the biogeography
of “macro” organisms (Fierer and Jackson 2006). The abundance and composition of
soil microbiomes were greatly influenced by soil pH. This could be due to the mech-
anism of the pH for mediation of nutrient availability in the soil. Bacterial genera
such as Bradyrhizobium, Bacteroides, Clostridium, Mycobacterium, Paenibacillus,
Rhodoplanes and Ruminococcus were abundant in the soil (Zhalnina et al. 2015; Wu
et al. 2017).

Land-use patterns and system restoration activities showed a greater effect on soil
microbiomes (Sui et al. 2019). The diversities of fungi, bacteria, and Acidobacteria
were influenced by the change in land-use patterns. A low abundance of bacteria,
Acidobacteria and fungi were noticed in the wetlands and their abundance was
substantially increased in arable land (Sui et al. 2019). The composition of soil
microbiomes was altered by changing land use. The community structure of soil
microbiomes was influenced by seasons and the diversity was shaped principally
by water scarcity. A higher abundance of Proteobacteria and Actinobacteria were
noticed in the rainy and dry seasons, respectively. In addition to this, the availability
of nutrients also showed a significant role in shaping the microbiome assemblages
in soils under agriculture management. Soil microbiomes were greatly influenced by
agriculture practices and showed contrasting genetic potential for C acquisition and
biogeochemical cycling (Lacerda Júnior et al. 2019).

18.4 Limitations of Soil
Metagenomics/Metatranscriptomics

Soil metagenomics and metatranscriptomics have certain limitations and biases as
like as in any other molecular techniques. These limitations are mainly confined to
protocols that are related to lysis of microbial cells, genomic DNA/RNA extraction
along with sequencing errors (Lombard et al. 2011). The stability of the extracted
nucleic acids (DNA or RNA) has also posed a major problem in soil metagenomic
studies. There are certain main limitations found in absolute quantification and
accurate annotation of sequenced genes. Therefore, complete soil metagenome or
metatranscriptome coverage is very difficult to achieve; for instance, Howe et al.
(2014) in a study reported that deep coverage of the majority of a soil microbiomes
was not accomplished, even after processing 398 billion base pairs of sequence
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data. It was highlighted that sixty percent of proteins predicted in sequencing data
were not matched with existing databases indicating the limitations of the existing
databases, for example, Genomes Orthology database and Kyoto Encyclopedia of
Genes. Further, they suggested thatmore deep sequencing data are required to charac-
terize the functional content of soil microbial communities. More importantly “Omic
techniques” require substantial computational resources to annotate and predict the
genes obtained through De novo metagenomic assembly.

Functional gene identification in a metagenomics library is not a substantiated
proof of its expression at the RNA level or its activity at the protein level. The qual-
itative presence of functional gene may be cryptic in nature and the gene transcript
could not be translated or the host organism may be inactive or dormant. One should
be noted that the prevailing environmental conditions such as temperature, pH, water
availability and substrate concentra-tion may likely inhibit the activity of the func-
tional gene product. The amount of a particular enzyme in the soil may be accurately
reflected by quantitative soil metagenomic data, but it would not deliver much infor-
mation about the process rate/metabolic flux. It is a well-known phenomenon that the
cellular flux of metabolites in a metabolic pathway relies on the available quantities
of other co-enzymes and enzymes of the same metabolic pathway (Kacser 1983).
Accordingly, the potential metabolic flux of the related pathway could not be sensi-
tive to different quantities of the encoding gene. Prosser et al. (2015) opinioned that
metagenomics may not provide complete information related to physiological char-
acters, for example, susceptibility to predation, optimum pH and temperature for
growth, minimum and maximum specific growth rates, saturation constants, etc. A
small change in a soil environment (temperature, pH or any disturbance) is unlikely
to induce any change in soil microbiome community composition. This could be due
to plasticity and flexibility within the prevailing microbiome (Terzaghi and O’Hara
1990; Prosser 2015). However, it is noticed that a small change in soil environment
may lead to subtle changes inmetabolic profiling and activity. Such type of responses
would not be traced in metagenomes (Prosser 2015).

Drawing correlations between soil physicochemical characteristics and metage-
nomic data for obtaining meaningful information is difficult. This could be due to
temporal and spatial heterogeneity of soil matrix whichwill separate substrates phys-
ically from cells that contain a functional gene involved in the metabolism of those
substrates (Prosser 2012; Schimel and Schaeffer 2012). The fundamental quest in
soil microbiome research is how soil microbial diversity is produced andmaintained.
Conventionally, the fundamental processes that are responsible for inducing genetic
diversity in species are defined as evolutionary processes which include genetic
drift, gene flow, mutation, and selection (Hartl and Clark 2007). Conversely, the
fundamental forces that are driving diversity among species are in general referred
to as ecological processes which include ecological drift, selection, speciation and
dispersal (Vellend 2010; Zhou and Ning 2017). Metagenomics, or metatranscrip-
tomicsmay not delivermuch information to understand these fundamental ecological
mechanisms that are driving soil microbial communities.

Although metagenomic sequencing can provide certain information on great
plate count anomaly, it is fundamentally difficult to understand the functionality
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of metabolic pathways of uncultivable microbes in soil (Stewart 2012). Cultiva-
tion of uncultivable soil microbiota in the laboratory is necessary to understand
complete physiology and their functional roles in soil microbial ecology and host
plant improvement. Stewart (2012) discussed advancements made in co-culture tech-
nique suitable for growing uncultivable microbes in the laboratory by providing
in situ environment. Further, a novel “micro-cultivation technology” to increase
more resolution and exploit rare microbial species from the complex environment
was highlighted in the same study.

18.5 Future Prospects in Soil Microbiome Research

18.5.1 Biodiversity and Biogeography

Six distinct biogeographical regions are found on the Earth’s surface (Lomolino
et al. 2006). The biogeographic regions are defined as land surface areas that harbor
distinctive plants, animals and other biota. The distribution of specialized biotas is
hypothesized to exist due to evolutionary events such as vicariance, separation and
dispersal of species by various barriers (Womack et al. 2010). Much emphasis was
given to the distribution of microbiota and the corresponding ecosystem processes
that underlie species distribution. Gourmelon et al. (2016) inferred that microbial
species distribution, abundance, richness were related to the type of surface vegeta-
tion and the prevailing plant species. Each plant possesses its specializedmicrobiome
because of multifactorial linkages between abiotic and biotic factors in contrasting
geographical regions (Gourmelon et al. 2016). Dispersal limitation in the context of
the biogeographical-island theory proposed by MacArthur and Wilson (1963), can
explain differences in microbiomes of various geographical locations (Gourmelon
et al. 2016). Similar observations were reported by Malard et al. (2019) wherein
spatial and edaphic factors played an important role in the structure of Arctic soil
bacterial communities. It was elucidated that pH as the key environmental driver
shaping Arctic soil bacterial communities. However, still, our understanding of the
different processes of the biosphere is limited. Therefore, polyphasic studies should
be carried out to understand the biosphere, one that links knowledge about biodi-
versity and biogeography in the atmosphere, hydrosphere and lithosphere (Hanson
et al. 2012; Womack et al. 2010).

Gaston (2000) described that species richness is found to be higher in the tropics
and gradually declines toward the poles.Molecular studies focused on the continental
scale distribution and diversity of soil microbiomes revealed a lot of uncertainty in
the global biogeography of soil biota due to a lack of data on patterns. Unraveling
the factors that regulate soil microbiomes, biogeographical distribution, succession
and functions are poorly understood in soil microbiology. Stochastic processes are
thought to have minimal roles in driving soil microbiomes and their functions in the
ecosystem process (Zhou and Ning 2017). It is believed that heterogeneous selection
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by different biotic and abiotic environmental conditions making for more dissimilar
andmore diversifiedmicrobial structures amongmicrobiomes. This type of selection
is known as variable selection (Zhou and Ning 2017) and we anticipate that variable
selection is one of the major underlying forces in leading diversified microbiomes in
soils at the global scale. It is demonstrated that biodiversity is of paramount impor-
tance for ecosystem functioning (Cardinale 2012; Knelman and Nemergut 2014;
Bardgett andVanDerPutten 2014), but the underlying forces driving the relationships
between microbial communities and ecosystem functioning are still not clear. A few
studies indicate that stochastic processes are important for regulating both microbial
community structure and corresponding ecosystem functions (Fukami et al. 2010;
Zhou et al. 2013). Nevertheless, systematic studies across diverse ecosystems are
necessary to understand whether stochastic community assembly processes affect
ecosystem functioning or not.

