
Chapter 3
The Classical Bootstrap

In Chap.1, we briefly introduced the idea of bootstrapping. Now, together with the
first applications, we will also give some theoretical results of the classical bootstrap
approximation as first published simultaneously by Bickel and Freedman (1981) and
Singh (1981). The methods of proof in these two papers are different and we follow
mainly the work of Singh (1981) here. However, in Sect. 3.5, we will go into more
detail about a proof concept applied in Bickel and Freedman (1981).

The first two sections of this chapter contain programming examples and the
essential theorems for the classical bootstrap procedure. The last four sections give a
deeper insight into themathematical background. They are rather intended for readers
who have a deeper knowledge of probability theory and mathematical statistics.

3.1 An Introductory Example

Recall from Chap.1 the basic idea of the bootstrap. Starting with an i.i.d. sample

X1, . . . , Xn ∼ F

with common unknown df. F we consider a statistic Tn(F) = Tn(X1, . . . , Xn; F)

whose df. we want to approximate. For the approximation, we use the df. of Tn(F̂),
where F̂ is a known df. which is close to F .

In the situation of the classical bootstrap (cb.), the edf. Fn is used for F̂ . Hence

Tn(F̂) = Tn(Fn) = Tn(X
∗
1, . . . , X

∗
n; Fn),

where
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22 3 The Classical Bootstrap

X∗
1, . . . , X

∗
n ∼ Fn (3.1)

is an i.i.d. sample with common df. Fn . We call X∗
1, . . . , X

∗
n the bootstrap sample.

The underlying probability measure will be denoted here by P
∗
n ≡ PFn . Note that

the probability measure of the bootstrap distribution, P∗
n , depends on the original

observations X1, . . . , Xn , thus it is random! Furthermore, it changes from n to n + 1.
Notice, in (3.1), we notationally suppress the fact that the bootstrap sample changes
its distribution with n. Hence, in an asymptotics setting, i.e., n → ∞, it would be
more precise to write

X∗
1,n, . . . , X

∗
n,n ∼ Fn. (3.2)

Nevertheless, for notational convenience we simply write X∗
1, . . . , X

∗
n for the trian-

gular scheme (3.2).
In the following set of examples, we will describe how the classical bootstrap can

be used to construct a confidence interval for the expectation of an rv. Note that this
is just an introductory example.

Example 3.1 Confidence interval for the expectation μ, part 1. Recall the sit-
uation of Sect. 1.1 and assume that we want to construct a confidence interval for
the expectation μ = E(X) of an rv. X ∼ F whose variance VAR(X) = σ 2 < ∞ is
unknown to us but expected to be finite. We observe an i.i.d. sample X1, . . . , Xn

and use the CLT to construct a 90% asymptotic confidence interval for μ. Based on
Eq. (1.3), we get

P
(
Φ−1(0.05) ≤ √

n(X̄n − μ)/sn ≤ Φ−1(0.95)
) ≈ 0.9.

HereΦ−1 denotes the quantile function of theN (0, 1) distribution. SinceΦ−1(0.05)
is equal to−Φ−1(0.95), the confidence interval can be obtained from the result above.
After some algebraic rearrangements, we get

P
(
μ ∈ [

X̄n − sn × Φ−1(0.95)
/√

n , X̄n + sn × Φ−1(0.95)
/√

n
]) ≈ 0.9.

In this classical construction, the quantiles of the approximating normal distribution
Φ are taken to approximate the corresponding quantiles of PF

(√
n(X̄n − μ)/sn ≤

x
)
. It is Eq. (1.3) which allows this construction.
Now assume that the following approximation is a.s. correct:

sup
x∈R

∣∣∣P
(√

n(X̄n − μ)
/
sn ≤ x

) − P
∗
n

(√
n(X̄∗

n − X̄n)
/
s∗
n ≤ x

)∣∣∣ −→ 0, as n → ∞,

(3.3)
where

X̄∗
n := 1

n

n∑

i=1

X∗
i , s∗2

n := 1

n − 1

n∑

i=1

(
X∗
i − X̄∗

n

)2
.
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As in the construction above, we can use q0.05 and q0.95 the 0.05 and 0.95 quantile of
the approximating df. of

√
n(X̄∗

n − X̄n)
/
s∗
n (with respect to the probability measure

P
∗
n), respectively, to get

P
(
q0.05 ≤ n1/2(X̄n − μ)

/
sn ≤ q0.95

) ≈ 0.9. (3.4)

With some minor algebraic rearrangements, we finally derive

[
X̄n − sn × q0.95

/√
n , X̄n − sn × q0.05

/√
n
]
, (3.5)

the bootstrap confidence interval for μ.

But we still have to determine the two quantiles q0.05 and q0.95. In principle, it
is possible to calculate these quantiles since we know the underlying distribution.
With respect to the computing time involved, this will be impossible in most cases.
However, since we know the underlying df. we can now use aMonte Carlo approach
(mc.) to get at least an acceptable approximation for these quantiles. To see how this
works in practice, we continue with Example 3.1.

Example 3.2 Confidence interval for the expectation μ, part 2. We start with a
resampling scheme for the bootstrap data:

Resampling scheme 3.3 Classical bootstrap.

(A) X1, . . . , Xn observed data.
(B) Calculate q0.05 and q0.95 the 0.05 and 0.95 quantile of P∗

n(
√
n(X̄∗

n − X̄n)/s∗
n ≤

x), where X∗
1, . . . , X

∗
n are i.i.d. according to Fn, the edf. of the observed data.

(C) Take [X̄n − sn × q0.95/
√
n, X̄n − sn × q0.05/

√
n] as a confidence interval.

To apply a Monte Carlo approximation for step (B), one can use the following basic
approach:

(B1) Generate m bootstrap datasets X∗
�;1, . . . , X

∗
�;n ∼ Fn , 1 ≤ � ≤ m and calculate

T�;n := √
n(X̄∗

�;n − X̄n)/s∗
�;n .

(B2) Take T[0.05×m]:m;n and T[0.95×m]:m;n as an approximation for q0.05 and q0.95 in
the interval under (C), where (T�:m;n)1≤�≤m are the ordered (T�;n)1≤�≤m , that is,
T1;n ≤ T2;n ≤ . . . ≤ Tm;n .

