
Chapter 2
Generating Random Numbers

To perform a Monte Carlo approximation, we have to generate random variables
(rv.) on a computer according to a given df. F . In this chapter, we will discuss some
commonly used procedures and their application under R.

Since most of the widely used distributions are implemented in R, random vari-
ables according to these distributions can easily be generated directly in R through
the corresponding built-in R functions. In the first section of this chapter, we will
give a brief overview on those distributions which are implemented in the R stats
package.

However, if a specific distribution is needed which is neither supported by R itself
nor by any additional package, one can try the “quantile transformation method”
or the “method of rejection”. Both approaches are considered in this chapter. For a
detailed discussion of random number generation, we refer to Devroye (1986) and
Ripley (1987). In Eubank and Kupresanin (2011, Chapter 4), this is also considered
in the R-context.

2.1 Distributions in the R-Package Stats

The standard R-package stats contains several standard probability distributions.
We can list them from a R-workspace by typing the command

help(distributions)

For all these distributions, the corresponding cumulative distribution function,
density function, quantile function, and randomgeneration function are implemented
and can be called by

• dxxx(. . .)—density function;
• pxxx(. . .)—distribution function;
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• qxxx(. . .)—quantile function; and
• rxxx(. . .)—random number generator function.

In the notation above, “xxx” is the name in R of the corresponding distribution and
(. . .) a placeholder for the required parameters of the function call. The following
example lists some calls regarding a normal distribution with expected value μ = 2
and variance σ 2 = 4, here abbreviated asN (2, 4).

R-Example 2.1 Note that in the corresponding function calls under R, the standard
deviation (sd=2) is used while in the notationN (2, 4) the variance σ 2 = 4 is given.
The R name “xxx” of the normal distribution is “norm”.

#call the help for rnorm
help(rnorm)
#density function at x = 2
dnorm(x = 2, mean = 2, sd = 2)

## [1] 0.1994711

#distribution function at q = 2
pnorm(q = 2, mean = 2, sd = 2)

## [1] 0.5

#0.5-quantile
qnorm(p = 0.5, mean = 2, sd = 2)

## [1] 2

#3 normal random variables
rnorm(n = 3, mean = 2, sd = 2)

## [1] 1.008104 3.768502 2.064348

2.2 Uniform df. on the Unit Interval

A rv. U is uniformly distributed on the interval [a, b], where −∞ < a < b < ∞, if

P(U ≤ u) =

⎧
⎪⎨

⎪⎩

0 : u < a

(u − a)/(b − a) : a ≤ u ≤ b

1 : u > b.
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We denote this distribution here by UN I (a, b) and use UN I to abbreviate UN I
(0, 1), the standard uniform distribution, which is also referred to as the
uniform distribution.

The uniform distribution is the most important one in generating rv. As we will
see in the next section, we can generate a rv. X ∼ F for every df. F if we can generate
a rv. U ∼ UN I .

There is a large literature on generating sequences of independent and uniformly
distributed rvs. which we will not discuss here. Eubank and Kupresanin (2011,
Chapter 4) is a good reference for pseudo-randomnumber generators (PRNG), which
specifically addresses R.

Remark 2.2 In this manuscript, we usually take “Mersenne twister” as PRNG. If a
normally distributed rv. is to be created, this is done using the “inversion”method. For
reasons of reproducibility, a starting value (“set.seed”) is set before each simulation.
This seed also contains the name of the PRNG used and the name of the method for
generating normal distributed rvs. A typical call looks like

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")

With the simTool package, simulations can also be run in parallel. In this case,
“L’Ecuyer-CMRG” is set globally as PRNG!

2.3 The Quantile Transformation

The following theorem says that we can generate a rv. X according to an arbitrary
df. F if we apply a certain transformation to a generated rv. U ∼ UN I .

Theorem 2.3 Let F be the df. of a rv. X and define for 0 < u < 1

F−1(u) = inf{x ∈ R | F(x) ≥ u} (2.1)

the quantile function (qf.). If U ∼ UN I then:

X := F−1(U ) ∼ F.

Proof At first note that the qf. equals the inverse function of F if F is strictly increas-
ing. If this is not the case, F−1 is still well defined and therefore qf. is a generalized
inverse of an increasing function.

We have to show that

P(F−1(U ) ≤ x) = F(x), ∀ x ∈ R.

