
Chapter 6
Goodness-of-Fit Test for Generalized
Linear Models

Goodness-of-fit (GOF) tests in regression analysis are mainly based on the observed
residuals. In a series of articles, starting with Stute (1997), Stute established a general
approach for GOF tests which is based on a marked empirical process (MEP), a stan-
dardized cumulative sum process obtained from the observed residuals. Resting upon
the asymptotic limiting process of the MEP under the null hypothesis, Kolmogorov-
Smirnov or Cramér-vonMises type tests can be stated as GOF tests. Their asymptotic
distributions are derived through an application of the continuous mapping theorem.
Since, in most cases, the asymptotic distributions depend on the model and, there-
fore, are not distribution free, further concepts are necessary to obtain the critical
values for these tests.

In the literature, two approaches are discussed to handle the complicated struc-
ture of the limiting process of the MEP under the null hypothesis. In the first
approach, the MEP is transformed in such a way that the resulting limiting pro-
cess is a time-transformed Brownian motion with an assessable time transformation,
compare Nikabadze and Stute (1997) and (Stute and Zhu, 2002). Originally, this
technique was introduced by Khmaladze (1982) in the context of GOF tests based on
estimated empirical processes. The second concept is based on the bootstrap, where
the resampling scheme mimics the model under the null hypothesis. Resting upon
the bootstrap data, the (bootstrap) MEP is derived. If one can show that this MEP
tends to the same asymptotic process as the MEP of the original data does under the
null hypothesis, the bootstrap MEP can be used to determine the critical value for
the GOF statistic. Among others, this approach was used in Stute et al (1998) for
parametric regression, in Dikta et al (2006) for binary regression, and in van Heel
et al (2019) for multivariate binary regression models.

According to the general idea of bootstrap-based tests outlined in the introduction
of Chap.4, the bootstrap data has to be generated under the null hypothesis or close
to it. If the asymptotic distribution of the bootstrapped statistic is the same as the
corresponding one of the original data under the null hypothesis, critical values
obtained from the bootstrap statistic can be used since they are derived under the null
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hypothesis (the bootstrap data are generated under the null hypothesis) regardless
whether the original data are following the null hypothesis or the alternative.

Denote, as usual, byE(Y | X = x) the regression functionofY at x (the conditional
expectation of Y given X = x), and let

M = {
m(β�·, θ) : (β, θ) ∈ R

p × Θ ⊂ R
p+q

}

define a parametric class based on a known function m. The general test problem for
the GOF test is now

E(Y | X = ·) ∈ M versus E(Y | X = ·) /∈ M .

Within the context of GLM with link function g, whether parametric or semi-
parametric, there exists a β0 ∈ R

p such that

E(Y | X = x) = g−1(β�
0 x), for all x ∈ R

p.

Therefore, the MEP

R̄1
n : [−∞,∞] � u −→ R̄1

n(u) = n−1/2
n∑

i=1

(
Yi − g−1(β�

n Xi )
)
I{β�

n Xi≤u} (6.1)

can be used for the original data and

R1∗
n : [−∞,∞] � u −→ R1∗

n (u) = n−1/2
n∑

i=1

(
Y ∗
i − g−1(β∗

n
�Xi )

)
I{β�

n Xi≤u}

(6.2)
as bootstrap-based MEP, where the exact definition is given in Definitions 6.17 and
6.23, respectively.

In a parametric regression setup, whereMEP-based statistics will be used for GOF
tests, the following details will guarantee the validity of the bootstrap-based test:

1. Estimate the model parameter and build the MEP R̄1
n .

2. Determine the limit process of the MEP under the null hypothesis.
3. Generate bootstrap data according to the model, where the estimated parameters

are used.
4. Repeat step (1) based on the bootstrap data and use R1∗

n as bootstrap-based MEP.
5. Verify that the bootstrap-based MEP tends to the limit process which is derived

under (2).

The parameter estimation under (1) depends on the type of regressionmodel. If we
consider a semi-parametric GLM setup, LSE will be used to estimate the parameter
since no further information about the distribution type of the error term is available.
In this case, the wild bootstrap will be used. Otherwise, in the parametric GLM case,
MLE will be applied and the bootstrap will be implemented parametrically.
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Note that the indicator function in R1∗
n is based on βn and not on β∗

n , as one
would expect. This is mainly for performance reasons, see Remark 6.24. As shown
in Sects. 6.4 and 6.5, both processes converge in distribution to the same centered
Gaussian process R̄1∞ under the null hypothesis in the parametric and in the semi-
parametric setup, if the appropriate assumptions can be guaranteed. Furthermore,
the paths of R̄1∞ can be assumed to be continuous functions. Based on this result,
Kolmogorov-Smirnov (Dn) and Cramér-von Mises (W 2

n ) statistic are defined anal-
ogously to (4.7) and (4.8), respectively, by

Dn = sup
−∞≤t≤∞

∣∣R̄1
n(t)

∣∣, W 2
n = n−1

n∑

i=1

(
R̄1
n(β

�
n Xi )

)2
.

Both statistics can be used to reveal discrepancies between the assumed model and
the observations. By replacing R̄1

n with R1∗
n , we get

D∗
n = sup

−∞≤t≤∞

∣∣R1∗
n (t)

∣∣, W ∗
n
2 = n−1

n∑

i=1

(
R1∗
n (β�

n Xi )
)2

,

the corresponding bootstrap statistics. Since both processes R̄1
n and R1∗

n converge
against the same Gaussian process under the null hypothesis, it follows, applying the
continuous mapping theorem, that Dn and D∗

n as well as W
2
n and W ∗

n
2 also converge

against the same limit distribution. But since the bootstrap data are always generated
under the null hypothesis, we can now approximate the p-values of Dn and W 2

n as
usual by Monte Carlo application.

Our R-package bootGOF contains methods for performing the bootstrap tests we
describe in this chapter. It is available on https://github.com/MarselScheer/bootGOF
and CRAN. A brief introduction to the package can be found in the appendix. How-
ever, we deliberately do not use the bootGOF- package here because we want to
illustrate how such complex resampling schemes can be implemented from scratch
using simple (understandable) R-commands.

6.1 MEP in the Parametric Modeling Context

Usually modeling data is an iterative process where by fitting a model and investigat-
ing diagnostic aspects, like plots and test for assumptions, give ideas about potential
improvements or serious misspecification. The GOF test based on the MEP is an
additional tool that helps to detect if a fitted model contradicts the data one tries to
model.

In this section, we apply the GOF test, based on the marked empirical process, to
a real dataset in order to choose between a Poisson-, normal-, or negative-binomial

https://github.com/MarselScheer/bootGOF
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model. Afterward, the GOF test is applied to artificial datasets in order to get a feeling
for the test in situation where the truth is known.

Assume a parametric GLM with link function g. Under the notation stated in
Definition 5.45, the following resampling scheme will be used for the GOF test.

Resampling Scheme 6.1

(A) Calculate the MLE β̂n and φ̂n for (Y1, X1), . . . , (Yn, Xn).
(B) Obtain the MEP (6.1) and calculate Dn and/or W 2

n accordingly.
(C) Set X∗

�;i = Xi for all i = 1, . . . , n and all � = 1, . . . ,m.

(D) Generate Y ∗
�;i according to the density f (·, β̂n, φ̂n, Xi ) for all i = 1, . . . , n and

all � = 1, . . . ,m.
(E) Calculate the MLE β̂∗

�;n and φ̂∗
�;n based on (Y ∗

�;1, X
∗
�;1), . . . , (Y

∗
�;n, X

∗
�;n), the

MEP R∗1
�;n according to (6.2), D∗

�;n and/or W
∗2
�;n, for � = 1, . . . ,m.

(F) Determine the p−value of Dn within the simulated D∗
�;n, 1 ≤ � ≤ m and/or W 2

n

the p-value of W 2
n within the simulated W ∗2

�;n, 1 ≤ � ≤ m, respectively.

6.1.1 Implementation

First, we need the test statistic that will be resampled. The Cramér-von Mises test
can be implemented as follows:

Rn1 <- function(mod, est_b_time_x) {

# mod - a model fit,
# est_b_time_x - scalar product of the covariates and
# estimator of beta

o_idx <- order(est_b_time_x)
ordered_res <- residuals(mod, type = "response")[o_idx]
dplyr::tibble(est_b_time_x = est_b_time_x[o_idx],

res = ordered_res,
Rn1_x = cumsum(ordered_res) / sqrt(length(o_idx)),
ordering = o_idx)

}

CvM <- function(mod, est_b_time_x) {

# mod - a model fit,
# est_b_time_x - scalar product of the covariates and
# estimator of beta

Wn2 <- mean(Rn1(mod, est_b_time_x)$Rn1_xˆ2)
Wn2

}
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Note that this function itself uses the generic functions predict and residuals with
a specific type-parameter. A fit created with “stats::glm” can be safely passed to
the function because the corresponding functions “predict.glm” and “residuals.glm”
respect the defined type-parameter. However, other packages can be used to fit a
generalize linear model. Such packages usually provide their own set of predict- and
residuals-function. In that case, the type-parameter of the corresponding package-
specific function might have a different meaning or ignore the parameter completely,
which then could lead to the wrong test statistic or an error message. Although
“stats::glm” can fit various distributions, it does not offer the possibility to fit a
negative-binomial model. One option, which works properly with our function for
the test statistic, is “MASS::glm.nb”.

Next, we implement the Resampling Scheme6.1. Fortunately, R provides a lot of
infrastructure that allows an easy implementation.

gof_model_boot <- function(model, data, B = 1000) {

# mod - a model fit,
# + residuals(mod, type = "response") must return
# Y - m_est(X), where is the estimator of the
# regression function m
# + predict(model, type = "link") must return
# the scalar product of the covariates and
# estimator of beta
# + simulate(model) must generate generate
# target/dependent variables according to
# the fitted model
# data - observed data
# B - number of bootstrapped MEPs

# progress bar that appears if calculations will take more
# than 1 second
pb <- dplyr::progress_estimated(B, min_time = 1)

est_b_time_x <- predict(model, type = "link")
# Calculate the statistic for the original MEP
Wn2 <- CvM(model, est_b_time_x = est_b_time_x)

# copy to build up the bootstrap data set
data_boot <- data

# name of the target/dependent variable
y_name <- all.vars(formula(model), max.names = 1)

# bootstrap the statistic
Wn2_boot <- sapply(seq_len(B), function(i) {

pb$tick()$print() # print progress

# due to Step C only the target/dependent variable
# needs to be updated.
data_boot[[y_name]] <- simulate(model)[,1]
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# refit the model using the bootstrapped data set
m_boot <- update(model, formula. = formula(model),

data = data_boot)

# Calculate the statistic for the bootstrapped MEP
CvM(m_boot, est_b_time_x)

})
ret <- list(Wn2_boot = Wn2_boot,

Wn2 = Wn2,
pvalue_cvm = mean(Wn2_boot > Wn2))

ret
}

The following is only a convenient function for displaying the estimated marked
empirical process and model residuals while also showing bootstrapped versions.

plot_Rn1_and_residuals <- function(model, data, B) {
# mod - a model fit,
# + residuals(mod, type = "response") must return
# Y - m_est(X), where is the estimator of the
# regression function m
# + predict(model, type = "link") must return
# the scalar product of the covariates and
# estimator of beta
# + simulate(model) must generate generate
# target/dependent variables according to
# the fitted model
# data - observed data
# B - number of bootstrapped MEPs

y_name <- all.vars(formula(model), max.names = 1)
est_b_time_x <- predict(model, type = "link")
# MEP of the original model
org_model <- Rn1(model, est_b_time_x) %>% dplyr::as_tibble()

# bootstrapped MEP
boot_model <- purrr::map_dfr(seq_len(B), function(boot_idx){

# due to Step C only the target/dependent variable
# needs to be updated.
data[[y_name]] <- simulate(model, data = data)[,1]

# refit the model using the bootstrapped data set
# and calculate the MEP
update(model, formula. = formula(model), data = data) %>%
Rn1(est_b_time_x = est_b_time_x) %>%
dplyr::as_tibble() %>%
dplyr::mutate(original = FALSE, idx = boot_idx)

})

# statistics for the bootstrapped models
Wn2_boot <- boot_model %>%
dplyr::group_by(idx) %>%
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dplyr::summarise(CvM = mean(Rn1_xˆ2))

pvalue_cvm <- mean(Wn2_boot$CvM > mean(org_model$Rn1_xˆ2))

plot_Rn1 <- boot_model %>%
ggplot(aes(x = est_b_time_x, y = Rn1_x)) +
geom_line(aes(group = idx), alpha = 0.1) +
geom_line(data = org_model, color = "red") +
ggtitle(paste0("p-value (CvM) = ", pvalue_cvm))

plot_res <- boot_model %>%
ggplot(aes(x = est_b_time_x, y = res)) +
geom_point(alpha = 0.1) +
geom_point(data = org_model, color = "red")

cowplot::plot_grid(plot_Rn1, plot_res, nrow = 2)
}

Similar as before, this function uses generic functions, namely, “simulate” and
“update”. A fit created with “stats::glm” or “MASS::glm.nb” can be safely passed
to this function. If another package is used, one should check that “simulate” really
simulates the dependent variable and “update” refits the model using the generated
dataset.

6.1.2 Bike Sharing Data

In Sect. 5.3, we prepared and analyzed the ridership data, which resulted in four
model candidates. The corresponding diagnostic plots were already presented and
briefly discussed in that section. Here, we apply the bootstrap-based goodness-of-fit
test to obtain another indicator for inappropriate models.

As a reminder, we briefly repeat the steps from Sect. 5.3, i.e., import and prepro-
cess/wrangle the dataset and subset it to the dates before hurricane “Sandy”:

ridership <- readr::read_csv("day.csv") %>%
data_preprocess()

## Parsed with column specification:
## cols(
## instant = col_double(),
## dteday = col_date(format = ""),
## season = col_double(),
## yr = col_double(),
## mnth = col_double(),
## holiday = col_double(),
## weekday = col_double(),
## workingday = col_double(),
## weathersit = col_double(),
## temp = col_double(),
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## atemp = col_double(),
## hum = col_double(),
## windspeed = col_double(),
## casual = col_double(),
## registered = col_double(),
## cnt = col_double()
## )

ridership <-
ridership %>%
dplyr::filter(dteday < lubridate::ymd("2012-10-29"))

In order to get an idea how the upcoming plots of the residuals and the estimated
marked empirical processwould look like if themodel is correct,we take the ridership
data and generate the target according to a fitted model and then apply the GOF test,
see Fig. 6.1.

−400

0

400

6.5 7.0 7.5 8.0 8.5 9.0
est_b_time_x

R
n1

_x

p−value (CvM) = 0.25

−2000

0

2000

4000

6.5 7.0 7.5 8.0 8.5 9.0
est_b_time_x

re
s

Fig. 6.1 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black if the ridership data would follow a negative-binomial model
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frml <- y ˜ temp + I(tempˆ2) + hum_imp + I(hum_impˆ2) +
windspeed + yr*season + workingday +
weathersit + holiday + christmas

fit_nb <- MASS::glm.nb(frml, data = ridership)
ridership_generated <- ridership
# generate riderships that follow a negative-binomial
# distribution according to the fitted model
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
ridership_generated$y <- simulate(fit_nb, data = data)[,1]
fit_nb_generated <- MASS::glm.nb(frml, data = ridership_generated)
plot_Rn1_and_residuals(fit_nb_generated,

data = ridership_generated, B = 100)

Obviously, the estimatedmarked empirical process in Fig. 6.1 does not showmore
extreme behavior than the 100 bootstrapped versions and the residuals show a similar
pattern as the residuals of the 100 bootstrapped model fits.

