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Preface

Efron’s introduction of the classical bootstrap in 1979 was the starting point of an
immense and lasting research activity. Accompanied and supported by the
improvement of PCs’ computing power, these methods are now an established
approach in applied statistics. The appealing simplicity makes it easy to use this
approach in different fields of science where statistics is applied.

The intention of this manuscript is to discuss the bootstrap concept in the context
of statistical testing, with a focus on its use or support in statistical modeling.
Furthermore, we would like to address different reader preferences with the content.

Specifically, we have thought of two types of readers. On the one hand, users of
statistics who have a solid basic knowledge of probability theory and who would
like to have a goal-oriented and short-term problem solution provided. On the other
hand, however, this book is also intended for readers who are more interested in the
theoretical background of a problem solution and who have advanced knowledge of
probability theory and mathematical statistics.

In most cases, we start a topic with some introductory examples, basic mathe-
matical considerations, and simple implementations of the corresponding algorithm.
A reader who is mainly interested in applying a particular approach may stop after
such a section and apply the discussed procedures and implementations to the
problem in mind. This introductory part to a topic is mainly addressed to the first
type of reader. It can also be used just to motivate bootstrap approximations and to
apply them in simulation studies on a computer. The second part of a topic covers
the mathematical framework and further background material. This part is mainly
written for those readers who have a strong background in probability theory and
mathematical statistics.

Throughout all chapters, computational procedures are provided in R. R is a
powerful statistical computing environment, which is freely available and can be
downloaded from the R-Project website at www.r-project.org. We focus only on a
few but very popular packages from the so-called tidyverse, mainly ggplot2 and
dplyr. This hopefully helps readers, who are not familiar with R, understand the
implementations more easily, first because the packages make the source code quite
intuitive to read and second because of their popularity a lot of helpful information
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can be found on the Internet. However, the repository of additional R-packages that
have been created by the R-community is immense, also with respect to
non-statistical aspects, that makes it worth to learn and work with R. The
R-programs considered in the text are made available on the website https://www.
springer.com/gp/book/9783030734794.

The first three chapters provide introductory material and are mainly intended for
readers who have never come into contact with bootstrapping. Chapter 1 gives a
short introduction to the bootstrap idea and some notes on R. In the Chap. 2, we
summarize some results about the generation of random numbers. The Chap. 3 lists
some well-known results of the classical bootstrap method.

In Chap. 4, we discuss the first basic statistical tests using the bootstrap method.
Chapters 5 and 6 cover bootstrap applications in the context of linear and gener-
alized linear regression. The focus is on goodness-of-fit tests, which can be used to
detect contradictions between the data and the fitted model. We discuss the work of
Stute on marked empirical processes and transfer parts of his results into the
bootstrap context in order to approximate p-values for the individual
goodness-of-fit tests. Some of the results here are new, at least to the best of our
knowledge. Although the mathematics behind these applications is quite complex,
we consider these tests as useful tools in the context of statistical modeling and
learning. Some of the subsections focus exactly on this modeling topic.

In the appendix, some additional aspects of R with respect to bootstrap appli-
cations are illustrated. In the first part of this appendix, some applications of the
“boot” R-package of Brian Ripley, which can be obtained from the R-project’s
website, are demonstrated. The second part describes the “simTool” R-package of
Marsel Scheer, which was written to simplify the implementation of simulation
studies like bootstrap replications in R. This package also covers applications of
parallel programming issues. Finally, the usage of our “bootGOF” R-package is
illustrated, which provides a tool to perform goodness-of-fit tests for (linear) models
as discussed in Chap. 6.

Jülich, Germany Gerhard Dikta
January 2021 Marsel Scheer

viii Preface

https://www.springer.com/gp/book/9783030734794
https://www.springer.com/gp/book/9783030734794


Acknowledgements

The first three chapters of this manuscript were written during the time when the
first author was employed as a Research Assistant at the Chair for Mathematical
Stochastics of the Justus Liebig University in Gießen. They were prepared for a
summer course at the Department of Mathematical Sciences at the University of
Wisconsin-Milwaukee, which the first author taught in 1988 (and several times later
on) after completing his doctorate.

Special thanks must be given to Prof. Dr. Winfried Stute, who supervised the
first author in Giessen. Professor Stute realized the importance of the bootstrap
method at a very early stage and inspired and promoted interest in it among the first
author. In addition, Prof. Stute together with Prof. Gilbert Walter from the
Department of Mathematical Science of the University of Wisconsin-Milwaukee
initiated a cooperation between the two departments, which ultimately formed the
basis for the long-lasting collaboration between the first author and his colleagues
from the statistics group in Milwaukee.

Financially, this long-term cooperation was later on supported by the Department
of Medical Engineering and Technomathematics of the Fachhochschule Aachen and
by the Department of Mathematical Sciences of the University of Wisconsin-
Milwaukee, and we would like to thank Profs. Karen Brucks, Allen Bell, Thomas
O’Bryan, and Richard Stockbridge for their kind assistance.

Finally, the first author would like to thank his colleagues from the statistics
group in Milwaukee, Jay Beder, Vytaras Brazauskas, and especially Jugal Ghorai,
and, from Fachhochschule Aachen, Martin Reißel for their helpful discussions and
support.

Also, the second author gives special thanks to Prof. Dr. Josef G. Steinebach
from the Department of Mathematics of the University of Cologne for his excellent
lectures in Statistics and Probability Theory.

We are both grateful to Dr. Andreas Kleefeld, who kindly provided us with
many comments and corrections to a preliminary version of the book.

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Basic Idea of the Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The R-Project for Statistical Computing . . . . . . . . . . . . . . . . . . . . 5
1.3 Usage of R in This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Further Non-Statistical R-Packages . . . . . . . . . . . . . . . . . . 6
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Generating Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Distributions in the R-Package Stats . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Uniform df. on the Unit Interval . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The Quantile Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Method of Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Generation of Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The Classical Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 An Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Basic Mathematical Background of the Classical Bootstrap . . . . . . 27
3.3 Discussion of the Asymptotic Accuracy of the Classical

Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Empirical Process and the Classical Bootstrap . . . . . . . . . . . . . . . 34
3.5 Mathematical Framework of Mallow’s Metric . . . . . . . . . . . . . . . 36
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Bootstrap-Based Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The One-Sample Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Two-Sample Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xi



4.4 Goodness-of-Fit (GOF) Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Mathematical Framework of the GOF Test . . . . . . . . . . . . . . . . . 65
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1 Homoscedastic Linear Regression under Fixed Design . . . . . . . . . 74

5.1.1 Model-Based Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.2 LSE Asymptotic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.3 LSE Bootstrap Asymptotic . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Linear Correlation Model and the Bootstrap . . . . . . . . . . . . . . . . . 90
5.2.1 Classical Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Wild Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.3 Mathematical Framework of LSE . . . . . . . . . . . . . . . . . . . 99
5.2.4 Mathematical Framework of Classical

Bootstrapped LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.5 Mathematical Framework of Wild Bootstrapped LSE . . . . . 104

5.3 Generalized Linear Model (Parametric) . . . . . . . . . . . . . . . . . . . . 106
5.3.1 Mathematical Framework of MLE . . . . . . . . . . . . . . . . . . 121
5.3.2 Mathematical Framework of Bootstrap MLE . . . . . . . . . . . 133

5.4 Semi-parametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4.1 Mathematical Framework of LSE . . . . . . . . . . . . . . . . . . . 147
5.4.2 Mathematical Framework of Wild Bootstrap LSE . . . . . . . 153

5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6 Goodness-of-Fit Test for Generalized Linear Models . . . . . . . . . . . . 165
6.1 MEP in the Parametric Modeling Context . . . . . . . . . . . . . . . . . . 167

6.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.1.2 Bike Sharing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.1.3 Artificial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.2 MEP in the Semi-parametric Modeling Context . . . . . . . . . . . . . . 187
6.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.2.2 Artificial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.3 Comparison of the GOF Tests under the Parametric
and Semi-parametric Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.4 Mathematical Framework: Marked Empirical Processes . . . . . . . . 197
6.4.1 The Basic MEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.4.2 The MEP with Estimated Model Parameters

Propagating in a Fixed Direction . . . . . . . . . . . . . . . . . . . 203
6.4.3 The MEP with Estimated Model Parameters

Propagating in an Estimated Direction . . . . . . . . . . . . . . . 207

xii Contents



6.5 Mathematical Framework: Bootstrap of Marked Empirical
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.5.1 Bootstrap of the BMEP . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.5.2 Bootstrap of the EMEP . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Appendix A: boot Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Appendix B: simTool Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Appendix C: bootGOF Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Appendix D: Session Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Contents xiii



Abbreviations

a.e. Almost everywhere
a.s. Almost sure
BMEP Basic marked empirical process
CLT Central limit theorem
CvM Cramér-von Mises
df. Distribution function
edf. Empirical distribution function of an i.i.d. sample
EMEP Estimated marked empirical process
EMEPE Estimated marked empirical process in estimated direction
GA General assumptions
GC Glivenko-Cantelli theorem
GLM Generalized linear model
GOF Goodness-of-fit
i.i.d. Independent and identically distributed
KS Kolmogorov-Smirnov
MEP Marked empirical process
MLE Maximum likelihood estimate
pdf. Probability density function
PRNG Pseudo-random number generators
qf. Quantile function
rv. Random variable
RSS Resampling scheme
SLLN Strong law of large numbers
W.l.o.g. Without loss of generality
WLLN Weak law of large numbers
w.p.1 With probability one

xv



Notations

A :¼ B A is defined by B
A � B A and B are equivalent
B�
n Borel r�algebra on R

n

C[0,1] Space of continuous, real-valued function on the unit interval
D[0,1] Skorokhod space on the unit interval
EðXÞ Expectation of the random variable X
E
�
nðX�Þ Expectation of the bootstrap random variable X

EXPðaÞ Exponential distribution with parameter a[ 0
Fn Empirical distribution function
Ifx2Ag Indicator function
IfAgðxÞ Indicator function
Ip Identity matrix of size p� p
h�; �i Inner product of a Hilbert space
a ^ b Minimum of a and b
Nðl; r2Þ Normal distribution with expectation l and variance r2

P
�
n Probability measure corresponding to bootstrap rvs. based on n

original observations
P
� Probability measure corresponding to the wild bootstrap

Rn Basic marked empirical process (BMEP)
R1
n Marked empirical process with estimated parameters propagating in

fixed direction (EMEP)
�R1
n

Marked empirical process with estimated parameters propagating in
an estimated direction (EMEPE)

UNIða; bÞ Uniform distribution on the interval ½a; b�
UNI Standard uniform distribution on the interval, i.e., UNIð0; 1Þ
VARðXÞ Variance of the random variable X
VAR�

nðX�Þ Variance of the bootstrap random variable X
WEIBða; bÞ Weibull distribution with parameter a and b
X�F Random variable X is distributed according to F

xvi Abbreviations



Chapter 1
Introduction

In this introduction, we discuss the basic idea of the bootstrap procedure using a
simple example. Furthermore, the Statistical Software R and its use in the context of
this manuscript is briefly covered. Readers who are familiar with this material can
skip this chapter.

A short summary of the contents of this manuscript can be found in the Preface
and is not listed here again.

1.1 Basic Idea of the Bootstrap

Typical statisticalmethods, such as constructing a confidence interval for the expected
value of a random variable or determining critical values for a hypothesis test, require
knowledge of the underlying distribution. However, this distribution is usually only
partially known at most. The statistical method we use to perform the task depends
on our knowledge of the underlying distribution.

Let us be more precise and assume that

X1, . . . , Xn ∼ F

is a sequence of independent and identically distributed (i.i.d.) random variables with
common distribution function (df.) F . Consider the statistic

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-030-73480-0_1) contains supplementary material, which is
available to authorized users.
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2 1 Introduction

X̄n := 1

n

n∑

i=1

Xi

to estimate the parameter μF = E(X), that is, the expectation of X .
To construct a confidence interval for μF or to perform a hypothesis test on μF ,

we consider the df. of the studentized version of X̄n , that is,

PF
(√

n(X̄n − μF )
/
sn ≤ x

)
, x ∈ R, (1.1)

where

s2n := 1

n − 1

n∑

i=1

(Xi − X̄n)
2

is the unbiased estimator of σ 2 = VAR(X), that is, the variance of X . Note that we
write PF here to indicate that F is the data generating df.

If we know that F comes from the class of normal distributions, then the df. under
(1.1) belongs to a tn−1−distribution, i.e., a Student’s t distributionwith n − 1 degrees
of freedom. Using the known quantiles of the tn−1− distribution exact confidence
interval can be determined. For example, an exact 90% confidence interval for μF is
given by [

X̄n − sn q0.95√
n

, X̄n + sn q0.95√
n

]
, (1.2)

where q0.95 is the 95% quantile of the tn−1 distribution.
But in most situations we are not able to specify a parametric distribution class

for F . In such a case, we have to look for a suitable approximation for (1.1). If it is
ensured that E(X2) < ∞, the central limit theorem (CLT) guarantees that

sup
x∈R

∣∣∣PF
(√

n(X̄n − μF )
/
sn ≤ x

) − Φ(x)
∣∣∣ −→ 0, for n → ∞, (1.3)

where Φ denotes the standard normal df. Based on the CLT, we can now construct
an asymptotic confidence interval. For example, the 90% confidence interval under
(1.2) has the same structure when we construct it using the CLT. However, q0.95 now
is the 95% quantile of the standard normal distribution. The interval constructed in
this way is no longer an exact confidence interval. It can only be guaranteed that the
confidence level of 90% is reached with n → ∞. It should also be noted that for q0.95
the 95% quantile of the tn−1− distribution can also be chosen, because for n → ∞,
the tn−1− df. converges to the standard normal df.

So farwehave concentrated exclusively on the studentizedmean. Let us generalize
this to a statistic of the type

Tn(F) = Tn(X1, . . . , Xn; F),
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where X1, . . . , Xn ∼ F are i.i.d. Then the question arises how to approximate the
df.

PF
(
Tn(F) ≤ x

)
, x ∈ R (1.4)

if F is unknown. This is where Efron’s bootstrap enters the game. The basic idea of
the bootstrap method is the assumption that the df. of Tn is about the same when the
data generating distribution F is replaced by another data generating distribution F̂
which is close to F and which is known to us. If we can find such a df. F̂ ,

PF̂ (Tn(F̂) ≤ x), x ∈ R (1.5)

may also be an approximation of Eq. (1.4).We call this df. for themoment a bootstrap
approximation of the df. given under Eq. (1.4). However, this approach only makes
sense if we can guarantee that

sup
x∈R

∣∣∣PF
(
Tn(F) ≤ x

) − PF̂

(
Tn(F̂) ≤ x

)∣∣∣ −→ 0, for n → ∞. (1.6)

Now let us go back to construct a 90% confidence interval for μF based on the
bootstrap approximation. For this, we take the studentized mean for Tn and assume
that we have a data generating df. F̂ that satisfies (1.6). Since F̂ is known, we can
now, at least theoretically, calculate the 5% and 95% quantiles of the df.

PF̂

(√
n(X̄n − μF̂ )

/
sn ≤ x

)
,

which we denote by qn,0.05 and qn,0.95, respectively, to derive

[
X̄n − sn qn,0.95√

n
, X̄n − sn qn,0.05√

n

]
, (1.7)

an asymptotic 90% confidence interval for μF .
If we want to use such a bootstrap approach, we have

(A) to choose the data generating df. F̂ such that the bootstrap approximation (1.6)
holds,

(B) to calculate the df. of Tn , where the sample is generated under F̂ .

Certainly (A) is themore demandingpart, in particular, the proof of the approximation
(1.6). Fortunately, a lot of work has been done on this in the last decades. Also, the
calculation of the df. under (B) may turn out to be very complex. However, this is of
minor importance, because the bootstrap df. in Eq. (1.6) can be approximated very
well by a Monte Carlo approach. It is precisely this opportunity to perform a Monte
Carlo approximation, together with the rapid development of powerful PCs that has
led to the great success of the bootstrap approach.

To demonstrate such a Monte Carlo approximation for the df. of Eq. (1.5), we
proceed as follows:



4 1 Introduction

(a) Construct m i.i.d. (bootstrap) samples independent of one another of the type

X∗
1;1 . . . X∗

1;n
...

...
...

X∗
m;1 . . . X∗

m;n

with common df. F̂ .
(b) Calculate for each sample k ∈ {1, 2, . . . ,m}

T ∗
k;n := Tn(X

∗
k;1, . . . , X

∗
k;n; F̂)

to obtain T ∗
1;n, . . . , T

∗
m;n .

(c) Since the T ∗
1;n, . . . , T

∗
m;n are i.i.d. , the Glivenko-Cantelli theorem (GC) guaran-

tees

sup
x∈R

∣∣∣PF̂

(
Tn(F̂) ≤ x

) − 1

m

m∑

k=1

I{T ∗
k;n≤x}

∣∣∣ −→ 0, for m → ∞, (1.8)

where I{x∈A} ≡ I{A}(x) denotes the indicator function of the set A, that is,

I{x∈A} =
{
1 : x ∈ A

0 : x /∈ A
.

The choice of an appropriate F̂ depends on the underlying problem, as we will
see in the following chapters. In the context of this introduction, Fn , the empirical
df. (edf.) of the sample X1, . . . , Xn , defined by

Fn(x) := 1

n

n∑

i=1

I{Xi≤x}, x ∈ R, (1.9)

is a good choice for F̂ since, by the Glivenko-Cantelli theorem, we get with proba-
bility one (w.p.1)

sup
n∈R

∣∣Fn(x) − F(x)
∣∣ −→
n→∞ 0.

If we choose Fn for F̂ then we are talking about the classical bootstrap which was
historically the first to be studied.
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1.2 The R-Project for Statistical Computing

The programming language R, see R Core Team (2019), is a widely used open-
source software tool for data analysis and graphics which runs on the commonly
used operating systems. It can be downloaded from the R-project’s website at www.r-
project.org. The R Development Core Team also offers some documentation on this
website:

• R installation and administration,
• An introduction to R,
• The R language definition,
• R data import/export, and
• The R reference index.

Additionally to this material, there is a large and strongly growing number of text-
books available covering the R programming language and the applications of R in
different fields of data analysis, for instance, Beginning R or Advanced R.

Besides the R software, one also should install an editor or an integrated develop-
ment environment (IDE) to work with R conveniently. Several open-source products
are available on the web, like

• RStudio, see RStudio Team (2020), at www.rstudio.org;
• RKWard, at http://rkward.sourceforge.net;
• Tinn-R, at http://www.sciviews.org/Tinn-R; and
• Eclipse based StatET, at http://www.walware.de/goto/statet.

1.3 Usage of R in This Book

Throughout the book we implement, for instance, different resampling schemes and
simulation studies in R. Our implementations are free from any checking of function
arguments. We provide R-code that focuses solely on an understandable implemen-
tation of a certain algorithm. Therefore, there is plenty of room to improve the imple-
mentations. Some of these improvements will be discussed within the exercises.

R is organized in packages. A new installation of R comes with some pre-installed
packages. And the packages provided by the R-community makes this programming
language really powerful. More than 15000 packages (as of 2020/Feb) are available
(still growing). But especially for people starting with R this is also a problem. The
CRANTask View https://cran.r-project.org/web/views summarizes certain packages
within categories like “Graphics”, “MachineLearning”, or “Survival”. We decided
to use only a handful of packages that are directly related to the main objective
of this book, like the boot-package for bootstrapping, or (in the opinion of the
authors) are too important and helpful to be ignored, like ggplot2, dplyr, and
tidyr. In addition, we have often used the simTool package fromMarsel Scheer
to carry out simulations. This package is explained in the appendix. Furthermore,

http://www.springer.com/de/book/9781484203743
http://adv-r.had.co.nz
www.rstudio.org
http://rkward.sourceforge.net
http://www.sciviews.org/Tinn-R
http://www.walware.de/goto/statet
https://cran.r-project.org/web/views
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we decided to use the pipe operator, i.e., %>%. There are a few critical voices about
this operator, but the authors as the most R users find it very comfortable to work
with the pipe operator. People familiar with Unix systems will recognize the concept
and probably appreciate it. A small example will demonstrate how the pipe operator
works. Suppose we want to apply a function A to the object x and the result of this
operation should be processed further by the function B. Without the pipe operator
one could use

B(A(x))
# or
tmp = A(x)
B(tmp)

With the pipe operator this becomes

A(x) %>%
B

# or
x %>%
A %>%
B

Especially with longer chains of functions using pipes may help to obtain R-code
that is easier to understand.

1.3.1 Further Non-Statistical R-Packages

There are a lot of packages that are worth to look at. Again the CRANTask Viewmay
be a good starting point. The following list is focused on writing reports, developing
R-packages, and increasing the speedofR-code itself.By far this list is not exhaustive:

• knitr for writing reports (this book was written with knitr);
• readxl for the import of excel files;
• testthat for creating automated unit tests. It is also helpful for checking func-
tion arguments;

• covR for assessing test coverage of the unit tests;
• devtools for creating/writing packages;
• data.table amazingly fast aggregation, joins, and various manipulations of
large datasets;

• roxygen2 for creating help pages within packages;
• Rcpp for a simple integration of C++ into R;
• profvis a profiling tool that assess at which line of code R spends its time;
• checkpoint, renv for package dependency.

Of course, further packages for importing datasets, connecting to databases, cre-
ating interactive graphs and user interfaces, and so on exist. Again, the packages
provided by the R-community make this programming language really powerful.
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Finally, we want to strongly recommend the R-package drake. According to the
package-manual: It analyzes your workflow, skips steps with up-to-date results, and
orchestrates the rest with optional distributed computing.Wewant to briefly describe
how this works in principle. One defines a plan with steps one wants to perform:

plan <- drake::drake_plan(
raw = import_data("/foo/bar/data.csv"),
wrangled = preprocess(raw),
model1 = fit1(wrangled),
model2 = fit2(wrangled)

)

This plan can then be executed/processed by drake.

drake::make(plan)

This creates the four objects raw, wrangled, model1, and model2. Assume now
that we change the underlying source code for one of themodel-fitting functions, then
there is, of course, no need to rerun the preprocess step. Since drake analyzed our
defined plan it automatically skips the import and preprocessing for us. This can be
extremely helpful if the preprocess step is computationally intensive. Or imagine the
situation that we refactor the data-import function. If these changes do not modify the
raw object created in the first step, then again there is no need to rerun the preprocess
step or to refit the models. Again drake automatically detects that and skips the
preprocessing. Furthermore, looking at the definition of model1 and model2, we see
that there is no logical need to process them sequentially and with drake one can
easily do the computation in parallel. The package does also a lot of other helpful
things in the background, for instance, it measures the time used to perform a single
step of the plan. Althoughwe do not use drake in this bookwe encourage the reader
to try out the package. A good starting point is the excellent user manual accessible
under https://books.ropensci.org/drake.

References

R Core Team (2019) R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria, https://www.R-project.org/

RStudio Team (2020) RStudio: integrated development environment for R. RStudio, PBC, Boston,
MA, http://www.rstudio.com/

https://books.ropensci.org/drake
https://www.R-project.org/
http://www.rstudio.com/


Chapter 2
Generating Random Numbers

To perform a Monte Carlo approximation, we have to generate random variables
(rv.) on a computer according to a given df. F . In this chapter, we will discuss some
commonly used procedures and their application under R.

Since most of the widely used distributions are implemented in R, random vari-
ables according to these distributions can easily be generated directly in R through
the corresponding built-in R functions. In the first section of this chapter, we will
give a brief overview on those distributions which are implemented in the R stats
package.

However, if a specific distribution is needed which is neither supported by R itself
nor by any additional package, one can try the “quantile transformation method”
or the “method of rejection”. Both approaches are considered in this chapter. For a
detailed discussion of random number generation, we refer to Devroye (1986) and
Ripley (1987). In Eubank and Kupresanin (2011, Chapter 4), this is also considered
in the R-context.

2.1 Distributions in the R-Package Stats

The standard R-package stats contains several standard probability distributions.
We can list them from a R-workspace by typing the command

help(distributions)

For all these distributions, the corresponding cumulative distribution function,
density function, quantile function, and randomgeneration function are implemented
and can be called by

• dxxx(. . .)—density function;
• pxxx(. . .)—distribution function;

© Springer Nature Switzerland AG 2021
G. Dikta and M. Scheer, Bootstrap Methods,
https://doi.org/10.1007/978-3-030-73480-0_2
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• qxxx(. . .)—quantile function; and
• rxxx(. . .)—random number generator function.

In the notation above, “xxx” is the name in R of the corresponding distribution and
(. . .) a placeholder for the required parameters of the function call. The following
example lists some calls regarding a normal distribution with expected value μ = 2
and variance σ 2 = 4, here abbreviated asN (2, 4).

R-Example 2.1 Note that in the corresponding function calls under R, the standard
deviation (sd=2) is used while in the notationN (2, 4) the variance σ 2 = 4 is given.
The R name “xxx” of the normal distribution is “norm”.

#call the help for rnorm
help(rnorm)
#density function at x = 2
dnorm(x = 2, mean = 2, sd = 2)

## [1] 0.1994711

#distribution function at q = 2
pnorm(q = 2, mean = 2, sd = 2)

## [1] 0.5

#0.5-quantile
qnorm(p = 0.5, mean = 2, sd = 2)

## [1] 2

#3 normal random variables
rnorm(n = 3, mean = 2, sd = 2)

## [1] 1.008104 3.768502 2.064348

2.2 Uniform df. on the Unit Interval

A rv. U is uniformly distributed on the interval [a, b], where −∞ < a < b < ∞, if

P(U ≤ u) =

⎧
⎪⎨

⎪⎩

0 : u < a

(u − a)/(b − a) : a ≤ u ≤ b

1 : u > b.
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We denote this distribution here by UN I (a, b) and use UN I to abbreviate UN I
(0, 1), the standard uniform distribution, which is also referred to as the
uniform distribution.

The uniform distribution is the most important one in generating rv. As we will
see in the next section, we can generate a rv. X ∼ F for every df. F if we can generate
a rv. U ∼ UN I .

There is a large literature on generating sequences of independent and uniformly
distributed rvs. which we will not discuss here. Eubank and Kupresanin (2011,
Chapter 4) is a good reference for pseudo-randomnumber generators (PRNG), which
specifically addresses R.

Remark 2.2 In this manuscript, we usually take “Mersenne twister” as PRNG. If a
normally distributed rv. is to be created, this is done using the “inversion”method. For
reasons of reproducibility, a starting value (“set.seed”) is set before each simulation.
This seed also contains the name of the PRNG used and the name of the method for
generating normal distributed rvs. A typical call looks like

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")

With the simTool package, simulations can also be run in parallel. In this case,
“L’Ecuyer-CMRG” is set globally as PRNG!

2.3 The Quantile Transformation

The following theorem says that we can generate a rv. X according to an arbitrary
df. F if we apply a certain transformation to a generated rv. U ∼ UN I .

Theorem 2.3 Let F be the df. of a rv. X and define for 0 < u < 1

F−1(u) = inf{x ∈ R | F(x) ≥ u} (2.1)

the quantile function (qf.). If U ∼ UN I then:

X := F−1(U ) ∼ F.

Proof At first note that the qf. equals the inverse function of F if F is strictly increas-
ing. If this is not the case, F−1 is still well defined and therefore qf. is a generalized
inverse of an increasing function.

We have to show that

P(F−1(U ) ≤ x) = F(x), ∀ x ∈ R.

For this choose x ∈ R and 0 < u < 1 arbitrarily. Then the following equivalence
holds:



12 2 Generating Random Numbers

F−1(u) ≤ x ⇐⇒ u ≤ F(x) (2.2)

“⇐:” If u ≤ F(x), apply the definition of F−1 to get F−1(u) ≤ x .
“⇒:” Assume now F−1(u) ≤ x and continue indirectly. For this assume further
that u > F(x). Since F is continuous from above there exists ε > 0 such that u >

F(x + ε). Apply the definition of F−1 to get F−1(u) ≥ x + ε. This contradiction
leads to F−1(u) ≤ x .
Now, apply (2.2) to get for arbitrary x ∈ R:

P(F−1(U ) ≤ x) = P(U ≤ F(x)) = F(x) = P(X ≤ x),

where the second equality follows from U ∼ UN I . This finally proves the
theorem. �

Example 2.4 Let U ∼ UN I and

F(x) :=
{
0 : x ≤ 0

1 − exp(−α x) : x > 0

the df. of the exponential distributionwith parameterα > 0, abbreviated by EX P(α).
Calculate the inverse of F to get

F−1(u) = − ln(1 − u)

α
.