R-Example 3.4 Confidence interval for the expectation μ, part 3. The following
R-code shows how this Monte Carlo approximation is applied under R to find the
quantiles. Note that the unbiased estimates

s2n := 1

n − 1

n∑

i=1

(
Xi − X̄n

)2
, s∗2

n := 1

n − 1

n∑

i=1

(
X∗
i − X̄∗

n

)2

are used in the R-code. Further, the sample quantiles obtained from the R-function
“quantile” differ slightly from the sample quantiles defined in step (B2).
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step.B1 <- function(x, m = 1000){
# x - observed data
# m - number of MC replications

# Realize step (B1)
# generates m classical bootstrap data sets
# calculates the standardized statistic and returns
# them as a vector

n <- length(x)
mean.observed.x <- mean(x)

# studentize x.boot according to step (B1)
studentize <- function(x.boot){
sqrt(n) * (mean(x.boot) - mean.observed.x) / sd(x.boot)

}

# step (B1)
replicate(m, {
x.boot <- sample(x, n, replace=TRUE)
studentize(x.boot)

})
}

ci <- function(x, conf.level){
# x - observed data
# conf.level - confidence level
# returns left and right bound of the confidence interval
# as a vector

alpha <- 1 - conf.level
t.boot <- step.B1(x, m=999)

# quantiles based on the MC simulation, see step (B) and (B2)
ql.boot <- quantile(t.boot, alpha / 2)
qr.boot <- quantile(t.boot, 1 - alpha / 2)

n <- length(x)
mean.observed.x <- mean(x)
sd.observed.x <- sd(x)

# calculations according to step (C)
left <- mean.observed.x - qr.boot * sd.observed.x / sqrt(n)
right <- mean.observed.x - ql.boot * sd.observed.x / sqrt(n)

ret <- c(left, right)
names(ret) <- c("lower", "upper")
ret

}

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
#x is a vector with the observed data
x <- rnorm(20, mean = 5, sd = 2)
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ci(x = x, conf.level = 0.90)

## lower upper

## 4.583343 6.052707

A more convenient way to obtain the confidence interval is to apply the function
“boot.ci” from the boot package.

bootstrap.ci <- function(x, conf.level, R){
# x - observed data
# conf.level - confidence level
# R number of MC simulations

# calculate mean and variance for the bootstrapped sample
mean_and_var <- function(d, i){
# d - observed data
# i - boot::boot tells us which indices to be used to
# obtain the resampling version of the observed data

d_boot <- d[i]
c(mean_boot <- mean(d_boot), variance_boot = var(d_boot))

}

# resampled mean and variance
b <- boot::boot(x, mean_and_var, R = R)

# type = "stud" stands for studentized statistics
ret <- boot::boot.ci(b, conf = conf.level, type = "stud",

# var.t0 - variance of the observed data
var.t0 = var(x),
# var.t - variances for every
# resampled data sets
var.t = b$t[,2])$student[4:5]

names(ret) <- c("lower", "upper")
ret

}

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
bootstrap.ci(rnorm(20, mean=5, sd=2), conf.level=0.9, R=999)

## lower upper

## 4.510934 6.097640

The slight differences between the two calculated confidence intervals originate
from two facts. First, the resampled data are generated differently; cf. the parameter
“simple” in the help page of the function “boot”. Second, the quantiles are calculated
differently, cf. Davison and Hinkley (1997, p. 195).
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Table 3.1 Observed coverage and mean interval length of 80% and 90% confidence intervals,
based on resampling scheme 3.3 and normal approximation. The underlying distribution functions
of the random samples (n=10) are Exp(0.1) and UNI(0,6)
fun conf.level proc obsCoverage meanIntervalWidth

rexp 0.8 bootstrap.ci 0.80 10.51

rexp 0.8 normal.ci 0.71 7.35

rexp 0.9 bootstrap.ci 0.90 14.36

rexp 0.9 normal.ci 0.84 9.76

runif 0.8 bootstrap.ci 0.85 1.51

runif 0.8 normal.ci 0.75 1.38

runif 0.9 bootstrap.ci 0.94 2.08

runif 0.9 normal.ci 0.86 1.77

Example 3.5 Confidence interval for the expectation μ, part 4. According to
this classical bootstrap approach, we constructed confidence intervals and compared
them with the corresponding ones constructed by approximation with the normal
distribution. The result of this simulation study is given below in Table 3.1. For
the distribution function, we choose the uniform df. on the interval [0, 6] and the
exponential df. with parameter 0.1.

normal.ci <- function(x, conf.level){
# x - observed data
# conf.level - confidence level

# calculate confidence interval based on the
# central limit theorem

mean_observed_x <- mean(x)
sd_observed_x <- sd(x)
n <- length(x)
q <- qnorm((1-conf.level)/2)

c(lower = mean_observed_x + q * sd_observed_x / sqrt(n),
upper = mean_observed_x - q * sd_observed_x / sqrt(n))

}

# data will be generated using the uniform distribution
# and the exponential distribution
dg <- bind_rows(
simTool::expand_tibble(fun = "runif", n = 10, max = 6),
simTool::expand_tibble(fun = "rexp", n = 10, rate = 0.1)) %>%
as.data.frame

# 80% and 90% confidence intervals will be calculated by using
# the function boostrap.ci() and normal.ci()
pg <- bind_rows(
simTool::expand_tibble(proc = "bootstrap.ci",

conf.level = c(0.8, 0.9), R = 999),
simTool::expand_tibble(proc = "normal.ci",
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conf.level = c(0.8, 0.9))) %>%
as.data.frame

# create data sets according to data.frame dg
# calculate confidence intervals according to data.frame pg
# do this 1000 times on 4 cpus on the local machine
eg <- simTool::eval_tibbles(dg, pg, replications = 1000,

ncpus = 4,
cluster_seed = rep(123456, 6),
discard_generated_data = TRUE,
simplify = FALSE,
# convert the resulting vectors
# to a tibble
post_analyze = tibble::enframe)

results <- eg$simulation %>%
# put the lower and upper limit
# into two columns
tidyr::unnest(results) %>%
tidyr::spread(key = name, value = value) %>%
# calculate the width of every constructed
# confidence interval and determine if it
# covers the true mean
dplyr::mutate(width = upper - lower,

mu = ifelse(fun == "rexp", 10, 3),
muCovered = lower <= mu & mu <= upper) %>%

dplyr::group_by(fun, conf.level, proc) %>%
# calculate the covarage and mean length of the
# confidence intervals conditioned on the different
# distribution function, the confidence level of
# the interval and the function used to calculate
# the confidence interval
dplyr::summarize(obsCoverage = mean(muCovered),

meanIntervalWidth = mean(width))

3.2 Basic Mathematical Background of the Classical
Bootstrap

In this section, we give some mathematical justifications for the validity of the clas-
sical bootstrap approximations. We start with an example to show that the bootstrap
approximation is not always correct!

