
Chapter 5
Regression Analysis

Assume we measure the insulin level Y1, . . . ,Yn of n persons. Every person has
a different weight X1, . . . , Xn . Can we somehow explain the insulin level using
the weights? This is the general context of regression analysis. There are different
reasons why such a question might be of interest. For instance, a scientist could
be interested in understanding the mechanics behind insulin level, i.e., which factor
influences the insulin level and how? Other scientists may only be interested in
predicting the insulin level. One common way to achieve this is to find a way to
express the conditional expectation of Y given X . Call the functionm(X) = E(Y |X)

the regression function. This chapter is dedicated tomethods that estimate parametric
forms m(X, ϑ) under various assumptions. We start with the classical linear models
that assume thatm(X, ϑ) = ϑ�X is linear in X while Y follows a normal distribution
first under independence assumptions and later under certain correlation assumptions.
Afterward, we allow other distributions for Y like the negative-binomial distribution
which lead to the classical generalized linear models. The chapter concludes with
semi-parametric models, i.e., we do not explicitly assume a distribution for Y but the
regression function m(X, ϑ) still depends on some (multi-dimensional) parameter
ϑ .

Beside bootstrapping in the classical manner, that is sampling with replacement,
other options are available. Therefore, after investigating the estimators (asymptotic)
distribution we present resampling techniques that can be used to bootstrap the dis-
tribution. Of course, this allows again to estimate confidence intervals or to derive
other statistics, but these results will also be used (in the next chapter) to construct
goodness-of-fit statistics for the regression function itself. Usually, visual techniques
are used to assess if the model fits the data well. The next chapter provides a more
rigorous approach to that leveraging the results from this chapter.
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74 5 Regression Analysis

5.1 Homoscedastic Linear Regression under Fixed Design

Linear models are important statistical tools and are very common in the scientific
literature. In general, more sophisticated regression techniques originate from linear
models. The purpose of linear models, or regression models in general, is to model
or investigate the influence of some variables, usually called independent variables
or covariates, onto another variable, usually called dependent variable. For instance,
to model the price for a real estate (dependent variable) depending on the land area,
year of construction, and so on (covariates). Here the focus would be to investigate
how the covariates are related to the dependent variable and maybe predict the price
only given the covariates.

In biometrics and epidemiology linear models are often used to account for “con-
founding variables”. Suppose we have two groups and our main goal is to investigate
if there is any difference in the level of a specific hormone. If the persons were
randomized properly into two groups, we could use a two-sample t-test to detect
differences in the mean hormone level. But sometimes it is not possible to random-
ize. One reason might be that the two groups are naturally given, for instance, by a
disease state or type. Assume group one is persons with a type 1-diabetes and group
two is persons with type 2-diabetes. These two types of diabetes are very different
from a medical point of view (we do not want to elaborate on this). Nevertheless, the
typical type1-diabetic is young and the typical type2-diabetic is old. If the hormone
level depends on age, the usual two-sample t-test will be misleading, i.e., we over
estimate or under estimate the effect of the diabetes status.We need a two-sample test
that accounts for the difference in the age structure of the two groups. In this case,
age is a “confounding variable” and we want to estimate the effect of the diabetes
type on the hormone level “adjusted for” age.

Now, we generate a dataset following

Y = 100 − 3.5 · I{diabetes=′Type2′} + 0.1 · age + ε,

where ε ∼ N (0, 1) that will be analyzed through the current section.Note, the dataset
also contains the parameter height, which does not contribute to the hormone level.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
hormone_data <-
data.frame(diabetes = gl(2, 50, labels = c("T1", "T2"))) %>%
dplyr::mutate(
age = ifelse(diabetes == "T1",

rnorm(50, mean = 25, sd = 5),
rnorm(50, mean = 60, sd = 5)),

height = rnorm(100, mean = 180, sd = 10),
hormone = 100 - 3.5 * (diabetes == "T2") +
0.1 * age + rnorm(100))

head(hormone_data, n = 2)
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## diabetes age height hormone

## 1 T1 22.19762 172.8959 104.4186

## 2 T1 23.84911 182.5688 103.6973

tail(hormone_data, n = 2)

## diabetes age height hormone

## 99 T2 58.8215 173.8883 102.4031

## 100 T2 54.8679 168.1452 103.2367

Looking at Fig. 5.1, it is obvious that age hides the diabetes effect and the t-test
will not detect any difference in the hormone level with respect to the diabetes status
if age is ignored.

ggplot(hormone_data, aes(x=age, y=hormone, color=diabetes)) +
ylab("hormone level") +
geom_point()

Our data follow a general linear regression model where the hormone levels are
given by

Yi =
p∑

q=1

xi,qβq + εi , 1 ≤ i ≤ n, (5.1)

andwhere the residuals ε1, . . . , εn ∼ F are i.i.d. withE(ε) = 0 andVAR(ε) = σ 2 <

∞, i.e., homoscedasticity. Note, we consider that the model is based on a fixed
design, i.e., xi,q are not random. Although the generation process in our hormone
data sampled age from a normal distribution, xi,q is not considered as random! It is
not unusual to consider the covariates as fixed. The results are then interpreted as
“given the covariates”.

Equation (5.1) can be written in the following compact form:

Y (n) = x(n)β + ε(n),

where
Y (n) = Y = (Y1, . . . ,Yn)� − response vector

x(n) = x =
⎛

⎜⎝
x1,1 . . . x1,p
...

...

xn,1 . . . xn,p

⎞

⎟⎠ − design matrix

ε(n) = ε = (ε1, . . . , εn)
� − vector of residuals

β = (β1, . . . , βp)
� − vector of parameters.

If the first column of x has 1 at every place, the model has an intercept.
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Fig. 5.1 Simulated hormone data. The different age distributions disguise the diabetes effect

Throughout this section we assume maximal rank of x(n) ≡ x so that x(n)�x(n) ≡
x�x is positive definite and hence invertible. The index n will be omitted for nota-
tional convenience.

To estimate the unknown parameter vector β based on the n observations, we take
β̂(n) ≡ β̂, as the projection of Y onto the vector space {z ∈ R

n : z = xγ, γ ∈ R
p}.

Thus for all γ ∈ R
p we have

(Y − x β̂)⊥ xγ ⇐⇒ 〈
Y − x β̂ , xγ

〉 = 0.

The right-hand side is equivalent to

Y�xγ = β̂�x�xγ.

Since this equality has to hold for all γ ∈ R
p we get
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Y�x = β̂�x�x .

Now multiply both sides with the inverse of x�x to get finally after transposing

β̂(n) ≡ β̂ = (x�x)−1x�Y. (5.2)

Substitute into this equation the model for Y to get the representation

β̂ = (x�x)−1x�(xβ + ε) = β + (x�x)−1x�ε, (5.3)

which can easily be handled to prove asymptotic results, as wewill see in this chapter
later on.

Remark 5.1 The estimator (5.2) is known as the least square estimator (LSE),
because it minimizes the sum of the squared errors, i.e.,

∑n
i=1(Yi − ∑p

q=1 xi,qβq)
2.

After the LSE β̂ is obtained, we can use β̂ to define the estimated residuals given
by

ε̂ ≡ (ε̂1, . . . , ε̂n)
� = Y − x β̂ = x(β − β̂) + ε (5.4)

to get with

s2n ≡ (Y − x β̂)�(Y − x β̂)

n
(5.5)

a biased estimator for σ 2 = VAR(ε).

R-Example 5.2 We now calculate the LSE for our hormone data using R standard
function lm. This function also automatically calculates the intercept and takes care
of any coding of non-numerical variables:

hormone_fit <- lm(hormone ˜ diabetes + age + height,
data = hormone_data)

coefficients(hormone_fit)

## (Intercept) diabetesT2 age height

## 1.006844e+02 -2.221115e+00 7.127644e-02 1.698143e-04

Exercises5.86 and 5.87 are dedicated to reproducing the result using other R-
functions.

5.1.1 Model-Based Bootstrap

If we want to use the bootstrap for testing, we have already discussed the necessity
of a resampling procedure that mimics the null hypothesis. This general resampling
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principle should also be applied if we want to use bootstrapping for some statistical
analysis under model assumptions. To be more precise, the bootstrap data should be
drawn under the given model assumptions or at least very close to them.

In this chapter, we focus on the model (5.1), where the residuals are centered
random variables. The LSE β̂ can be used to substitute the true β in our model. Since
the residuals are i.i.d. and therefore not depending on x , we can use the edf. of the
estimated residuals ε̂1, . . . , ε̂n as a base for our resampling. However, we should also
address in our resampling approach that the residuals are centered, that is, E(ε) = 0.

Remark 5.3 If our model (5.1) allows for an intercept, the estimated residuals are
always centered, that is,

∑
1≤i≤n ε̂i = 0. But this is not the case in general when the

intercept is excluded!

This remark tells us that the estimated residuals are not centered if our underlying
model does not has an intercept. To face this, we use the centered estimated residuals

ε̃1 = ε̂1 − μn, . . . , ε̃n = ε̂n − μn, (5.6)

where μn = 1/n
∑

1≤i≤n ε̂i as a base for our resampling. Overall, this leads to the
following resampling procedure which defines the model based bootstrap:

Resampling Scheme 5.4

(A) Based on the observations

(Yi , xi )1≤i≤n ⊂ R
1+p

calculate the LSE β̂(n).
(B) Determine the estimated residuals ε̂1, . . . , ε̂n and denote by F̃n the edf. of the

centered estimated residuals, i.e., of ε̃1, . . . , ε̃n, where ε̃i = ε̂i − μn and μn =
n−1 ∑n

i=1 ε̂i .
(C) Draw an i.i.d. sample ε∗

1, . . . , ε
∗
n ∼ F̃n and define

(Y ∗
i , xi )1≤i≤n, where Y ∗

i = x�
i β̂(n) + ε∗

i

(D) Compute the LSE of the bootstrap sample, i.e., determine

β∗(n) = (x�x)−1x�Y ∗.

In the next example, we apply this approach to a simple model under R.

R-Example 5.5 We now generate 10 bootstrap samples of the coefficient β using
the model fit of the preceding section.
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bootLSE = function(lm_object, R){

# lm_object - a model fit returned by stats::lm
# R - number of MC simulations

# m is a data.frame containing Y (first column) and all
# necessary/used covariates
m <- model.frame(lm_object)

m[,1] <- fitted.values(lm_object)
# m[,1] equals now the covariates times estimate of beta

# Step (B)
res <- residuals(lm_object)
centered_res <- res - mean(res)

getCoef <- function(d, i){
# note m[,1] directly after entering getCoef() equals
# fitted.values(lm_object).

# Step (C)
# here we add an iid sample of the centered residuals
m[,1] <- m[,1] + d[i]

# Step (D)
# refitting using the same model, but the new locally
# modified dataset m, that exists in the scope of getCoef()
coefficients(update(lm_object, data=m))

}

ret <- boot::boot(centered_res, getCoef, R=R)$t
colnames(ret) <- names(coefficients(lm_object))
ret

}
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
bootLSE(hormone_fit, R=10)

## (Intercept) diabetesT2 age height

## [1,] 102.34053 -2.2475860 0.07826922 -0.010915485

## [2,] 99.71085 -2.2493330 0.07342633 0.005127545

## [3,] 99.59317 -2.6704092 0.08138058 0.004740870

## [4,] 98.49276 -1.7184202 0.06237397 0.013339298

## [5,] 102.25480 -3.5801511 0.10722537 -0.013701580

## [6,] 99.15882 -1.7457254 0.05083991 0.011253981

## [7,] 97.88378 -2.3224875 0.07893495 0.014210316

## [8,] 101.89059 -1.5704854 0.04695695 -0.002841336

## [9,] 101.52333 -0.6861021 0.03155923 0.000668564

## [10,] 100.25149 -1.3005371 0.04135630 0.007025591
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In the rest of this section, we will apply the model-based bootstrap to construct
confidence intervals for the single components of β and to test hypotheses about β,
asymptotically. This inferential part is based upon the assumption that

√
n
(
β̂(n) − β

)
,

√
n
(
β̂∗(n) − β̂(n)

)
(5.7)

both tend to the samemultivariate normal distribution.Wewill prove these asymptotic
results later. To get an idea of the variance-covariance structure, recall (5.3) to see
that

β̂ − β = (x�x)−1x�ε.

Therefore, the variance-covariance of β̂ is given by

(
(x�x)−1x�

)
D

(
(x�x)−1x�

)� = σ 2 (x�x)−1 ≡ Σ2(n),

where D is a diagonal p × p matrix with σ 2 as entry in each diagonal component
and 0 for all other components. This variance-covariance matrix could be estimated
by s2n (x�x)−1. Asymptotically, the Formula (5.5) to estimate σ 2 is fine but biased.
Instead, we will use here

σ̂ 2
n = (Y − x β̂)�(Y − x β̂)

n − p
, σ̂ ∗2

n = (Y ∗ − x β̂∗)�(Y ∗ − x β̂∗)
n − p

, (5.8)

where n − p are the degrees of freedom. Thus

Σ̂2(n) = σ̂ 2
n (x�x)−1, Σ̂∗2(n) = σ̂ ∗2

n (x�x)−1

will be used here. The diagonal components of these matrices are variance estimates
of the corresponding components of β̂ and β̂∗, respectively. Denote by

γ̂ 2
q = Σ̂2(n)q,q , γ̂ ∗2

q = Σ̂∗2(n)q,q

the corresponding estimates.
Now we get from (5.7) under proper assumptions that

sup
t∈R

∣∣P
(
(β̂q − βq)/γ̂q ≤ t

) − P
∗
n

(
(β̂∗

q − β̂q)/γ̂
∗
q ≤ t

) ∣∣ −→ 0, as n → ∞

andwe can proceed as in Sect. 3.1 to construct the confidence intervals for the compo-
nents ofβ, seeResamplingScheme3.3. In the next example,we list the corresponding
R-code.

R-Example 5.6 The following R-function is very similar to the one implemented
in R-Example 5.5 and returns the confidence interval for βq , (q = 1, . . . , p).
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bootLSE_ci = function(lm_object, conf.level=0.95, R=999){

# lm_object - a model fit returned by stats::lm
# conf.level - confidence level for the required interval
# R - number of MC simulations

m <- model.frame(lm_object)
m[,1] <- fitted.values(lm_object)
# m[,1] equals now the covariates times estimate of beta

res <- residuals(lm_object)
centered_res <- res - mean(res)

beta_est <- coefficients(lm_object)

scaled_beta <- function(d, i){
m[,1] <- m[,1] + d[i]
fit <- update(lm_object, data=m)
(beta_est - coefficients(fit)) / sqrt(diag(vcov(fit)))

}

boot_scaled_beta <- boot(centered_res, scaled_beta, R=R)$t

a <- (1 - conf.level) / 2

# calculate the quantiles for the intercept and the covariates
# based on the boostrapped (centered and scaled) beta.
qlu <- apply(boot_scaled_beta, 2, quantile, probs = c(a, 1 - a))

# calculate the standard deviation for the covariates
# based on the original data set.
sigma_est <- sqrt(diag(vcov(lm_object)))

# return the estimate and the confidence intervals
# according the formula "est +/- quantile x standard deviation"
rbind(
lower = beta_est - qlu[2,] * sigma_est,
estimate = beta_est,
upper = beta_est - qlu[1,] * sigma_est)

}

Finally, we can calculate a 95% confidence intervals for the estimates of our hormone
data.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
bootLSE_ci(hormone_fit)

## (Intercept) diabetesT2 age height

## lower 96.82218 -3.6652859 0.03130904 -0.0188421761

## estimate 100.68437 -2.2211152 0.07127644 0.0001698143

## upper 104.55555 -0.7184826 0.11285184 0.0210647928

In multivariate regression analysis, we often want to knowwhether a certain com-
ponent of the model can be neglected or equals a theoretical known value. If we are
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interested in only a single component, one could simply use the confidence interval
for that component. For instance, if the 95% CI for the parameter height contains
zero, then, given the other covariates, height can be neglected. But sometimes one
has to judge about several components simultaneously. Usually, this is necessary
if one of the covariates is ordinal and has more than two categories. For instance,
a specific type of diabetes is called LADA-diabetes. Hence, if our dataset would
consist of all three types, then, in general, this is coded with two covariates, where
the 2-tuple (0,0), (1,0), and (0,1) represents LADA-diabetes, Type1-diabetes, and
Type2-diabetes, respectively. Thus, our model would have 4 β’s, one parameter for
age, one parameter for height, but now also one parameter for Type1-diabetes and one
parameter for Type2-diabetes. In this case, the question if the diabetes type is neces-
sary to explain the hormone data refers to two parameters simultaneously. Note, we
are not constraint to one variable with more than two categories. Imagine our dataset
would contain several parameters from an electrocardiogram. A reasonable question
would be if these group of (electro-cardio) parameters are necessary to explain the
hormone data. Usually, the likelihood ratio test is used to answer such questions, but
a model-based bootstrap can easily be defined.

Resampling Scheme 5.7 We consider two linear models

(M1) Yi =
p∑

q=1

xi,qβq + εi

and

(M2) Yi =
p̃∑

q=1

xi,qβq + εi ,

where i = 1, . . . , n and p̃ < p.

(A) Obtain the LSE, denoted by β̂M1, under model M1 and calculate the correspond-
ing Mahalanobis distance d(β̂M1, S), that is

√
(β̂M1

p̃+1, . . . , β̂
M1
p )�S−1(β̂M1

p̃+1, ..., β̂
M1
p ),

where S is the estimated covariance of (β̂M1
p̃+1, . . . , β̂

M1
p ).

(B) Fit model M2 and generate m bootstrap datasets according to the fitted model
M2 using (A)–(C) from Resampling Scheme5.4.

(C) Fit model M1 to each bootstrap dataset and obtain in the k-th fit (k = 1, . . . ,m)
the Mahalanobis distance d(β̂

∗,M1
k , S∗

k ), where S∗
k is the covariance of (β̂∗,M1

k; p̃+1,

. . . , β̂
∗,M1
k;p ).

(D) Take
1

m

m∑

k=1

I{d(β̂
∗,M1
k ,S∗

k )>d(β̂M1,S)}
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as a p-value for comparing model M1 and M2.

Proving that RSS5.7 works, i.e., can be used to compare the two models is left to
the reader, see Exercise 5.88.

R-Example 5.8 Assumewewant to test if the age andheight are necessary to explain
thehormonedata, i.e., H0 : (βage, βheight) = (0, 0)versusH1 : (βage, βheight) �= (0, 0).
Although height does not influence the hormone level, H1 is true because age has an
effect on the hormone level.

boot_cmp_M1_M2 = function(m1_frml, m2_frml, data, R = 999){
# M2 must be the smaller model

# m1_frml - formula for model M1
# m2_frml - formula for model M2
# data - data to be modeled
# R - number of MC simulations

fit_M1 = lm(m1_frml, data = data)
fit_M2 = lm(m2_frml, data = data)

# we only need the coefficients that are in M1 an not in M2
names_extra_coef = setdiff(
names(coefficients(fit_M1)),
names(coefficients(fit_M2)))

# Step (A)
# coefficients, variances and the Mahalanobis distance
# for the additional covariates of the larger model M1
coef_m1 = coefficients(fit_M1)[names_extra_coef]
S = vcov(fit_M1)[names_extra_coef,names_extra_coef]
S_inv = solve(S)
maha_dist = sqrt(t(coef_m1) %*% S_inv %*% coef_m1)[1,1]

# m is a data.frame containing Y (first column) and all
# necessary/used covariates
m = model.frame(fit_M1)

# Step (B)
# m[,1] equals covariates times estimate of beta under M2
m[,1] = fitted.values(fit_M2)
res = residuals(fit_M2)

centered_res = res - mean(res)

get_standardized_beta = function(d, i){
# This following still belongs to Step (B)
# here we add an iid sample of the centered residuals, i.e.
# generating a data set under model M2
m[,1] = m[,1] + d[i]

# Step (C)
# refitting using this new data set under model M1
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refit = update(fit_M1, data=m)
coef_refit = coefficients(refit)[names_extra_coef]
S_boot = vcov(refit)[names_extra_coef,names_extra_coef]
S_inv_boot = solve(S_boot)

sqrt(t(coef_refit) %*% S_inv_boot %*% coef_refit)[1,1]
}
boot_maha_dist = boot::boot(centered_res, get_standardized_beta,

R=R)

# Step (D)
c(pvalue = mean(boot_maha_dist$t > maha_dist))

}

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
# checking H0: beta(height) = 0, H1: beta(height) != 0
# H0 holds true
boot_cmp_M1_M2(hormone ˜ diabetes + age + height,

hormone ˜ diabetes + age, data=hormone_data)

## pvalue

## 0.983984

# checking H0; (beta(age), beta(height)) = (0,0),
# H1: (beta(age), beta(height)) != (0,0)
# H1 holds true
boot_cmp_M1_M2(hormone ˜ diabetes + age + height,

hormone ˜ diabetes, data=hormone_data)

## pvalue

## 0.005005005

5.1.2 LSE Asymptotic

We start this section with an investigation of asymptotic normality of the LSE. In
order to apply Cramér-Wold device later on, we provide the following lemma.

Lemma 5.9 Let a� = (a1, . . . , ap) be a fixed vector. Assume the linear model (5.1)
as stated in the introduction. In addition we assume that

(i) n−1x�x −→ V , for some positive definite p × p matrix V .

Then, as n → ∞,
n−1/2a�x�ε −→ N (0, ρ2),

where ρ2 = σ 2a�Va.
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Proof Let (b1, . . . , bn) = a�x�, hencea�x�ε = ∑n
i=1 biεi . Sincea

�x�ε is univari-
ate with zero mean, we get by (i) that σ 2 ∑n

i=1 b
2
i = Var(a�x�ε) =

E(a�x�ε(a�x�ε)�) = σ 2a�x�xa = nρ2 + o(n). Thus, in order to verify the Lin-
deberg condition, it suffices to proof

1

n

n∑

i=1

b2i

∫

{|εi |>δn1/2/|bi |}
ε2i dP = o(1), for all δ > 0.

As we have already seen, n−1 ∑n
i=1 b

2
i → a�Va. This entails, for instance, by con-

traposition, that c2n = n−1 maxi=1,...,n b2i converges to zero. Furthermore,

n1/2

|bi | = 1

n−1/2|bi | ≥ 1

cn
−→ ∞, as n → ∞.

Therefore, Lindeberg’s condition is fulfilled, since the integrals corresponding to
this condition can be bounded by E(ε21I{|ε1|≥δ/cn}) which tends to 0, as n → ∞. This
finally completes the proof. �

Theorem 5.10 Assume the linear model (5.1) as stated in the introduction and that
conditions (i) of Lemma5.9 is fulfilled. Then

n1/2(β̂(n) − β) −→ N (0, σ 2V−1), as n → ∞,

in distribution.

Proof Use the representation (5.3) to get

n1/2(β̂(n) − β) = n−1/2(n−1x�x)−1x�ε.