The last theorem guarantees that F−1(U ) ∼ EX P(α).

R-Example 2.5 This example shows the generation of 1000 EX P(2) variableswith
R based on the quantile transformation derived in Example2.4.

gen.exp <- function(n, alpha){
#n - number of observations
#alpha - distribution parameter

return(-log(1 - runif(n)) / alpha)
}

# set the seed for the pseudo random number generator
# for reproducible results
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")

# generate 1000 EXP(2) random variables
obs <- gen.exp(n = 1000, alpha = 2)

# draw a histogram with 50 cells
hist(obs, breaks = 50, freq = FALSE,

main = "Histogram of 1000 EXP(2)",
xlab = "", ylab = "density",
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Fig. 2.1 Histogram of 1000 EXP(2) distributed random variables and the EXP(2)-density

xlim=c(0,4),
ylim=c(0,2))

# add the density function of a EXP(2) distributed random
# variable to the plot
curve(dexp(x, rate = 2), add = TRUE, col = "red")

In the first statement, the R-function “gen.exp” is defined with two parameters; n
and alpha, which implements the result derived in Example2.4. It returns a vector of
n independent realizations of the EX P(alpha) distribution. In the second statement,
the seed is set for the pseudo-random number generator which is here “Mersenne-
Twister” to obtain reproducible results. “gen.exp” is applied with n = 1000 and
alpha = 2. The resulting vector is stored in the variable “obs” in statement three.
With the fourth statement a histogram of the generated variables is produced and
with the last statement this histogram is overlaid with the true density function of the
EX P(2) distribution, see Fig. 2.1.

In the following lemma, some further properties of the quantile function are listed:

Lemma 2.6 Let F be an arbitrary df. and denote by F−1 the corresponding quantile
function. We have for x, x1, x2 ∈ R and 0 < u < 1:

1. F(x) ≥ u ⇐⇒ F−1(u) ≤ x.
2. F(x) < u ⇐⇒ F−1(u) > x.
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3. F(x1) < u ≤ F(x2) ⇐⇒ x1 < F−1(u) ≤ x2.

Proof (i) Already shown under (2.2) of Theorem2.3.
(ii) Consequence of part (i).
(iii) Consequence of part (i) and (ii).

�

Lemma 2.7 Let F be an arbitrary df. and 0 < u < 1. Then

F ◦ F−1(u) ≥ u.

If u ∈ F(R) the inequality above changes to an equality.

Proof The inequality can be obtained from Lemma2.6 (ii), since F ◦ F−1(u) < u
would result in the obvious contradiction F−1(u) > F−1(u).

Now assume in addition that u ∈ F(R), i.e., there exists x ∈ R such that u = F(x).
Therefore, by definition of F−1, we get F−1(u) ≤ x . Applying F to both sides
of this inequality, the monotony of F implies that F ◦ F−1(u) ≤ F(x) = u. Thus,
F ◦ F−1(u) > u is not possible and according to the first part of the proof we get
F ◦ F−1(u) = u. �

Corollary 2.8 Let X be a rv. with continuous df. F. Then

F(X) ∼ UN I.

Proof According to Theorem2.3, we can assume that

X = F−1(U ),

where U ∼ UN I . Thus, it remains to show that F ◦ F−1(U ) ∼ UN I . For this
choose 0 < u < 1 arbitrarily. Then continuity of F and the last lemma leads to

P(F ◦ F−1(U ) ≤ u) = P(U ≤ u) = u

which proves the corollary. �

We finalize the section by another inequality of the quantile function.

Lemma 2.9 For each df. F and x ∈ R, we have

F−1 ◦ F(x) ≤ x .

If in addition x fulfills the extra condition that for all y < x, F(y) < F(x) holds,
then the inequality above changes to an equality.
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Proof If F−1 ◦ F(x) > x for x ∈ R, then Lemma2.6 (ii) immediately yields the
contradiction F(x) < F(x). Thus, the inequality stated above is correct.
Now, assume the extra condition of the lemma for the point x ∈ R. According to the
part just shown, we have to prove that F−1(F(x)) < x cannot be correct. Assuming
that this inequality is correct, Lemma2.7 implies

F(x) ≤ F ◦ F−1(F(x)) < F(x)

which is obviously a contradiction. �

2.4 The Normal Distribution

Theorem2.3 of the last section shows how the quantile function can be used to
generate a rv. according to a given df. F . However, the quantile function might
be difficult to calculate. Therefore, the procedure suggested under Theorem 2.3 is
only used in standard situations where F is invertible and the inverse can easily
be obtained. In those cases where it is not possible to calculate F−1 directly, other
procedures should be applied.
In the case of the standard normal distribution, i.e., the rv. X ∼ N (0, 1), the df. Φ
has the density φ with

Φ(x) = P(X ≤ x) =
∫ x

−∞
φ(t) dt = 1√

2π

∫ x

−∞
exp

(

− t2

2

)

dt

which can be obtained only numerically. Thus, quantile transformation is not appli-
cable to generate such a rv.
As the next lemma will show, we can generate a rv. Z ∼ N (μ, σ 2), i.e., Z has df.
F with

F(x) = 1√
2πσ 2

∫ x

−∞
exp

(

− (t − μ)2

2σ 2

)

dt, (2.3)

through a linear transformed rv. X ∼ N (0, 1).

Lemma 2.10 Let X ∼ N (0, 1). Then Z := σ · X + μ is distributed according to
N (μ, σ 2).

Proof Let μ ∈ R, σ > 0, and z ∈ R be given. Then

P(Z ≤ z) = P(σ X + μ ≤ z) = P(X ≤ (z − μ)/σ)

= 1√
2π

∫ (z−μ)/σ

−∞
exp

(

− t2

2

)

dt.

Now, differentiate both sides w.r.t. z to obtain by the chain rule and the Fundamental
Theorem of Calculus the density function
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f (z) = 1√
2πσ 2

exp

(

− (z − μ)2

2σ 2

)

.

But f is precisely the density function of a rv. which isN (μ, σ 2) distributed. �
In the next theorem, the Box-Muller algorithm to generate N (0, 1) distributed

rv. is given.

Theorem 2.11 Box-Muller algorithm. Let U, V ∼ UN I be two independent rv.
uniformly distributed on the unit interval. Then the rv.

X = √−2 log(U ) cos(2πV ), Y = √−2 log(U ) sin(2πV )

are independent from one another and both areN (0, 1) distributed.

Proof The proof is omitted here but can be found in Box and Muller (1958). �

2.5 Method of Rejection

As already discussed in the last section, quantile transformation is not always applica-
ble in practise. In this section, we discuss a method which is applicable in a situation
where the df. F has a density function f .

Theorem 2.12 Method of Rejection. Let F,G be df. with probability density func-
tions f, g. Furthermore, let M > 0 be such that

f (x) ≤ Mg(x), ∀ x ∈ R.

To generate a rv. X ∼ F perform the following steps:

(i) Generate Y ∼ G.
(ii) Generate U ∼ UN I independent of Y .
(iii) If U ≤ f (Y )/(M · g(Y )), return Y . Else reject Y and start again with step (i).

Proof We have to prove that X ∼ F . Note first that

P(X ≤ x) = P

(

Y ≤ x
∣
∣
∣U ≤ f (Y )

M · g(Y )

)

=
P

(
Y ≤ x, U ≤ f (Y )

M ·g(Y )

)

P

(
U ≤ f (Y )

M ·g(Y )

) .

For the numerator on the right-hand side, we obtain by conditioning w.r.t. Y

P

(

Y ≤ x, U ≤ f (Y )

M · g(Y )

)

=
∫ x

−∞
P

(

U ≤ f (Y )

M · g(Y )

∣
∣
∣ Y = y

)

G(dy)

=
∫ x

−∞
P

(

U ≤ f (y)

M · g(y)
)

G(dy),
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where the last equality follows from the independence ofU and Y . SinceU ∼ UN I ,
the last integral is equal to

∫ x

−∞
f (y)

M · g(y) g(y)dy = 1

M

∫ x

−∞
f (y) dy = F(x)

M
.

Since the denominator is the limit of the numerator for x → ∞ and F(x) → 1
for x → ∞, the denominator must be identical to 1/M . This finally proves the
theorem. �

Generally, one chooses the rv. Y ∼ G in such a way that Y can be easily generated
by quantile transformation. The constant M > 0 should then be chosen as small as
possible to minimize the cases of rejection.
In the following example, we apply the rejection method to generate a rv. X ∼
N (0, 1). For the df. G, we choose the Cauchy distribution given under Exercise
2.16.

Example 2.13 At first, we have to find a proper constant M

f (x)

g(x)
= 1√

2π
exp

(

− x2

2

) / (
1

π(1 + x2)

)

= √
π/2 exp

(

− x2

2

)

(1 + x2).

The function exp
(
− x2

2

)
(1 + x2) is symmetric around 0 and has a global maximum

at x = 1. Thus, the constant

M := 2
√

π/2√
e

=
√
2π

e

can be used.

R-Example 2.14 The results of the last example can be implemented in R like

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gen.norm.rm <- function(n){
# n - number of observations

# constant used during the method of rejection
M = sqrt(2 * pi * exp(-1))

# actual method of rejection, returning one observation
MethodOfRejection <- function() {
repeat{
Y = rcauchy(1)
if(runif(1) <= dnorm(Y) / (M * dcauchy(Y)))

return(Y)
}

}
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Fig. 2.2 Histogram of 10000 N (0, 1) rvs. generated with the rejection method and the N (0, 1)-
density

# calling MethodOfRejection n times
replicate(n, MethodOfRejection())

}
obs <- gen.norm.rm(n = 10000)
hist(obs, breaks = 50, freq = FALSE, xlab = "", xlim=c(-4,4),

ylab = "density",
main = "Rejection-Method")

curve(dnorm(x), col = "red", add = TRUE)

In the source code above, we define the function “gen.norm.rm” which returns a
vector of n independent standard normal rvs. by applying the rejection method as
described in Example 2.13. The function is called with n = 10000 and the result is
stored in the variable “obs”. The last two lines produce the histogram in Fig. 2.2.
Within “gen.norm.rm” the functions “rcauchy”, “runif”, “dnorm”, and “dcauchy”
from the stats library are called. For the meaning of these functions, compare
Sect. 2.1.
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2.6 Generation of Random Vectors

In this section, we discuss the generation of two-dimensional random vectors (X,Y ).
If the variables are independent of one another, themethods stated above can be used.
Thus, the remaining difficulty is the generation of dependent rv.

In the case of a known regression function, e.g.,

Y = f (X) + ε,

where X is independent of ε and E(ε) = 0, we can also use the methods described
above. To be precise, we generate the rv. X and ε independent of one another and
substitute the results into the right-hand side of the regression equation above to
obtain the rv. Y . Finally, (X,Y ) is returned.

If no regression function is given but the regular conditional df. of Y given X = x
is known for each x ∈ R, i.e.,

B∗ � B −→ P(Y ∈ B | X = x),

whereB∗ denotes the Borel sets, then theRosenblatt Transformation can be applied.
For this transformation, let G(y | x) := P(Y ≤ y | X = x) denote the conditional df.
of Y given X = x and F the df. of X . Then

(X,Y ) ∼ (F−1(U ),G−1(V | F−1(U ))), (2.4)

whereU, V are independent rv. which are uniformly distributed on the unit interval.

Proof The proof is based on some standard operations of conditional distributions.

P

(
F−1(U ) ≤ t,G−1

(
V | F−1(U )

) ≤ y
)

=
∫ t

−∞
P(G−1(V | x) ≤ y) F(dx)

=
∫ t

−∞
P(V ≤ G(y | x)) F(dx)

=
∫ t

−∞
G(y | x) F(dx)

=
∫ t

−∞
P(Y ≤ y | X = x) F(dx)

= P(X ≤ t,Y ≤ y).

�
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2.7 Exercises

Exercise 2.15 Assume that X1, . . . , Xn is an i.i.d. sequence of rvs. with common
continuous df. F and let Fn denote the associated empirical distribution function;
compare with (1.9).

(i) Determine n Fn(Xi ) and F−1
n (i/n), for 1 ≤ i ≤ n.

(ii) Find the distribution of F−1
n (U ) given the observations X1, . . . , Xn , ifU ∼ UN I

is independent of the sequence.
(iii) Implement a R-function to generate rvs. according to Fn .

Exercise 2.16 The density function of the Cauchy distribution is defined by

R � x −→ f (x) := 1

π(1 + x2)
.

Determine the corresponding df. F and F−1.

Exercise 2.17 The Weibull distribution to the parameter (α, β), where α > 0 and
β > 0, abbreviated by WE I B(α, β), possess the df.

F(x) :=
{
1 − exp(−(x/α)β) : x ≥ 0

0 : otherwise

(i) Use the quantile transformation to define a procedure for generating Weibull
distributed rvs.

(ii) Implement your Weibull generator in R.
(iii) Generate 10000 independent WE I B(2, 2) variables in R with your generator

and visualize the result in a histogram together with the corresponding density
function.

Exercise 2.18 Let f, g be the pdfs. in the rejection method and M > 0 the corre-
sponding constant. Determine the probability that the rejection method succeeds in
the first step, i.e., no rejection.
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Chapter 3
The Classical Bootstrap

In Chap.1, we briefly introduced the idea of bootstrapping. Now, together with the
first applications, we will also give some theoretical results of the classical bootstrap
approximation as first published simultaneously by Bickel and Freedman (1981) and
Singh (1981). The methods of proof in these two papers are different and we follow
mainly the work of Singh (1981) here. However, in Sect. 3.5, we will go into more
detail about a proof concept applied in Bickel and Freedman (1981).

The first two sections of this chapter contain programming examples and the
essential theorems for the classical bootstrap procedure. The last four sections give a
deeper insight into themathematical background. They are rather intended for readers
who have a deeper knowledge of probability theory and mathematical statistics.

3.1 An Introductory Example

Recall from Chap.1 the basic idea of the bootstrap. Starting with an i.i.d. sample

X1, . . . , Xn ∼ F

with common unknown df. F we consider a statistic Tn(F) = Tn(X1, . . . , Xn; F)

whose df. we want to approximate. For the approximation, we use the df. of Tn(F̂),
where F̂ is a known df. which is close to F .

In the situation of the classical bootstrap (cb.), the edf. Fn is used for F̂ . Hence

Tn(F̂) = Tn(Fn) = Tn(X
∗
1, . . . , X

∗
n; Fn),

where
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X∗
1, . . . , X

∗
n ∼ Fn (3.1)

is an i.i.d. sample with common df. Fn . We call X∗
1, . . . , X

∗
n the bootstrap sample.

The underlying probability measure will be denoted here by P
∗
n ≡ PFn . Note that

the probability measure of the bootstrap distribution, P∗
n , depends on the original

observations X1, . . . , Xn , thus it is random! Furthermore, it changes from n to n + 1.
Notice, in (3.1), we notationally suppress the fact that the bootstrap sample changes
its distribution with n. Hence, in an asymptotics setting, i.e., n → ∞, it would be
more precise to write

X∗
1,n, . . . , X

∗
n,n ∼ Fn. (3.2)

Nevertheless, for notational convenience we simply write X∗
1, . . . , X

∗
n for the trian-

gular scheme (3.2).
In the following set of examples, we will describe how the classical bootstrap can

be used to construct a confidence interval for the expectation of an rv. Note that this
is just an introductory example.

Example 3.1 Confidence interval for the expectation μ, part 1. Recall the sit-
uation of Sect. 1.1 and assume that we want to construct a confidence interval for
the expectation μ = E(X) of an rv. X ∼ F whose variance VAR(X) = σ 2 < ∞ is
unknown to us but expected to be finite. We observe an i.i.d. sample X1, . . . , Xn

and use the CLT to construct a 90% asymptotic confidence interval for μ. Based on
Eq. (1.3), we get

P
(
Φ−1(0.05) ≤ √

n(X̄n − μ)/sn ≤ Φ−1(0.95)
) ≈ 0.9.

HereΦ−1 denotes the quantile function of theN (0, 1) distribution. SinceΦ−1(0.05)
is equal to−Φ−1(0.95), the confidence interval can be obtained from the result above.
After some algebraic rearrangements, we get

P
(
μ ∈ [

X̄n − sn × Φ−1(0.95)
/√

n , X̄n + sn × Φ−1(0.95)
/√

n
]) ≈ 0.9.

In this classical construction, the quantiles of the approximating normal distribution
Φ are taken to approximate the corresponding quantiles of PF

(√
n(X̄n − μ)/sn ≤

x
)
. It is Eq. (1.3) which allows this construction.
Now assume that the following approximation is a.s. correct:

sup
x∈R

∣∣∣P
(√

n(X̄n − μ)
/
sn ≤ x

) − P
∗
n

(√
n(X̄∗

n − X̄n)
/
s∗
n ≤ x

)∣∣∣ −→ 0, as n → ∞,

(3.3)
where

X̄∗
n := 1

n

n∑

i=1

X∗
i , s∗2

n := 1

n − 1

n∑

i=1

(
X∗
i − X̄∗

n

)2
.
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As in the construction above, we can use q0.05 and q0.95 the 0.05 and 0.95 quantile of
the approximating df. of

√
n(X̄∗

n − X̄n)
/
s∗
n (with respect to the probability measure

P
∗
n), respectively, to get

P
(
q0.05 ≤ n1/2(X̄n − μ)

/
sn ≤ q0.95

) ≈ 0.9. (3.4)

With some minor algebraic rearrangements, we finally derive

[
X̄n − sn × q0.95

/√
n , X̄n − sn × q0.05

/√
n
]
, (3.5)

the bootstrap confidence interval for μ.

But we still have to determine the two quantiles q0.05 and q0.95. In principle, it
is possible to calculate these quantiles since we know the underlying distribution.
With respect to the computing time involved, this will be impossible in most cases.
However, since we know the underlying df. we can now use aMonte Carlo approach
(mc.) to get at least an acceptable approximation for these quantiles. To see how this
works in practice, we continue with Example 3.1.

Example 3.2 Confidence interval for the expectation μ, part 2. We start with a
resampling scheme for the bootstrap data:

Resampling scheme 3.3 Classical bootstrap.

(A) X1, . . . , Xn observed data.
(B) Calculate q0.05 and q0.95 the 0.05 and 0.95 quantile of P∗

n(
√
n(X̄∗

n − X̄n)/s∗
n ≤

x), where X∗
1, . . . , X

∗
n are i.i.d. according to Fn, the edf. of the observed data.

(C) Take [X̄n − sn × q0.95/
√
n, X̄n − sn × q0.05/

√
n] as a confidence interval.

To apply a Monte Carlo approximation for step (B), one can use the following basic
approach:

(B1) Generate m bootstrap datasets X∗
�;1, . . . , X

∗
�;n ∼ Fn , 1 ≤ � ≤ m and calculate

T�;n := √
n(X̄∗

�;n − X̄n)/s∗
�;n .

(B2) Take T[0.05×m]:m;n and T[0.95×m]:m;n as an approximation for q0.05 and q0.95 in
the interval under (C), where (T�:m;n)1≤�≤m are the ordered (T�;n)1≤�≤m , that is,
T1;n ≤ T2;n ≤ . . . ≤ Tm;n .

R-Example 3.4 Confidence interval for the expectation μ, part 3. The following
R-code shows how this Monte Carlo approximation is applied under R to find the
quantiles. Note that the unbiased estimates

s2n := 1

n − 1

n∑

i=1

(
Xi − X̄n

)2
, s∗2

n := 1

n − 1

n∑

i=1

(
X∗
i − X̄∗

n

)2

are used in the R-code. Further, the sample quantiles obtained from the R-function
“quantile” differ slightly from the sample quantiles defined in step (B2).
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step.B1 <- function(x, m = 1000){
# x - observed data
# m - number of MC replications

# Realize step (B1)
# generates m classical bootstrap data sets
# calculates the standardized statistic and returns
# them as a vector

n <- length(x)
mean.observed.x <- mean(x)

# studentize x.boot according to step (B1)
studentize <- function(x.boot){
sqrt(n) * (mean(x.boot) - mean.observed.x) / sd(x.boot)

}

# step (B1)
replicate(m, {
x.boot <- sample(x, n, replace=TRUE)
studentize(x.boot)

})
}

ci <- function(x, conf.level){
# x - observed data
# conf.level - confidence level
# returns left and right bound of the confidence interval
# as a vector

alpha <- 1 - conf.level
t.boot <- step.B1(x, m=999)

# quantiles based on the MC simulation, see step (B) and (B2)
ql.boot <- quantile(t.boot, alpha / 2)
qr.boot <- quantile(t.boot, 1 - alpha / 2)

n <- length(x)
mean.observed.x <- mean(x)
sd.observed.x <- sd(x)

# calculations according to step (C)
left <- mean.observed.x - qr.boot * sd.observed.x / sqrt(n)
right <- mean.observed.x - ql.boot * sd.observed.x / sqrt(n)

ret <- c(left, right)
names(ret) <- c("lower", "upper")
ret

}

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
#x is a vector with the observed data
x <- rnorm(20, mean = 5, sd = 2)
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ci(x = x, conf.level = 0.90)

## lower upper

## 4.583343 6.052707

A more convenient way to obtain the confidence interval is to apply the function
“boot.ci” from the boot package.

bootstrap.ci <- function(x, conf.level, R){
# x - observed data
# conf.level - confidence level
# R number of MC simulations

# calculate mean and variance for the bootstrapped sample
mean_and_var <- function(d, i){
# d - observed data
# i - boot::boot tells us which indices to be used to
# obtain the resampling version of the observed data

d_boot <- d[i]
c(mean_boot <- mean(d_boot), variance_boot = var(d_boot))

}

# resampled mean and variance
b <- boot::boot(x, mean_and_var, R = R)

# type = "stud" stands for studentized statistics
ret <- boot::boot.ci(b, conf = conf.level, type = "stud",

# var.t0 - variance of the observed data
var.t0 = var(x),
# var.t - variances for every
# resampled data sets
var.t = b$t[,2])$student[4:5]

names(ret) <- c("lower", "upper")
ret

}

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
bootstrap.ci(rnorm(20, mean=5, sd=2), conf.level=0.9, R=999)

## lower upper

## 4.510934 6.097640

The slight differences between the two calculated confidence intervals originate
from two facts. First, the resampled data are generated differently; cf. the parameter
“simple” in the help page of the function “boot”. Second, the quantiles are calculated
differently, cf. Davison and Hinkley (1997, p. 195).



26 3 The Classical Bootstrap

Table 3.1 Observed coverage and mean interval length of 80% and 90% confidence intervals,
based on resampling scheme 3.3 and normal approximation. The underlying distribution functions
of the random samples (n=10) are Exp(0.1) and UNI(0,6)
fun conf.level proc obsCoverage meanIntervalWidth

rexp 0.8 bootstrap.ci 0.80 10.51

rexp 0.8 normal.ci 0.71 7.35

rexp 0.9 bootstrap.ci 0.90 14.36

rexp 0.9 normal.ci 0.84 9.76

runif 0.8 bootstrap.ci 0.85 1.51

runif 0.8 normal.ci 0.75 1.38

runif 0.9 bootstrap.ci 0.94 2.08

runif 0.9 normal.ci 0.86 1.77

Example 3.5 Confidence interval for the expectation μ, part 4. According to
this classical bootstrap approach, we constructed confidence intervals and compared
them with the corresponding ones constructed by approximation with the normal
distribution. The result of this simulation study is given below in Table 3.1. For
the distribution function, we choose the uniform df. on the interval [0, 6] and the
exponential df. with parameter 0.1.

normal.ci <- function(x, conf.level){
# x - observed data
# conf.level - confidence level

# calculate confidence interval based on the
# central limit theorem

mean_observed_x <- mean(x)
sd_observed_x <- sd(x)
n <- length(x)
q <- qnorm((1-conf.level)/2)

c(lower = mean_observed_x + q * sd_observed_x / sqrt(n),
upper = mean_observed_x - q * sd_observed_x / sqrt(n))

}

# data will be generated using the uniform distribution
# and the exponential distribution
dg <- bind_rows(
simTool::expand_tibble(fun = "runif", n = 10, max = 6),
simTool::expand_tibble(fun = "rexp", n = 10, rate = 0.1)) %>%
as.data.frame

# 80% and 90% confidence intervals will be calculated by using
# the function boostrap.ci() and normal.ci()
pg <- bind_rows(
simTool::expand_tibble(proc = "bootstrap.ci",

conf.level = c(0.8, 0.9), R = 999),
simTool::expand_tibble(proc = "normal.ci",
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conf.level = c(0.8, 0.9))) %>%
as.data.frame

# create data sets according to data.frame dg
# calculate confidence intervals according to data.frame pg
# do this 1000 times on 4 cpus on the local machine
eg <- simTool::eval_tibbles(dg, pg, replications = 1000,

ncpus = 4,
cluster_seed = rep(123456, 6),
discard_generated_data = TRUE,
simplify = FALSE,
# convert the resulting vectors
# to a tibble
post_analyze = tibble::enframe)

results <- eg$simulation %>%
# put the lower and upper limit
# into two columns
tidyr::unnest(results) %>%
tidyr::spread(key = name, value = value) %>%
# calculate the width of every constructed
# confidence interval and determine if it
# covers the true mean
dplyr::mutate(width = upper - lower,

mu = ifelse(fun == "rexp", 10, 3),
muCovered = lower <= mu & mu <= upper) %>%

dplyr::group_by(fun, conf.level, proc) %>%
# calculate the covarage and mean length of the
# confidence intervals conditioned on the different
# distribution function, the confidence level of
# the interval and the function used to calculate
# the confidence interval
dplyr::summarize(obsCoverage = mean(muCovered),

meanIntervalWidth = mean(width))

3.2 Basic Mathematical Background of the Classical
Bootstrap

In this section, we give some mathematical justifications for the validity of the clas-
sical bootstrap approximations. We start with an example to show that the bootstrap
approximation is not always correct!

Example 3.6 Let X1, . . . , Xn ∼ UN I be an i.i.d. sample with UN I ≡ F as com-
mon df. The right-hand point of the support of F is obviously 1(= T (F)). To “esti-
mate” T (F), we take the largest observation Tn(F) ≡ Tn(X1, . . . , Xn; F) = Xn:n ,
where

X1:n ≤ X2:n ≤ . . . ≤ Xn:n
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denotes the order statistic corresponding to the observations. As we will see in Exer-
cise 3.26,

PF (n(T (F) − Tn(F)) ≤ x) = PF (n(1 − Xn:n) ≤ x)

−→ 1 − exp(−x), as n → ∞,

for all x ≥ 0. In particular, we get for x = 0 that

PF (n(T (F) − Tn(F)) ≤ 0) = PF (n(1 − Xn:n) ≤ 0) −→ 0.

Now we mimic this situation for the bootstrap approximation. Having observed the
sample X1, . . . , Xn , the right-hand point of the support of Fn is obviously the largest
observation, thus T (Fn) ≡ Xn:n . To “estimate” T (Fn) from the bootstrap sample
X∗
1, . . . , X

∗
n we have to take the largest bootstrap observation, thus Tn(Fn) = X∗

n:n .
But now we get (see Exercise 3.26)

P
∗
n(n(T (Fn) − Tn(Fn)) ≤ 0) = P

∗
n(n(Xn:n − X∗

n:n) ≤ 0)

−→ 1 − exp(−1), as n → ∞.

This shows that the bootstrap approximation is not correct here. �
This disillusioning example points out clearly that we cannot expect a bootstrap

approximation to be always possible. Furthermore, it tells us that we have to prove
its correctness before we are allowed to use it.