Example 3.6 Let X1, . . . , Xn ∼ UN I be an i.i.d. sample with UN I ≡ F as com-
mon df. The right-hand point of the support of F is obviously 1(= T (F)). To “esti-
mate” T (F), we take the largest observation Tn(F) ≡ Tn(X1, . . . , Xn; F) = Xn:n ,
where

X1:n ≤ X2:n ≤ . . . ≤ Xn:n
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denotes the order statistic corresponding to the observations. As we will see in Exer-
cise 3.26,

PF (n(T (F) − Tn(F)) ≤ x) = PF (n(1 − Xn:n) ≤ x)

−→ 1 − exp(−x), as n → ∞,

for all x ≥ 0. In particular, we get for x = 0 that

PF (n(T (F) − Tn(F)) ≤ 0) = PF (n(1 − Xn:n) ≤ 0) −→ 0.

Now we mimic this situation for the bootstrap approximation. Having observed the
sample X1, . . . , Xn , the right-hand point of the support of Fn is obviously the largest
observation, thus T (Fn) ≡ Xn:n . To “estimate” T (Fn) from the bootstrap sample
X∗
1, . . . , X

∗
n we have to take the largest bootstrap observation, thus Tn(Fn) = X∗

n:n .
But now we get (see Exercise 3.26)

P
∗
n(n(T (Fn) − Tn(Fn)) ≤ 0) = P

∗
n(n(Xn:n − X∗

n:n) ≤ 0)

−→ 1 − exp(−1), as n → ∞.

This shows that the bootstrap approximation is not correct here. �

This disillusioning example points out clearly that we cannot expect a bootstrap

approximation to be always possible. Furthermore, it tells us that we have to prove
its correctness before we are allowed to use it.

In the following considerations, the sample size and the resampling size will
be n, and the bootstrap sample will be taken from Fn the edf. corresponding to
the i.i.d. sample X1, . . . , Xn ∼ F . The bootstrap sample will be denoted as usual
by X∗

1, . . . , X
∗
n ∼ Fn and we skip the second index n here. Furthermore, we use

E(X) = μ, VAR(X) = σ 2,

E
∗
n(X

∗) =
∫

x Fn(dx) = 1

n

n∑

i=1

= X̄n, VAR∗
n(X

∗) = 1

n

n∑

i=1

(Xi − X̄n)
2 = s2n ,

and finally

X̄∗
n = 1

n

n∑

i=1

X∗
i , s∗2

n = 1

n

n∑

i=1

(
X∗
i − X̄∗

n

)2
.

Note that now 1/n is used for s2n and s
∗2
n instead of 1/(n − 1). In asymptotic consider-

ations, this is irrelevant. With this definition s2n becomes the variance of the bootstrap
variable. This has, as will be seen later, advantages in theoretical considerations.

The Weak Law of Large Number (WLLN) guarantees that
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P

(∣∣1
n

n∑

i=1

h(Xi ) −
∫

h(x) F(dx)
∣∣ > ε

)
−→ 0, for every ε > 0,

whenever the integral is defined. As to the bootstrap sample, we show

Theorem 3.7 Weak Law of Large Numbers for the classical bootstrap. Assume
that

∫ |h(x)| F(dx) < ∞. Then with probability one (w.p.1):

P
∗
n

(∣∣n−1
n∑

i=1

h(X∗
i ) −

∫
h(x) F(dx)

∣∣ > ε
)

−→ 0, as n → ∞,

for every ε > 0.

Proof Assume w.l.o.g. that the F−integral of h vanishes, otherwise we consider
h − ∫

h dF . The bootstrap variables form a triangular array of independent rvs.
within each row with common df. Fn . Define for n ∈ N

hn(x) = h(x) I{|h(x)|<n}

to get

P
∗
n

(∣∣∣
1

n

n∑

i=1

h(X∗
i )

∣∣∣ > ε
)

≤ P
∗
n

(∣∣∣
1

n

n∑

i=1

hn(X
∗
i )

∣∣∣ > ε
)

+ P
∗
n

( n⋃

i=1

{∣∣h(X∗
i )

∣∣ ≥ n
})

.

The second probability on the right-hand side is bounded by

n P∗
n

(∣∣h(X∗
1)

∣∣ ≥ n
)

and the first by

P
∗
n

(∣∣
∣
1

n

n∑

i=1

hn(X
∗
i ) − E

∗
n(hn(X

∗
1))

∣∣
∣ > ε/2

)
+ I{|E∗

n(hn(X
∗
1 ))|>ε/2}.

Apply Chebyshev’s inequality to get

P
∗
n

(∣
∣∣
1

n

n∑

i=1

hn(X
∗
i ) − E

∗
n(hn(X

∗
1))

∣
∣∣ > ε/2

)
≤ 4

nε2
VAR∗

n(hn(X
∗
1)).

Thus, the proof is complete if we can show that
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lim
n→∞ nP∗

n

(|h(X∗
1)| ≥ n

) = 0 P − a.s. (3.6)

lim
n→∞E

∗
n(hn(X

∗
1)) = 0 P − a.s. (3.7)

lim
n→∞

1

n
VAR∗

n(hn(X
∗
1)) = 0 P − a.s. (3.8)

hold. Now, apply Markov’s inequality to get

nP∗
n

(|h(X∗
1)| ≥ n

) = nPFn {x : |h(x)| ≥ n} ≤
∫

{x : |h(x)|≥n}
|h(x)| Fn(dx).

Fix for a moment K ≥ 0 as a constant integer and apply the SLLN and the last
inequality to get w.p.1

lim sup
n→∞

nP∗
n
(|h(X∗

1)| ≥ n
) ≤ lim sup

n→∞

∫

{x : |h(x)|≥K }
|h(x)| Fn(dx) =

∫

{x : |h(x)|≥K }
|h(x)| F(dx).

But the right-hand side can be made arbitrarily small by letting K ↑ ∞ since∫ |h(x)| F(dx) < ∞ by assumption. Thus (3.6) holds.
To verify (3.7), we first observe that w.p.1

lim
n→∞

∫
h(x) Fn(dx) =

∫
h(x) F(dx) = 0

according to SLLN. Combine this result with

lim sup
n→∞

∫

{x : |h(x)|≥n}
|h(x)| Fn(dx) ≤

∫

{x : |h(x)|≥K }
|h(x)| F(dx)

and use the same argument as in the proof of (3.6) to show that (3.7) holds.
According to (3.7) it remains to show that w.p.1.