For this choose x ∈ R and 0 < u < 1 arbitrarily. Then the following equivalence
holds:



12 2 Generating Random Numbers

F−1(u) ≤ x ⇐⇒ u ≤ F(x) (2.2)

“⇐:” If u ≤ F(x), apply the definition of F−1 to get F−1(u) ≤ x .
“⇒:” Assume now F−1(u) ≤ x and continue indirectly. For this assume further
that u > F(x). Since F is continuous from above there exists ε > 0 such that u >

F(x + ε). Apply the definition of F−1 to get F−1(u) ≥ x + ε. This contradiction
leads to F−1(u) ≤ x .
Now, apply (2.2) to get for arbitrary x ∈ R:

P(F−1(U ) ≤ x) = P(U ≤ F(x)) = F(x) = P(X ≤ x),

where the second equality follows from U ∼ UN I . This finally proves the
theorem. �

Example 2.4 Let U ∼ UN I and

F(x) :=
{
0 : x ≤ 0

1 − exp(−α x) : x > 0

the df. of the exponential distributionwith parameterα > 0, abbreviated by EX P(α).
Calculate the inverse of F to get

F−1(u) = − ln(1 − u)

α
.

The last theorem guarantees that F−1(U ) ∼ EX P(α).

R-Example 2.5 This example shows the generation of 1000 EX P(2) variableswith
R based on the quantile transformation derived in Example2.4.

gen.exp <- function(n, alpha){
#n - number of observations
#alpha - distribution parameter

return(-log(1 - runif(n)) / alpha)
}

# set the seed for the pseudo random number generator
# for reproducible results
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")

# generate 1000 EXP(2) random variables
obs <- gen.exp(n = 1000, alpha = 2)

# draw a histogram with 50 cells
hist(obs, breaks = 50, freq = FALSE,

main = "Histogram of 1000 EXP(2)",
xlab = "", ylab = "density",
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Fig. 2.1 Histogram of 1000 EXP(2) distributed random variables and the EXP(2)-density

xlim=c(0,4),
ylim=c(0,2))

# add the density function of a EXP(2) distributed random
# variable to the plot
curve(dexp(x, rate = 2), add = TRUE, col = "red")

In the first statement, the R-function “gen.exp” is defined with two parameters; n
and alpha, which implements the result derived in Example2.4. It returns a vector of
n independent realizations of the EX P(alpha) distribution. In the second statement,
the seed is set for the pseudo-random number generator which is here “Mersenne-
Twister” to obtain reproducible results. “gen.exp” is applied with n = 1000 and
alpha = 2. The resulting vector is stored in the variable “obs” in statement three.
With the fourth statement a histogram of the generated variables is produced and
with the last statement this histogram is overlaid with the true density function of the
EX P(2) distribution, see Fig. 2.1.

In the following lemma, some further properties of the quantile function are listed:

Lemma 2.6 Let F be an arbitrary df. and denote by F−1 the corresponding quantile
function. We have for x, x1, x2 ∈ R and 0 < u < 1:

1. F(x) ≥ u ⇐⇒ F−1(u) ≤ x.
2. F(x) < u ⇐⇒ F−1(u) > x.
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3. F(x1) < u ≤ F(x2) ⇐⇒ x1 < F−1(u) ≤ x2.

Proof (i) Already shown under (2.2) of Theorem2.3.
(ii) Consequence of part (i).
(iii) Consequence of part (i) and (ii).

�

Lemma 2.7 Let F be an arbitrary df. and 0 < u < 1. Then

F ◦ F−1(u) ≥ u.

If u ∈ F(R) the inequality above changes to an equality.

Proof The inequality can be obtained from Lemma2.6 (ii), since F ◦ F−1(u) < u
would result in the obvious contradiction F−1(u) > F−1(u).

Now assume in addition that u ∈ F(R), i.e., there exists x ∈ R such that u = F(x).
Therefore, by definition of F−1, we get F−1(u) ≤ x . Applying F to both sides
of this inequality, the monotony of F implies that F ◦ F−1(u) ≤ F(x) = u. Thus,
F ◦ F−1(u) > u is not possible and according to the first part of the proof we get
F ◦ F−1(u) = u. �

Corollary 2.8 Let X be a rv. with continuous df. F. Then

F(X) ∼ UN I.

Proof According to Theorem2.3, we can assume that

X = F−1(U ),

where U ∼ UN I . Thus, it remains to show that F ◦ F−1(U ) ∼ UN I . For this
choose 0 < u < 1 arbitrarily. Then continuity of F and the last lemma leads to

P(F ◦ F−1(U ) ≤ u) = P(U ≤ u) = u

which proves the corollary. �

We finalize the section by another inequality of the quantile function.

Lemma 2.9 For each df. F and x ∈ R, we have

F−1 ◦ F(x) ≤ x .