In the following considerations, the sample size and the resampling size will
be n, and the bootstrap sample will be taken from Fn the edf. corresponding to
the i.i.d. sample X1, . . . , Xn ∼ F . The bootstrap sample will be denoted as usual
by X∗

1, . . . , X
∗
n ∼ Fn and we skip the second index n here. Furthermore, we use

E(X) = μ, VAR(X) = σ 2,

E
∗
n(X

∗) =
∫

x Fn(dx) = 1

n

n∑

i=1

= X̄n, VAR∗
n(X

∗) = 1

n

n∑

i=1

(Xi − X̄n)
2 = s2n ,

and finally

X̄∗
n = 1

n

n∑

i=1

X∗
i , s∗2

n = 1

n

n∑

i=1

(
X∗
i − X̄∗

n

)2
.

Note that now 1/n is used for s2n and s
∗2
n instead of 1/(n − 1). In asymptotic consider-

ations, this is irrelevant. With this definition s2n becomes the variance of the bootstrap
variable. This has, as will be seen later, advantages in theoretical considerations.

The Weak Law of Large Number (WLLN) guarantees that
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P

(∣∣1
n

n∑

i=1

h(Xi ) −
∫

h(x) F(dx)
∣∣ > ε

)
−→ 0, for every ε > 0,

whenever the integral is defined. As to the bootstrap sample, we show

Theorem 3.7 Weak Law of Large Numbers for the classical bootstrap. Assume
that

∫ |h(x)| F(dx) < ∞. Then with probability one (w.p.1):

P
∗
n

(∣∣n−1
n∑

i=1

h(X∗
i ) −

∫
h(x) F(dx)

∣∣ > ε
)

−→ 0, as n → ∞,

for every ε > 0.

Proof Assume w.l.o.g. that the F−integral of h vanishes, otherwise we consider
h − ∫

h dF . The bootstrap variables form a triangular array of independent rvs.
within each row with common df. Fn . Define for n ∈ N

hn(x) = h(x) I{|h(x)|<n}

to get

P
∗
n

(∣∣∣
1

n

n∑

i=1

h(X∗
i )

∣∣∣ > ε
)

≤ P
∗
n

(∣∣∣
1

n

n∑

i=1

hn(X
∗
i )

∣∣∣ > ε
)

+ P
∗
n

( n⋃

i=1

{∣∣h(X∗
i )

∣∣ ≥ n
})

.

The second probability on the right-hand side is bounded by

n P∗
n

(∣∣h(X∗
1)

∣∣ ≥ n
)

and the first by

P
∗
n

(∣∣
∣
1

n

n∑

i=1

hn(X
∗
i ) − E

∗
n(hn(X

∗
1))

∣∣
∣ > ε/2

)
+ I{|E∗

n(hn(X
∗
1 ))|>ε/2}.

Apply Chebyshev’s inequality to get

P
∗
n

(∣
∣∣
1

n

n∑

i=1

hn(X
∗
i ) − E

∗
n(hn(X

∗
1))

∣
∣∣ > ε/2

)
≤ 4

nε2
VAR∗

n(hn(X
∗
1)).

Thus, the proof is complete if we can show that
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lim
n→∞ nP∗

n

(|h(X∗
1)| ≥ n

) = 0 P − a.s. (3.6)

lim
n→∞E

∗
n(hn(X

∗
1)) = 0 P − a.s. (3.7)

lim
n→∞

1

n
VAR∗

n(hn(X
∗
1)) = 0 P − a.s. (3.8)

hold. Now, apply Markov’s inequality to get

nP∗
n

(|h(X∗
1)| ≥ n

) = nPFn {x : |h(x)| ≥ n} ≤
∫

{x : |h(x)|≥n}
|h(x)| Fn(dx).

Fix for a moment K ≥ 0 as a constant integer and apply the SLLN and the last
inequality to get w.p.1

lim sup
n→∞

nP∗
n
(|h(X∗

1)| ≥ n
) ≤ lim sup

n→∞

∫

{x : |h(x)|≥K }
|h(x)| Fn(dx) =

∫

{x : |h(x)|≥K }
|h(x)| F(dx).

But the right-hand side can be made arbitrarily small by letting K ↑ ∞ since∫ |h(x)| F(dx) < ∞ by assumption. Thus (3.6) holds.
To verify (3.7), we first observe that w.p.1

lim
n→∞

∫
h(x) Fn(dx) =

∫
h(x) F(dx) = 0

according to SLLN. Combine this result with

lim sup
n→∞

∫

{x : |h(x)|≥n}
|h(x)| Fn(dx) ≤

∫

{x : |h(x)|≥K }
|h(x)| F(dx)

and use the same argument as in the proof of (3.6) to show that (3.7) holds.
According to (3.7) it remains to show that w.p.1.

1

n
E

∗
n

(
h2n(X

∗
1)) −→ 0.

Note that

1

n
E

∗
n

(
h2n(X

∗
1)

) ≤ 1

n

n∑

k=1

k2 P∗
n

(
k − 1 ≤ ∣∣h(X∗

1)
∣∣ < k

)

≤ 2

n

n∑

k=1

k∑

j=1

j P∗
n

(
k − 1 ≤ ∣∣h(X∗

1)
∣∣ < k

)
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≤ 2

n

n∑

j=1

j P∗
n

(
j − 1 ≤ ∣∣h(X∗

1)
∣∣ < n

)

≤ 2 sup
j∈N

∣
∣xnj − x j

∣
∣ + 2

n

n∑

j=1

j P
(
j − 1 ≤ ∣

∣h(X1)
∣
∣ ),

where xnj = j P∗
n

(
j − 1 ≤ ∣∣h(X∗

1)
∣∣ ) and x j = j P

(
j − 1 ≤ ∣∣h(X1)

∣∣ ) for n, j ∈ N.
But the last sum is a Cesaro average, cf. Billingsley (1995, A30), of a sequence
which tends to 0 w.p.1 by virtue of

∫ |h(x)| F(dx) < ∞. Hence, it remains to show
that sup j∈N

∣∣xnj − x j

∣∣ = o(1) almost surely, as n → ∞. Note that for every fixed
j0 ∈ N,

∣∣xnj0 − x j0

∣∣ = o(1) almost surely, as n → ∞, according to the SLLN. If
the uniform convergence would not hold, a subsequence ( jn)n∈N must exist such
that

∣∣xnjn − x jn

∣∣ ≥ c for all n ∈ N and some c > 0. But this is impossible due to∫ |h(x)| F(dx) < ∞ and (3.6). This finally completes the proof. �
The next theorem shows that the approximation given under (3.3) is correct. Our

proof here is based on Singh (1981).

Theorem 3.8 Central limit theorem for the classical bootstrap. LetE(X2) < ∞
and set μ = E(X). Then w.p.1

sup
x∈R

∣
∣∣P

(
n1/2(X̄n − μ) ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n) ≤ x
)∣∣∣ −→ 0, as n → ∞.

Proof By the CLT, the continuity of Φ, the standard normal df., we get from a
classical argument, cf. Loève (1977, p. 21), that it suffices to prove

P
∗
n

(
n1/2(X̄∗

n − X̄n)/sn ≤ x
) −→ Φ(x), as n → ∞, for each x ∈ R,

w.p.1. For this, we have to check the validity of Lindeberg’s condition, cf. Serfling
(1980, 1.9.3):

s−2
n

∫

{|X∗
1−X̄n |≥εn1/2sn}

(X∗
1 − X̄n)

2 dP∗
n −→ 0, as n → ∞, for each ε > 0,

where the left-hand term equals

s−2
n n−1

n∑

i=1

(Xi − X̄n)
2I{|Xi−X̄n |≥εn1/2sn}. (3.9)

Note that for all ε̃ > 0

∑

i≥1

P

( |Xi |√
i

> ε̃

)
=

∑

i≥1

∫

[i−1,i[
P

(
X2

ε̃
> i

)
dx ≤

∫ ∞

0
P

(
X2

ε̃
> x

)
dx = E(X2)

ε̃
< ∞.
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Therefore, according to the Borel-Cantelli Lemma:

lim sup
i→∞

|Xi |√
i

= 0, w.p.1.

Since sn → σ and X̄n → μ w.p.1 according to SLLN, the last result ensures w.p.1
that, for n ≡ n(ω) sufficiently large,

∣∣Xi − X̄n

∣∣ ≥ εn1/2sn

can only hold for finitely many i . Hence, the indicator function under (3.9) can only
be 1 in finitely many cases. This completes the proof. �
This result, however, is not exactly what we stated under (3.3).

Corollary 3.9 Under the assumptions of Theorem 3.8, we get w.p.1

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ)

/
sn ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n)
/
s∗
n ≤ x

)∣∣∣ −→ 0, as n → ∞.

Proof As we have discussed in the proof of Theorem 3.8, we have to show

P
∗
n

(
n1/2(X̄∗

n − X̄n)/s
∗
n ≤ x

) −→ Φ(x), as n → ∞, (3.10)

w.p.1, for each x ∈ R, while we already know that

P
∗
n

(
n1/2(X̄∗

n − X̄n)/sn ≤ x
) −→ Φ(x), as n → ∞,

w.p.1, for each x ∈ R. Since

P
∗
n

( ∣∣sn
/
s∗
n − 1

∣∣ > ε
) −→ 0, as n → ∞,

w.p.1, for every ε > 0, according to an application of Theorem 3.7, (3.10) follows
from Slutsky’s theorem, cf. Serfling (1980, Theorem 1.5.4). �

3.3 Discussion of the Asymptotic Accuracy of the Classical
Bootstrap

In this section, we review some of Singh (1981) the results on the classical bootstrap
without any proof. We have already seen in Theorem 3.8 that the CLT holds for the
standardized mean when the classical bootstrap is used. But this result does not tell
us anything about the quality of the approximation.

Again, going through the proof of Theorem 3.8, we find it to be in line with the
classical argumentation. The same is true for the next theorem which gives us the
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rate of convergence. Note that in the classical situation an appropriate bound is given
by the Berry-Esséen theorem, cf. Loève (1977, p. 300):

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ) ≤ x

) − Φ(x/σ)

∣∣∣ ≤ Kρ σ−3n−1/2,

where K is a universal constant and ρ = E(|X − μ|3). Based on the Berry-Esséen
theorem and the Law of Iterated Logarithm (LIL), i.e.,

lim sup
n→∞

∑n
i=1(Xi − μ)

(2σ 2n log(log(n)))1/2
= 1, w.p.1,

cf. Serfling (1980, 1.10 Theorem A), Singh proved the following result:

Theorem 3.10 Let E(X4) < ∞. Then w.p.1

lim sup
n→∞

n1/2(log(log(n)))−1/2 sup
x∈R

∣∣
∣P

(
n1/2(X̄n − μ) ≤ x

) − P
∗
n
(
n1/2(X̄∗

n − X̄n) ≤ x
)∣∣
∣

= (2σ 2√2πe)−1(2VAR((X − μ)2)
)1/2

.

As we already mentioned in the introduction, the bootstrap is a vehicle to approx-
imate the df. of a given statistic. Theorem 3.8 shows that the classical bootstrap
approximation holds in the case of arithmetic mean. But the normal approximation
also holds due to CLT. In a particular situation, we have to decide which approxima-
tion is preferable. Therefore, we have to compare the order of convergence of these
two approximations. Theorem 3.10 says that w.p.1

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ) ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n) ≤ x
)∣∣∣ = O

(( ln(ln(n))

n

)1/2
)

.

(3.11)
The Berry-Esséen theorem shows that

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ)/σ ≤ x

) − Φ(x)
∣∣∣ = O(n−1/2). (3.12)

But (3.11) and (3.12) are not comparable since for (3.12) we have to know the
variance σ 2 which is unknown in most situations and which is not used in (3.11).
If E(|X |3) < ∞, Singh (1981) showed by applying an Edgeworth expansion that
w.p.1

sup
x∈R

∣∣∣P
(
n1/2(X̄n − μ)/σ ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n)/sn ≤ x
)∣∣∣ = o(n−1/2), (3.13)

which is better than the approximation under (3.12). Furthermore, Abramovitch and
Singh (1985) proved under the assumption E(X6) < ∞ that w.p.1
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sup
x∈R

∣∣
∣P

(
n1/2(X̄n − μ)/sn ≤ x

) − P
∗
n

(
n1/2(X̄∗

n − X̄n)/s
∗
n ≤ x

)∣∣
∣ = o(n−1/2), (3.14)

where s∗2
n = n−1 ∑n

i=1(X
∗
i − X̄∗

n)
2.

In summary, one might think that the classical bootstrap approximation is always
better than the normal approximation since it incorporates the Edgeworth terms
automatically. However, if, for instance, F , the underlying df. is symmetric around
μ, we get

sup
x∈R

∣∣
∣P

(
n1/2(X̄n − μ)/σ ≤ x

) − Φ(x)
∣∣
∣ = o(n−1/2), (3.15)

which shows the same order of convergence that we find under (3.14). Furthermore,
(3.15) still holds if we replace σ by sn , cf. Abramovitch and Singh (1985).

Remark 3.11 A detailed discussion of the bootstrap and its relation to Edgeworth
expansions can be found in Hall (1992).

3.4 Empirical Process and the Classical Bootstrap

Assume throughout this section that X1, . . . , Xn ∼ F is an i.i.d. samplewith common
continuous df. F , and let

αn(x) := n1/2(Fn(x) − F(x)) (3.16)

be the empirical process. The classical invariance principle of this process says, cf.
Billingsley (1968, Theorem 16.4), that

αn −→
n→∞ Bo(F), in distribution

in the Skorokhod topology, where Bo(F) is a transformed Brownian bridge, i.e., a
centered Gaussian process with covariance structure given by

E
(
Bo(F)(s) · Bo(F)(t)

) = F(s)(1 − F(t)), s ≤ t.

To analyze the distribution of this process, one often takes a special version of αn

given by
ᾱn(F(x)), x ∈ R,

where ᾱn(u) = n1/2(F̄n(u) − u) is the uniform empirical process based on an uni-
form sample U1, . . . ,Un ∼ UN I . Note that
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αn(x) = n1/2
(
n−1

n∑

i=1

I{]−∞,x]}(Xi ) − F(x)
)

= n1/2
(
n−1

n∑

i=1

I{]−∞,x]}(F−1(Ui )) − F(x)
)

= n1/2
(
n−1

n∑

i=1

I{]0,F(x)]}(Ui ) − F(x)
)

= ᾱn(F(x)).

In the following, we will consider the empirical process built according to the
classical bootstrap resampling scheme. Denote this process by

α∗
n(x) := n1/2(F∗

n (x) − Fn(x)).

Theorem 3.12 Assume F to be continuous. Then w.p.1

α∗
n −→

n→∞ Bo(F), in distribution

in the Skorokhod topology.

Proof Since we know from the classical invariance principle that ᾱn(F) converges
to this limit process, it is enough to find a version of the empirical bootstrap process
which is close to ᾱn(F). To be precise, take for α∗

n the version given by

α∗
n = ᾱn(Fn),

where now the same sample U1, . . . ,Un is used as for the process ᾱn(F). For nota-
tional reason, we use P̄ for the probability measure corresponding to this uniform
sample. Let ε > 0 be arbitrarily chosen. Then

P̄
(
sup
x∈R

|ᾱn(Fn(x)) − ᾱn(F(x))| ≥ ε
) ≤ P̄(w̄n(‖Fn − F‖) > ε),

where
w̄n(δ) := sup

|t−s|≤δ

|ᾱn(t) − ᾱn(s)|

denotes the modulus of continuity. Since ‖Fn − F‖ → 0 P−a.s. we can apply a
general result on the oscillation of the uniform empirical process given by Stute
(1982, (0.3)), to obtain w.p.1

P̄(w̄n(‖Fn − F‖) > ε) −→
n→∞ 0,
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which finally proves the theorem. �
Remark 3.13 The proof of this theorem can be found in Swanepoel (1986) and in
Dikta (1987, Appendix). Further bootstrap versions of important processes are also
discussed there.

3.5 Mathematical Framework of Mallow’s Metric

To analyze the classical bootstrap of the mean, Bickel and Freedman (1981) used a
different concept than Singh (1981). Parts of their analysis are based on the relation
of the classical bootstrap approximation to Mallow’s metric. In this section, we will
outline their approach and start with an important minimization result given inMajor
(1978, Theorem 8.1).

Theorem 3.14 Let F and G be distribution functions such that
∫ |x | F(dx) and∫ |x |G(dx) are finite. Assume that H is a two-dimensional df. on (R2,B∗

2), the
product space equipped with the Borel σ−algebra, with marginal df. F and G,
respectively, and define M to be the collection of all those H’s. Then for every
convex function f : R −→ R

inf
H∈M

∫
f (x − y) H(dx, dy) =

∫ 1

0
f (F−1(u) − G−1(u)) du. (3.17)

Proof By an application of the separation theorem for convex functions, compare
Rockafellar (1997, Corollary 11.5.1), we can find appropriate constants c and d
such that f (x − y) ≥ c(x − y) + d. This shows that

∫
f (x − y) H(dx, dy) might

be infinite but is always defined for every H ∈ M .
In the first step of the proof, we assume that F and G define discrete distributions

with common support on x1 < x2 < . . . < xn . Since {∫ f (x − y) H(dx, dy) : H ∈
M } is closed and bounded inR, the infimum under (3.17) is attained for some H . Fix
such a minimizer, denote it by H ∈ M , and let X ∼ F and Y ∼ G be defined over
some probability space (Ω,A ,P) with joint df. H . Denote P(X = xi ,Y = xk) by
pi,k , for 1 ≤ i, k ≤ n. Then we can assume that the following property (3.18) holds:

min(pi, j , pk,�) = 0, for all k < i and j < �. (3.18)

To prove this property assume that it is not correct for this H . Then we can find some
k < i and j < � such that

p = min(pi, j , pk,�) > 0.

We now define a new distribution H̃ by



3.5 Mathematical Framework of Mallow’s Metric 37

p̃i,� = pi,� + p, p̃k, j = pk, j + p, p̃i, j = pi, j − p, p̃k,� = pk,� − p,

p̃s,t = ps,t otherwise.

Note that the marginal distributions of H̃ are identical to those of H and that

xk − x� < xk − x j < xi − x j and xk − x� < xi − x� < xi − x j .

With 0 < α < 1 defined by

α = (xk − x j ) − (xi − x j )

(xk − x�) − (xi − x j )

we get
xk − x j = α(xk − x�) + (1 − α)(xi − x j ),

and also, since

(1 − α) = (xi − x�) − (xi − x j )

(xk − x�) − (xi − x j )
,

xi − x� = (1 − α)(xk − x�) + α(xi − x j ).

Convexity of f now yields

f (xk − x j ) + f (xi − x�) ≤ α f (xk − x�) + (1 − α) f (xi − x j )

+(1 − α) f (xk − x�) + α f (xi − x j )

= f (xk − x�) + f (xi − x j ),

and, therefore,

∫
f (x − y) H̃(dx, dy) −

∫
f (x − y) H(dx, dy)

= p
(
f (xk − x j ) + f (xi − x�) − f (xk − x�) − f (xi − x j )

) ≤ 0.

Overall, this shows that switching from H to H̃ does not increase the integral but ful-
fills (3.18) for this particular choice of i, j, k, �. Furthermore, if H̃ should not have
the property (3.18), we can apply the same procedure as above and, after finitely
many steps, we end up with a df. such that fulfills the required property (3.18), and
that minimizes

∫
f (x − y) H(dx, dy) over M .

Define the matrix Pn = (
pi, j

)
1≤i, j≤n . Then property (3.18) says that for every

coefficient pi, j > 0 of Pn all the other northeast and southwest coefficients have
to be zero. One can easily check (by induction on n) that this property together
with the given marginal distributions uniquely determines the matrix Pn and, there-
fore, the joint distribution of (X,Y ). Now check that the joint distribution of
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(F−1(U ),G−1(U )) has the property (3.18) when U is uniformly distributed on the
unit interval. Therefore, (3.17) is correct in the discrete case.

In the next step, we assume that F andG are concentrated on the interval [−T, T ].
Since f as a convex function on R is continuous and F and G are concentrated on
a bounded interval, we can assume without loss of generality that f is bounded and
that the infimum on the left-hand side of (3.17) is finite. Thus, we can find for an
arbitrary ε > 0 a df. H0 ∈ M such that

inf
H∈M

∫
f (x − y) H(dx, dy) >

∫
f (x − y) H0(dx, dy) − ε.

The Rosenblatt transformation 2.4 guarantees that two rvs. (X,Y ) on some proba-
bility space (Ω,A ,P) exist with joint df. H0. Define, for every n ∈ N,

(
Xn,Yn

) =
( [nX ]

n
,
[nY ]
n

)
,

where [t] denotes the integer part of t , and use Fn and Gn to denote the df. of Xn

and Yn , respectively. Obviously,
(
Xn,Yn

) −→ (
X,Y

)
w.p.1 and Fn and Gn define

discrete distributions. Since the w.p.1 convergence also implies the convergence in
distribution, the proof of the elementary Skorokhod theorem, compare Billingsley
(1995, Theorem 25.6), shows that F−1

n (u) −→ F−1(u) and G−1
n (u) −→ G−1(u).

This convergence holds for all 0 < u < 1 out of a set with Lebesgue measure 1.
Now, apply Lebesgue’s dominated convergence theorem to get with the first part of
our proof

∫
f (x − y) H0(dx, dy) = lim

n→∞

∫
f (Xn − Yn) dP

≥ lim inf
n→∞

∫ 1

0
f
(
F−1
n (u) − G−1

n (u)
)
du

=
∫ 1

0
f
(
F−1(u) − G−1(u)

)
du.

Overall, this shows that

inf
H∈M

∫
f (x − y) H(dx, dy) >

∫ 1

0
f
(
F−1(u) − G−1(u)

)
du − ε,

which proves (3.17) for F and G concentrated on intervals of the type [−T, T ].
In the third step of the proof, we now can take arbitrary F and G. Without loss

of generality, we assume that the infimum in (3.17) is finite. As in the second step,
we can find, for an arbitrary ε > 0, a df. H0 ∈ M and random variables (X,Y ) on
some probability space (Ω,A ,P) with joint df. H0 such that
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inf
H∈M

∫
f (x − y) H(dx, dy) >

∫
f (x − y) H0(dx, dy) − ε.

Now set An = {|X | ≤ n} ∩ {|Y | ≤ n} and define Xn = X · I{An} and Yn = Y · I{An},
for n ∈ N, and note that w.p.1 Xn −→ X and Yn −→ Y , respectively. Furthermore,

∣∣ f (Xn − Yn)
∣∣ ≤ ∣∣ f (X − Y )

∣∣ + ∣∣ f (0)
∣∣

for every n ∈ N, and the bound on the right-hand side is integrable with respect to the
chosen probability. Thus, Lebesgue’s dominated convergence theorem is applicable.
With the same argumentation used in the second step, we finally can complete the
proof of (3.17) for these arbitrary F and G. �

If the convex function f is defined by f (x) = |x |p, for p ≥ 1, we get an important
application of the last theorem which leads to the following definition.

Definition 3.15 For p ≥ 1, denotewithFp the class of all df. F with
∫ |x |p F(dx) <

∞. Let F,G ∈ Fp. Then

dp(F,G) :=
( ∫ 1

0
|F−1(u) − G−1(u)|p du

)1/p
(3.19)

defines Mallow’s p-metric. For notational convenience, we will also use dp(X,Y ),
where X ∼ F and Y ∼ G and the joint distribution of (X,Y ) minimizes the L p

distance over M .

Corollary 3.16 If we put X = F−1(U ) and Y = G−1(U ), where U ∼ UN I , then

dp(F,G) = ‖X − Y‖p,

where the basic probability space is the unit interval with the Lebesgue measure and
‖ · ‖p denotes the L p−norm.

Remark 3.17 For any scalars a, b let Fa,b be the df. of aX + b, where X ∼ F . For
F,G ∈ Fp, we then get

dp(Fa,b,Ga,b) = |a|dp(F,G).

Proof Apply Theorem 3.14 to get

dp(Fa,b,Ga,b) = inf
X∼F, Y∼G

‖(aX + b) − (aY + b)‖p

= |a| inf
X∼F, Y∼G

‖X − Y‖p

= |a|dp(F,G).

�
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As the next lemma shows, Mallow’s metric is closely related to weak conver-
gence, where we now use the term “weak convergence” instead of “convergence in
distribution”, since we are dealing here with dfs. and not with rvs.

Lemma 3.18 Assume that Fn, F ∈ Fp, where Fn denotes not necessarily an edf.
Then the following criteria are equivalent:

(i) dp(Fn, F) −→ 0, as n → ∞.
(ii) As n → ∞, Fn −→ F weakly and

∫ |x |p Fn(dx) −→ ∫ |x |p F(dx).
(iii) Fn −→ F weakly, as n → ∞ and {|Xn|p : n ≥ 1} is uniformly integrable,

where Xn ∼ Fn.
(iv)

∫
ϕ dFn −→ ∫

ϕ dF, as n → ∞ for all continuousϕ such thatϕ(x) = O(|x |p)
as x → ±∞.

Proof (i)⇒(ii): According to the last corollary we can use the rv.

Xn = F−1
n (U ), X = F−1(U ).

Then,

∣
∣∣
( ∫

|x |p Fn(dx)
)1/p −

( ∫
|x |p F(dx)

)1/p∣∣∣ =
∣
∣∣‖Xn‖p − ‖X‖p

∣
∣∣ ≤ ‖Xn − X‖p

= dp(Fn, F) −→ 0

which shows the convergence of the integrals under (ii). It also guarantees the
L p−convergence of Xn to X which implies the weak convergence. This completes
the proof of (ii).

(ii)⇒(iii): We only have to show uniform integrability. For this, we fix a point
a > 0 such that a and −a are continuity points of F . Then, we get

∫

{|x |>a}
|x |p Fn(dx) =

∫
|x |p Fn(dx) −

∫

{|x |≤a}
|x |p Fn(dx) ≡ In.

Since ±a are continuity points of F , the assumed weak convergence of Fn → F
together with a slight modification of Billingsley (1995, Theorem 29.1) guarantees
that ∫

{|x |≤a}
|x |p Fn(dx) −→

∫

{|x |≤a}
|x |p F(dx).

This combined with the assumed convergence of the p-th moments yields

In −→
∫

|x |p F(dx) −
∫

{|x |≤a}
|x |p F(dx) =

∫

{|x |>a}
|x |p F(dx).
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The integral on the right-hand side can be made arbitrarily small by increasing a,
which proves the uniform integrability.

(iii)⇒(iv): Let ϕ be as under (iv). Again, we take a fixed such that ±a are conti-
nuity points of F to get from the weak convergence of Fn → F that

∫

{|x |≤a}
ϕ(x) Fn(dx) −→

∫

{|x |≤a}
ϕ(x) F(dx).

Since ϕ = O(|x |p) there exists a constant c such that

|ϕ(x)| ≤ c|x |p,

for all x such that |x | ≥ a. Thus,

∫

{|x |>a}
|ϕ(x)| Fn(dx) ≤ c

∫

{|x |>a}
|x |p Fn(dx).

Furthermore, the assumed uniform integrability implies that we can choose for every
given ε > 0 a continuity point a = a(ε) of F such that

sup
n≥1

c
∫

{|x |>a}
|x |p Fn(dx) ≤ ε

which completes the proof of (iv).
(iv)⇒(i): Obviously, (iv) implies (ii). Therefore, it suffices to show (ii)⇒(i). But the
weak convergence of Fn to F implies the almost sure convergence of Xn = F−1

n (U )

to X = F−1(U ) w.r.t. the Lebesgue measure on the unit interval (U ∼ UN I ), cf.
the proof of Billingsley (1995, Theorem 25.6). Since E(|Xn|p) −→ E(|X |p) < ∞,
as n → ∞, according to (iv), we finally get from Loève (1977, L p−Convergence
Theorem) that ‖Xn − X‖p → 0, as n → ∞. This completes the proof of (i). �

In the special case that Fn is the edf. of an i.i.d. sample, we get the following
corollary.

Corollary 3.19 Assume F ∈ Fp and let Fn be the edf. Then, dp(Fn, F) −→ 0w.p.1.

Proof The Glivenko-Cantelli theorem says that w.p.1

sup
x∈R

|Fn(x) − F(x)| −→ 0.