According to Cramér-Wold device the last lemma implies

n−1/2x�ε −→ N (0, σ 2V ), as n → ∞

in distribution. Since (n−1x�x)−1 −→ V−1, due to (i), we get in summary

n−1/2(n−1x�x)−1x�ε −→ N (0, σ 2V−1) as n → ∞

in distribution which completes the proof. �

Theorem 5.11 Under the assumptions of Theorem5.10, we get w.p.1

1

n
x�ε −→ 0 and β̂(n) −→ β, as n → ∞.
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Proof Since

x�ε =
⎛

⎜⎝
x1,1ε1 + . . . + xn,1εn

...
...

...
...

...

x1,pε1 + . . . + xn,pεn

⎞

⎟⎠ ,

we can restrict our considerations to the first coordinate of x and set for notational
convenience xi ≡ xi,1. Furthermore, we set

Sn = n−1
n∑

i=1

xiεi , Sk,n = n−1
n∑

i=2k+1

xiεi , for 2k < n ≤ 2k+1,

and apply Kolmogorov’s inequality to get for δ > 0

P

(
max

2k<n≤2k+1
|Sk,n| ≥ δ

)
≤ δ−22−2k

2k+1∑

i=2k+1

x2i σ
2 = O(2−k),

since n−1 ∑n
i=1 x

2
i −→ v with v ∈ R.

Similarly,

P

(
|S2k | ≥ δ

)
= O(2−k).

This, together with the Borel-Cantelli Lemma, yields

S2k −→ 0, max
2k<n≤2k+1

|Sk,n| −→ 0

w.p.1.
But for 2k < n ≤ 2k+1 we have

|Sn| ≤ |Sk,n| + |S2k |

which finally proves the first assertion.
For the second assertion use representation (5.3) to get

β̂(n) − β =
(1
n
x�x

)−1
n−1x�ε.

Application of (i) together with the first part completes the proof. �
Corollary 5.12 Under the assumptions of Theorem5.10 we get w.p.1

s2n ≡ (Y − x β̂(n))�(Y − x β̂(n))

n
−→
n→∞ σ 2.
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Proof Note that β̂(n) is the LSE and therefore,

(Y − x β̂(n)) ⊥ xγ

for all γ ∈ R
p. Thus

ns2n = (Y − x β̂(n))�Y = (Y − x β̂(n))�(xβ + ε)

= (Y − x β̂(n))�ε = (x(β − β̂(n)) + ε)�ε

= (β − β̂(n))� x�ε + ε�ε.

Now divide both sides by n, use Theorem5.11 and the SLLN to complete the
proof. �

Next, we consider the vector of the estimated residuals given by

ε̂ ≡ (ε̂1, . . . , ε̂n)
� = Y − x β̂ = x(β − β̂) + ε,

where we suppressed n of β̂(n). Thus,

ε̂ − ε = x(β − β̂)

and therefore

n−1
n∑

m=1

(ε̂m − εm) = n−1
n∑

m=1

p∑

j=1

xm, j (β j − β̂ j ).

According to assumption (i) of Lemma5.9 and Cauchy-Schwarz’s inequality we get

1

n

∣∣∣
n∑

m=1

xm, j

∣∣∣ ≤
(1
n

n∑

m=1

x2m, j

)1/2 −→ v
1/2
j .

Furthermore, β j − β̂ j −→ 0 w.p.1 and therefore we obtain

1

n

n∑

m=1

(ε̂m − εm) −→ 0

which finally leads to
1

n

n∑

m=1

ε̂m −→ 0 (5.9)

w.p.1.
In summary, Corollary5.12 together with (5.9) says

Lemma 5.13 Under the assumptions of Theorem5.10 let F̂n be the edf. of the esti-
mated residuals ε̂1, . . . , ε̂n. Then, w.p.1
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μn ≡
∫

x F̂n(dx) −→ 0, s2n =
∫

x2 F̂n(dx) −→ σ 2.

Finally, we want to mention two well-known properties of the LSE.

Lemma 5.14 Under the assumptions of Theorem5.10 we have

E(β̂) = β, COV(β̂) = σ 2(x�x)−1.

Proof Recall (5.3)
β̂ = β + (x�x)−1x�ε

and take expectation on both sides to get the first equation, since E(ε) = 0. The
second equation we obtain from

COV(β̂) = E
(
(β̂ − β)(β̂ − β)�

) = (x�x)−1x�
E(εε�)x(x�x)−1

= σ 2(x�x)−1,

since E(εε�) = σ 2 Ip, where Ip denotes the identity matrix of size p × p. �

5.1.3 LSE Bootstrap Asymptotic

In this section, we assume a linear regression model

Y (n) = x(n)β + ε(n)

such that conditions (i) of Lemma5.9 are fulfilled. For the bootstrap we use the
Resampling Scheme5.4.

Lemma 5.15 If the assumptions of Theorem5.10 are fulfilled we have w.p.1, as
n → ∞,

1

n
‖ε̂ − ε‖2 = 1

n

n∑

i=1

(ε̂i − εi )
2 −→ 0 and

1

n
‖ε̃ − ε‖2 = 1

n

n∑

i=1

(ε̃i − εi )
2 −→ 0.

Proof Recall from the last section that ε̂ − ε = x(β − β̂). Thus,

‖ε̂ − ε‖2 = (β − β̂)�x�x(β − β̂).

Now, apply Lemma5.9 and Theorem5.11 to conclude the first convergence. The
second assertion is an immediate consequence of the first part and Lemma5.13, i.e.,
ε̃i − ε̂i = μn → E(ε) = 0 w.p.1. �
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Lemma 5.16 Under the assumptions of Theorem5.10 we have w.p.1,

F̃n −→ F

in distribution, as n → ∞.

Proof Let f be a bounded Lipschitz function, i.e., there exists 0 ≤ K < ∞ such that
for all x, y ∈ R:

| f (x) − f (y)| ≤ K |x − y|.

It follows

1

n

n∑

i=1

| f (ε̃i ) − f (εi )| ≤ K

n

n∑

i=1

|ε̃i − εi | ≤ K
(1
n

n∑

i=1

(
ε̃i − εi

)2)1/2 −→ 0,

as n → ∞, where the last convergence is obtained from Lemma5.15. Hence

∫
f (x) F̃n(dx) −

∫
f (x) Fn(dx) −→ 0, as n → ∞,

where Fn is the edf. of the true residuals ε1, . . . , εn . The assertion follows by applying
the SLLN to

∫
f (x)Fn(dx). �

In the next theorem, we state the bootstrap version of Theorem5.10.

Theorem 5.17 Under the assumption of Theorem5.10 we have, w.p.1,

n1/2(β∗(n) − β̂(n)) −→ N (0, σ 2V−1), as n → ∞.

Proof Note first that

x�x(β∗(n) − β̂(n)) = x�ε∗ =
⎛

⎜⎝
x1,1ε∗

1 + . . . + xn,1ε
∗
n

...
...

...
...

...

x1,pε∗
1 + . . . + xn,pε

∗
n

⎞

⎟⎠ .

Fix a ∈ R
p to obtain, as in the classical situation, i.e., as in the proof of Lemma5.9,

a�x�ε∗ =
p∑

k=1

n∑

m=1

akxm,kε
∗
m =

n∑

m=1

ε∗
m

p∑

k=1

akxm,k =
n∑

m=1

ε∗
mbm .

Since ε∗
1, . . . , ε

∗
n ∼ F̃n are i.i.d., the summands on the right-hand side are independent

and centered. To prove

n−1/2a�x�ε∗ −→ N (0, ρ2),
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as n → ∞, where ρ2 = σ 2a�Va, we have to verify Lindeberg’s condition

1

n

n∑

m=1

b2m

∫

{|x |≥δn1/2/|bm |}
x2 F̃n(dx) −→ 0, as n → ∞,

for all δ > 0. Compare the proof of Lemma5.9 to see that it suffices to verify for an
arbitrarily chosen fixed δ

∫

{|x |≥δ/cn}
x2 F̃n(dx) −→ 0

for some cn → 0. Thus the proof is completed if we can show that

∫

{|x |≥K }
x2 F̃n(dx)

becomes arbitrarily small if n → ∞ for all constants K large enough.
First observe that according to Lemma5.15 and the SLLN we get

∫
x2 F̃n(dx) −→

∫
x2 F(dx) = σ 2, as n → ∞,

w.p.1. Furthermore, Lemma 5.16 and the continuous mapping theorem (Theorem
5.1, Billingsley (1968)) yields for continuity points K of F that, as n → ∞,

∫

{|x |<K }
x2 F̃n(dx) −→

∫

{|x |<K }
x2 F(dx).

In summary we therefore conclude that, w.p.1,

∫

{|x |≥K }
x2 F̃n(dx) =

∫
x2 F̃n(dx) −

∫

{|x |<K }
x2 F̃n(dx) −→

∫

{|x |≥K }
x2 F(dx),

as n → ∞, which completes the proof since the integral on the right-hand side
decreases to 0, as K → ∞. �

5.2 Linear Correlation Model and the Bootstrap

Considering rental prices in Euro, it seems intuitive that rents for small flats differ not
as much as rents for very large flats. In such cases, one could assume that the variance
of a random variable Y , e.g., rent, depends on the covariate X , e.g., size of the flat
in m2. We now generate a very simple dataset that reflects such a heteroscedasticity
using the following structure:
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Fig. 5.2 Simulated rent data

Y = 10 · size + ε(size),

where ε(size) ∼ N (0, 4 · size2).
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gen_rents <- function(N = 100){
data.frame(size = 35 + rexp(n = 100, rate = 1 / 100)) %>%
dplyr::mutate(price = 100 + 10 * size
+ rnorm(100, mean = 0, sd = 2*size))

}
rents <- gen_rents()

Of course, heteroscedasticity may have many faces but the funnel shape as illustrated
in Fig. 5.2 is a very typical one.
The following model, compare Stute (1990), allows such a heteroscedastic situation.
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Definition 5.18 The linear correlation model fulfills:

(i) (Yi , Xi ), i ≥ 1, i.i.d. random vectors in R1+p.
(ii) Yi = X�

i β + εi for some β� = (β1, . . . , βp) ∈ R
p.

(iii) The matrix Σ = E(Xi X�
i ) is finite and positive definite.

(iv) For all i ≥ 1 and q = 1, . . . , p it holds that E(Xi,qεi ) = 0.
(v) The matrix M = (Mq,s)1≤q,s≤p, where Mqs = E(Xi,q Xi,sε

2
i ) exists.

Remark 5.19 By (i) and (ii) from Definition5.18 εi is a sequence of i.i.d. random
variables.

Remark 5.20 Condition (i) and (ii) also holds for the homoscedastic linear regres-
sion. Under the fixed designwe assumed that n−1xx� → V , cf. Lemma5.9 (i), which
is similar to Condition (iii). Moreover, the fixed design implicitly made the covari-
ate and residuals uncorrelated, i.e., Condition (iv). Besides the randomness of the
covariates, the major difference now is the condition (v), i.e., we explicitly allow
dependency between covariates and residuals.

As before we denote the design matrix by

X =
⎛

⎜⎝
X1,1 . . . X1,p
...

...
...

Xn,1 . . . Xn,p

⎞

⎟⎠ .

Although Xi may be related to εi somehow, the usually LSE β̂ = (X�X)−1X�Y is
a reasonable estimator, i.e., as n → ∞,

β̂(n) → β

w.p.1 and

n1/2(β̂(n) − β) −→ N (0,Σ−1MΣ−1), (5.10)

in distribution, cf. Sect. 5.2.3. Since X is random, (X�X)−1 may not exist for fixed
n. However, the asymptotic results are not affected by this technical issue. For ease
of simplicity, we postpone to address this problem till actually proving the results in
the later sections. From the practical point of view, if (X�X)−1 does not exist for a
particular dataset, one could use the Moore-Penrose inverse. It is well known that β̂
based on the Moore-Penrose inverse minimizes the least square error. However, be
aware of the fact that in this case other β̃ exist that also minimize the least square
error. Hence, interpreting the coefficients is not possible anymore.

Note that the estimator is not unbiased anymore:

E(β̂) = β + E((X�X)−1X�ε). (5.11)
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This bias is technically problematic because the determinant of (X�X)−1 is the
inverse of det(X�X). Therefore we need that at least the expectation of the inverse
of det(X�X) exists. For instance, assume that X�X = Z is a random variable
in R with finite expectation, then E(1/Z) must not exist. For two dimensions the
complexity increases dramatically. Assume that

X�X =
(
Z1 Z2

Z2 Z3

)
,

then we need that E
(
(Z1Z3 − Z2

2)
−1

)
must be finite. We will prove, under certain

conditions, that n1/2E((X�X)−1X�ε) → 0, confer to Theorem5.30. This shows that
estimating and bootstrapping the bias is rather an academic exercise than of practical
interest. It also allowsus to consider the adjusted estimator β̂(n) − E((X�X)−1X�ε),
without interfering the asymptotic distribution (5.10).

Unfortunately, Resampling Scheme5.4 is not appropriate here since it does not
reflect the dependence between the error term εi and the corresponding Xi . In order
to illustrate the inappropriateness of this resampling scheme, i.e., simply resample
the residuals, we plot the original generated rent dataset and a dataset that was
bootstrapped using Resampling Scheme5.4, see Fig. 5.3. Especially, the increased
variance of the rent for small flats indicates that the bootstrap is not correct. Of course,
this results from assigning residuals to small flats that in fact belong to large flats.

fit <- lm(price ˜ size, data = rents)
rents$type <- "original"
boot_rents <- rents
boot_rents$type <- "residual bootstrap"
boot_rents$price <- fitted(fit) + sample(residuals(fit))
ggplot(data=rbind(rents, boot_rents),

aes(y = price, x = size, col = type)) +
xlab("size in mˆ2") +
ylab("price in Euro") +

geom_point() +
theme(legend.position = "bottom")

The following two sections provide resampling schemes thatwork under the linear
correlation model.

5.2.1 Classical Bootstrap

Resampling Scheme5.4 separates the covariates Xi and the error term εi . This is the
reason why this scheme, in general, does not work for the linear correlation model,
because Xi and εi is only uncorrelated, but not independent!

An appropriate resampling scheme is the classical bootstrap that resamples from
the set {(Y1, X1), . . . , (Yn, Xn)}. This scheme implicitly incorporates the error term.
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Fig. 5.3 Simulated rent data and a simple bootstrap using only the residuals

Resampling Scheme 5.21

(A) Based on the observations (Yi , Xi )1≤i≤n calculate the LSE β̂.
(B) Draw an i.i.d. sample (Y ∗

i , X∗
i )1≤i≤n from (Yi , Xi )1≤i≤n.

(C) Compute the LSE of the bootstrap sample, i.e., determine β̂∗ = (X∗�X∗)−1

X∗�Y ∗.

Remark 5.22 Although resampling the residuals is not part of the Resampling
Scheme5.21, we want to emphasize that the proof makes explicit usage of resampled
residuals defined as ε∗

i = Y ∗
i − X∗�

i β̂ for i = 1, . . . , n.

With the resampled residuals as defined in Remark5.22 we obtain the usual sep-
aration

β̂∗ = (X∗�X∗)−1X∗�Y ∗ = β̂ + (X∗�X∗)−1X∗�ε∗.
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This presentation is the key to prove Theorem5.35, i.e.,

n1/2(β̂∗(n) − β̂(n)) −→ N (0,Σ−1MΣ−1)

in distribution which equals the asymptotic distribution of n1/2(β̂(n) − β(n)). This
shows that the classical bootstrap is a reasonable resampling scheme for the linear
correlation model. For instance, we have now the theoretical tool to construct confi-
dence intervals or test two models under the Definition5.18. Taking the covariance
matrix for β̂ stated in this section into account, one can follow the approach we
presented for the homoscedastic model, see Sect. 5.1.1.

5.2.1.1 Bias in the Bootstrap World

Looking again at the bias in the bootstrap world, we see that the expectation does
not exist, because the probability that all rows of X∗ equal the covariate vector of
the first sample X1 is not zero. Therefore, the inverse of X∗�X∗ as well as

E
∗
n((n

−1X∗�X∗)−1n−1X∗�ε∗)

does not exist. An artificial way out could result from the fact that the absolute value
of every component of the inverse of n−1X∗�X∗ is a ratio of a determinant of sub
matrices n−1X∗�X∗ and the determinant of n−1X∗�X∗. This is based on Cramer’s
rule for solving linear equations. The determinant of n−1X∗�X∗ in the denominator
is causing the trouble. Since we know that det(n−1X∗�X∗) and det(n−1X�X)

converge both to the determinant of Σ we could try to substitute the determinant
of n−1X∗�X∗ in the denominator by the determinant of n−1X�X because the last
expression is a constant with respect to E

∗
n . A more practical way out could be to

use the Moore-Penrose pseudo-inverse as an inverse for X∗�X∗. A third and more
pragmatic option could be to introduce additionally the indicator function that is one
if and only if the regular inverse of n−1X∗�X∗ exists. In any case one would have to
prove at least that

n1/2E∗
n(A

−1
n n−1X∗�ε∗) → 0

w.p.1,where A−1
n is one of the discussed surrogates for the regular inverse.Otherwise,

the bias correction would change the asymptotic distribution.
Under Definition5.18 for the special case that we have no intercept and only one

covariate that is additionally bounded away from zero, the bias can be estimated
and used for a correction without disturbing the asymptotic distribution. This can
be seen as follows. Note that the assumption 0 < c ≤ Xi for all i implies that all
moments of Δn = (

∑
1≤i≤n X

∗2
i /n)−1 − (E(X2

1))
−1 with respect to E

∗
n are finite.

For Z∗
n = ∑

1≤i≤n X
∗
i ε

∗
i we have
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∣∣∣n1/2E∗
n

(
β̂∗(n) − β̂(n)

)∣∣∣ =
∣∣∣n1/2E∗

n

(
(

∑

1≤i≤n

X∗2
i /n)−1n−1Z∗

n

)∣∣∣

=
∣∣∣E∗

n

(
(EX2

1)
−1n−1/2Z∗

n

) + E
∗
n

(
n−1/2Δn Z

∗
n

)∣∣∣

=
∣∣∣E∗

n

(
Δnn

−1/2Z∗
n I{|Δn |≤τ }

) + E
∗
n

(
Δnn

−1/2Z∗
n I{|Δn |>τ }

)∣∣∣

≤ τ E
∗
n

(∣∣n−1/2Z∗
n

∣∣) + ‖Δn‖∗
3 · ‖n−1/2Z∗

n‖∗
2 · ‖I{|Δn |>τ }‖∗

6

for all τ > 0, where the third equality follows from the fact that E∗
n(Z

∗
n) = 0, con-

fer Lemma5.33 and where ‖ · ‖∗
r denotes the Lr -norm with respect to E

∗
n . As we

alreadymentioned ‖Δn‖∗
3 is bounded. Furthermore, ‖n−1/2Z∗

n‖∗2
2 = E

∗
n((X

∗
1ε

∗
1)

2) →
E((X1ε1)

2) is also bounded w.p.1. Finally, w.p.1 we have P∗
n(|Δn| > τ) → 0 by the

WLLN for n−1 ∑
1≤i≤n X

∗2
i . Altogether we can conclude that the right-hand side

converges to zero.
Interestingly, the next section (much easier) reveals that the bias in the bootstrap

world applying the wild bootstrap is zero.

5.2.2 Wild Bootstrap

The backbone for all resampling schemes so far is drawing with replacement directly
from the observations or from the estimated residuals. Thewild bootstrap introduced
in this section has a complete different concept. As we already know, we are not
allowed to separate the error term and covariates. Therefore, we leave the estimated
residuals ε̂i and the corresponding covariates Xi together and introduce randomness
by multiplying ε̂i with a standardized random variable τ . This idea goes back to Wu
(1986). For our investigations, we only consider Rademacher random variables, i.e.,
τ = −1 or τ = 1, where both events have probability 1/2.

Resampling Scheme 5.23

(A) Based on the observations (Yi , Xi )1≤i≤n ⊂ R
1+p calculate the LSE β̂(n).

(B) Determine the estimated residuals ε̂i = Yi − X�
i β̂.

(C) Define the wild bootstrap residuals by ε∗
i = ε̂i · τi , where τ1, . . . , τn is an i.i.d.

sequenceofRademacher rvs.which is also independent of (X1, ε1), . . . , (Xn, εn).
(D) Set X∗

i = Xi , Y ∗
i = X∗�

i β̂ + ε∗
i .

(E) Compute β∗(n) = (X∗�X∗)−1X∗�Y ∗, the LSE of the bootstrap sample.

Of course, other distributions for τ are also possible, but they should have zero
mean and variance one. For instance, under certain models the third moments of
n1/2(β̂ − β) can be estimated by the bootstrap if E∗(τ 3) = 1 holds, see Liu (1988).

Changing the way howwe resample the data is also reflected by changing from P
∗
n

to P∗. P∗
n was the measure that puts equal mass on all observed data points, whereas

P
∗ orE∗ consider anything beside the random variables τi as constants! For instance,

E
∗(ε∗

i ) = ∫
ε̂iτP

∗(dτ) = ε̂i1/2 − ε̂i1/2 = 0.
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Remark 5.24 It is important to note that X∗
i,q and ε∗

i are independent with respect
to P

∗ for all q = 1, . . . , p. In Definition5.18 it is only assumed that Xi,q and εi are
uncorrelated for all q = 1, . . . , p.

The implementation of the wild bootstrap is rather simple.

WB = function(lm_object){

# lm_object - a model fit returned by stats::lm

# Step (B)
res <- residuals(lm_object)

# Step (C)
e = 2 * rbinom(length(res), 1, prob = 0.5) - 1
res <- res * e

# Step (D)
# m is a data.frame containing Y (first column) and all
# necessary/used covariates
m <- model.frame(lm_object)
m[,1] <- fitted.values(lm_object) + res
# m[,1] equals now the covariates times estimate of beta plus
# the wild-boostrap-residual

m
}

Applying this algorithm to the rent data is visualized in Fig. 5.4. Clearly the wild
bootstrap introduces variation into the dataset and does not change the funnel shape
of the original dataset in contrast to the simple algorithm that draws directly from
the residuals, see Fig. 5.3. But the bias of least square estimator β̂, see Eq. (5.11),
vanishes for the estimator β̂∗ when the wild bootstrap is applied. This can be seen as
follows. As usual we have β̂∗(n) − β̂(n) = (X∗�X∗)−1X∗�ε∗. Due to the Resam-
pling Scheme5.23 we have X∗

i = Xi and

E
∗((X∗�X∗)−1X∗�ε∗) = (

X�X
)−1

X�
E

∗(ε∗),

where the expectation on the right-hand side is zero. Despite of the departure from the
original model and the changed properties of the least square estimator, it is shown
in Theorem5.41 that the wild bootstrap can be used to approximate the asymptotic
distribution of β̂, i.e., w.p.1

n1/2(β̂∗(n) − β̂(n)) −→ N (0,Σ−1MΣ−1), as n → ∞,

in distribution with respect to P
∗.
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Fig. 5.4 Simulated rent data with a dataset obtained by the wild bootstrap

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
fit <- lm(price ˜ size, data = rents)
rents$type <- "original"
wb_rents <-
fit %>%
WB %>%
dplyr::mutate(type = "wild bootstrap")

ggplot(data=rbind(rents, wb_rents),
aes(y = price, x = size, col = type)) +
xlab("size in mˆ2") +
ylab("price in Euro") +

geom_point() +
theme(legend.position = "bottom")



5.2 Linear Correlation Model and the Bootstrap 99

Finally, we want to remark that the classical bootstrap and the wild bootstrap can
yield under certain circumstances very different bootstrap distributions, see Exercise
5.85.