18.5.2 Sustainable Soil-Ecosystem Management

Recent studies unraveled that soil biodiversity is crucial to support several ecosystem
functions simultaneously (Delgado-Baquerizo et al. 2016; Wagg et al. 2014). It is
observed that intensive management of agricultural practices, for example, indis-
criminate use of pesticides, fertilizers, soil tillage and monocropping have adverse
effects on soil biota consequently reduce overall soil microbial biomass and diver-
sity (McDaniel et al. 2014). An apparent microbial community shift in soil micro-
biomes was observed because of intensive land-use management practices (Tardy
et al. 2015). Similarly, Philippot et al. (2013) emphasized that the loss in microbial
diversity affects nitrogen cycling and other terrestrial ecosystem process. Therefore,
soil microbial diversity has to be enhanced andmaintained for the proper functioning
of agro-ecosystem. It is proposed that sustainability in agricultural soils can be main-
tained by regulating internal ecosystem processes (Hota et al. 2021; Bender et al.
2016; Kumar et al. 2019a, b; Kumari et al. 2020; Rai et al. 2020). Recently, soil
ecological engineering has gained a lot of momentum and is considered to be an
important concept to enhance sustainable productivity in human land-use systems
(Bender et al. 2016).

Soil ecological engineering is a comprehensive approach wherein soil biolog-
ical processes are maximized for sustainable ecosystem functioning. This is one
of the holistic approaches to minimize negative environmental impacts in agro-
ecosystems and provide global food security. Figure 18.3 illustrates different soil
ecological engineering approaches for local ecosystem management. Bender et al.
(2016) comprehensively reviewed soil ecological engineering and biodiversity for
sustainable agriculture/human land-use systems.

Agro-ecosystems are generally characterized into extensive and intensive systems
with a different rate of productivities. The extensive agro-system is accompanied
by high biodiversity, low resource output and inputs, low level of productivity and
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enhanced internal soil regulatory processes. While the intensive agro-system is char-
acterized by depleted biodiversity, high resource inputs-losses, high rate of produc-
tivity and decreased internal soil regulatory processes. Both of these systems have
merits and demerits in terms of productivity and internal soil regulatory processes.
Therefore, the ecological intensification approach needs to be implemented to bring
sustainability in ecosystem multifunctionality. Bender et al. (2016) describe that
the ecological intensification approach combines both traits (extensive and intensive
agrosystems) and leads to an ideal sustainable agro-ecosystem that comprised rich
biodiversity, moderate resource inputs/low nutrient losses, higher productivity and
enhanced internal soil regulatory process. The ecological intensification approach
further maximizes agro-ecosystem multifunctionality.

18.5.3 Rhizosphere Microbiome—Plant Health

Rhizosphere microbiomes that are assembled near roots can harbor up to 10−11

microbial cells and approximately 30,000 different microbial species per gram of
root (Sharaff et al. 2020; Egamberdieva et al. 2008). Rhizosphere microbiomes are
considered to be one of the complex-ecosystems on the Earth (Kour et al. 2019;
Subrahmanyam et al. 2020; Weinert et al. 2011; Raaijmakers et al. 2009). Rhizo-
sphere microbiomes utilize a diverse array of metabolites released by plant roots
(Lu et al. 2018). Microbiomes of the rhizosphere are rich in diverse plant growth-
promoting fungi and bacteria (Subrahmanyam et al. 2018, 2020; Sharaff et al. 2020;
Kour et al. 2019). The density and distribution of microbial population in the root
rhizosphere are much higher than in the bulk soil and this phenomenon is known as
the “rhizosphere effect.” Increased plant growth is associated with enhanced plant
defense mechanisms. Root microbiome plays important role in conferring host plant
health (Berendsen et al. 2012). It is evidenced that the plant is able to recruit a
wide variety of microbial populations as its microbiome by secreting root exudates
(Ahemad and Kibret 2014; Rana et al. 2020; Subrahmanyam et al. 2020).

Several abiotic and biotic factors are found to be critical for rhizosphere micro-
biome diversity and species richness. Abiotic factors, such as seasonal variation, pH,
soil temperature, root exudates/chemical substances and biotic factors such as devel-
opmental stages of host plants, root architecture, cultivars and host plant genotypes
act as chemicalmessengers for heterogeneous soilmicrobiota and subsequently influ-
ence the microbiome structure and function (Lakshmanan et al. 2014; Kumar et al.
2019a, b; Verma et al. 2016; Verma et al. 2017; Yadav et al. 2019). The rhizospheric
microbes can induce a series of plant defense mechanisms for host plant growth
and health. Induced systemic resistance (ISR) is one of the defense mechanisms of
plants induced by PGPR to increase vigor and the health of their host plant against
invading pathogen (Pieterse et al. 2014). Recently, excellent reviews on rhizospheric
microbiomes, plant growth-promoting characteristics and their potential agricultural
applications are published (Berendsen et al. 2012; Subrahmanyamet al. 2020; Sharaff
et al. 2020).
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Rhizosphere microbiomes harbors both useful and harmful microbiota and can
control host plant physiology, growth and development (Subrahmanyam et al.
2020; Subrahmanyam et al. 2018; Sharaff et al. 2020). Further, the healthy mciro-
biomes can prevent plant infection by controlling the pathogen colonization by
either competing or producing antimicrobial compounds such as siderophores, 2,4-
diacetylphloroglucinol, polymyxin, colistin, etc. (Maksimov et al. 2011). The regu-
lation of the plant defense system is generally involved by different phytohormones
such as ethylene, jasmonic acid and salicylic acid (Pieterse et al. 2014). Beneficial
rhizospheric microbes’ triggers induced systemic resistance by modulating salicylic
acid.

The key functions of rhizosphere microbiome include protection against plant
pathogen infection, nutrient acquisition and abiotic stress tolerance in host plants.
Therefore, it is essential to understand the molecular signaling mechanisms between
host plant and microbiome assembly in the rhizosphere by using functional metage-
nomics and transcriptomics. This information can be exploited to develop soil
management practices for increasing plant productivity, designing healthy rhizo-
microbiomes and introduction of novel biocontrol and bio-fertilizer microbes in
sustainable agricultural strategies. Unraveling the mechanisms such as how plants
recruit their selective microbiome and how the rhizosphere microbiome controls host
plant health will open new avenues to increase crop productivity.

18.5.4 Climate Change and Soil Microbiomes

Soil microbiomes perform crucial functions in the elemental cycling of micro and
macronutrients which are vital for the functioning of the above-ground ecosystem.
Nevertheless, still we do not have a general framework at a global scale for predicting
microbiome responses and their ecosystem services to climate change. Recently,
Jansson and Hofmockel (2020) comprehensively reviewed the effect of climate
change on soil microbiomes in diverse soil ecosystems. Mekala and Polepongu
(2019) highlighted the effects of climate change viz. elevated temperature, precipita-
tion, drought and atmospheric CO2 on beneficial plant–microorganism interactions.
Further, they have emphasized that k-strategist or oligotrophic microbial groups and
their abundance are increased under high temperature or drought and their abundance
significantly decreased with elevated CO2. In contrast, r-strategist or copiotrophic
microbial groups shown potential resilience after the disturbance or stress has ended.
Studies on climate change have shown both negative and positive impacts on soil
microbial communities (Mekala and Polepongu 2019). In arid grasslands, Yu et al.
(2018) observed increased expression of functional genes involved in carbon fixa-
tion, nitrogen fixation, CH4 metabolism, decomposition, denitrification, and nitrogen
mineralization under elevated atmospheric CO2 levels.