1

n
E

∗
n

(
h2n(X

∗
1)) −→ 0.

Note that

1

n
E

∗
n

(
h2n(X

∗
1)

) ≤ 1

n

n∑

k=1

k2 P∗
n

(
k − 1 ≤ ∣∣h(X∗

1)
∣∣ < k

)

≤ 2

n

n∑

k=1

k∑

j=1

j P∗
n

(
k − 1 ≤ ∣∣h(X∗

1)
∣∣ < k

)
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≤ 2

n

n∑

j=1

j P∗
n

(
j − 1 ≤ ∣∣h(X∗

1)
∣∣ < n

)

≤ 2 sup
j∈N

∣
∣xnj − x j

∣
∣ + 2

n

n∑

j=1

j P
(
j − 1 ≤ ∣

∣h(X1)
∣
∣ ),

where xnj = j P∗
n

(
j − 1 ≤ ∣∣h(X∗

1)
∣∣ ) and x j = j P

(
j − 1 ≤ ∣∣h(X1)

∣∣ ) for n, j ∈ N.
But the last sum is a Cesaro average, cf. Billingsley (1995, A30), of a sequence
which tends to 0 w.p.1 by virtue of

∫ |h(x)| F(dx) < ∞. Hence, it remains to show
that sup j∈N

∣∣xnj − x j

∣∣ = o(1) almost surely, as n → ∞. Note that for every fixed
j0 ∈ N,

∣∣xnj0 − x j0

∣∣ = o(1) almost surely, as n → ∞, according to the SLLN. If
the uniform convergence would not hold, a subsequence ( jn)n∈N must exist such
that

∣∣xnjn − x jn

∣∣ ≥ c for all n ∈ N and some c > 0. But this is impossible due to∫ |h(x)| F(dx) < ∞ and (3.6). This finally completes the proof. �

The next theorem shows that the approximation given under (3.3) is correct. Our

proof here is based on Singh (1981).

Theorem 3.8 Central limit theorem for the classical bootstrap. LetE(X2) < ∞
and set μ = E(X). Then w.p.1

sup
x∈R

∣
∣∣P

(
n1/2(X̄n − μ) ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n) ≤ x
)∣∣∣ −→ 0, as n → ∞.

Proof By the CLT, the continuity of Φ, the standard normal df., we get from a
classical argument, cf. Loève (1977, p. 21), that it suffices to prove

P
∗
n

(
n1/2(X̄∗

n − X̄n)/sn ≤ x
) −→ Φ(x), as n → ∞, for each x ∈ R,

w.p.1. For this, we have to check the validity of Lindeberg’s condition, cf. Serfling
(1980, 1.9.3):

s−2
n

∫

{|X∗
1−X̄n |≥εn1/2sn}

(X∗
1 − X̄n)

2 dP∗
n −→ 0, as n → ∞, for each ε > 0,

where the left-hand term equals

s−2
n n−1

n∑

i=1

(Xi − X̄n)
2I{|Xi−X̄n |≥εn1/2sn}. (3.9)

Note that for all ε̃ > 0

∑

i≥1

P

( |Xi |√
i

> ε̃

)
=

∑

i≥1

∫

[i−1,i[
P

(
X2

ε̃
> i

)
dx ≤

∫ ∞

0
P

(
X2

ε̃
> x

)
dx = E(X2)

ε̃
< ∞.
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Therefore, according to the Borel-Cantelli Lemma:

lim sup
i→∞

|Xi |√
i

= 0, w.p.1.

Since sn → σ and X̄n → μ w.p.1 according to SLLN, the last result ensures w.p.1
that, for n ≡ n(ω) sufficiently large,

∣∣Xi − X̄n

∣∣ ≥ εn1/2sn

can only hold for finitely many i . Hence, the indicator function under (3.9) can only
be 1 in finitely many cases. This completes the proof. �

This result, however, is not exactly what we stated under (3.3).

Corollary 3.9 Under the assumptions of Theorem 3.8, we get w.p.1

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ)

/
sn ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n)
/
s∗
n ≤ x

)∣∣∣ −→ 0, as n → ∞.

Proof As we have discussed in the proof of Theorem 3.8, we have to show

P
∗
n

(
n1/2(X̄∗

n − X̄n)/s
∗
n ≤ x

) −→ Φ(x), as n → ∞, (3.10)

w.p.1, for each x ∈ R, while we already know that

P
∗
n

(
n1/2(X̄∗

n − X̄n)/sn ≤ x
) −→ Φ(x), as n → ∞,

w.p.1, for each x ∈ R. Since

P
∗
n

( ∣∣sn
/
s∗
n − 1

∣∣ > ε
) −→ 0, as n → ∞,

w.p.1, for every ε > 0, according to an application of Theorem 3.7, (3.10) follows
from Slutsky’s theorem, cf. Serfling (1980, Theorem 1.5.4). �


3.3 Discussion of the Asymptotic Accuracy of the Classical
Bootstrap

In this section, we review some of Singh (1981) the results on the classical bootstrap
without any proof. We have already seen in Theorem 3.8 that the CLT holds for the
standardized mean when the classical bootstrap is used. But this result does not tell
us anything about the quality of the approximation.

Again, going through the proof of Theorem 3.8, we find it to be in line with the
classical argumentation. The same is true for the next theorem which gives us the
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rate of convergence. Note that in the classical situation an appropriate bound is given
by the Berry-Esséen theorem, cf. Loève (1977, p. 300):

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ) ≤ x

) − Φ(x/σ)

∣∣∣ ≤ Kρ σ−3n−1/2,

where K is a universal constant and ρ = E(|X − μ|3). Based on the Berry-Esséen
theorem and the Law of Iterated Logarithm (LIL), i.e.,

lim sup
n→∞

∑n
i=1(Xi − μ)

(2σ 2n log(log(n)))1/2
= 1, w.p.1,

cf. Serfling (1980, 1.10 Theorem A), Singh proved the following result:

Theorem 3.10 Let E(X4) < ∞. Then w.p.1

lim sup
n→∞

n1/2(log(log(n)))−1/2 sup
x∈R

∣∣
∣P

(
n1/2(X̄n − μ) ≤ x

) − P
∗
n
(
n1/2(X̄∗

n − X̄n) ≤ x
)∣∣
∣

= (2σ 2√2πe)−1(2VAR((X − μ)2)
)1/2

.