5.2.3 Mathematical Framework of LSE

As in the regression model, the LSE of β, denoted again by β̂(n) ≡ β̂, equals

β̂ = (X�X)−1X�Y, (5.12)

wherewe use theMoore-Penrose inverse if det(X�X) equals zero.Within asymptotic
considerations this is negligible because

n−1X�X = n−1

⎛

⎜⎜⎜⎜⎜⎝

n∑
i=1

Xi,1Xi,1 . . .
n∑

i=1
Xi,1Xi,p

...
...

...
n∑

i=1
Xi,p Xi,1 . . .

n∑
i=1

Xi,p Xi,p

⎞

⎟⎟⎟⎟⎟⎠

and applying the SLLN gives

Lemma 5.25 Under the assumptions (i) and (iii) of Definition5.18 it holds w.p.1
that

n−1X�X −→ Σ, as n → ∞.

SinceΣ is positive definite, w.p.1 there exists a N = N (ω) such that det(X�X) >

det(Σ)/2 > 0 for all n > N . This means that the Moore-Penrose inverse is used at
most N times.

Furthermore, we have

(X�X)(β̂ − β) = X�X
(
(X�X)−1X�Y − β

)

= X�ε =
( n∑

i=1

Xi,1εi , . . . ,

n∑

i=1

Xi,pεi

)�
(5.13)

and we can apply the multivariate CLT to obtain

Lemma 5.26 Under the assumptions in Definition5.18 it holds that, as n → ∞,

n−1/2(X�X)(β̂ − β) = n−1/2X�ε −→ N (0, M)

in distribution.
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Combining the last two lemmas we get from a well-known result of Cramér.

Theorem 5.27 Under the assumptions in Definition5.18 it holds that, as n → ∞,

n1/2(β̂(n) − β) −→ N (0,Σ−1MΣ−1)

in distribution.

Finally, we have

Theorem 5.28 Under the assumptions (i) – (iv) in Definition5.18 it holds w.p.1 that

β̂(n) −→ β, as n → ∞.

Proof Note that

β̂(n) = (X�X)−1X�Y = β + (X�X)−1X�ε = β + (n−1X�X)−1(n−1X�ε).

Apply Lemma5.25 and the SLLN, upon observing that E(Xi, jεi ) = 0, to complete
the proof. �

Lemma5.26 already provided information about the asymptotic distribution of
n−1/2X�ε, but we even have L2-convergence.

Lemma 5.29 Under the assumptions (i)–(iii) and (v) of Definition5.18 the random
variable n−1/2X�ε converge in L2.

Proof Consider the q−th component of n−1/2X�ε. According to Remark5.19 and
assumption (i) {Xi,qεi }i is a sequence of i.i.d. random variables. Therefore we have

E(n−1/2
n∑

i=1

Xi,qεi )
2 = E(X2

1,qε
2
1) = Mq,q .

The results follow directly fromVitali’s Theorem, see (18) of Theorem5.5 in Shorack
(2000). �

Theorem 5.30 Denote by Sqr (n) the component in the q−th row and r−th column
of (n−1X�X)−1. Assume that E(S2qr (n)) < K < ∞ for all 1 ≤ q, r ≤ p. Under the

Definition5.18 it holds that n1/2E(β̂(n) − β) → 0, as n → ∞.

Proof We have

n1/2E(β̂(n) − β) = E((n−1X�X)−1n−1/2X�ε).

For notational convenience denote by Znr the r−th component of n−1/2X�ε. The
q-th component of n1/2E(β̂(n) − β) equals then
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E
( p∑

r=1

Sqr (n)Znr
) =

p∑

r=1

E(Sqr (n)Znr ).

The result follows if we show that E(Sqr (n)Znr ) converges to zero. According to
Lemma5.25 we have that Sqr (n) converges a.s. to some s ∈ R. Therefore an =
Sqr (n) − s defines a random variable that converges a.s. to zero. Note, by assumption
(iv) we have E(sZnr ) = 0. Choosing δ > 0 gives

|E(Sqr (n)Znr )| = |0 + E(an Znr )|
= ∣∣E

(
an Znr I{|an |≤δ}

) + E
(
an Znr I{|an |>δ}

)∣∣

≤ δE
(|Znr |

) + [
E(a2n)E

(
Z2
nr I{|an |>δ}

)]1/2

≤ δE(Z2
nr )

1/2 + [(
K + 2|s|K 1/2 + s2

)
E

(
Z2
nr I{|an |>δ}

)]1/2
.

By the Lemma of Pratt, we have that E(Z2
nr I{|an |>δ}) converges to zero because

Z2
nr I{|an |>δ} converges a.s. to zero and is bounded by the Z2

nr which converges in
L2. Since δ > 0 can chosen arbitrarily small and E(Z2

nr ) is constant in n, we obtain
altogether that E(Sqr (n)Znr ) converges to zero. �

5.2.4 Mathematical Framework of Classical Bootstrapped
LSE

As already indicated in the introduction, the resampling procedure for the correlation
model cannot be the same as the one stated for the regression model, since the error
terms may be correlated to the corresponding design points and therefore it makes
no sense to tear them apart.

In the classical bootstrap approach the resampling is done according to Fn , the
edf. of the observations. To be precise:

Resampling Scheme 5.31

(A) Based on the i.i.d. observations (Y1, X1), . . . , (Yn, Xn) determine the LSE β̂ and
denotewith Fn the edf. of the observations.Note that Fn now is a (p + 1)−variate
edf.

(B) Draw the classical bootstrap sample as i.i.d. sample (Y ∗
1 , X∗

1), . . . , (Y
∗
n , X∗

n)

according to Fn and denote with X∗ = X∗(n) the corresponding design matrix,
precisely

X∗ =
⎛

⎜⎝
X∗
1,1 . . . X∗

1,p
...

...
...

X∗
n,1 . . . X∗

n,p

⎞

⎟⎠ .

(C) Calculate the LSE of the bootstrap sample according to equation (5.12), i.e.,
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β̂∗(n) = β̂∗ = (X∗�X∗)−1X∗�Y ∗

and set
ε∗
i = Y ∗

i − X∗�
i β̂, for 1 ≤ i ≤ n.

Since the calculation of the LSE is not new and due to the simplicity of step (B),
we omit the implementation of this resampling scheme.

To prove that the bootstrap approximation holds, we follow the approach Stute
(1990) and mimic the proof given in the section above.

Lemma 5.32 Under the assumptions (i) and (iii) of Definition5.18 it holds w.p.1
for Resampling Scheme5.31 that, as n → ∞,

P
∗
n

(
‖ n−1X∗�X∗ − Σ ‖ > ε

)
−→ 0, for each ε > 0.

Proof Note that

n−1X∗�X∗ = n−1

⎛

⎜⎜⎜⎜⎜⎝

n∑
i=1

X∗
i,1X

∗
i,1 . . .

n∑
i=1

X∗
i,1X

∗
i,p

...
...

...
n∑

i=1
X∗
i,p X

∗
i,1 . . .

n∑
i=1

X∗
i,p X

∗
i,p

⎞

⎟⎟⎟⎟⎟⎠
,

where each component of the matrix is an i.i.d. sum with finite first moment given
by the corresponding component of Σ . Thus, we can apply WLLN (Theorem3.7) to
complete the proof. �

Lemma 5.33 Under the assumptions (i) and (ii) of Definition5.18 and Resampling
Scheme5.31 it holds w.p.1 for all 1 ≤ q ≤ p and 1 ≤ i ≤ n that

E
∗
n(X

∗
i,qε

∗
i ) = 0.

Proof Due to the given Resampling Scheme5.31 we get

E
∗
n(X

∗
i,qε

∗
i ) = n−1

n∑

k=1

Xk,q(Yk − X�
k β̂).

But β̂ is by definition chosen such that X β̂ is the projection of Y onto the space
spannedby the columnsof X . Thus, ifwe take columnq of X it has to beperpendicular
to Y − X β̂. Since the sum on the right-hand side equals the inner product of column
q of X with Y − X β̂, this sum has to be 0. �

Lemma 5.34 Under Definition5.18 it holds for the Resampling Scheme5.31 w.p.1
that
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n−1/2X∗�ε∗ −→ N (0, M), as n → ∞,

in distribution with respect to P∗
n.

Proof To prove the Lemma we will use the Cramér-Wold device, i.e., we have to
show that w.p.1

n−1/2a�X∗�ε∗ −→ N (0, a�Ma), as n → ∞,

for all 0 �= a ∈ R
p.

According to the resampling scheme and the definition of ε∗ we get that

X∗�ε∗ =
n∑

k=1

⎛

⎜⎝
X∗
k,1ε

∗
k

...

X∗
k,pε

∗
k

⎞

⎟⎠

is a sum of i.i.d. random vectors which are centered as we have seen in Lemma5.33.
Now, for an arbitrarily chosen 0 �= a ∈ R

p we set

Z∗
n = n−1/2a�X∗�ε∗ = n−1/2

n∑

k=1

p∑

q=1

aq X
∗
k,qε

∗
k

which consists, for a given n, of the i.i.d. rvs. (
∑p

q=1 aq X
∗
k,qε

∗
k )1≤k≤n . Since X∗

k,qε
∗
k

is centered, see Lemma5.33, we obtain

VAR∗
n(Z

∗
n) = E

∗
n

(( p∑

q=1

aq X
∗
1,qε

∗
1

)2) =
p∑

q=1

p∑

r=1

aqarE
∗
n

(
X∗
1,qε

∗
1X

∗
1,rε

∗
1

)

=
p∑

q=1

p∑

r=1

aqar
(
n−1

n∑

i=1

Xi,q Xi,r (Yi − X�
i β̂)2

)
.

From β̂ → β w.p.1, see Theorem5.28, we get w.p.1 from the SLLN

VAR∗
n(Z

∗
n) −→

p∑

q=1

p∑

r=1

aqar Mq,r = a�Ma, as n → ∞.

Thus, it remains to show that Lindeberg’s condition holds, i.e., w.p.1 for every δ > 0

∫

{ | ∑p
q=1 aq X

∗
1,qε

∗
1 |≥δn1/2}

( p∑

q=1

aq X
∗
1,qε

∗
1

)2
dP∗

n −→ 0 as n → ∞.
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Replace δn1/2 by a constant K > 0. Then, we obtain from the SLLN and Theo-
rem5.28 that w.p.1

∫

{ |∑p
q=1 aq X

∗
1,qε

∗
1 |≥K }

( p∑

q=1

aq X
∗
1,qε

∗
1

)2
dP∗

n −→
∫

{ |∑p
q=1 aq X1,qε1|≥K }

( p∑

q=1

aq X1,qε1

)2
dP

which can be made arbitrarily small if K → ∞. This finally proves the lemma. �
Our final theorem of this chapter together with Theorem5.27 shows that the boot-

strap approximation based on the Resampling Scheme5.31 works.

Theorem 5.35 Under Definition5.18 it holds for the Resampling Scheme5.31 w.p.1
that

n1/2(β̂∗(n) − β̂(n)) −→ N (0,Σ−1MΣ−1), as n → ∞,

in distribution with respect to P∗
n.

Proof First note that due to Lemma5.32,

I{det(X∗�X∗)=0} = oP∗
n
(1).

Recall the definition of β̂∗ to verify

n1/2(β̂∗(n) − β̂(n)) = I{det(X∗�X∗) �=0}n1/2(β̂∗(n) − β̂(n)) + oP∗
n
(1)

= I{det(X∗�X∗) �=0}n1/2
(
(X∗�X∗)−1X∗�(X∗β̂ + ε∗) − β̂

) + oP∗
n
(1)

= I{det(X∗�X∗) �=0}n1/2(X∗�X∗)−1X∗�ε∗ + oP∗
n
(1)

= I{det(X∗�X∗) �=0}
(
n−1X∗�X∗)−1(n−1/2X∗�ε∗) + oP∗

n
(1).

Now, apply Lemma5.32 and Lemma5.34 to complete the proof. �

5.2.5 Mathematical Framework of Wild Bootstrapped LSE

Recall that the resampling scheme of the wild bootstrap, RSS5.23, introduces vari-
ability by generating an i.i.d. sequence, (τi )i≥1, of Rademacher rvs. that is addition-
ally independent of the data we want to analyze. Consequently, P∗ or E∗ consider
anything beside the (wild bootstrap) random variables τi as constants! For instance,
E

∗(ε∗
i ) = ∫

ε̂iτ P
∗(dτ) = ε̂i1/2 − ε̂i1/2 = 0. Furthermore, due to the resampling

scheme, X∗�X∗ = X�X , which implies w.p.1 that it is not invertible at most a finite
number of times, see Sect. 5.2.3.

Remark 5.36 We want to remark that the classical boostrap and the wild bootstrap
can yield under certain circumstances very different boostrap distributions and there-
fore also very different confidence intervals, see Exercise5.85
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Lemma 5.37 Under Assumption (i) and (iii) of Definition5.18 using Resampling
Scheme5.23 it holds w.p.1 that

P
∗
(
‖ n−1X∗�X∗ − Σ ‖ > ε

)
−→ 0, as n → ∞,

for each ε > 0.

The proof is left to the reader in Exercise5.89.

Lemma 5.38 Under assumption (i) and (iii) of Definition5.18 using Resampling
Scheme5.23 it holds w.p.1 for all 1 ≤ q ≤ p and 1 ≤ i ≤ n w.p.1 that

E
∗(X∗

i,qε
∗
i ) = 0.

The proof is left to the reader in Exercise5.90.

Remark 5.39 Note that Lemma5.38 holds even if the covariates and residuals are
correlated. This means that the wild bootstrap in any case forces the covariates and
residuals to be uncorrelated. In fact, we even have that the covariates and the residuals
are independent!

Lemma 5.40 Under Definition5.18 using Resampling Scheme5.23 it holds w.p.1
that

n−1/2X∗�ε∗ −→ N (0, M), as n → ∞,

in distribution with respect to P∗.

Proof Due to the Cramér-Wold device it suffices to show

n−1/2a�X∗�ε∗ −→ N (0, a�Ma).

According to Lemma5.40 n−1/2a�X∗�ε∗ is centered. We will now verify the Linde-
berg condition. Let Zni = ∑p

q=1 n
−1/2aq Xi,q ε̂iτi , then n−1/2a�X∗�ε∗ = ∑n

i=1 Zni .
Setting s2n = ∑n

i=1 VAR
∗(Zni ), we have to prove that, w.p.1

1

s2n

n∑

i=1

∫

|Zni |>εsn

Z2
nidP

∗ −→ 0, as n → ∞,

holds for all ε > 0.
We first show, that s2n → a�Ma.



106 5 Regression Analysis

s2n =
n∑

i=1

VAR∗(Zni ) =
n∑

i=1

VAR∗(
p∑

q=1

n−1/2aq Xi,q ε̂iτi
)

= n−1
n∑

i=1

p∑

q,s=1

aqas Xi,q Xi,s ε̂
2
i VAR

∗(τi )

=
p∑

q,s=1

n−1
n∑

i=1

aqas Xi,q Xi,s(Yi − X�
i β̂)2.

From β̂ → β w.p.1, see Theorem 5.28, we get w.p.1 from the SLLN that s2n →
a�Ma. We focus now on the sum of the Lindeberg condition. Due to the very simple
structure of P∗ we can easily integrate with respect to P

∗, i.e.,

n∑

i=1

∫

|Zni |>εsn

Z2
ni dP

∗ =
n∑

i=1

( p∑

q=1

n−1/2aq Xi,q ε̂i
)2
I{|∑p

q=1 n
−1/2aq Xi,q ε̂i |>εsn}

= n−1
n∑

i=1

( p∑

q=1

aq Xi,q ε̂i
)2
I{|∑p

q=1 aq Xi,q ε̂i |>n1/2εsn}.

As we have just seen n−1 ∑n
i=1(

∑p
q=1 aq Xi,q ε̂i )

2 → a�Ma w.p.1. Therefore,

n∑

i=1

∫

|Zni |>εsn

Z2
nidP

∗ → 0, as n → ∞,

w.p.1, which verifies the Lindeberg condition and finishes the proof. �
Finally, we show that β̂∗ from Resampling Scheme5.23 has asymptotically the

same distribution as β̂ under the linear correlation model, see Theorem5.27. Using
Lemma5.37 and Lemma5.40 we can follow the proof of Theorem5.35 to obtain the
following.

Theorem 5.41 Under Definition5.18 using Resampling Scheme5.23 it holds w.p.1
that

n1/2(β̂∗(n) − β̂(n)) −→ N (0,Σ−1MΣ−1), as n → ∞,

in distribution with respect to P∗.

5.3 Generalized Linear Model (Parametric)

In order to motivate the generalized linear model assume we have n independent
univariate outcomes Y1, . . . ,Yn with n corresponding p-dimensional covariate vec-
tors x1, . . . , xn . Within the framework of a classical linear model it is assumed that
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there exists a vector β = (β1, . . . , βp)
� such that Yi = β�xi + εi with normal dis-

tributed error terms εi . A different way to represent this situation is to say that
the regression function E(Y |X = x) = β�x holds and Y given X follows a nor-
mal distribution. In a parametric generalized linear model other distributions beside
the normal distributions are allowed. Depending on the distribution, E(Y |X = x)
may be bounded, e.g., E(Y |X = x) ∈ [0, 1] if Y given X is Bernoulli distributed.
Since β�x is unbounded, a so-called link function g ensures that the expectation
and the covariates are related in an appropriate way, i.e., g(E(Y |X = x)) = β�x .
The most common distributions used are binomial-, Poisson-, negative-binomial-,
Gaussian-, gamma- and inverse gamma-distribution, which all belong to the larger
family of exponential distributions with dispersion, see Sect. 5.3.1 for the definition.
In general, an additional parameterφ, the “dispersion” parameter, is necessary to fully
specify the distribution of Y . For instance, φ = σ 2 for the Gaussian-distribution. For
this introduction, let F(y|x, β, φ) denote the distribution function of Y given x , β

and φ.
After fitting the model using the maximum likelihood approach the (estimated)

distribution of Y is fully specified and can be used to generate new observations.
This is the backbone of the resampling scheme that we formulate now.

Resampling Scheme 5.42

(A) Calculate the MLE β̂n (and if unknown φ̂n) for (Y1, X1), . . . , (Yn, Xn). Note, if
φ is known, for instance in the binomial model, still denote the parameter by φ̂n.

(B) Set X∗
k;i = Xi for all i = 1, . . . , n and all k = 1, . . . ,m.

(C) Generate Y ∗
k;i (independent) according to the distribution F(y|X∗

k;i , β̂n, φ̂n) for
all i = 1, . . . , n and all k = 1, . . . ,m.

(D) Calculate the MLE β̂∗
k;n for (Y ∗

k;1, X
∗
k;1), . . . , (Y

∗
k;n, X

∗
k;n) for all k = 1, . . . ,m.

Fortunately, R provides a method to generate Y ’s from a model fit. This makes the
implementation of this resampling scheme very easy.

model_parametric_boot <- function(model, data, B = 1000) {

# Step A
# was already performed and the result is passed
# to this function via the parameter ’model’
data_boot <- data

# get the name of the dependent variable
y_name <- all.vars(formula(model), max.names = 1)

ret <- sapply(seq_len(B), function(i) {
# Step C
data_boot[[y_name]] <- simulate(model)[,1]

# Step D
m_boot <- update(model, formula. = formula(model),

data = data_boot)
coefficients(m_boot)

})
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ret
}

R-Example 5.43 Theorem5.60 shows that the sampling distribution of β̂n (see The-
orem5.55) can be approximated by the sampling distribution of β̂∗

n . We already
implemented the Resampling Scheme5.42 after its definition and reuse it now to
calculate a bootstrap confidence intervals for β̂n .

fit = glm(hormone ˜ age + diabetes, data = hormone_data,
family = gaussian())

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
beta.boot = model_parametric_boot(fit, hormone_data, B = 1000)

For the confidence intervals, we simply calculate the 2.5% and 97.5% quantiles of
each component of β̂∗

k;n , k = 1, . . . , 1000.

apply(beta.boot, 1, quantile, c(0.025, 0.975)) %>% t

## 2.5% 97.5%

## (Intercept) 99.62433768 101.7633860

## age 0.03263374 0.1124009

## diabetesT2 -3.67543183 -0.7334442

For plausibility purpose, we use the functions R provides to calculate another con-
fidence interval for the components of β̂n . According to the documentation this
confidence interval is based on the profile (likelihood).

confint(fit)

## Waiting for profiling to be done...

## 2.5 % 97.5 %

## (Intercept) 99.65765055 101.7724396

## age 0.03054754 0.1119628

## diabetesT2 -3.71372111 -0.7260019

Obviously, the two methods yield quite similar confidence intervals.

Example 5.44 Bike sharing data, part 1. The following analysis is a bit more
elaborated and we will reuse it in the next chapter to illustrate goodness-of-fit (GOF)
testing for generalized linear models. It is a real-world dataset,1 see Fanaee-T and
Gama (2013), that can be downloaded from the Machine Learning Repository at
the University of California, Irvine, see Dua and Graff (2017). The downloaded files
contain information about ridership of registered and casual users inWashingtonD.C.