It is observed that soil respiration, soil organic matter decomposition and micro-
bial biomass content were increased with increased temperature (Bradford et al.
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2008). Long-term experiments on the elevated temperature at Harvard Forest Ecolog-
ical Research Station revealed microbial community reorganization, diversity shift
toward oligotrophic communities, rapid loss of carbon through respiration in the
heated plots than in control soils. A change in microbiome community structure
followed by reduced recalcitrant carbon pools was observed in the same study
(Melillo et al. 2017). Multiyear field experiments and Mesocosm studies revealed
that draught had a more negative impact on bacteria than fungi in grasslands (Upton
et al. 2018; de Vries et al. 2018).

The residential soil microbiomes can either adapt and or dormant or extinct in
response to climate change. Depending on their physiological and genetic poten-
tial, soil microbiomes respond to environmental disturbances in contrasting ways
(Schimel et al. 2007). For example, Hayden et al. (2012) reported community shifts
of fungi, archaea and specific bacterial groups under elevated CO2 in Australian
grasslands. Mekala and Polepongu (2019) proposed that specific functional genes
involved in the N and C cycles can be used to predict the consequences of climate
changes on soil microbial community composition in soil functioning.

Around 30% of the land surface area is occupied by forests and forest soil ecosys-
tems are the major potential sinks for atmospheric carbon as a stable soil organic
matter (Llado et al. 2017). However, it is predicted that because of increasing global
temperature and severity of drought, these forest ecosystems may get converted from
net carbon sinks to net carbon sources globally in the coming future (Kirschbaum
2000). This could be due to increased soil organic matter degradation by microbial
activity (Kirschbaum2000).A similar kind of observationswasmadewith grasslands
which occupy approximately 26% of the earth surface land area and store around
20% of total soil carbon (Ramankutty et al. 2008; Malyan et al. 2019). Therefore,
potential ways and strategies for predicting the response of soil microbial activity and
diversity to climate change needed to be developed and accordingly soil microbiomes
may be exploited to mitigate the negative impacts of climate change.
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Chapter 19
Functional Annotation
and Biotechnological Applications of Soil
Microbiomes: Current Research
and Future Challenges

Ajar Nath Yadav, Tanvir Kaur, Divjot Kour, Rubee Devi, Geetika Guleria,
Rajeshwari Negi, Ashok Yadav, and Amrik Singh Ahluwalia

Abstract The tiny organism of soil, known as soil microbes have several functional
annotations like nutrients cycling and their fixation, mineralization and solubiliza-
tion, alleviation of biotic caused by pest-insects, microbial pathogens as well as
abiotic stresses by harsh environmental conditions, degradation of polluting elements
in the environment. Their functional abilities can be utilized in the different fields
of biotechnology i.e. environment and agriculture because these are one the best
sustainable technique over others like conventional methods as already environment
is heavily polluted by the activities of mankind. In agriculture, soil microbes can
be used as a biofertilizer and biopesticides. Soil microbes as biofertilizers help in
providing nutrients like nitrogen, phosphorus, potassium, zinc and iron. Along with
nutrients, these microbes also help in releasing plant growth regulators that help in
increasing plant development. These use various mechanisms like fixation, solubi-
lization and scavenging (of iron) for providing nutrients. Soil microbes also help in
alleviating biotic stress by releasing antibiotics, siderophores and hydrogen cyanide
to kill unwanted or pathogenic pest and microbes. Such microbes can also be applied
in the environment for various applications like alleviation stress, pollution which
cannot be degraded naturally. The present chapter deals with the functional annota-
tion and biotechnological applications of beneficial soil microbiomes for agricultural
sustainability.
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19.1 Introduction

Themicro-miracle, microbes are known to be present in each and every habitat of the
planet earth including soil, air and water ecosytems. There they play some important
hidden roles such as maintaining the environmental cycles like carbon, nitrogen,
weathering of rocks, formation of fossil fuels and many more without which earth
is are incomplete and can be destroyed (Gougoulias et al. 2014; Prasad et al. 2021;
Yadav et al. 2021b). Microbes residing in the soil are diversified as bacteria, fungi,
archaea and protozoa that plays such roles for the earth and have various func-
tional abilities like mineralization of soil minerals like phosphorus, potassium, zinc,
iron, selenium, calcium and sulfur, the release of various types of growth regula-
tors like auxin, cytokinin, gibberellins, abscisic acid and ethylene (Alori et al. 2017;
Egamberdieva et al. 2017; Kour et al. 2021a).

These soil microbes have also a have ability to alleviate various types of stresses
of the environment i.e. biotic and abiotic. In biotic stress alleviation, soil microbes
are used to control the different types of biological pathogens growth like insects,
bacteria and fungi by releasing various types of antibiotics and hydrogen cyanide,
competing with the nutrient’s availability (Gómez Expósito et al. 2017; Dikilitas
et al. 2021; Tiwari et al. 2021). Whereas, in abiotic stress, soil microbes undergo
mechanisms like a release of ACC deaminase, reactive oxygen species by which
various types of abiotic stress can be alleviated such as cold stress, temperature
stress, water stress weather flooding conditions or rainfed conditions, salt stress in
the soil and available heavy metals (Khan et al. 2020; Selvakumar et al. 2012; Suyal
et al. 2021; Yadav et al. 2021a). Pollution remediation is also one of the functional
abilities of the soil that helps in converting hazardous compounds into less toxic
compounds that can be degradable in the soil (Kushwaha et al. 2018; Sharma et al.
2021).

All the functional abilities of the soil microbes can be used in various fields like
agriculture and in the environment (Kour et al. 2020b). In agriculture, plant yield
is one the most important criteria for the farmers to produces more crop products
and earning more money. Over the past five decades, the required yield of the crop
products was achieved by using various chemical products because of the depleted
fertility and nutrients of the soil (Yadav et al. 2021c). Such chemical-based products
are also used for controlling the different types of insect-pest, microbial pathogens.
The use of such chemical-based products are ruining the soil structure by depleting
fertility and increase of chemical pollution that effects not only the plant produc-
tion or micro-lives living in soil but also effects the whole environment by causing
environmental pollution. The soil microbes are one of the sustainable techniques
to be used in the agriculture fields as their abilities can help in filling all the voids
of farmers as well (Yadav et al. 2020d). These microbes present in the skin of the
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earth can also be used in solving environmental problems in a sustainable way (Kour
et al. 2020c; Hesham et al. 2021; Yadav 2021a, b). As they help in degrading the
pollution spreader by the mankind activities. All these above-mentioned functional
annotation of soil microbiomes (archaea, bacteria and eukarya) and their potential
biotechnological applications in agricultural and environmental sectors have been
discussed in detail in this chapter.

19.2 Role of Soil Microbiomes in the Natural Ecosystem

Earth, the natural supplier of the various essential elements to every living organism
like hydrogen, oxygen, carbon, sulfur, nitrogen, phosphorus, potassium, zinc and
iron (Gougoulias et al. 2014). These all the elements essential minerals of a different
organism, but they are present in a complex and stable form that cannot be utilized as
such. These elements in this closed system are availed by the beneficial soil microbes
(Viles 2012). Soil microbes are having the ability to break down the complex matter
as they have several coding genes for enzymes that help in the fixation, solubilization
and mineralization (Rastegari et al. 2020a, b; Patil et al. 2021). In the environment,
microbes plays a role in breaking of dead organic matter which can be utilized by a
different organism for various biological processes. Soil microbes are also involved
in the cycling of various elements in the different habitats like carbon, nitrogen,
oxygen-hydrogen, phosphorus, potassium, zinc and iron which are present in the
ores and complex form (Akob and Küsel 2011). Apart from the biogeochemical
cycles soil microbes are also help in the degradation of toxic elements and ultimately
helps in the cleaning the earth’s surface (Kushwaha et al. 2018).

