
Chapter 1
Introduction

In this introduction, we discuss the basic idea of the bootstrap procedure using a
simple example. Furthermore, the Statistical Software R and its use in the context of
this manuscript is briefly covered. Readers who are familiar with this material can
skip this chapter.

A short summary of the contents of this manuscript can be found in the Preface
and is not listed here again.

1.1 Basic Idea of the Bootstrap

Typical statisticalmethods, such as constructing a confidence interval for the expected
value of a random variable or determining critical values for a hypothesis test, require
knowledge of the underlying distribution. However, this distribution is usually only
partially known at most. The statistical method we use to perform the task depends
on our knowledge of the underlying distribution.

Let us be more precise and assume that

X1, . . . , Xn ∼ F

is a sequence of independent and identically distributed (i.i.d.) random variables with
common distribution function (df.) F . Consider the statistic

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-030-73480-0_1) contains supplementary material, which is
available to authorized users.

© Springer Nature Switzerland AG 2021
G. Dikta and M. Scheer, Bootstrap Methods,
https://doi.org/10.1007/978-3-030-73480-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73480-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-73480-0_1
https://doi.org/10.1007/978-3-030-73480-0_1

2 1 Introduction

X̄n := 1

n

n∑

i=1

Xi

to estimate the parameter μF = E(X), that is, the expectation of X .
To construct a confidence interval for μF or to perform a hypothesis test on μF ,

we consider the df. of the studentized version of X̄n , that is,

PF
(√

n(X̄n − μF)
/
sn ≤ x

)
, x ∈ R, (1.1)

where

s2n := 1

n − 1

n∑

i=1

(Xi − X̄n)
2

is the unbiased estimator of σ 2 = VAR(X), that is, the variance of X . Note that we
write PF here to indicate that F is the data generating df.

If we know that F comes from the class of normal distributions, then the df. under
(1.1) belongs to a tn−1−distribution, i.e., a Student’s t distributionwith n − 1 degrees
of freedom. Using the known quantiles of the tn−1− distribution exact confidence
interval can be determined. For example, an exact 90% confidence interval for μF is
given by [

X̄n − sn q0.95√
n

, X̄n + sn q0.95√
n

]
, (1.2)

where q0.95 is the 95% quantile of the tn−1 distribution.
But in most situations we are not able to specify a parametric distribution class

for F . In such a case, we have to look for a suitable approximation for (1.1). If it is
ensured that E(X2) < ∞, the central limit theorem (CLT) guarantees that

sup
x∈R

∣∣∣PF
(√

n(X̄n − μF)
/
sn ≤ x

) − Φ(x)
∣∣∣ −→ 0, for n → ∞, (1.3)

where Φ denotes the standard normal df. Based on the CLT, we can now construct
an asymptotic confidence interval. For example, the 90% confidence interval under
(1.2) has the same structure when we construct it using the CLT. However, q0.95 now
is the 95% quantile of the standard normal distribution. The interval constructed in
this way is no longer an exact confidence interval. It can only be guaranteed that the
confidence level of 90% is reached with n → ∞. It should also be noted that for q0.95
the 95% quantile of the tn−1− distribution can also be chosen, because for n → ∞,
the tn−1− df. converges to the standard normal df.

So farwehave concentrated exclusively on the studentizedmean. Let us generalize
this to a statistic of the type

Tn(F) = Tn(X1, . . . , Xn; F),

1.1 Basic Idea of the Bootstrap 3

where X1, . . . , Xn ∼ F are i.i.d. Then the question arises how to approximate the
df.

PF
(
Tn(F) ≤ x

)
, x ∈ R (1.4)

if F is unknown. This is where Efron’s bootstrap enters the game. The basic idea of
the bootstrap method is the assumption that the df. of Tn is about the same when the
data generating distribution F is replaced by another data generating distribution F̂
which is close to F and which is known to us. If we can find such a df. F̂ ,

PF̂ (Tn(F̂) ≤ x), x ∈ R (1.5)

may also be an approximation of Eq. (1.4).We call this df. for themoment a bootstrap
approximation of the df. given under Eq. (1.4). However, this approach only makes
sense if we can guarantee that

sup
x∈R

∣∣∣PF
(
Tn(F) ≤ x

) − PF̂

(
Tn(F̂) ≤ x

)∣∣∣ −→ 0, for n → ∞. (1.6)

Now let us go back to construct a 90% confidence interval for μF based on the
bootstrap approximation. For this, we take the studentized mean for Tn and assume
that we have a data generating df. F̂ that satisfies (1.6). Since F̂ is known, we can
now, at least theoretically, calculate the 5% and 95% quantiles of the df.