1 https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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on an hourly and daily basis. For our analysis, we focus on the information per day
and on the ridership of the registered users only. Beside the number of rented bikes
the dataset provides further important information. For instance, it was recorded if
a particular date was a holiday or a working day and various information about the
weather is provided. This is the variable description from the website

instant: record index
dteday: date
season: season (1:springer, 2:summer, 3:fall, 4:winter)
yr: year (0: 2011, 1:2012)
mnth: month (1 to 12)
hr: hour (0 to 23)
holiday: whether day is holiday or not

(extracted from https://dchr.dc.gov/page/holiday-schedule)
weekday: day of the week
workingday: if day is neither weekend nor holiday is 1, otherwise is 0.
weathersit: 1:= Clear, Few clouds, Partly cloudy, Partly cloudy

2:= Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds,
Mist

3:= Light Snow, Light Rain + Thunderstorm + Scattered clouds,
Light Rain + Scattered clouds

4:= Heavy Rain + Ice Pallets + Thunderstorm +Mist, Snow + Fog
temp: Normalized temperature in Celsius. The values are derived via

(t − tmin)/(tmax − tmin), tmin = −8, tmax = +39 (only in hourly
scale)

atemp: Normalized feeling temperature inCelsius. The values are derived
via (t − tmin)/(tmax − tmin), tmin = −16, tmax = +50 (only in
hourly scale)

hum: Normalized humidity. The values are divided to 100 (max)
windspeed: Normalized wind speed. The values are divided to 67 (max)
casual: count of casual users
registered: count of registered users
cnt: count of total rental bikes including both casual and registered

First, we create some model candidates. Since it is a real dataset, a bit of data
wrangling is necessary before we can model the dataset. For instance, one entry
for humidity is zero. We create a new variable hum_imp that replaces this particular
entry by the average humidity for the corresponding month. Furthermore, the feeling
temperature shows a very unusual value of 0.24. From a univariate point of view a
value of 0.24 is not very unusual, but in the context of the other variables, a warm day
in August, that measurement seems to be far too low, see Fig. 5.5. It is reasonable that
the feeling temperature is an important factor for ridership. Fortunately, the feeling
temperature is highly correlated with the variable temp. Therefore, we can easily
restrict the model activities in this initial phase to temp. Renting a bike is probably
less likely if it is too cold or too hot. The same is probably true for humidity, i.e.,
too damp or too dry, therefore quadratic terms may improve the model. The dataset

https://dchr.dc.gov/page/holiday-schedule
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Fig. 5.5 Scatterplot and correlation of normalized temperature and normalized feeling temperature.
The scatterplot reveals a very unexpected point

already provides a variable that is one for holidays. But people tend to take a vacation
on bridge days or take a vacation for certain periods like the days between christmas
and new year. If we assume that most of the registered riders rent bikes on their
workdays a further variable that is one for such days may also improve the model.
In order to keep it simple, only a variable christmas is created that is one for days
between christmas and new year. We now import and preprocess the data

data_preprocess <- function(dt){
dt %>%
dplyr::mutate_at(
as.factor, # adapt the data-type of various variables
.vars = dplyr::vars(season, yr, mnth, holiday, weekday,

workingday, weathersit)) %>%
dplyr::mutate(
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# set humidity of 0 to missing
hum = ifelse(hum == 0, NA, hum),
christmas = as.factor(
# one between chritmas and new year, zero otherwise
lubridate::month(dteday) == 12 &
dplyr::between(lubridate::day(dteday), 24, 31))) %>%

dplyr::group_by(yr, mnth) %>%
# replace missing humidity with the
# average for that particular year and month
dplyr::mutate(
hum_imp = ifelse(is.na(hum),

mean(hum, na.rm = TRUE),
hum)) %>%

dplyr::ungroup() %>%
# rename dependent variable to ’y’
dplyr::rename(y = registered) %>%
dplyr::select(-instant, -casual, -cnt)

}

ridership <- readr::read_csv("day.csv") %>%
data_preprocess()

## Parsed with column specification:
## cols(
## instant = col_double(),
## dteday = col_date(format = ""),
## season = col_double(),
## yr = col_double(),
## mnth = col_double(),
## holiday = col_double(),
## weekday = col_double(),
## workingday = col_double(),
## weathersit = col_double(),
## temp = col_double(),
## atemp = col_double(),
## hum = col_double(),
## windspeed = col_double(),
## casual = col_double(),
## registered = col_double(),
## cnt = col_double()
## )

Plotting ridership against time reveals (as expected) a seasonal effect but also that
ridership is constantly increasing (taking the season into account), see Fig. 5.6. This
could be a result of growing business, where the bike sharing system started around
2011 and getting more popular until the end of 2012.

ridership %>%
ggplot(aes(x = dteday, y = y)) +
geom_point(aes(color = season)) +
geom_vline(xintercept = lubridate::ymd("2012-10-29"))
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Fig. 5.6 Ridership versus time. Colored according to the seasons. The vertical line shows the date
2012-10-29, when Hurricane Sandy hits the east coast

Therefore an interaction term between yr and season might be helpful. We also see
that a few time points (also left of the vertical line) show unusual low rider ships.
Actually, one should check if those dates are related to certain events in or around
Washington,DC like concerts, sport events, alerts, etc. Instead of checking all of them
we restrict our investigations to the observation with nearly zero ridership. Further-
more, the vertical line indicates that after this observation the ridership recovers only
partly. Of course, one must be careful to not over-interpret such patterns. However,
looking at that odd observation via
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ridership %>%
dplyr::filter(y == 20) %>%
t()

## [,1]

## dteday "2012-10-29"

## season "4"

## yr "1"

## mnth "10"

## holiday "0"

## weekday "1"

## workingday "1"

## weathersit "3"

## temp "0.44"

## atemp "0.4394"

## hum "0.88"

## windspeed "0.3582"

## y "20"

## christmas "FALSE"

## hum_imp "0.88"

The most striking is weathersit= 3 and searching the internet for date 2012-10-29
quickly reveals that hurricane “Sandy” hit the east coast and according to Home-
land Security and Emergency Management Agency, the Mayor of Washington, DC
declared the “state of emergency” on 2012-10-26. This explains the large drop and of
course the effect of this incident lasts at least for few days. But that the ridership did
not recover fully is a bit unexpected. One explanation could be that the infrastructure
of the bike sharing service was partly destroyed so that it was not possible to rent
a bike at a certain places or simple a fraction of the bikes were destroyed during
the hurricane. In order to make a reasonable model even for the time after hurricane
“Sandy” it would be helpful to have a discussion with the people maintaining the
bike sharing system. Anyway, we choose the simple approach and consider only
ridership till hurricane “Sandy”.

ridership <-
ridership %>%
dplyr::filter(dteday < lubridate::ymd("2012-10-29"))

Since ridership is count data, the Poisson- or negative-binomial-distribution are
natural candidates. The univariate distribution of ridership is more or less symmetric.
Hence,we also try the normal distribution as a potential candidate. It is also a common
practice tomodel the logarithmof the dependent variable. Though this is usually done
if the dependent variable is skewed, we want to do it anyway, especially for the GOF
test in the next chapter. Therefore, we also try the normal distribution for the log-
transformed ridership data. The above considerations about the ridership are forged
into a formula that is used for the different models:
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Fig. 5.7 Diagnostic plots for the Poisson model of the ridership

frml <- y ˜ temp + I(tempˆ2) + hum_imp + I(hum_impˆ2) +
windspeed + yr*season + workingday +
weathersit + holiday + christmas

For instance, the quadratic term reflects that the ridership is low if it is to damp/dry
or hot/cold. We start with the Poisson model

fit_poi <- glm(frml, data = ridership, family = poisson())
summary(fit_poi)

##

## Call:

## glm(formula = frml, family = poisson(), data = ridership)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -38.828 -4.156 0.631 4.981 20.098

##
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Fig. 5.8 Diagnostic plots for the negative-binomial-model of the ridership

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 6.045130 0.013906 434.728 < 2e-16 ***

## temp 4.624398 0.030017 154.057 < 2e-16 ***

## I(tempˆ2) -3.731145 0.028160 -132.498 < 2e-16 ***

## hum_imp 1.204983 0.040369 29.849 < 2e-16 ***

## I(hum_impˆ2) -1.306540 0.032813 -39.818 < 2e-16 ***

## windspeed -0.577589 0.009566 -60.376 < 2e-16 ***

## yr1 0.682619 0.003612 188.972 < 2e-16 ***

## season2 0.357664 0.004114 86.941 < 2e-16 ***

## season3 0.437418 0.004495 97.318 < 2e-16 ***

## season4 0.508134 0.003875 131.117 < 2e-16 ***

## workingday1 0.263993 0.001525 173.068 < 2e-16 ***

## weathersit2 -0.077092 0.001796 -42.920 < 2e-16 ***

## weathersit3 -0.483941 0.006381 -75.840 < 2e-16 ***

## holiday1 -0.040959 0.004735 -8.650 < 2e-16 ***
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Fig. 5.9 Diagnostic plots for the Gaussian model of the ridership

## christmasTRUE -0.076190 0.009709 -7.847 4.25e-15 ***

## yr1:season2 -0.255720 0.004329 -59.067 < 2e-16 ***

## yr1:season3 -0.252835 0.004255 -59.416 < 2e-16 ***

## yr1:season4 -0.222000 0.004605 -48.214 < 2e-16 ***

## ---

## Signif. codes:

## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 473082 on 666 degrees of freedom

## Residual deviance: 46065 on 649 degrees of freedom

## AIC: 52718

##

## Number of Fisher Scoring iterations: 4

The fitted negative-binomial model is
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Fig. 5.10 Diagnostic plots for the Gaussian model of the log-transformed ridership

fit_nb <- MASS::glm.nb(frml, data = ridership)
summary(fit_nb)

##

## Call:

## MASS::glm.nb(formula = frml, data = ridership, init.theta =

## 34.38042658,

## link = log)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -5.7714 -0.4465 0.0596 0.5007 3.1589

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 6.16439 0.12836 48.024 < 2e-16 ***
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## temp 4.19282 0.25926 16.172 < 2e-16 ***

## I(tempˆ2) -3.29091 0.25822 -12.745 < 2e-16 ***

## hum_imp 1.17952 0.38049 3.100 0.00194 **

## I(hum_impˆ2) -1.32915 0.30569 -4.348 1.37e-05 ***

## windspeed -0.69844 0.09660 -7.230 4.81e-13 ***

## yr1 0.70208 0.02790 25.164 < 2e-16 ***

## season2 0.36842 0.03263 11.292 < 2e-16 ***

## season3 0.44199 0.03903 11.324 < 2e-16 ***

## season4 0.53353 0.03066 17.403 < 2e-16 ***

## workingday1 0.27441 0.01486 18.472 < 2e-16 ***

## weathersit2 -0.07076 0.01840 -3.846 0.00012 ***

## weathersit3 -0.50100 0.05033 -9.955 < 2e-16 ***

## holiday1 -0.06676 0.04260 -1.567 0.11706

## christmasTRUE -0.10342 0.06484 -1.595 0.11072

## yr1:season2 -0.27139 0.03737 -7.261 3.83e-13 ***

## yr1:season3 -0.27468 0.03749 -7.326 2.37e-13 ***

## yr1:season4 -0.24014 0.04379 -5.484 4.15e-08 ***

## ---

## Signif. codes:

## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for Negative Binomial(34.3804) family

## taken to be 1)

##

## Null deviance: 5267.19 on 666 degrees of freedom

## Residual deviance: 675.41 on 649 degrees of freedom

## AIC: 10373

##

## Number of Fisher Scoring iterations: 1

##

##

## Theta: 34.38

## Std. Err.: 1.91

##

## 2 x log-likelihood: -10334.58

The large Theta≈ 34.38 is quite striking and indicates that we have overdispersed
data. It is also a bit surprising that holiday and Christmas are not significant in the
negative-binomial model compared to the Poisson model. One reason for that is the
strong over-dispersion. Therefore, confidence intervals derived from the negative-
binomial model will be much wider compared to confidence intervals derived from
the Poisson model.
Finally, we fit the Gaussian model,
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fit_norm <- glm(frml, data = ridership, family = gaussian())
summary(fit_norm)

##

## Call:

## glm(formula = frml, family = gaussian(), data = ridership)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2260.79 -258.21 36.69 321.36 1401.59

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1643.02 385.07 -4.267 2.28e-05 ***

## temp 11309.89 776.78 14.560 < 2e-16 ***

## I(tempˆ2) -8984.86 774.45 -11.602 < 2e-16 ***

## hum_imp 3674.60 1141.77 3.218 0.001354 **

## I(hum_impˆ2) -3908.94 917.12 -4.262 2.32e-05 ***

## windspeed -2048.80 290.18 -7.060 4.28e-12 ***

## yr1 1502.10 83.58 17.972 < 2e-16 ***

## season2 572.10 97.76 5.852 7.72e-09 ***

## season3 785.56 117.13 6.707 4.34e-11 ***

## season4 964.84 91.87 10.502 < 2e-16 ***

## workingday1 925.47 44.61 20.745 < 2e-16 ***

## weathersit2 -322.56 55.28 -5.835 8.49e-09 ***

## weathersit3 -1174.80 150.62 -7.800 2.49e-14 ***

## holiday1 -128.81 127.77 -1.008 0.313762

## christmasTRUE -295.45 193.66 -1.526 0.127582

## yr1:season2 168.14 112.16 1.499 0.134343

## yr1:season3 402.05 112.56 3.572 0.000381 ***

## yr1:season4 732.16 131.57 5.565 3.84e-08 ***

## ---

## Signif. codes:

## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for gaussian family taken to be

## 265754.5)

##

## Null deviance: 1614240514 on 666 degrees of freedom

## Residual deviance: 172474646 on 649 degrees of freedom

## AIC: 10244

##

## Number of Fisher Scoring iterations: 2
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and the Gaussian model but with a log-transformed dependent variable,

fit_lognorm <-
ridership %>%
dplyr::mutate(y = log(y)) %>%
glm(frml, data = ., family = gaussian())

summary(fit_lognorm)

##

## Call:

## glm(formula = frml, family = gaussian(), data = .)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.17838 -0.06295 0.01873 0.09874 0.57513

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.14970 0.13762 44.685 < 2e-16 ***

## temp 4.22762 0.27762 15.228 < 2e-16 ***

## I(tempˆ2) -3.29088 0.27679 -11.889 < 2e-16 ***

## hum_imp 1.16735 0.40807 2.861 0.004364 **

## I(hum_impˆ2) -1.35617 0.32778 -4.137 3.97e-05 ***

## windspeed -0.73103 0.10371 -7.049 4.63e-12 ***

## yr1 0.71454 0.02987 23.920 < 2e-16 ***

## season2 0.36643 0.03494 10.487 < 2e-16 ***

## season3 0.44603 0.04186 10.655 < 2e-16 ***

## season4 0.54104 0.03283 16.478 < 2e-16 ***

## workingday1 0.28179 0.01594 17.673 < 2e-16 ***

## weathersit2 -0.07235 0.01976 -3.662 0.000271 ***

## weathersit3 -0.54895 0.05383 -10.197 < 2e-16 ***

## holiday1 -0.08229 0.04567 -1.802 0.071993 .

## christmasTRUE -0.16609 0.06921 -2.400 0.016691 *

## yr1:season2 -0.27502 0.04009 -6.861 1.60e-11 ***

## yr1:season3 -0.28757 0.04023 -7.148 2.37e-12 ***

## yr1:season4 -0.24809 0.04702 -5.276 1.80e-07 ***

## ---

## Signif. codes:

## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for gaussian family taken to be

## 0.03394651)

##

## Null deviance: 184.681 on 666 degrees of freedom

## Residual deviance: 22.031 on 649 degrees of freedom
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## AIC: -343.82

##

## Number of Fisher Scoring iterations: 2

The large coefficients of the first Gaussian model result from the fact that we model
ridership on the original scale, while the other models directly transformed ridership
to the log-scale or used a log-link.

In general it is recommended to inspect the models. Usually one starts with some
diagnostic plots. We now present the four standard diagnostic plots produced by R
for all four models, see Fig. 5.7, 5.8, 5.9, and 5.10, and discuss them afterward.
Obviously, the Q–Q-plots show that all models have problems with very small obser-
vations. We could expect this a bit because we did not investigate the unusual low
ridership for a pattern that they might have in common, for instance, some kind
of events like football games, concerts, and so on. Anyway, surprisingly the Gaus-
sian model looks best with respect to the Q–Q-plot, though the residual plot shows
quadratic behavior.Whereas the residual plots of themodels using the log-link or log-
transformation do not reveal strong non-constant behavior. At this point one could try
to exclude models and try to improve the remaining ones. In the next chapter, we will
come back to this dataset and the model fits and presents a goodness-of-fit test based
on the results of this chapter which provides an additional tool for excluding/rejecting
models.

5.3.1 Mathematical Framework of MLE

Suppose we have n independent univariate outcomes Y1, . . . ,Yn with n correspond-
ing non-random p-dimensional covariate vectors X1, . . . , Xn such that

g(E(Yi )) = β�Xi (5.14)

and assuming that Yi has a density function

f (y|θi , φ) = exp

(
θi y − ζ(θi )

φ

)
h(y, φ) (5.15)

with respect to the dominating σ -finite measure ν, we obtain the GLM, where g, ζ
and h are known functions and g is invertible. Furthermore, it is assumed that φ > 0
and ζ is twice continuously differentiable with ζ ′′(θ) > 0 for all θ such that (5.15)
is a proper density function. Note, every Yi may have its own parameter θi . It should
also be noted that the class of all densities of type (5.15) is called an exponential
family with dispersion parameter φ with respect to the dominating measure ν.

Calculating the moment generating function for a random variable with density
(5.15) is easy:
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E
(
exp(uY )

) =
∫

exp

(
uy + θi y − ζ(θi )

φ

)
h(y, φ)ν(dy)

=
∫

exp

(
ζ(uφ + θi ) − ζ(θi )

φ

)
f (y|uφ + θi , φ)h(y, φ)ν(dy)

= exp

(
ζ(uφ + θi ) − ζ(θi )

φ

)
. (5.16)

The first and second derivative of this moment generating function with respect to u
at u = 0 gives the first and second moment of Y . Obviously, this entails

E(Yi ) = ζ ′(θi ), VAR(Yi ) = φζ ′′(θi ). (5.17)

Thus, the assumptions on φ and ζ ′′ assure that the variance is not zero. A natural
choice for g is the inverse of ζ ′ because then by (5.14) and (5.17) it holds that

β�Xi = g(E(Yi )) = θi .

Such a g is usually called the canonical link function.
Classical text books on statistics assume that the covariate vectors X1, . . . , Xn are

non-random or the analysis is conducted “conditioned” on X1, . . . , Xn . However, in
most scientific fields the covariates are random variables. Hence, we assume that the
covariate vector has distribution function H . In order to emphasize that θi is actually
a function of x and β we use the notation θx (β) to get

P(Y ∈ A, X ∈ B) =
∫

B

∫

A
f (y|θx (β), φ)ν(dy)H(dx). (5.18)

By (5.18) the conditional density of Y given X = x is f (y|θx (β), φ) and according
to Shorack (2000, Example 8.5.1) we obtain

E(exp(uY )|X = x) =
∫

exp(uy) f (y|θx , φ)ν(dy)

= exp

(
ζ(uφ + θx (β)) − ζ(θx (β))

φ

)

by applying the same steps that were used to derive the moment generating function
in the classical situation, that is non-random covariates, see (5.16). Again calculating
the first and second derivative of this moment generating function gives

E(Y |X = x) = ζ ′(θx (β)) and E(Y 2|X = x) = ζ ′(θx (β)) + φζ ′′(θx (β)).

This easily leads to

E(Y |X) = ζ ′(θX (β)), VAR(Y |X) = E
([Y − E(Y |X)]2|X) = φζ ′′(θX (β)).

(5.19)
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Assuming that
g(E(Y |X = x)) = β�x (5.20)

we directly obtain the relation

g(ζ ′(θx (β))) = β�x .

That the second derivative of ζ is greater than zero for all θ implies that ζ ′ is invertible
and therefore θx (β) = (g ◦ ζ ′)−1(β�x). In order to have a more compact notation
we define

ϑ = (β, φ)

and denote the true parameters by ϑ0 = (β0, φ0). For the whole section we assume
that ϑ0 lies in the interior of

Ξ = {ϑ |
∫ ∫

f (y|θx (β), φ)ν(dy)H(dx) < ∞}.

In summary, this results in

Definition 5.45 Let D = (
f (·, θ, φ)

)
(θ,φ)∈Θ×(0,∞)

be an exponential family with
dispersion parameter φ > 0 and densities with respect to a σ−finite measure ν given
by

f (y, θ, φ) = exp
(θy − ζ(θ)

φ

)
h(y, φ),

such that ζ is twice continuously differentiable with ζ ′′(·) > 0. For (Y, X) ∈ R
1+p let

g : R → R be an invertible link function and set θx (β) = (g ◦ ζ ′)−1
(β�x). Assume

that there exists a (β0, φ0) ∈ Ξ such that the conditional distribution of Y given
X = x has ν−density

f (y | θx (β0), φ0) ≡ f (y, β0, φ0, x) = f (y, θx (β0), φ0),

then (Y, X) follows a parametric generalized linear model with link function g with
respect to the class D .

The mainframe for the following proofs of the almost sure convergence of the
maximum likelihood estimator is based on Perlman (1972) and the central tool is the
Kullback-Leibler information.

Definition 5.46 Suppose F and G are probability measures with strict positive den-
sities f and g with respect to a σ−finite measure ν on a measurable space (X,B).
Then

IK L(F : G) =
∫

log( f/g) f dν

defines the Kullback-Leibler information.
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We only need the following two properties of the Kullback-Leibler information.

Lemma 5.47 Suppose F and G are probability measures that are both dominated
by a σ−finite measure ν on a measurable space (X,B) such that the corresponding
ν−densities f and g are strict positive. Then

(i) IK L(F : G) ∈ [0,∞]
(ii) IK L(F : G) = 0 if and only if F = G.

Proof Both assertions follow from Jensen’s inequality, see Shorack (2000, Inequality
4.10). Denote by f and g the densities of F andG with respect to ν. Since the negative
of the logarithm is convex, Jensen’s inequality provides

IK L (F : G) =
∫

− log(g/ f ) f dν ≥ − log

(∫
(g/ f ) f dν

)
= − log

(∫
gdν

)
= 0.

According to the addendum to Jensen inequality Shorack (2000, Inequality 4.10),
equality holds if and only if g/ f = ∫

(g/ f ) f dν, F−a.e. Since
∫
(g/ f ) f dν = 1, this

implies that
∫
I{A} f dν = 0, where A = {x : f (x) �= g(x)}. Furthermore, since f

is strict positive, we have

ν(A) =
∫

I{A}
1

f
f dν = 0.

Denote by Ac the complement of A in X . For an arbitrarily chosen B ∈ B we get

G(B) =
∫

I{B}g dν =
∫

I{B}I{Ac}g dν =
∫

I{B}I{Ac} f dν = F(B)

which shows that F = G. This completes the proof. �

For our purposes, we need tomodify the Kullback-Leibler information as follows.

Definition 5.48 Let ϑ1, ϑ2 ∈ Ξ , then

KH (ϑ1, ϑ2) =
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2)H(dx)

defines the modified Kullback-Leibler information with respect to H , the df. of the
covariate vector X , where Fθx (β),φ denotes the conditional distribution of Y given
X = x .

Remark 5.49 Due to the inner product ofβ and x itmayhappen that θx (β1) = θx (β2),
which imply Fθx (β1),φ = Fθx (β2),φ . Therefore, if P(β�

1 X = β�
2 X) = 1 we have no

chance to distinguish β1 and β2, because the (conditional) distribution of Y does not
change.

We now establish similar results for the modified Kullback-Leibler information as
we did in Lemma 5.47 for the Kullback-Leibler information.
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Lemma 5.50 Let ϑ1, ϑ2 ∈ Ξ , then

(i) KH (ϑ1, ϑ2) ∈ [0,∞].
(ii) KH (ϑ1, ϑ2) = 0 if and only if

∫
I{φ1=φ2,θx (β1)=θx (β2)}H(dx) = 1.

Proof The first assertion follows directly from the definition of the modified
Kullback-Leibler information and from (i) of Lemma 5.47.
If

∫
I{φ1=φ2,θx (β1)=θx (β2)}H(dx) = 1, we easily verify that KH (ϑ1, ϑ2) = 0 holds true.