19.3 Functional Annotation of Soil Microbiomes

19.3.1 Nutrients Acquisition

Soilmicrobiomes play a vital role in the circulation of plant nutrients. Thesemicrobes
as bio-inoculants are being used across the world to improve the yield and nutrient
status of agricultural ecosystems. The beneficial plant–microbe associations signify
a promising sustainable solution to enhance productivity and reduce the diverse
chemical fertilizers used.
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19.3.1.1 Nitrogen

Nitrogen is the 7th abundant element of the universe and also the most common
element in the atmosphere. Despite its abundance in the soil, it is still unavail-
able to the plants due to insoluble forms. Soil microbiomes are capable of fixing
atmospheric N2 and convert di-nitrogen into NH3, which is then taken up by the
plants (Singh et al. 2019). BNF is a significant process for determining nitrogen
balance in the soil ecosystem. The inputs of the nitrogen through this process
sustain environmentally sound agricultural production (Mohammadi and Sohrabi
2012). The bacteria possessing nitrogen-fixing ability belong to the genera Allorhi-
zobium, Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhi-
zobium together termed as Rhizobia and the most remarkable relationship these have
with plants is symbiosis. Free-living nitrogen fixers include Acetobactor diazotroph-
icus, Azoarcus sp., Azospirillum amazonense, A. brasilense, A. lipoferum, Azoto-
bactor sp., Burkholderia brasilensis, B. kururiensis, B. phynatum, B. tropicalis, B.
tuberum,B. vietnamiensis,Herbaspirillum sp. andPseudomonas sp. i.e., they provide
direct N nutrition to plants (Yadav et al. 2020d). Fixed nitrogen is then taken up
through root uptake which contributes to the nitrogen account of the crop.

19.3.1.2 Phosphorus

Phosphorus (P) is the second vital nutrient for plants after nitrogen. An adequate
supply of the P is important for diverse functions and metabolic activities of the
plants (Khan et al. 2014). But the majority of the P is unavailable to the plants due
to its fixation and insolubility (Kour et al. 2020c). Soil microbiomes possess the
ability to transform insoluble form to soluble form which is then available to plants.
Phosphorus solubilizing microbiomes use different mechanisms for this conversion
such as they release organic acids such as citric, fumaric, gluconic, propionic and
tartaric Yadav et al. (2015) which act as good chelators of divalent cations of Ca2+,
which releases phosphates from insoluble phosphatic compounds. In other way, the
released organic acids sometimes form soluble complexes with metal ions in associ-
ation with insoluble phosphorus and release phosphate (Jha and Saraf 2015). Phos-
phorus solubilizing capability has been observed in diverse soil microbial genera viz,
Acinetobacter, Arthrobacter, Aspergillus, Bacillus, Brevibacterium, Burkholderia,
Leclercia, Pantoea, Pseudomonas, Raoultella, Serratia, andTrichoderma (Pei-Xiang
et al. 2012; Sharma 2011;Yasser et al. 2014). Thus, the use of P-solubilizingmicrobes
is an environment-friendly approach for providing inexpensive P to plants.

19.3.1.3 Potassium

After phosphorus and nitrogen, potassium (K) is the third essential macronutrient
necessary for the growth of plants (Kasana et al. 2017). In soil, the soluble K
concentrations are normally very low and more than 90% of K exists in the form
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of insoluble rocks and silicate minerals. India entirely depends on the import of
potassic fertilizers and farmers use either very little or no potassium in crop produc-
tion. Thus it becomes very important to explore efficient microbial K-solubilizing
strains for using them as bioinoculants and further reducing the use of agrochemicals.
Aspergillus, Bacillus, Exiguobacterium, Fomitopsis, Paenibacillus and Planococcus
have reported K-solubilizing genera (Gore and Navale 2017; Kasana et al. 2017;
Verma et al. 2016).

19.3.1.4 Zinc

Zinc is a relatively soft, bluish-white metal essential for the proper functioning
of enzymes. It occurs in distinct forms in the soil such as smithsonite, sphalerite,
zincite, zinc silicates, zinc sulfide and willemite. Zn is unavailable to plants due to
its poor mobility and hence supplied in the form of zinc chemical fertilizers (Kour
et al. 2019b). Microbial zinc solubilization plays a versatile role in enhancing the
bioavailability of zinc to plants. Microbes work by releasing Zn from its unavailable
complexed form to plant accessible form (Saravanan et al. 2011). The reported zinc
solubilizers include Abisidia, Aspergillus, Phomopsis, and Penicillium (Coles et al.
1999; Franz et al. 1993; Saravanan et al. 2011; Sutjaritvorakul et al. 2013).

19.3.2 Release of Plant Growth Regulators

Development and growth of the plants involve coordination of spatial and temporal
organization of cell division, differentiation and expansion and the occurrence of
such events actually requires the exchange of the signaling molecules between shoot
and root (Jha and Saraf 2015). Plant growth regulators play a major role in the
development and growth of the entire plant and are active in very minute quantities
(Fuentes-Ramirez and Caballero-Mellado 2006). These growth regulators regulate
many aspects of growth promotion through a range of biochemical and physiological
means to ensure successful completion of the life cycle of plants (Singh et al. 2020;
Tiwari et al. 2020). Plant–microbe interactions have been known for decades and are
of great interest as these associations are highly beneficial for the development of
new agricultural applications. Beneficial soil microbial communities are also known
to produce different plant growth regulators including gibberellins, cytokinin, and
auxin. Indole-3-acetic (IAA) acid is a major plant hormone involved in cell division
and differentiation, vascular development, germination and root growth (Etesami
and Beattie 2017). IAA production has been reported in archaea, cyanobacteria,
methylobacteria, and streptomycetes. Additionally, it has been estimated that 80%
of soil bacteria exhibit the ability to produce IAA (Khalid et al. 2004). IAAproduction
has been also known in Arthroderma cuniculi (Karmakar et al. 2018), Aspergillus
niger (Wang et al. 2018b), Curvularia geniculata (Priyadharsini and Muthukumar
2017) and Penicillium menonorum (Babu et al. 2015).
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Fig. 19.1 Role of phytohormones in the alleviation of abiotic stresses in plant (Egamberdieva et al.
2017)

Gibberellins (GAs) are tetracyclic diterpenoid acids, ent-kaurene derivatives
involved in increasing the rate of flower and fruit development, leaf growth, seed
germination and stem elongation (Agafonova et al. 2018). Gibberellins production
has been known in Bacillus licheniformis and Bacillus pumilus (Gutiérrez-Mañero
et al. 2001). Fungal species including Aspergillus niger, Neurospora crassa and
Sporisorium reilianum have been identified to either produce gibberellins during
their growth or containGAs biosynthesis gene clusters (Khan et al. 2015). Cytokinins
increase cytokinesis in shoots and roots. It regulates stomatal opening, inhibits leaf
senescence and plays a significant role in apical dominance. Cytokinin production
has been demonstrated in Arthrobacter, Azospirillium, Azotobacter, Bacillus, Rhizo-
bium and Pseudomonas. Different reports have also shown a positive impact of
cytokinin-producing beneficial bacteria on plant growth during stress conditions
(Fig. 19.1).

19.3.3 Amelioration of Biotic Stresses

Biotic stress is stress caused by micro and macro-pathogens such as bacteria, fungi,
virus, nematodes, insects, andweeds on plants. This stress usually contributes to huge
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economic losses caused by cash crops, due to this it is considered as a major subject
of agricultural research. It is estimated that the global loss due to these pathogens is
12% of potential crop productivity (Kumar et al. 2021a). Out of all pathogens, fungus
is considered as the most divested pathogen which dramatically declines the crop
yield (Yadav et al. 2020a). The major foliar diseases caused by fungi were reported
as rusts, downy mildew and powdery mildews. Disease rust is caused by several
species of genus Puccini including Puccinia graminis on the rust of wheat, Puccinia
sorghi on forage legumes and maize (Ramteke et al. 2004).