Fig. 6.2 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for the Poisson model
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Now,we apply the goodness-of-test to the fourmodel candidates from the previous
section. We start with the Poisson model, see Sect. 5.3 for the model output.

fit_poi <- glm(frml, data = ridership, family = poisson())
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
plot_Rn1_and_residuals(fit_poi, data = ridership, B = 100)

Figure6.2 reveals that the estimated marked empirical process (as well as the
residuals) in the observed data behave very differently than its bootstrapped version.
This results in rejecting the corresponding null hypothesis of the GOF test for our
fitted Poisson model. Fitting a quasi-Poisson model is possible but the parametric
bootstrap is not possible because the distribution is not fully defined. Therefore, for
the quasi-Poisson model one would have to use other diagnostic checks.

fit_qpoi <- glm(frml, data = ridership, family = quasipoisson())
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Fig. 6.3 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for the Gaussian model
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Trying the normal distributions without log-transformation also reveals that the
estimated marked empirical process behaves very differently as its bootstrapped
version, see Fig. 6.3.

fit_norm <- glm(frml, data = ridership, family = gaussian())
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
plot_Rn1_and_residuals(fit_norm, data = ridership, B = 100)

As in the last section, the normal distribution with log-transformations behaves
surprisingly well, though the residuals seem to behave differently compared to the
bootstrapped residuals, see Fig. 6.4.

fit_lognorm <-
ridership %>%
mutate(y = log(y)) %>%
glm(frml, data = ., family = gaussian())
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
plot_Rn1_and_residuals(fit_lognorm, data = ridership, B = 100)

Fig. 6.4 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for the Gaussian model with log-transformed target
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Finally, using the negative-binomial distribution shows not toomuch deviations of
the estimated marked empirical process from its bootstrapped versions, see Fig. 6.5.
However, the residuals at the right end of the plot seem to indicate that the boot-
strapped residuals have larger variance compared to the variance of the residuals
based on the original data.

fit_nb <- MASS::glm.nb(frml, data = ridership)
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
plot_Rn1_and_residuals(fit_nb, data = ridership, B = 100)

Anyway, at this point, one would probably decide to go on with the negative-
binomial model maybe also with the log-transformed Gaussian model (if the diag-
nostic checks for the quasi-Poisson model also indicate that it does not fit the data
well) and start investigating the low residuals that seem to stand apart from the
bootstrapped residuals as well as try to find the root cause for the smaller variance.

Fig. 6.5 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for the negative-binomial model
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6.1.3 Artificial Data

By generating the datasets we are able to judge if the result of the GOF test is correct.
This provides at least some ideas about the limits of the GOF test. Of course, the
simulations in this section are far from being exhaustive and, for instance, changing a
β of the true model or the distribution of the covariates may lead to different results.
Furthermore, a practitioner probably wants to investigate the GOF test himself in
a specific situation when he has created reasonable model candidates. Consider the
bike sharing example from the last section. It probably makes more sense in that
particular case to take the negative-binomial model that passed the GOF test and
artificially introduce additional covariates, for instance, a squared term, simulate the
outcome variable and then check whether and when the GOF test is able to detect
that a model without that new covariate is misspecified or just to get an idea of what
we could expect if the model would be correct like Fig. 6.1.

We use a simple linear (Gaussian) model

Y = β1X
2
1 + β2X2 + β3X3 + ε,

where X1 and X2 are uniformly distributed, X3 is Bernoulli distributed, see Fig. 6.6.

genData <- function(N, coef_x1_square, coef_x2, coef_x3) {
# N - sample size
# data is generated according to
# normal distribution with variance one
# and mean
# 10 + coef_x1_square * X1ˆ2 + coef_x2 * X2 + coef_x3 * X3

d <- data.frame(
X1 = runif(N, 0, 3),
X2 = runif(N, 1, 2),
X3 = rbinom(N, size = 1, prob = 0.3),
noise1 = runif(N),
noise2 = runif(N)

)
lin_comb <- 10 + coef_x1_square * d$X1ˆ2 +
coef_x2 * d$X2 +
coef_x3 * d$X3

d$X3 <- as.factor(d$X3)
d$Y <- rnorm(N, mean = lin_comb, sd = 1)
return(d)

}
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gaus_data <- genData(200, coef_x1_square = 1, coef_x2 = 2,

coef_x3 = 3)

GGally::ggpairs(gaus_data[, c("X1", "X2", "X3", "Y")])

One way to approach this dataset is to start with a backward selection.
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Fig. 6.6 Artificial dataset following the model Y = β1X2
1 + β2X2 + β3X3 + ε

fit <- glm(formula = Y ˜ X1 + X2 + X3 + noise1 + noise2,
data = gaus_data, family = "gaussian")

(fit)

##

## Call: glm(formula = Y ˜ X1 + X2 + X3 + noise1 + noise2,

## family = "gaussian",

## data = gaus_data)

##

## Coefficients:

## (Intercept) X1 X2 X31

## 8.3225 3.0601 1.9339 3.2109

## noise1 noise2
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Fig. 6.7 Diagnostic plots for a linear model that only incorporate first-degree terms for X1, X2,
and X3

## 0.1959 -0.3021

##

## Degrees of Freedom: 199 Total (i.e. Null); 194 Residual

## Null Deviance: 1699

## Residual Deviance: 253.8 AIC: 629.3

This rules out the noise variables and the usual diagnostic plots already look quite
promising, see Fig. 6.7.

fit <- glm(formula = Y ˜ X1 + X2 + X3,
data = gaus_data, family = "gaussian")

par(mfrow = c(2,2))
plot(fit)

However, the GOF test rejects the model, see Fig. 6.8. Though that figure does not
indicate how to improve themodel the residual plot in Fig. 6.7 indicates non-linearity.
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Fig. 6.8 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for a linear model that only incorporates first-degree terms for X1, X2,
and X3

plot_Rn1_and_residuals(fit, gaus_data, B = 100)

Therefore, we try second-order terms

fit <- glm(formula = Y ˜ X1 + X2 + X3 + I(X1ˆ2) + I(X2ˆ2) +
X1:X2 + X1:X3 + X2:X3,

data = gaus_data, family = "gaussian")
step(fit)

## Start: AIC=576.44

## Y ˜ X1 + X2 + X3 + I(X1ˆ2) + I(X2ˆ2) + X1:X2 + X1:X3 + X2:X3

##
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## Df Deviance AIC

## - X1:X2 1 189.18 574.45

## - X2:X3 1 189.28 574.56

## - I(X2ˆ2) 1 189.36 574.65

## - X1:X3 1 190.19 575.51

## <none> 189.17 576.44

## - I(X1ˆ2) 1 254.21 633.54

##

## Step: AIC=574.45

## Y ˜ X1 + X2 + X3 + I(X1ˆ2) + I(X2ˆ2) + X1:X3 + X2:X3

##

## Df Deviance AIC

## - X2:X3 1 189.28 572.56

## - I(X2ˆ2) 1 189.38 572.66

## - X1:X3 1 190.19 573.52

## <none> 189.18 574.45

## - I(X1ˆ2) 1 254.30 631.61

##

## Step: AIC=572.56

## Y ˜ X1 + X2 + X3 + I(X1ˆ2) + I(X2ˆ2) + X1:X3

##

## Df Deviance AIC

## - I(X2ˆ2) 1 189.50 570.79

## - X1:X3 1 190.31 571.64

## - X2 1 190.79 572.15

## <none> 189.28 572.56

## - I(X1ˆ2) 1 254.72 629.95

##

## Step: AIC=570.79

## Y ˜ X1 + X2 + X3 + I(X1ˆ2) + X1:X3

##

## Df Deviance AIC

## - X1:X3 1 190.50 569.84

## <none> 189.50 570.79

## - I(X1ˆ2) 1 255.20 628.32

## - X2 1 268.75 638.67

##

## Step: AIC=569.84

## Y ˜ X1 + X2 + X3 + I(X1ˆ2)

##

## Df Deviance AIC

## - X1 1 190.82 568.17

## <none> 190.50 569.84

## - I(X1ˆ2) 1 255.89 626.86
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## - X2 1 271.00 638.34

## - X3 1 582.17 791.27

##

## Step: AIC=568.17

## Y ˜ X2 + X3 + I(X1ˆ2)

##

## Df Deviance AIC

## <none> 190.82 568.17

## - X2 1 273.42 638.11

## - X3 1 584.96 790.22

## - I(X1ˆ2) 1 1471.54 974.72

##

## Call: glm(formula = Y ˜ X2 + X3 + I(X1ˆ2), family =

## "gaussian", data = gaus_data)

##

## Coefficients:

## (Intercept) X2 X31 I(X1ˆ2)

## 9.6133 2.2093 3.0953 0.9832

##

## Degrees of Freedom: 199 Total (i.e. Null); 196 Residual

## Null Deviance: 1699

## Residual Deviance: 190.8 AIC: 568.2

The diagnostic plots for the resulting model show that the non-linearity was
reduced, see Fig. 6.9 and also the GOF test does not reject the new model, see
Fig. 6.10.

fit <- glm(formula = Y ˜ I(X1ˆ2) + X2 + X3,
data = gaus_data, family = "gaussian")

par(mfrow = c(2,2))
plot(fit)

plot_Rn1_and_residuals(fit, gaus_data, B = 100)

In this particular situation, the GOF test clearly rejected our first model, while the
diagnostic plots only slightly indicated that the model is not correct. One should be
aware of the fact that thismight be also the otherway around. In order to illustrate this,
we generate a dataset, where the Bernoulli-distributed variable has a larger impact.
The diagnostic plots make it obvious that the model is misspecified, see Fig. 6.11, but
the GOF test is not able to detect that because this drastically increases the variance
of the bootstrapped MEP, see Fig. 6.12.
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Fig. 6.9 Diagnostic plots for a linear model that incorporate all terms of the true model

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gaus_data2 <- genData(200, coef_x1_square = 1, coef_x2 = 2,

coef_x3 = 6)
fit <- glm(formula = Y ˜ I(X1ˆ2) + X2, data = gaus_data2,

family = "gaussian")

plot_Rn1_and_residuals(fit, gaus_data2, B = 100)

In this particular situation and this particular example, the GOF test rejected the
model without X2

1. In order to get a feeling for how reproducible this outcome would
be, Fig. 6.13 shows the results of a small simulation study. Furthermore, in that
simulation study, we add a model that misses term X3 to see the performance of the
GOF test with respect to this alternative.
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Fig. 6.10 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for a linear model that incorporate all terms of the true model

gof_boot <- function(data, formula_str) {
# fits a guassian model, performs
# parametric GOF test and returns
# the corresponding p-values

# data - original data set
# formula_str - a formula as a string

frml <- as.formula(formula_str)
m <- glm(frml, data = data, family = gaussian())

gof <- gof_model_boot(m, data, B = 100)
gof$pvalue_cvm
}
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Fig. 6.11 Diagnostic plots for a linear model that incorporates all terms of the true model besides
X3

dg <- simTool::expand_tibble(
proc = "genData",
N = 200,
coef_x1_square = 1,
coef_x2 = 2,
coef_x3 = 6)
pg <- simTool::expand_tibble(
fun = c("gof_boot"),
formula_str = c("Y ˜ X1 + X2 + X3",

"Y ˜ I(X1ˆ2) + X2")
)

eg <- simTool::eval_tibbles(
data_grid = dg, proc_grid = pg,
replications = 100, ncpus = 3,
cluster_global_objects = ls())
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Fig. 6.12 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for a linear model that incorporates all terms of the true model besides
X3

eg$simulation %>%
ggplot(aes(x = results, color = formula_str)) +
stat_ecdf() +
geom_abline(slope = 1, intercept = 0) +
#facet_grid(formula_str ˜ N) +
theme(legend.position = "top")

As one can see fromFig. 6.13, theGOF test rejects themodelwithmissing X2
1 with

high probability but has a hard time if X3 is not part of the model. But excluding X3

from the model if it has such a large impact and then applying the GOF test makes
no sense. From that point of view, this aspect of the simulation makes no sense.
However, X3 might not have been recorded during the creation of the dataset. In
such a case, it would not be possible to include X3 in the model and the GOF test
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Fig. 6.13 Empirical cumulative distribution function of the p-values of the parametric GOF test

has only limited power to detect this. This shows that it makes it necessary to still
consult other tests and plots to get an overall picture of misspecifications.

6.2 MEP in the Semi-parametric Modeling Context

In Sect. 5.4, it was assumed that

Y = m(X, ϑ) + ε.

In the GLM context, this is specialized to
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Y = m(β�X) + ε,

compare Definition5.63.
The procedure for performing the GOF test is the same as the GOF test under the

parametric GLM. Only the parameter estimations are no longer done with MLE but
with LSE. Also the resampling is no longer performed according to a given distri-
bution model but with the wild bootstrap. This results in the following resampling
scheme.

Resampling Scheme 6.2

(A) Calculate the LSE β̂n based on (Y1, X1), . . . , (Yn, Xn).
(B) Determine the estimated residuals ε̂i = Yi − m(β�

n Xi ), for i = 1, . . . , n.
(C) Obtain the MEP (6.1) and calculate Dn and/or W 2

n accordingly.
(D) Define the wild bootstrap residual by ε∗

�,i = ε̂i · τ ∗
�,i , where (τ ∗

�,i )1≤�≤K ,1≤i≤n are
i.i.d. Rademacher random variables which are independent of (Y1, X1), . . . ,

(Yn, Xn), for i = 1, . . . , n and � = 1, . . . , K.
(E) Set X∗

�;i = Xi , for i = 1, . . . , n and � = 1, . . . , K.
(F) Set Y ∗

�;i = m(β�
n X∗

�;i ) + ε∗
�;i , for i = 1, . . . , n and � = 1, . . . , K.

(G) Calculate theLSE β̂∗
�;n basedon (Y ∗

�;1, X
∗
�;1), . . . , (Y

∗
�;n, X

∗
�;n), for� = 1, . . . , K.

(H) Obtain the MEP R∗1
�;n according to (6.2), D∗

�;n and/or W
∗2
�;n, for � = 1, . . . , K.

(I) Determine the p−value of Dn within the simulated D∗
�;n, 1 ≤ � ≤ K and/or the

p−value of W 2
n within the simulated W ∗2

�;n, 1 ≤ � ≤ K, respectively.

For this section, we generate artificial data following the very simple model

Y = sin(0.5X) + ε,

where X is uniformly distributed and ε is normally distributed.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gen_data <- function(N = 200, sd = 0.2) {
dplyr::mutate(
data.frame(X = runif(N, min = 6, max = 14)),
mu = sin(0.5 * X),
epsilon = rnorm(N, sd = sd),
Y = mu + epsilon)

}
nonlinear <- gen_data()

Assuming that we did not know the model, Fig. 6.14 clearly indicates a polynomial
relation.