Finally, assume KH (ϑ1, ϑ2) = 0, then

0 = KH (ϑ1, ϑ2)

=
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2) H(dx)

=
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2)I{φ1=φ2,θx (β1)=θx (β2)} H(dx)

+
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2)(1 − I{φ1=φ2,θx (β1)=θx (β2)}) H(dx)

=
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2)(1 − I{φ1=φ2,θx (β1)=θx (β2)}) H(dx),

where the last equality holds by (ii) of Lemma 5.47. Again, by (ii) of Lemma5.47 we
have that 0 < IK L(Fθx (β1),φ1 : Fθx (β2),φ2) on the complement of {φ1 = φ2, θx (β1) =
θx (β2)}, therefore 1 − I{φ1=φ2,θx (β1)=θx (β2)} = 0 holds true almost surely with respect
to H . �

The log likelihood of an i.i.d. sequence (Y1, X1), . . . , (Yn, Xn) is

�n(ϑ) = �n(β, φ)

=
n∑

i=1

log( f (yi |θxi (β), φ))

=
n∑

i=1

θxi (β)yi − ζ(θxi (β))

φ
+ log(h(yi , φ)).

According to SLLN

lim
n→∞ n−1�n(ϑ) = Eϑ0

(
�1(ϑ)

)

=
∫ ∫

log( f (y|θx (β), φ)) f (y|θx (β0), φ0)ν(dy)H(dx)

=: LH (ϑ0, ϑ),

if Eϑ0

(
�1(ϑ)

)
exists. We will now study LH (ϑ0, ·). The SLLN will allow us to carry

over the results to the corresponding expressions in terms of �n . First, we investigate
when LH (ϑ0, ·) has a unique maximum.



126 5 Regression Analysis

Lemma 5.51 Assume that

(i) LH (ϑ0, ϑ0) < ∞
(ii) for all ϑ ∈ Ξ\{ϑ0} it holds that

∫
I{φ0=φ,θx (β0)=θx (β)}H(dx) < 1

then LH (ϑ0, ·) has a unique maximum at ϑ0.

Proof Due to assumption (ii) and Lemma 5.50 (ii) we obtain

0 < KH (ϑ0, ϑ)

=
∫

IK L(Fθx (β0),φ0 : Fθx (β),φ)H(dx)

=
∫ ∫

log

(
f (y|θx (β0), φ0)

f (y|θx (β), φ)

)
f (y|θx (β0), φ0)ν(dy)H(dx)

= LH (ϑ0, ϑ0) − LH (ϑ0, ϑ).

Note that assumption (i) is necessary to guarantee the last equality, i.e., it prevents
∞ − ∞. Altogether, this shows the assertion. �

Theorem 5.52 Assume that Ξ is compact and

(i) for all ϑ∗ ∈ Ξ exists an open neighborhood V ∗ = V (ϑ∗) of ϑ∗ such that

E

(
sup
ϑ∈V ∗

log f (Y |θX (β), φ)

)
< ∞.

Under the assumption of Lemma 5.51 it holds that ϑ̂n → ϑ0, as n → ∞, w.p.1, where
ϑ̂n is the maximum of �n(·).
Proof The continuity of the density functions and the compactness of Ξ assure
the existence of ϑ̂n ∈ Ξ . Denote by V an arbitrary open neighborhood of ϑ0. Let
U = Ξ\V . If lim supn→∞ supϑ∈U �n(ϑ) − �n(ϑ0) < 0, we can find an N ∈ N such
that supϑ∈U �n(ϑ) < �n(ϑ0) for all n > N . Hence, ϑ̂n ∈ V for all n > N . Therefore,
it is sufficient to prove

P(lim sup
n→∞

sup
ϑ∈U

�n(ϑ) − �n(ϑ0) < 0) = 1. (5.21)

Note that we might have measurability issues becauseU is uncountable. In this case
we would use the inner probability measure.

We will now find a finite cover V1, . . . , Vm for U , where every Vi will have the
property (5.21). Choose ϑ∗ ∈ U arbitrary and denote by Vε(ϑ

∗) open neighborhoods
of ϑ∗ with ⋂

ε>0

Vε(ϑ
∗) = {ϑ∗}.

Choosing ε > 0 such that Vε(ϑ
∗) ⊂ V ∗ and 0 < M < ∞, we obtain
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sup
ϑ∈Vε(ϑ∗)

n−1(�n(ϑ) − �n(ϑ0))

≤ n−1
n∑

i=1

sup
ϑ∈Vε(ϑ∗)

log f (yi |θxi (β), φ) − n−1
n∑

i=1

log f (yi |θxi (β0), φ0)

≤ n−1
n∑

i=1

sup
ϑ∈Vε(ϑ∗)

max{log f (yi |θxi (β), φ),−M} − n−1
n∑

i=1

log f (yi |θxi (β0), φ0).

Applying a series of convergence theorems will establish that this last expression
is less than zero. By assumption (i) the expectation of the following positive part is
finite:

E

((
sup

ϑ∈Vε(ϑ∗)
max{log f (Y |θX (β), φ),−M}

)+)
< ∞.

Furthermore, we have

sup
ϑ∈Vε(ϑ∗)

log f (yi |θxi (β), φ) ≤ sup
ϑ∈Vε(ϑ∗)

max{log f (yi |θxi (β), φ),−M}

≤
(

sup
ϑ∈Vε(ϑ∗)

max{log f (yi |θxi (β), φ),−M}
)+

.

First, we apply the SLLN and obtain that

lim sup
n→∞

sup
ϑ∈Vε(ϑ∗)

n−1(�n(ϑ) − �n(ϑ0))

is less or equal to

E

(
sup

ϑ∈Vε(ϑ∗)
max{log f (yi |θxi (β), φ),−M}

)
− L(ϑ0, ϑ0).

By Lebegue’s dominated convergence theorem this converges for ε → 0 to

E
(
max{log f (yi |θxi (β∗), φ∗),−M}) − L(ϑ0, ϑ0).

Finally, applying Loève (1977, Fatou-Lebesgue-Theorem, page 126), this converges
for M → ∞ to

LH (ϑ0, ϑ
∗) − LH (ϑ0, ϑ0) < 0.

The last inequality is a direct consequence of Lemma 5.51. SinceU is compact there
exist εi and ϑ∗

i such that U ⊂ ∪m
i=1Vεi (ϑ

∗
i ). This completes the proof. �

Note, the next corollary uses the same assumptions as Theorem 5.52 but assumption
(ii) replaces the compactness of Ξ .
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Corollary 5.53 Assume that

(i) for all ϑ∗ ∈ Ξ exists an open neighborhood V ∗ = V (ϑ∗) of ϑ∗ such that

E

(
sup
ϑ∈V ∗

log f (Y |θX (β), φ)

)
< ∞,

(ii) there exists a compact set C such that ϑ0 is an interior point of C and

E

(
sup

ϑ∈Ξ\C
log f (Y |θX (β), φ) − log f (Y |θX (β0), φ0)

)
< 0.

Under the assumption of Lemma 5.51 it holds that ϑ̂n → ϑ0 almost surely, where ϑ̂n

is the maximum of �n(·).
Proof Denote by V an arbitrary open neighborhood of ϑ0. Following the proof of
Theorem 5.52 it is sufficient to show

P(lim sup
n→∞

sup
ϑ∈Ξ\V

�n(ϑ) − �n(ϑ0) < 0) = 1.

Since C is compact, usingU = C\V , we directly obtain from the proof of Theorem
5.52, that

P(lim sup
n→∞

sup
ϑ∈U

�n(ϑ) − �n(ϑ0) < 0) = 1.

Similar as in the proof of Theorem 5.52, but now using (ii), we conclude

sup
ϑ∈Ξ\C

n−1(�n(ϑ) − �n(ϑ0))

< n−1
n∑

i=1

sup
ϑ∈Ξ\C

[log f (yi |θxi (β), φ) − log f (yi |θxi (β0), φ0)]

→ E

(
sup

ϑ∈Ξ\C
log f (Y |θX (β), φ) − log f (Y |θX (β0), φ0)

)
< 0.

Therefore, we obtain

P(lim sup
n→∞

sup
ϑ∈Ξ\C

�n(ϑ) − �n(ϑ0) < 0) = 1.

Without loss of generality we can assume that V ⊂ C . Hence, Ξ\V = Ξ\C ∪U ,
which finally leads to
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P(lim sup
n→∞

sup
ϑ∈Ξ\V

�n(ϑ) − �n(ϑ0) < 0)

= P

(
{lim sup

n→∞
sup

ϑ∈Ξ\C
�n(ϑ) − �n(ϑ0) < 0} ∪ {lim sup

n→∞
sup
ϑ∈U

�n(ϑ) − �n(ϑ0) < 0}
)

= 1.

This concludes the proof. �

The following lemma supports the upcoming proof of the asymptotic normality
of the maximum likelihood estimator.

Lemma 5.54 Let (Ωn,An,Pn) be a sequence of probability spaces. Let Xn (defined
on Ωn) be a random p-vector converging in distribution to X and let An (defined
on Ωn) be a random matrix converging in probability to a constant invertible matrix
A. If Xn = AnYn for all n for some random p-vector Yn (defined on Ωn), then
Yn = A−1Xn + oPn (1).

Proof Let Bn = {det(An) �= 0}. Since det(A) �= 0 and An → A in probability, we
have Pn(Bn) → 1 and I{Bn}A−1

n Xn = I{Bn}Yn = Yn − I{Bc
n }Yn . Obviously, I{Bn}A−1

n =
A−1 + oPn (1) and for all ε < 1

Pn(|I{Bc
n }Yn| > ε) ≤ Pn(I{Bc

n } > ε) = 1 − Pn(Bn) = o(1).

Furthermore, since Xn converges in distribution to X for all ε > 0 there exists a
K > 0 such that Pn(‖Xn‖∞ > K ) < ε, where ‖ · ‖∞ denotes the maximum norm
on Rp, which implies that ‖(A−1 − I{Bn}A−1

n )Xn‖∞ = oPn (1). Altogether, we have

Yn = I{Bn}A
−1
n Xn + oPn (1) = A−1Xn + oPn (1).

This concludes the proof. �

For sake of compactness, for a map m depending on ϑ or only β or φ, denote
by Dr (m) and Dr,s(m) the first partial derivative of m with respect to the r−th
component and the second partial derivative of m with respect to the r−th and s−th
component, respectively. Furthermore, if m is a map from R

p to R, then D(m)

denotes the gradient of m and if m is a map from R
p to R

k , then D(m) denotes
the Jacobi-matrix of m. For instance, f (y|θx (β), φ) is a function of ϑ , therefore
D( f (y|θx (β), φ)) denotes the gradient with respect to ϑ , whereas θx (β) is a function
of β only and therefore D(θx (β)) denotes the gradient with respect to β. Note also
that Dp+1( f (y|θx (β), φ)) is the partial derivative of f (y|θx (β), φ) with respect to
the last component of ϑ which is φ. For a function like c(y, φ) that only depends on
φ, we have D(c(y, φ)) = D1(c(y, φ)).

Theorem 5.55 If

(i) log f (y|θx (β), φ)has continuous secondderivativeswith respect toϑ and there
exits an open neighborhood V ⊂ Ξ of ϑ0 such that for all 1 ≤ r, s ≤ p + 1
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E

(
sup
ϑ∈V

∣∣Dr,s(log f (Y |θX (β), φ))
∣∣
)

< ∞,

(ii) ∫
Dp+1( f (y|θx (β0), φ0))ν(dy)H(dx) = 0,

(iii) for all 1 ≤ r, s ≤ p + 1

∫
Dr,s( f (y|θx (β0), φ0))ν(dy)H(dx) = 0,

(iv)
A := φ−1

0 E
(
ζ ′′(θX (β0))D(θX (β0))(D(θX (β0)))

�)

exist and is positive definite,
(v)

0 < B := E

((
D(log(h(Y, φ0))) − θX (β0)Y − ζ(θX (β0))

φ2
0

)2
)

< ∞,

(vi) ϑ̂n converges in probability to ϑ0

holds, then n1/2(ϑ̂n − ϑ0) → Z, where Z is multivariate normally distributed with
zero mean and covariance matrix

Σ−1 =
(
A 0
0 B

)−1

.

Proof Define sn(ϑ) := D
(
�n(ϑ)

)
and note that

sn(ϑ̂n) − sn(ϑ0) =
( ∫ 1

0
Dsn(ϑ0 + t (ϑ̂n − ϑ0)) dt

) (
ϑ̂n − ϑ0

)
.

Note that the right-hand side is a matrix-vector product. First, we substitute the
integral by Dsn(ϑ0). Define

Δn :=
∫ 1

0
Dsn(ϑ0 + t (ϑ̂n − ϑ0))dt − Dsn(ϑ0)

and Bε := {ϑ : ‖ϑ − ϑ0‖ ≤ ε}. W.l.o.g. we assume that Bε ⊂ V . We have by
Markov’s inequality for the r−th and s−th component of Δn , denoted by Δ(r,s)

n ,
that
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P(|Δ(r,s)
n /n| > ε̃) ≤ P(ϑ̂n /∈ Bε) + ε̃−1

E

(
sup
ϑ∈Bε

|Dr,s�1(ϑ) − Dr,s�1(ϑ0)|
)

.

(5.22)

Since ϑ̂n converges in probability toϑ0, the first term on the right-hand side converges
to zero. By the continuity assumption of (i)

lim
ε→0

sup
ϑ∈Bε

|Dr,s�1(ϑ) − Dr,s�1(ϑ0)| = 0.

Therefore, by assumption (i) and Lebesgue’s dominated convergence theorem the
second termon the right-hand side of (5.22) can bemade arbitrarily small. Altogether,
we obtain n−1Δn = oP(1) and since sn(ϑ̂n) = 0 the initial equality becomes

−n−1/2sn(ϑ0) = (n−1Dsn(ϑ0) + oP(1)) n
1/2(ϑ̂n − ϑ0). (5.23)

The final step is to apply the CTL to sn(ϑ0) and afterward Lemma 5.54. The function
sn consists of two parts, i.e.,

Dq�n(ϑ0) = 1

φ0

n∑

i=1

(yi − ζ ′(θxi (β0))Dq(θxi (β0))

for 1 ≤ q ≤ p and

Dp+1�n(ϑ0) =
n∑

i=1

D(c(yi , φ0)) − θxi (β0)yi − ζ(θxi (β0))

φ2
0

,

where c(y, φ) = log h(y, φ). Since (Yi , Xi )i=1,...,n is an i.i.d. sequence, we consider
in the following calculations of the first two moments only the i−th summand.
Obviously, the first components, 1 ≤ q ≤ p, of sn(ϑ0) are centered:

E
(
(Yi − ζ ′(θXi (β0))DqθXi (β0)

) = E
(
(E(Yi |Xi ) − ζ ′(θXi (β0)))DqθXi (β0)

)

(5.24)

= 0,

since E(Yi |Xi ) = ζ ′(θXi (β0)). By assumption (ii) also the last component of sn(ϑ0)

is centered:

E

(
D(c(Yi , φ0)) − θXi (β0)Yi − ζ(θXi (β0))

φ2
0

)
= E

(
Dp+1(�1(ϑ0))

)

=
∫

D( f (y|θx (β0), φ0))ν(dy)H(dx)

= 0.
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For the second moments, we start with the covariance of the q−th component and
the last component of sn(ϑ0). In order to simplify the notation, we write f for the
density of Y . In general, for all 1 ≤ r, s ≤ p + 1, we have

Dr,s(log f ) = 1

f

(
Dr,s f − 1

f
(Dr f )(Ds f )

)
= 1

f

(
Dr,s f − f Dr (log f )Ds(log f )

)
.

Therefore, considering the partial derivatives at ϑ0, by assumption (iii), we obtain

E
(
Dr,s(log f )

) =
∫

Dr,s( f )ν(dy)H(dx) − E (Dr (log f )Ds(log f ))

= 0 − COV (Dr (log f ), Ds(log f )) . (5.25)

In particular for r = p + 1, we additional have for the second derivatives at ϑ0 that

E

(
∂2 log f

∂φ∂β

)
= −φ−2

0 E

(
∂ log f

∂β

)
= 0

by Eq. (5.24), where ∂ log f/∂β is the gradient of log f with respect to the vector
β. This shows that the covariance of the q−th component (1 ≤ q ≤ p) and the last
component of sn equals zero. This is not surprising, since the likelihood equation of
β is independent of φ. Therefore, the covariance matrix of sn consists of two blocks.
According to the equations for the conditional expectation and variance for Y , see
(5.19), the first block is

COV
(
φ−1
0 (Y − ζ ′(θX (β0)))D(θX (β0))

) = φ−2
0 E

(
(Y − ζ ′(θX (β0)))

2S(X)
)

= φ−2
0 E

(
E[(Y − E(Y |X))2

∣∣X ]S(X)
)

= φ−1
0 E(ζ ′′(θX (β0))S(X)),

where
S(X) = D(θX (β0)) (D(θX (β0)))

� .

Note thatφ−1
0 in the last line is correct sinceVAR(Y |X) = φ0ζ

′′(θX (β0)). The second
block is

E

((
D(c(Y, φ0)) − θX (β0)Y − ζ(θX (β0))

φ2
0

)2
)

.

Thus, n−1/2sn(β0) converges in distribution to a multivariate normally distributed
random variable with zero mean and covariance matrix Σ that consists of those two
blocks. Finally, n−1Dsn(ϑ0) converges by the SLLN and (5.25) almost surely to−Σ .
Representation (5.23) and Lemma 5.54 complete the proof. �

The following corollary will be used later when we investigate goodness-of-fit-
tests.
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Corollary 5.56 Under the assumptions of Theorem 5.55 it holds for

L(Xi ,Yi , ϑ0) = Σ−1D(log( f (Yi |θXi (β0), φ0)))

that

1. n1/2(ϑ̂n − ϑ0) = n−1/2 ∑n
i=1 L(Xi ,Yi , β0, φ0) + oP(1),

2. E(L(Xi ,Yi , β0, φ0)) = 0,
3. E

(
L(Xi ,Yi , β0, φ0)L�(Xi ,Yi , β0, φ0)

)
exists and is positive definite.

Proof All calculations were already made in the proof of Theorem 5.55. Setting

L(Xi ,Yi , β0, φ0) = Σ−1D(log( f (Yi |θXi (β0), φ0)))

yield again the representation (5.23) for n1/2(ϑ̂n − ϑ0), where due to the SLLN
n−1Dsn(ϑ0) was substituted by −Σ . Since Σ is a constant matrix the calculations
of the first and second moment for the components of sn(ϑ0) in the proof of The-
orem 5.55 directly yield the assertions 2 and 3 of the corollary. This concludes the
proof. �

5.3.2 Mathematical Framework of Bootstrap MLE

Since a GLM makes an explicit assumption about the density of the Y , it is possible
to bootstrap the data in a parametric manner. After estimating the parameters on
the original dataset, for instance in a Poisson regression, we can create/bootstrap
a new dataset according to the fitted model. This is the backbone of RSS5.42. In
the following we investigate the behavior of the MLE estimator in such a bootstrap
world. This will lead to the same consistency results we already obtained in the non-
bootstrapped MLE in Sect. 5.3.1. Furthermore, the results of this chapter are used to
construct goodness-of-fit-tests for GLMs.

Remark 5.57 Bootstrapping in according to Resampling Scheme 5.42 means that
X∗
k;i are constants in the bootstrap world. Therefore, in the bootstrap world the

covariates have not a common distribution PX .

For ease of notation we suppress k in the following and due to Step (B) of the
resampling scheme we obtain X∗

i = Xi . Similar as before we obtain that the log
likelihood is

�∗
n(ϑ) =

n∑

i=1

θxi (β)y∗
in − ζ(θxi (β))

φ
+ log(h(y∗

in, φ))

with the corresponding derivatives (components of the score function s∗
n )
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Dq�
∗
n(ϑ) = 1

φ

n∑

i=1

(y∗
in − ζ ′(θxi (β))Dq(θxi (β))

for 1 ≤ q ≤ p and

Dp+1�
∗
n(ϑ) =

n∑

i=1

D(c(y∗
in, φ)) − θxi (β)y∗

in − ζ(θxi (β))

φ2
,

where c(y, φ) = log h(y, φ).

Lemma 5.58 Assume ϑ̂n → ϑ0 w.p.1 and the density f is continuous in ϑ at ϑ0. If
there are open neighborhoods V1 and V2 of ϑ0 such that

∫ ∫
sup

ϑ1∈V1

|A(y, x, ϑ1)| sup
ϑ2∈V2

f (y|θx (β2), φ2)ν(dy)H(dx) < ∞,

then under Resampling Scheme5.42, as n → ∞,

n−1
n∑

i=1

E
∗
n(A(Y ∗

in, Xi , ϑ̂n)) −→
∫ ∫

A(y, x, ϑ0) f (y|θx (β0), φ0)ν(dy)H(dx)

w.p.1 if A is continuous in ϑ at ϑ0.

Proof Obviously by our assumption it also holds true that

∫ ∫
sup

ϑ1∈V
|A(y, x, ϑ1)| sup

ϑ2∈V
| f (y|θx (β2), φ2) − f (y|θx (β0), φ0)| ν(dy)H(dx) < ∞.

We have w.p.1

∣∣∣∣∣n
−1

n∑

i=1

E
∗
n(A(Y ∗

in, Xi , ϑ̂n)) − n−1
n∑

i=1

∫
A(y, Xi , ϑ̂n) f (y|θXi (β0), φ0)ν(dy)

∣∣∣∣∣

≤ n−1
n∑

i=1

∫ ∣∣∣A(y, Xi , ϑ̂n)

∣∣∣
∣∣∣ f (y|θXi (β̂n), φ̂n) − f (y|θXi (β0), φ0)

∣∣∣ ν(dy)

≤ n−1
n∑

i=1

∫
sup

ϑ1∈V1
|A(y, Xi , ϑ1)| sup

ϑ2∈V2

∣∣ f (y|θXi (β2), φ2) − f (y|θXi (β0), φ0)
∣∣ ν(dy)

→
∫ ∫

sup
ϑ1∈V1

|A(y, x, ϑ1)| sup
ϑ2∈V2

| f (y|θx (β2), φ2) − f (y|θx (β0), φ0)| ν(dy)H(dx),

as n → ∞, where the second inequality follows from the fact that ϑ̂n converges to ϑ0

w.p.1 and the last step follows from the SLLN. By continuity of the density function
with respect to ϑ and Lebegue’s dominated convergence theorem the last expression
converges to zero by shrinking V2 toward the point set {ϑ0}. In the same manner we
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obtain, as n → ∞,

∣∣∣∣∣n
−1

n∑

i=1

∫
(A(y, Xi , ϑ̂n) − A(y, Xi , ϑ0)) f (y|θXi (β0), φ0)ν(dy)

∣∣∣∣∣

≤ n−1
n∑

i=1

∫
sup

ϑ1∈V1

|A(y, Xi , ϑ1) − A(y, Xi , ϑ0)| f (y|θXi (β0), φ0)ν(dy)

→
∫ ∫

sup
ϑ1∈V1

|A(y, x, ϑ1) − A(y, x, ϑ0)| f (y|θx (β0), φ0)ν(dy)H(dx),

which also converges to zero by the continuity of A at ϑ0 and Lebegue’s dominated
convergence theorem if we shrink V1 toward the point set {ϑ0}. Finally, one only
needs to observe that

n−1
n∑

i=1

∫
A(y, Xi , ϑ0) f (y|θXi (β0), φ0)ν(dy)

converges by the SLLN to

∫ ∫
A(y, x, ϑ0) f (y|θx (β0), φ0)ν(dy)H(dx),

which concludes the proof. �

Theorem 5.59 If Ξ is compact, the density f is continuous in ϑ at ϑ0 and

(i) there exists an open neighborhood V0 = V (ϑ0) of ϑ0 such that for all ϑ∗ ∈ Ξ

exists an open neighborhood V ∗ = V (ϑ∗) of ϑ∗ with

∫ ∫ (∣∣∣∣∣ sup
ϑ̃∈V ∗

log

(
f (y|θx (β̃), φ̃)

f (y|θx (β0), φ0)

)∣∣∣∣∣

)
sup
ϑ∈V0

f (y|θx (β), φ)ν(dy)H(dx) < ∞,

and

∫ ∫ ⎛

⎝
∣∣∣∣∣ sup
ϑ̃∈V ∗

log

(
f (y|θx (β̃), φ̃)

f (y|θx (β0), φ0)

)∣∣∣∣∣

2
⎞

⎠ sup
ϑ∈V0

f (y|θx (β), φ)ν(dy)H(dx) < ∞,

then under the assumptions of Lemma5.51 it holds w.p.1, as n → ∞, that ϑ̂∗
n → ϑ0

in probability with respect to P
∗
n, where ϑ̂∗

n is the maximizer of �∗
n(·).