Root rot caused through the Fusarium solani, Rhizoctonia solani and
Aphanomyces euteiches in which the disease caused by Fusarium solani is the most
critical soil-borne pathogen infecting the pea and chickpea (Infantino et al. 2006).
The damping-off disease is another disease caused by fungi known as Rhizoctonia
solani or Pythium spp., which can lead up to 80% plant death (Wang et al. 2003).
Fusarium root rot caused through the species of Fusarium can also cause numerous
seedling losses, especially in common tomato and lentils. In the most growing areas
of the worlds, the disease affects seedlings and adult plants in which chlorosis of
the skin, wilting and ultimately death occurs. Other major soil-borne diseases like
southern stem rot (Sclerotium rolfsii) and white mold (Sclerotinia sclerotiorum) also
affect the seedling and pod in cool and warm weather (Kolkman and Kelly 2003).
Various studies support the promotional plant growth and improved disease ability
such as Pseudomonas spp., Trichoderma spp. and Bacillus spp., on a variety of host
plants including Arabidopsis, pepper, wheat, tomato, radish, okra, pigeon pea, pea
and chickpea (Chauhan and Bagyaraj 2015).

19.3.4 Amelioration of Abiotic Stresses

Abiotic stress is the stress created by adverse climatic conditions that also restrict crop
productivity. In nature, stress is a combined effect ofmultiple functioning unity rather
than a single incident (Mahajan and Tuteja 2005). On earth, various types of stresses
like drought, temperature extremes like cold and hot, salinity, heavymetals andwater
flooding exists, which result in reduction of plant growth and a substantial decrease
in crop yield and productivity (Ramegowda and Senthil-Kumar 2015) (Table 19.1).

19.3.4.1 Temperature Stress

Low and high temperature are diverse abiotic stresses. Among these and other
stresses low temperature is considered as a major limiting factor as 20% of
the earth surface is filled with frozen soil, frozen soils (permafrost), glaciers
and snow that adversely affects the productivity of agricultural products. In
recent years, the diverse range of microbes inhabiting in low temperatures envi-
ronments, which are known as psychrophilic microbes, has been thoroughly
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Table 19.1 Soil microbiomes and thier potenatial biotechnological implications for alleviation of
abiotic stress

Rhizobacteria inoculants Stress condition References

Acinetobacter pittii JD-14 Water stress Daur et al. (2018)

Arthrobacter protophormiae (SA3) Salinity stress Barnawal et al. (2017)

Arthrobacter scleromae OB149 Cold stress Subramanian et al. (2016)

Arthrobacter sp. SU18 Salinity Upadhyay et al. (2012)

Arthrobacter sp. Salinity, high pH Banerjee et al. (2010)

Bacillus sp. Salinity, high pH Banerjee et al. (2010)

Aspergillus niger Drought/salinity Xiao et al. (2011)

Penicillium simplicissimum Drought/salinity Xiao et al. (2011)

Aspergillus japonicas Drought/salinity Xiao et al. (2011)

Aspergillus niger, F7 Salinity Srividya et al. (2009)

Penicillium sp. Salinity Srividya et al. (2009)

Aspergillus usrus Drought Barrow and Osuna (2002)

Azospirillum brasilense Ab-V6 Salinity Fukami et al. (2018)

Azospirillum spp. Drought Arzanesh et al. (2011)

Azotobacter chroococcum CAZ3 Heavy metal Rizvi and Khan (2018)

B. amyloliquefaciens S-134 Drought Raheem et al. (2018)

B. thuringiensis S-26 Drought Raheem et al. (2018)

Bacillus amyloliquefaciens Bk7 Cold stress Kakar et al. (2016)

Bacillus aquimaris DY-3 Salinity Li and Jiang (2017)

Bacillus aryabhattai H26-2 High temperature Yoo and Sang (2018)

Bacillus atrophaeus EY6 Salinity Karlidag et al. (2013)

Bacillus cereus AR156 Cold stress Wang et al. (2016)

Bacillus megaterium BOFC15 Water stress Zhou et al. (2016)

Bacillus pumilus, Salinity Ali et al. (2017)

Bacillus siamensis H30-3 High temperature Yoo and Sang (2018)

Bacillus sp. (MN54) Salinity stress Yang et al. (2016)

Bacillus sp. AZ-1 Heavy metal Amin and Latif (2017)

Bacillus sp. CIK-516 Heavy metal Akhtar et al. (2018)

Bacillus subtilis EY2 Drought Karlidag et al. (2013)

Bacillus subtilis LDR2 Drought Barnawal et al. (2017)

Bacillus subtilis RJ46 Drought Saikia et al. (2018)

Bacillus subtilis SM21 Cold stress Wang et al. (2016)

Bacillus subtilis SU47 Salinity Upadhyay et al. (2012)

Brevibacillus laterosporus B4 Cold stress Kakar et al. (2016)

Burkholderia phytofirmans PsJN Temperature stress Bensalim et al. (1998)

Burkholderia phytofirmans PsJN Temperature stress Su et al. (2015)

(continued)
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Table 19.1 (continued)

Rhizobacteria inoculants Stress condition References

Citrobacter freundii J118 Water stress Upadhyay et al. (2011)

Dietzia natronolimnaea (STR1) Salinity stress Barnawal et al. (2017)

Enterobacter aerogenes S-10 Drought Raheem et al. (2018)

Enterobacter cloacae AZ-3 Heavy metal Amin and Latif (2017)

Enterobacter cloacae HSNJ4 Salinity Li and Jiang (2017)

Enterobacter cloacae ZNP-3 High temperature Singh and Jha (2017)

Enterobacter sp. (MN17) Salinity stress Yang et al. (2016)

Enterobacter sp. P23 Salinity Sarkar et al. (2018)

Enterobacter sp. S16–3 Osmotic stress Oskuei et al. (2018)

Enterobacter sp.UPMR18 Salinity stress Habib et al. (2016)

Eupenicillium parvum NRRL 2095 Salinity, acidity Vyas et al. (2007)

Exiguobacterium sp. AM25 Salinity Ali et al. (2017)

Flavobacterium phocarum, SE14T Cold stress Zhou et al. (2012)

Flavobacterium sp. OR306 Cold stress Subramanian et al. (2015)

Flavobacterium sp.OS263 Cold stress Subramanian et al. (2016)

Klebsiella sp. IG 3 Salinity Sapre et al. (2018)

Klebsiella sp. SBP-8 Salinity Verma et al. (2017)

Klebsiella variicola Flooding Kim et al. (2017)

Klebsiella variicola F2 Drought Gou et al. (2015)

Kocuria erythromyxa EY43 Salinity Karlidag et al. (2013)

Massilia sp. OS123 Cold stress Subramanian et al. (2016)

Ochrobactrum pseudogrignonense RJ12 Drought Saikia et al. (2018)

Pedobacter sp. OS312 Cold stress Subramanian et al. (2016)

Penicillum citrinum Salinity Yadav et al. (2011)

Pseudomonas aeruginosa PRR1 Salinity Kumar et al. (2017)

Pseudomonas aeruginosa strain OSG41 Metal stress Oves et al. (2013)

Pseudomonas fluorescens FY37 Salinity Bazyar et al. (2017)

Pseudomonas fluorescens MSP-393 Salinity stress Paul and Nair (2008)

Pseudomonas fluorescens YX2 Drought Gou et al. (2015)

Pseudomonas fragi CS11RH1 Cold stress Selvakumar et al. (2009)

Pseudomonas frederiksbergensis OS210 Cold stress Subramanian et al. (2016)

Pseudomonas frederiksbergensis OS211 Cold stress Subramanian et al. (2015)

Pseudomonas jessani PGRs1 Cold stress Mishra et al. (2011)

Pseudomonas lurida M2RH3 Cold stress Selvakumar et al. (2011)