GGally::ggpairs(nonlinear[, c("X", "Y")])

One way to model such data (within a linear model) is to start with a simple model,
in this case a polynomial of order two, and then gradually increase the complexity
by increasing the degree of a polynomial. If there are some indications (maybe due
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Fig. 6.14 Scatterplot of artificial data following Y = sin(0.5X) + ε

to the theory of the problem at hand) that the pattern follows the sine function and
one still wishes to model it with a linear model, it makes more sense to add the terms
from the corresponding Taylor series, which in case of the sine function are only odd
monomials. The common diagnostic plots for linear models do not indicate serious
problems for a simple quadratic model, see Fig. 6.15

par(mfrow = c(2,2))
quadratic_fit <- glm(Y ˜ X + I(Xˆ2), data = nonlinear)
plot(quadratic_fit)

However, the wild bootstrap GOF test rejects the model (p-value = 0.024). The
following two sections will implement the GOF test based on the wild bootstrap for
the model specified in this section and apply it in a simulation study.
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Fig. 6.15 Diagnostic plots of a linear model that incorporates the first two polynomial degrees,
where Y = sin(0.5X) + ε

6.2.1 Implementation

The implementation of the wild bootstrap is tailored to the model

Y = sin(aX) + ε.

However, it is very similar to the implementation of GOF test using the parametric
bootstrap. Basically, the difference is how the Y is generated and how the model
is fitted. But the implementation is not so generic as for the parametric case. The
calculation of β�

n X is tailored to the situation that X is univariate. The main reason
is that we will also use “minpack::nlsLM” for fitting a model and there seems to be
no easy way to get this linear combination from the fit. Therefore, we prefer this
simple implementation instead of a more generic but more complicated version.
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rrademacher <- function(n) {
2 * rbinom(n = n, size = 1, prob = 1/2) - 1

}

gof_wb_boot <- function(model, data, B = 1000) {
# mod - a model fit (stats::glm or minpack.lm::nlsLM)
# + for models based on nlsLM it is assumed that
# the formula is of the type fun(para * X), where
# ’para’ is the parameter and ’X’ is the covariate
# data - observed data, column with name ’X’
# is the only covariate
# B - number of bootstrapped MEPs

# progress bar that appears if calculations will take more
# than 1 second
pb <- dplyr::progress_estimated(B, min_time = 1)

if (inherits(model, "nls")) {
# only models of type fun(para * X) are supported
est_b_time_x <- data$X * coef(model)

} else {
est_b_time_x <- predict(model, type = "response")

}

# statistics for the original model
Wn2 <- CvM(model, est_b_time_x = est_b_time_x)
epsilon_hat <- residuals(model)
y_hat <- predict(model)

# copy to build up the bootstrap data set
data_boot <- data
y_name <- all.vars(formula(model), max.names = 1)

# statistics for the boostrap models
Wn2_boot <- sapply(seq_len(B), function(i) {

pb$tick()$print() # print progress

# according to Step E only the target/dependent
# variable needs to be updated
tau <- rrademacher(length(epsilon_hat))
data_boot[[y_name]] <- y_hat + tau * epsilon_hat

# refit the model using the bootstrapped data set
m_boot <- update(model, formula. = formula(model),

data = data_boot)
# statistic for the boostrapped model fit
CvM(m_boot, est_b_time_x)

})
ret <- list(Wn2_boot = Wn2_boot,

Wn2 = Wn2,
pvalue_cvm = mean(Wn2_boot > Wn2))

ret
}
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6.2.2 Artificial Data

We use linear models with different polynomial degrees in this simulation and the
wild bootstrap GOF test to check them. Note, in Sect. 6.3, we will come back to a
similar situation and compare the parametric and wild bootstrap version of the GOF
test.

gof_boot_nls <- function(data) {
# performs a least square estimation
# for sin(a * X) and a
# semi-parametric GOF test
# returns the corresponding p-values

# data - original data set

fit <- minpack.lm::nlsLM(Y ˜ sin(a * X),
data = data,
start = c(a = 0.5),
control = nls.control(maxiter = 500))

gof <- gof_wb_boot(fit, data, B = 100)
gof$pvalue_cvm

}

gof_boot_lm <- function(data, formula_str) {
# fits a guassian model, performs
# semi-parametric GOF test and returns
# the corresponding p-values

# data - original data set
# formula_str - a formula as a string

frml <- as.formula(formula_str)
fit <- glm(frml, data = data, family = gaussian())
gof <- gof_wb_boot(fit, data, B = 100)
gof$pvalue_cvm

}
dg <- simTool::expand_tibble(proc = "gen_data", N = 100,

sd = 0.2)
pg <- dplyr::bind_rows(
simTool::expand_tibble(fun = "gof_boot_nls"),
simTool::expand_tibble(
fun = "gof_boot_lm",
formula_str = c("Y ˜ X + I(Xˆ2)",

"Y ˜ X + I(Xˆ2) + I(Xˆ3)",
"Y ˜ X + I(Xˆ3) + I(Xˆ5)"
))

)
eg <- simTool::eval_tibbles(
data_grid = dg, proc_grid = pg,
replications = 100, ncpus = 3,
cluster_global_objects = ls())
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Fig. 6.16 Empirical cumulative distribution function of the p-values of GOF test based on the
wild bootstrap for the semi-parametric model and of the parametric GOF test for the linear models,
Y = sin(0.5X) + ε is conditionally normal distributed

Figure 6.16 shows the results of the simulation study. First note that the wild
bootstrap shows a uniform distribution for the p−values, as expected since this is
the correct model. Furthermore, the quadratic model as before shows a high chance
to be rejected by the GOF test. Of course, increasing the complexity results in less
rejections which is plausible because the sine function can be approximated this way.
However, it is more effective to just use polynomials of an odd degree, which is also
reflected by Fig. 6.16.

eg$simulation %>%
dplyr::mutate(formula_str = ifelse(is.na(formula_str), "-",

formula_str)) %>%
ggplot(aes(x = results, linetype = fun, color = formula_str)) +
stat_ecdf() +
stat_function(fun = identity)
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6.3 Comparison of the GOF Tests under the Parametric
and Semi-parametric Setup

In general, we can assume that the parametric GOF test performs better than the
corresponding wild bootstrap version, simply because in the parametric case we
have more information and also explicitly use it. Here, we want to briefly compare
both bootstrap versions. In order to do this, we use a similar setting as in Sect. 6.2.
There we used the sine function to generate non-linear relation, i.e.,

E(Y |X) = sin(aX),

where X is uniformly distributed on the interval [6, 14] and the error followed a
centered normal distribution. Here, we use two different distribution for Y , i.e., a
normal distribution and a Poisson distribution. Since the Poisson distribution does
not allow negative values, we extend the model by considering

E(Y |X) = 4 + 2 sin(0.5X).

However, the corresponding Taylor series still contains only odd monomials and the
simulations are also restricted to models of various polynomial degrees. So within
the framework of generalized linear models, like in Sect. 5.3, all models we pick
will be wrong. Within the semi-parametric setting we could choose the correct
model but applying the GOF test has currently no theoretical foundation because
β1 + β2 sin(β3X) cannot be written as m(β�X). Figure 6.17 shows the results with
conditionally normal distribution.

eg_para_vs_wb$simulation %>%
ggplot(aes(x = results, linetype = fun, color = rhs)) +
stat_ecdf() +
facet_grid(N˜., labeller = label_both) +
stat_function(fun = identity, color = "black")

Since the least square estimator and maximum likelihood estimator are the same
in this setting, any differences are only due to the generation of Y in the bootstrap
world. At the first glance, it seems that wild bootstrap outperforms the parametric
bootstrap for the small sample size N = 10. Although the theory is currently not rich
enough, we applied also the semi-parametric GOF test, which shows that the GOF
test is too liberate, i.e., the red dashed curve is above the diagonal. This, of course, is
just an indicator of why the performance seems to be better. Furthermore, the models
that are closer to the true model got rejected more often, which, of course, is a bit
unusual. Another indicator that the performance advantage of the semi-parametric
GOF test is probably spurious is that the same simulation based on sample size
N = 200 shows that the performance of the semi-parametric GOF test degrades for
the models with higher polynomials. For instance, according to ecdf of the p−values
for the semi-parametric GOF test under the model X + I (X3) + I (X5), around 25%
of the p−values are below 0.05 for N = 10 and this decreases to around 5% for
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Fig. 6.17 Empirical cumulative distribution function of the p−values ofGOF test based on thewild
bootstrap (gof_LSE) for the semi-parametric model and of the parametric GOF test for the linear
models (gof_glm), where E(Y |X) = 4 + 2 sin(0.5X) and Y is conditionally normal distributed.
Sample size of the generated dataset is denoted by N . The right-hand side (rhs) describes which
model was tested

N = 200. Note also that Fig. 6.17 shows that the p−values of the semi-parametric
GOF test under the true model now seem to follow a uniform distribution. In this
particular situation, both methods seem to have roughly equal performance, where
for small sample size the semi-parametric GOF test may be too liberal. One reason
why the semi-parametric GOF test is too liberal could be the Radermacher random
variables, because this only changes the signs of the residuals and hence this only
introduces little variation in the bootstrap datasets if the sample size is small.
Changing the conditional distribution to Poisson changes the results as expected,
i.e., that the parametric GOF test results in more rejections if the sample size is
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Fig. 6.18 Empirical cumulative distribution function of the p-values of GOF test based on the wild
bootstrap (gof_LSE) for the semi-parametric model and of the parametric GOF test for the linear
models (gof_glm), where E(Y |X) = 4 + 2 sin(0.5X) and Y is conditionally Poisson distributed.
Sample size of the generated dataset is denoted by N . The right-hand side (rhs) describes which
model was tested

sufficient. Furthermore, both GOF tests indicate that it is more efficient to use only
odd polynomial degrees which corresponds also to our expectations, see Fig. 6.18.

eg_para_vs_wb2$simulation %>%
ggplot(aes(x = results, linetype = fun, color = rhs)) +
stat_ecdf() +
facet_grid(N˜., labeller = label_both) +
stat_function(fun = identity, color = "black")

Again, for small sample size it seems that the performancegain of the semi-parametric
GOF test is probably spurious for same reasons as before.
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6.4 Mathematical Framework: Marked Empirical
Processes

This excursion outlines some fundamental results of marked empirical processes
(MEP) based on residuals given in Stute (1997) and Stute and Zhu (2002).

Since the following explanations are quite complex in their notation, we provide
a short guideline in advance. In general, all analyzed MEPs are cumulative sum
(cusum) error processes, which each propagate in a one-dimensional direction. The
direction of the propagation is given within each indicator variable. If the indicator
variable contains an estimated parameter, we speak here of an MEP that propagates
in an estimated direction. We will consider three basic types of MEPs.

1. If the process is based on the true error and unfolds in a fixed, not estimated
direction, then the process is called BMEP in the following and is always denoted
with Rn .

2. If the MEP is based on estimated errors and unfolds in a fixed direction, then R1
n

is chosen to denote the process. Processes of this kind are called EMEP in the
following text.

3. Finally, there is a third type which will be called EMEPE. These processes are
based on estimated errors and also on an estimated propagation direction. For
these processes, we use the notation R̄1

n .

Furthermore, in our considerations, we make constant use of mathematical rules
for conditional expectation without explicitly stating them in each case. A list of
these rules can be found in Shorack (2000, Chapter 8.4 – 8.6). Only the concept of
conditional variance is explained in more detail at this point. Let Y ∈ L2(Ω,A ,P)

and X be another random variable over (Ω,A ,P). Then we denote in the following
with

VAR(Y |X) = E
(
(Y − E(Y |X))2

∣∣X
)

the conditional variance of Y given X .
The space D[0, 1] provided with the Skorokhod topology is the metric space for

investigating the convergence in distribution of the empirical process, see Billingsley
(1968, Chapter 3). The processes to be examined in this section will usually be in
D[−∞,∞].
Definition 6.3 Define D[−∞,∞] as the collection of all right continuous func-
tions f : R → R whose left-sided limits exist and for which limx→∞ f (x) and
limx→−∞ f (x) exist in R also applies.

Remark 6.4 Now consider a continuous, strictly increasing transformation

A : [−∞,∞] −→ [0, 1].

For example, a continuous, strictly increasing distribution function for A can be used
here. Then the transformation
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T : D[0, 1] � f −→ T ( f ) = f ◦ A ≡ f A ∈ D[−∞,∞]

is a bijective transformation. Let s denote the Skorokhod metric on D[0, 1]. Then

sA : D[−∞,∞] × D[−∞,∞] � ( f A, gA) −→sA( f A, gA)

= s( f A ◦ A−1, gA ◦ A−1)

defines ametric on D[−∞,∞]whichmakes T to an isometric transformation. Thus,
we can identify D[−∞,∞] with D[0, 1]. Among other things, this isometry states
that all theorems for convergence in distribution with respect to D[0, 1] can now be
transferred to D[−∞,∞] accordingly. So we do not need to consider the limitation
by the domain [0, 1] anymore, if the process to be considered is in D[−∞,∞].

6.4.1 The Basic MEP

Definition 6.5 Let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sequence in R
2 such that

E(|Y |) < ∞ and denote the conditional expectation of Y given X = x by m(x),
that is,

E(Y | X = x) = m(x).

Then

[−∞,∞] � x −→ Rn(x) := n−1/2
n∑

i=1

(
Yi − m(Xi )

)
I{Xi≤x} ∈ R (6.3)

defines the basic marked empirical process (BMEP).

Note that Rn(x) is defined for x = ±∞ by

Rn(−∞) = 0 and Rn(∞) = n−1/2
n∑

i=1

(
Yi − m(Xi )

)
.

This extends Rn continuously from R to [−∞,∞] and allows to handle supx∈R∣∣Rn(x)
∣∣, since Rn ∈ D[−∞,∞].

Asymptotic analysis of the simple empirical process often uses the transformation
of the process to the uniformly empirical process, see Sect. 3.4. A similar procedure
is also possible with the BMEP, as described in Stute (1997) and as we will illustrate
in detail now.

Since F−1 ◦ F(X) = X with probability 1, compare Shorack and Wellner (1986,
Chapter 1, Proposition 3, Equation (27)), where F and F−1 denote the distribution
and quantile function of X , respectively, we get with probability 1
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Rn(x) = n−1/2
n∑

i=1

(
Yi − m ◦ F−1 ◦ F(Xi )

)
I{F−1◦F(Xi )≤x}

= n−1/2
n∑

i=1

(
Yi − m ◦ F−1(F(Xi ))

)
I{F(Xi )≤F(x)}

= R̂n(F(x)),

where

R̂n(u) = n−1/2
n∑

i=1

(
Yi − m ◦ F−1(F(Xi ))

)
I{F(Xi )≤u}, for 0 ≤ u ≤ 1. (6.4)

While Rn ∈ D[−∞,∞], we have R̂n ∈ D[0, 1] and we can interpret R̂n as a
BMEP based on the F(X)−sample if m ◦ F−1(u) = E(Y | F(X) = u), for PF(X)

almost all 0 ≤ u ≤ 1.

Lemma 6.6 Let Y ∈ L2(Ω,A ,P). Denote the distribution and quantile func-
tion of X by F and F−1, respectively. With m(x) = E(Y | X = x) and σ 2(x) =
VAR(Y | X = x) we get

(i) The conditional expectation of Y given F(X) = u, that is E(Y | F(X) = u), is
well defined for PF(X) almost all 0 ≤ u ≤ 1 and

E(Y | F(X) = u) = E(Y | X = F−1(u)) = m ◦ F−1(u).