Proof Note that we might encounter measurability issues as in Theorem5.52 for
the MLE. Again, if this happens we consider the inner probability measure. The
continuity of the density functions and the compactness of Ξ assure the exis-
tence of ϑ̂∗

n ∈ Ξ . Denote by V (⊂ V0) an arbitrary open neighborhood of ϑ0. Since
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ϑ̂n → ϑ0 w.p.1, we can assume that ϑ̂n ∈ V for all n ∈ N. Let U = Ξ\V . Clearly,
supϑ∈U �∗

n(ϑ) < �∗
n(ϑ0) imply ϑ̂∗

n ∈ V . Therefore, it is sufficient to proof that w.p.1

P
∗
n

(
sup
ϑ∈U

�∗
n(ϑ) − �∗

n(ϑ0) < 0

)
−→ 1, as n → ∞. (5.26)

We will now find a finite cover B1, . . . , Bm for U , where every Bk will have the
property (5.26), i.e.,

P
∗
n

(
sup
ϑ∈Bk

�∗
n(ϑ) − �∗

n(ϑ0) ≥ 0

)
= oP∗

n
(1), as n → ∞, (5.27)

w.p.1, for k = 1, . . . ,m. For ϑ∗ ∈ U choose V ∗ according to the assumption (i). In
order to have a more compact notation we set

Win = sup
ϑ̃∈V ∗

log

(
f (Y ∗

in|θXi (β̃), φ̃)

f (Y ∗
in|θXi (β0), φ0)

)
.

We obtain

sup
ϑ̃∈V ∗

�∗
n(ϑ̃) − �∗

n(ϑ0) = n−1 sup
ϑ̃∈V ∗

n∑

i=1

log

(
f (Y ∗

in|θXi (β̃), φ̃)

f (Y ∗
in|θXi (β0), φ0)

)

≤ n−1
n∑

i=1

sup
ϑ̃∈V ∗

log

(
f (Y ∗

in|θXi (β̃), φ̃)

f (Y ∗
in|θXi (β0), φ0)

)

= n−1
n∑

i=1

Win.

Equation (5.27) holds if we establish

P
∗
n

(
n−1

n∑

i=1

Win ≥ 0

)
= P

∗
n

(
n−1

n∑

i=1

Win − E
∗
n(Win) ≥ −n−1

n∑

i=1

E
∗
n(Win)

)
= oP∗

n
(1).

For ε > 0 we get by Chebyshev’s inequality

P
∗
n

(
n−1

n∑

i=1

Win − E
∗
n(Win) ≥ ε

)

≤ (nε)−2
n∑

i=1

E
∗
n(W

2
in)
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≤ (nε)−2
n∑

i=1

∫ ∣∣∣∣∣ sup
ϑ̃∈V ∗

log

(
f (y|θXi (β̃), φ̃)

f (y|θXi (β0), φ0)

)∣∣∣∣∣

2

sup
ϑ∈V0

f (y|θXi (β), φ)ν(dy),

which convergesw.p.1 to zero by assumption (i) and the SLLN, as n → ∞. It remains
to show that n−1 ∑n

i=1 E
∗
n(Win) converges w.p.1 to a negative constant. Assumption

(i) and Lemma 5.58 yield w.p.1, as n → ∞,

n−1
n∑

i=1

E
∗
n(Win) →

∫ ∫
sup

ϑ̃∈V ∗
log

(
f (y|θx (β̃), φ̃)

f (y|θx (β0), φ0)

)
f (y|θx (β0), φ0)ν(dy)H(dx).

(5.28)

By assumption (i) and Lebegue’s dominated convergence theorem the right-hand
side of (5.28) converges to LH (ϑ0, ϑ

∗) − LH (ϑ0, ϑ0) by shrinking V ∗ toward {ϑ∗}.
Finally, Lemma5.51 implies LH (ϑ0, ϑ

∗) − LH (ϑ0, ϑ0) < 0.
In sum, w.p.1, for every ε > 0 we can choose for all ϑ∗ an open neighborhood

V ∗ of ϑ∗ and an N such that

P
∗
n( sup

ϑ∈V ∗
�∗
n(ϑ) − �∗

n(ϑ0) ≥ 0) ≤ ε

for n ≥ N , where N maybe subject to ω. Since Ξ is compact, we can select from
this cover ofU a finite cover B1, . . . , Bm which provides (5.26). Since V was chosen
arbitrary, this concludes the proof. �

Theorem 5.60 If the density f is continuous in ϑ at ϑ0 and

(i) log f (y|θx (β), φ)has continuous secondderivativeswith respect toϑ and there
exist open neighborhoods V1, V2 ⊂ Ξ of ϑ0 such that for all 1 ≤ r, s ≤ p + 1

∫ ∫
sup

ϑ1∈V1

|Dr (log f (y|θx (β1), φ1))|2 sup
ϑ2∈V2

f (y|θx (β2), φ2)ν(dy)H(dx) < ∞

and
∫ ∫

sup
ϑ1∈V1

∣∣Dr,s(log f (y|θx (β1), φ1))
∣∣ sup
ϑ2∈V2

f (y|θx (β2), φ2)ν(dy)H(dx) < ∞,

(ii) for all ϑ ∈ V2 it holds that

∫
Dp+1( f (y|θx (β), φ))ν(dy)H(dx) = 0,

(iii) for all 1 ≤ r, s ≤ p + 1 and all ϑ ∈ V2 it holds that

∫
Dr,s( f (y|θx (β), φ))ν(dy)H(dx) = 0,
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(iv) for every x ∈ R
p the function

R1(x, β) = ζ ′′(θx (β))D(θx (β))(D(θx (β)))�

is continuous in β at β0 and

∫
sup

ϑ1∈V1

|R1(x, β1)|H(dx) < ∞

and
A = φ−1

0 E (R1(X, β0))

exists and is positive definite,
(v) for every x ∈ R

p and y ∈ R the function

R2(y, x, ϑ) = D(log(h(y, φ))) − θx (β)y − ζ(θx (β))

φ2

is continuous in ϑ at ϑ0 and

∫ ∫
sup

ϑ1∈V1

R2
2(y, x, ϑ1) sup

ϑ2∈V2

f (y|θx (β2), φ2)ν(dy)H(dx) < ∞,

and
0 < B = E

(
R2
2(Y, X, ϑ0)

)
< ∞,

(vi) ϑ̂∗
n − ϑ̂n = oP∗

n
(1) w.p.1,

(vii) ϑ̂n converges w.p.1 to ϑ0

holds, then n1/2(ϑ̂∗
n − ϑ̂n) → Z, where Z is multivariate normally distributed with

zero mean and covariance matrix

Σ−1 =
(
A 0
0 B

)−1

.

Remark 5.61 Note that the covariance matrix Σ of Theorem 5.60 equals the covari-
ance matrix of Theorem5.55, which is the CLT for the original MLE.

Proof (of Theorem 5.60)Note, this proof is closely in line with the proof of Theo-
rem 5.55 andwe partially reuse calculations from that previous proof. In order to have
more compact notation during the proof, define �(y, x, ϑ) = log( f (y|θx (β), φ)) and
denote by s∗

n the gradient of �∗
n and let Ds∗

n be the Jacobian matrix of the score func-
tion s∗

n . As before we also use D to denote by Drg and Dr,sg the first partial derivative
of g with respect to the r−th component of ϑ and the second partial derivative of g
with respect to the r−th and s−th component of ϑ , respectively.
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Note that

s∗
n (ϑ̂

∗
n ) − s∗

n (ϑ̂n) =
( ∫ 1

0
Ds∗

n (ϑ̂n + t (ϑ̂∗
n − ϑ̂n))dt

) (
ϑ̂∗
n − ϑ̂n

)
,

where the right-hand side is a matrix-vector product. First, we substitute the integral
by Ds∗

n (ϑ̂n). Define

Δn =
∫ 1

0
Ds∗

n (ϑ̂n + t (ϑ̂∗
n − ϑ̂n))dt − Ds∗

n (ϑ̂n)

and Bε = {ϑ : ‖ϑ − ϑ0‖ ≤ ε}. W.l.o.g. we assume that Bε ⊂ V2. We have by
Markov’s inequality for the r−th and s−th component of Δn , denoted by Δ(r,s)

n ,
that

P
∗
n(|Δ(r,s)

n /n| > ε̃) ≤ P
∗
n(ϑ̂

∗
n /∈ Bε) + ε̃−1

E
∗
n

(
I{ϑ̂∗

n ∈Bε}|Δ(r,s)
n /n|

)
. (5.29)

Since ϑ̂∗
n − ϑ̂n = oP∗

n
(1) w.p.1 and ϑ̂n converges w.p.1 to ϑ0, the first term on the

right-hand side converges to zero w.p.1. The second term on the right-hand side
converges also to zero as follows. For the sake of simplicity, we ignore the leading ε̃

since it is simply a constant. Due to the almost sure convergence of ϑ̂n to ϑ0 we can
assume that ϑ̂n ∈ Bε almost surely. Therefore, we have

E
∗
n

(
I{ϑ̂∗

n ∈Bε}|Δ(r,s)
n /n|

)

≤ E
∗
n

(
sup
ϑ∈Bε

∣∣∣∣∣n
−1

n∑

i=1

Dr,s�(Y
∗
in, Xi , ϑ) − Dr,s�(Y

∗
in, Xi , ϑ̂n)

∣∣∣∣∣

)

≤ n−1
n∑

i=1

E
∗
n

(
sup

ϑ,ϑ̃∈Bε

∣∣∣Dr,s�(Y
∗
in, Xi , ϑ) − Dr,s�(Y

∗
in, Xi , ϑ̃)

∣∣∣

)
.

By the assumptions on the second derivatives in (i) and Lemma5.58, the last expres-
sion converges w.p.1 to

∫ ∫
sup

ϑ,ϑ̃∈Bε

∣∣∣Dr,s�(y, x, ϑ) − Dr,s�(y, x, ϑ̃)

∣∣∣ f (y|θx (β0), φ0)ν(dy)H(dx),

which converges to zero if ε tends to zero due to the continuity of the second deriva-
tives of log f , see assumption (i), and Lebegue’s dominated convergence theorem.
Altogether, we obtain n−1Δn = oP∗

n
(1) and since s∗

n (ϑ̂
∗
n ) = 0 the initial equality

becomes

−n−1/2s∗
n (ϑ̂n) =

(
n−1Ds∗

n (ϑ̂n) + oP∗
n
(1)

) (
n1/2(ϑ̂∗

n − ϑ̂n)
)
. (5.30)
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We now prepare the application of the CLT by investigating the limit of the variance
of n−1/2s∗

n (ϑ̂n). The function s∗
n consists of two parts, i.e.,

Dq�
∗
n(ϑ̂n) =

n∑

i=1

Dq�(Y
∗
in, Xi , ϑ̂n) = 1

φ̂n

n∑

i=1

(Y ∗
in − ζ ′(θXi (β̂n))Dq(θXi (β̂n))

for 1 ≤ q ≤ p and

Dp+1�
∗
n(ϑ̂n) =

n∑

i=1

Dp+1�(Y
∗
in , Xi , ϑ̂n) =

n∑

i=1

D(c(Y ∗
in , φ̂n)) − θXi (β̂n)Y ∗

in − ζ(θXi (β̂n))

φ̂2
n

,

where c(y, φ) = log h(y, φ). Following the proof of Theorem5.55 we easily con-
clude (under assumption (ii)) that every summand of s∗

n (ϑ̂n) is centered. Another
relation that can be directly reused (under assumption (iii)) from the proof of Theo-
rem5.55 is that

E
∗
n

(
Dr,s(log fin)

) = −COV∗
n (Dr (log fin), Ds(log fin)) (5.31)

for all 1 ≤ r, s ≤ p + 1, where fin is the density of Y ∗
in . In particular,

COV∗
n

(
Dp+1(log fin), Dq(log fin)

)

equals

−E
∗
n

(
∂2 log fin
∂φ∂βq

)
= φ̂−2

n E
∗
n

(
∂ log fin

∂βq

)
= 0

for all 1 ≤ q ≤ p, which is quite expectable because the likelihood equation of β

is independent of φ. By construction, Y ∗
1n, . . . ,Y

∗
nn is an independent sequence and

therefore, the covariance matrix of n−1/2s∗
n (ϑ̂n) consists of two blocks, and following

the proof of Theorem5.55 we obtain

COV∗
n

(
(n1/2φ̂n)

−1
n∑

i=1

(Y ∗
in − ζ ′(θXi (β̂n)))D(θXi (β̂n))

)
= (nφ̂n)

−1
n∑

i=1

E
∗
n(R1(Xi , β̂n)).

The right-hand side converges by assumption (iv) and Lemma5.58 w.p.1 to

A = φ−1
0 E(R1(X, β0)). (5.32)

Due to independence, the second block of n−1/2s∗
n (ϑ̂n) equals

E
∗
n

⎛

⎝
(
n−1/2

n∑

i=1

R2(Y
∗
in, Xi , ϑ̂n)

)2
⎞

⎠ = n−1
n∑

i=1

E
∗
n

(
R2
2(Y

∗
in, Xi , ϑ̂n)

)
.
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By assumption (v) and again Lemma5.58, we conclude that the second block of
COV∗

n(n
−1/2s∗

n (ϑ̂n)) converges w.p.1 to

B = E
(
R2
2(Y, X, ϑ0)

)
. (5.33)

Note that due to equation (5.31) −n−1Ds∗
n (ϑ̂n) converges also to the asymptotic

covariance matrix of n−1/2s∗
n (ϑ̂n).

The final step is to apply the CLT to s∗
n (ϑ̂n) and afterward Lemma5.54. According

to the Cramér-Wold device, we have to investigate n−1/2a�s∗
n (ϑ̂n) for a ∈ R

p+1\{0}
arbitrary. Obviously, every summand of the linear combination is centered because
every component of s∗

n (ϑ̂n) is centered. Hence, it remains to proof that the Linde-
berg condition holds. But since the variance of n−1/2a�s∗

n (ϑ̂n) converges w.p.1, the
Lindeberg condition simplifies to

n∑

i=1

∫

{ |n−1/2
∑p+1

q=1 aq Dq�(y,Xi ,ϑ̂n )|≥δ}

⎛

⎝n−1/2
p+1∑

q=1

aq Dq�(y, Xi , ϑ̂n)

⎞

⎠
2

dP∗
n −→ 0, as n → ∞,

w.p.1, where δ > 0. The left-hand side is eventually bounded by

n−1
n∑

i=1

E
∗
n

⎛

⎝ sup
ϑ∈Bε

I{|∑p+1
q=1 aq Dq�(y,Xi ,ϑ)|≥δK 1/2}

⎛

⎝
p+1∑

q=1

aq Dq�(y, Xi , ϑ)

⎞

⎠
2⎞

⎠

for all K ∈ N which converges w.p.1, as n → ∞, to

E

⎛

⎝ sup
ϑ∈Bε

I{| ∑p+1
q=1 aq Dq�(Y,X,ϑ)|≥δK 1/2}

⎛

⎝
p+1∑

q=1

aq Dq�(Y, X, ϑ)

⎞

⎠
2⎞

⎠ .

This expression tends to zero by the assumption on the first derivative in (i) for
K → ∞, which proofs that the Lindeberg condition holds.

To sum up, the left-hand side of equation (5.30) is asymptotically normal dis-
tributed with an asymptotic variance consisting of the two blocks (5.32) and (5.33),
i.e.,Σ . Furthermore,we know that n−1Ds∗

n (ϑ0) converges to−Σ , as n → ∞. Apply-
ing Lemma 5.54 yields the result and concludes the proof. �
Corollary 5.62 Under the assumptions of Theorem5.60 it holds for

L(Xi ,Y
∗
in, β̂n, φ̂n) = Σ−1D(log( f (Y ∗

in|θXi (β̂n), φ̂n)))

that

1. n1/2(ϑ̂∗
n − ϑ̂n) = n−1/2 ∑n

i=1 L(Xi ,Y ∗
in, β̂n, φ̂n) + oP∗

n
(1), as n → ∞, w.p.1,

2. E
∗(L(Xi ,Y ∗

in, β̂n, φ̂n)) = 0 for all n ∈ N,
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3. n−1 ∑n
i=1 E

∗
(
L(Xi ,Y ∗

in, β̂n, φ̂n)L�(Xi ,Y ∗
in, β̂n, φ̂n)

)
converges w.p.1to Σ−1.

Proof All calculations were already made in the proof of Theorem 5.60. According
to the representation (5.30) and Lemma5.54 we can set

L(Xi ,Y
∗
in, β̂n, φ̂n) = Σ−1D(log( f (Y ∗

in|θXi (β̂n), φ̂n)))

to obtain assertion 1, since n−1Ds∗
n (ϑ̂n) converges to −Σ . Note, these are the sum-

mands of s∗
n (ϑ̂n) from the proof of Theorem 5.60 multiplied by Σ−1. In the proof it

was shown that the summands of s∗
n (ϑ̂n) are centered and the arithmetic mean of the

covariance of the summands converges w.p.1 to Σ . Since Σ is a constant matrix the
proof of Theorem 5.60 directly yield the assertions 2 and 3 of the corollary. �

5.4 Semi-parametric Model

Recall the situation of the classical linear model, where Y = β�X + ε. This was
extended to the parametric generalized linear model assuming that Y given X has a
distribution belonging to the exponential family and additionally that there exists a
link function g such that g(E(Y |X = x)) = m(x, β) = β�x . Another way to extend
the classical linear model is to consider Y = m(β�X) + ε and leave the distribution
of ε unspecified. Hence, we have the parametric componentβ and the non-parametric
component ε. In summary, we get

Definition 5.63 Let (Y, X) ∈ R
1+p and let g : R → R be an invertible link function.

If there exists β0 ∈ R
p such that for E(Y | X = x), the conditional distribution of Y

given X = x ,

E(Y | X = x) = g−1(β�
0 x) ≡ m(β�

0 x), for all x ∈ R
p,

applies, then (Y, X) follows a semi-parametric generalized linear model with link
function g.

Note that we also write m instead of g−1 to uniform the presentation.
Most of the time in this section we will only assume

Y = m(X, ϑ) + ε,

i.e., we are not restricted to β�X . One of the model definitions, see Definition 5.68,
is E(ε|X) = 0, and therefore yields E(Y |X) = m(X, ϑ).

The parametric bootstrap is not applicable anymore here because no parametric
form of ε is assumed. In this section, we will focus on the wild bootstrap, where
the resampling scheme is very similar to the resampling scheme we used for linear
models, see RSS 5.23. The only difference is how the estimators for the model
parameter and residuals are determined.
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Resampling Scheme 5.64

(A) Based on the i.i.d. observations (Yi , Xi )1≤i≤n ⊂ R
1+p calculate the ϑ̂n.

(B) Determine the estimated residuals ε̂i,n = Yi − m(Xi , ϑ̂n).
(C) Define the wild boostrap residuals by ε∗

i,n = ε̂i,n · τ ∗
i , where τ ∗

1 , . . . , τ ∗
n is an i.i.d.

sequence of Rademacher rvs. which is independent of (X1, ε1), . . . , (Xn, εn).
(D) Set X∗

i = Xi , Y ∗
i,n = m(Xi , ϑ̂n) + ε∗

i,n.

(E) Determine ϑ̂∗
n based on (Y ∗

i,n, X
∗
i ).

R-Example 5.65 The dataset in this example follows

m(X, ϑ) + ε = ϑa exp(X/ϑb) + ϑc exp(X/ϑd) + ε

with ϑ0 = (4,−2,−3,−10), ε ∼ N (0, 0.252) and X uniformly distributed on
[1, 30]. The following R-code generates 400 samples and fits a model.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
semiparametric_data <-
data.frame(X = runif(400, min = 1, max = 30)) %>%
dplyr::mutate(
mu = 4 * exp(-X/2) - 3 * exp(-X/10),
epsilon = rnorm(400, sd = 0.25),
Y = mu + epsilon)

fit_sp <- minpack.lm::nlsLM(
formula = Y ˜ a * exp(X/b) + c * exp(X/d),
data = semiparametric_data,
start = c(a = 4, b = -2, c = -3, d = -10),
control = nls.control(maxiter = 1000))

fit_sp

## Nonlinear regression model

## model: Y ˜ a * exp(X/b) + c * exp(X/d)

## data: semiparametric_data

## a b c d

## 3.707 -2.105 -3.025 -9.797

## residual sum-of-squares: 23.76

##

## Number of iterations to convergence: 3

## Achieved convergence tolerance: 1.49e-08

confint(fit_sp)

## Waiting for profiling to be done...

## 2.5% 97.5%

## a 3.174945 4.269019
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## b -2.824567 -1.609529

## c -3.844516 -2.601336

## d -10.959331 -8.551295

These large number of samples are necessary because otherwise estimating the
confidence intervals via confint is problematic and quickly results in an error. This is
also the reason why we started the optimization in ϑ0 which is unknown in practice.
Now, we implement the wild bootstrap and apply it to the fitted model.

rrademacher <- function(n) {
2 * rbinom(n = n, size = 1, prob = 1/2) - 1

}

bootstrap_sp <- function(data, fit_obj) {
# Step B
epsilon_hat <- residuals(fit_obj)
# Step C
boot_epsilon <- rrademacher(length(epsilon_hat)) * epsilon_hat
# Step D
boot_X <- data$X
boot_Y <- predict(fit_obj) + boot_epsilon
# Step E
minpack.lm::nlsLM(
formula = boot_Y ˜ a * exp( boot_X/b) + c * exp(boot_X/d),
start = coef(fit_obj),
control = nls.control(warnOnly = T, maxiter = 1000))

}
fit_wb <- lapply(
1:200,
function(dummy) bootstrap_sp(semiparametric_data, fit_sp))

coef_wb <- sapply(fit_wb, coef) %>%
t() %>%
as.data.frame()

tail(coef_wb)

## a b c d

## 195 3.988986 -2.127204 -3.145468 -9.381500

## 196 3.925056 -2.417854 -3.346528 -9.234672

## 197 3.892880 -1.869759 -2.908396 -9.994309

## 198 3.573355 -2.123758 -3.050824 -9.367015

## 199 3.997472 -1.589187 -2.686212 -10.280919

## 200 3.552934 -1.917992 -2.792621 -10.195711
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Fig. 5.11 Simulated non-linear model. Matrix of plots showing the distribution of the bootstrapped
parameters

This allows us to obtain 95% confidence intervals using quantiles

apply(coef_wb, 2, quantile, prob = c(0.025, 0.975))

## a b c d

## 2.5% 3.180270 -2.802138 -3.727098 -10.975106

## 97.5% 4.386482 -1.556582 -2.613631 -8.652354

However, there is strong correlation between the four components, see Fig. 5.11.

coef_wb %>%
GGally::ggpairs()



146 5 Regression Analysis

With the 200 fitted bootstrap models we can easily visualize the impact on the
estimated function. First, we gather the predictions of all models

pred_wb <- sapply(fit_wb, predict) %>%
as.data.frame() %>%
dplyr::mutate(X = semiparametric_data$X) %>%
tidyr::gather(boot_model, y_pred_wb, -X)

Here, we see an excerpt of the covariates and the prediction of the first and last
bootstrapped models:

head(pred_wb)

## X boot_model y_pred_wb

## 1 9.339748 V1 -1.1281292

## 2 23.860849 V1 -0.2593153

## 3 12.860331 V1 -0.8058073

## 4 26.607505 V1 -0.1948618

## 5 28.273551 V1 -0.1638439

## 6 2.321138 V1 -1.1879945

tail(pred_wb)

## X boot_model y_pred_wb

## 79995 4.057115 V200 -1.4473640

## 79996 7.948244 V200 -1.2243636

## 79997 8.845801 V200 -1.1374968

## 79998 3.930696 V200 -1.4415745

## 79999 4.419501 V200 -1.4556303

## 80000 29.745860 V200 -0.1509946

Next, we plot the original observations with the corresponding model fit as well
as all 200 bootstrapped models, see Fig. 5.12.

semiparametric_data %>%
dplyr::mutate(y_pred = predict(fit_sp)) %>%
ggplot(aes(x = X, y = Y)) +
geom_point() +
geom_line(data = pred_wb,

aes(x = X, y = y_pred_wb, group = boot_model),
alpha = 0.1) +

geom_line(aes(y = y_pred), color = "red") +
theme_minimal()
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Fig. 5.12 Simulated non-linear model. Fitted model as solid red line and 200 bootstrapped models
as solid black lines

5.4.1 Mathematical Framework of LSE

The proofs rely heavily on Jennrich (1969). Especially, Theorem 2 of Jennrich (1969)
will be used multiple times. Therefore, we explicitly state the theorem next.