As we already mentioned in the introduction, the bootstrap is a vehicle to approx-
imate the df. of a given statistic. Theorem 3.8 shows that the classical bootstrap
approximation holds in the case of arithmetic mean. But the normal approximation
also holds due to CLT. In a particular situation, we have to decide which approxima-
tion is preferable. Therefore, we have to compare the order of convergence of these
two approximations. Theorem 3.10 says that w.p.1

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ) ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n) ≤ x
)∣∣∣ = O

(( ln(ln(n))

n

)1/2
)

.

(3.11)
The Berry-Esséen theorem shows that

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ)/σ ≤ x

) − Φ(x)
∣∣∣ = O(n−1/2). (3.12)

But (3.11) and (3.12) are not comparable since for (3.12) we have to know the
variance σ 2 which is unknown in most situations and which is not used in (3.11).
If E(|X |3) < ∞, Singh (1981) showed by applying an Edgeworth expansion that
w.p.1

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ)/σ ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n)/sn ≤ x
)∣∣∣ = o(n−1/2), (3.13)

which is better than the approximation under (3.12). Furthermore, Abramovitch and
Singh (1985) proved under the assumption E(X6) < ∞ that w.p.1
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sup
x∈R

∣∣
∣P

(
n1/2(X̄n − μ)/sn ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n)/s
∗
n ≤ x

)∣∣
∣ = o(n−1/2), (3.14)

where s∗2
n = n−1 ∑n

i=1(X
∗
i − X̄∗

n)
2.

In summary, one might think that the classical bootstrap approximation is always
better than the normal approximation since it incorporates the Edgeworth terms
automatically. However, if, for instance, F , the underlying df. is symmetric around
μ, we get

sup
x∈R

∣∣
∣P

(
n1/2(X̄n − μ)/σ ≤ x

) − Φ(x)
∣∣
∣ = o(n−1/2), (3.15)

which shows the same order of convergence that we find under (3.14). Furthermore,
(3.15) still holds if we replace σ by sn , cf. Abramovitch and Singh (1985).

Remark 3.11 A detailed discussion of the bootstrap and its relation to Edgeworth
expansions can be found in Hall (1992).

3.4 Empirical Process and the Classical Bootstrap

Assume throughout this section that X1, . . . , Xn ∼ F is an i.i.d. samplewith common
continuous df. F , and let

αn(x) := n1/2(Fn(x) − F(x)) (3.16)

be the empirical process. The classical invariance principle of this process says, cf.
Billingsley (1968, Theorem 16.4), that

αn −→
n→∞ Bo(F), in distribution

in the Skorokhod topology, where Bo(F) is a transformed Brownian bridge, i.e., a
centered Gaussian process with covariance structure given by

E
(
Bo(F)(s) · Bo(F)(t)

) = F(s)(1 − F(t)), s ≤ t.

To analyze the distribution of this process, one often takes a special version of αn

given by
ᾱn(F(x)), x ∈ R,

where ᾱn(u) = n1/2(F̄n(u) − u) is the uniform empirical process based on an uni-
form sample U1, . . . ,Un ∼ UN I . Note that
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αn(x) = n1/2
(
n−1

n∑

i=1

I{]−∞,x]}(Xi ) − F(x)
)

= n1/2
(
n−1

n∑

i=1

I{]−∞,x]}(F−1(Ui )) − F(x)
)

= n1/2
(
n−1

n∑

i=1

I{]0,F(x)]}(Ui ) − F(x)
)

= ᾱn(F(x)).

In the following, we will consider the empirical process built according to the
classical bootstrap resampling scheme. Denote this process by

α∗
n(x) := n1/2(F∗

n (x) − Fn(x)).

Theorem 3.12 Assume F to be continuous. Then w.p.1

α∗
n −→

n→∞ Bo(F), in distribution

in the Skorokhod topology.

Proof Since we know from the classical invariance principle that ᾱn(F) converges
to this limit process, it is enough to find a version of the empirical bootstrap process
which is close to ᾱn(F). To be precise, take for α∗

n the version given by

α∗
n = ᾱn(Fn),

where now the same sample U1, . . . ,Un is used as for the process ᾱn(F). For nota-
tional reason, we use P̄ for the probability measure corresponding to this uniform
sample. Let ε > 0 be arbitrarily chosen. Then

P̄
(
sup
x∈R

|ᾱn(Fn(x)) − ᾱn(F(x))| ≥ ε
) ≤ P̄(w̄n(‖Fn − F‖) > ε),

where
w̄n(δ) := sup

|t−s|≤δ

|ᾱn(t) − ᾱn(s)|

denotes the modulus of continuity. Since ‖Fn − F‖ → 0 P−a.s. we can apply a
general result on the oscillation of the uniform empirical process given by Stute
(1982, (0.3)), to obtain w.p.1

P̄(w̄n(‖Fn − F‖) > ε) −→
n→∞ 0,
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which finally proves the theorem. �

Remark 3.13 The proof of this theorem can be found in Swanepoel (1986) and in
Dikta (1987, Appendix). Further bootstrap versions of important processes are also
discussed there.

3.5 Mathematical Framework of Mallow’s Metric

To analyze the classical bootstrap of the mean, Bickel and Freedman (1981) used a
different concept than Singh (1981). Parts of their analysis are based on the relation
of the classical bootstrap approximation to Mallow’s metric. In this section, we will
outline their approach and start with an important minimization result given inMajor
(1978, Theorem 8.1).

Theorem 3.14 Let F and G be distribution functions such that
∫ |x | F(dx) and∫ |x |G(dx) are finite. Assume that H is a two-dimensional df. on (R2,B∗

2), the
product space equipped with the Borel σ−algebra, with marginal df. F and G,
respectively, and define M to be the collection of all those H’s. Then for every
convex function f : R −→ R

inf
H∈M

∫
f (x − y) H(dx, dy) =

∫ 1

0
f (F−1(u) − G−1(u)) du. (3.17)

Proof By an application of the separation theorem for convex functions, compare
Rockafellar (1997, Corollary 11.5.1), we can find appropriate constants c and d
such that f (x − y) ≥ c(x − y) + d. This shows that

∫
f (x − y) H(dx, dy) might

be infinite but is always defined for every H ∈ M .
In the first step of the proof, we assume that F and G define discrete distributions

with common support on x1 < x2 < . . . < xn . Since {∫ f (x − y) H(dx, dy) : H ∈
M } is closed and bounded inR, the infimum under (3.17) is attained for some H . Fix
such a minimizer, denote it by H ∈ M , and let X ∼ F and Y ∼ G be defined over
some probability space (Ω,A ,P) with joint df. H . Denote P(X = xi ,Y = xk) by
pi,k , for 1 ≤ i, k ≤ n. Then we can assume that the following property (3.18) holds:

min(pi, j , pk,�) = 0, for all k < i and j < �. (3.18)

To prove this property assume that it is not correct for this H . Then we can find some
k < i and j < � such that

p = min(pi, j , pk,�) > 0.