Pseudomonas lurida M2RH3 Cold stress Mishra et al. (2012)

Pseudomonas lurida NARs9 Cold stress Mishra et al. (2009)

(continued)
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Table 19.1 (continued)

Rhizobacteria inoculants Stress condition References

Pseudomonas lurida NPRs3 Cold stress Mishra et al. (2011)

Pseudomonas mohnii OS114 Cold stress Subramanian et al. (2016)

Pseudomonas putida AKMP7 Heat stress Ali et al. (2011)

Pseudomonas putida FBKV2 Salinity stress Vurukonda et al. (2016)

Pseudomonas putida FBKV2 Drought SkZ et al. (2018)

Pseudomonas putida GAP-P45 Drought Sandhya et al. (2010)

Pseudomonas putida GAP-P45 Drought Sandhya et al. (2009)

Pseudomonas putida N21 Salinity Zahir et al. (2009)

Pseudomonas putida Rs-198 Salinity Yao et al. (2010)

Pseudomonas sp. AKM-P6 High temperature Ali et al. (2009)

Pseudomonas sp. NARs1 Cold stress Mishra et al. (2011)

Pseudomonas sp. RJ15 Drought Saikia et al. (2018)

Pseudomonas stutzeri A1501 Metal stress Han et al. (2015)

Raoultella planticola YL2 Drought Gou et al. (2015)

Rhizobium leguminosarum Low temperature Lee (2009)

Rhizobium tropici CIAT 899 Salinity Fukami et al. (2018)

Rhodopseudomonas palustris G5 Salinity Ge and Zhang (2019)

Rhodotorula sp. PS4 Salt-tolerant Mundra et al. (2011)

Serratia marcescens CDP-13 Salinity Verma et al. (2017)

Serratia nematodiphila PEJ1011 Low temperature Kang et al. (2015)

Serratia sp. XY21 Cold stress Wang et al. (2016)

Staphylococcus kloosii EY37 Salinity Karlidag et al. (2013)

Stenotrophomonas maltophilia Salinity Singh and Jha (2017)

Stenotrophomonas sp. CIK-517Y Heavy metal Akhtar et al. (2018)

Streptococcus pluranimalium S-29 Drought Raheem et al. (2018)

studied such as Virgibacillus, Staphylococcus, Acinetobacter, Sporosarcina, Sphin-
gobacterium, Planococcus, Paenibacillus, Planomicrobium, Rhodococcus, Pseu-
domonas, Arthrobacter, Psychrobacter, Pontibacillus, Bacillus, Desemzia, Jeotgal-
icoccus, Exiguobacterium, Janthinobacterium, Flavobacterium, Methylobacterium,
and Micrococcus (Yadav et al. 2016, 2020b, c).

These microbes, which resides in low-temperature area reported to fall
in the phyla’s like Actinobacteria, Ascomycota, Firmicutes, Thaumarchaeota,
Bacteroidetes, Cyanobacteria, Chloroflexi, Chlamydiae, Spirochaetes Mucoromy-
cota, Nitrospirae, Planctomycetes, Proteobacteria, Gemmatimonadetes, Basidiomy-
cota,Euryarchaeota, andVerrucomicrobia (Yadav 2015).Many novel microbes have
been isolated and characterized for beneficial applications in agriculture from cold
environments. Several reports are available onwhole-genome sequences of novel and
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potential cold adaptive microbes. Whereas high temperature also leads to low crop
productivity as water losses very quickly. To alleviate high-temperature microbes
such as Pseudomonas sp. (Ali et al. 2009), Enterobacter cloacae Kour et al. (2017),
Bacillus aryabhattai, B. siamensisYoo and Sang (2018) have been reported from the
soil.

19.3.4.2 Drought Stress

In the agricultural sector, drought is one of the major problems (Malyan et al. 2016).
In which crop productivity is greatly affected in the whole world of arid and semi-
arid regions. Microbes are playing an important role in controlling this stress as well
once they have been isolated and thoroughly studied about their functionalities, such
as their ability to withstand extremities and their genetic diversity, and methods are
created for their use in farming. Therefore, inoculating plants and microbes with
multifarious PGP attributes also would help to resolve drought in arid regions. The
incessant decline in rainfall year after year has resulted in a major drop in soil mois-
ture content. Also, temperate regions are currently implementing new approaches to
increase the efficiency of soil moisture content (Panwar et al. 2014). The photosyn-
thesis of plants and the absorption of nutrients rely on the availability of water in soil
on a large scale.

The plants basic requirements are seriously impaired by reduced moisture content
in the soil or the drought conditions as they increase the solute concentration within
the cell of the plant, and decrease the water potential, which in turn affected, which in
turn affects plan shooting and root elongation. In addition, water deficiency reduces
plant exposure to carbondioxide, resulting in the formationof reactive oxygen species
(ROS) like peroxide, superoxide, and radical hydroxyl in plant cells, which leads to
cell apoptosis and plant death (Sgherri et al. 2000). Plant growth-promoting rhizo-
sphere such as Glomus intraradices, G. mosseae Pseudomonas mendocina, and was
reported. To release catalytic enzyme and quench ROS from lettuce plants produced
under extreme drought conditions has been documented (Kohler et al. 2008).

The drought-tolerant microbes were collected from various sources and applied
as a biofertilizer in the place of chemical-based fertilizers which is eco-friendly
tools to encourage plant growth and alleviate drought stress. soil inhibiting microbes
belong to different genera such as Azotobacter, Aeromonas, Azospirillum, Achro-
mobacter, Enterobacter, Bacillus, Pseudomonas, Variovorax and Klebsiella these
microbes have been shown to enhance plant growth under drought stress condition
(Kumar et al. 2019; Rai et al. 2020). Pereira et al. (2019) suggested that microbial
communities ofArthrobacter,Pseudomonas,Microbacterium, andBacillus are asso-
ciated with sugarcane of rhizosphere was strongly affected by under drought stress
condition. Acinetobacter calcoaceticus EU- LRNA-72, Penicillium sp. EU-FTF-6
is phosphorus solubilizing microbes under drought stress conditions (Kour et al.
2020b). Pseudomonas libanensis EU-LWNA-33 plant growth-promoting bacteria
under drought adaptive condition and also the Streptomyces laurentii EU—LWT 3–
69 andPenicillium sp. strainEU—DSF—10 (Kour et al. 2020a),Pseudomonas putida
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NBRIRA and Bacillus amyloliquefaciens NBRISN13 with the ability to tolerate
drought stress (Kumar et al. 2016).

19.3.4.3 Water Flooding Stress

Water flooding stress is another abiotic stress which also an agricultural product
destroyer factor. Generally, This stress mainly exists in rice-producing field areas,
as every year one-fourth of the world’s rice land are inundated with volatile flash
floods that now a day’s arise a few times a year (Mackill et al. 2012). To survive
the plants need oxygen (O2), but extreme flooding decreases the amount of O2 in
the soil. The lower level of O2 can limit aerobic restoration. Water flooding also
induced the accumulation of ethylene and, depending upon the light condition of
submerged plant organs, raises the CO2 concentration. Flooding agricultural land
could suffer from the intensity of light and consequently decrease photosynthetic
activity (Bailey-Serres and Voesenek 2008). Plant species showed some adaptive
features to survive under low concentration of O2 such as the petiole change: cellular
modification, aerenchyma tissue formation, internode elongation ratio and leteral
and root adventitious root developments. There are availablewater floodingmicrobes
from the soil likePseudomonas andEnterobacter (Grichko andGlick 2001),Bacillus
cereus and Bacillus sp. (Bao et al. 2010), Citrobacter freundii J118 (Upadhyay et al.
2011), Bacillus megaterium BOFC15 (Zhou et al. 2016), Acinetobacter pittii JD-
14 (Daur et al. 2018), Aquabacterium, Clostridium, Flavobacterium, Ilumatobacter,
Bacillus, Solirubrobacter, Arenimonas and Mycobacterium (Furtak et al. 2020).