Theorem 5.66 (Theorem 2, Jennrich 1969) Let m be a function onX × Θ where
X is a Euclidean space andΘ is a compact subset of a Euclidean space. Let m(x, ϑ)

be a continuous function of ϑ for each x and a measurable function of x for each
ϑ . Assume also that |m(x, ϑ)| ≤ M(x) for all x and ϑ , where M is integrable with
respect to a probability distribution function F onX . If X1, X2, . . . , Xn is an i.i.d.
sample with distribution function F, then
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∥∥∥∥∥n
−1

n∑

i=1

m(Xi , ϑ) −
∫

m(x, ϑ)F(dx)

∥∥∥∥∥
ϑ∈Θ

−→ 0, as n → ∞,

w.p.1.

Corollary 5.67 Letϑ1, ϑ2, . . . , ϑn bea sequenceof randomvariableswith codomain
Θ . Under the assumptions of Theorem 5.66, but only assuming that there exists an
open neighborhood V of ϑ0 such that |m(x, ϑ)| ≤ M(x) for all x and ϑ ∈ V , then

n−1
n∑

i=1

m(Xi , ϑn) −→ E(m(X, ϑ0)), as n → ∞,

w.p.1 (in probability), if ϑn converges w.p.1 (in probability) to ϑ0 ∈ Θ .

Proof First assume that ϑn converges almost surely to ϑ0. Let Ṽ ⊂ V be a compact
subset such that ϑ0 is an inner point of Ṽ . Obviously,

∣∣∣∣∣n
−1

n∑

i=1

m(Xi , ϑn)I{ϑn /∈Ṽ }

∣∣∣∣∣ −→ 0, as n → ∞,

w.p.1 because ϑn converges to ϑ0 w.p.1.
The corresponding counterpart |n−1 ∑n

i=1 m(Xi , ϑn)I{ϑn∈Ṽ } − E(m(X, ϑ0))| is
bounded by

∥∥∥∥∥n
−1

n∑

i=1

m(Xi , ϑ) − E(m(X, ϑ))

∥∥∥∥∥
ϑ∈Ṽ

+ |E(m(X, ϑn)I{ϑn∈Ṽ } − m(X, ϑ0))|.

The first term converges to zero by Theorem 5.66 w.p.1 because Ṽ is compact. By
the assumption, the difference |m(x, ϑn)I{ϑn∈Ṽ } − m(x, ϑ0)| is dominated by 2M(x)
and converges w.p.1 to zero since ϑn converges to ϑ0 w.p.1. Applying Lebegue’s
dominated convergence theorem to E(|m(X, ϑn)I{ϑn∈Ṽ } − m(X, ϑ0)|) yields the first
part of the corollary.

Now assume that ϑn converges in probability to ϑ0. Then for every sub-sequence
nk exists a further sub-sequence nk ′ such that ϑnk′ converges to ϑ0 w.p.1. Applying
the first part of this corollary, we obtain

nk ′−1
nk′∑

i=1

m(Xi , ϑnk′ ) −→ E(m(X, ϑ0)), as k ′ → ∞,

w.p.1. This implies the convergence in probability for the original sequence and
completes the proof. �

We now list some general assumptions (GA) which will be used frequently in this
section.
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General Assumptions 5.68

(i) Θ compact.
(ii) X, X1, …, Xn is an i.i.d. sample with codomain X .
(iii) ε, ε1, …, εn is an i.i.d. sample, E(ε|X) = 0 w.p.1, E(ε2) = σ 2.
(iv) Yi = m(Xi , ϑ0) + εi , ϑ0 ∈ Θ .
(v) Q(ϑ) = E((m(X, ϑ0) − m(X, ϑ))2) has a unique minimum at ϑ = ϑ0.
(vi) m(x, ϑ) continuous in ϑ for all x ∈ X and measurable in x for all ϑ ∈ Θ .
(vii) there exists a measurable function M(x)with m2(x, ϑ) ≤ M(x) for all x ∈ X

and ϑ ∈ Θ; E(M(X)) < ∞.
(viii) E(M(X)|ε|) < ∞.

Lemma 5.69 Under the GA 5.68,

∥∥∥∥∥n
−1

n∑

i=1

m(Xi , ϑ)εi

∥∥∥∥∥
ϑ∈Θ

−→ 0, as n → ∞,

w.p.1.

Proof By the assumption of continuity and domination, i.e., assumption (vi)–(viii),
wedirectly obtain fromTheorem5.66 thatn−1 ∑n

i=1 m(Xi , ϑ)εi convergesw.p.1 uni-
formly inϑ toE(m(X, ϑ)ε) = E(m(X, ϑ)E(ε|X))which equals zero by assumption
(iii). �

Lemma 5.70 Under the GA 5.68,

∥∥∥∥∥n
−1

n∑

i=1

(Yi − m(Xi , ϑ))2 − Q(ϑ) − σ 2

∥∥∥∥∥
ϑ∈Θ

−→ 0, as n → ∞,

w.p.1.

Proof Setting D(x, ϑ) := m(x, ϑ0) − m(x, ϑ), we obtain

n−1
n∑

i=1

(Yi − m(Xi , ϑ))2 = n−1
n∑

i=1

(m(Xi , ϑ0) + εi − m(Xi , ϑ))2

= n−1
n∑

i=1

D2(Xi , ϑ) + 2n−1
n∑

i=1

D(Xi , ϑ)εi + n−1
n∑

i=1

ε2i .

Since m2 is dominated, i.e., assumption (vii), Theorem 5.66 implies that the first
term converges uniformly in ϑ to Q(ϑ)w.p.1. The second term converges uniformly
in ϑ to zero w.p.1 by Lemma 5.69. Finally, the last term, which is independent of ϑ ,
converges by the SLLN to σ 2 w.p.1. This concludes the proof. �

Theorem 5.71 Under the GA 5.68, ϑ̂n converges to ϑ0, as n → ∞, w.p.1.
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Proof Let Qn(ϑ) = n−1 ∑n
i=1(Yi − m(Xi , ϑ))2. Since Θ is compact and f is con-

tinuous in ϑ , there exists a ϑ̂n that minimizes Qn . By virtue of Lemma 5.70, Qn

converges uniformly and almost surely to Q + σ 2. Therefore, it exists a set Ω0 ⊂ Ω

with P(Ω0) = 1 such that Qn converges uniformly and the sequence ϑ̂n minimizes
Qn for allω ∈ Ω0. The following arguments are restricted to a fixedω ∈ Ω0. SinceΘ

is compact, ϑ̂n has a limit point ϑ̃ . We can assume that ϑ̂n converges to ϑ̃ . By Corol-
lary 5.67 we have Qn(ϑ̂n) → Q(ϑ̃) + σ 2 and Qn(ϑ0) → σ 2 because Q(ϑ0) = 0.
Since ϑ̂n minimizes Qn , it also holds for all n ∈ N that Qn(ϑ̂n) ≤ Qn(ϑ0). There-
fore, Q(ϑ̃) + σ 2 ≤ σ 2, which implies Q(ϑ̃) = 0. The uniqueness assumption (v)
yields that ϑ̃ = ϑ0. Since P(Ω0) = 1, this concludes the proof. �

Corollary 5.72 Under the GA 5.68, n−1 ∑n
i=1(Yi − m(Xi , ϑ̂n))

2 converges to σ 2,
as n → ∞, w.p.1.

Proof Obviously,

n−1
n∑

i=1

(Yi − m(Xi , ϑ̂n))
2 = n−1

n∑

i=1

(m(Xi , ϑ0) + εi − m(Xi , ϑ̂n))
2

−→
n→∞ E

(
(m(X, ϑ0) + ε − m(X, ϑ0))

2
)

= σ 2,

w.p.1, where the convergence is due to the consistence of the estimator ϑ̂n and
Corollary 5.67. �

Theorem 5.73 In addition to the GA 5.68, assume

(i) the first and second partial derivatives of f with respect to ϑ are continuous
in ϑ for all x ∈ X and measurable in x for all ϑ ∈ Θ

(ii)

A =
(
E

(
∂m(X, ϑ0)

∂ϑs

∂m(X, ϑ0)

∂ϑt

))

1≤s,t≤p

is positive definite
(iii)

Aσ =
(
E

(
ε2

∂m(X, ϑ0)

∂ϑs

∂m(X, ϑ0)

∂ϑt

))

1≤s,t≤p

is positive definite
(iv) there exists δ > 0 and M2(x) such that

∣∣∣∣
∂2m(x, ϑ)

∂ϑs∂ϑt

∣∣∣∣ ≤ M2(x)

for all x and ϑ in a closed ball Bδ(ϑ0) with E(M2(X)|ε|) < ∞
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(v) there exists δ > 0 and M3(x) such that

∣∣∣∣
∂m(x, ϑ)

∂ϑs

∂m(x, ϑ)

∂ϑt

∣∣∣∣ ≤ M3(x)

for all x and ϑ in a closed ball Bδ(ϑ0) with E(M3(X)) < ∞
(vi) there exists δ > 0 and M4(x) such that

∣∣∣∣m(x, ϑ̃)
∂2m(x, ϑ)

∂ϑs∂ϑt

∣∣∣∣ ≤ M4(x)

for all x and ϑ̃ and ϑ in a closed ball Bδ(ϑ0) with E(M4(X)) < ∞
(vii) ϑ̂n minimizes

∑n
i=1(m(Xi , ϑ) − Yi )2

(viii) ϑ̂n converges almost surely to ϑ0 and ϑ0 is an inner point of Θ ,

then
n1/2(ϑ̂n − ϑ0) → Z , as n → ∞,

in distribution, where Z is normally distributed with mean zero and variance
A−1Aσ A−�.

Proof Set Qn(ϑ) := (2n)−1 ∑n
i=1(m(Xi , ϑ) − Yi )2. Since ϑ̂n → ϑ0 and ϑ0 is an

inner point of Θ , we can assume that ϑ̂n is also an inner point of Θ for n > N . We
have

0 = ∂Qn(ϑ̂n)

∂ϑ
= ∂Qn(ϑ0)

∂ϑ
+

(∂2Qn(ϑ̃n)

∂ϑ∂ϑ�
) (

ϑ̂n − ϑ0
)

with ‖ϑ̃n − ϑ0‖ ≤ ‖ϑ̂n − ϑ0‖. Consider the first term on the right-hand side,

n1/2
∂Qn(ϑ0)

∂ϑ
= n−1/2

n∑

i=1

(m(Xi , ϑ0) − Yi )
∂m(Xi , ϑ0)

∂ϑ
= −n−1/2

n∑

i=1

εi
∂m(Xi , ϑ0)

∂ϑ
.

According to the CLT this converges in distribution to a centered normal random
variable with covariance matrix Aσ .

We now focus on the components of the second partial derivatives of Qn at ϑ̃n ,
i.e.,

∂2Qn(ϑ̃n)

∂ϑ∂ϑ� = n−1
n∑

i=1

∂m(Xi , ϑ̃n)

∂ϑ

∂m(Xi , ϑ̃n)

∂ϑ� + n−1
n∑

i=1

(m(Xi , ϑ̃n) − Yi )
∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

= n−1
n∑

i=1

∂m(Xi , ϑ̃n)

∂ϑ

∂m(Xi , ϑ̃n)

∂ϑ� − n−1
n∑

i=1

εi
∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

+ n−1
n∑

i=1

(
m(Xi , ϑ̃n) − m(Xi , ϑ0)

) ∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ� .
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Since ϑ̂n converges to ϑ0 w.p.1 and ‖ϑ̃n − ϑ0‖ ≤ ‖ϑ̂n − ϑ0‖, we can assume that
ϑ̃n ∈ Bδ(ϑ0) for all n > N . By the continuity assumptions and assumption (vi),
Corollary 5.67 implies that the third term converges to

E

(
(m(X, ϑ0) − m(X, ϑ0))

∂2m(X, ϑ0)

∂ϑ∂ϑ�

)
= 0.

Similar, by the continuity assumptions and assumption (iv), Corollary 5.67 implies
that the second term converges to

E

(
∂2m(X, ϑ0)

∂ϑ∂ϑ� ε

)
= E

(
∂2m(X, ϑ0)

∂ϑ∂ϑ� E(ε|X)

)
,

which is also zero because E(ε|X) = 0. Again, by the continuity assumptions and
assumption (v), Corollary 5.67 implies that the first term converges to

E

(
∂m(X, ϑ0)

∂ϑ

∂m(X, ϑ0)

∂ϑ�

)
= A.

At the beginning we stated that

−n1/2
∂Qn(ϑ0)

∂ϑ
=

(∂2Qn(ϑ̃n)

∂ϑ∂ϑ�
) (

n1/2(ϑ̂n − ϑ0)
)
. (5.34)

The left-hand side converges in distribution to a centered normal distributed random
variable with covariance matrix Aσ . Furthermore, the partial derivatives on the right-
hand side converge to A w.p.1. Since A is positive definite, Lemma 5.54 concludes
the proof. �

The last theorem gives the following asymptotic representation of the estimator.

Corollary 5.74 Under the assumptions of Theorem 5.73 it holds for

L(x, y, ϑ0) = A−1(y − m(x, ϑ0))
∂m(x, ϑ0)

∂ϑ

that

1. n1/2(ϑ̂n − ϑ0) = n−1/2 ∑n
i=1 L(Xi ,Yi , ϑ0) + oP(1), as n → ∞,

2. E(L(X,Y, ϑ0)) = 0,
3. E

(
L(X,Y, ϑ0)L�(X,Y, ϑ0)

)
exists and is positive definite.

Proof As shown in the proof of Theorem 5.73, we have that

∂2Qn(ϑ̃n)

∂ϑ∂ϑ� −→ A, as n → ∞,

w.p.1. Hence, according to Equation (5.34) we obtain the first result, i.e.,
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n1/2(ϑ̂n − ϑ0) = oP(1) + n−1/2
n∑

i=1

A−1(Yi − m(Xi , ϑ0))
∂m(Xi , ϑ0)

∂ϑ
,

as n → ∞. Due to the assumption that E(ε|X) = 0 we obtain the second result.
Finally,E

(
L(X,Y, ϑ0)L�(X,Y, ϑ0)

) = A−1Aσ A−� is positive definite since A and
Aσ are positive definite. �

5.4.2 Mathematical Framework of Wild Bootstrap LSE

In the wild bootstrap setup, as we have already stated in Sect. 5.2.2, we use P∗ instead
of P∗

n for the underlying probability measure of the bootstrap.

Lemma 5.75 Let Z1, Z2, . . . , Zn be an i.i.d. sequence of random variables and
assume that E

(|Z1|2+δ
)

< ∞ for some δ > 0. Then

∑

i≥1

(Zi/ i)
2 < ∞

w.p.1.

Proof Let κ = 1/(1 + δ/2). We have the following bound

∑

i≥1

Z2
i

i2
=

∑

i≥1

Z2
i

iκ
1

i2−κ
≤

∑

i≥1

Z2
i

iκ
1

i2−κ
I{Z2

i >iκ } +
∑

i≥1

1

i2−κ
.

The second sum on the right-hand side converges because κ < 1. The first sum on
the right-hand side is finite because lim supi→∞ Z2

i / i
κ ≤ 1 w.p.1. This is due to the

Borel-Cantelli lemma and the following inequality,

∑

i≥1

P

(
Z2
i

iκ
> 1

)
≤

∑

i≥1

P

( |Zi |2/κ
i

> 1

)

=
∑

i≥1

∫

[i−1,i)
P

(|Z1|2+δ > i
)
dz

≤
∑

i≥1

∫

[i−1,i)
P

(|Z1|2+δ > z
)
dz

=
∫ ∞

0
P

(|Z1|2+δ > z
)
dz

= E(|Z1|2+δ)

< ∞.

This concludes the proof. �
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Lemma 5.76 Under the GA 5.68, Resampling Scheme5.64 and the assumptions

(i) there exists a δ > 0 such that for all ϑ ∈ Θ the expectation E(|m(X, ϑ)ε|2+δ)

is finite,
(ii) E(M(X)ε2) < ∞, compare GA 5.68 (vii) and (viii),
(iii) for all δ > 0 exists a δ̃ > 0 such that |m(x, ϑ1) − m(x, ϑ2)| < δ for all x ∈ X

and ‖ϑ1 − ϑ2‖ < δ̃,

then ∥∥∥∥∥n
−1

∑

1≤i≤n

m(X∗
i , ϑ)εiτ

∗
i

∥∥∥∥∥
ϑ∈Θ

= oP∗(1)

w.p.1.

Proof Define ci,ω(ϑ) = m(Xi (ω), ϑ)εi (ω). Due to Definition 5.68 and assump-
tion (ii), Theorem5.66 guarantees that n−1 ∑n

i=1 c
2
i,ω(ϑ) converges uniformly in

ϑ w.p.1. Hence, there exist an Ω0, independent of ϑ , with P(Ω0) = 1 such that
n−1 ∑n

i=1 c
2
i,ω(ϑ) converge for all ϑ ∈ Θ and ω ∈ Ω0. By definition of the

Rademacher rvs. VAR∗(τ ∗
i ) = 1 and therefore we have by Lemma5.75 that

∑

i≥1

VAR∗(ci,ω(ϑ)τ ∗
i )

i2
=

∑

i≥1

c2i,ω(ϑ)

i2
< ∞

for all ω ∈ Ω0 and ϑ ∈ Θ . This allows to apply Shorack (2000, Theorem 10.4.4)
which implies

n−1
n∑

i=1

m(Xi (ω), ϑ)εi (ω)τ ∗
i (ω∗) −→ 0, as n → ∞, (5.35)

almost surely with respect to P
∗, for all ω ∈ Ω0 and all ϑ ∈ Θ . The final step is to

extend this result to uniform convergence in ϑ . Denote the sum on the left-hand side
of (5.35) by Zn,ω(ω∗, ϑ). In order to achieve uniform convergence, we have to show
that {Zn,ω(ω∗, ϑ), ω∗ ∈ Ω∗, n ≥ 1} is equicontinuous. By the equicontinuity of m
there exists for all δ > 0 a δ̃ such that |m(x, ϑ1) − m(x, ϑ2)| ≤ δ for all x ∈ X and
‖ϑ1 − ϑ2‖ ≤ δ̃. Since |τ ∗

i | = 1, we obtain

|Zn,ω(ω∗, ϑ1) − Zn,ω(ω∗, ϑ2)|

≤ n−1
n∑

i=1

|m(Xi (ω), ϑ1) − m(Xi (ω), ϑ2)| |εi (ω)| |τ ∗
i (ω∗)|

≤ δ2E(|ε|),

where the last inequality holds for n > N (ω) and ‖ϑ1 − ϑ2‖ ≤ δ̃. Since Θ is com-
pact, for allω ∈ Ω0, Yuan (1997, Lemma) yields that ‖Zn,ω(ω∗, ϑ)‖ϑ∈Θ converges to
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zero almost surely with respect to P∗, which also implies convergence in probability
with respect to P∗. Since P(Ω0) = 1, this concludes the proof. �

Lemma 5.77 Under the assumptions of Lemma5.76,

∥∥∥∥∥n
−1

n∑

i=1

m(X∗
i , ϑ)ε∗

i,n

∥∥∥∥∥
ϑ∈Θ

= oP∗(1), as n → ∞,

w.p.1.