We now define a new distribution H̃ by
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p̃i,� = pi,� + p, p̃k, j = pk, j + p, p̃i, j = pi, j − p, p̃k,� = pk,� − p,

p̃s,t = ps,t otherwise.

Note that the marginal distributions of H̃ are identical to those of H and that

xk − x� < xk − x j < xi − x j and xk − x� < xi − x� < xi − x j .

With 0 < α < 1 defined by

α = (xk − x j ) − (xi − x j )

(xk − x�) − (xi − x j )

we get
xk − x j = α(xk − x�) + (1 − α)(xi − x j ),

and also, since

(1 − α) = (xi − x�) − (xi − x j )

(xk − x�) − (xi − x j )
,

xi − x� = (1 − α)(xk − x�) + α(xi − x j ).

Convexity of f now yields

f (xk − x j ) + f (xi − x�) ≤ α f (xk − x�) + (1 − α) f (xi − x j )

+(1 − α) f (xk − x�) + α f (xi − x j )

= f (xk − x�) + f (xi − x j ),

and, therefore,

∫
f (x − y) H̃(dx, dy) −

∫
f (x − y) H(dx, dy)

= p
(
f (xk − x j ) + f (xi − x�) − f (xk − x�) − f (xi − x j )

) ≤ 0.

Overall, this shows that switching from H to H̃ does not increase the integral but ful-
fills (3.18) for this particular choice of i, j, k, �. Furthermore, if H̃ should not have
the property (3.18), we can apply the same procedure as above and, after finitely
many steps, we end up with a df. such that fulfills the required property (3.18), and
that minimizes

∫
f (x − y) H(dx, dy) over M .

Define the matrix Pn = (
pi, j

)
1≤i, j≤n . Then property (3.18) says that for every

coefficient pi, j > 0 of Pn all the other northeast and southwest coefficients have
to be zero. One can easily check (by induction on n) that this property together
with the given marginal distributions uniquely determines the matrix Pn and, there-
fore, the joint distribution of (X,Y ). Now check that the joint distribution of
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(F−1(U ),G−1(U )) has the property (3.18) when U is uniformly distributed on the
unit interval. Therefore, (3.17) is correct in the discrete case.

In the next step, we assume that F andG are concentrated on the interval [−T, T ].
Since f as a convex function on R is continuous and F and G are concentrated on
a bounded interval, we can assume without loss of generality that f is bounded and
that the infimum on the left-hand side of (3.17) is finite. Thus, we can find for an
arbitrary ε > 0 a df. H0 ∈ M such that

inf
H∈M

∫
f (x − y) H(dx, dy) >

∫
f (x − y) H0(dx, dy) − ε.

The Rosenblatt transformation 2.4 guarantees that two rvs. (X,Y ) on some proba-
bility space (Ω,A ,P) exist with joint df. H0. Define, for every n ∈ N,

(
Xn,Yn

) =
( [nX ]

n
,
[nY ]
n

)
,

where [t] denotes the integer part of t , and use Fn and Gn to denote the df. of Xn

and Yn , respectively. Obviously,
(
Xn,Yn

) −→ (
X,Y

)
w.p.1 and Fn and Gn define

discrete distributions. Since the w.p.1 convergence also implies the convergence in
distribution, the proof of the elementary Skorokhod theorem, compare Billingsley
(1995, Theorem 25.6), shows that F−1

n (u) −→ F−1(u) and G−1
n (u) −→ G−1(u).

This convergence holds for all 0 < u < 1 out of a set with Lebesgue measure 1.
Now, apply Lebesgue’s dominated convergence theorem to get with the first part of
our proof

∫
f (x − y) H0(dx, dy) = lim

n→∞

∫
f (Xn − Yn) dP

≥ lim inf
n→∞

∫ 1

0
f
(
F−1
n (u) − G−1

n (u)
)
du

=
∫ 1

0
f
(
F−1(u) − G−1(u)

)
du.

Overall, this shows that

inf
H∈M

∫
f (x − y) H(dx, dy) >

∫ 1

0
f
(
F−1(u) − G−1(u)

)
du − ε,

which proves (3.17) for F and G concentrated on intervals of the type [−T, T ].
In the third step of the proof, we now can take arbitrary F and G. Without loss

of generality, we assume that the infimum in (3.17) is finite. As in the second step,
we can find, for an arbitrary ε > 0, a df. H0 ∈ M and random variables (X,Y ) on
some probability space (Ω,A ,P) with joint df. H0 such that
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inf
H∈M

∫
f (x − y) H(dx, dy) >

∫
f (x − y) H0(dx, dy) − ε.

Now set An = {|X | ≤ n} ∩ {|Y | ≤ n} and define Xn = X · I{An} and Yn = Y · I{An},
for n ∈ N, and note that w.p.1 Xn −→ X and Yn −→ Y , respectively. Furthermore,

∣∣ f (Xn − Yn)
∣∣ ≤ ∣∣ f (X − Y )

∣∣ + ∣∣ f (0)
∣∣

for every n ∈ N, and the bound on the right-hand side is integrable with respect to the
chosen probability. Thus, Lebesgue’s dominated convergence theorem is applicable.
With the same argumentation used in the second step, we finally can complete the
proof of (3.17) for these arbitrary F and G. �


If the convex function f is defined by f (x) = |x |p, for p ≥ 1, we get an important
application of the last theorem which leads to the following definition.

Definition 3.15 For p ≥ 1, denotewithFp the class of all df. F with
∫ |x |p F(dx) <

∞. Let F,G ∈ Fp. Then

dp(F,G) :=
( ∫ 1

0
|F−1(u) − G−1(u)|p du

)1/p
(3.19)

defines Mallow’s p-metric. For notational convenience, we will also use dp(X,Y ),
where X ∼ F and Y ∼ G and the joint distribution of (X,Y ) minimizes the L p

distance over M .

Corollary 3.16 If we put X = F−1(U ) and Y = G−1(U ), where U ∼ UN I , then

dp(F,G) = ‖X − Y‖p,

where the basic probability space is the unit interval with the Lebesgue measure and
‖ · ‖p denotes the L p−norm.