(ii) The conditional variance of Y given F(X) = u, that is VAR(Y | F(X) = u), is
well defined for PF(X) almost all 0 ≤ u ≤ 1 and

VAR(Y | F(X) = u) = VAR(Y | X = F−1(u)) = σ 2 ◦ F−1(u).

(iii) If F is continuous then F(X) is uniformly distributed on [0, 1] and, with U =
F(X), the last equalities read as follows:

E(Y |U = u) = m(F−1(u)), VAR(Y |U = u) = σ 2(F−1(u)),

for PU almost all 0 ≤ u ≤ 1.

Proof For the first equation, let B be an arbitrarily chosen Borel set of the unit
interval. Then

∫
I{F(X)∈B} Y dP =

∫
I{F(x)∈B} E(Y | X = x)PX (dx)

=
∫

I{F(x)∈B} E(Y | X = F−1 ◦ F(x))PX (dx)

=
∫

I{u∈B}E(Y | X = F−1(u))PF(X)(du),
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where the second equality is based onPX ({x ∈ R : F−1(F(x)) = x}) = 1, compare
Shorack and Wellner (1986, Chapter 1, Proposition 3, Equation (27)). This proves,
according to Shorack (2000, Chapter 8, Notation 4.1),

m(F−1(u)) = E(Y | F(X) = u), for PF(X) almost all u.

This proves (i). Analogously, part (ii) can be shown, and (iii) is obvious. �

Remark 6.7 The last lemma tells us that a change of the regressor from X to F(X)

causes a change of the regression function from m to m ◦ F−1, which is now the
regression function of Y with respect to F(X). Thus, we can transform the BMEP
to R̂n(F(x)), where

R̂n(u) = n−1/2
n∑

i=1

(
Yi − m ◦ F−1(F(Xi ))

)
I{F(Xi )≤u}, for 0 ≤ u ≤ 1,

which is now theBMEPcorresponding to (Y1, F(X1)), . . . , (Yn, F(Xn)). In addition,
if F is continuous then F(X) is uniformly distributed on the unit interval and we
can set Ui = F(Xi ). Now R̂n is the transformed Rn to the uniform case. It is the
counterpart to the uniform empirical process.

As we discussed in Sect. 4.4, the asymptotic behavior of the empirical process
is the mathematical backbone in the context of model diagnostics for parametric
distribution families of i.i.d. observations in R. The main asymptotic result of the
BMEP is given in the next theorem, compare Stute (1997, Theorem 1.1), and it
shows that the BMEP has the potential to play the empirical processes counterpart
in the regression context. However, in the following theorem, we will not make use
of the transformation to the uniform case as it was done in the proof of Stute (1997,
Theorem 1.1). The reasons for this are discussed after the proof at the end of this
section. Instead, we will refer to Remark6.4 in the proof.

Theorem 6.8 Assume that E(Y 2) < ∞ and

H : [−∞,∞] � u −→ H(u) =
∫

I{x≤u} σ 2(x) F(dx) ∈ R (6.5)

is continuous. Then

Rn −→ R∞ in distribution in the space D[−∞,∞].

R∞ is a centered Gaussian process with covariance function

K (s, t) = H(s ∧ t) =
∫

I{x≤s∧t}σ 2(x) F(dx), (6.6)
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where F denotes the distribution function of X, s ∧ t = min(s, t), and σ 2(x) =
VAR(Y | X = x), the conditional variance of Y given X = x.

Remark 6.9 The covariance function of the limiting centered Gaussian process R∞
is identical to the covariance function of the process B(H), where B is a standard
Brownian motion on the positive real line with H given under (6.5). Therefore, the
paths of R∞ are continuous.

Corollary 6.10 IfE(Y 2) < ∞ and F is continuous, the continuity assumption (6.5)
is fulfilled.

Proof (of Theorem 6.8) The following proof is based on Stute (1997, Proof of The-
orem 1.1) with some adjustments which are discussed in Example 6.12. It is an
application of Billingsley (1968, Theorem 15.6).

Conditioning on X1, . . . , Xn guarantees

E(Rn(x)) = n−1/2
n∑

i=1

E
(
I{Xi≤x}E

(
(Yi − m(Xi ))

∣∣Xi
)) = 0,

for every −∞ ≤ x ≤ ∞. Since the terms in the sum of Rn(x) are centered (expec-
tation is 0) and i.i.d., we get in addition that

E(R2
n(x)) ≤ E

(
(Y − m(X))2

) ≤ E(Y 2) < ∞.

Overall, Rn(x) ∈ L2
0(Ω,A ,P), the space of square-integrable centered functions on

(Ω,A ,P) , for −∞ ≤ x ≤ ∞.
To apply Billingsley (1968, Theorem 15.6), we will show that the finite-

dimensional distributions (fidis) of Rn converge to those of R∞. Take −∞ ≤
x1, . . . , xk ≤ ∞, for k ∈ N and apply themultivariate central limit theorem, Billings-
ley (1995, Theorem 29.5) to get that

(Rn(x1), . . . , Rn(xk)) −→ N (0,Σ), as n → ∞,

in distribution, where Σ = (σi, j )1≤i, j≤k is the covariance matrix defined by

σi, j = COV(Rn(xi ), Rn(x j )), for 1 ≤ i, j ≤ k.

Since

COV(Rn(xi ), Rn(x j )) = E
(
I{X≤xi } I{X≤x j } (Y − m(X))2

)

=
∫

I{t≤xi∧x j }σ
2(t) F(dt) = K (xi , x j ),

the first part of the proof is done.
To prove tightness, we adapt Billingsley (1968, (15.21) in Theorem 15.6) accord-

ing to Remark 6.4 to D[−∞,∞].
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For −∞ ≤ x1 ≤ x ≤ x2 ≤ ∞, set

αi = I{x1<Xi≤x}
(
Yi − m(Xi )

)

and
βi = I{x<Xi≤x2}

(
Yi − m(Xi )

)

to obtain

E

(
(Rn(x) − Rn(x1))

2(Rn(x2) − Rn(x))
2
)

= n−2
E

(( ∑

1≤i≤n

αi
)2( ∑

1≤ j≤n

β j
)2)

.

Due to the indicator functions involved in the definition of αi and βi , αi βi = 0.
Conditioning on Xi shows that E(αi ) = 0 = E(βi ), for 1 ≤ i ≤ n. Furthermore,
α1, . . . , αn and β1, . . . , βn are i.i.d. sequences, where, in addition, αi is independent
from β j , for 1 ≤ i 
= j ≤ n. Overall, this results in

n−2
E

(( ∑

1≤i≤n

αi
)2( ∑

1≤ j≤n

β j
)2) = n − 1

n
E(α2

1)E(β2
1 )

≤ (
H(x) − H(x1)

)(
H(x2) − H(x)

)

≤ (
H(x2) − H(x1)

)2
.

Since H is a nondecreasing, continuous function, the proof is complete. �

Remark 6.11 The continuity assumption (6.5) in Theorem 6.8 is not dispensable
even though it does not appear in Stute (1997, Theorem 1.1). In the proof of Stute
(1997, Theorem 1.1), it is noted for the verification of tightness that E(Y |U = u) =
m(F−1(u)). This then implies the continuity of H , our assumption (6.5). However,
the following example shows that E(Y |U = u) = m(F−1(u)) does not generally
have to be true if F is discontinuous. Nevertheless, in the main application of the
theorem continuity of F has to be guaranteed anyway and the missing assumption in
Stute (1997, Theorem 1.1) does not affect its importance in statistical application!

Example 6.12 Let U be a uniformly distributed random variable defined on some
probability space (Ω,A ,P). Set X = I{U≤0.5} and Y = U . The Bernoulli-distributed
random variable X has distribution, respectively, quantile function

F(x) = P(X ≤ x) =

⎧
⎪⎨

⎪⎩

0 : x < 0

0.5 : 0 ≤ x < 1

1 : x ≥ 1

F−1(u) =
{
0 : 0 ≤ u ≤ 0.5

1 : 0.5 < u ≤ 1
,
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respectively. Elementary calculation of E(Y | X = x), for x ∈ {0, 1}, yields

E(Y | X = F−1(u)) = m ◦ F−1(u) = 3/4 − F−1(u)
/
2.

Since E(Y |U = u) = u, we finally get

E(Y |U = u) 
= m ◦ F−1(u), for all 0 ≤ u ≤ 1.

This contradicts
E(Y |U = u) = m ◦ F−1(u)

asserted in Stute (1997, Proof of Theorem 1.1). �

6.4.2 The MEP with Estimated Model Parameters
Propagating in a Fixed Direction

The result obtained under Theorem 6.8 for the BMEP represents an initial theoretical
basis which, however, still has to be extended for statistical applications. If, for exam-
ple, there is a parameterized regression, then the corresponding parameter must be
estimated and instead of the true regression function m we now consider a estimated
regression function. If the true m is replaced by the estimated one in the BMEP,
then the true errors are replaced by the estimated errors, i.e., by the residuals. This,
of course, affects the limit distribution. The extension of the BMEP with estimated
parameters goes back to Stute (1997) and we present the result here in our context.

Definition 6.13 Let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sequence in R
2 such that

E(|Y |) < ∞ and denote the conditional expectation of Y given X = x by m(x).
Assume that m belongs to a parametric family

M = {
m(·, θ) : θ ∈ Θ

}

such that m(x) = m(x, θ0), for some true parameter θ0 ∈ Θ ⊂ R
p. Let θn be an

estimator of θ0. Then

[−∞,∞] � x −→ R1
n(x) := n−1/2

n∑

i=1

(
Yi − m(Xi , θn)

)
I{Xi≤x} ∈ R (6.7)

defines the estimated marked empirical process (EMEP).

The direction of propagation of EMEP, which is determined by the indicator, is
given here by R, as with the BMEP itself, since the covariate X is real. Therefore,
the process propagates in a fixed direction.
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For the analysis of the asymptotic behavior of R1
n , we now, of course, need further

assumptions which we list below:

(i) n1/2(θn − θ0) = n−1/2 ∑n
i=1 l(Xi ,Yi , θ0) + oP(1).

(ii) E(l(Xi ,Yi , θ0)) = 0.
(iii) L(θ0) = E(l(X,Y, θ0)l�(X,Y, θ0)) exists.
(iv) w(x, θ) = ∂m(x, θ)/∂θ = (w1(x, θ), . . . , wp(x, θ))� exists for θ in a neigh-

borhood V ⊂ Θ of θ0 and is continuous with respect to θ .
(v) There exists an F-integrable function M(x) such that |wi (x, θ)| ≤ M(x) for

all θ ∈ V ⊂ Θ , 1 ≤ i ≤ p, and V given in 6.4.2(iv).

The first three conditions 6.4.2(i)–(iii) are usually met for least squares or maxi-
mum likelihood estimates.

Let W (t, θ) = (W1(t, θ), . . . ,Wp(t, θ))� be defined by

Wi (t, θ) = E
(
wi (X, θ)I{X≤t}

)
.

Lemma 6.14 Let θn converge in probability to θ0 and assume that θ̂n : R → Θ is
a measurable function such that θ̂n(x) lies for each x ∈ R and n ∈ N on the line
segment that connects θn and θ0. If 6.4.2(iv) and (v) hold, then, for 1 ≤ i ≤ p,

(i) sup−∞≤t≤∞
∣∣ ∫ t

−∞ wi (x, θ̂n(x)) − wi (x, θ0)Fn(dx)
∣∣ = oP(1),

(ii) lim supn→∞ sup−∞≤t≤∞
∣∣ ∫ t

−∞ wi (x, θ0) (Fn − F)(dx)
∣∣ = 0 w.p.1.

Proof For ε, δ > 0 we get by the Markov theorem,

P

(
sup

−∞≤t≤∞

∣∣∣∣

∫ t

−∞
wi (x, θ̂n(x)) − wi (x, θ0) Fn(dx)

∣∣∣∣ > ε

)

≤ 1

ε
E

(

sup
|θ−θ0|<δ

|wi (X, θ) − wi (X, θ0)|
)

+ P
(|θn − θ0| > δ

)
,

for 1 ≤ i ≤ p. Due to 6.4.2(v), the expectation on the right side is finite and the
integrand converges to 0 according to 6.4.2(iv) if δ tends to 0. The first assertion now
follows from the dominated convergence theorem and the assumed convergence of
θn to θ0.

For the second assertion, we fix K > 0 and apply 6.4.2(v) to obtain

lim sup
n→∞

sup
−∞≤t≤∞

∣∣
∫ t

−∞
wi (x, θ0) (Fn − F)(dx)

∣∣

≤ lim sup
n→∞

sup
|t |≤K

∣∣
∫ t

−K
wi (x, θ0) (Fn − F)(dx)

∣∣

+ lim sup
n→∞

∫
M(x)I{|x |>K } Fn(dx) +

∫
M(x)I{|x |>K } F(dx).



6.4 Mathematical Framework: Marked Empirical Processes 205

According to Theorem 5.66, the first term on the right side is identical to 0 for each
fixed K w.p.1. Due to the SLLN, the second term is identical to the third term w.p.1.
However, since the third term converges with K → ∞ against 0, the second assertion
is proven. �

The main result of this section is the following theorem, compare Stute (1997,
Theorem 1.2).

Theorem 6.15 Assume E(Y 2) < ∞, F is continuous and conditions 6.4.2(i)–6.4.2
(v) are met. Then, under m(·) = m(·, θ0), we have, uniformly in x,

R1
n(x) = Rn(x) − n1/2

n∑

i=1

W�(x, θ0)l(Xi ,Yi , θ0) + oP(1), as n → ∞.

Furthermore, R1
n converges in D[−∞,∞] to a centered Gaussian process R1∞ with

covariance function

K 1(s, t) = K (s, t) + W�(s, θ0)L(θ0)W (t, θ0)

− W�(s, θ0)E(I{X≤t}(Y − m(X, θ0))l(X,Y, θ0))

− W�(t, θ0)E(I{X≤s}(Y − m(X, θ0))l(X,Y, θ0)).

Proof By definition,

R1
n(x) = n−1/2

n∑

i=1

I{Xi≤x}[Yi − m(Xi , θn)]

= Rn(x) − n−1/2
n∑

i=1

I{Xi≤x}[m(Xi , θn) − m(Xi , θ0)].