PF̂

(√
n(X̄n − μF̂)

/
sn ≤ x

)
,

which we denote by qn,0.05 and qn,0.95, respectively, to derive

[
X̄n − sn qn,0.95√

n
, X̄n − sn qn,0.05√

n

]
, (1.7)

an asymptotic 90% confidence interval for μF .
If we want to use such a bootstrap approach, we have

(A) to choose the data generating df. F̂ such that the bootstrap approximation (1.6)
holds,

(B) to calculate the df. of Tn , where the sample is generated under F̂ .

Certainly (A) is themore demandingpart, in particular, the proof of the approximation
(1.6). Fortunately, a lot of work has been done on this in the last decades. Also, the
calculation of the df. under (B) may turn out to be very complex. However, this is of
minor importance, because the bootstrap df. in Eq. (1.6) can be approximated very
well by a Monte Carlo approach. It is precisely this opportunity to perform a Monte
Carlo approximation, together with the rapid development of powerful PCs that has
led to the great success of the bootstrap approach.

To demonstrate such a Monte Carlo approximation for the df. of Eq. (1.5), we
proceed as follows:

4 1 Introduction

(a) Construct m i.i.d. (bootstrap) samples independent of one another of the type

X∗
1;1 . . . X∗

1;n
...

...
...

X∗
m;1 . . . X∗

m;n

with common df. F̂ .
(b) Calculate for each sample k ∈ {1, 2, . . . ,m}

T ∗
k;n := Tn(X

∗
k;1, . . . , X

∗
k;n; F̂)

to obtain T ∗
1;n, . . . , T

∗
m;n .

(c) Since the T ∗
1;n, . . . , T

∗
m;n are i.i.d. , the Glivenko-Cantelli theorem (GC) guaran-

tees

sup
x∈R

∣∣∣PF̂

(
Tn(F̂) ≤ x

) − 1

m

m∑

k=1

I{T ∗
k;n≤x}

∣∣∣ −→ 0, for m → ∞, (1.8)

where I{x∈A} ≡ I{A}(x) denotes the indicator function of the set A, that is,

I{x∈A} =
{
1 : x ∈ A

0 : x /∈ A
.

The choice of an appropriate F̂ depends on the underlying problem, as we will
see in the following chapters. In the context of this introduction, Fn , the empirical
df. (edf.) of the sample X1, . . . , Xn , defined by

Fn(x) := 1

n

n∑

i=1

I{Xi≤x}, x ∈ R, (1.9)

is a good choice for F̂ since, by the Glivenko-Cantelli theorem, we get with proba-
bility one (w.p.1)

sup
n∈R

∣∣Fn(x) − F(x)
∣∣ −→
n→∞ 0.

If we choose Fn for F̂ then we are talking about the classical bootstrap which was
historically the first to be studied.

1.2 The R-Project for Statistical Computing 5

1.2 The R-Project for Statistical Computing

The programming language R, see R Core Team (2019), is a widely used open-
source software tool for data analysis and graphics which runs on the commonly
used operating systems. It can be downloaded from the R-project’s website at www.r-
project.org. The R Development Core Team also offers some documentation on this
website:

• R installation and administration,
• An introduction to R,
• The R language definition,
• R data import/export, and
• The R reference index.

Additionally to this material, there is a large and strongly growing number of text-
books available covering the R programming language and the applications of R in
different fields of data analysis, for instance, Beginning R or Advanced R.

Besides the R software, one also should install an editor or an integrated develop-
ment environment (IDE) to work with R conveniently. Several open-source products
are available on the web, like

• RStudio, see RStudio Team (2020), at www.rstudio.org;
• RKWard, at http://rkward.sourceforge.net;
• Tinn-R, at http://www.sciviews.org/Tinn-R; and
• Eclipse based StatET, at http://www.walware.de/goto/statet.

1.3 Usage of R in This Book

Throughout the book we implement, for instance, different resampling schemes and
simulation studies in R. Our implementations are free from any checking of function
arguments. We provide R-code that focuses solely on an understandable implemen-
tation of a certain algorithm. Therefore, there is plenty of room to improve the imple-
mentations. Some of these improvements will be discussed within the exercises.