Remark 3.17 For any scalars a, b let Fa,b be the df. of aX + b, where X ∼ F . For
F,G ∈ Fp, we then get

dp(Fa,b,Ga,b) = |a|dp(F,G).

Proof Apply Theorem 3.14 to get

dp(Fa,b,Ga,b) = inf
X∼F, Y∼G

‖(aX + b) − (aY + b)‖p

= |a| inf
X∼F, Y∼G

‖X − Y‖p

= |a|dp(F,G).

�
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As the next lemma shows, Mallow’s metric is closely related to weak conver-
gence, where we now use the term “weak convergence” instead of “convergence in
distribution”, since we are dealing here with dfs. and not with rvs.

Lemma 3.18 Assume that Fn, F ∈ Fp, where Fn denotes not necessarily an edf.
Then the following criteria are equivalent:

(i) dp(Fn, F) −→ 0, as n → ∞.
(ii) As n → ∞, Fn −→ F weakly and

∫ |x |p Fn(dx) −→ ∫ |x |p F(dx).
(iii) Fn −→ F weakly, as n → ∞ and {|Xn|p : n ≥ 1} is uniformly integrable,

where Xn ∼ Fn.
(iv)

∫
ϕ dFn −→ ∫

ϕ dF, as n → ∞ for all continuousϕ such thatϕ(x) = O(|x |p)
as x → ±∞.

Proof (i)⇒(ii): According to the last corollary we can use the rv.

Xn = F−1
n (U ), X = F−1(U ).

Then,

∣
∣∣
( ∫

|x |p Fn(dx)
)1/p −

( ∫
|x |p F(dx)

)1/p∣∣∣ =
∣
∣∣‖Xn‖p − ‖X‖p

∣
∣∣ ≤ ‖Xn − X‖p

= dp(Fn, F) −→ 0

which shows the convergence of the integrals under (ii). It also guarantees the
L p−convergence of Xn to X which implies the weak convergence. This completes
the proof of (ii).

(ii)⇒(iii): We only have to show uniform integrability. For this, we fix a point
a > 0 such that a and −a are continuity points of F . Then, we get

∫

{|x |>a}
|x |p Fn(dx) =

∫
|x |p Fn(dx) −

∫

{|x |≤a}
|x |p Fn(dx) ≡ In.

Since ±a are continuity points of F , the assumed weak convergence of Fn → F
together with a slight modification of Billingsley (1995, Theorem 29.1) guarantees
that ∫

{|x |≤a}
|x |p Fn(dx) −→

∫

{|x |≤a}
|x |p F(dx).

This combined with the assumed convergence of the p-th moments yields

In −→
∫

|x |p F(dx) −
∫

{|x |≤a}
|x |p F(dx) =

∫

{|x |>a}
|x |p F(dx).
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The integral on the right-hand side can be made arbitrarily small by increasing a,
which proves the uniform integrability.

(iii)⇒(iv): Let ϕ be as under (iv). Again, we take a fixed such that ±a are conti-
nuity points of F to get from the weak convergence of Fn → F that

∫

{|x |≤a}
ϕ(x) Fn(dx) −→

∫

{|x |≤a}
ϕ(x) F(dx).

Since ϕ = O(|x |p) there exists a constant c such that

|ϕ(x)| ≤ c|x |p,

for all x such that |x | ≥ a. Thus,

∫

{|x |>a}
|ϕ(x)| Fn(dx) ≤ c

∫

{|x |>a}
|x |p Fn(dx).

Furthermore, the assumed uniform integrability implies that we can choose for every
given ε > 0 a continuity point a = a(ε) of F such that

sup
n≥1

c
∫

{|x |>a}
|x |p Fn(dx) ≤ ε

which completes the proof of (iv).
(iv)⇒(i): Obviously, (iv) implies (ii). Therefore, it suffices to show (ii)⇒(i). But the
weak convergence of Fn to F implies the almost sure convergence of Xn = F−1

n (U )

to X = F−1(U ) w.r.t. the Lebesgue measure on the unit interval (U ∼ UN I ), cf.
the proof of Billingsley (1995, Theorem 25.6). Since E(|Xn|p) −→ E(|X |p) < ∞,
as n → ∞, according to (iv), we finally get from Loève (1977, L p−Convergence
Theorem) that ‖Xn − X‖p → 0, as n → ∞. This completes the proof of (i). �


In the special case that Fn is the edf. of an i.i.d. sample, we get the following
corollary.

Corollary 3.19 Assume F ∈ Fp and let Fn be the edf. Then, dp(Fn, F) −→ 0w.p.1.

Proof The Glivenko-Cantelli theorem says that w.p.1

sup
x∈R

|Fn(x) − F(x)| −→ 0.

Thus, w.p.1, Fn → F weakly. Furthermore, from the SLLN, we conclude

∫
|x |p Fn(dx) −→

∫
|x |p F(dx)
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w.p.1. Now, apply the last lemma to complete the proof. �

In the following lemma, we boundMallow’s distance of two sums of independent

rv. by Mallow’s distance of the summands.

Lemma 3.20 Assume that X1, . . . , Xn and Y1, . . . ,Yn are two sequences of inde-
pendent rv. inFp. Then,

dp

( n∑

i=1

Xi ,

n∑

i=1

Yi
)

≤
n∑

i=1

dp(Xi ,Yi ).

Proof Take U1, . . . ,Un ∼ UN I as an i.i.d. sample and set

X̃i := F−1
i (Ui ), Ỹi := G−1

i (Ui )

for i = 1, . . . , n, where Xi ∼ Fi and Yi ∼ Gi , for 1 ≤ i ≤ n. According to the def-
inition of dp(X,Y ), we get for each i = 1, . . . , n

dp(Xi ,Yi ) = dp(X̃i , Ỹi ) = ‖X̃i − Ỹi‖p.

Now, apply Corollary 3.16 and Minkowski’s inequality to obtain

dp

( n∑

i=1

Xi ,

n∑

i=1

Yi
)

≤
∥
∥∥

n∑

i=1

X̃i −
n∑

i=1

Ỹi
∥
∥∥
p

≤
n∑

i=1

‖X̃i − Ỹi‖p

=
n∑

i=1

dp(X̃i , Ỹi ) =
n∑

i=1

dp(Xi ,Yi ),

which finally proves the lemma. �

If p = 2, the last lemma improves in the presence of equal means.

Lemma 3.21 Assume in addition to the assumptions of Lemma 3.20 that E(Xi ) =
E(Yi ), for 1 ≤ i ≤ n and p ≥ 2. Then,

d 2
2

( n∑

i=1

Xi ,

n∑

i=1

Yi
)

≤
n∑

i=1

d 2
2 (Xi ,Yi ).