19.3.4.4 Salinity Stress

Salinity is the key cause of environmental stress that decreases agricultural, area
yield and quality of the crops. Salinity has affected and depleted 20% of the earth’s
agricultural land, that is, ~45 million ha. The soil salinity rate is estimated to be
30% of the global agricultural lands (Shrivastava and Kumar 2015). Salinity is worst
in the arid and semi-arid regions that cause osmotic stress, which also decreases
the growth and productivity of crops. Stalinization usually occurs in two different
ways i.e. natural causes and the second type is the result of human activity for
agricultural production. In soils and waters, there are main salinity zones are salt
lakes, ponds, marshes and flats. The presence of excess cations amounts such as
Na+, Mg2+ Ca2+ and K+ with anion such as Cl−, NO3

−, SO4
2−, HCO3

−, and CO3
2−

has been characterized as saline stress in agriculture soils (Yadav et al. 2019).
According to the standard of the US department of agriculture (USDA), soil that

has electrical conductivity (EC) of dsm−1 or higher can be classified as saline soil.
Many studies have suggested that stress of salt as the main cause of the creation of
drought-like condition due to water shortages, the creation of the payment of higher
ionic content in plants, thereby disrupting the usual physiological pathways and the
lack of the other nutrients of soil due to high concentration of salt (Vaishnav et al.
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2016). Munns (2002) recorded decrease plant growth when it is exposed to salinity
due to reduction in water content with simultaneous salt elevation. There are various
studies are available for plant growth promotion in the condition of salinity stress
such asAchromobacter piechaudiiARV8 from tomato (Mayak et al. 2004),B. subtilis
and Arthrobacter sp. (Upadhyay et al. 2012), Brachybacterium paraconglomeratum
SMR20 (Barnawal et al. 2016), Curtobacterium albidum SRV4 from paddy plants
(Vimal et al. 2019), Bacillus pumilus strain FAB10 from wheat (Ansari et al. 2019),
Aneurinibacillus aneurinilyticusACC02,Aenibacillus sp.ACC06 frombean (Pandey
and Gupta 2019), Curtobacterium sp. SAK1 (Khan et al. 2019).

19.3.4.5 Heavy Metals Stress

The industrial revolution and anthropogenic actions, has resulted in a drastic increase
of heavy metals and radionuclide’s in the soil. Few among these as chromium (Cr),
mercury (Hg) and cadmium (Cd) are reported to non-essential elements while,
and other important to the photosystem molybdenum (Mo), manganese (Mn) and
iron (Fe). Significant accumulation of especially non-essential elements not only
affects soil microflora (Wani and Khan 2010) but also translocates to various photo-
organelles, causing membrane destruction and simultaneous cell organelles disin-
tegration as well as a complete collapse of important physiological functions, such
as photosynthesis and protein synthesis (Morsy et al. 2012; Subrahmanyam et al.
2020).

The poor formation of plant growth and root production in metal contaminated
soil aremajor limiting factors for themetal phytoaccumulation. In addition to organic
modification, enhancement of the microbial behavior in the rhizosphere is important
to solve these problems. Under the condition of heavy metal contamination, plant
growth was hypothesized primarily via IAA production and ACC deaminase activity
also siderophore that can help plant accumulation Fe in the presence of the excessive
amount of othermetals. There are available several reports instance inwhich bacterial
species mitigated heavy metal stress. Different studies have focused especially on
plant growth-promoting rhizosphere as an efficient bioremediation, as well as plant
growth enhancers (Madhaiyan et al. 2007) such asMicrococcus sp. and Aspergillus
sp. are used for the elimination of chromium and nickel fromwastewater of industries
(Congeevaram et al. 2007), Burkholderia sp. J62 from paddy soil (Jiang et al. 2008),
Serratia sp. SY5 (Koo and Cho 2009).

In this study (Dary et al. 2010) suggested that plants treated with a microbial
consortium of Bradyrhizobium sp., Pseudomonas sp. and Ochrobactrum cytisi help
to increase the biomass, yield aswell as nitrogen content in plants. Similarly (Marques
et al. 2013) reported the lower accumulation of metal within sunflower tissues when
treated with the Ralstonia eutropha and Chryseobacterium hispalense when grown
in Cd- and Zn-infected soil (Marques et al. 2013), Bacillus, Pseudomonas, Strepto-
myces, andMethylobacterium also have the capability to enhance growth and produc-
tion of plant via reducing the heavy metals damaging effects (Sessitsch et al. 2013),
Pseudomonas sp. enhanced of growth of plant of wheat undermetal (cadmium) stress
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condition (Verma et al. 2015a), Pseudomonas libanensis TR1 and Pseudomonas
reactans Ph3R3 (Ma et al. 2016), Citrobacter freundii JPG1 (Wang et al. 2018a),
Pseudomonas taiwanensis (Satapute et al. 2019),Microbacterium testaceum B-HS2
(Elahi et al. 2019), Bacillus sp. S3 (Zeng et al. 2020).

19.3.5 Remediation of Environmental Pollutions

The environment is continuously threatened by the use of persistent organic pollu-
tants. Bioremediation is the method by which microbes interact with pollutant and
degrade it (Kour et al. 2021b; Mishra et al. 2020). Microbes are cosmopolitan in
their distribution and play a very important role in xenobiotic bioremediation (Kumar
et al. 2021b; Panigrahi et al. 2019). The compounds which do not occur naturally
or synthesized in the laboratory are commonly known as xenobiotics (Bhatt et al.
2019). The pesticides which are continuously used in agriculture and non-agriculture
areas for protecting crops itself causing environmental pollution and also showing
ill-effects to both fauna and flora (Łozowicka 2009). Microbes secret some low
molecular-weight organic metabolic acid that can dissolve heavy metal which is
further processed by different methods such as biosorption, enzymatic degradation,
and precipitation, thus converted into more stable, non-toxic or inert form (Kumar
and Bharadvaja 2020). The microbial enzymes are used to degrade and metabolized
the xenobiotic compounds. The enzymes involved in degradation or mineralizing
metabolic pathways are of dehydrogenases, hydrolases, and oxygenases categories
(Phale et al. 2019). The pathway used by the microbes for the biodegradation of
xenobiotic compounds is mainly β-ketoadipate (Stainer and Ornston 1973).

The bioremediation of aromatic pollutants like phthalate isomers, naphthalene,
phenanthrene, benzopyrene is done by microbes mainly Acidovorax, Arthrobacter,
Brevibacterium, Polaromonas, Mycobacterium, Rhodococcus, and Sphingomonas
(Phale et al. 2019; Seo et al. 2009). Teeraphatpornchai et al. (2003) isolated micro-
bial strain named Paenibacillus amylolyticus from soil and found their enzymatic
(esterase and protease) action in degrading plastic. Vamsee-Krishna et al. (2006)
reported the biodegradation of phthalate, used in the plastic industry with the help of
Acinetobacter lwoffii, and Pseudomonas aeruginosa. Auta et al. (2017) reported
Bacillus cereus and B. gottheilii strain of bacteria and found their capability to
degrade microplastic. Alicycliphilus is reported as favorable strain to degrade xeno-
biotics (Solís-González and Loza-Tavera 2019). Pacwa-Płociniczak et al. (2019)
studied the degradation of hydrocarbons from the petroleum-contaminated soil by
gram-negative bacteria called Rhodococcus erythropolis, Pseudomonas aeruginosa
(Varjani et al. 2020), and Bacillus vallismortis (Basumatary et al. 2020). Heidar-
rezaei et al. (2020) reported the biodegradation of halogenated compound mainly
Trichloroacetic acid by Lysinibacillus boronitolerans. Sukirtha (2020) reported the
bioremediation of glyphosate herbicide by xenobiotic degrading bacteria Nocardia
mediterranie. The dye degrading bacteria named Pseudomonas flourescens (Pandey



19 Functional Annotation and Biotechnological Applications … 619

et al. 2020), and Streptomyces sviceus (Chakravarthi et al. 2020) found its application
in textile effluent degradation.