Thus, w.p.1, Fn → F weakly. Furthermore, from the SLLN, we conclude

∫
|x |p Fn(dx) −→

∫
|x |p F(dx)
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w.p.1. Now, apply the last lemma to complete the proof. �
In the following lemma, we boundMallow’s distance of two sums of independent

rv. by Mallow’s distance of the summands.

Lemma 3.20 Assume that X1, . . . , Xn and Y1, . . . ,Yn are two sequences of inde-
pendent rv. inFp. Then,

dp

( n∑

i=1

Xi ,

n∑

i=1

Yi
)

≤
n∑

i=1

dp(Xi ,Yi ).

Proof Take U1, . . . ,Un ∼ UN I as an i.i.d. sample and set

X̃i := F−1
i (Ui ), Ỹi := G−1

i (Ui )

for i = 1, . . . , n, where Xi ∼ Fi and Yi ∼ Gi , for 1 ≤ i ≤ n. According to the def-
inition of dp(X,Y ), we get for each i = 1, . . . , n

dp(Xi ,Yi ) = dp(X̃i , Ỹi ) = ‖X̃i − Ỹi‖p.

Now, apply Corollary 3.16 and Minkowski’s inequality to obtain

dp

( n∑

i=1

Xi ,

n∑

i=1

Yi
)

≤
∥
∥∥

n∑

i=1

X̃i −
n∑

i=1

Ỹi
∥
∥∥
p

≤
n∑

i=1

‖X̃i − Ỹi‖p

=
n∑

i=1

dp(X̃i , Ỹi ) =
n∑

i=1

dp(Xi ,Yi ),

which finally proves the lemma. �
If p = 2, the last lemma improves in the presence of equal means.

Lemma 3.21 Assume in addition to the assumptions of Lemma 3.20 that E(Xi ) =
E(Yi ), for 1 ≤ i ≤ n and p ≥ 2. Then,

d 2
2

( n∑

i=1

Xi ,

n∑

i=1

Yi
)

≤
n∑

i=1

d 2
2 (Xi ,Yi ).

Proof Take (X̃i , Ỹi ) as in the proof of Lemma 3.20. From Corollary 3.16 and Bien-
aymé’s equality, we get

d 2
2

( n∑

i=1

Xi ,

n∑

i=1

Yi
)

≤ ‖
n∑

i=1

X̃i − Ỹi‖22 =
n∑

i=1

‖X̃i − Ỹi‖22 =
n∑

i=1

d 2
2 (Xi ,Yi ).

�
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Corollary 3.22 Let F,G ∈ Fp with p ≥ 2. Assume that X1, . . . , Xn are i.i.d. with
commondf. F andY1, . . . ,Yn are i.i.d.with commondf. G, respectively. Furthermore,
we assume that E(X1) = E(Y1). Then,

d 2
2

(
n−1/2

n∑

i=1

Xi , n
−1/2

n∑

i=1

Yi
)

≤ n−1
n∑

i=1

d 2
2 (Xi ,Yi ) = d 2

2 (F,G).

Remark 3.23 According to the CLT and Lemma 3.18 (ii), for standardized F and
G = Φ, the left-hand side of the inequality under Corollary 3.22 tends to zero as
n → ∞. Since the right-hand side of this inequality is fixed for each n ≥ 1 and
positive for G �= F , this inequality cannot be used to prove the CLT. However,
if G depends on n in such a way that d 2

2 (F,Gn) → 0, as n → ∞, we can use
this inequality to prove weak convergence. In the particular case of the classical
bootstrap, Gn = Fn is the edf. of the i.i.d. sample X1, . . . , Xn , while Y1, . . . ,Yn
forms a bootstrap sample, then d 2

2 (F, Fn) → 0 w.p.1. Together with the CLT, this
proves the CLT for the standardized bootstrap sample under the classical resampling
scheme.

Sometimes, however, the bootstrap sample comes from F̃n , the edf. of a not
necessarily independent sample X∗

1, . . . , X
∗
n . For example, in linear regression, we

have the situation that the residuals X∗
i = ε̃i , 1 ≤ i ≤ n, are not independent. In such

a case, the approach outlined above for Fn cannot be applied for F̃n unless it is
guaranteed that in some sense F̃n is close to Fn . A condition which will work in this
setup is given in the next lemma; compare also Freedman (1981).

Lemma 3.24 Assume that X1, . . . , Xn are i.i.d. with df. F and edf. Fn. Let X∗
1, . . . ,

X∗
n be a second i.i.d. sample with edf. F̃n such that w.p.1

1

n

n∑

i=1

|X∗
i − Xi |p −→ 0, as n → ∞ (3.20)

holds. If F ∈ Fp for some p ≥ 1, then, w.p.1, dp(F̃n, F) −→ 0, as n → ∞.

Proof Let U ∼ UN I be the uniform distribution on the unit interval. Since

dp(F̃n, F) = ‖F̃−1
n (U ) − F−1(U )‖p

≤ ‖F̃−1
n (U ) − F−1

n (U )‖p + ‖F−1
n (U ) − F−1(U )‖p

= dp(F̃n, Fn) + dp(Fn, F)

and, w.p.1, dp(Fn, F) −→ 0, as n → ∞, according to Corollary 3.19, we get from
assumption (3.20) and Theorem 3.14

dp(F̃n, Fn) ≤
(1
n

n∑

i=1

|X∗
i − Xi |p

)1/p −→ 0, as n → ∞,

w.p.1. This completes the proof of the lemma. �
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3.6 Exercises

Exercise 3.25 Repeat the simulation study from Example 3.5 without using the
simTool package. Note in that simulation the functions “bootstrap.ci” and “nor-
mal.ci” are applied to any dataset that is generated.

Exercise 3.26 Recall the assumptions of Example 3.6 and show that for x ≥ 0

P(n(1 − Xn:n) ≤ x) −→ 1 − exp(−x), as n → ∞.

Furthermore, show for the bootstrap sample

P
∗
n(n(Xn:n − X∗

n:n) ≤ 0) −→ 1 − exp(−1), as n → ∞.

Exercise 3.27 Conduct a simulation that indicates

P
∗
n(n(Xn:n − X∗

n:n) ≤ 0) −→ 1 − exp(−1), as n → ∞,

see Exercise 3.26.

Exercise 3.28 Recall the scenario of Theorem 3.7 and assume in addition that
∫

h2(x) F(dx) < ∞.

Use Chebyshev’s inequality to verify the assertion of Theorem 3.7.

Exercise 3.29 Implement in R the simulation study of Example 3.5, without using
the simTool package.

Exercise 3.30 Use R to generate U1, . . . ,U100 i.i.d. rvs. according to the uniform
distribution. Based on this data,

(i) plot the path of the corresponding empirical process;
(ii) generate a classical bootstrap sample to the data and plot the path of the corre-

sponding empirical process.

Exercise 3.31 In the R-library boot, many bootstrap applications are already
implemented. Read the corresponding help to this library and try to redo the simu-
lation under Exercise 3.29 by using the functions of this library.

Exercise 3.32 Verify that for fixed discrete marginal distributions on x1 < x2 <

. . . < xn the property (3.18) used in the proof of Theorem 3.14 defines exactly one
joint distribution.

Exercise 3.33 Verify that for fixed discrete marginal distributions on x1 < x2 <

. . . < xn with df. F and G, respectively, the joint distribution of (F−1(U ),G−1(U ))

has the property (3.18) used in the proof of Theorem 3.14. Here U is uniformly
distributed on the unit interval.
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Exercise 3.34 Let F ∈ Fp, that is,
∫ |x |p F(dx) < ∞. Verify that

(i) for a location family, Fθ (x) = F(x − θ)

dp(Fθ1 , Fθ2) = |θ1 − θ2|;

(ii) for a scale family, Fσ (x) = F(σ x) with σ > 0

dp(Fσ1, Fσ2) = |σ1 − σ2|
( ∫

|x |p F(dx)
)1/p

.

Exercise 3.35 Verify that for two (centered) binomial distributions F1 and F2 with
parameters (n, p1) and (n, p2), respectively,

d 2
2 (F1, F2) ≤ n|p1 − p2|(1 − |p1 − p2|).

Exercise 3.36 Verify that for two (centered) Poisson distributions F1 and F2 with
parameters λ1 and λ2, respectively,

d 2
2 (F1, F2) ≤ |λ1 − λ2|.
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Chapter 4
Bootstrap-Based Tests

In Shao and Tu (1995, p. 117) we read the following statement:

..., the methodology and theory for bootstrap hypothesis testing are not well devel-
oped, partly because of technical difficulties ....

This statement is mainly based on the fact that the bootstrap resampling scheme has
to be closely adapted to the hypothesis and therefore different resampling schemes
have to be considered in different test scenarios.Naturally, the underlying distribution
theory will not be available for each possible case in general. Thus a practitioner
confronted with bootstrap hypothesis testing has to consider two things. Firstly, a
proper resampling scheme has to be defined which closely mirrors the hypothesis.
Secondly, he or she has to insure that the approximation under the chosen resampling
scheme is valid.

4.1 Introduction

We start with a short summary of some of the key ideas in significance testing. For
this let X1, . . . , Xn be random vectors each of dimension k (not necessarily i.i.d.)
having joint df. F (n), and let F (n) be the collection of possible F (n). Suppose that

F (n) = F (n)
0 ∪ F (n)

1 ,

where the collections on the right-hand side are disjoint. Now, we would like to
determine, based on the observations X1, . . . , Xn , whether the hypothesis F (n) ∈
F (n)

0 is true, i.e., to test

H0 : F (n) ∈ F (n)
0 versus H1 : F (n) ∈ F (n)

1 . (4.1)
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H0 is called the null hypothesis and H1 the alternative hypothesis.
In special but highly relevant situations, the observations are i.i.d. w.r.t. a certain df.
F . Then F (n) is totaly determined by F and the general test problem given under
(4.1) reduces to

H0 : F ∈ F0 versus H1 : F ∈ F1. (4.2)

Example 4.1 Consider i.i.d. X1, . . . , Xn ∼ F .

(i) Let F0 be a known df. SetF0 = {F0} andF1 = {G : G �= F0}. In this caseF0

contains only one element and the distribution of X1, . . . , Xn is known under
H0. Here, H0 is usually called a simple null hypothesis.

(ii) Assume that F has a finite expectation μF and we want to check whether μF ∈
Θ0 ⊂ R

k . In this case F0 = {G : μG ∈ Θ0} and F1 = {G : μG /∈ Θ0}. Now,
F0 contains infinitely many elements even if Θ0 is a single point. Thus, the
distribution of X1, . . . , Xn is unknown under H0. This type of H0 is called a
complex hypothesis and the test problem can be written as

H0 : μF ∈ Θ0 versus H1 : μF ∈ Θ1. (4.3)

Here μF is the parameter of interest while the overall df. is only a nuisance or
adjustment parameter.

Constructing a test for these problems is equivalent to finding a rejection regionRn

such thatwe reject the hypothesis H0 if andonly if (X1, . . . , Xn) ∈ Rn . Beforewe can
determine such aRn , we have to look for a proper test statistic Tn = Tn(X1, . . . , Xn)

and
Rn := {x : Tn(x) ≥ cn}, (4.4)

where cn is called the critical value. The rejection region is determined by controlling
the probability of rejecting H0 when H0 is correct, i.e.,

sup
F (n)∈F (n)

0

PF (n)

(
Tn(X1, . . . , Xn) ∈ Rn

) ≤ α,

where α is the given type 1 error.
Assume that the rejection region is of the type given by (4.4) and let the obser-

vations be X1 = x1, . . . , Xn = xn . Based on the observed values, we can calculate
Tn(x1, . . . , xn). The level of evidence against H0 is measured by the significance
probability

p = sup
G∈F (n)

0

PG
(
Tn(X1, . . . , Xn) ≥ Tn(x1, . . . , xn)

)

often called the p-value.

Remark 4.2 In the case of a simple hypothesis, i.e., H0 : F0 = {F0}, the p-value of
a given statistic Tn(X1, . . . , Xn) can easily be approximated. For this, assume that
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X1 = x1, . . . , Xn = xn was observed and t = Tn(x1, . . . , xn) calculated. By defini-
tion, the p-value equals PF0(Tn(X1, . . . , Xn) ≥ t). Since we know F0, we can try to
calculate this probability. If this should be too complicated, we can use Monte Carlo
approximation and obtain m independent i.i.d. samples

X�;1, . . . , X�;n for 1 ≤ � ≤ m,

where X ∼ F0 and calculate, based on these samples, T1;n, . . . , Tm;n . The SLLN then
yields

PF0(Tn(X1, . . . , Xn) ≥ t) ≈ 1

m

m∑

�=1

I{[t,∞[}(T�;n) = 1 − Gm(t−), (4.5)

where Gm denotes the edf. of T1;n, . . . , Tm;n , and Gm(t−) the left-hand limit.
This approximation is also valid, if

sup
x∈R

|PF0(Tn(X1, . . . , Xn) ≥ x) − PF̂n
(Tn(X1, . . . , Xn) ≥ x)| −→

n→∞ 0

holds and if we take
X�;1, . . . , X�;n for 1 ≤ � ≤ m,

as independent i.i.d. samples according to this F̂n . However, one should use X ∼ F0

instead of X ∼ F̂n , since this guarantees that the data are generated under the null
hypothesis.

Remark 4.3 As we just mentioned, a resampling scheme has to guarantee that the
bootstrap data are generated under the null hypothesis or at least close to it. It is the
distribution of the test statistic under the null hypothesis which has to be used to find
the critical region or the p-value. If we want to use the approximation of the p-value
given in (4.5) and the T1;n, . . . , Tm;n are generated according to some resampling
scheme, the sequence T1;n, . . . , Tm;n must be i.i.d. and each T�;n , for 1 ≤ � ≤ m,
should have a distribution that is equal or at least very close to the distribution of
Tn(X1, . . . , Xn), where X1, . . . , Xn are from the null hypothesis.

In the next sections, we give some special examples which are discussed partly
in Efron and Tibshirani (1993) and in Davison and Hinkley (1997), respectively.

4.2 The One-Sample Test

Example 4.4 One-sample test, part 1. Assume a one-sample problem, where we
observed an i.i.d. sample X1, . . . , Xn ∼ F . Furthermore, we denote the true expec-
tation by μ = μF and we assume that the variance exists. Now, we want to test
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H0 : μ = 17 versus H1 : μ �= 17.

Obviously, we have a complex null hypothesis, sinceF0 = {G : μG = 17}. In this
case we use the standardized test statistic

Tn ≡ Tn(X1, . . . , Xn) := √
n
∣∣∣
μn − 17

sn

∣∣∣,

where μn = n−1 ∑n
i=1 Xi and s2n = n−1 ∑n

i=1(Xi − μn)
2, and the following resam-

pling scheme:

Resampling Scheme 4.5

(A) Generate independent bootstrap i.i.d. samples X∗
�;1, . . . , X

∗
�;n for 1 ≤ � ≤ m

according to the edf. Fn of the observations X1, . . . , Xn.
(B) Calculate for each 1 ≤ � ≤ m,μ∗

�;n = n−1 ∑n
i=1 X

∗
�;i , s

∗
�;n = n−1 ∑n

i=1(X
∗
�;i −

μ∗
�;n)

2, and

T ∗
�;n = √

n
∣∣∣
μ∗

�;n − μn

s∗
�;n

∣∣∣.

(C) Determine the p-value of Tn within the simulated T ∗
�;n, 1 ≤ k ≤ m according

to Eq. (4.5).

Due to the CLT for the bootstrap when resampling is done according to the edf. of
the observations, see Corollary 3.9, the resampling scheme given above will work in
this scenario.

Remark 4.6 One-sample test.We already pointed out in Remark4.3 that the resam-
pling has to be done in such a way that the null hypothesis is mimicked, that is in
this example, the expectation of X∗ must be 17. Since we resampled according to
Fn , the edf. based on our observations, the expectation of X∗ equals μn which is not
necessarily equal to 17. Thus, the resampling scheme given under 4.5 does not fulfill
this requirement. However, if we resample according to the edf. F̂n which is based
on

Z1 := X1 − μn + 17, . . . , Zn := Xn − μn + 17

we easily obtain that EF̂n
(Z∗) = 17. Furthermore, Z∗ = X∗ − μn + 17 and −μn +

17 is just a constant with respect to the bootstrap distribution. Thus, the standard
deviations of both bootstrap samples, i.e., Z∗

1 , . . . , Z
∗
n and X∗

1, . . . , X
∗
n , are identical.

Now, based on Z∗
1 , . . . , Z

∗
n ∼ F̂n we have to calculate the statistic

T ∗
n = T ∗

n (Z∗
1 , . . . , Z

∗
n) := √

n
∣∣∣
1
n

∑n
i=1 Z

∗
i − 17

s∗
n

∣∣∣.

But
1

n

n∑

i=1

Z∗
i − 17 = 1

n

n∑

i=1

(X∗ − μn + 17) − 17 = μ∗
n − μn.
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Therefore, the Resampling Scheme4.5 indeed incorporates the null hypothesis prop-
erly.

R-Example 4.7 One-sample test, part 2. The following R-code shows an imple-
mentation of the bootstrap approximated p-value based on (4.5) in the one-sample
problem. Note that the unbiased estimates

1

n − 1

n∑

i=1

(
Xi − X̄n

)2
,

1

n − 1

n∑

i=1

(
X∗
i − X̄∗

n

)2

are used in the R-code instead of s2n and s∗2
n , respectively. This modification does

not affect the asymptotic result from Corollary 3.9, but it fits the usual variance
estimation in classical methods.

oneSampleBootpvalue <- function(x, mu0, R = 999){
# x - observed data
# mu0 - Mean under null hypothesis
# R - number of MC simulations

# test statistic
tstat <- function(d, i, mu0) {
sqrt(length(i)) * abs(mean(d[i]) - mu0) / sd(d[i])

}

# test statistic for the observed data x
t0 <- tstat(x, 1:length(x), mu0)

# R resampled test statistics, where
# mu0 = mean(x) will be passed to the function tstat
bt <- boot::boot(x, tstat, R = R, mu0 = mean(x))$t[,1]

# return p-value
c(pvalue = mean(bt > t0))

}

Now, we apply this function to a dataset such that the null hypothesis is true

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
#H0 is correct
x <- rexp(100, rate = 1/17)
oneSampleBootpvalue(x, 17)

## pvalue

## 0.6756757

and to a dataset, where the null hypothesis is not correct
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#H0 is not correct
x <- rexp(100,rate = 1/14)
oneSampleBootpvalue(x, 17)

## pvalue

## 0.07107107

R-Example 4.8 One-sample test, part 3. We utilize the simTool Package to
generate exponential distributed data with expectation μ = 14 and μ = 17 and then
test the null hypothesis that μ = 17 with the function oneSampelBootpvalue
defined in the R-Example4.7. Figure4.1 visualizes the result from this simulation
study. According to Corollary 2.8, the p-values under the null hypothesis should be
similar to the edf. of a uniform distributed random variable. As expected, the edf.
under the alternative hypothesis shows a high percentage of small p-values.

dg <- simTool::expand_tibble(fun = "rexp", n = 100,
rate = c(1/14, 1/17))

pg <- simTool::expand_tibble(proc = "oneSampleBootpvalue",
mu0 = 17,
R = 999)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
results

y

Null Hypothesis
FALSE

TRUE

Emp. distribution of p−values

Fig. 4.1 Datasets are generated under the null hypothesis μ = 17 and the alternative μ = 14.
p−values were obtained by oneSampleBootpvalue from R-Example4.7. The figure shows the edf.
of 100 p-values under the null hypothesis, edf. of 100 p-values under the alternativ, and the uniform
distribution function (diagonal)
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set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
eg <- simTool::eval_tibbles(dg, pg, replications = 100)
eg$simulation %>%
dplyr::mutate(null.hypothesis = (rate == 1/17)) %>%
ggplot(aes(x = results, color = null.hypothesis)) +
stat_ecdf() +
stat_function(fun = identity, col = "black") +
labs(color = "Null Hypothesis") +
ggtitle("Emp. distribution of p-values")

4.3 Two-Sample Tests

In the two-sample test, the choice of an adequate test statistic depends on some
general assumptions of the underlying two samples. In our first two-sample test, we
assume an underlying location model.

Example 4.9 Two-sample test under location model, part 1.
In the two-sample problem under the location model we observe independent i.i.d.
samples X1, . . . , Xn1 ∼ F and Y1, . . . ,Yn2 ∼ G. Suppose now that

F(t) = H(t − μx ) and G(t) = H(t − μy) for every t ∈ R

for some unknown df. H , where μx = E(X) and μy = E(Y ). Furthermore, we
assume that the second moment w.r.t. H exists and we denote the corresponding
variance by σ 2.
The assumptions guarantee that X and Y have the same variance and that F = G is
equivalent to μx = μy . Let our null hypothesis be H0 : μx = μy and suppose that
we want to test H0 versus H1 : μx > μy .
A proper test statistic for this setup is given by

Tn1,n2 := (1/n1 + 1/n2)
−1/2 X̄n1 − Ȳn2

sn1+n2

,

where

X̄n1 := 1

n1

n1∑

i=1

Xi , Ȳn2 := 1

n2

n2∑

i=1

Yi ,

and

s2n1+n2 := 1

n1 + n2

( n1∑

i=1

(Xi − X̄n1)
2 +

n2∑

j=1

(Y j − Ȳn2)
2
)
.

Since the df. of Tn1,n2 is unknown to us even under H0, we have to look for a proper
approximation. For thiswemake the additional assumption that n2 → ∞ as n1 → ∞
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and n1
n2

−→ λ, as n1 → ∞,

where 0 < λ < ∞. Note that SLLN guarantees that s2n1+n2 → σ 2, as n1 → ∞. Fur-
thermore, under H0 and the assumed independence of the samples the CLT implies
that

Tn1,n2 = √
n1

X̄n1 − μx

sn1+n2

1√
1 + n1/n2

− √
n2

Ȳn2 − μy

sn1+n2

1√
1 + n2/n1

−→ N
(
0,

1

1 + λ
+ 1

1 + 1/λ

)

= N (0, 1)

in distribution, as n1 → ∞.

To apply the bootstrap, note that under H0 both rvs. X and Y have the same df. Thus
we can mimic the null hypothesis by resampling according to the edf. of the pooled
sample. In particular:

Resampling Scheme 4.10

(A) Generate independent bootstrap i.i.d. samples Z∗
�;1, . . . , Z

∗
�;n1+n2

for1 ≤ � ≤ m
according to the edf. of the observations X1, . . . , Xn1 ,Y1, . . . ,Yn2 and define
for 1 ≤ � ≤ m: X∗

�;i := Z∗
�;i , where 1 ≤ i ≤ n1, and Y ∗

�; j := Z∗
�;n1+ j , where 1 ≤

j ≤ n2, respectively.
(B) Calculate for 1 ≤ � ≤ m

T ∗
�;n1,n2 := (1/n1 + 1/n2)

−1/2
X̄∗

�;n1 − Ȳ ∗
�;n2

s∗
�;n1+n2

,

where

X̄∗
�;n1 = 1

n1

n1∑

i=1

X∗
�;i , Ȳ ∗

�;n2 = 1

n2

n2∑

j=1

Y ∗
�; j ,

and

s∗2
�;n1+n2 = 1

n1 + n2

( n1∑

i=1

(X∗
�;i − X̄∗

�;n1)
2 +

n2∑

j=1

(Y ∗
�; j − Ȳ ∗

�;n2)
2
)

(C) Determine the p-value of Tn within the simulated T ∗
�;n1,n2 , 1 ≤ � ≤ m according

to Eq. (4.5).

The consistency of the aforementioned Resampling Scheme4.10 can be seen as
follows. Theorem 3.7 guarentees that, w.p.1, for every ε > 0,

P
∗
n

( ∣∣sn1+n2

/
s∗
n1+n2 − 1

∣∣ > ε
) −→ 0, as n1 → ∞,
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holds true. Similar as in Corollary 3.9, this entails together with Theorem 3.8 and
Slutsky’s Theorem the consistency.

R-Example 4.11 Two-sample test under location model, part 2. The following
R-code can be used for this two-sample test. Note that

1

n1 + n2 − 2

( n1∑

i=1

(Xi − X̄n1)
2 +

n2∑

j=1

(Y j − Ȳn2)
2
)
,

1

n1 + n2 − 2

( n1∑

i=1

(X∗
i − X̄∗

n1)
2 +

n2∑

j=1

(Y ∗
j − Ȳ ∗

n2)
2
)

are used here instead of s2n1+n2 and s∗2
n1+n2 , respectively.

twoSampleLocModBootpValue <- function(x, y,
alternative = c("two-sided", "less", "greater"), R = 999){

# x - observed data (first sample)
# y - observed data (second sample)
# alternative - specifies the alternative hypothesis
# R - number of MC simulations

alternative <- match.arg(alternative)

n1 <- length(x)
n2 <- length(y)

# test statistic
tstat <- function(d, i){
boot.xy <- d[i]

# x and y are redfined in the scope of the
# the function tstat. The orginial variables
# passed to the function twoSampleLocModBootpValue
# are not changed!
x <- boot.xy[1:n1]
y <- boot.xy[-(1:n1)]

s <- sqrt( ((n1-1) * var(x) + (n2 - 1) * var(y)) /
(n1 + n2 - 2) )

mu.x <- mean(x)
mu.y <- mean(y)
(mu.x - mu.y) / s / sqrt(1 / n1 + 1 / n2)

}

xy <- c(x,y)

# test statistics for the observed data
t0 <- tstat(xy, 1:(n1 + n2))
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# R resampled test statistics
bt <- boot::boot(xy, tstat, R = R)$t[,1]

# return p-value
if(alternative == "greater") return(c(pvalue = mean(bt > t0)))
if(alternative == "less") return(c(pvalue = mean(bt < t0)))
c(pvalue = mean(abs(bt) > abs(t0)))

}

Now, we apply this function to datasets such that the null hypothesis is true

# H0 correct, mu_x equals mu_y
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
twoSampleLocModBootpValue(rnorm(10, mean = 3, sd = 2),

rnorm(20, mean = 3, sd = 2),
alternative = "greater")

## pvalue

## 0.3143143

and to datasets, where the null hypothesis is not correct

# H0 not correct
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
twoSampleLocModBootpValue(rnorm(10, mean = 3, sd = 2),

rnorm(20, mean = 2, sd = 2),
alternative = "greater")

## pvalue

## 0.04504505

In the two-sample problem, we sometimes only want to compare the two expecta-
tions without making any additional assumptions about the corresponding df. F and
G as we did in Example4.9, where a location family was assumed. Even under the
normality assumption, onemight not want to accept that the variances of the two sam-
ples are equal. As a consequence, the simple t-test cannot be applied (Behrens-Fisher
problem) and we have to look for a proper approximation.

Example 4.12 Two-sample test under heterogeneity, part 1. In this scenario, we
observe independent i.i.d. samples X1, . . . , Xn1 ∼ F and Y1, . . . ,Yn2 ∼ G and we
assume that μx = E(X), μy = E(Y ), VAR(X) = σ 2

x , and VAR(Y ) = σ 2
y exist. To

test the null hypothesis H0 : μx = μy versus H1 : μx > μy , we now apply the
test statistic:

Tn1,n2 = X̄n1 − Ȳn2√
s2x/n1 + s2y/n2

,
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where

X̄n1 := 1

n1

n1∑

i=1

Xi , Ȳn2 := 1

n2

n2∑

i=1

Yi ,

and

s2x = 1

n1

n1∑

i=1

(Xi − X̄n1)
2, s2y = 1

n2

n2∑

j=1

(Y j − Ȳn2)
2

are the corresponding sample variances.
As in the example above, the df. of Tn1,n2 is unknown to us even under H0 and

again we have to look for a proper approximation. Assume, as in the example above,
that n2 → ∞ as n1 → ∞ and that

n1
n2

−→ λ, as n1 → ∞,

where 0 < λ < ∞. SLLN guarantees that the sample variances s2x and s
2
y tend to σ 2

x

and σ 2
y P−a.s. Finally, under H0 and the assumed independence of the samples the

CLT implies that

Tn1,n2 = n1/21

X̄n1 − μx

sx

1
√
1 + (s2yn1)/(s

2
x n2)

− n1/22

Ȳn2 − μy

sy

1
√
1 + (s2x n2)/(s

2
yn1)

−→ N
(
0,

1

1 + λσ 2
y /σ

2
x

+ 1

1 + σ 2
x /(σ 2

y λ)

)

= N (0, 1)

in distribution, as n1 → ∞.