A Taylor expansion of the terms of the sum results in

m(Xi , θn) − m(Xi , θ0) = (θn − θ0)
�w(Xi , θni ),

where θni is between θn and θ0. Hence,

R1
n(x) = Rn(x) − n1/2(θn − θ0)

�n−1
n∑

i=1

I{Xi≤x}w(Xi , θni )

= Rn(x) − n1/2(θn − θ0)
�n−1

n∑

i=1

I{Xi≤x}(w(Xi , θni ) − w(Xi , θ0))

− n1/2(θn − θ0)
�

(

n−1
n∑

i=1

I{Xi≤x}w(Xi , θ0) − W (x, θ0)

)

− n1/2(θn − θ0)
�W (x, θ0)

= Rn(x) − n1/2(θn − θ0)
�W (x, θ0) + oP(1),
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uniformly in x , where the last equality follows from Lemma 6.14. Since W (·, θ0) is
bounded, assumption 6.4.2(i) yields

n1/2(θn − θ0)
�W (x, θ0) = n−1/2

n∑

i=1

l�(Xi ,Yi , θ0)W (x, θ0) + oP(1), (6.8)

uniformly in x which shows the first assertion of the theorem.
This representation of R1

n shows that the two sequences (R1
n)n∈N and (R̂1

n)n∈N,
where

R̂1
n(x) = n−1/2

n∑

i=1

(
(Yi − m(Xi , θ0)) I{Xi≤x} − l�(Yi , Xi , θ0)W (x, θ0)

)
,

are asymptotically equivalent in the sense of Billingsley (1968, Theorem 4.1). There-
fore, we can do the remaining part of the proof with (R̂1

n)n∈N.
In order to prove tightness of (R̂1

n)n∈N, it remains to show, by virtue of Theorem
6.8, that the right-hand side of (6.8) is also tight in D[−∞,∞]. By assumption
6.4.2(ii) and 6.4.2(iii) the sequence (Sn)n∈N, where Sn = n−1/2 ∑n

i=1 l(Xi ,Yi , θ0),
tends to a multivariate normal distribution and therefore is tight inRp. SinceW (·, θ0)
is a bounded deterministic continuous function, the sequence (S�

n W (·, θ0))n∈N) is
tight in C[−∞,∞]. Since C−tightness implies D−tightness, we have shown that
(R̂1

n)n∈N is tight in D[−∞,∞].
The convergence of the fidis of (R̂1

n)n∈N is a consequence of the multivariate
CLT. Hence, it remains to calculate the covariance function K 1(s, t) of R1∞ which is
identical to the covariance function of the centered process R̂1

n . Recall the definition
of L(θ0) given under 6.4.2(iii) to get

COV(R̂1
n(s), R̂

1
n(t)) = E

(
I{X≤s∧t}(Y − m(X, θ0))

2
) + W�(s, θ0)L(θ0)W (t, θ0)

− W�(t)E
(
I{X≤s}(Y − m(X, θ0))l(Y, X, θ0)

)

− W�(s)E
(
I{X≤t}(Y − m(X, θ0))l(Y, X, θ0)

)
.

Note that the first term on the right side is the covariance of the BMEP limit process
R∞. �

Remark 6.16 Under the assumptions of Theorem 6.15, Shorack (2000, Chapter 12,
Theorem 2.1 (1)) can be directly verified from the covariance function of R1∞. This
shows that the limiting process R1∞ can be realized in C[−∞,∞].
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6.4.3 The MEP with Estimated Model Parameters
Propagating in an Estimated Direction

Previously, all MEPs were based on one-dimensional random variables X , which
were used to define the corresponding processes via the indicators I{X≤x}. If the input
variables X are multidimensional, then the indicator set (−∞, x] can be replaced by
the quadrantwith upper right corner x , i.e., by the {z ∈ R

p : zi ≤ xi , for 1 ≤ i ≤ p}.
However, if the model under consideration is a linear or a generalized linear model,
then the multidimensional vector X acts on Y by a corresponding linear combination
of its components andwe can switch to a one-dimensional input, namely, to this linear
combination. The corresponding process thus realizes itself again in D[−∞,∞].
However,wepay aprice for this traceability to the one-dimensional case; the direction
in which the process evolves is determined by the linear combination. It is thus based
on the estimated parameters and therefore propagates in an estimated direction.

Definition 6.17 Let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sequence in R
1+p such that

E(|Y |) < ∞ and denote the conditional expectation of Y given X = x by m(x).
Assume that m belongs to a parametric family

M = {
m(·, ϑ) : ϑ = (β, θ) ∈ R

p × Θ ⊂ R
p+q

}

such thatm(x) ≡ m(x, ϑ0) = m0(β
�
0 x, θ0), for some true parameter (β0, θ0) ≡ ϑ0 ∈

R
p × Θ and a Borel-measurable function m0 : R → R.
Let ϑn = (βn, θn) be an estimator of ϑ0. Then

[−∞,∞] � u −→ R̄1
n(u) := n−1/2

n∑

i=1

(
Yi − m0(β

�
n Xi , θn)

)
I{β�

n Xi≤u} ∈ R (6.9)

defines the estimated marked empirical process in estimated direction (EMEPE).

Remark 6.18 The specific form m(x) = m0(β
�
0 x, θ0) implies that w.p.1

E(Y | X) = m(X) = m0(β
�
0 X, θ0) = E(Y | β�

0 X), (6.10)

i.e., E(Y | X) is measurable with respect to the smaller σ -field (β�
0 X)−1(B∗), where

B∗ denotes the Borel σ−field onR. Be aware that this is a very restrictive condition,
because it means that all the information from X concerningE(Y |X) is already stored
in the information given by the projection of X onto the line defined by β0! Note that
in the following we will not distinguish between m and m0, but will always use m,
even if m0 is meant. So instead of writing m0(β

�x) we will use m(β�x). Thus, the
EMEPE will be

[−∞,∞] � u −→ R̄1
n(u) := n−1/2

n∑

i=1

(
Yi − m(β�

n Xi , θn)
)
I{β�

n Xi≤u} ∈ R. (6.11)



208 6 Goodness-of-Fit Test for Generalized Linear Models

Remark 6.19 If m(x) = m(β�
0 x, θ0) applies, then

ei = Yi − m(β�
0 Xi , θ0)

denotes the true error. If ϑn is an estimator of ϑ0, then

ei (ϑn) = Yi − m(β�
n Xi , θn)

defines the estimated error, that is, the residual. Furthermore, according to (6.10),

E(e | X) = 0 = E(e | β�
0 X, θ0). (6.12)

For the conditional variance with respect to X = x , we set

σ 2(x) = E
(
(Y − m(X))2

∣∣ X = x
) = VAR

(
Y | X = x

)
(6.13)

and define

σ 2
ϑ0

(t) = E
(
(Y − m(β�

0 X, θ0))
2
∣∣β�

0 X = t
) = VARϑ0

(
Y | β�

0 X = t
)
. (6.14)

For the functional limit theorem of the EMEPE, we again need some assumptions,
which are directly derived from those of Sect. 6.4.2. We also need an additional
assumption to control the estimated direction of EMEPE.

(i) n1/2(ϑn − ϑ0) = n−1/2 ∑n
i=1 l(Xi ,Yi , ϑ0) + oP(1).

(ii) E(l(Xi ,Yi , ϑ0)) = 0.
(iii) L(ϑ0) = E(l(X,Y, ϑ0)l�(X,Y, ϑ0)) exists and is positive definite.
(iv) w(x, ϑ) = ∂m(x, ϑ)/∂ϑ = (w1(x, ϑ), . . . , wp+q(x, ϑ))� exists for ϑ in a

neighborhood V ⊂ R
p × Θ of ϑ0 and is continuous with respect to ϑ .

(v) There exists an PX -integrable function M(x) such that |wi (x, ϑ)| ≤ M(x) for
all ϑ ∈ V ⊂ R

p × Θ , 1 ≤ i ≤ p + q, and V given in 6.4.3(iv).
(vi) The function

H : R
p+1 � (β, u) −→ H(u, β) :=

∫
I{β�X≤u}σ 2(X) dP ∈ R

is uniformly continuous in u at β0.

Set W (t) = W (t, ϑ0) = (W1(t, ϑ0), . . . ,Wp+q(t, ϑ0))
�, where

Wi (t) = E

(
wi (X, ϑ0)I{β�

0 X≤t}
)

. (6.15)

The following technical lemma is of decisive importance for the functional limit
theorem of the EMEPE that will follow later.
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Lemma 6.20 Assume thatE(Y 2) < ∞, 6.4.3(vi), andm(x) = m(β�
0 x, θ0) holds for

all x ∈ R
p. Then we get for every ε > 0:

P

(

sup
u∈R

sup
{β : |β−β0|≤δ}

∣∣∣n−1/2
n∑

i=1

(
I{β�Xi≤u} − I{β�

0 Xi≤u}
)
ei

∣∣∣ ≥ ε

)

−→ 0,

as δ → 0.

Proof The proof is based on the theory of generalized empirical processes, as pre-
sented in the textbooks of van der Vaart and Wellner (1996) and Kosorok (2008),
respectively.

For each β ∈ R
p and u ∈ R the set H = Hβ,u = {x ∈ R

p : β�x ≤ u} defines a
half-space in R

p. Denote the set of all half-spaces of Rp by

H = {
H = Hβ,u, β ∈ R

p, u ∈ R
}
.

Based on this collection of sets we now define a function class of indicators through

F = {
I{H×R} : H ∈ H

}

and modify this class by multiplying the individual indicators by the function

h : R
p+1 � (x, y) −→ h(x, y) = y − m(β�

0 x, θ0) ∈ R

to get
Fh = {

h I{H×R} : H ∈ H
}
.

Based on this collection of measurable functions, we consider the generalized empir-
ical process (αn( f )) f ∈F h ,

αn( f ) = n−1/2
n∑

i=1

f (Xi ,Yi ).

Note that according to (6.12) E(αn( f )) = 0.
The paths of this generalized empirical process are elements of the space l∞(Fh),

that is, the space of all function l : Fh � f −→ l( f ) ∈ R such that sup f ∈F h
|l( f )| ≡

‖l‖F h < ∞. Themetric d∞(l1, l2) = ‖l1 − l2‖F h turns l∞(Fh) into themetric space
(l∞(Fh), d∞).

First, we note that for every f ∈ Fh we have f (X,Y ) ∈ L2(Ω,A ,P). Further-
more, for each f ∈ Fh and (x, y) ∈ R

p+1, | f (x, y)| ≤ |h(x, y)|, and h(X,Y ) ∈
L2(Ω,A ,P). That is, |h| is an envelope of Fh .

In general, there are measurability problems in the study of generalized empirical
processes. However, these problems are always negligible if the considered function
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class is pointwise measurable (PM), see Kosorok (2008, Section 8.2, p. 142). The
classFh is PM according to Kosorok (2008, Lemma 8.10).

According to van der Vaart and Wellner (1996, Example 3.9.33), the class H
of all half-spaces is a Vapnik-C̆ervonenkis class (VC). The same is obviously true
for the classHR = {H × R : H ∈ H }. Now, apply Kosorok (2008, Lemma 9.8) to
get that the subgraphs of the associated indicator functions of HR are VC, wherein
the subgraph of a real-valued function f defined on some set A is the set {(a, t) :
t < f (a)}. This shows that F is VC. In addition, Fh is VC due to Kosorok (2008,
Lemma 9.9 (vi)).

Overall, we have now seen thatFh is a PM VC class with envelope |h| such that
E(h2) < ∞. This shows that Fh is a PX,Y Donsker class, see Kosorok (2008, last
para., p. 165) and we can apply Kosorok (2008, Lemma 8.17) to get for every ε > 0

P

(

sup
f,g∈F h :ρ( f,g)≤δ

∣∣αn( f ) − αn(g)
∣∣ > ε

)

−→ 0, for δ → 0, (6.16)

where

ρ( f, g) =
(
E

(
( f (X,Y ) − g(X,Y ))2

))1/2
.

According to (6.16), the proof is complete if we can show that for an arbitrary δ > 0

sup
u∈R

E

((
I{β�X≤u} − I{β�

0 X≤u}
)2
h2(X,Y )

)
≤ δ, for β → β0. (6.17)

Note that

E

((
I{β�X≤u} − I{β�

0 X≤u}
)2
h2(X,Y )

)
= E

(∣∣I{β�X≤u} − I{β�
0 X≤u}

∣∣h2(X,Y )
)

.

Denote the integral on the right by A(β, β0, u). Then, for K > 0, we get by condi-
tioning with respect to X

A(β, β0, u) ≤
∫ ∣∣I{β�x≤u} − I{β�

0 x≤u}
∣∣σ 2(x)I{‖x‖≤K }PX (dx)

+
∫

σ 2(x)I{‖x‖>K }PX (dx)

= A1(β, β0, u, K ) + A2(K ).

Now choose an arbitrary γ > 0 and note that |β�x − β�
0 x | ≤ ‖β − β0‖ ‖x‖, where

‖ · ‖ denotes the Euclidean norm on Rp, to get
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A1(β, β0, u, K ) ≤
∫ ∣∣I{β�x≤u} − I{β�

0 x≤u}
∣∣σ 2(x)I{‖x‖≤K }I{|β�x−β�

0 x |≤γ }PX (dx)

+ I{‖β−β0‖>γ/K }
∫

σ 2(x)PX (dx)

≤
∫ (

I{β�
0 x≤u+γ } − I{β�

0 x≤u−γ }
)
σ 2(x)I{‖x‖≤K }I{|β�x−β�

0 x |≤γ }PXdx)

+ I{‖β−β0‖>γ/K }
∫

σ 2(x)PX (dx)

≤
(
H(u + γ, β0) − H(u − γ, β0)

)
+ I{‖β−β0‖>γ/K }

∫
σ 2(x)PX (dx)

= A1,1(β0, u, γ ) + A1,2(β, β0, γ, K ).

Overall, we have that

A(β, β0, u) ≤ A1,1(β0, u, γ ) + A1,2(β, β0, γ, K ) + A2(K ).

Since E(σ 2(X)) < ∞, we can find a K > 0 such that A2(K ) < δ. By assumption
6.4.3(vi), H is uniformly continuous in u at β0 and we therefore can find a γ > 0
such that for a given δ > 0, sup|u−v|≤2 γ |H(u, β0) − H(v, β0)| ≤ δ. In conclusion,
if we take ‖β − β0‖ < min(2 γ, γ /K ) we get

sup
u∈R

E

((
I{β�X≤u} − I{β�

0 X≤u}
)2
h2(X,Y )

)
≤ 2 δ,

which completes the proof of the lemma. �

Remark 6.21 The proof of the last lemma has shown that H is a PM VC class.
Thus, it is also a Glivenko-Cantelli (GC) class, that is, w.p.1

sup
H∈H

∣∣∣1/n
n∑

i=1

I{Xi∈H} −
∫

I{X∈H}dP
∣∣∣ −→ 0, as n → ∞.

InterpretH as the class of indicator functions based on the half-spaces and multiply
each indicator by a function w, such that E(|w(X)|) < ∞, then Kosorok (2008,
Corollary 9.27) guarantees that

sup
H∈H

∣∣∣1/n
n∑

i=1

w(Xi )I{Xi∈H} −
∫

w(X)I{X∈H}dP
∣∣∣ −→ 0, as n → ∞,

w.p.1.

The main result of this section is the following theorem, compare Stute and Zhu
(2002, Theorem1).

Theorem 6.22 Assume E(Y 2) < ∞, Fβ0 , the distribution function of β�
0 X, is con-

tinuous, conditions 6.4.3(i) – 6.4.3(vi) are met, and m(x) = m(β�
0 x, θ0) holds for
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all x ∈ R
p. Then, R̄1

n converges in D[−∞,∞] to a centered Gaussian process
R̄1∞ = R∞ − W�V , where V is a centered (p + q)−dimensional normal vector
with covariance L(ϑ0), W is defined in (6.15), and R∞ is a centered Gaussian
process with covariance function

K (s, t) = E
(
R∞(s) R∞(t)

) =
∫

I{u≤s∧t}σ 2
ϑ0

(u) Fβ0(du).