Proof By definition ε∗
i,n = τ ∗

i ε̂i,n = τ ∗
i (Yi − m(Xi , ϑ̂n)) = τ ∗

i (m(Xi , ϑ0) + εi −
m(Xi , ϑ̂n)). Hence, for δ > 0,

P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)ε∗
i,n

∥∥∥∥∥
ϑ∈Θ

> δ

)

= P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)τ ∗
i (Yi − m(Xi , ϑ̂n))

∥∥∥∥∥
ϑ∈Θ

> δ

)

≤ P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)τ ∗
i εi

∥∥∥∥∥
ϑ∈Θ

> δ/2

)

+ P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)τ ∗
i (m(Xi , ϑ0) − m(Xi , ϑ̂n))

∥∥∥∥∥
ϑ∈Θ

> δ/2

)

= oP∗(1) + P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)τ ∗
i (m(Xi , ϑ0) − m(Xi , ϑ̂n))

∥∥∥∥∥
ϑ∈Θ

> δ/2

)
,

where the last equality is due to Lemma 5.76. It remains to investigate the second
term. Let δ̃ > 0 and Bδ̃(ϑ0) be a ball around ϑ0. Since ϑ̂n converges to ϑ0 w.p.1 and
|τ ∗

i | = 1, the corresponding norm is bound by

n−1
n∑

i=1

∥∥∥m(Xi , ϑ)τ ∗
i (m(Xi , ϑ0) − m(Xi , ϑ̂n))

∥∥∥
ϑ∈Θ

≤ n−1
n∑

i=1

‖m(Xi , ϑ)‖ϑ∈Θ |τ ∗
i ||m(Xi , ϑ0) − m(Xi , ϑ̂n)|

≤ n−1
n∑

i=1

‖m(Xi , ϑ)‖ϑ∈Θ ‖m(Xi , ϑ0) − m(Xi , ϑ̃)‖ϑ̃∈Bδ̃ (ϑ0)

−→
n→∞ E

(
‖m(X, ϑ)‖ϑ∈Θ ‖m(X, ϑ0) − m(X, ϑ̃)‖ϑ̃∈Bδ̃ (ϑ0)

)

−→
δ̃→0

0,
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where the last convergence is due to Lebegue’s dominated convergence theorem
because ‖m(X, ϑ)‖ϑ∈Θ‖m(X, ϑ0) − m(X, ϑ̃)‖ϑ̃∈Bδ̃ (ϑ0)

converges to zero if δ̃ con-

verges to zero and is dominated by 2M(X) according to the GA 5.68. Since δ̃ was
arbitrary chosen, this concludes the proof. �

Lemma 5.78 Under the assumptions of Lemma 5.76,

∥∥∥∥∥n
−1

n∑

i=1

(Y ∗
i,n − m(X∗

i , ϑ))2 − Q(ϑ) − σ 2

∥∥∥∥∥
ϑ∈Θ

= oP∗(1), as n → ∞,

w.p.1.

Proof Define Δ(x, ϑ1, ϑ2) = m(x, ϑ1) − m(x, ϑ2), then

n−1
n∑

i=1

(Y ∗
i,n − m(X∗

i , ϑ))2 = n−1
n∑

i=1

(m(Xi , ϑ̂n) + ε∗
i,n − m(Xi , ϑ))2

= n−1
n∑

i=1

Δ2(Xi , ϑ̂n, ϑ) + 2n−1
n∑

i=1

Δ(Xi , ϑ̂n, ϑ)ε∗
i,n

+ n−1
n∑

i=1

ε∗2
i,n.

Due to Lemma 5.77 we have

P
∗
(∥∥∥∥∥n

−1
n∑

i=1

(Y ∗
i,n − m(X∗

i , ϑ))2 − Q(ϑ) − σ 2

∥∥∥∥∥
ϑ∈Θ

> δ

)

≤ P
∗
(∥∥∥∥∥n

−1
n∑

i=1

Δ2(Xi , ϑ̂n, ϑ) − Q(ϑ)

∥∥∥∥∥
ϑ∈Θ

> δ/3

)
+ oP∗(1)

+ P
∗
(∥∥∥∥∥n

−1
n∑

i=1

ε∗2
i,n − σ 2

∥∥∥∥∥
ϑ∈Θ

> δ/3

)
.

By definition τ ∗2
i,n = 1, therefore the third term becomes

I{|n−1
∑n

i=1 ε̂2i,n−σ 2|>δ/3},

which converges to zero by the strong consistency of the estimated residuals, see
Corollary 5.72. It remains to investigate

∥∥∥∥∥n
−1

n∑

i=1

Δ2(Xi , ϑ̂n, ϑ) − Q(ϑ)

∥∥∥∥∥
ϑ∈Θ

,
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which is bounded by

∥∥∥∥∥n
−1

n∑

i=1

Δ2(Xi , ϑ1, ϑ2) − Q̃(ϑ1, ϑ2)

∥∥∥∥∥
(ϑ1,ϑ2)∈Θ2

+
∥∥∥Q̃(ϑ̂n, ϑ) − Q̃(ϑ0, ϑ)

∥∥∥
ϑ∈Θ

,

where Q̃(ϑ1, ϑ2) = E
(
(m(X, ϑ1) − m(X, ϑ2))

2
)
. Note, Q(ϑ) = Q̃(ϑ0, ϑ). Since

Δ2(X, ϑ̂n, ϑ) is dominated by 4M(X) and Θ2 is compact, we can apply Theorem
5.66 and obtain

n−1
n∑

i=1

Δ2(Xi , ϑ1, ϑ2) −→ Q̃(ϑ1, ϑ2), as n → ∞,

uniformly in (ϑ1, ϑ2) ∈ Θ2 w.p.1. Note that Q̃ is a continuous function in (ϑ1, ϑ2)

because m2 is dominated by M which guarantees the continuity by Lebegue’s domi-
nated convergence theorem. Due to the compactness ofΘ2 it is also uniform continu-

ous. Therefore,
∥∥∥Q̃(ϑ̂n, ϑ) − Q̃(ϑ0, ϑ)

∥∥∥
ϑ∈Θ

converges to zero because ϑ̂n converges

to ϑ0 w.p.1. This concludes the proof. �

Theorem 5.79 UnderResampling Scheme5.64 and the assumptions of Lemma5.76,

‖ϑ̂∗
n − ϑ0‖ = oP∗(1), as n → ∞,

w.p.1.

Proof First observe that for all δ > 0 there exists an ε > 0 such that |ϑ − ϑ0| > δ

implies |Q(ϑ) − Q(ϑ0)| > ε. This can be seen by contradiction. Assume that there
exists a δ > 0 such that for all n ∈ N we find a ϑn with |ϑn − ϑ0| > δ and |Q(ϑn) −
Q(ϑ0)| ≤ n−1. Since Θ is compact we can assume that ϑn converges to ϑ̃ . By the
continuity of Q we also have Q(ϑ̃) = Q(ϑ0) = 0. By the uniqueness assumption
for ϑ0, we obtain ϑ̃ = ϑ0. But this contradicts our assumption that |ϑn − ϑ0| > δ for
all n. This yields the bound P

∗(|ϑ̂∗
n − ϑ0| > δ) ≤ P

∗(|Q(ϑ̂∗
n ) − Q(ϑ0)| > ε). Let

Q∗
n(ϑ) = n−1 ∑n

i=1(Y
∗
i,n − m(X∗

i , ϑ))2. We have w.p.1 that

Q(ϑ̂∗
n ) + σ 2 = oP∗(1) + Q∗

n(ϑ̂
∗
n )

= oP∗(1) + inf
ϑ∈Θ

Q∗
n(ϑ)

= oP∗(1) + inf
ϑ∈Θ

(oP∗(1) + Q(ϑ) + σ 2)

= oP∗(1) + inf
ϑ∈Θ

Q(ϑ) + σ 2

= oP∗(1) + Q(ϑ0) + σ 2,

where the first, third and fourth equality are due to the uniform convergence of Q∗
n ,

see Lemma 5.78, and the second and last equality are simply the definition of ϑ̂∗
n and
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ϑ0. Therefore, P∗(|Q(ϑ̂∗
n ) − Q(ϑ0)| > ε) converges to zero with probability one for

all ε > 0. This concludes the proof. �

Theorem 5.80 Under Resampling scheme 5.64, assuming the GA 5.68 and in addi-
tion

(i) the first and second partial derivatives of m with respect to ϑ are continuous
in ϑ for all x ∈ X and measurable in x for all ϑ ∈ Θ ,

(ii)

A =
(
E

(
∂m(X, ϑ0)

∂ϑs

∂m(X, ϑ0)

∂ϑt

))

1≤s,t≤p

is positive definite,
(iii)

Aσ =
(
E

(
ε2

∂m(X, ϑ0)

∂ϑs

∂m(X, ϑ0)

∂ϑt

))

1≤s,t≤p

is positive definite,
(iv) there exists δ > 0 and M0(x), M1(x) and M2(x) such that for k = 0, 1, 2 and

s = 1, . . . , p,
∣∣∣mk(x, ϑ̃1)

∣∣∣

∣∣∣∣∣
∂m(x, ϑ̃2)

∂ϑs

∣∣∣∣∣

2

≤ Mk(x)

for all x ∈ X and ϑ̃1 and ϑ̃2 in a closed ball Bδ(ϑ0)withE(Mk(X)|ε|2−k) < ∞
for k = 0, 1, 2 and E(M0(X)) < ∞,

(v) there exists δ > 0 and M̃0(x), M̃1(x) and M̃2(x) such that for k = 0, 1, 2,
s = 1, . . . , p and t = 1, . . . , p,

∣∣∣mk(x, ϑ̃1)

∣∣∣

∣∣∣∣∣
∂2m(x, ϑ̃2)

∂ϑs∂ϑt

∣∣∣∣∣

2

≤ M̃k(x)

for all x ∈ X and ϑ̃1 and ϑ̃2 in a closed ball Bδ(ϑ0)withE(M̃k(X)|ε|2−k) < ∞
for k = 0, 1, 2,

(vi) ϑ̂n converges to ϑ0 w.p.1 and ϑ0 is an inner point of Θ ,
(vii) ‖ϑ̂∗

n − ϑ0‖ = oP∗(1), as n → ∞, w.p.1.

Then w.p.1
n1/2(ϑ̂∗

n − ϑ̂n) → Z , as n → ∞,

in distribution with respect to P
∗, where Z is normally distributed with mean zero

and variance A−1Aσ A−�.

Proof Set Q∗
n(ϑ) = (2n)−1 ∑n

i=1(m(X∗
i , ϑ) − Y ∗

i,n)
2 and let V ⊂ Θ be an open

neighborhood of ϑ0. Since all points in V are inner points of Θ , we have
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0 = ∂Q∗
n(ϑ̂

∗
n )

∂ϑ
I{ϑ̂∗

n ∈V } = ∂Q∗
n(ϑ̂n)

∂ϑ
I{ϑ̂∗

n ∈V } +
(

∂2Q∗
n(ϑ̃n)

∂ϑ∂ϑ� I{ϑ̂∗
n ∈V }

) (
ϑ̂∗
n − ϑ̂n

)

(5.36)

with ‖ϑ̃n − ϑ̂n‖ ≤ ‖ϑ̂∗
n − ϑ̂n‖. Note, ‖ϑ̂∗

n − ϑ̂n‖ = oP∗(1) due to the convergence of
ϑ̂∗
n as well as ϑ̂n to ϑ0. Consider the first term on the right-hand side of (5.36). Since

Y ∗
i,n = m(Xi , ϑ̂n) + τ ∗

i ε̂i,n ,

n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
= −n−1/2

n∑

i=1

τ ∗
i ε̂i,n

∂m(Xi , ϑ̂n)

∂ϑ
. (5.37)

We now apply the Cramér-Wold device and verify the Lindeberg condition to
show that the right-hand side converges to a multivariate normal distribution. Let
a ∈ R

p be arbitrary but fixed and define Z∗
i,n = n−1/2τ ∗

i ε̂i,n∂m(Xi , ϑ̂n)/∂ϑ . Obvi-

ously,E∗(a�Z∗
i,n) = 0 and VAR∗(a�Z∗

i,n) = n−1ε̂2i,n(a
�∂m(Xi , ϑ̂n)/∂ϑ)2. The sum

of these variances, denoted by s2n , appear in the Lindeberg condition. Therefore, we
investigate its behavior. We have

s2n =
n∑

i=1

VAR∗(a�Z∗
i,n)

= n−1
n∑

i=1

ε̂2i,n

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

= n−1
n∑

i=1

(m(Xi , ϑ0) − m(Xi , ϑ̂n))
2

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

+ 2n−1
n∑

i=1

(m(Xi , ϑ0) − m(Xi , ϑ̂n))εi

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

+ n−1
n∑

i=1

ε2i

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

−→ E

((
εa� ∂m(X, ϑ0)

∂ϑ

)2
)

, as n → ∞, (5.38)

w.p.1, where the convergence is due to assumption (iv) and Corollary 5.67 applied
to each individual sum.

Now, we check the validity of the Lindeberg condition. For ε̃ > 0,

n∑

i=1

1

s2n

∫

|a�Z∗
i,n |>ε̃sn

(a�Z∗
i,n)

2dP∗
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becomes
1

ns2n

n∑

i=1

ε̂2i,n

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

I{|ε̂i,na�∂m(Xi ,ϑ̂n)/∂ϑ |>n1/2 ε̃sn}

because |τ ∗
i | = 1. We now introduce a function J that bounds the indicator in a

continuous way. Let

J (t) =

⎧
⎪⎨

⎪⎩

1 if 1 ≤ |t |,
2|t | − 1 if 1/2 < |t | < 1,

0 if |t | ≤ 1/2.

Due to this definition we have that I{|y|>x} ≤ J (y/x) for x > 0. According to (5.38),
it is therefore sufficient to show that

1

ns20/2

n∑

i=1

ε̂2i,n

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

J

(
ε̂i,na�∂m(Xi , ϑ̂n)/∂ϑ

n1/2ε̃s0/2

)

converges to zero, where s20 denotes the limit of s2n . For fixed K > 0, this is eventually
bounded by

1

ns20/2

n∑

i=1

ε̂2i,n

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

J

(
ε̂i,na�∂m(Xi , ϑ̂n)/∂ϑ

K

)
,

which converges w.p.1, as n → ∞, by Corollary 5.67, see the argumentation for∑n
i=1 VAR

∗(a�Z∗
i,n), to

2s−2
0 E

((
εa� ∂m(X, ϑ0)

∂ϑ

)2

J

(
εa�∂m(X, ϑ0)/∂ϑ

K

))
−→
K→∞ 0.

The last convergence to zero is guaranteed by the definition of J (t) and assumption
(iv). This verifies the Lindeberg condition. According to the definition of Aσ in
assumption (iii), s20 = a�Aσ A�

σ a which yields w.p.1

n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
−→ Z , as n → ∞,

in distribution with respect to P
∗, where Z is a centered multivariate normally dis-

tributed random variable with covariance matrix Aσ . Note that with assumption (vii)
this also implies

n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
I{ϑ̂∗

n /∈V } = oP∗(1).
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We now focus on the components of the second partial derivatives of Qn at ϑ̃n ,
i.e., second term on the right-hand side of (5.36),

∂2Q∗
n(ϑ̃n)

∂ϑ∂ϑ� = n−1
n∑

i=1

∂m(Xi , ϑ̃n)

∂ϑ

∂m(Xi , ϑ̃n)

∂ϑ� + n−1
n∑

i=1

(m(Xi , ϑ̃n) − Y ∗
i,n)

∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

= n−1
n∑

i=1

∂m(Xi , ϑ̃n)

∂ϑ

∂m(Xi , ϑ̃n)

∂ϑ� − n−1
n∑

i=1

τ ∗
i ε̂i,n

∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

+ n−1
n∑

i=1

(
m(Xi , ϑ̃n) − m(Xi , ϑ̂n)

) ∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ� . (5.39)

Since ϑ̂n and ϑ̃n converges in probability (with respect to P
∗) to ϑ0, the continuity

assumptions, assumption (v) and Corollary 5.67 imply that the third term on the
right-hand side of (5.39) converges w.p.1 to

E

(
(m(X, ϑ0) − m(X, ϑ0))

∂2m(X, ϑ0)

∂ϑ∂ϑ�

)
= 0, as n → ∞,

in probabilitywith respect toP∗. In a similarway aswe handled
∑n

i=1 VAR
∗(a�Z∗

i,n),
assumption (v) and Corollary 5.67 provide w.p.1 that

n−1
n∑

i=1

(
ε̂i,n

∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

)2

−→ E

((
ε
∂2m(X, ϑ0)

∂ϑ∂ϑ�

)2
)

, as n → ∞,

in probability with respect to P
∗. Therefore, by Chebyshev’s inequality, w.p.1 the

second term on the right-hand side of (5.39), i.e.,

n−1
n∑

i=1

τ ∗
i ε̂i,n

∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

converges in probability (with respect to P∗) to zero. Finally, by assumption (iv) and
again Corollary 5.67 w.p.1 the first term converges in probability (with respect to
P

∗) to A. In sum, with assumption (vii), we have w.p.1

∂2Q∗
n(ϑ̃n)

∂ϑ∂ϑ� I{ϑ̂∗
n ∈V } = A + oP∗(1) (5.40)

and as mentioned before

n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
I{ϑ̂∗

n /∈V } = oP∗(1).

Altogether, we obtain w.p.1 from (5.36)
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−n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
+ oP∗(1) =

(
A + oP∗(1)

) (
n1/2(ϑ̂∗

n − ϑ̂n)
)
. (5.41)

Since A has an inverse we apply Lemma 5.54 to obtain w.p.1 that n1/2(ϑ̂∗
n − ϑ̂n)

converges in distribution to a centered multivariate normally distributed random
variable with covariance matrix A−1Aσ A−�. This concludes the proof. �

The last theorem shows that the asymptotic covariance of the bootstrapped estimator
is the same as the covariance of Theorem 5.73 and gives the following asymptotic
representation of the estimator.

Corollary 5.81 Under the assumptions of Theorem 5.80 it holds for

L(x, y, τ, ϑ) = A−1τ(y − m(x, ϑ))
∂m(x, ϑ)

∂ϑ

that

1. n1/2(ϑ̂∗
n − ϑ̂n) = n−1/2 ∑n

i=1 L(Xi ,Y ∗
i,n, τ

∗
i , ϑ̂n) + oP∗(1), as n → ∞, w.p.1,

2. E
∗(L(Xi ,Y ∗

i,n, τ
∗
i , ϑ̂n)) = 0 for all n,

3. n−1 ∑n
i=1 E

∗
(
L(Xi ,Y ∗

i,n, τ
∗
i , ϑ̂n)L�(Xi ,Y ∗

i,n, τ
∗
i , ϑ̂n)

)
−→ A−1Aσ A−�,

as n → ∞, w.p.1.

Proof According to Eq.5.37 and 5.41 we obtain the first assertion from the proof of
Theorem5.80. The second result follows directly from E

∗(τ ∗
i ) = 0. Finally, due to

E
∗(τ ∗2

i ) = 1 we obtain

E
∗ (

L(Xi , Y
∗
i,n, τ

∗
i , ϑ̂n)L

�(Xi , Y
∗
i,n, τ

∗
i , ϑ̂n)

)
= A−1ε̂2i,n

∂m(Xi , ϑ̂n)

∂ϑ

(
∂m(Xi , ϑ̂n)

∂ϑ

)�
A−�.

Using a similar argumentation as for Equation (5.38) in proof of Theorem 5.80, we
obtain with Corollary 5.67 and assumption (v) of Theorem 5.80 that

n−1
n∑

i=1

ε̂2i,n
∂m(Xi , ϑ̂n)

∂ϑ

(
∂m(Xi , ϑ̂n)

∂ϑ

)�
−→ Aσ , as n → ∞,

w.p.1. Since A is a constant matrix, we directly obtain assertion 3, which completes
the proof. �

5.5 Exercises

Exercise 5.82 Simulate observations (Yi , xi )1≤i≤n , with n = 50, according to the
model
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Yi = xi β + εi , xi = i/n,

where β = 0.5, σ 2 = 4, and ε1, . . . , εn ∼ N (0, σ 2) are i.i.d.

(i) Use Theorem 5.10 to construct an approximative confidence interval for β to
the confidence level 0.9.

(ii) Use Theorem 5.17 with 1000 bootstrap replications to construct an approxi-
mative confidence interval to the level 0.9.

(iii) Repeat the steps (i) and (ii) 100 times. Determine the mean interval widths
for the 100 intervals based on normal approximation and for the 100 intervals
based on bootstrap approximation. Furthermore, obtain the coverage levels
corresponding to the two approximations.

Exercise 5.83 Take the model given under Exercise 5.82.

(i) Use Theorem 5.17 to construct a bootstrap-based test for

H0 : β = 0.4 against H1 : β > 0.4

and determine the approximative p−value based on 1000 bootstrap replica-
tions.

(ii) Repeat the generation of the observations according to the model 100 times
and use the bootstrap test developed under (i) for each dataset to calculate the
corresponding p−values. Visualize the edf. of the 100 p−values and interpret
the result.

Exercise 5.84 Use the model

Yi = xi β + εi , xi = i/n,

where ε1 = x1 δ1, . . . , εn = xn δn and δ1, . . . , δn ∼ N (0, σ 2) are i.i.d. ,β = 0.5, and
σ 2 = 4. Note, in this case the error terms in the model, i.e., εi , are not homoscedastic
anymore! Repeat the simulation studies of Exercises 5.82 and 5.83 with this model.

Exercise 5.85 Let the true model be Y = 10 + 5x + ε, where ε ∼ N (0, 1) and x
ranges from 1 to 20. Fit a linear model using only the x variable but no intercept.
(Using an R-formula, this can be achieved by Y ∼ x - 1). Why would the classical
bootstrap scheme 5.31 and the wild bootstrap scheme 5.23 return very different
bootstrap distributions for β̂?

Exercise 5.86 Try to reproduce the estimation from Example 5.2 using Equation
(5.2). Note, the diabetes status has to be recoded into 0 and 1.

Exercise 5.87 Try to reproduce the estimation from Example 5.2 using Remark 5.1
via the R-functions “stats::optim” or “stats:nlm”. Note, the diabetes status has to be
recoded into 0 and 1.
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Exercise 5.88 Proof that RSS 5.7 works.

Exercise 5.89 Prove Lemma 5.37.

Exercise 5.90 Prove Lemma 5.38.

References

Billingsley P (1968) Convergence of probability measures. Wiley, New York
Dua D, Graff C (2017) UCI machine learning repository. URL http://archive.ics.uci.edu/ml.
Accessed on 23 Dec 2019

Fanaee TH, Gama J (2013) Event labeling combining ensemble detectors and background knowl-
edge. Prog Artif Intell 2:113–127

Jennrich RI (1969) Asymptotic properties of non-linear least squares estimators. Ann Math Stat
40(2):633–643

Liu RY (1988) Bootstrap procedures under some non-i.i.d. models. Ann Stat 16(4):1696–1708
Loève M (1977) Probability theory. I, 4th edn. Springer, New York
Perlman MD (1972) On the strong consistency of approximate maximum likelihood estimates. In
Proceedings of sixth Berk symposium math statistics and probability. University of California
Press, Berkeley, CA, pp 263–281

Shorack GR (2000) Probability for statisticians. Springer texts in statistics. Springer, New York
Stute W (1990) Bootstrap of the linear correlation model. Statistics 21(3):433–436
Wu CFJ (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann Stat
14(4):1261–1350

Yuan KH (1997) A theorem on uniform convergence of stochastic functions with applications. J
Multivar Anal 62(1):100–109

http://archive.ics.uci.edu/ml

	5 Regression Analysis
	5.1 Homoscedastic Linear Regression under Fixed Design
	5.1.1 Model-Based Bootstrap
	5.1.2 LSE Asymptotic
	5.1.3 LSE Bootstrap Asymptotic

	5.2 Linear Correlation Model and the Bootstrap
	5.2.1 Classical Bootstrap
	5.2.2 Wild Bootstrap
	5.2.3 Mathematical Framework of LSE
	5.2.4 Mathematical Framework of Classical Bootstrapped LSE
	5.2.5 Mathematical Framework of Wild Bootstrapped LSE

	5.3 Generalized Linear Model (Parametric)
	5.3.1 Mathematical Framework of MLE
	5.3.2 Mathematical Framework of Bootstrap MLE

	5.4 Semi-parametric Model
	5.4.1 Mathematical Framework of LSE
	5.4.2 Mathematical Framework of Wild Bootstrap LSE

	5.5 Exercises
	References