If in addition x fulfills the extra condition that for all y < x, F(y) < F(x) holds,
then the inequality above changes to an equality.
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Proof If F−1 ◦ F(x) > x for x ∈ R, then Lemma2.6 (ii) immediately yields the
contradiction F(x) < F(x). Thus, the inequality stated above is correct.
Now, assume the extra condition of the lemma for the point x ∈ R. According to the
part just shown, we have to prove that F−1(F(x)) < x cannot be correct. Assuming
that this inequality is correct, Lemma2.7 implies

F(x) ≤ F ◦ F−1(F(x)) < F(x)

which is obviously a contradiction. �

2.4 The Normal Distribution

Theorem2.3 of the last section shows how the quantile function can be used to
generate a rv. according to a given df. F . However, the quantile function might
be difficult to calculate. Therefore, the procedure suggested under Theorem 2.3 is
only used in standard situations where F is invertible and the inverse can easily
be obtained. In those cases where it is not possible to calculate F−1 directly, other
procedures should be applied.
In the case of the standard normal distribution, i.e., the rv. X ∼ N (0, 1), the df. Φ
has the density φ with

Φ(x) = P(X ≤ x) =
∫ x

−∞
φ(t) dt = 1√

2π

∫ x

−∞
exp

(

− t2

2

)

dt

which can be obtained only numerically. Thus, quantile transformation is not appli-
cable to generate such a rv.
As the next lemma will show, we can generate a rv. Z ∼ N (μ, σ 2), i.e., Z has df.
F with

F(x) = 1√
2πσ 2

∫ x

−∞
exp

(

− (t − μ)2

2σ 2

)

dt, (2.3)

through a linear transformed rv. X ∼ N (0, 1).

Lemma 2.10 Let X ∼ N (0, 1). Then Z := σ · X + μ is distributed according to
N (μ, σ 2).

Proof Let μ ∈ R, σ > 0, and z ∈ R be given. Then

P(Z ≤ z) = P(σ X + μ ≤ z) = P(X ≤ (z − μ)/σ)

= 1√
2π

∫ (z−μ)/σ

−∞
exp

(

− t2

2

)

dt.

Now, differentiate both sides w.r.t. z to obtain by the chain rule and the Fundamental
Theorem of Calculus the density function
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f (z) = 1√
2πσ 2

exp

(

− (z − μ)2

2σ 2

)

.

But f is precisely the density function of a rv. which isN (μ, σ 2) distributed. �
In the next theorem, the Box-Muller algorithm to generate N (0, 1) distributed

rv. is given.

Theorem 2.11 Box-Muller algorithm. Let U, V ∼ UN I be two independent rv.
uniformly distributed on the unit interval. Then the rv.

X = √−2 log(U ) cos(2πV ), Y = √−2 log(U ) sin(2πV )

are independent from one another and both areN (0, 1) distributed.

Proof The proof is omitted here but can be found in Box and Muller (1958). �

2.5 Method of Rejection

As already discussed in the last section, quantile transformation is not always applica-
ble in practise. In this section, we discuss a method which is applicable in a situation
where the df. F has a density function f .

Theorem 2.12 Method of Rejection. Let F,G be df. with probability density func-
tions f, g. Furthermore, let M > 0 be such that

f (x) ≤ Mg(x), ∀ x ∈ R.

To generate a rv. X ∼ F perform the following steps:

(i) Generate Y ∼ G.
(ii) Generate U ∼ UN I independent of Y .
(iii) If U ≤ f (Y )/(M · g(Y )), return Y . Else reject Y and start again with step (i).

Proof We have to prove that X ∼ F . Note first that

P(X ≤ x) = P

(

Y ≤ x
∣
∣
∣U ≤ f (Y )

M · g(Y )

)

=
P

(
Y ≤ x, U ≤ f (Y )

M ·g(Y )

)

P

(
U ≤ f (Y )

M ·g(Y )

) .

For the numerator on the right-hand side, we obtain by conditioning w.r.t. Y

P

(

Y ≤ x, U ≤ f (Y )

M · g(Y )

)

=
∫ x

−∞
P

(

U ≤ f (Y )

M · g(Y )

∣
∣
∣ Y = y

)

G(dy)

=
∫ x

−∞
P

(

U ≤ f (y)

M · g(y)
)

G(dy),
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where the last equality follows from the independence ofU and Y . SinceU ∼ UN I ,
the last integral is equal to

∫ x

−∞
f (y)

M · g(y) g(y)dy = 1

M

∫ x

−∞
f (y) dy = F(x)

M
.

Since the denominator is the limit of the numerator for x → ∞ and F(x) → 1
for x → ∞, the denominator must be identical to 1/M . This finally proves the
theorem. �

Generally, one chooses the rv. Y ∼ G in such a way that Y can be easily generated
by quantile transformation. The constant M > 0 should then be chosen as small as
possible to minimize the cases of rejection.
In the following example, we apply the rejection method to generate a rv. X ∼
N (0, 1). For the df. G, we choose the Cauchy distribution given under Exercise
2.16.