Now,we cannot use the edf. based on the pooled sample for the resampling procedure
since this would not mimic the null hypothesis properly. In particular, we have to use

Resampling Scheme 4.13

(A) Generate independent bootstrap i.i.d. samples X∗
�;1, . . . , X

∗
�;n according to the

edf. based on X1 − X̄n1 , . . . , Xn1 − X̄n1 and Y ∗
�;1, . . . ,Y

∗
�;n2 according to the

edf. based on Y1 − Ȳn2 , . . . ,Yn2 − Ȳn2 , respectively, for 1 ≤ � ≤ m.
(B) Calculate for 1 ≤ � ≤ m

T ∗
�;n1,n2 := X̄∗

�;n1 − Ȳ ∗
�;n2√

s∗2
�;x/n1 + s∗2

�;y/n2
,

where
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X̄∗
�;n1 = 1

n1

n1∑

i=1

X∗
�;i , Ȳ ∗

�;n2 = 1

n2

n2∑

j=1

Y ∗
�; j ,

and

s∗2
�;x = 1

n1

n1∑

i=1

(X∗
�;i − X̄∗

�;n1)
2, s∗2

�;y = 1

n2

n2∑

i=1

(Y ∗
�;i − Ȳ ∗

�;n2)
2.

(C) Determine the p-value of Tn within the simulated T ∗
�;n1,n2 , 1 ≤ � ≤ m according

to Eq. (4.5).

Again, Theorem3.7, the CLT for the bootstrap given in Theorem3.8, and Slutsky’s
Theorem guarantee that the above resampling scheme will work.

R-Example 4.14 Two-sample test under heterogeneity, part 2. We use the fol-
lowing R-code for this two-sample test, where we modified the variance estimators
s2x , s

2
y , s

∗2
x , and s∗2

y by their corresponding unbiased estimators

1

n1 − 1

n1∑

i=1

(Xi − X̄n1)
2,

1

n2 − 1

n2∑

j=1

(Y j − Ȳn2)
2,

1

n1 − 1

n1∑

i=1

(X∗
i − X̄∗

n1)
2,

1

n2 − 1

n2∑

j=1

(Y ∗
j − Ȳ ∗

n2)
2.

twoSampleBootpvalue = function(x, y,
alternative = c("two-sided", "less", "greater"), R = 999){

# x - observed data (first sample)
# y - observed data (second sample)
# alternative - specifies the alternative hypothesis
# R - number of MC simulations

alternative <- match.arg(alternative)

n1 <- length(x)
n2 <- length(y)

# test statistic
tstat <- function(d, i){
boot.xy <- d[i]
x <- boot.xy[1:n1]
y <- boot.xy[-(1:n1)]
s <- sqrt( var(x) / n1 + var(y) / n2 )
mu.x <- mean(x)
mu.y <- mean(y)
(mu.x - mu.y) / s

}
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# test statistic for the observed data
xy <- c(x,y)
t0 <- tstat(xy, 1:(n1+n2))

# in order to facilitate step (A)
# x and y are centered
x <- x - mean(x)
y <- y - mean(y)
xy <- c(x,y)

# R resampled test statistics
# Note, the strata parameter explains boot() to resample
# from the first n1 entries and from the last n2 entries
# separately
bt <- boot::boot(xy, tstat, R = R,

strata = c(rep(1, n1), rep(2,n2)))$t[,1]

# return pvalue
if(alternative == "greater") return(c(pvalue = mean(bt > t0)))
if(alternative == "less") return(c(pvalue = mean(bt < t0)))
c(pvalue = mean(abs(bt) > abs(t0)))

}

The following code shows an application of this two-sample bootstrap test.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
#H0: mu.x = mu.y vs. H1: mu.x > mu.y
#H0 correct
twoSampleBootpvalue(rnorm(10, 3, 2), rnorm(20, 3, 3),

alternative = "greater")

## pvalue

## 0.2952953

#H0: mu.x = mu.y vs. H1: mu.x > mu.y
#H0 not correct
twoSampleBootpvalue(rnorm(10, 3, 2), rnorm(20, 1, 3),

alternative = "greater")

## pvalue

## 0.05905906
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4.4 Goodness-of-Fit (GOF) Test

Let
F = {F(·; θ) : θ ∈ Θ}

be a parametric family of df., that is, F(·; θ) is totally determined by the parameter
θ , and assume we observe an i.i.d. sample X1, . . . , Xn with common df. F . In some
situations it is important to know whether H0 : F ∈ F or not.

A general recipe to test H0 is to

1. compute the edf. Fn based on X1, . . . , Xn ,
2. estimate θ0 by some θ̂n ,
3. compare Fn with F(·; θ̂n).

The comparison, or goodness-of-fit procedure, indicated under item 3 is often based
on the estimated empirical process

α̂n(x) = n1/2(Fn(x) − F(x; θ̂n)), x ∈ R. (4.6)

In particular, one considers the Kolmogorov-Smirnov distance

Dn = sup
x∈R

|α̂n(x)| ≡ ‖α̂n‖∞ (4.7)

or the Cramér-von Mises distance

W 2
n = n

∫
(Fn(x) − F(x; θ̂n))

2 F(dx; θ̂n) =
∫

α̂2
n(x) F(dx; θ̂n). (4.8)

While both test statistics are invariant w.r.t. continuous F if the correct F is used
instead of F(·; θ̂n), i.e., they are distribution free, this is not the case, when we use
F(·; θ̂n). Thus, critical values have to be computed for each individual F . Among
others, D’Agostino and Stephens (1986) provide in their book a comprehensive
amount of available results for some selected parametric families.

Due to Theorem4.17 of Sect. 4.5, we can use the bootstrapmethod to approximate
the df. of the corresponding Cramér-von Mises (CvM) and Kolmogorov-Smirnov
(KS) test statistics obtained from the estimated empirical process. Based on an i.i.d.
sample X1, . . . , Xn , estimate θ̂n and obtain Zi = F(Xi ; θ̂n), for 1 ≤ i ≤ n. The KS
distance is then computed according to the following well-known formula:

Dn = ‖α̂n‖ = n1/2 max
1≤i≤n

( i

n
− Zi :n, Zi :n − i − 1

n

)
. (4.9)

For theCvMdistance, set Z0:n = 0, X0:n = −∞, Zn+1:n = 1, and Xn+1:n = ∞. Now,
observe that
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W 2
n =

∫
α̂2
n(x) F(dx; θ̂n) = n

∫ (
Fn(x) − F(x; θ̂n)

)2
F(dx; θ̂n)

= n
n∑

i=0

∫

[Xi :n ,Xi+1:n [

( i
n

− F(x; θ̂n)
)2

F(dx; θ̂n)

= n
n∑

i=0

∫

[Zi :n ,Zi+1:n [

( i
n

− u
)2
du

= n

3

n∑

i=0

(( i
n

− Zi :n
)3 − ( i

n
− Zi+1:n

)3)

= n

3

( n∑

i=1

( i
n

− Zi :n
)3 −

n−1∑

i=0

( i
n

− Zi+1:n
)3)

= n

3

( n∑

i=1

( i
n

− Zi :n
)3 −

n∑

i=1

( i − 1

n
− Zi :n

)3)
.

By some algebraic rearrangements, we finally end up with:

W 2
n = 1

12n
+

n∑

i=1

(
Zi :n − 2i − 1

2n

)2
. (4.10)

To apply the bootstrap approximation we use the following resampling scheme:

Resampling Scheme 4.15

(A) Based on the observations X1, . . . , Xn calculate the estimator θ̂n.
(B) Calculate Dn and W 2

n according to (4.9) and (4.10), respectively.
(C) Generate independent bootstrap i.i.d. samples X∗

�;1, . . . , X
∗
�;n according to

F(·; θ̂n), and obtain the estimator θ̂∗
�;n, for 1 ≤ � ≤ m.

(D) Calculate for 1 ≤ � ≤ m

D∗
�;n := ‖α̂∗

�;n‖ = n1/2 max
1≤i≤n

( i

n
− Z∗

�;i :n, Z
∗
�;i :n − i − 1

n

)

and/or

W ∗2
�;n = 1

12n
+

n∑

i=1

(
Z∗

�;i :n − 2i − 1

2n

)2
,

where Z∗
�;i :n = F(X∗

�;i :n; θ̂∗
�;n).

(E) Determine the p-value of Dn within the simulated D∗
�;n, 1 ≤ � ≤ m and/or the

p-value of W 2
n within the simulated W ∗2

�;n, 1 ≤ � ≤ m, respectively.

R-Example 4.16 To check for normality, one can use the following implementation
of the two bootstrap based goodness-of-fit tests.
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# generic functions to calculate Kolmogorov-Smirnov distance
# and Cramer-von Mises distance
KS <- function(z){
# z - appropriately transformed and sorted data
len <- length(z)
sqrt(len) * max(c((1:len) / len - z, z - (0:(len-1)) / len))

}
CvM <- function(z){
# z - appropriately transformed and sorted data
len <- length(z)
1 / (12 * len) + sum( (z - (2 * (1:len) - 1) / (2 * len))ˆ2 )

}

boot.gof.normal.p <- function(x, R = 999){
# x - observed data
# R - number of MC simulations

# calculate KS and CvM distance
gofStat <- function(d) {
d <- sort(d)
z <- pnorm(d, mean = mean(d), sd = sd(d))
c(KS(z), CvM(z))

}

# test statistics for observed data
t0 <- gofStat(x)

# generates normal distributed random variables
# for the use in boot()
ran.gen <- function(d, p){
rnorm(length(d), mean = p[1], sd = p[2])

}

# R resampled KS and CvM distances
# NOTE, boot() will pass x to the first argument
# and mle to the second argument of ran.gen
bt <- boot::boot(x, gofStat, sim = "parametric",

ran.gen = ran.gen, mle = c(mean(x), sd(x)), R = R)$t

# return pvalues
c(ks.pvalue = mean(bt[,1] > t0[1]),
cvm.pvalue = mean(bt[,2] > t0[2]))

}
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Now, we apply this test to check for normality.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
#data are normally distributed, H0 is correct
x <- rnorm(100, mean = 2, sd = 4)
boot.gof.normal.p(x)

## ks.pvalue cvm.pvalue

## 0.5705706 0.8898899

#data are exponentially distributed, H0 is not correct
x <- rexp(100, rate = 2)
boot.gof.normal.p(x)

## ks.pvalue cvm.pvalue

## 0 0

To check for a Weibull distribution the following implementations can be used.

mle.weibull <- function(x){
# x - observed data

# negative log-likelihood-function assuming
# a weibull distribution
nLL <- function(shape, scale)
if (shape > 0 && scale >=0) {
-sum(stats::dweibull(x, shape, scale, log = TRUE))

} else {
NA

}

# minimize the negative log-likelihood
ret <- coef(stats4::mle(nLL, start = list(shape = 1, scale = 1),

nobs = length(x)))

# rename to increase readability later
names(ret) <- paste("est", names(ret), sep=".")
ret

}
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boot.gof.weibull.p <- function(x, R = 999){
# x - observed data

# calculate KS and CvM distance
gofStat <- function(d) {
d <- sort(d)
est <- mle.weibull(d)
shape <- est["est.shape"]
scale <- est["est.scale"]
d <- pweibull(d, shape, scale)

c(KS(d), CvM(d))
}

# test statistics for observed data
t0 <- gofStat(x)

# generates weibull distributed random variables
# for the use in boot()
ran.gen <- function(d, p){
rweibull(length(d), shape = p[1], scale = p[2])

}

# R resampled KS and CvM distances
# NOTE, boot() will pass x to the first argument
# and mle to the second argument of ran.gen
est <- mle.weibull(x)
bt <- boot::boot(x, gofStat, sim = "parametric",

ran.gen = ran.gen, mle = est, R = R)$t

# return pvalues
c(ks.pvalue = mean(bt[,1] > t0[1]),
cvm.pvalue = mean(bt[,2] > t0[2]))

}

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
#H0 is correct
x <- rweibull(200, shape = 4, scale = 0.5)
boot.gof.weibull.p(x)

## ks.pvalue cvm.pvalue

## 0.8588589 0.7337337

#H0 is not correct
x <- rbeta(200, shape1 = 4, shape2 = 5)
boot.gof.weibull.p(x)

## ks.pvalue cvm.pvalue

## 0.02502503 0.07107107
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Note, Excerise4.20 is dedicated to locate computational bottlenecks within the
function “boot.gof.weibull.p” using package profvis and improving the compu-
tation time.

4.5 Mathematical Framework of the GOF Test

A universal approach to approximate the critical values is given by the bootstrap
as outlined in Stute et al (1993, Theorem 1.1). For this, the following regularity
assumptions have to be made.

(A1) Under H0, i.e., F = F(·; θ0) the estimator θ̂n has the following expansion:

n1/2(θ̂n − θ0) = n−1/2
n∑

i=1

l(Xi , θ0) + rn,

whereEθ0(l(X, θ0)) = 0 andEθ0(l
�(X, θ0) l(X, θ0)) exists. Furthermore, there

exists a neighborhood V of θ0 such that

sup
θ∈V

Pθ (‖rn‖ > ε) −→ 0, as n → ∞,

for all ε > 0.
(A2) Moreover, as θ̂n → θ0, for each x ∈ R

∫

]−∞,x]
l(t, θ̂n) F(dt, θ̂n) −→

∫

]−∞,x]
l(t, θ0) F(dt, θ0).

(A3) Furthermore, as θ̂n → θ0,

∫
l�(x, θ̂n) l(x, θ̂n) F(dx, θ̂n) −→

∫
l�(x, θ0) l(x, θ0) F(dx, θ0).

In addition to these regularity assumptions, one also has to assume that F(·; ·) is
sufficiently smooth. In particular, this means:

(B1) There exists an open neighborhood U of θ0 such that

F(·; θ), θ ∈ U is equicontinous

and

g(x, θ) = ∂F(x; θ)

∂θ
is uniformly continuous and bounded on R ×U.
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Note, that (A1) is a typical expansion used to prove convergence in distribution of
maximum likelihood estimators (MLE).
Durbin (1973) used a suitable transformation of the process so that the paths become
elements of the Skorokhod space D[0, 1]. Then he proved under these assumptions
that if H0 is correct

α̂n −→ Z

in distribution, where Z is a centered Gaussian process with continuous sample paths
and covariance function

COV(Z(x1), Z(x2)) = F(x1, θ0) − F(x1, θ0)F(x2, θ0) (4.11)

−
∫

]−∞,x1]
l�(x, θ0)g(x1, θ0) F(dx, θ0)

−
∫

]−∞,x2]
l�(x, θ0)g(x2, θ0) F(dx, θ0)

+
∫

l�(x, θ0)g(x1, θ0) l
�(x, θ0)g(x2, θ0) F(dx, θ0),

where x1 ≤ x2.
Obviously, the limit distribution depends heavily on F(·; θ0) and is therefore

different for different classes of parametric families.
Coming back to the bootstrap, we have to mimic H0. This can be done by resam-

pling according to F(·; θ̂n). Thus the bootstrap sample X∗
1, . . . , X

∗
n ∼ F(·; θ̂n) is an

i.i.d. sample and the appropriate bootstrap version of the estimated empirical process
α̂n is given by

α̂∗
n(x) = n1/2(F∗

n (x) − F(x; θ̂∗
n )),

where F∗
n is the edf. of the bootstrap sample and θ̂∗

n the corresponding estimator of
the parameter. Note that the correct parameter θ̂n is known for the bootstrap sample.
Nevertheless, we have to estimate this parameter in order to mimic the situation of
the original sample.

Theorem 4.17 Under H0, assume that (A1)–(A3) and (B1) are satisfied. Then, if
θ̂n → θ0 w.p.1

α̂∗
n −→ Z

in distribution with probability one. Here Z is a centered Gaussian process with
continuous sample paths and covariance function given under (4.11).

Corollary 4.18 Since Z has continuous sample paths and ‖ · ‖∞ is a continuous
function on C[0, 1], the continuous mapping theorem, Billingsley (1968, Theorem
5.1), yields that w.p.1

P
∗
n( ‖α̂∗

n‖∞ ≤ t) − P( ‖α̂n‖∞ ≤ t) −→ 0, as n → ∞,
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for each t such that P(‖Z‖ = t) = 0. Thus under the stated assumptions, the distri-
bution of Dn can be approximated by bootstrapping. Similarly, the bootstrap can be
used to approximate the df. of W 2

n .

Proof of Theorem 4.17 Unlike in Durbin (1973), we analyze the process untrans-
formed, i.e., in the space D[−∞,∞] itself, cf. Definition 6.3. As Remark 6.4 shows,
D[−∞,∞] can be identified with D[0, 1]. Recall the proof of Durbin (1973) and
use the decomposition:

α̂n(x) = n1/2(Fn(x) − F(x; θ0)) + n1/2(F(x; θ0) − F(x; θ̂n))

≡ I1(n, x) + I2(n, x).

Note, that I1(n, x) is just the empirical process at the point x . For the I2(n, x) term
we get according to Taylor’s expansion for an appropriate θ̃ between θ̂n and θ0

I2(n, x) = −g�(x, θ0) n
1/2(θ̂n − θ0) +

(
g�(x, θ0) − g�(x, θ̃ )

)
n1/2(θ̂n − θ0)

= −g�(x, θ0) n
1/2(θ̂n − θ0) + oP(1)

= −n−1/2
n∑

i=1

g�(x, θ0)l(Xi , θ0) + oP(1),

where the oP(1) term does not depend on x .
Overall, we have the representation, uniformly in x :

α̂n(x) = n1/2(Fn(x) − F(x; θ0)) − n−1/2
n∑

i=1

g�(x, θ0)l(Xi , θ0) + oP(1). (4.12)

The first term on the right-hand side is the empirical process αn(x). Since F(·; θ0)

is continuous and αn(x) = ᾱn(F(x, θ0)), where ᾱn is the uniform empirical process
(cf. Sect. 3.4), C-tightness of the uniform empirical process implies C-tightness of
αn . Furthermore, the second term on the right-hand side is C-tight due to the special
representation of this term, the CLT, and the uniform continuity if g(·, θ0). Thus,
the right-hand side is C−tight. Finally, the convergence of the finite-dimensional
distributions (fidis.) follows from the multivariate CLT.
For the bootstrap, we will mimic the proof given above. At first, we give some results
which will be needed.
We have w.p.1

P
∗
n(‖θ̂∗

n − θ̂n‖ > ε) −→ 0, as n → ∞, (4.13)

for each ε > 0. Note that the bootstrap data was created under θ̂n and that θ̂n −→ θ0,
w.p.1. So we can assume that, w.p.1, for n sufficiently large, that θ̂n ∈ V . Thus,
according to (A1), we can focus on
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P
∗
n(‖1/n

n∑

i=1

l(X∗
i , θ̂n)‖ > ε) −→ 0, as n → ∞,

to prove (4.13). To do this, apply Markov’s inequality and get

P
∗
n

(∥∥1
n

n∑

i=1

l(X∗
i , θ̂n)

∥∥ > ε
)

≤ 1

ε2
E

∗
n

(∥∥1
n

n∑

i=1

l(X∗
i , θ̂n)

∥∥2
)

= 1

n2ε2

n∑

i=1

n∑

j=1

E
∗
n

(
l�(X∗

i , θ̂n)l(X
∗
j , θ̂n)

)

= 1

n2ε2

n∑

i=1

E
∗
n

(
l�(X∗

i , θ̂n)l(X
∗
i , θ̂n)

)

= 1

nε2
E

∗
n

(
l�(X∗, θ̂n)l(X∗, θ̂n)

)
.

According to (A3) and (A1) the expectation on the right-hand side tends to a finite
value w.p.1. Thus, the total right-hand side tends to 0, which completes the proof of
(4.13).
Since θ̂n tends to θ0 w.p.1, (4.13) yields that w.p.1

P
∗
n(‖θ̂∗

n − θ0‖ > ε) −→ 0, as n → ∞, (4.14)

for each ε > 0.
Under the given assumption, we further have a Glivenko-Cantelli type result, i.e.,

‖F(·; θ̂n) − F(·; θ0)‖∞ −→ 0, as n → ∞, (4.15)

w.p.1. In particular, the convergence at each x ∈ R follows from Assumption (B1)
and θ̂n → θ0 w.p.1. The uniform convergence is then a consequence of a standard
argument, compare Loève (1977, pp. 20–21).

As already indicated, we will mimic the classical proof and obtain in our first
step:

α̂∗
n(x) = n1/2(F∗

n (x) − F(x; θ̂n)) + n1/2(F(x; θ̂n) − F(x; θ̂∗
n ))

≡ I ∗
1 (n, x) + I ∗

2 (n, x).

The first term on the right-hand side is the original empirical process of the bootstrap
sample, i.e., the empirical process corresponding to an i.i.d. sample w.r.t. F(·; θ̂n).
For the second term on the right-hand side, we apply Taylor’s expansion to get for a
proper chosen θ̃∗

n between θ̂∗
n and θ̂n
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I ∗
2 (n, x) = −g�(x, θ0) n

1/2(θ̂∗
n − θ̂n) +

(
g�(x, θ0) − g�(x, θ̃∗

n )
)
n1/2(θ̂∗

n − θ̂n)

≡ I ∗
2,1(n, x) + I ∗

2,2(n, x).

The I ∗
2,2 term on the right-hand side can be neglected if we show that n1/2(θ̂∗

n − θ̂n)

is asymptotically normal w.p.1, since due to (4.14) and Assumption (B1) we have
w.p.1

P
∗
n

(
‖g�(·; θ0) − g�(·, θ̃∗

n )‖∞ > ε
)

−→ 0, as n → ∞,

for each ε > 0. But

n1/2(θ̂∗
n − θ̂n) = n−1/2

n∑

i=1

l(X∗
i , θ̂n) + r∗

n

and r∗
n can asymptotically be neglected w.p.1 according to (A1) and θ̂n → θ0 w.p.1.

Now, our sum n−1/2 ∑n
i=1 l(X

∗
i , θ̂n) is in a suitable form, i.e., it consists of an i.i.d.

sumof centered variables, c.f. (A1), for each n. To prove asymptotic normality for this
representation, we have to apply the Cramér-Wold device. The Lindeberg condition
can be verified with the same approach as under Theorem 3.8.
So far we have seen that uniformly in x , w.p.1,

α̂∗
n(x) = n1/2(F∗

n (x) − F(x; θ̂n)) − n−1/2
n∑

i=1

l�(X∗
i , θ̂n)g(x, θ0) + oP∗

n
(1)

= α∗
n(x) − n−1/2

n∑

i=1

l�(X∗
i , θ̂n)g(x, θ0) + oP∗

n
(1) (4.16)

holds.
To finalize the proof, we first use again Cramér-Wold device to show that the fidis
converge to the same limit in distribution as the correspondingfidis of the original pro-
cess w.p.1. To prove tightness, first observe that the process α∗

n(x) ≡ ᾱn(F(x; θ̂n)),
where ᾱn is the uniform empirical process. According to the Glivenko-Cantelli result
given under (4.15), we can apply the same technique as under Theorem 3.12 to get,
w.p.1, that

α∗
n −→ Bo(F(·; θ0))

in distribution. Therefore, α∗
n is tight w.p.1. The tightness of the second process

n−1/2
n∑

i=1

l�(X∗
i , θ̂n)g(x, θ0)

follows directly from the asymptotic normality of n−1/2 ∑n
i=1 l

�(X∗
i , θ̂n) and

Assumption (B1). ��
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4.6 Exercises

Exercise 4.19 Repeat the simulation study from Example4.8 without using the
simTool-package.

Exercise 4.20 Use the profvis-package to obtain a similar output to Fig. 4.2.
If we focus on the computational intensive steps we see, that we spend 5450
ms in “boot::boot()”, where 5250 ms were used for calculating the MLE, i.e.,
“mle.weibull()”. Note, this is not the time for calculating one MLE, but the time
for all MLE calculations done in the bootstrap. Looking at “mle.weibull()” we see
that it took 3490 ms in sum to calculate all the negative log-likelihoods. Therefore
about 1760 ms are due to our choice of start parameters, i.e., shape = 1 and scale =
1, for the estimation. Try to improve the performance, for instance, by

• using other optimization methods,
• using the equation log(− log(1 − F(x))) = shape log(x) − shape log(scale) for
Weibull-distributed random variables,

• using the MLE estimation of the original sample as a start parameter for the
bootstrap sample.

Fig. 4.2 Examplary output of the profvis-package
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Exercise 4.21 In the two-sample problem of Example4.12 we can also use the
following modified resampling scheme:

(i) Generate independent bootstrap i.i.d. samples X∗
k,1, . . . , X

∗
k,n according to the

edf. based on X1, . . . , Xn and Y ∗
k,1, . . . ,Y

∗
k,� according to the edf. based on

Y1, . . . ,Y�, respectively, for 1 ≤ k ≤ m.
(ii) Calculate for 1 ≤ k ≤ m

T ∗
n,k := (X̄∗

n,k − X̄n) − (Ȳ ∗
�,k − Ȳ�)

√
s∗2
x,k/n + s∗2

y,k/�
,

where

X̄n = 1

n

n∑

i=1

Xi , Ȳ� = 1

�

�∑

j=1

Y j

are the sample means of the observations.
(iii) Determine the p-value of Tn within the simulated T ∗

n,k , 1 ≤ k ≤ m according
to Eq. (4.5).

Give some arguments why this resampling scheme is equivalent to the resampling
scheme given under 4.13.

Exercise 4.22 Use Resampling Scheme4.10 with m = 1000 bootstrap replications
to test H0 : μx = μy versus H1 : μx �= μy , where

X− sample 17.59 17.51 15.13 17.46 14.55 16.74 16.21 16.81 14.66 18.76

Y− sample 16.61 15.91 15.96 18.95 16.86 14.06 18.61 20.53 17.36 16.90

Exercise 4.23 Use Resampling Scheme4.13 with m = 1000 bootstrap replications
to test H0 : μx = μy versus H1 : μx �= μy , where

X− sample 2.11 2.30 6.41 8.95 0.13 4.06 4.86 2.37 2.68 10.83
Y− sample 0.16 1.12 2.08 0.49 0.22 1.55 1.85 3.07 - -

Repeat the above test 100 times and determine the average p-value from these 100
simulations.

Exercise 4.24 To get an idea of the power of bootstrap based goodness-of-fit tests,
generate an i.i.d. sample X1, . . . , Xn ∼ F , where F is the χ2 df. with one degree of
freedom. Now, assume H0 : F ∈ {EX P(λ) : λ > 0}.
(i) Write an R-function similar to “boot.gof.normal.p”, see R-Example4.16, to

check the null hypothesis with the CvM and KS based bootstrap tests. Use
(m = 500) for the bootstrap replications.

(ii) Apply your R-function to 1000 different original samples and store the corre-
sponding 1000 p-values based on the KS-test and on the CvM-test in a vector.
Use sample sizes n = 20, 50, 100.
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(iii) Calculate the average p-value and the relative number of rejections for 0.1 as
type 1 error for each sample size.

(iv) Visualize the vector of p-values obtained under 4.24 by a plot; compare
R-Example4.8 Fig. 4.1.
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Chapter 5
Regression Analysis

Assume we measure the insulin level Y1, . . . ,Yn of n persons. Every person has
a different weight X1, . . . , Xn . Can we somehow explain the insulin level using
the weights? This is the general context of regression analysis. There are different
reasons why such a question might be of interest. For instance, a scientist could
be interested in understanding the mechanics behind insulin level, i.e., which factor
influences the insulin level and how? Other scientists may only be interested in
predicting the insulin level. One common way to achieve this is to find a way to
express the conditional expectation of Y given X . Call the functionm(X) = E(Y |X)

the regression function. This chapter is dedicated tomethods that estimate parametric
forms m(X, ϑ) under various assumptions. We start with the classical linear models
that assume thatm(X, ϑ) = ϑ�X is linear in X while Y follows a normal distribution
first under independence assumptions and later under certain correlation assumptions.
Afterward, we allow other distributions for Y like the negative-binomial distribution
which lead to the classical generalized linear models. The chapter concludes with
semi-parametric models, i.e., we do not explicitly assume a distribution for Y but the
regression function m(X, ϑ) still depends on some (multi-dimensional) parameter
ϑ .