Proof Take (X̃i , Ỹi ) as in the proof of Lemma 3.20. From Corollary 3.16 and Bien-
aymé’s equality, we get

d 2
2

( n∑

i=1

Xi ,

n∑

i=1

Yi
)

≤ ‖
n∑

i=1

X̃i − Ỹi‖22 =
n∑

i=1

‖X̃i − Ỹi‖22 =
n∑

i=1

d 2
2 (Xi ,Yi ).

�
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Corollary 3.22 Let F,G ∈ Fp with p ≥ 2. Assume that X1, . . . , Xn are i.i.d. with
commondf. F andY1, . . . ,Yn are i.i.d.with commondf. G, respectively. Furthermore,
we assume that E(X1) = E(Y1). Then,

d 2
2

(
n−1/2

n∑

i=1

Xi , n
−1/2

n∑

i=1

Yi
)

≤ n−1
n∑

i=1

d 2
2 (Xi ,Yi ) = d 2

2 (F,G).

Remark 3.23 According to the CLT and Lemma 3.18 (ii), for standardized F and
G = Φ, the left-hand side of the inequality under Corollary 3.22 tends to zero as
n → ∞. Since the right-hand side of this inequality is fixed for each n ≥ 1 and
positive for G �= F , this inequality cannot be used to prove the CLT. However,
if G depends on n in such a way that d 2

2 (F,Gn) → 0, as n → ∞, we can use
this inequality to prove weak convergence. In the particular case of the classical
bootstrap, Gn = Fn is the edf. of the i.i.d. sample X1, . . . , Xn , while Y1, . . . ,Yn
forms a bootstrap sample, then d 2

2 (F, Fn) → 0 w.p.1. Together with the CLT, this
proves the CLT for the standardized bootstrap sample under the classical resampling
scheme.

Sometimes, however, the bootstrap sample comes from F̃n , the edf. of a not
necessarily independent sample X∗

1, . . . , X
∗
n . For example, in linear regression, we

have the situation that the residuals X∗
i = ε̃i , 1 ≤ i ≤ n, are not independent. In such

a case, the approach outlined above for Fn cannot be applied for F̃n unless it is
guaranteed that in some sense F̃n is close to Fn . A condition which will work in this
setup is given in the next lemma; compare also Freedman (1981).

Lemma 3.24 Assume that X1, . . . , Xn are i.i.d. with df. F and edf. Fn. Let X∗
1, . . . ,

X∗
n be a second i.i.d. sample with edf. F̃n such that w.p.1

1

n

n∑

i=1

|X∗
i − Xi |p −→ 0, as n → ∞ (3.20)

holds. If F ∈ Fp for some p ≥ 1, then, w.p.1, dp(F̃n, F) −→ 0, as n → ∞.

Proof Let U ∼ UN I be the uniform distribution on the unit interval. Since

dp(F̃n, F) = ‖F̃−1
n (U ) − F−1(U )‖p

≤ ‖F̃−1
n (U ) − F−1

n (U )‖p + ‖F−1
n (U ) − F−1(U )‖p

= dp(F̃n, Fn) + dp(Fn, F)

and, w.p.1, dp(Fn, F) −→ 0, as n → ∞, according to Corollary 3.19, we get from
assumption (3.20) and Theorem 3.14

dp(F̃n, Fn) ≤
(1
n

n∑

i=1

|X∗
i − Xi |p

)1/p −→ 0, as n → ∞,

w.p.1. This completes the proof of the lemma. �
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3.6 Exercises

Exercise 3.25 Repeat the simulation study from Example 3.5 without using the
simTool package. Note in that simulation the functions “bootstrap.ci” and “nor-
mal.ci” are applied to any dataset that is generated.

Exercise 3.26 Recall the assumptions of Example 3.6 and show that for x ≥ 0

P(n(1 − Xn:n) ≤ x) −→ 1 − exp(−x), as n → ∞.

Furthermore, show for the bootstrap sample

P
∗
n(n(Xn:n − X∗

n:n) ≤ 0) −→ 1 − exp(−1), as n → ∞.

Exercise 3.27 Conduct a simulation that indicates

P
∗
n(n(Xn:n − X∗

n:n) ≤ 0) −→ 1 − exp(−1), as n → ∞,

see Exercise 3.26.

Exercise 3.28 Recall the scenario of Theorem 3.7 and assume in addition that
∫

h2(x) F(dx) < ∞.

Use Chebyshev’s inequality to verify the assertion of Theorem 3.7.

Exercise 3.29 Implement in R the simulation study of Example 3.5, without using
the simTool package.

Exercise 3.30 Use R to generate U1, . . . ,U100 i.i.d. rvs. according to the uniform
distribution. Based on this data,

(i) plot the path of the corresponding empirical process;
(ii) generate a classical bootstrap sample to the data and plot the path of the corre-

sponding empirical process.

Exercise 3.31 In the R-library boot, many bootstrap applications are already
implemented. Read the corresponding help to this library and try to redo the simu-
lation under Exercise 3.29 by using the functions of this library.

Exercise 3.32 Verify that for fixed discrete marginal distributions on x1 < x2 <

. . . < xn the property (3.18) used in the proof of Theorem 3.14 defines exactly one
joint distribution.

Exercise 3.33 Verify that for fixed discrete marginal distributions on x1 < x2 <

. . . < xn with df. F and G, respectively, the joint distribution of (F−1(U ),G−1(U ))

has the property (3.18) used in the proof of Theorem 3.14. Here U is uniformly
distributed on the unit interval.
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Exercise 3.34 Let F ∈ Fp, that is,
∫ |x |p F(dx) < ∞. Verify that

(i) for a location family, Fθ (x) = F(x − θ)

dp(Fθ1 , Fθ2) = |θ1 − θ2|;

(ii) for a scale family, Fσ (x) = F(σ x) with σ > 0

dp(Fσ1, Fσ2) = |σ1 − σ2|
( ∫

|x |p F(dx)
)1/p

.

Exercise 3.35 Verify that for two (centered) binomial distributions F1 and F2 with
parameters (n, p1) and (n, p2), respectively,

d 2
2 (F1, F2) ≤ n|p1 − p2|(1 − |p1 − p2|).

Exercise 3.36 Verify that for two (centered) Poisson distributions F1 and F2 with
parameters λ1 and λ2, respectively,

d 2
2 (F1, F2) ≤ |λ1 − λ2|.
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