19.4 Biotechnological Application of Soil Microbiomes

On the basis of the soil microbes function abilities, they can be utilized in the field
of biotechnology. Agriculture and the environment are the two major fields in which
soil microbiomes can be utilized for various purposes.

19.4.1 Agriculture Applications

Agriculture is one of the widely practiced activities of mankind. It has been practiced
in the different geographical location that has different soil types and conditions.
The production of food way more long practice which was done in the past and
also going to continue till life exist. Crop yield is one of the major criteria to feed
the growing population of the earth. The drastic increase of the population is one
of the biggest reasons to worry because, for the last 50 years, agriculture has been
practiced by following the conventional agriculture methods that include the use
of chemical-based products i.e. fertilizer and pesticides (Clark 2007). The use of
such chemicals without a doubt increases the yield of the crop but on the other side,
they have destroyed the structure by depleting the fertility of the soil (Mishra et al.
2016). The current soil has the least amount of nutrients present in soluble form
and maximum is present in the insoluble form. These insoluble or complex forms
of nutrients or minerals are not is utilized by the plant crops for their fulfillment.
Moreover, overexploitation of chemicals in the fields also polluted the soil as of
metals aggregation (Gadd 2010).

Soil microbes are one the best alternative and eco-friendly technique to such types
of chemicals, which can also solve environmental-related problems. On the basis of
various studies, soil microbes have been reported as the better fertilizer that provided
various kinds of essential nutrients such as nitrogen, phosphorus, potassium, iron
and zinc. Soil microbes are able to provide such nutrients as they help in the fixation,
solubilizing and scavenging of these minerals from soil and the air. These microbes
can undergo producers like lowering of pH i.e. acidification, release of extracellular-
polysaccharides, organic acids and enzymes that helps in the breakdown of such
complex and insolubleminerals (Schloter et al. 2018).Apart from the nutrients, plants
also require various plant growth regulators like auxin, cytokinin and gibberellins
(Wong et al. 2015). Although, these hormones are produced endogenously by the
plants in stress conditions they are not able to produce them, so, for better yield soil
microbes can be for secreting such hormones (Frankenberger Jr and Arshad 2020)
(Fig. 19.2).



620 A. N. Yadav et al.

Fig. 19.2 Mechanism of plant growth promoting soil microbiomes in the enhancement of plant
growth and development

Various types ofmicrobes have been reported for playing solubilizing, scavenging
and fixing of different minerals like Azospirillum lipoferum, Bradyrhizobium japon-
icum,Paenibacillus durus,Klebsiella variicola (Navarro-Noya et al. 2012),Mesorhi-
zobium atlanticum (Helene et al. 2019) have reported for fixing nitrogen. Microbes
like Bacillus megaterium, B. subtilis, B. cereus, B. pumilus, Pseudomonas tolaasii,
Staphylococcus sciur (Kumar et al. 2011), Enterobacter asburiae, Acinetobacter
sp., Bacillus cereus (Teng et al. 2019), Streptomyces laurentii, Penicillium sp. (Kour
et al. 2020a) have been reported for solubilizing phosphorus.Whereas, Paenibacillus
glucanolyticus (Sangeeth et al. 2012), Rhizobium pusense (Meena et al. 2015), Pseu-
domonas azotoformans (Saha et al. 2016),Burkholderia cepacia (Bagyalakshmi et al.
2017), Pantoea agglomerans, Pseudomonas orientalis, Rahnella aquatilis (Khang-
hahi et al. 2018) have been reported for solubilizing potassium. Curtobacterium,
Plantibacter, Pseudomonas, Stenotrophomonas (Costerousse et al. 2018), Pseu-
domonas sp., Bacillus sp. (Zaheer et al. 2019), and Bacillus megaterium (Bhatt and
Maheshwari 2020) are the few reported zinc solubilizing microbes that can be used
for the zinc solubilization and mobilization and Streptomyces laurentii and Penicil-
lium sp. (Kour et al. 2020a) reported strains that produce siderophores that are used
for the biofortification of iron. Enterobacter ludwigii (Lee et al. 2019), Penicillium
sp. (Kour et al. 2020a), Citrococcus zhacaiensis, and Bacillus amyloliquefaciens
(Selvakumar et al. 2018), Burkholderia cepacia (Bagyalakshmi et al. 2017) have
been reported for producing phytohormones.
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19.4.2 Environment

Environmental stresses including cold, drought, flooding, heavy metals, heat and
salinity negatively affect agricultural productivity (Gontia-Mishra et al. 2014). Stress
conditions lead to various biochemicals, molecular and physiological changes in
plants such as decreased photosynthesis, reactive oxygen species (ROS) produc-
tion, denaturation of proteins, and lipid peroxidation rate which adversely affect the
yield and quality of the crops. Beneficial soil microbiomes alleviate stress condi-
tions by different mechanisms such as the production of osmolytes, ROS scavenging
enzymes and decreased lipid peroxidation (Yadav 2020). ACC deaminase activity
is another important mechanism important for stress alleviation. ACC deaminase
enzyme reduces the increased levels of ethylene by cleaving ACC into ammonia and
α-ketobutyrate (Kour et al. 2019a). Additionally, themicrobes also increase the avail-
ability of the macro and micronutrients, produce different plant growth regulators,
HCN and ammonia.

Many studies have reportedmitigation of cold stress in wheat, tomato, pepper, and
green gram by Bacillus amyloliquefaciens (Verma et al. 2015b), Pseudomonas fred-
eriksbergensis andPseudomonas vancouverensis (Subramanian et al. 2016), Serratia
nematodiphila (Kang et al. 2015) and Pseudomonas migulae (Suyal et al. 2014)
respectively. Mitigation of drought and heat stress has been reported in maize by
Alcaligenes faecalis, Proteus penneri and Pseudomonas aeruginosa (Naseem and
Bano 2014) and great millet by Streptomyces laurentii (Kour et al. 2020b), salinity
and heavy metal stress in maize by Pseudomonas fluorescens (Zerrouk et al. 2016).

Another important role of microbes that have been focused on is in the area
of decreasing pollution and greenhouse gas emissions. Fungi especially are known
to play a significant role in addressing major global challenges. The utilization of
either the fungal processes or the products can lead to enhanced sustainability. The
wide range of applications includes upgrading bio-waste for value-added products
to the use of renewable plant biomass as a substitute for oil-based products such as
biochemicals, plastics, fertilizer, and fuel (Lange 2014).

Another major challenge is the disposal of sludge generated from the sewage
treatment plant in an environmentally safe way. The wastewaters consist of a range
of dyes, heavy metals, and phenolics which are harmful to living organisms. Fila-
mentous fungi are known to be potent organisms for sludge treatment with their
major functions including organic solids reduction, pathogens removal, detoxifica-
tion, dewaterability, and bioflocculation (Lu et al. 2016). The efficiency of archaeal,
bacterial and fungal communities in municipal solid waste has also been investigated
in different studies (Voběrková et al. 2017). Thus, with the combination of benefi-
cial microbiomes with other advanced genetic engineering techniques, a potentially
transformative example in plant health, nutrition and sustainability could be achieved.
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19.5 Conclusion and Future Propects

Looking up to the abilities and applications of soil microbes in the agriculture and
environments, it can be concluded that these tiny miracles can be utilized in the
environment and agriculture field. The microbes are ubiquitous in nature and have
been reported all the habitats studies. Themicrobes are associated with plant systems
in three-ways such as epiphytic, endophytic and rhizospheric. The microbes from
soil and air are useful for different processes in plants and ecosystems. The soil
microbiomes have the capability to nutrient acquisitions in plants. The microbes
the multifunctional plant growth-promoting attributes could be utilized as biopesti-
cides and biofertilizers for sustainable agriculture and environments. In future also,
these microbes can also replace chemical-based products, which will be support the
sustainability and make earth more clean and green i.e. pollution free environment.
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