The covariance between R∞ and W�V is given by

COV(R∞(s),W�(t)V ) = W�(t)E
((
Y − m(β�

0 X, θ0)
)
l(X,Y, ϑ0)I{β�

0 X≤s}
)

,

(6.18)
and the covariance function of R̄1∞ by

K̄ 1(s, t) = K (s, t) + W�(s)L(ϑ0)W (t)

− W�(s)E(I{β�
0 X≤t}(Y − m(β�

0 X, θ0))l(X,Y, ϑ0)) (6.19)

− W�(t)E(I{β�
0 X≤s}(Y − m(β�

0 X, θ0))l(X,Y, ϑ0)).

Proof As the proof will show, the EMEPE is stochastically equivalent to an EMEP
in which the estimated direction of evolution, βn , is replaced by the true direction
β0. To do this, we first define the associated EMEP R1

n

R1
n(u) = n−1/2

n∑

i=1

(
Yi − m(Xi , ϑn)

)
I{β�

0 Xi≤u}, for u ∈ [−∞,∞].

Note that we change the notation m(β�X, θ) back to m(X, ϑ), since the subsequent
proof is closely based on Theorem 6.15 and this theorem uses the notation m(X, ϑ).
Related to R1

n is the BMEP Rn , which is defined by

Rn(u) = n−1/2
n∑

i=1

(
Yi − m(Xi , ϑ0)

)
I{β�

0 Xi≤u}, for u ∈ [−∞,∞].

Due to (6.10), Rn is a BMEP with respect to the input β�
0 X1, . . . , β

�
0 Xn . Since Fβ0

is continuous and E(Y 2) < ∞, we can apply Corollary 6.10 and Theorem 6.8 to get
that Rn tends in distribution to the centered Gaussian process R∞ in D[−∞,∞]
with covariance function

K (s, t) =
∫

I{u≤s∧t}σ 2
ϑ0

(u) Fβ0(du).

The asymptotics of EMEP R1
n can be obtained as in the proof from Theorem 6.15

and we derive that R1
n tends in distribution in D[−∞,∞] to a centered Gaussian

process R1∞ with covariance function
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K 1(s, t) = K (s, t) + W�(s, ϑ0)L(ϑ0)W (t, ϑ0)

− W�(s, ϑ0)E(I{β�
0 X≤t}(Y − m(X, ϑ0))l(X,Y, ϑ0))

− W�(t, ϑ0)E(I{β�
0 X≤s}(Y − m(X, ϑ0))l(X,Y, ϑ0)).

Now take the true error ei = Yi − m(β�
0 Xi , θ0) and split R1

n(u) − R̄1
n(u) as follows:

R1
n(u) − R̄1

n(u) = n−1/2
n∑

i=1

ei
(
I{β�

0 Xi≤u} − I{β�
n Xi≤u}

)

+ n−1/2
n∑

i=1

(
m(β�

n Xi , θn) − m(β�
0 Xi , θ0)

)(
I{β�

n Xi≤u} − I{β�
0 Xi≤u}

)

= A1(βn, ϑ0, u) + A2(ϑn, ϑ0, u).

According to Lemma 6.20, since ϑn → ϑ0 in probability,

sup
u∈R

|A1(βn, ϑ0, u)| −→ 0, as n → ∞,

in probability. For A2(ϑn, ϑ0, u), we use a Taylor expansion and derive by Lemma
6.14, similar as in the proof of Theorem 6.15, that

A2(ϑn, ϑ0, u) = n1/2
(
ϑn − ϑ0

)�
n−1

n∑

i=1

w(Xi , ϑ0)
(
I{β�

n Xi≤u} − I{β�
0 Xi≤u}

) + oP(1),

uniformly in u, as n → ∞. Since n1/2
(
ϑn − ϑ0) tends to a normal distribution, it

remains to show that

sup
u∈R

∣∣∣n−1
n∑

i=1

wk(Xi , ϑ0)
(
I{β�

n Xi≤u} − I{β�
0 Xi≤u}

)∣∣∣ −→ 0, as n → ∞,

in probability, for 1 ≤ k ≤ p + q. For this, assume that |βn − β0| < γ for γ > 0.
Then, for 1 ≤ k ≤ p + q the supremum is bounded from above by

sup
u∈R,|β−β0|<γ

∣∣∣n−1
n∑

i=1

wk(Xi , ϑ0)I{β�Xi≤u} − E
(
wk(X, ϑ0)I{β�X≤u}

)∣∣∣

+
∣∣∣n−1

n∑

i=1

wk(Xi , ϑ0)I{β�
0 Xi≤u} − E

(
wk(X, ϑ0)I{β�

0 X≤u}
)∣∣∣

+ sup
u∈R,|β−β0|<γ

E
(
M(X)|I{β�X≤u} − I{β�

0 X≤u}|
)
.

According to Remark 6.21, the first two terms in the above bound tend to 0. Since
βn → β0 in probability, as n → ∞, the third term tends to 0 with the same argu-
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mentation that was used to prove (6.17). This finally completes the proof of the
theorem. �

6.5 Mathematical Framework: Bootstrap of Marked
Empirical Processes

This section examines the asymptotics of bootstrap variants of the BMEP and EMEP
processes in the GLM context. At first, this is done, in general, without using a
special resamplingmethod and without distinguishing between parametric and semi-
parametric models. Specifications of the theoretical results obtained with respect to
these two concrete models are given at the end of this section.

Let us recall Definition 6.17 of the EMEPE R̄1
n and the proof of Theorem 6.22.

There it was shown that R̄1
n is asymptotically equivalent to the particular EMEP

R1
n(u) = n−1/2

n∑

i=1

(
Yi − m(β�

n Xi , θn)
)
I{β�

0 Xi≤u}.

The corresponding bootstrap analog to this EMEP is given in the following definition.

Definition 6.23 Assume the setup of Definition 6.17, let (Y ∗
1,n, X1), . . . , (Y ∗

n,n, Xn)

be the bootstrap data according to some resampling scheme such that E∗
n(Y

∗
i,n) =

m(Xi , ϑn), where ϑn = (βn, θn) is the estimate of ϑ0 based on the original data.
Denote with ϑ∗

n = (β∗
n , θ

∗
n ) the estimated parameter based on the bootstrap data.

Then

[−∞,∞] � u −→ R1∗
n (u) = n−1/2

n∑

i=1

(
Y ∗
i,n − m(β∗

n
�Xi , θ

∗
n )

)
I{β�

n Xi≤u} (6.20)

defines the bootstrapped estimated marked empirical process.

Remark 6.24 For a direct transfer of EMEPE into the bootstrap world, instead of the
indicator I{β�

n Xi≤u}, one would have to actually use the indicator I{β∗
n

�Xi≤u} in Defini-
tion 6.23. But, as already noted, EMEPE and EMEP are stochastically equivalent for
the original data. Furthermore, the bootstrap version of EMEP has the big advantage
that in Monte Carlo simulations to determine corresponding statistics, the values of
β�
n X1, . . . , β

�
n Xn only have to be sorted once and not separately for each individual

bootstrap dataset, which would be necessary in the case of the indicator I{β∗
n

�Xi≤u}.
Due to this performance advantage, we have only considered the EMEP variant for
the bootstrap procedure here.
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Note that

R1∗
n (u) = n−1/2

n∑

i=1

(
Y ∗
i,n − m(β∗

n
�Xi , θ

∗
n )

)
I{β�

n Xi≤u}

= n−1/2
n∑

i=1

(
Y ∗
i,n − m(βn

�Xi , θn)
)
I{β�

n Xi≤u}

− n−1/2
n∑

i=1

(
m(β∗

n
�Xi , θ

∗
n ) − m(βn

�Xi , θn)
)
I{β�

n Xi≤u}

= R∗
n(u) − S∗

n (u).

Within the bootstrap world, the first process on the right side, that is,

R∗
n(u) = n−1/2

n∑

i=1

(
Y ∗
i,n − m(βn

�Xi , θn)
)
I{β�

n Xi≤u}, (6.21)

can be interpreted as a bootstrap version of a BMEP, sinceE∗
n(Y

∗
i,n) = m(βn

�Xi , θn).
The second process

S∗
n (u) = n−1/2

n∑

i=1

(
m(β∗

n
�Xi , θ

∗
n ) − m(βn

�Xi , θn)
)
I{β�

n Xi≤u} (6.22)

deals with the influence of parameter estimation in m.
The two bootstrap methods considered so far have two things in common. First,

the Xi from the underlying dataset is taken directly into the bootstrap dataset, i.e.,
X∗
i,n = Xi . So X∗

i,n in the bootstrap dataset is deterministic and not random like
in the original dataset! Second, the corresponding Y ∗

i,n has the property E
∗
n(Y

∗
i,n) =

m(β�
n Xi , θn).

The goal in this chapter is to prove that w.p.1, R1∗
n converges toward the same

limit process R̄1∞ as R̄1
n does.

To get a more compact notation, we will writem(x, ϑ) form(β�x, θ) in different
places, where ϑ = (β, θ).

In the forthcoming proofs, we will base ourselves on arguments which require a
special condition and which we now summarize in advance in the following defini-
tion.

Definition 6.25 Let V be a compact neighborhood of ϑ0 and

h : R
p+1 × V � (x, y, ϑ) −→ h(x, y, ϑ) ∈ R

a measurable function such that h(x, y, ϑ) is continuous in ϑ = (β, θ) for all ϑ ∈ V
and (x, y) ∈ R

p+1. We call such a function h uniformly dominated by M over V at
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ϑ0 if there exists a PX,Y− integrable function M such that |h(x, y, ϑ)| ≤ M(x, y)
for all ϑ ∈ V and (x, y) ∈ R

p+1.

In the following two sections, we will sometimes use a technical argument in the
proofs, which we next formulate here as a lemma. The proof of this lemma is based
in its technique on the proof of Lemma 6.20.

Lemma 6.26 Let h be uniformly dominated by M over V at ϑ0 and assume that

H : R � u −→ H(u) = E
(|h(X,Y, ϑ0)|I{β�

0 X≤u}) ∈ R

is uniformly continuous in u. Then we get

(i) As n → ∞,

sup
ϑ∈V, u∈R

∣∣∣
1

n

n∑

i=1

h(Xi ,Yi , ϑ)I{β�Xi≤u} − E
(
h(X,Y, ϑ)I{β�X≤u}

)∣∣∣ −→ 0, w.p.1.

(ii) As ε → 0,

sup
‖ϑ−ϑ0‖≤ε, u∈R

∣∣∣E
(
h(X,Y, ϑ)I{β�X≤u}

) − E
(
h(X,Y, ϑ0)I{β�

0 X≤u}
)∣∣∣ −→ 0.

(iii) If ϑn → ϑ0 w.p.1, then, as n → ∞,

sup
u∈R

∣∣∣
1

n

n∑

i=1

h(Xi ,Yi , ϑn)I{β�
n Xi≤u} − E

(
h(X,Y, ϑ0)I{β�

0 X≤u}
)∣∣∣ −→ 0,

w.p.1.

Proof Theorem 5.66 guarantees that

G = {
h(·, ·, ϑ) : ϑ ∈ V

}

is a PM-GC class (pointwise measurable Glivenko-Cantelli class) with integrable
envelope M . As already pointed out in the proof of Lemma 6.20, the collection

F = {
I{H×R} : H is half-space in Rp

}

is a PM-VC class and therefore a PM-GC class. In summary, we then get from
Kosorok (2008, Corollary 9.27) that

F = {
h(·, ·, ϑ)I{β�·≤u} : (β, θ) = ϑ ∈ V and u ∈ R

}

is a PM-GC class which completes the proof of part (i) of the lemma.
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For (ii), first observe that

sup
‖ϑ−ϑ0‖≤ε, u∈R

∣∣∣E
(
h(X,Y, ϑ)I{β�X≤u}

) − E
(
h(X,Y, ϑ0)I{β�

0 X≤u}
)∣∣∣

≤ E
(

sup
‖ϑ−ϑ0‖≤ε

∣∣h(X,Y, ϑ) − h(X,Y, ϑ0)
∣∣)

+ sup
‖β−β0‖<ε, u∈R

E
(∣∣h(X,Y, ϑ0)

∣∣ ∣∣I{β�X≤u} − I{β�
0 X≤u}

∣∣).

The assumptions, according to the dominated convergence theorem, guarantee that
the first term on the right side converges to 0 as ε → 0. Denote the expectation
appearing in the second term on the right side by A(β, u, ε) and choose K > 0 to
get

A(β, u, ε) ≤ E
(∣∣h(X,Y, ϑ0)

∣∣ ∣∣I{β�X≤u} − I{β�
0 X≤u}

∣∣I{‖X‖≤K }
)

+ E
(∣∣h(X,Y, ϑ0)

∣∣I{‖X‖>K }
)

= A1(β, u, ε, K ) + A2(K ).

Next select γ > 0 to get

A1(β, u, ε, K ) ≤ E
(∣∣h(X,Y, ϑ0)

∣∣ ∣∣I{β�X≤u} − I{β�
0 X≤u}

∣∣I{‖X‖≤K }I{|β�X−β�
0 X |≤γ }

)

+ I{‖β−β0‖>γ/K }E
(∣∣h(X,Y, ϑ0)

∣∣)

≤ E
(∣∣h(X,Y, ϑ0)

∣∣ ∣∣I{β�
0 X≤u+γ } − I{β�

0 X≤u−γ }
∣∣)

+ I{‖β−β0‖>γ/K }E
(∣∣h(X,Y, ϑ0)

∣∣)

= (
H(u + γ ) − H(u − γ )

) + I{‖β−β0‖>γ/K }E
(∣∣h(X,Y, ϑ0)

∣∣)

= A1,1(u, γ ) + A1,2(β, γ, K ).

All in all, this means that we have

A(β, u, ε) ≤ A1,1(u, γ ) + A1,2(β, γ, K ) + A2(K ).

Nowfix δ > 0. SinceE(|h(X,Y, ϑ0)|) < ∞, we can find a K > 0 such that A2(K ) <

δ. H is uniformly continuous and we can therefore find a γ > 0 such that, uniformly
in u, A1,1 < δ. If we take ε < min(γ, γ /K ), then A1,2(β, γ, K ) = 0, and we get for
such an ε that A(β, u, ε) < 2 δ. This shows that

sup
‖β−β0‖<ε, u∈R

A(β, u, ε) −→ 0,

as β → β0. Overall, this proves part (ii) of the lemma.



218 6 Goodness-of-Fit Test for Generalized Linear Models

Since ϑn −→ ϑ0 w.p.1, part (iii) now follows directly from (i) and (ii). This
completes the proof of the lemma. �

6.5.1 Bootstrap of the BMEP

To prove a corresponding functional limit theorem for the bootstrap version of the
BMEP we will make use of the following assumptions.

(i) E
∗
n(Y

∗
i,n) = m(β�

n Xi , θn) ≡ m(Xi , ϑn), where we set as before ϑn = (βn, θn).
There exists a δ > 0 and a non-negative function

he : R
p × R × R

p × Θ � (x, y, β, θ) ≡ (x, y, ϑ) −→ he(x, y, ϑ) ∈ R

such thatE∗
n(|Y ∗

i,n − m(Xi , ϑn)|2+δ) = he(Xi ,Yi , ϑn) and he is uniformly dom-
inated by Me over V at ϑ0 for some function Me and a compact neighborhood
V of ϑ0.