Beside bootstrapping in the classical manner, that is sampling with replacement,
other options are available. Therefore, after investigating the estimators (asymptotic)
distribution we present resampling techniques that can be used to bootstrap the dis-
tribution. Of course, this allows again to estimate confidence intervals or to derive
other statistics, but these results will also be used (in the next chapter) to construct
goodness-of-fit statistics for the regression function itself. Usually, visual techniques
are used to assess if the model fits the data well. The next chapter provides a more
rigorous approach to that leveraging the results from this chapter.
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5.1 Homoscedastic Linear Regression under Fixed Design

Linear models are important statistical tools and are very common in the scientific
literature. In general, more sophisticated regression techniques originate from linear
models. The purpose of linear models, or regression models in general, is to model
or investigate the influence of some variables, usually called independent variables
or covariates, onto another variable, usually called dependent variable. For instance,
to model the price for a real estate (dependent variable) depending on the land area,
year of construction, and so on (covariates). Here the focus would be to investigate
how the covariates are related to the dependent variable and maybe predict the price
only given the covariates.

In biometrics and epidemiology linear models are often used to account for “con-
founding variables”. Suppose we have two groups and our main goal is to investigate
if there is any difference in the level of a specific hormone. If the persons were
randomized properly into two groups, we could use a two-sample t-test to detect
differences in the mean hormone level. But sometimes it is not possible to random-
ize. One reason might be that the two groups are naturally given, for instance, by a
disease state or type. Assume group one is persons with a type 1-diabetes and group
two is persons with type 2-diabetes. These two types of diabetes are very different
from a medical point of view (we do not want to elaborate on this). Nevertheless, the
typical type1-diabetic is young and the typical type2-diabetic is old. If the hormone
level depends on age, the usual two-sample t-test will be misleading, i.e., we over
estimate or under estimate the effect of the diabetes status.We need a two-sample test
that accounts for the difference in the age structure of the two groups. In this case,
age is a “confounding variable” and we want to estimate the effect of the diabetes
type on the hormone level “adjusted for” age.

Now, we generate a dataset following

Y = 100 − 3.5 · I{diabetes=′Type2′} + 0.1 · age + ε,

where ε ∼ N (0, 1) that will be analyzed through the current section.Note, the dataset
also contains the parameter height, which does not contribute to the hormone level.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
hormone_data <-
data.frame(diabetes = gl(2, 50, labels = c("T1", "T2"))) %>%
dplyr::mutate(
age = ifelse(diabetes == "T1",

rnorm(50, mean = 25, sd = 5),
rnorm(50, mean = 60, sd = 5)),

height = rnorm(100, mean = 180, sd = 10),
hormone = 100 - 3.5 * (diabetes == "T2") +
0.1 * age + rnorm(100))

head(hormone_data, n = 2)



5.1 Homoscedastic Linear Regression under Fixed Design 75

## diabetes age height hormone

## 1 T1 22.19762 172.8959 104.4186

## 2 T1 23.84911 182.5688 103.6973

tail(hormone_data, n = 2)

## diabetes age height hormone

## 99 T2 58.8215 173.8883 102.4031

## 100 T2 54.8679 168.1452 103.2367

Looking at Fig. 5.1, it is obvious that age hides the diabetes effect and the t-test
will not detect any difference in the hormone level with respect to the diabetes status
if age is ignored.

ggplot(hormone_data, aes(x=age, y=hormone, color=diabetes)) +
ylab("hormone level") +
geom_point()

Our data follow a general linear regression model where the hormone levels are
given by

Yi =
p∑

q=1

xi,qβq + εi , 1 ≤ i ≤ n, (5.1)

andwhere the residuals ε1, . . . , εn ∼ F are i.i.d. withE(ε) = 0 andVAR(ε) = σ 2 <

∞, i.e., homoscedasticity. Note, we consider that the model is based on a fixed
design, i.e., xi,q are not random. Although the generation process in our hormone
data sampled age from a normal distribution, xi,q is not considered as random! It is
not unusual to consider the covariates as fixed. The results are then interpreted as
“given the covariates”.

Equation (5.1) can be written in the following compact form:

Y (n) = x(n)β + ε(n),

where
Y (n) = Y = (Y1, . . . ,Yn)� − response vector

x(n) = x =
⎛

⎜⎝
x1,1 . . . x1,p
...

...

xn,1 . . . xn,p

⎞

⎟⎠ − design matrix

ε(n) = ε = (ε1, . . . , εn)
� − vector of residuals

β = (β1, . . . , βp)
� − vector of parameters.

If the first column of x has 1 at every place, the model has an intercept.
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Fig. 5.1 Simulated hormone data. The different age distributions disguise the diabetes effect

Throughout this section we assume maximal rank of x(n) ≡ x so that x(n)�x(n) ≡
x�x is positive definite and hence invertible. The index n will be omitted for nota-
tional convenience.

To estimate the unknown parameter vector β based on the n observations, we take
β̂(n) ≡ β̂, as the projection of Y onto the vector space {z ∈ R

n : z = xγ, γ ∈ R
p}.

Thus for all γ ∈ R
p we have

(Y − x β̂)⊥ xγ ⇐⇒ 〈
Y − x β̂ , xγ

〉 = 0.

The right-hand side is equivalent to

Y�xγ = β̂�x�xγ.

Since this equality has to hold for all γ ∈ R
p we get



5.1 Homoscedastic Linear Regression under Fixed Design 77

Y�x = β̂�x�x .

Now multiply both sides with the inverse of x�x to get finally after transposing

β̂(n) ≡ β̂ = (x�x)−1x�Y. (5.2)

Substitute into this equation the model for Y to get the representation

β̂ = (x�x)−1x�(xβ + ε) = β + (x�x)−1x�ε, (5.3)

which can easily be handled to prove asymptotic results, as wewill see in this chapter
later on.

Remark 5.1 The estimator (5.2) is known as the least square estimator (LSE),
because it minimizes the sum of the squared errors, i.e.,

∑n
i=1(Yi − ∑p

q=1 xi,qβq)
2.

After the LSE β̂ is obtained, we can use β̂ to define the estimated residuals given
by

ε̂ ≡ (ε̂1, . . . , ε̂n)
� = Y − x β̂ = x(β − β̂) + ε (5.4)

to get with

s2n ≡ (Y − x β̂)�(Y − x β̂)

n
(5.5)

a biased estimator for σ 2 = VAR(ε).

R-Example 5.2 We now calculate the LSE for our hormone data using R standard
function lm. This function also automatically calculates the intercept and takes care
of any coding of non-numerical variables:

hormone_fit <- lm(hormone ˜ diabetes + age + height,
data = hormone_data)

coefficients(hormone_fit)

## (Intercept) diabetesT2 age height

## 1.006844e+02 -2.221115e+00 7.127644e-02 1.698143e-04

Exercises5.86 and 5.87 are dedicated to reproducing the result using other R-
functions.

5.1.1 Model-Based Bootstrap

If we want to use the bootstrap for testing, we have already discussed the necessity
of a resampling procedure that mimics the null hypothesis. This general resampling
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principle should also be applied if we want to use bootstrapping for some statistical
analysis under model assumptions. To be more precise, the bootstrap data should be
drawn under the given model assumptions or at least very close to them.

In this chapter, we focus on the model (5.1), where the residuals are centered
random variables. The LSE β̂ can be used to substitute the true β in our model. Since
the residuals are i.i.d. and therefore not depending on x , we can use the edf. of the
estimated residuals ε̂1, . . . , ε̂n as a base for our resampling. However, we should also
address in our resampling approach that the residuals are centered, that is, E(ε) = 0.

Remark 5.3 If our model (5.1) allows for an intercept, the estimated residuals are
always centered, that is,

∑
1≤i≤n ε̂i = 0. But this is not the case in general when the

intercept is excluded!

This remark tells us that the estimated residuals are not centered if our underlying
model does not has an intercept. To face this, we use the centered estimated residuals

ε̃1 = ε̂1 − μn, . . . , ε̃n = ε̂n − μn, (5.6)

where μn = 1/n
∑

1≤i≤n ε̂i as a base for our resampling. Overall, this leads to the
following resampling procedure which defines the model based bootstrap:

Resampling Scheme 5.4

(A) Based on the observations

(Yi , xi )1≤i≤n ⊂ R
1+p

calculate the LSE β̂(n).
(B) Determine the estimated residuals ε̂1, . . . , ε̂n and denote by F̃n the edf. of the

centered estimated residuals, i.e., of ε̃1, . . . , ε̃n, where ε̃i = ε̂i − μn and μn =
n−1 ∑n

i=1 ε̂i .
(C) Draw an i.i.d. sample ε∗

1, . . . , ε
∗
n ∼ F̃n and define

(Y ∗
i , xi )1≤i≤n, where Y ∗

i = x�
i β̂(n) + ε∗

i

(D) Compute the LSE of the bootstrap sample, i.e., determine

β∗(n) = (x�x)−1x�Y ∗.

In the next example, we apply this approach to a simple model under R.

R-Example 5.5 We now generate 10 bootstrap samples of the coefficient β using
the model fit of the preceding section.
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bootLSE = function(lm_object, R){

# lm_object - a model fit returned by stats::lm
# R - number of MC simulations

# m is a data.frame containing Y (first column) and all
# necessary/used covariates
m <- model.frame(lm_object)

m[,1] <- fitted.values(lm_object)
# m[,1] equals now the covariates times estimate of beta

# Step (B)
res <- residuals(lm_object)
centered_res <- res - mean(res)

getCoef <- function(d, i){
# note m[,1] directly after entering getCoef() equals
# fitted.values(lm_object).

# Step (C)
# here we add an iid sample of the centered residuals
m[,1] <- m[,1] + d[i]

# Step (D)
# refitting using the same model, but the new locally
# modified dataset m, that exists in the scope of getCoef()
coefficients(update(lm_object, data=m))

}

ret <- boot::boot(centered_res, getCoef, R=R)$t
colnames(ret) <- names(coefficients(lm_object))
ret

}
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
bootLSE(hormone_fit, R=10)

## (Intercept) diabetesT2 age height

## [1,] 102.34053 -2.2475860 0.07826922 -0.010915485

## [2,] 99.71085 -2.2493330 0.07342633 0.005127545

## [3,] 99.59317 -2.6704092 0.08138058 0.004740870

## [4,] 98.49276 -1.7184202 0.06237397 0.013339298

## [5,] 102.25480 -3.5801511 0.10722537 -0.013701580

## [6,] 99.15882 -1.7457254 0.05083991 0.011253981

## [7,] 97.88378 -2.3224875 0.07893495 0.014210316

## [8,] 101.89059 -1.5704854 0.04695695 -0.002841336

## [9,] 101.52333 -0.6861021 0.03155923 0.000668564

## [10,] 100.25149 -1.3005371 0.04135630 0.007025591
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In the rest of this section, we will apply the model-based bootstrap to construct
confidence intervals for the single components of β and to test hypotheses about β,
asymptotically. This inferential part is based upon the assumption that

√
n
(
β̂(n) − β

)
,

√
n
(
β̂∗(n) − β̂(n)

)
(5.7)

both tend to the samemultivariate normal distribution.Wewill prove these asymptotic
results later. To get an idea of the variance-covariance structure, recall (5.3) to see
that

β̂ − β = (x�x)−1x�ε.

Therefore, the variance-covariance of β̂ is given by

(
(x�x)−1x�

)
D

(
(x�x)−1x�

)� = σ 2 (x�x)−1 ≡ Σ2(n),

where D is a diagonal p × p matrix with σ 2 as entry in each diagonal component
and 0 for all other components. This variance-covariance matrix could be estimated
by s2n (x�x)−1. Asymptotically, the Formula (5.5) to estimate σ 2 is fine but biased.
Instead, we will use here

σ̂ 2
n = (Y − x β̂)�(Y − x β̂)

n − p
, σ̂ ∗2

n = (Y ∗ − x β̂∗)�(Y ∗ − x β̂∗)
n − p

, (5.8)

where n − p are the degrees of freedom. Thus

Σ̂2(n) = σ̂ 2
n (x�x)−1, Σ̂∗2(n) = σ̂ ∗2

n (x�x)−1

will be used here. The diagonal components of these matrices are variance estimates
of the corresponding components of β̂ and β̂∗, respectively. Denote by

γ̂ 2
q = Σ̂2(n)q,q , γ̂ ∗2

q = Σ̂∗2(n)q,q

the corresponding estimates.
Now we get from (5.7) under proper assumptions that

sup
t∈R

∣∣P
(
(β̂q − βq)/γ̂q ≤ t

) − P
∗
n

(
(β̂∗

q − β̂q)/γ̂
∗
q ≤ t

) ∣∣ −→ 0, as n → ∞

andwe can proceed as in Sect. 3.1 to construct the confidence intervals for the compo-
nents ofβ, seeResamplingScheme3.3. In the next example,we list the corresponding
R-code.

R-Example 5.6 The following R-function is very similar to the one implemented
in R-Example 5.5 and returns the confidence interval for βq , (q = 1, . . . , p).



5.1 Homoscedastic Linear Regression under Fixed Design 81

bootLSE_ci = function(lm_object, conf.level=0.95, R=999){

# lm_object - a model fit returned by stats::lm
# conf.level - confidence level for the required interval
# R - number of MC simulations

m <- model.frame(lm_object)
m[,1] <- fitted.values(lm_object)
# m[,1] equals now the covariates times estimate of beta

res <- residuals(lm_object)
centered_res <- res - mean(res)

beta_est <- coefficients(lm_object)

scaled_beta <- function(d, i){
m[,1] <- m[,1] + d[i]
fit <- update(lm_object, data=m)
(beta_est - coefficients(fit)) / sqrt(diag(vcov(fit)))

}

boot_scaled_beta <- boot(centered_res, scaled_beta, R=R)$t

a <- (1 - conf.level) / 2

# calculate the quantiles for the intercept and the covariates
# based on the boostrapped (centered and scaled) beta.
qlu <- apply(boot_scaled_beta, 2, quantile, probs = c(a, 1 - a))

# calculate the standard deviation for the covariates
# based on the original data set.
sigma_est <- sqrt(diag(vcov(lm_object)))

# return the estimate and the confidence intervals
# according the formula "est +/- quantile x standard deviation"
rbind(
lower = beta_est - qlu[2,] * sigma_est,
estimate = beta_est,
upper = beta_est - qlu[1,] * sigma_est)

}

Finally, we can calculate a 95% confidence intervals for the estimates of our hormone
data.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
bootLSE_ci(hormone_fit)

## (Intercept) diabetesT2 age height

## lower 96.82218 -3.6652859 0.03130904 -0.0188421761

## estimate 100.68437 -2.2211152 0.07127644 0.0001698143

## upper 104.55555 -0.7184826 0.11285184 0.0210647928

In multivariate regression analysis, we often want to knowwhether a certain com-
ponent of the model can be neglected or equals a theoretical known value. If we are
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interested in only a single component, one could simply use the confidence interval
for that component. For instance, if the 95% CI for the parameter height contains
zero, then, given the other covariates, height can be neglected. But sometimes one
has to judge about several components simultaneously. Usually, this is necessary
if one of the covariates is ordinal and has more than two categories. For instance,
a specific type of diabetes is called LADA-diabetes. Hence, if our dataset would
consist of all three types, then, in general, this is coded with two covariates, where
the 2-tuple (0,0), (1,0), and (0,1) represents LADA-diabetes, Type1-diabetes, and
Type2-diabetes, respectively. Thus, our model would have 4 β’s, one parameter for
age, one parameter for height, but now also one parameter for Type1-diabetes and one
parameter for Type2-diabetes. In this case, the question if the diabetes type is neces-
sary to explain the hormone data refers to two parameters simultaneously. Note, we
are not constraint to one variable with more than two categories. Imagine our dataset
would contain several parameters from an electrocardiogram. A reasonable question
would be if these group of (electro-cardio) parameters are necessary to explain the
hormone data. Usually, the likelihood ratio test is used to answer such questions, but
a model-based bootstrap can easily be defined.

Resampling Scheme 5.7 We consider two linear models

(M1) Yi =
p∑

q=1

xi,qβq + εi

and

(M2) Yi =
p̃∑

q=1

xi,qβq + εi ,

where i = 1, . . . , n and p̃ < p.

(A) Obtain the LSE, denoted by β̂M1, under model M1 and calculate the correspond-
ing Mahalanobis distance d(β̂M1, S), that is

√
(β̂M1

p̃+1, . . . , β̂
M1
p )�S−1(β̂M1

p̃+1, ..., β̂
M1
p ),

where S is the estimated covariance of (β̂M1
p̃+1, . . . , β̂

M1
p ).

(B) Fit model M2 and generate m bootstrap datasets according to the fitted model
M2 using (A)–(C) from Resampling Scheme5.4.

(C) Fit model M1 to each bootstrap dataset and obtain in the k-th fit (k = 1, . . . ,m)
the Mahalanobis distance d(β̂

∗,M1
k , S∗

k ), where S∗
k is the covariance of (β̂∗,M1

k; p̃+1,

. . . , β̂
∗,M1
k;p ).

(D) Take
1

m

m∑

k=1

I{d(β̂
∗,M1
k ,S∗

k )>d(β̂M1,S)}
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as a p-value for comparing model M1 and M2.

Proving that RSS5.7 works, i.e., can be used to compare the two models is left to
the reader, see Exercise 5.88.

R-Example 5.8 Assumewewant to test if the age andheight are necessary to explain
thehormonedata, i.e., H0 : (βage, βheight) = (0, 0)versusH1 : (βage, βheight) �= (0, 0).
Although height does not influence the hormone level, H1 is true because age has an
effect on the hormone level.

boot_cmp_M1_M2 = function(m1_frml, m2_frml, data, R = 999){
# M2 must be the smaller model

# m1_frml - formula for model M1
# m2_frml - formula for model M2
# data - data to be modeled
# R - number of MC simulations

fit_M1 = lm(m1_frml, data = data)
fit_M2 = lm(m2_frml, data = data)

# we only need the coefficients that are in M1 an not in M2
names_extra_coef = setdiff(
names(coefficients(fit_M1)),
names(coefficients(fit_M2)))

# Step (A)
# coefficients, variances and the Mahalanobis distance
# for the additional covariates of the larger model M1
coef_m1 = coefficients(fit_M1)[names_extra_coef]
S = vcov(fit_M1)[names_extra_coef,names_extra_coef]
S_inv = solve(S)
maha_dist = sqrt(t(coef_m1) %*% S_inv %*% coef_m1)[1,1]

# m is a data.frame containing Y (first column) and all
# necessary/used covariates
m = model.frame(fit_M1)

# Step (B)
# m[,1] equals covariates times estimate of beta under M2
m[,1] = fitted.values(fit_M2)
res = residuals(fit_M2)

centered_res = res - mean(res)

get_standardized_beta = function(d, i){
# This following still belongs to Step (B)
# here we add an iid sample of the centered residuals, i.e.
# generating a data set under model M2
m[,1] = m[,1] + d[i]

# Step (C)
# refitting using this new data set under model M1
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refit = update(fit_M1, data=m)
coef_refit = coefficients(refit)[names_extra_coef]
S_boot = vcov(refit)[names_extra_coef,names_extra_coef]
S_inv_boot = solve(S_boot)

sqrt(t(coef_refit) %*% S_inv_boot %*% coef_refit)[1,1]
}
boot_maha_dist = boot::boot(centered_res, get_standardized_beta,

R=R)

# Step (D)
c(pvalue = mean(boot_maha_dist$t > maha_dist))

}

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
# checking H0: beta(height) = 0, H1: beta(height) != 0
# H0 holds true
boot_cmp_M1_M2(hormone ˜ diabetes + age + height,

hormone ˜ diabetes + age, data=hormone_data)

## pvalue

## 0.983984

# checking H0; (beta(age), beta(height)) = (0,0),
# H1: (beta(age), beta(height)) != (0,0)
# H1 holds true
boot_cmp_M1_M2(hormone ˜ diabetes + age + height,

hormone ˜ diabetes, data=hormone_data)

## pvalue

## 0.005005005

5.1.2 LSE Asymptotic

We start this section with an investigation of asymptotic normality of the LSE. In
order to apply Cramér-Wold device later on, we provide the following lemma.

Lemma 5.9 Let a� = (a1, . . . , ap) be a fixed vector. Assume the linear model (5.1)
as stated in the introduction. In addition we assume that

(i) n−1x�x −→ V , for some positive definite p × p matrix V .

Then, as n → ∞,
n−1/2a�x�ε −→ N (0, ρ2),

where ρ2 = σ 2a�Va.
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Proof Let (b1, . . . , bn) = a�x�, hencea�x�ε = ∑n
i=1 biεi . Sincea

�x�ε is univari-
ate with zero mean, we get by (i) that σ 2 ∑n

i=1 b
2
i = Var(a�x�ε) =

E(a�x�ε(a�x�ε)�) = σ 2a�x�xa = nρ2 + o(n). Thus, in order to verify the Lin-
deberg condition, it suffices to proof

1

n

n∑

i=1

b2i

∫

{|εi |>δn1/2/|bi |}
ε2i dP = o(1), for all δ > 0.

As we have already seen, n−1 ∑n
i=1 b

2
i → a�Va. This entails, for instance, by con-

traposition, that c2n = n−1 maxi=1,...,n b2i converges to zero. Furthermore,

n1/2

|bi | = 1

n−1/2|bi | ≥ 1

cn
−→ ∞, as n → ∞.

Therefore, Lindeberg’s condition is fulfilled, since the integrals corresponding to
this condition can be bounded by E(ε21I{|ε1|≥δ/cn}) which tends to 0, as n → ∞. This
finally completes the proof. �

Theorem 5.10 Assume the linear model (5.1) as stated in the introduction and that
conditions (i) of Lemma5.9 is fulfilled. Then

n1/2(β̂(n) − β) −→ N (0, σ 2V−1), as n → ∞,

in distribution.

Proof Use the representation (5.3) to get

n1/2(β̂(n) − β) = n−1/2(n−1x�x)−1x�ε.

According to Cramér-Wold device the last lemma implies

n−1/2x�ε −→ N (0, σ 2V ), as n → ∞

in distribution. Since (n−1x�x)−1 −→ V−1, due to (i), we get in summary

n−1/2(n−1x�x)−1x�ε −→ N (0, σ 2V−1) as n → ∞

in distribution which completes the proof. �

Theorem 5.11 Under the assumptions of Theorem5.10, we get w.p.1

1

n
x�ε −→ 0 and β̂(n) −→ β, as n → ∞.
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Proof Since

x�ε =
⎛

⎜⎝
x1,1ε1 + . . . + xn,1εn

...
...

...
...

...

x1,pε1 + . . . + xn,pεn

⎞

⎟⎠ ,

we can restrict our considerations to the first coordinate of x and set for notational
convenience xi ≡ xi,1. Furthermore, we set

Sn = n−1
n∑

i=1

xiεi , Sk,n = n−1
n∑

i=2k+1

xiεi , for 2k < n ≤ 2k+1,

and apply Kolmogorov’s inequality to get for δ > 0

P

(
max

2k<n≤2k+1
|Sk,n| ≥ δ

)
≤ δ−22−2k

2k+1∑

i=2k+1

x2i σ
2 = O(2−k),

since n−1 ∑n
i=1 x

2
i −→ v with v ∈ R.

Similarly,

P

(
|S2k | ≥ δ

)
= O(2−k).

This, together with the Borel-Cantelli Lemma, yields

S2k −→ 0, max
2k<n≤2k+1

|Sk,n| −→ 0

w.p.1.
But for 2k < n ≤ 2k+1 we have

|Sn| ≤ |Sk,n| + |S2k |

which finally proves the first assertion.
For the second assertion use representation (5.3) to get

β̂(n) − β =
(1
n
x�x

)−1
n−1x�ε.

Application of (i) together with the first part completes the proof. �
Corollary 5.12 Under the assumptions of Theorem5.10 we get w.p.1

s2n ≡ (Y − x β̂(n))�(Y − x β̂(n))

n
−→
n→∞ σ 2.
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Proof Note that β̂(n) is the LSE and therefore,

(Y − x β̂(n)) ⊥ xγ

for all γ ∈ R
p. Thus

ns2n = (Y − x β̂(n))�Y = (Y − x β̂(n))�(xβ + ε)

= (Y − x β̂(n))�ε = (x(β − β̂(n)) + ε)�ε

= (β − β̂(n))� x�ε + ε�ε.

Now divide both sides by n, use Theorem5.11 and the SLLN to complete the
proof. �

Next, we consider the vector of the estimated residuals given by

ε̂ ≡ (ε̂1, . . . , ε̂n)
� = Y − x β̂ = x(β − β̂) + ε,

where we suppressed n of β̂(n). Thus,

ε̂ − ε = x(β − β̂)

and therefore

n−1
n∑

m=1

(ε̂m − εm) = n−1
n∑

m=1

p∑

j=1

xm, j (β j − β̂ j ).

According to assumption (i) of Lemma5.9 and Cauchy-Schwarz’s inequality we get

1

n

∣∣∣
n∑

m=1

xm, j

∣∣∣ ≤
(1
n

n∑

m=1

x2m, j

)1/2 −→ v
1/2
j .

Furthermore, β j − β̂ j −→ 0 w.p.1 and therefore we obtain

1

n

n∑

m=1

(ε̂m − εm) −→ 0

which finally leads to
1

n

n∑

m=1

ε̂m −→ 0 (5.9)

w.p.1.
In summary, Corollary5.12 together with (5.9) says

Lemma 5.13 Under the assumptions of Theorem5.10 let F̂n be the edf. of the esti-
mated residuals ε̂1, . . . , ε̂n. Then, w.p.1
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μn ≡
∫

x F̂n(dx) −→ 0, s2n =
∫

x2 F̂n(dx) −→ σ 2.

Finally, we want to mention two well-known properties of the LSE.

Lemma 5.14 Under the assumptions of Theorem5.10 we have

E(β̂) = β, COV(β̂) = σ 2(x�x)−1.

Proof Recall (5.3)
β̂ = β + (x�x)−1x�ε

and take expectation on both sides to get the first equation, since E(ε) = 0. The
second equation we obtain from

COV(β̂) = E
(
(β̂ − β)(β̂ − β)�

) = (x�x)−1x�
E(εε�)x(x�x)−1

= σ 2(x�x)−1,

since E(εε�) = σ 2 Ip, where Ip denotes the identity matrix of size p × p. �

5.1.3 LSE Bootstrap Asymptotic

In this section, we assume a linear regression model

Y (n) = x(n)β + ε(n)

such that conditions (i) of Lemma5.9 are fulfilled. For the bootstrap we use the
Resampling Scheme5.4.

Lemma 5.15 If the assumptions of Theorem5.10 are fulfilled we have w.p.1, as
n → ∞,

1

n
‖ε̂ − ε‖2 = 1

n

n∑

i=1

(ε̂i − εi )
2 −→ 0 and

1

n
‖ε̃ − ε‖2 = 1

n

n∑

i=1

(ε̃i − εi )
2 −→ 0.

Proof Recall from the last section that ε̂ − ε = x(β − β̂). Thus,

‖ε̂ − ε‖2 = (β − β̂)�x�x(β − β̂).

Now, apply Lemma5.9 and Theorem5.11 to conclude the first convergence. The
second assertion is an immediate consequence of the first part and Lemma5.13, i.e.,
ε̃i − ε̂i = μn → E(ε) = 0 w.p.1. �
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Lemma 5.16 Under the assumptions of Theorem5.10 we have w.p.1,

F̃n −→ F

in distribution, as n → ∞.

Proof Let f be a bounded Lipschitz function, i.e., there exists 0 ≤ K < ∞ such that
for all x, y ∈ R:

| f (x) − f (y)| ≤ K |x − y|.