Example 2.13 At first, we have to find a proper constant M

f (x)

g(x)
= 1√

2π
exp

(

− x2

2

) / (
1

π(1 + x2)

)

= √
π/2 exp

(

− x2

2

)

(1 + x2).

The function exp
(
− x2

2

)
(1 + x2) is symmetric around 0 and has a global maximum

at x = 1. Thus, the constant

M := 2
√

π/2√
e

=
√
2π

e

can be used.

R-Example 2.14 The results of the last example can be implemented in R like

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gen.norm.rm <- function(n){
# n - number of observations

# constant used during the method of rejection
M = sqrt(2 * pi * exp(-1))

# actual method of rejection, returning one observation
MethodOfRejection <- function() {
repeat{
Y = rcauchy(1)
if(runif(1) <= dnorm(Y) / (M * dcauchy(Y)))

return(Y)
}

}
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Fig. 2.2 Histogram of 10000 N (0, 1) rvs. generated with the rejection method and the N (0, 1)-
density

# calling MethodOfRejection n times
replicate(n, MethodOfRejection())

}
obs <- gen.norm.rm(n = 10000)
hist(obs, breaks = 50, freq = FALSE, xlab = "", xlim=c(-4,4),

ylab = "density",
main = "Rejection-Method")

curve(dnorm(x), col = "red", add = TRUE)

In the source code above, we define the function “gen.norm.rm” which returns a
vector of n independent standard normal rvs. by applying the rejection method as
described in Example 2.13. The function is called with n = 10000 and the result is
stored in the variable “obs”. The last two lines produce the histogram in Fig. 2.2.
Within “gen.norm.rm” the functions “rcauchy”, “runif”, “dnorm”, and “dcauchy”
from the stats library are called. For the meaning of these functions, compare
Sect. 2.1.
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2.6 Generation of Random Vectors

In this section, we discuss the generation of two-dimensional random vectors (X,Y ).
If the variables are independent of one another, themethods stated above can be used.
Thus, the remaining difficulty is the generation of dependent rv.

In the case of a known regression function, e.g.,

Y = f (X) + ε,

where X is independent of ε and E(ε) = 0, we can also use the methods described
above. To be precise, we generate the rv. X and ε independent of one another and
substitute the results into the right-hand side of the regression equation above to
obtain the rv. Y . Finally, (X,Y ) is returned.

If no regression function is given but the regular conditional df. of Y given X = x
is known for each x ∈ R, i.e.,

B∗ � B −→ P(Y ∈ B | X = x),

whereB∗ denotes the Borel sets, then theRosenblatt Transformation can be applied.
For this transformation, let G(y | x) := P(Y ≤ y | X = x) denote the conditional df.
of Y given X = x and F the df. of X . Then

(X,Y ) ∼ (F−1(U ),G−1(V | F−1(U ))), (2.4)

whereU, V are independent rv. which are uniformly distributed on the unit interval.

Proof The proof is based on some standard operations of conditional distributions.

P

(
F−1(U ) ≤ t,G−1

(
V | F−1(U )

) ≤ y
)

=
∫ t

−∞
P(G−1(V | x) ≤ y) F(dx)

=
∫ t

−∞
P(V ≤ G(y | x)) F(dx)

=
∫ t

−∞
G(y | x) F(dx)

=
∫ t

−∞
P(Y ≤ y | X = x) F(dx)

= P(X ≤ t,Y ≤ y).

�
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2.7 Exercises

Exercise 2.15 Assume that X1, . . . , Xn is an i.i.d. sequence of rvs. with common
continuous df. F and let Fn denote the associated empirical distribution function;
compare with (1.9).

(i) Determine n Fn(Xi ) and F−1
n (i/n), for 1 ≤ i ≤ n.

(ii) Find the distribution of F−1
n (U ) given the observations X1, . . . , Xn , ifU ∼ UN I

is independent of the sequence.
(iii) Implement a R-function to generate rvs. according to Fn .

Exercise 2.16 The density function of the Cauchy distribution is defined by

R � x −→ f (x) := 1

π(1 + x2)
.

Determine the corresponding df. F and F−1.

Exercise 2.17 The Weibull distribution to the parameter (α, β), where α > 0 and
β > 0, abbreviated by WE I B(α, β), possess the df.

F(x) :=
{
1 − exp(−(x/α)β) : x ≥ 0

0 : otherwise

(i) Use the quantile transformation to define a procedure for generating Weibull
distributed rvs.

(ii) Implement your Weibull generator in R.
(iii) Generate 10000 independent WE I B(2, 2) variables in R with your generator

and visualize the result in a histogram together with the corresponding density
function.

Exercise 2.18 Let f, g be the pdfs. in the rejection method and M > 0 the corre-
sponding constant. Determine the probability that the rejection method succeeds in
the first step, i.e., no rejection.
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