(ii) There exists a non-negative function

hv : R
p × R × R

p × Θ � (x, y, β, θ) ≡ (x, y, ϑ) −→ hv(x, y, ϑ) ∈ R

such that VAR∗
n(Y

∗
i,n) = hv(Xi ,Yi , ϑn) and for all u ∈ R

E
(
hv(X,Y, ϑ0)I{β�

0 X≤u}
) =

∫
I{t≤u}σ 2

ϑ0
(t) Fβ0(dt),

where Fβ0 is the distribution function of β�
0 X and σ 2

ϑ0
is defined under (6.14).

Furthermore, hv is uniformly dominated by Mv over V at ϑ0 for some function
Mv and a compact neighborhood V of ϑ0 and the function

Hv : R × V � (u, β, θ) ≡ (u, ϑ) −→ Hv(u, ϑ) := E
(
I{β�X≤u}hv(X,Y, ϑ)

)

is uniformly continuous in u at ϑ0.
(iii) ϑn −→ ϑ0, as n → ∞, w.p.1.

The first two conditions seem somewhat unusual at first glance. They specify
conditions for the bootstrap moments, which depend on the respective resampling
procedure. Thus, we can treat the two resampling methods with only one theorem.

Theorem 6.27 Assume that conditions 6.5.1(i), 6.5.1(ii), and 6.5.1(iii) are met.
Then, w.p.1, the process R∗

n converges in D[−∞,∞] to a centered Gaussian process
R∞ with covariance function

K (s, t) = E
(
R∞(s) R∞(t)

) =
∫

I{u≤s∧t}σ 2
ϑ0

(u) Fβ0(du).
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Proof To prove the assertion we use again Billingsley (1968, Theorem 15.6).
For this, we first show that the fidis of R∗

n converge in distribution to those of
R∞. Let k ∈ N and take −∞ ≤ t1 < . . . < tk ≤ ∞. According to Cramér-Wold, see
Billingsley (1968, Theorem 7.7), we have to show that, w.p.1, for every 0 
= a ∈ R

k

k∑

j=1

a j R
∗
n(t j ) −→ N (0, a�Σa), as n → ∞,

in distribution, where Σ = (σ j,�)1≤ j,�≤k and σ j,� = COV(R∞(t j ), R∞(t�)) =
K (t j , t�).

Set

Z∗
n =

k∑

j=1

a j R
∗
n(t j ) = n−1/2

n∑

i=1

((
Y ∗
i,n − m(Xi , ϑn)

)( k∑

j=1

a j I{β�
n Xi≤t j }

))

≡
n∑

i=1

ξ ∗
i,n Ai,n,

where ξ ∗
i,n = n−1/2

(
Y ∗
i,n − m(Xi , ϑn)

)
. Note that ξ ∗

1,n, . . . , ξ
∗
n,n are independent and

centered, because of 6.5.1(i). Furthermore, A1,n, . . . , An,n are deterministic with
respect to P∗

n .
We first consider the variance of Z∗

n and get

VAR∗
n(Z

∗
n) =

∑

1≤ j,�≤k

a j

(
1/n

n∑

i=1

I{β�
n Xi≤t j∧t�}VAR

∗
n(Y

∗
i,n)

)
a�

=
∑

1≤ j,�≤k

a j

(1
n

n∑

i=1

I{β�
n Xi≤t j∧t�}hv(Xi ,Yi , ϑn)

)
a�,

where the last equality follows from 6.5.1(ii). Now apply Lemma 6.26 to get that
w.p.1

1

n

n∑

i=1

I{β�
n Xi≤t j∧t�}hv(Xi ,Yi , ϑn) −→

∫
I{u≤t j∧t�}σ

2
ϑ0

(u) Fβ0(du) = K (t j , t�),

as n → ∞, that is,

VAR∗
n(Z

∗
n) −→ a�Σa, as n → ∞,w.p.1. (6.23)

SinceΣ is positive semi-definite, a�Σa ≥ 0. If a�Σa = 0, Chebyshev’s inequality
guarantees that Z∗

n = oP∗
n
(1) and we have that w.p.1,

Z∗
n −→ N (0, a�Σa), as n → ∞.
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In this case, N (0, a�Σa) = N (0, 0) is a degenerated normal distribution. Now
assume that a�Σa > 0. To prove the asymptotic normality of Z∗

n , Serfling (1980,
Corollary to Theorem 1.9.3) can be applied and we have to show that the Lyapunov
condition

1

VAR∗
n(Z

∗
n)

(2+ν)/2

n∑

i=1

E
∗
n

(∣∣ξ ∗
i,n Ai,n

∣∣2+ν
)

−→ 0, as n → ∞ (6.24)

is fulfilled w.p.1, for some ν > 1, where the null set does not depend on a.
Since a�Σa > 0, (6.23), and |Ai,n| ≤ ‖a‖ k, the Lyapunov condition (6.24) is,

therefore, fulfilled if we can prove that

n∑

i=1

E
∗
n

(∣∣ξ ∗
i,n

∣∣2+δ
)

= 1

n1+δ/2

n∑

i=1

E
∗
n

((
Y ∗
i,n − m(Xi , ϑn)

)2+δ
)

= 1

nδ/2

1

n

n∑

i=1

he(Xi ,Yi , ϑn)

−→ 0, as n → ∞,w.p.1,

where δ > 0 and he are chosen according to assumption 6.5.1(i). The assumed prop-
erties of he together with the w.p.1 convergence ϑn → ϑ0 now yield according to
Theorem 5.66

sup
ϑ∈V

∣∣∣
1

n

n∑

i=1

he(Xi ,Yi , ϑ) − E(he(X,Y, ϑ0))

∣∣∣ −→ 0, as n → ∞,w.p.1,

where V is chosen according to 6.5.1(i). This proves the convergence of the finite-
dimensional distributions against N (0,Σ).

It remains to show that (R∗
n)n∈N is tight. Since D[−∞,∞] can be identified

with D[0, 1], compare Remark 6.4, we can adjust Billingsley (1968, Theorem 15.6)
accordingly to prove tightness. For this let−∞ ≤ u1 ≤ u ≤ u2 ≤ ∞. As in the proof
of Theorem 6.8, we get from Lemma 6.26 that w.p.1

lim sup
n→∞

E
∗
n

((
R∗
n(u) − R∗

n(u1)
)2(

R∗
n(u2) − R∗

n(u)
)2)

≤ lim sup
n→∞

(1
n

n∑

i=1

E
∗
n

(
(Y ∗

i,n − m(Xi , ϑn))
2I{u1<β�

n Xi≤u2}
))2

= lim sup
n→∞

(1
n

n∑

i=1

E
∗
n

(
hv(Xi ,Yi , ϑn)I{u1<β�

n Xi≤u2}
))2

= (
Hv(u2, ϑ0) − Hv(u1, ϑ0)

)2
.
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Note that Hv(·, ϑ0) is uniformly continuous.
With a small adaptation in the proof of Billingsley (1968, Theorem 15.6), more

precisely under Billingsley (1968, (15.30) in the proof of Theorem 15.6), this last
result now yields that, with w.p.1, (R∗

n)n∈N is tight. �

6.5.2 Bootstrap of the EMEP

Additionally to the assumptions 6.5.1(i), 6.5.1(ii), and 6.5.1(iii) of Section 6.5.1, we
need further conditions to handle the process S∗

n .

(iv) n1/2(ϑ∗
n − ϑn) −→ Z in distribution, as n → ∞, w.p.1, where Z is a zero

mean multivariate distribution with covariance matrix L(ϑ0).
(v) L(ϑ0) = E(l(X,Y, ϑ0)l�(X,Y, ϑ0)) exists and is positive definite.
(vi) n1/2(ϑ∗

n − ϑn) = n−1/2 ∑n
i=1 l(Xi ,Y ∗

i,n, ϑn) + oP∗
n
(1), as n → ∞, w.p.1.

(vii) E
∗
n(l(Xi ,Y ∗

i,n, ϑn)) = 0 and there exists a δ > 0 and a non-negative function

hl,e : R
p × R × R

p × Θ � (x, y, β, θ) ≡ (x, y, ϑ) −→ hl,e(x, y, ϑ) ∈ R

such that E∗
n(‖l(Xi ,Y ∗

i,n, ϑn)‖2+δ) = hl,e(Xi ,Yi , ϑn). Furthermore, hl,e is uni-
formly dominated over V at ϑ0 for some function Ml,e and a compact neigh-
borhood V at ϑ0.

(viii) The covariance matrix

L∗
n(ϑn) = 1

n

n∑

i=1

E
∗
n
(
l(Xi , Y

∗
i,n, ϑn)l

�(Xi , Y
∗
i,n, ϑn)

) −→ L(ϑ0), as n → ∞,w.p.1.

(ix) For every x ∈ R
p, w(x, ϑ) = ∂m(x, ϑ)/∂ϑ = (w1(x, ϑ), . . . , wp+q(x, ϑ))�

exists and is continuous with respect to ϑ for every ϑ in a neighborhood of ϑ0

(not depending on x).
(x) For 1 ≤ i ≤ p + q, wi (x, ϑ) is uniformly dominated by some Mw over V at

ϑ0.
(xi) The function

W : R × Vβ � (u, β) −→ W (u, β) = E
(
w(X, ϑ0)I{β�X≤u}

) ∈ R
p+q

is uniformly continuous in u at β0, where Vβ = {β : (β, θ0) ∈ V } and V is
given under 6.5.2(ix).

(xii) There exists a function

hcov : R
p × R × R

p × Θ � (x, y, β, θ) ≡ (x, y, ϑ) −→ hcov(x, y, ϑ) ∈ R
p+q

such that E∗
n

(
(Y ∗

i,n − m(Xi , ϑn)) l(Xi ,Y ∗
i,n, ϑn)

) = hcov(Xi ,Yi , ϑn) and for all
u ∈ R
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E
(
hcov(X,Y, ϑ0)I{β�

0 X≤u}
) = E

(
(Y − m(β�

0 X, θ0)) l(X,Y, ϑ0) I{β�
0 X≤u}

)
.

Furthermore, each component hcov,r , where 1 ≤ r ≤ p + q, is uniformly dom-
inated by Mcov,r over V at ϑ0 for some function Mcov,r and a compact neigh-
borhood V of ϑ0, and the function

Hcov : R × V � (u, β, θ) ≡ (u, ϑ) −→Hcov(u, ϑ)

= E
(
I{β�X≤u}hcov(X,Y, ϑ)

) ∈ R
p+q

is uniformly continuous in u at ϑ0.

In the following two remarks, we examine the validity of the moment condi-
tions stated above for the resampling procedures used in the parametric and semi-
parametric bootstraps, respectively.

Remark 6.28 According to the Resampling Scheme5.42 for the parametric case,
Y ∗
i,n has density

f (y|θXi (βn), φn) = exp
(θXi (βn)y − ζ(θXi (βn))

φn

)
h(y, φn),

where βn and φn are the MLE corresponding to the original dataset and θx (β) =
(g ◦ ζ ′)−1(β�x). Now apply (5.19) to get

VAR∗
n(Y

∗
i,n) = hv(Xi ,Yi , ϑn) = φnζ

′′(θXi (βn)).

This representation of hv can be used to find conditions that guarantee the validity
of assumption 6.5.1(ii). The situation is similar with assumption 6.5.1(i).

Various assumptions state that for some function u

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) = h(Xi ,Yi , ϑn)

is uniformly dominated by a function M over a compact neighborhood V of ϑ0. In
case of the parametric bootstrap, we have

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) =
∫

u(Xi , y, ϑn) f (y|θXi (βn), φn)ν(dy),

which is only a function of Xi and ϑn . Looking at the density of Y ∗
i,n reveals that one

could also write it as

exp
(
K1(Xi , ϑn)y + c(y, φn)

)
K2(Xi , ϑn)

which even simplifies further, for instance, for the normal, Poisson, Bernoulli,
gamma, and inverse Gaussian distribution to

exp
(
K1(Xi , ϑn)y + K3(φn)c(y)

)
K2(Xi , ϑn).
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Therefore, if ‖Xi‖ is bounded by some K , one can try to shrink the neighborhood V
and obtain the bound

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) ≤
∫

I{‖Xi‖<K }u(Xi , y, ϑn) exp
(
C1y + C3c(y)

)
C2ν(dy).

On the basis of such a representation, conditions can then be formulated that
ultimately guarantee the required integrability conditions.

Finally, note that Corollary 5.62 already provides a linear expansion and assump-
tion 6.5.2(vi) and 6.5.2(viii) as well as E

∗
n(l(Xi ,Y ∗

i,n, ϑn)) = 0 from assumption
6.5.2(vii).

Remark 6.29 According to the Resampling scheme 5.64 a wild bootstrap is used
and

Y ∗
i,n = m(Xi , ϑn) + τi

(
Yi − m(Xi , ϑn)

)
,

where τi is a Rademacher variable, that is,P(τ = 1) = 1/2 = P(τ = −1), also inde-
pendent of Xi and Yi .

Various assumptions state that for some function u

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) = h(Xi ,Yi , ϑn)

is uniformly dominated by a function M over a compact neighborhood V of ϑ0.
Obviously,

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) = u(Xi ,Yi , ϑn)I{τi=−1} + u(Xi , 2m(Xi , ϑn) − Yi , ϑn)I{τi=1}

.
On the basis of such a representation, conditions can then be formulated that

ultimately guarantee the required integrability conditions.
Finally, note that Corollary 5.81 already provides a linear expansion and assump-

tion 6.5.2(vi) and 6.5.2(viii) as well as E
∗
n(l(Xi ,Y ∗

i,n, ϑn)) = 0 from assumption
6.5.2(vii).

The following lemmashows that condition6.5.2(iv) is a consequenceof conditions
6.5.1(iii), 6.5.2(v), 6.5.2(vi), 6.5.2(vii), and 6.5.2(viii). In order to obtain a more
compact notation, we have retained it in the list of conditions.

Lemma 6.30 Assume that conditions 6.5.1(iii), 6.5.2(v), 6.5.2(vi), 6.5.2(vii), and
6.5.2(viii) hold. Then, w.p.1,

n−1/2(ϑ∗
n − ϑn) −→ Z , as n → ∞,

where Z is multivariate normally distributed with zero mean and covariance matrix
L(ϑ0).

Proof Due to 6.5.2(vi) and Cramér-Wold, see Billingsley (1968, Theorem 7.7), we
have to show that, w.p.1, for every 0 
= a ∈ R

p+q
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Z∗
n = n−1/2

n∑

i=1

a�l(Xi ,Y
∗
i,n, ϑn) −→ N (0, a�L(ϑ0)a), as n → ∞,

in distribution.According to Serfling (1980,Corollary toTheorem1.9.3), this follows
if we can show that for some ν > 0 the Lyapunov condition

1

VAR∗
n(Z

∗
n)

(2+ν)/2

n∑

i=1

E
∗
n

(∣∣n−1/2a�l(Xi ,Y
∗
i,n, ϑn)

∣∣2+ν
)

−→ 0, as n → ∞,w.p.1

holds, where the null set does not depend on a.
For the variance, we get from 6.5.2(viii)

VAR∗
n(Z

∗
n) = 1

n

n∑

i=1

a�
E

∗
n

(
l(Xi ,Y

∗
i,n, ϑn) l

�(Xi ,Y
∗
i,n, ϑn)

)
a = a�L∗

n(ϑn)a

−→ a�L(ϑ0)a,

as n → ∞, w.p.1, where the null set does not depend on a. Since L(ϑ0) is positive
definite and a 
= 0, a�L(ϑ0)a > 0. Thus, the Lyapunov condition is fulfilled if we
can show that w.p.1

1

n1+ν/2

n∑

i=1

E
∗
n

(∣∣a�l(Xi ,Y
∗
i,n, ϑn)

∣∣2+ν
)

−→ 0, as n → ∞.