R is organized in packages. A new installation of R comes with some pre-installed
packages. And the packages provided by the R-community makes this programming
language really powerful. More than 15000 packages (as of 2020/Feb) are available
(still growing). But especially for people starting with R this is also a problem. The
CRANTask View https://cran.r-project.org/web/views summarizes certain packages
within categories like “Graphics”, “MachineLearning”, or “Survival”. We decided
to use only a handful of packages that are directly related to the main objective
of this book, like the boot-package for bootstrapping, or (in the opinion of the
authors) are too important and helpful to be ignored, like ggplot2, dplyr, and
tidyr. In addition, we have often used the simTool package fromMarsel Scheer
to carry out simulations. This package is explained in the appendix. Furthermore,

http://www.springer.com/de/book/9781484203743
http://adv-r.had.co.nz
www.rstudio.org
http://rkward.sourceforge.net
http://www.sciviews.org/Tinn-R
http://www.walware.de/goto/statet
https://cran.r-project.org/web/views

6 1 Introduction

we decided to use the pipe operator, i.e., %>%. There are a few critical voices about
this operator, but the authors as the most R users find it very comfortable to work
with the pipe operator. People familiar with Unix systems will recognize the concept
and probably appreciate it. A small example will demonstrate how the pipe operator
works. Suppose we want to apply a function A to the object x and the result of this
operation should be processed further by the function B. Without the pipe operator
one could use

B(A(x))
or
tmp = A(x)
B(tmp)

With the pipe operator this becomes

A(x) %>%
B

or
x %>%
A %>%
B

Especially with longer chains of functions using pipes may help to obtain R-code
that is easier to understand.

1.3.1 Further Non-Statistical R-Packages

There are a lot of packages that are worth to look at. Again the CRANTask Viewmay
be a good starting point. The following list is focused on writing reports, developing
R-packages, and increasing the speedofR-code itself.By far this list is not exhaustive:

• knitr for writing reports (this book was written with knitr);
• readxl for the import of excel files;
• testthat for creating automated unit tests. It is also helpful for checking func-
tion arguments;

• covR for assessing test coverage of the unit tests;
• devtools for creating/writing packages;
• data.table amazingly fast aggregation, joins, and various manipulations of
large datasets;

• roxygen2 for creating help pages within packages;
• Rcpp for a simple integration of C++ into R;
• profvis a profiling tool that assess at which line of code R spends its time;
• checkpoint, renv for package dependency.

Of course, further packages for importing datasets, connecting to databases, cre-
ating interactive graphs and user interfaces, and so on exist. Again, the packages
provided by the R-community make this programming language really powerful.

1.3 Usage of R in This Book 7

Finally, we want to strongly recommend the R-package drake. According to the
package-manual: It analyzes your workflow, skips steps with up-to-date results, and
orchestrates the rest with optional distributed computing.Wewant to briefly describe
how this works in principle. One defines a plan with steps one wants to perform:

plan <- drake::drake_plan(
raw = import_data("/foo/bar/data.csv"),
wrangled = preprocess(raw),
model1 = fit1(wrangled),
model2 = fit2(wrangled)

)

This plan can then be executed/processed by drake.

drake::make(plan)

This creates the four objects raw, wrangled, model1, and model2. Assume now
that we change the underlying source code for one of themodel-fitting functions, then
there is, of course, no need to rerun the preprocess step. Since drake analyzed our
defined plan it automatically skips the import and preprocessing for us. This can be
extremely helpful if the preprocess step is computationally intensive. Or imagine the
situation that we refactor the data-import function. If these changes do not modify the
raw object created in the first step, then again there is no need to rerun the preprocess
step or to refit the models. Again drake automatically detects that and skips the
preprocessing. Furthermore, looking at the definition of model1 and model2, we see
that there is no logical need to process them sequentially and with drake one can
easily do the computation in parallel. The package does also a lot of other helpful
things in the background, for instance, it measures the time used to perform a single
step of the plan. Althoughwe do not use drake in this bookwe encourage the reader
to try out the package. A good starting point is the excellent user manual accessible
under https://books.ropensci.org/drake.

References

R Core Team (2019) R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria, https://www.R-project.org/

RStudio Team (2020) RStudio: integrated development environment for R. RStudio, PBC, Boston,
MA, http://www.rstudio.com/

https://books.ropensci.org/drake
https://www.R-project.org/
http://www.rstudio.com/

	1 Introduction
	1.1 Basic Idea of the Bootstrap
	1.2 The R-Project for Statistical Computing
	1.3 Usage of R in This Book
	1.3.1 Further Non-Statistical R-Packages

	References