It follows

1

n

n∑

i=1

| f (ε̃i ) − f (εi )| ≤ K

n

n∑

i=1

|ε̃i − εi | ≤ K
(1
n

n∑

i=1

(
ε̃i − εi

)2)1/2 −→ 0,

as n → ∞, where the last convergence is obtained from Lemma5.15. Hence

∫
f (x) F̃n(dx) −

∫
f (x) Fn(dx) −→ 0, as n → ∞,

where Fn is the edf. of the true residuals ε1, . . . , εn . The assertion follows by applying
the SLLN to

∫
f (x)Fn(dx). �

In the next theorem, we state the bootstrap version of Theorem5.10.

Theorem 5.17 Under the assumption of Theorem5.10 we have, w.p.1,

n1/2(β∗(n) − β̂(n)) −→ N (0, σ 2V−1), as n → ∞.

Proof Note first that

x�x(β∗(n) − β̂(n)) = x�ε∗ =
⎛

⎜⎝
x1,1ε∗

1 + . . . + xn,1ε
∗
n

...
...

...
...

...

x1,pε∗
1 + . . . + xn,pε

∗
n

⎞

⎟⎠ .

Fix a ∈ R
p to obtain, as in the classical situation, i.e., as in the proof of Lemma5.9,

a�x�ε∗ =
p∑

k=1

n∑

m=1

akxm,kε
∗
m =

n∑

m=1

ε∗
m

p∑

k=1

akxm,k =
n∑

m=1

ε∗
mbm .

Since ε∗
1, . . . , ε

∗
n ∼ F̃n are i.i.d., the summands on the right-hand side are independent

and centered. To prove

n−1/2a�x�ε∗ −→ N (0, ρ2),



90 5 Regression Analysis

as n → ∞, where ρ2 = σ 2a�Va, we have to verify Lindeberg’s condition

1

n

n∑

m=1

b2m

∫

{|x |≥δn1/2/|bm |}
x2 F̃n(dx) −→ 0, as n → ∞,

for all δ > 0. Compare the proof of Lemma5.9 to see that it suffices to verify for an
arbitrarily chosen fixed δ

∫

{|x |≥δ/cn}
x2 F̃n(dx) −→ 0

for some cn → 0. Thus the proof is completed if we can show that

∫

{|x |≥K }
x2 F̃n(dx)

becomes arbitrarily small if n → ∞ for all constants K large enough.
First observe that according to Lemma5.15 and the SLLN we get

∫
x2 F̃n(dx) −→

∫
x2 F(dx) = σ 2, as n → ∞,

w.p.1. Furthermore, Lemma 5.16 and the continuous mapping theorem (Theorem
5.1, Billingsley (1968)) yields for continuity points K of F that, as n → ∞,

∫

{|x |<K }
x2 F̃n(dx) −→

∫

{|x |<K }
x2 F(dx).

In summary we therefore conclude that, w.p.1,

∫

{|x |≥K }
x2 F̃n(dx) =

∫
x2 F̃n(dx) −

∫

{|x |<K }
x2 F̃n(dx) −→

∫

{|x |≥K }
x2 F(dx),

as n → ∞, which completes the proof since the integral on the right-hand side
decreases to 0, as K → ∞. �

5.2 Linear Correlation Model and the Bootstrap

Considering rental prices in Euro, it seems intuitive that rents for small flats differ not
as much as rents for very large flats. In such cases, one could assume that the variance
of a random variable Y , e.g., rent, depends on the covariate X , e.g., size of the flat
in m2. We now generate a very simple dataset that reflects such a heteroscedasticity
using the following structure:
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Fig. 5.2 Simulated rent data

Y = 10 · size + ε(size),

where ε(size) ∼ N (0, 4 · size2).
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gen_rents <- function(N = 100){
data.frame(size = 35 + rexp(n = 100, rate = 1 / 100)) %>%
dplyr::mutate(price = 100 + 10 * size
+ rnorm(100, mean = 0, sd = 2*size))

}
rents <- gen_rents()

Of course, heteroscedasticity may have many faces but the funnel shape as illustrated
in Fig. 5.2 is a very typical one.
The following model, compare Stute (1990), allows such a heteroscedastic situation.
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Definition 5.18 The linear correlation model fulfills:

(i) (Yi , Xi ), i ≥ 1, i.i.d. random vectors in R1+p.
(ii) Yi = X�

i β + εi for some β� = (β1, . . . , βp) ∈ R
p.

(iii) The matrix Σ = E(Xi X�
i ) is finite and positive definite.

(iv) For all i ≥ 1 and q = 1, . . . , p it holds that E(Xi,qεi ) = 0.
(v) The matrix M = (Mq,s)1≤q,s≤p, where Mqs = E(Xi,q Xi,sε

2
i ) exists.

Remark 5.19 By (i) and (ii) from Definition5.18 εi is a sequence of i.i.d. random
variables.

Remark 5.20 Condition (i) and (ii) also holds for the homoscedastic linear regres-
sion. Under the fixed designwe assumed that n−1xx� → V , cf. Lemma5.9 (i), which
is similar to Condition (iii). Moreover, the fixed design implicitly made the covari-
ate and residuals uncorrelated, i.e., Condition (iv). Besides the randomness of the
covariates, the major difference now is the condition (v), i.e., we explicitly allow
dependency between covariates and residuals.

As before we denote the design matrix by

X =
⎛

⎜⎝
X1,1 . . . X1,p
...

...
...

Xn,1 . . . Xn,p

⎞

⎟⎠ .

Although Xi may be related to εi somehow, the usually LSE β̂ = (X�X)−1X�Y is
a reasonable estimator, i.e., as n → ∞,

β̂(n) → β

w.p.1 and

n1/2(β̂(n) − β) −→ N (0,Σ−1MΣ−1), (5.10)

in distribution, cf. Sect. 5.2.3. Since X is random, (X�X)−1 may not exist for fixed
n. However, the asymptotic results are not affected by this technical issue. For ease
of simplicity, we postpone to address this problem till actually proving the results in
the later sections. From the practical point of view, if (X�X)−1 does not exist for a
particular dataset, one could use the Moore-Penrose inverse. It is well known that β̂
based on the Moore-Penrose inverse minimizes the least square error. However, be
aware of the fact that in this case other β̃ exist that also minimize the least square
error. Hence, interpreting the coefficients is not possible anymore.

Note that the estimator is not unbiased anymore:

E(β̂) = β + E((X�X)−1X�ε). (5.11)
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This bias is technically problematic because the determinant of (X�X)−1 is the
inverse of det(X�X). Therefore we need that at least the expectation of the inverse
of det(X�X) exists. For instance, assume that X�X = Z is a random variable
in R with finite expectation, then E(1/Z) must not exist. For two dimensions the
complexity increases dramatically. Assume that

X�X =
(
Z1 Z2

Z2 Z3

)
,

then we need that E
(
(Z1Z3 − Z2

2)
−1

)
must be finite. We will prove, under certain

conditions, that n1/2E((X�X)−1X�ε) → 0, confer to Theorem5.30. This shows that
estimating and bootstrapping the bias is rather an academic exercise than of practical
interest. It also allowsus to consider the adjusted estimator β̂(n) − E((X�X)−1X�ε),
without interfering the asymptotic distribution (5.10).

Unfortunately, Resampling Scheme5.4 is not appropriate here since it does not
reflect the dependence between the error term εi and the corresponding Xi . In order
to illustrate the inappropriateness of this resampling scheme, i.e., simply resample
the residuals, we plot the original generated rent dataset and a dataset that was
bootstrapped using Resampling Scheme5.4, see Fig. 5.3. Especially, the increased
variance of the rent for small flats indicates that the bootstrap is not correct. Of course,
this results from assigning residuals to small flats that in fact belong to large flats.

fit <- lm(price ˜ size, data = rents)
rents$type <- "original"
boot_rents <- rents
boot_rents$type <- "residual bootstrap"
boot_rents$price <- fitted(fit) + sample(residuals(fit))
ggplot(data=rbind(rents, boot_rents),

aes(y = price, x = size, col = type)) +
xlab("size in mˆ2") +
ylab("price in Euro") +

geom_point() +
theme(legend.position = "bottom")

The following two sections provide resampling schemes thatwork under the linear
correlation model.

5.2.1 Classical Bootstrap

Resampling Scheme5.4 separates the covariates Xi and the error term εi . This is the
reason why this scheme, in general, does not work for the linear correlation model,
because Xi and εi is only uncorrelated, but not independent!

An appropriate resampling scheme is the classical bootstrap that resamples from
the set {(Y1, X1), . . . , (Yn, Xn)}. This scheme implicitly incorporates the error term.
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Fig. 5.3 Simulated rent data and a simple bootstrap using only the residuals

Resampling Scheme 5.21

(A) Based on the observations (Yi , Xi )1≤i≤n calculate the LSE β̂.
(B) Draw an i.i.d. sample (Y ∗

i , X∗
i )1≤i≤n from (Yi , Xi )1≤i≤n.

(C) Compute the LSE of the bootstrap sample, i.e., determine β̂∗ = (X∗�X∗)−1

X∗�Y ∗.

Remark 5.22 Although resampling the residuals is not part of the Resampling
Scheme5.21, we want to emphasize that the proof makes explicit usage of resampled
residuals defined as ε∗

i = Y ∗
i − X∗�

i β̂ for i = 1, . . . , n.

With the resampled residuals as defined in Remark5.22 we obtain the usual sep-
aration

β̂∗ = (X∗�X∗)−1X∗�Y ∗ = β̂ + (X∗�X∗)−1X∗�ε∗.
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This presentation is the key to prove Theorem5.35, i.e.,

n1/2(β̂∗(n) − β̂(n)) −→ N (0,Σ−1MΣ−1)

in distribution which equals the asymptotic distribution of n1/2(β̂(n) − β(n)). This
shows that the classical bootstrap is a reasonable resampling scheme for the linear
correlation model. For instance, we have now the theoretical tool to construct confi-
dence intervals or test two models under the Definition5.18. Taking the covariance
matrix for β̂ stated in this section into account, one can follow the approach we
presented for the homoscedastic model, see Sect. 5.1.1.

5.2.1.1 Bias in the Bootstrap World

Looking again at the bias in the bootstrap world, we see that the expectation does
not exist, because the probability that all rows of X∗ equal the covariate vector of
the first sample X1 is not zero. Therefore, the inverse of X∗�X∗ as well as

E
∗
n((n

−1X∗�X∗)−1n−1X∗�ε∗)

does not exist. An artificial way out could result from the fact that the absolute value
of every component of the inverse of n−1X∗�X∗ is a ratio of a determinant of sub
matrices n−1X∗�X∗ and the determinant of n−1X∗�X∗. This is based on Cramer’s
rule for solving linear equations. The determinant of n−1X∗�X∗ in the denominator
is causing the trouble. Since we know that det(n−1X∗�X∗) and det(n−1X�X)

converge both to the determinant of Σ we could try to substitute the determinant
of n−1X∗�X∗ in the denominator by the determinant of n−1X�X because the last
expression is a constant with respect to E

∗
n . A more practical way out could be to

use the Moore-Penrose pseudo-inverse as an inverse for X∗�X∗. A third and more
pragmatic option could be to introduce additionally the indicator function that is one
if and only if the regular inverse of n−1X∗�X∗ exists. In any case one would have to
prove at least that

n1/2E∗
n(A

−1
n n−1X∗�ε∗) → 0

w.p.1,where A−1
n is one of the discussed surrogates for the regular inverse.Otherwise,

the bias correction would change the asymptotic distribution.
Under Definition5.18 for the special case that we have no intercept and only one

covariate that is additionally bounded away from zero, the bias can be estimated
and used for a correction without disturbing the asymptotic distribution. This can
be seen as follows. Note that the assumption 0 < c ≤ Xi for all i implies that all
moments of Δn = (

∑
1≤i≤n X

∗2
i /n)−1 − (E(X2

1))
−1 with respect to E

∗
n are finite.

For Z∗
n = ∑

1≤i≤n X
∗
i ε

∗
i we have
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∣∣∣n1/2E∗
n

(
β̂∗(n) − β̂(n)

)∣∣∣ =
∣∣∣n1/2E∗

n

(
(

∑

1≤i≤n

X∗2
i /n)−1n−1Z∗

n

)∣∣∣

=
∣∣∣E∗

n

(
(EX2

1)
−1n−1/2Z∗

n

) + E
∗
n

(
n−1/2Δn Z

∗
n

)∣∣∣

=
∣∣∣E∗

n

(
Δnn

−1/2Z∗
n I{|Δn |≤τ }

) + E
∗
n

(
Δnn

−1/2Z∗
n I{|Δn |>τ }

)∣∣∣

≤ τ E
∗
n

(∣∣n−1/2Z∗
n

∣∣) + ‖Δn‖∗
3 · ‖n−1/2Z∗

n‖∗
2 · ‖I{|Δn |>τ }‖∗

6

for all τ > 0, where the third equality follows from the fact that E∗
n(Z

∗
n) = 0, con-

fer Lemma5.33 and where ‖ · ‖∗
r denotes the Lr -norm with respect to E

∗
n . As we

alreadymentioned ‖Δn‖∗
3 is bounded. Furthermore, ‖n−1/2Z∗

n‖∗2
2 = E

∗
n((X

∗
1ε

∗
1)

2) →
E((X1ε1)

2) is also bounded w.p.1. Finally, w.p.1 we have P∗
n(|Δn| > τ) → 0 by the

WLLN for n−1 ∑
1≤i≤n X

∗2
i . Altogether we can conclude that the right-hand side

converges to zero.
Interestingly, the next section (much easier) reveals that the bias in the bootstrap

world applying the wild bootstrap is zero.

5.2.2 Wild Bootstrap

The backbone for all resampling schemes so far is drawing with replacement directly
from the observations or from the estimated residuals. Thewild bootstrap introduced
in this section has a complete different concept. As we already know, we are not
allowed to separate the error term and covariates. Therefore, we leave the estimated
residuals ε̂i and the corresponding covariates Xi together and introduce randomness
by multiplying ε̂i with a standardized random variable τ . This idea goes back to Wu
(1986). For our investigations, we only consider Rademacher random variables, i.e.,
τ = −1 or τ = 1, where both events have probability 1/2.

Resampling Scheme 5.23

(A) Based on the observations (Yi , Xi )1≤i≤n ⊂ R
1+p calculate the LSE β̂(n).

(B) Determine the estimated residuals ε̂i = Yi − X�
i β̂.

(C) Define the wild bootstrap residuals by ε∗
i = ε̂i · τi , where τ1, . . . , τn is an i.i.d.

sequenceofRademacher rvs.which is also independent of (X1, ε1), . . . , (Xn, εn).
(D) Set X∗

i = Xi , Y ∗
i = X∗�

i β̂ + ε∗
i .

(E) Compute β∗(n) = (X∗�X∗)−1X∗�Y ∗, the LSE of the bootstrap sample.

Of course, other distributions for τ are also possible, but they should have zero
mean and variance one. For instance, under certain models the third moments of
n1/2(β̂ − β) can be estimated by the bootstrap if E∗(τ 3) = 1 holds, see Liu (1988).

Changing the way howwe resample the data is also reflected by changing from P
∗
n

to P∗. P∗
n was the measure that puts equal mass on all observed data points, whereas

P
∗ orE∗ consider anything beside the random variables τi as constants! For instance,

E
∗(ε∗

i ) = ∫
ε̂iτP

∗(dτ) = ε̂i1/2 − ε̂i1/2 = 0.
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Remark 5.24 It is important to note that X∗
i,q and ε∗

i are independent with respect
to P

∗ for all q = 1, . . . , p. In Definition5.18 it is only assumed that Xi,q and εi are
uncorrelated for all q = 1, . . . , p.

The implementation of the wild bootstrap is rather simple.

WB = function(lm_object){

# lm_object - a model fit returned by stats::lm

# Step (B)
res <- residuals(lm_object)

# Step (C)
e = 2 * rbinom(length(res), 1, prob = 0.5) - 1
res <- res * e

# Step (D)
# m is a data.frame containing Y (first column) and all
# necessary/used covariates
m <- model.frame(lm_object)
m[,1] <- fitted.values(lm_object) + res
# m[,1] equals now the covariates times estimate of beta plus
# the wild-boostrap-residual

m
}

Applying this algorithm to the rent data is visualized in Fig. 5.4. Clearly the wild
bootstrap introduces variation into the dataset and does not change the funnel shape
of the original dataset in contrast to the simple algorithm that draws directly from
the residuals, see Fig. 5.3. But the bias of least square estimator β̂, see Eq. (5.11),
vanishes for the estimator β̂∗ when the wild bootstrap is applied. This can be seen as
follows. As usual we have β̂∗(n) − β̂(n) = (X∗�X∗)−1X∗�ε∗. Due to the Resam-
pling Scheme5.23 we have X∗

i = Xi and

E
∗((X∗�X∗)−1X∗�ε∗) = (

X�X
)−1

X�
E

∗(ε∗),

where the expectation on the right-hand side is zero. Despite of the departure from the
original model and the changed properties of the least square estimator, it is shown
in Theorem5.41 that the wild bootstrap can be used to approximate the asymptotic
distribution of β̂, i.e., w.p.1

n1/2(β̂∗(n) − β̂(n)) −→ N (0,Σ−1MΣ−1), as n → ∞,

in distribution with respect to P
∗.
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Fig. 5.4 Simulated rent data with a dataset obtained by the wild bootstrap

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
fit <- lm(price ˜ size, data = rents)
rents$type <- "original"
wb_rents <-
fit %>%
WB %>%
dplyr::mutate(type = "wild bootstrap")

ggplot(data=rbind(rents, wb_rents),
aes(y = price, x = size, col = type)) +
xlab("size in mˆ2") +
ylab("price in Euro") +

geom_point() +
theme(legend.position = "bottom")
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Finally, we want to remark that the classical bootstrap and the wild bootstrap can
yield under certain circumstances very different bootstrap distributions, see Exercise
5.85.

5.2.3 Mathematical Framework of LSE

As in the regression model, the LSE of β, denoted again by β̂(n) ≡ β̂, equals

β̂ = (X�X)−1X�Y, (5.12)

wherewe use theMoore-Penrose inverse if det(X�X) equals zero.Within asymptotic
considerations this is negligible because

n−1X�X = n−1

⎛

⎜⎜⎜⎜⎜⎝

n∑
i=1

Xi,1Xi,1 . . .
n∑

i=1
Xi,1Xi,p

...
...

...
n∑

i=1
Xi,p Xi,1 . . .

n∑
i=1

Xi,p Xi,p

⎞

⎟⎟⎟⎟⎟⎠

and applying the SLLN gives

Lemma 5.25 Under the assumptions (i) and (iii) of Definition5.18 it holds w.p.1
that

n−1X�X −→ Σ, as n → ∞.

SinceΣ is positive definite, w.p.1 there exists a N = N (ω) such that det(X�X) >

det(Σ)/2 > 0 for all n > N . This means that the Moore-Penrose inverse is used at
most N times.

Furthermore, we have

(X�X)(β̂ − β) = X�X
(
(X�X)−1X�Y − β

)

= X�ε =
( n∑

i=1

Xi,1εi , . . . ,

n∑

i=1

Xi,pεi

)�
(5.13)

and we can apply the multivariate CLT to obtain

Lemma 5.26 Under the assumptions in Definition5.18 it holds that, as n → ∞,

n−1/2(X�X)(β̂ − β) = n−1/2X�ε −→ N (0, M)

in distribution.
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Combining the last two lemmas we get from a well-known result of Cramér.

Theorem 5.27 Under the assumptions in Definition5.18 it holds that, as n → ∞,

n1/2(β̂(n) − β) −→ N (0,Σ−1MΣ−1)

in distribution.

Finally, we have

Theorem 5.28 Under the assumptions (i) – (iv) in Definition5.18 it holds w.p.1 that

β̂(n) −→ β, as n → ∞.

Proof Note that

β̂(n) = (X�X)−1X�Y = β + (X�X)−1X�ε = β + (n−1X�X)−1(n−1X�ε).

Apply Lemma5.25 and the SLLN, upon observing that E(Xi, jεi ) = 0, to complete
the proof. �

Lemma5.26 already provided information about the asymptotic distribution of
n−1/2X�ε, but we even have L2-convergence.

Lemma 5.29 Under the assumptions (i)–(iii) and (v) of Definition5.18 the random
variable n−1/2X�ε converge in L2.

Proof Consider the q−th component of n−1/2X�ε. According to Remark5.19 and
assumption (i) {Xi,qεi }i is a sequence of i.i.d. random variables. Therefore we have

E(n−1/2
n∑

i=1

Xi,qεi )
2 = E(X2

1,qε
2
1) = Mq,q .

The results follow directly fromVitali’s Theorem, see (18) of Theorem5.5 in Shorack
(2000). �

Theorem 5.30 Denote by Sqr (n) the component in the q−th row and r−th column
of (n−1X�X)−1. Assume that E(S2qr (n)) < K < ∞ for all 1 ≤ q, r ≤ p. Under the

Definition5.18 it holds that n1/2E(β̂(n) − β) → 0, as n → ∞.

Proof We have

n1/2E(β̂(n) − β) = E((n−1X�X)−1n−1/2X�ε).

For notational convenience denote by Znr the r−th component of n−1/2X�ε. The
q-th component of n1/2E(β̂(n) − β) equals then



5.2 Linear Correlation Model and the Bootstrap 101

E
( p∑

r=1

Sqr (n)Znr
) =

p∑

r=1

E(Sqr (n)Znr ).

The result follows if we show that E(Sqr (n)Znr ) converges to zero. According to
Lemma5.25 we have that Sqr (n) converges a.s. to some s ∈ R. Therefore an =
Sqr (n) − s defines a random variable that converges a.s. to zero. Note, by assumption
(iv) we have E(sZnr ) = 0. Choosing δ > 0 gives

|E(Sqr (n)Znr )| = |0 + E(an Znr )|
= ∣∣E

(
an Znr I{|an |≤δ}

) + E
(
an Znr I{|an |>δ}

)∣∣

≤ δE
(|Znr |

) + [
E(a2n)E

(
Z2
nr I{|an |>δ}

)]1/2

≤ δE(Z2
nr )

1/2 + [(
K + 2|s|K 1/2 + s2

)
E

(
Z2
nr I{|an |>δ}

)]1/2
.

By the Lemma of Pratt, we have that E(Z2
nr I{|an |>δ}) converges to zero because

Z2
nr I{|an |>δ} converges a.s. to zero and is bounded by the Z2

nr which converges in
L2. Since δ > 0 can chosen arbitrarily small and E(Z2

nr ) is constant in n, we obtain
altogether that E(Sqr (n)Znr ) converges to zero. �

5.2.4 Mathematical Framework of Classical Bootstrapped
LSE

As already indicated in the introduction, the resampling procedure for the correlation
model cannot be the same as the one stated for the regression model, since the error
terms may be correlated to the corresponding design points and therefore it makes
no sense to tear them apart.

In the classical bootstrap approach the resampling is done according to Fn , the
edf. of the observations. To be precise:

Resampling Scheme 5.31

(A) Based on the i.i.d. observations (Y1, X1), . . . , (Yn, Xn) determine the LSE β̂ and
denotewith Fn the edf. of the observations.Note that Fn now is a (p + 1)−variate
edf.

(B) Draw the classical bootstrap sample as i.i.d. sample (Y ∗
1 , X∗

1), . . . , (Y
∗
n , X∗

n)

according to Fn and denote with X∗ = X∗(n) the corresponding design matrix,
precisely

X∗ =
⎛

⎜⎝
X∗
1,1 . . . X∗

1,p
...

...
...

X∗
n,1 . . . X∗

n,p

⎞

⎟⎠ .

(C) Calculate the LSE of the bootstrap sample according to equation (5.12), i.e.,
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β̂∗(n) = β̂∗ = (X∗�X∗)−1X∗�Y ∗

and set
ε∗
i = Y ∗

i − X∗�
i β̂, for 1 ≤ i ≤ n.

Since the calculation of the LSE is not new and due to the simplicity of step (B),
we omit the implementation of this resampling scheme.

To prove that the bootstrap approximation holds, we follow the approach Stute
(1990) and mimic the proof given in the section above.

Lemma 5.32 Under the assumptions (i) and (iii) of Definition5.18 it holds w.p.1
for Resampling Scheme5.31 that, as n → ∞,

P
∗
n

(
‖ n−1X∗�X∗ − Σ ‖ > ε

)
−→ 0, for each ε > 0.

Proof Note that

n−1X∗�X∗ = n−1

⎛

⎜⎜⎜⎜⎜⎝

n∑
i=1

X∗
i,1X

∗
i,1 . . .

n∑
i=1

X∗
i,1X

∗
i,p

...
...

...
n∑

i=1
X∗
i,p X

∗
i,1 . . .

n∑
i=1

X∗
i,p X

∗
i,p

⎞

⎟⎟⎟⎟⎟⎠
,

where each component of the matrix is an i.i.d. sum with finite first moment given
by the corresponding component of Σ . Thus, we can apply WLLN (Theorem3.7) to
complete the proof. �

Lemma 5.33 Under the assumptions (i) and (ii) of Definition5.18 and Resampling
Scheme5.31 it holds w.p.1 for all 1 ≤ q ≤ p and 1 ≤ i ≤ n that

E
∗
n(X

∗
i,qε

∗
i ) = 0.

Proof Due to the given Resampling Scheme5.31 we get

E
∗
n(X

∗
i,qε

∗
i ) = n−1

n∑

k=1

Xk,q(Yk − X�
k β̂).

But β̂ is by definition chosen such that X β̂ is the projection of Y onto the space
spannedby the columnsof X . Thus, ifwe take columnq of X it has to beperpendicular
to Y − X β̂. Since the sum on the right-hand side equals the inner product of column
q of X with Y − X β̂, this sum has to be 0. �

Lemma 5.34 Under Definition5.18 it holds for the Resampling Scheme5.31 w.p.1
that
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n−1/2X∗�ε∗ −→ N (0, M), as n → ∞,

in distribution with respect to P∗
n.

Proof To prove the Lemma we will use the Cramér-Wold device, i.e., we have to
show that w.p.1

n−1/2a�X∗�ε∗ −→ N (0, a�Ma), as n → ∞,

for all 0 �= a ∈ R
p.

According to the resampling scheme and the definition of ε∗ we get that

X∗�ε∗ =
n∑

k=1

⎛

⎜⎝
X∗
k,1ε

∗
k

...

X∗
k,pε

∗
k

⎞

⎟⎠

is a sum of i.i.d. random vectors which are centered as we have seen in Lemma5.33.
Now, for an arbitrarily chosen 0 �= a ∈ R

p we set

Z∗
n = n−1/2a�X∗�ε∗ = n−1/2

n∑

k=1

p∑

q=1

aq X
∗
k,qε

∗
k

which consists, for a given n, of the i.i.d. rvs. (
∑p

q=1 aq X
∗
k,qε

∗
k )1≤k≤n . Since X∗

k,qε
∗
k

is centered, see Lemma5.33, we obtain

VAR∗
n(Z

∗
n) = E

∗
n

(( p∑

q=1

aq X
∗
1,qε

∗
1

)2) =
p∑

q=1

p∑

r=1

aqarE
∗
n

(
X∗
1,qε

∗
1X

∗
1,rε

∗
1

)

=
p∑

q=1

p∑

r=1

aqar
(
n−1

n∑

i=1

Xi,q Xi,r (Yi − X�
i β̂)2

)
.

From β̂ → β w.p.1, see Theorem5.28, we get w.p.1 from the SLLN

VAR∗
n(Z

∗
n) −→

p∑

q=1

p∑

r=1

aqar Mq,r = a�Ma, as n → ∞.

Thus, it remains to show that Lindeberg’s condition holds, i.e., w.p.1 for every δ > 0

∫

{ | ∑p
q=1 aq X

∗
1,qε

∗
1 |≥δn1/2}

( p∑

q=1

aq X
∗
1,qε

∗
1

)2
dP∗

n −→ 0 as n → ∞.
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Replace δn1/2 by a constant K > 0. Then, we obtain from the SLLN and Theo-
rem5.28 that w.p.1

∫

{ |∑p
q=1 aq X

∗
1,qε

∗
1 |≥K }

( p∑

q=1

aq X
∗
1,qε

∗
1

)2
dP∗

n −→
∫

{ |∑p
q=1 aq X1,qε1|≥K }

( p∑

q=1

aq X1,qε1

)2
dP

which can be made arbitrarily small if K → ∞. This finally proves the lemma. �
Our final theorem of this chapter together with Theorem5.27 shows that the boot-

strap approximation based on the Resampling Scheme5.31 works.