Apply 6.5.2(vii) and choose ν = δ to get

1

nδ/2

1

n

n∑

i=1

E
∗
n

(∣∣a�l(Xi ,Y
∗
i,n, ϑn)

∣∣2+δ
)

≤ ‖a‖2+δ

nδ/2

1

n

n∑

i=1

hl,e(Xi ,Yi , ϑn).

Corollary 5.67 together with assumption 6.5.1(iii) completes the proof. �

As we have outlined in the introduction to this chapter,

R1∗
n (u) = R∗

n(u) + S∗
n (u),

where S∗
n (u) is defined in (6.22). The main part now is to handle the process S∗

n .
Note that assumptions 6.5.2(iv) and 6.5.1(iii) imply

P
∗
n(‖ϑ∗

n − ϑ0‖ > ε) −→ 0, as n → ∞,w.p.1, (6.25)

for ε > 0. Except for an oP∗
n
(1) term we can therefore assume that ϑ∗

n and ϑn are in
the neighborhood V from assumption 6.5.2(ix) and we can apply Taylor’s expansion
to get

m(x, ϑ∗
n ) = m(x, ϑn) + (ϑ∗

n − ϑn)
�w(x, ϑ̂∗

n (x)),
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where ϑ̂∗
n (x) is in the line segment connecting ϑ∗

n and ϑn . Now, as under (6.15), we
set W (t) = W (t, ϑ0) = (W1(t, ϑ0), . . . ,Wp+q(t, ϑ0))

�, where

Wi (t) = Wi (t, ϑ0) = E

(
wi (X, ϑ0)I{β�

0 X≤t}
)

.

If we insert this in S∗
n , then the following decomposition is obtained.

S∗
n (u) = n1/2

(
ϑ∗
n − ϑn

)�
n−1

n∑

i=1

w(Xi , ϑ̂
∗
n (x))I{β�

n Xi≤u} + oP∗
n
(1)

= n1/2
(
ϑ∗
n − ϑn

)�
W (u, ϑ0) (6.26)

+ n1/2
(
ϑ∗
n − ϑn

)�
n−1

n∑

i=1

(
w(Xi , ϑ̂

∗
n (Xi )) − w(Xi , ϑ0)

)
I{β�

n Xi≤u}

+ n1/2
(
ϑ∗
n − ϑn

)�(
n−1

n∑

i=1

w(Xi , ϑ0)I{β�
n Xi≤u} − W (u, ϑ0)

)

+ oP∗
n
(1).

Lemma 6.31 Let ϑ̂∗
n : R

p → V be a measurable function such that ϑ̂∗
n (x) lies for

each x ∈ R
p in the line segment that connects ϑ∗

0 and ϑ0 and assume that 6.5.1(iii),
6.5.2(iv), 6.5.2(ix), 6.5.2(x), and 6.5.2(xi) hold. Then, w.p.1, for 1 ≤ j ≤ p + q, as
n → ∞,

(i) supu∈R
∣∣∣n−1 ∑n

i=1 w j (Xi , ϑ0)I{β�
n Xi≤u} − Wj (u, ϑ0)

∣∣∣ −→ 0,

(ii) supu∈R
∣∣∣n−1 ∑n

i=1

(
w j (Xi , ϑ̂

∗
n (Xi )) − w j (Xi , ϑ0)

)
I{β�

n Xi≤u}
∣∣∣ = oP∗

n
(1).

Proof Since w j (X, ϑ0) is integrable and the collection of half-spaces in Rp forms a
GC class, we get from Kosorok (2008, Corollary 9.27) that w.p.1

sup
β∈Rp, u∈R

∣∣∣n−1
n∑

i=1

w j (Xi , ϑ0)I{β�Xi≤u} − E
(
w j (X, ϑ0)I{β�X≤u}

)∣∣∣ −→ 0, as n → ∞.

Therefore, we obtain from 6.5.1(iii) that for every ε > 0

lim sup
n→∞

sup
u∈R

∣∣∣n−1
n∑

i=1

w j (Xi , ϑ0)I{β�
n Xi≤u} − Wj (u, ϑ0)

∣∣∣

≤ lim sup
n→∞

sup
β∈Rp, u∈R

∣∣∣n−1
n∑

i=1

w j (Xi , ϑ0)I{β�Xi≤u} − E
(
w j (X, ϑ0)I{β�X≤u}

)∣∣∣

+ sup
‖β−β0‖<ε, u∈R

∣∣E
(
w j (X, ϑ0)I{β�X≤u}

) − Wj (u, ϑ0)
∣∣

= sup
‖β−β0‖<ε, u∈R

∣∣En
(
w j (X, ϑ0)I{β�X≤u}

) − Wj (u, ϑ0)
∣∣,
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w.p.1. But the last term on the right side tends to 0, as ε → 0, under the stated
assumptions, with similar arguments as we used in the proof of Lemma 6.26. For the
second part, we get from (6.25) that

sup
u∈R

∣∣∣n−1
n∑

i=1

(
w j (Xi , ϑ̂

∗
n (Xi )) − w j (Xi , ϑ0)

)
I{β�

n Xi≤u}
∣∣∣

≤ n−1
n∑

i=1

sup
‖ϑ−ϑ0‖<ε

∣∣w j (Xi , ϑ) − w j (Xi , ϑ0)
∣∣ + oP∗

n
(1).

Now, by condition 6.5.2(x),

n−1
n∑

i=1

sup
‖ϑ−ϑ0‖<ε

∣∣w j (Xi , ϑ)−w j (Xi , ϑ0)
∣∣

−→ E

(
sup

‖ϑ−ϑ0‖<ε

∣∣w j (Xi , ϑ) − w j (Xi , ϑ0)
∣∣
)
,

as n → ∞, w.p.1. Due to the assumptions 6.5.2(ix) and 6.5.2(x), the last expectation
tends to 0, as ε → 0, by an application of the dominated convergence theorem. This
proves the lemma. �

Under the assumptions of Lemma 6.31 we get from (6.26) that uniformly in u

S∗
n (u) = n1/2

(
ϑ∗
n − ϑn

)�
W (u, ϑ0) + oP∗

n
(1), w.p.1.

Now, use the asymptotic linear representation of ϑ∗
n of condition 6.5.2(vi) for

further modification of S∗
n to get

S∗
n (u) = n−1/2

n∑

i=1

l�(Xi ,Y
∗
i,n, ϑn)W (u) + oP∗

n
(1), w.p.1, (6.27)

uniformly in u. Here and in the rest of this section we use W (u) for W (u, ϑ0).

Theorem 6.32 Assume that conditions 6.5.1(i)–6.5.1(iii) and 6.5.2(v)–6.5.2(xii)
hold. Then, w.p.1, R1∗

n converges in D[−∞,∞] to a centered Gaussian process
R̄1∞ with covariance function

K̄ 1(s, t) = K (s, t) + W�(s)L(ϑ0)W (t)

− W�(s)E(I{β�
0 X≤t}(Y − m(β�

0 X, θ0))l(X,Y, ϑ0))

− W�(t)E(I{β�
0 X≤s}(Y − m(β�

0 X, θ0))l(X,Y, ϑ0)),

where K (s, t) is the covariance function of the BMEP given in Theorem 6.27.
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Proof Due to the assumed conditions, we can use the representation of S∗
n obtained

under (6.27) to get that the two sequences (R1∗
n )n∈N and (R̂1∗

n )n∈N, where

R̂1∗
n (u) = n−1/2

n∑

i=1

((
Y ∗
i,n − m(β�

n Xi , θn)
)
I{β�

n Xi≤u} − l�(Xi ,Y
∗
i,n, ϑn)W (u)

)
,

are asymptotically equivalent in the sense of Billingsley (1968, Theorem 4.1). To
prove the assertion, we apply Billingsley (1968, Theorem 15.6) to (R̂1∗

n )n∈N. Note
that

R̂1∗
n (u) = R∗

n(u) − n−1/2
n∑

i=1

l�(Xi ,Y
∗
i,n, ϑn)W (u)

and (R∗
n)n∈N is tight in D[−∞,∞] according to Theorem 6.27. Furthermore, the

proof of Lemma 6.30 shows that n−1/2 ∑n
i=1 l

�(Xi ,Y ∗
i,n, ϑn) converges to a zero

mean multivariate normal distribution with covariance matrix L(ϑ0), w.p.1. By
assumption 6.5.2(xi), W (·) is continuous. Thus, n−1/2 ∑n

i=1 l
�(Xi ,Y ∗

i,n, ϑn)W (u)

is tight inC[−∞,∞] and therefore also tight in D[−∞,∞]. All in all, the tightness
of (R̂1∗

n )n∈N results, w.p.1.
It remains to show that the fidis of R̂1∗

n converge in distribution to those of R̄1∞. For
this, let k ∈ N, take−∞ ≤ u1 < . . . < uk ≤ ∞, and 0 
= a ∈ R

k . To apply Cramér-
Wold, we have to show that w.p.1

Z∗
n =

k∑

j=1

a j R̂
1∗
n (u j ) −→ N (0, a�Σa), for n → ∞,

in distribution, where Σ = (σr,s)1≤r,s≤k and σr,s = COV(R̄1∞(ur ), R̄1∞(us)) =
K̄ 1(ur , us). A simple rearrangement of the terms in Z∗

n results in

Z∗
n =

n∑

i=1

Y ∗
i,n − m(Xi , ϑn)√

n

k∑

j=1

a j I{β�
n Xi≤u j } − l�(Xi ,Y ∗

i,n, ϑn)√
n

k∑

j=1

a jW (u j )

=
n∑

i=1

ξ ∗
i,n Ai,n − η∗�

i,n B,

where ξ ∗
i,n = n−1/2(Y ∗

i,n − m(Xi , ϑn)) and η∗
i,n = n−1/2l(Xi ,Y ∗

i,n, ϑn). These vari-
ables are centered and (ξ ∗

1,n, η
∗
1,n), . . . , (ξ

∗
n,n, η

∗
n,n) are independent. Furthermore,

Ai,n and B are deterministic with respect to P
∗
n . For the variance of Z

∗
n , this results

in
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VAR∗
n(Z

∗
n) =

n∑

i=1

A2
i,nVAR

∗
n(ξ

∗
i,n) +

n∑

i=1

B�
E

∗
n

(
η∗
i,nη

∗�
i,n

)
B

− 2B�
n∑

i=1

E
∗
n(ξ

∗
i,nη

∗
i,n)Ai,n.

As we have seen in the proof of Theorem 6.27,

n∑

i=1

A2
i,nVAR

∗
n(ξ

∗
i,n) −→

∑

1≤r,s≤k

ar K (us, ur )as, as n → ∞,w.p.1.

Assumption 6.5.2(viii) guarantees that w.p.1, as n → ∞,

n∑

i=1

B�
E

∗
n

(
η∗
i,nη

∗�
i,n

)
B −→ B�L(ϑ0)B =

∑

1≤r,s≤k

asW
�(us)L(θ0)W (ur )ar .

For the last term, conditions 6.5.1(iii), 6.5.2(xii) together with Lemma 6.26 imply
that, w.p.1, as n → ∞,

B�
n∑

i=1

E
∗
n(ξ

∗
i,nη

∗
i,n)Ai,n

=
∑

1≤r,s≤k

arW
�(ur )

1

n

n∑

i=1

hcov(Xi ,Yi , ϑn)I{β�
n Xi≤us }as

−→
∑

1≤r,s≤k

arW
�(ur )E

(
(Y − m(β�

0 X, θ0))l(X,Y, ϑ0)I{β�
0 X≤us }

)
as .

All in all this shows that w.p.1, as n → ∞

VAR∗
n(Z

∗
n) −→

∑

1≤r,s≤k

ar K̄
1(ur , us)as = a�Σa.

If a�Σa = 0, Chebyshev’s inequality implies that Z∗
n = oP∗

n
(1) and we have that

Z∗
n −→ N (0, a�Σa), as n → ∞.

Now assume that a�Σa > 0. According to Serfling (1980, Corollary to Theorem
1.9.3), the validity of the Lyapunov condition

1

VAR∗
n(Z

∗
n)

(2+ν)/2

n∑

i=1

E
∗
n

(|ξ ∗
i,n Ai,n − B�η∗

i,n|2+ν
) −→ 0, as n → ∞,w.p.1,
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for some ν > 0, implies the asymptotic normality of Z∗
n . Note that

E
∗
n

(|ξ ∗
i,n Ai,n − B�η∗

i,n|2+ν
)

=
n∑

i=1

(
E

∗
n

(|ξ ∗
i,n Ai,n − B�η∗

i,n|2+ν
)1/(2+ν)

)2+ν

≤
n∑

i=1

(
E

∗
n

(|ξ ∗
i,n Ai,n|2+ν

)1/(2+ν) + E
∗
n

(|B�η∗
i,n|2+ν

)1/(2+ν)
)2+ν

≤ 22+ν

n∑

i=1

max
(
E

∗
n

(|ξ ∗
i,n Ai,n|2+ν

)
,E∗

n

(|B�η∗
i,n|2+ν

))

≤ 22+ν
( n∑

i=1

E
∗
n

(|ξ ∗
i,n Ai,n|2+ν

) +
n∑

i=1

E
∗
n

(|B�η∗
i,n|2+ν

))
.

Conditions 6.5.1(i) and 6.5.2(vii) allow us to apply the same arguments used to verify
the Lyapunov condition in the proof of Theorem 6.27. This completes the proof. �

Remark 6.33 Note that K̄ 1 matches the covariance given under (6.19). Thus, the
bootstrap version of the EMEP converges to the same process as the EMEPE does.

6.6 Exercises

Exercise 6.1 TheKolmogorov-Smirnov (Dn) and Cramér-vonMises (W 2
n ) statistics

are used in the GOF test. If you want to use another statistics, which property is
necessary so that all GOF-related theorems hold true.

Exercise 6.2 Atwhich point in themathematical framework of themarked empirical
process is the fact necessary that at least one of the covariates is a continuous random
variable.

Exercise 6.3 Compare the performance of the GOF test using the Kolmogorov-
Smirnov and Cramér-von Mises statistics. For instance, extend the plots shown in
Fig. 6.18.

Exercise 6.4 Plot the p−values of the GOF test based on the Kolmogorov-Smirnov
(KS) statistics against the p−values of the GOF test based on the Cramér-von Mises
(CvM) statistics. Make sure that each p−value pair was generated on the same
original and bootstrap datasets.

Investigate a situation where the p-value based on the KS is small and the p-value
based on CvM is large and vice versa. Can you modify one of the datasets in order
to make the difference between the p-values even larger?
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