Theorem 5.35 Under Definition5.18 it holds for the Resampling Scheme5.31 w.p.1
that

n1/2(β̂∗(n) − β̂(n)) −→ N (0,Σ−1MΣ−1), as n → ∞,

in distribution with respect to P∗
n.

Proof First note that due to Lemma5.32,

I{det(X∗�X∗)=0} = oP∗
n
(1).

Recall the definition of β̂∗ to verify

n1/2(β̂∗(n) − β̂(n)) = I{det(X∗�X∗) �=0}n1/2(β̂∗(n) − β̂(n)) + oP∗
n
(1)

= I{det(X∗�X∗) �=0}n1/2
(
(X∗�X∗)−1X∗�(X∗β̂ + ε∗) − β̂

) + oP∗
n
(1)

= I{det(X∗�X∗) �=0}n1/2(X∗�X∗)−1X∗�ε∗ + oP∗
n
(1)

= I{det(X∗�X∗) �=0}
(
n−1X∗�X∗)−1(n−1/2X∗�ε∗) + oP∗

n
(1).

Now, apply Lemma5.32 and Lemma5.34 to complete the proof. �

5.2.5 Mathematical Framework of Wild Bootstrapped LSE

Recall that the resampling scheme of the wild bootstrap, RSS5.23, introduces vari-
ability by generating an i.i.d. sequence, (τi )i≥1, of Rademacher rvs. that is addition-
ally independent of the data we want to analyze. Consequently, P∗ or E∗ consider
anything beside the (wild bootstrap) random variables τi as constants! For instance,
E

∗(ε∗
i ) = ∫

ε̂iτ P
∗(dτ) = ε̂i1/2 − ε̂i1/2 = 0. Furthermore, due to the resampling

scheme, X∗�X∗ = X�X , which implies w.p.1 that it is not invertible at most a finite
number of times, see Sect. 5.2.3.

Remark 5.36 We want to remark that the classical boostrap and the wild bootstrap
can yield under certain circumstances very different boostrap distributions and there-
fore also very different confidence intervals, see Exercise5.85
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Lemma 5.37 Under Assumption (i) and (iii) of Definition5.18 using Resampling
Scheme5.23 it holds w.p.1 that

P
∗
(
‖ n−1X∗�X∗ − Σ ‖ > ε

)
−→ 0, as n → ∞,

for each ε > 0.

The proof is left to the reader in Exercise5.89.

Lemma 5.38 Under assumption (i) and (iii) of Definition5.18 using Resampling
Scheme5.23 it holds w.p.1 for all 1 ≤ q ≤ p and 1 ≤ i ≤ n w.p.1 that

E
∗(X∗

i,qε
∗
i ) = 0.

The proof is left to the reader in Exercise5.90.

Remark 5.39 Note that Lemma5.38 holds even if the covariates and residuals are
correlated. This means that the wild bootstrap in any case forces the covariates and
residuals to be uncorrelated. In fact, we even have that the covariates and the residuals
are independent!

Lemma 5.40 Under Definition5.18 using Resampling Scheme5.23 it holds w.p.1
that

n−1/2X∗�ε∗ −→ N (0, M), as n → ∞,

in distribution with respect to P∗.

Proof Due to the Cramér-Wold device it suffices to show

n−1/2a�X∗�ε∗ −→ N (0, a�Ma).

According to Lemma5.40 n−1/2a�X∗�ε∗ is centered. We will now verify the Linde-
berg condition. Let Zni = ∑p

q=1 n
−1/2aq Xi,q ε̂iτi , then n−1/2a�X∗�ε∗ = ∑n

i=1 Zni .
Setting s2n = ∑n

i=1 VAR
∗(Zni ), we have to prove that, w.p.1

1

s2n

n∑

i=1

∫

|Zni |>εsn

Z2
nidP

∗ −→ 0, as n → ∞,

holds for all ε > 0.
We first show, that s2n → a�Ma.
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s2n =
n∑

i=1

VAR∗(Zni ) =
n∑

i=1

VAR∗(
p∑

q=1

n−1/2aq Xi,q ε̂iτi
)

= n−1
n∑

i=1

p∑

q,s=1

aqas Xi,q Xi,s ε̂
2
i VAR

∗(τi )

=
p∑

q,s=1

n−1
n∑

i=1

aqas Xi,q Xi,s(Yi − X�
i β̂)2.

From β̂ → β w.p.1, see Theorem 5.28, we get w.p.1 from the SLLN that s2n →
a�Ma. We focus now on the sum of the Lindeberg condition. Due to the very simple
structure of P∗ we can easily integrate with respect to P

∗, i.e.,

n∑

i=1

∫

|Zni |>εsn

Z2
ni dP

∗ =
n∑

i=1

( p∑

q=1

n−1/2aq Xi,q ε̂i
)2
I{|∑p

q=1 n
−1/2aq Xi,q ε̂i |>εsn}

= n−1
n∑

i=1

( p∑

q=1

aq Xi,q ε̂i
)2
I{|∑p

q=1 aq Xi,q ε̂i |>n1/2εsn}.

As we have just seen n−1 ∑n
i=1(

∑p
q=1 aq Xi,q ε̂i )

2 → a�Ma w.p.1. Therefore,

n∑

i=1

∫

|Zni |>εsn

Z2
nidP

∗ → 0, as n → ∞,

w.p.1, which verifies the Lindeberg condition and finishes the proof. �
Finally, we show that β̂∗ from Resampling Scheme5.23 has asymptotically the

same distribution as β̂ under the linear correlation model, see Theorem5.27. Using
Lemma5.37 and Lemma5.40 we can follow the proof of Theorem5.35 to obtain the
following.

Theorem 5.41 Under Definition5.18 using Resampling Scheme5.23 it holds w.p.1
that

n1/2(β̂∗(n) − β̂(n)) −→ N (0,Σ−1MΣ−1), as n → ∞,

in distribution with respect to P∗.

5.3 Generalized Linear Model (Parametric)

In order to motivate the generalized linear model assume we have n independent
univariate outcomes Y1, . . . ,Yn with n corresponding p-dimensional covariate vec-
tors x1, . . . , xn . Within the framework of a classical linear model it is assumed that
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there exists a vector β = (β1, . . . , βp)
� such that Yi = β�xi + εi with normal dis-

tributed error terms εi . A different way to represent this situation is to say that
the regression function E(Y |X = x) = β�x holds and Y given X follows a nor-
mal distribution. In a parametric generalized linear model other distributions beside
the normal distributions are allowed. Depending on the distribution, E(Y |X = x)
may be bounded, e.g., E(Y |X = x) ∈ [0, 1] if Y given X is Bernoulli distributed.
Since β�x is unbounded, a so-called link function g ensures that the expectation
and the covariates are related in an appropriate way, i.e., g(E(Y |X = x)) = β�x .
The most common distributions used are binomial-, Poisson-, negative-binomial-,
Gaussian-, gamma- and inverse gamma-distribution, which all belong to the larger
family of exponential distributions with dispersion, see Sect. 5.3.1 for the definition.
In general, an additional parameterφ, the “dispersion” parameter, is necessary to fully
specify the distribution of Y . For instance, φ = σ 2 for the Gaussian-distribution. For
this introduction, let F(y|x, β, φ) denote the distribution function of Y given x , β

and φ.
After fitting the model using the maximum likelihood approach the (estimated)

distribution of Y is fully specified and can be used to generate new observations.
This is the backbone of the resampling scheme that we formulate now.

Resampling Scheme 5.42

(A) Calculate the MLE β̂n (and if unknown φ̂n) for (Y1, X1), . . . , (Yn, Xn). Note, if
φ is known, for instance in the binomial model, still denote the parameter by φ̂n.

(B) Set X∗
k;i = Xi for all i = 1, . . . , n and all k = 1, . . . ,m.

(C) Generate Y ∗
k;i (independent) according to the distribution F(y|X∗

k;i , β̂n, φ̂n) for
all i = 1, . . . , n and all k = 1, . . . ,m.

(D) Calculate the MLE β̂∗
k;n for (Y ∗

k;1, X
∗
k;1), . . . , (Y

∗
k;n, X

∗
k;n) for all k = 1, . . . ,m.

Fortunately, R provides a method to generate Y ’s from a model fit. This makes the
implementation of this resampling scheme very easy.

model_parametric_boot <- function(model, data, B = 1000) {

# Step A
# was already performed and the result is passed
# to this function via the parameter ’model’
data_boot <- data

# get the name of the dependent variable
y_name <- all.vars(formula(model), max.names = 1)

ret <- sapply(seq_len(B), function(i) {
# Step C
data_boot[[y_name]] <- simulate(model)[,1]

# Step D
m_boot <- update(model, formula. = formula(model),

data = data_boot)
coefficients(m_boot)

})
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ret
}

R-Example 5.43 Theorem5.60 shows that the sampling distribution of β̂n (see The-
orem5.55) can be approximated by the sampling distribution of β̂∗

n . We already
implemented the Resampling Scheme5.42 after its definition and reuse it now to
calculate a bootstrap confidence intervals for β̂n .

fit = glm(hormone ˜ age + diabetes, data = hormone_data,
family = gaussian())

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
beta.boot = model_parametric_boot(fit, hormone_data, B = 1000)

For the confidence intervals, we simply calculate the 2.5% and 97.5% quantiles of
each component of β̂∗

k;n , k = 1, . . . , 1000.

apply(beta.boot, 1, quantile, c(0.025, 0.975)) %>% t

## 2.5% 97.5%

## (Intercept) 99.62433768 101.7633860

## age 0.03263374 0.1124009

## diabetesT2 -3.67543183 -0.7334442

For plausibility purpose, we use the functions R provides to calculate another con-
fidence interval for the components of β̂n . According to the documentation this
confidence interval is based on the profile (likelihood).

confint(fit)

## Waiting for profiling to be done...

## 2.5 % 97.5 %

## (Intercept) 99.65765055 101.7724396

## age 0.03054754 0.1119628

## diabetesT2 -3.71372111 -0.7260019

Obviously, the two methods yield quite similar confidence intervals.

Example 5.44 Bike sharing data, part 1. The following analysis is a bit more
elaborated and we will reuse it in the next chapter to illustrate goodness-of-fit (GOF)
testing for generalized linear models. It is a real-world dataset,1 see Fanaee-T and
Gama (2013), that can be downloaded from the Machine Learning Repository at
the University of California, Irvine, see Dua and Graff (2017). The downloaded files
contain information about ridership of registered and casual users inWashingtonD.C.

1 https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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on an hourly and daily basis. For our analysis, we focus on the information per day
and on the ridership of the registered users only. Beside the number of rented bikes
the dataset provides further important information. For instance, it was recorded if
a particular date was a holiday or a working day and various information about the
weather is provided. This is the variable description from the website

instant: record index
dteday: date
season: season (1:springer, 2:summer, 3:fall, 4:winter)
yr: year (0: 2011, 1:2012)
mnth: month (1 to 12)
hr: hour (0 to 23)
holiday: whether day is holiday or not

(extracted from https://dchr.dc.gov/page/holiday-schedule)
weekday: day of the week
workingday: if day is neither weekend nor holiday is 1, otherwise is 0.
weathersit: 1:= Clear, Few clouds, Partly cloudy, Partly cloudy

2:= Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds,
Mist

3:= Light Snow, Light Rain + Thunderstorm + Scattered clouds,
Light Rain + Scattered clouds

4:= Heavy Rain + Ice Pallets + Thunderstorm +Mist, Snow + Fog
temp: Normalized temperature in Celsius. The values are derived via

(t − tmin)/(tmax − tmin), tmin = −8, tmax = +39 (only in hourly
scale)

atemp: Normalized feeling temperature inCelsius. The values are derived
via (t − tmin)/(tmax − tmin), tmin = −16, tmax = +50 (only in
hourly scale)

hum: Normalized humidity. The values are divided to 100 (max)
windspeed: Normalized wind speed. The values are divided to 67 (max)
casual: count of casual users
registered: count of registered users
cnt: count of total rental bikes including both casual and registered

First, we create some model candidates. Since it is a real dataset, a bit of data
wrangling is necessary before we can model the dataset. For instance, one entry
for humidity is zero. We create a new variable hum_imp that replaces this particular
entry by the average humidity for the corresponding month. Furthermore, the feeling
temperature shows a very unusual value of 0.24. From a univariate point of view a
value of 0.24 is not very unusual, but in the context of the other variables, a warm day
in August, that measurement seems to be far too low, see Fig. 5.5. It is reasonable that
the feeling temperature is an important factor for ridership. Fortunately, the feeling
temperature is highly correlated with the variable temp. Therefore, we can easily
restrict the model activities in this initial phase to temp. Renting a bike is probably
less likely if it is too cold or too hot. The same is probably true for humidity, i.e.,
too damp or too dry, therefore quadratic terms may improve the model. The dataset

https://dchr.dc.gov/page/holiday-schedule
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Fig. 5.5 Scatterplot and correlation of normalized temperature and normalized feeling temperature.
The scatterplot reveals a very unexpected point

already provides a variable that is one for holidays. But people tend to take a vacation
on bridge days or take a vacation for certain periods like the days between christmas
and new year. If we assume that most of the registered riders rent bikes on their
workdays a further variable that is one for such days may also improve the model.
In order to keep it simple, only a variable christmas is created that is one for days
between christmas and new year. We now import and preprocess the data

data_preprocess <- function(dt){
dt %>%
dplyr::mutate_at(
as.factor, # adapt the data-type of various variables
.vars = dplyr::vars(season, yr, mnth, holiday, weekday,

workingday, weathersit)) %>%
dplyr::mutate(
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# set humidity of 0 to missing
hum = ifelse(hum == 0, NA, hum),
christmas = as.factor(
# one between chritmas and new year, zero otherwise
lubridate::month(dteday) == 12 &
dplyr::between(lubridate::day(dteday), 24, 31))) %>%

dplyr::group_by(yr, mnth) %>%
# replace missing humidity with the
# average for that particular year and month
dplyr::mutate(
hum_imp = ifelse(is.na(hum),

mean(hum, na.rm = TRUE),
hum)) %>%

dplyr::ungroup() %>%
# rename dependent variable to ’y’
dplyr::rename(y = registered) %>%
dplyr::select(-instant, -casual, -cnt)

}

ridership <- readr::read_csv("day.csv") %>%
data_preprocess()

## Parsed with column specification:
## cols(
## instant = col_double(),
## dteday = col_date(format = ""),
## season = col_double(),
## yr = col_double(),
## mnth = col_double(),
## holiday = col_double(),
## weekday = col_double(),
## workingday = col_double(),
## weathersit = col_double(),
## temp = col_double(),
## atemp = col_double(),
## hum = col_double(),
## windspeed = col_double(),
## casual = col_double(),
## registered = col_double(),
## cnt = col_double()
## )

Plotting ridership against time reveals (as expected) a seasonal effect but also that
ridership is constantly increasing (taking the season into account), see Fig. 5.6. This
could be a result of growing business, where the bike sharing system started around
2011 and getting more popular until the end of 2012.

ridership %>%
ggplot(aes(x = dteday, y = y)) +
geom_point(aes(color = season)) +
geom_vline(xintercept = lubridate::ymd("2012-10-29"))
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Fig. 5.6 Ridership versus time. Colored according to the seasons. The vertical line shows the date
2012-10-29, when Hurricane Sandy hits the east coast

Therefore an interaction term between yr and season might be helpful. We also see
that a few time points (also left of the vertical line) show unusual low rider ships.
Actually, one should check if those dates are related to certain events in or around
Washington,DC like concerts, sport events, alerts, etc. Instead of checking all of them
we restrict our investigations to the observation with nearly zero ridership. Further-
more, the vertical line indicates that after this observation the ridership recovers only
partly. Of course, one must be careful to not over-interpret such patterns. However,
looking at that odd observation via



5.3 Generalized Linear Model (Parametric) 113

ridership %>%
dplyr::filter(y == 20) %>%
t()

## [,1]

## dteday "2012-10-29"

## season "4"

## yr "1"

## mnth "10"

## holiday "0"

## weekday "1"

## workingday "1"

## weathersit "3"

## temp "0.44"

## atemp "0.4394"

## hum "0.88"

## windspeed "0.3582"

## y "20"

## christmas "FALSE"

## hum_imp "0.88"

The most striking is weathersit= 3 and searching the internet for date 2012-10-29
quickly reveals that hurricane “Sandy” hit the east coast and according to Home-
land Security and Emergency Management Agency, the Mayor of Washington, DC
declared the “state of emergency” on 2012-10-26. This explains the large drop and of
course the effect of this incident lasts at least for few days. But that the ridership did
not recover fully is a bit unexpected. One explanation could be that the infrastructure
of the bike sharing service was partly destroyed so that it was not possible to rent
a bike at a certain places or simple a fraction of the bikes were destroyed during
the hurricane. In order to make a reasonable model even for the time after hurricane
“Sandy” it would be helpful to have a discussion with the people maintaining the
bike sharing system. Anyway, we choose the simple approach and consider only
ridership till hurricane “Sandy”.

ridership <-
ridership %>%
dplyr::filter(dteday < lubridate::ymd("2012-10-29"))

Since ridership is count data, the Poisson- or negative-binomial-distribution are
natural candidates. The univariate distribution of ridership is more or less symmetric.
Hence,we also try the normal distribution as a potential candidate. It is also a common
practice tomodel the logarithmof the dependent variable. Though this is usually done
if the dependent variable is skewed, we want to do it anyway, especially for the GOF
test in the next chapter. Therefore, we also try the normal distribution for the log-
transformed ridership data. The above considerations about the ridership are forged
into a formula that is used for the different models:
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Fig. 5.7 Diagnostic plots for the Poisson model of the ridership

frml <- y ˜ temp + I(tempˆ2) + hum_imp + I(hum_impˆ2) +
windspeed + yr*season + workingday +
weathersit + holiday + christmas

For instance, the quadratic term reflects that the ridership is low if it is to damp/dry
or hot/cold. We start with the Poisson model

fit_poi <- glm(frml, data = ridership, family = poisson())
summary(fit_poi)

##

## Call:

## glm(formula = frml, family = poisson(), data = ridership)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -38.828 -4.156 0.631 4.981 20.098

##
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Fig. 5.8 Diagnostic plots for the negative-binomial-model of the ridership

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 6.045130 0.013906 434.728 < 2e-16 ***

## temp 4.624398 0.030017 154.057 < 2e-16 ***

## I(tempˆ2) -3.731145 0.028160 -132.498 < 2e-16 ***

## hum_imp 1.204983 0.040369 29.849 < 2e-16 ***

## I(hum_impˆ2) -1.306540 0.032813 -39.818 < 2e-16 ***

## windspeed -0.577589 0.009566 -60.376 < 2e-16 ***

## yr1 0.682619 0.003612 188.972 < 2e-16 ***

## season2 0.357664 0.004114 86.941 < 2e-16 ***

## season3 0.437418 0.004495 97.318 < 2e-16 ***

## season4 0.508134 0.003875 131.117 < 2e-16 ***

## workingday1 0.263993 0.001525 173.068 < 2e-16 ***

## weathersit2 -0.077092 0.001796 -42.920 < 2e-16 ***

## weathersit3 -0.483941 0.006381 -75.840 < 2e-16 ***

## holiday1 -0.040959 0.004735 -8.650 < 2e-16 ***
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Fig. 5.9 Diagnostic plots for the Gaussian model of the ridership

## christmasTRUE -0.076190 0.009709 -7.847 4.25e-15 ***

## yr1:season2 -0.255720 0.004329 -59.067 < 2e-16 ***

## yr1:season3 -0.252835 0.004255 -59.416 < 2e-16 ***

## yr1:season4 -0.222000 0.004605 -48.214 < 2e-16 ***

## ---

## Signif. codes:

## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 473082 on 666 degrees of freedom

## Residual deviance: 46065 on 649 degrees of freedom

## AIC: 52718

##

## Number of Fisher Scoring iterations: 4

The fitted negative-binomial model is
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Fig. 5.10 Diagnostic plots for the Gaussian model of the log-transformed ridership

fit_nb <- MASS::glm.nb(frml, data = ridership)
summary(fit_nb)

##

## Call:

## MASS::glm.nb(formula = frml, data = ridership, init.theta =

## 34.38042658,

## link = log)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -5.7714 -0.4465 0.0596 0.5007 3.1589

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 6.16439 0.12836 48.024 < 2e-16 ***
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## temp 4.19282 0.25926 16.172 < 2e-16 ***

## I(tempˆ2) -3.29091 0.25822 -12.745 < 2e-16 ***

## hum_imp 1.17952 0.38049 3.100 0.00194 **

## I(hum_impˆ2) -1.32915 0.30569 -4.348 1.37e-05 ***

## windspeed -0.69844 0.09660 -7.230 4.81e-13 ***

## yr1 0.70208 0.02790 25.164 < 2e-16 ***

## season2 0.36842 0.03263 11.292 < 2e-16 ***

## season3 0.44199 0.03903 11.324 < 2e-16 ***

## season4 0.53353 0.03066 17.403 < 2e-16 ***

## workingday1 0.27441 0.01486 18.472 < 2e-16 ***

## weathersit2 -0.07076 0.01840 -3.846 0.00012 ***

## weathersit3 -0.50100 0.05033 -9.955 < 2e-16 ***

## holiday1 -0.06676 0.04260 -1.567 0.11706

## christmasTRUE -0.10342 0.06484 -1.595 0.11072

## yr1:season2 -0.27139 0.03737 -7.261 3.83e-13 ***

## yr1:season3 -0.27468 0.03749 -7.326 2.37e-13 ***

## yr1:season4 -0.24014 0.04379 -5.484 4.15e-08 ***

## ---

## Signif. codes:

## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for Negative Binomial(34.3804) family

## taken to be 1)

##

## Null deviance: 5267.19 on 666 degrees of freedom

## Residual deviance: 675.41 on 649 degrees of freedom

## AIC: 10373

##

## Number of Fisher Scoring iterations: 1

##

##

## Theta: 34.38

## Std. Err.: 1.91

##

## 2 x log-likelihood: -10334.58

The large Theta≈ 34.38 is quite striking and indicates that we have overdispersed
data. It is also a bit surprising that holiday and Christmas are not significant in the
negative-binomial model compared to the Poisson model. One reason for that is the
strong over-dispersion. Therefore, confidence intervals derived from the negative-
binomial model will be much wider compared to confidence intervals derived from
the Poisson model.
Finally, we fit the Gaussian model,
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fit_norm <- glm(frml, data = ridership, family = gaussian())
summary(fit_norm)

##

## Call:

## glm(formula = frml, family = gaussian(), data = ridership)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2260.79 -258.21 36.69 321.36 1401.59

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1643.02 385.07 -4.267 2.28e-05 ***

## temp 11309.89 776.78 14.560 < 2e-16 ***

## I(tempˆ2) -8984.86 774.45 -11.602 < 2e-16 ***

## hum_imp 3674.60 1141.77 3.218 0.001354 **

## I(hum_impˆ2) -3908.94 917.12 -4.262 2.32e-05 ***

## windspeed -2048.80 290.18 -7.060 4.28e-12 ***

## yr1 1502.10 83.58 17.972 < 2e-16 ***

## season2 572.10 97.76 5.852 7.72e-09 ***

## season3 785.56 117.13 6.707 4.34e-11 ***

## season4 964.84 91.87 10.502 < 2e-16 ***

## workingday1 925.47 44.61 20.745 < 2e-16 ***

## weathersit2 -322.56 55.28 -5.835 8.49e-09 ***

## weathersit3 -1174.80 150.62 -7.800 2.49e-14 ***

## holiday1 -128.81 127.77 -1.008 0.313762

## christmasTRUE -295.45 193.66 -1.526 0.127582

## yr1:season2 168.14 112.16 1.499 0.134343

## yr1:season3 402.05 112.56 3.572 0.000381 ***

## yr1:season4 732.16 131.57 5.565 3.84e-08 ***

## ---

## Signif. codes:

## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for gaussian family taken to be

## 265754.5)

##

## Null deviance: 1614240514 on 666 degrees of freedom

## Residual deviance: 172474646 on 649 degrees of freedom

## AIC: 10244

##

## Number of Fisher Scoring iterations: 2
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and the Gaussian model but with a log-transformed dependent variable,

fit_lognorm <-
ridership %>%
dplyr::mutate(y = log(y)) %>%
glm(frml, data = ., family = gaussian())

summary(fit_lognorm)

##

## Call:

## glm(formula = frml, family = gaussian(), data = .)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.17838 -0.06295 0.01873 0.09874 0.57513

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.14970 0.13762 44.685 < 2e-16 ***

## temp 4.22762 0.27762 15.228 < 2e-16 ***

## I(tempˆ2) -3.29088 0.27679 -11.889 < 2e-16 ***

## hum_imp 1.16735 0.40807 2.861 0.004364 **

## I(hum_impˆ2) -1.35617 0.32778 -4.137 3.97e-05 ***

## windspeed -0.73103 0.10371 -7.049 4.63e-12 ***

## yr1 0.71454 0.02987 23.920 < 2e-16 ***

## season2 0.36643 0.03494 10.487 < 2e-16 ***

## season3 0.44603 0.04186 10.655 < 2e-16 ***

## season4 0.54104 0.03283 16.478 < 2e-16 ***

## workingday1 0.28179 0.01594 17.673 < 2e-16 ***

## weathersit2 -0.07235 0.01976 -3.662 0.000271 ***

## weathersit3 -0.54895 0.05383 -10.197 < 2e-16 ***

## holiday1 -0.08229 0.04567 -1.802 0.071993 .

## christmasTRUE -0.16609 0.06921 -2.400 0.016691 *

## yr1:season2 -0.27502 0.04009 -6.861 1.60e-11 ***

## yr1:season3 -0.28757 0.04023 -7.148 2.37e-12 ***

## yr1:season4 -0.24809 0.04702 -5.276 1.80e-07 ***

## ---

## Signif. codes:

## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for gaussian family taken to be

## 0.03394651)

##

## Null deviance: 184.681 on 666 degrees of freedom

## Residual deviance: 22.031 on 649 degrees of freedom
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## AIC: -343.82

##

## Number of Fisher Scoring iterations: 2

The large coefficients of the first Gaussian model result from the fact that we model
ridership on the original scale, while the other models directly transformed ridership
to the log-scale or used a log-link.

In general it is recommended to inspect the models. Usually one starts with some
diagnostic plots. We now present the four standard diagnostic plots produced by R
for all four models, see Fig. 5.7, 5.8, 5.9, and 5.10, and discuss them afterward.
Obviously, the Q–Q-plots show that all models have problems with very small obser-
vations. We could expect this a bit because we did not investigate the unusual low
ridership for a pattern that they might have in common, for instance, some kind
of events like football games, concerts, and so on. Anyway, surprisingly the Gaus-
sian model looks best with respect to the Q–Q-plot, though the residual plot shows
quadratic behavior.Whereas the residual plots of themodels using the log-link or log-
transformation do not reveal strong non-constant behavior. At this point one could try
to exclude models and try to improve the remaining ones. In the next chapter, we will
come back to this dataset and the model fits and presents a goodness-of-fit test based
on the results of this chapter which provides an additional tool for excluding/rejecting
models.

5.3.1 Mathematical Framework of MLE

Suppose we have n independent univariate outcomes Y1, . . . ,Yn with n correspond-
ing non-random p-dimensional covariate vectors X1, . . . , Xn such that

g(E(Yi )) = β�Xi (5.14)

and assuming that Yi has a density function

f (y|θi , φ) = exp

(
θi y − ζ(θi )

φ

)
h(y, φ) (5.15)

with respect to the dominating σ -finite measure ν, we obtain the GLM, where g, ζ
and h are known functions and g is invertible. Furthermore, it is assumed that φ > 0
and ζ is twice continuously differentiable with ζ ′′(θ) > 0 for all θ such that (5.15)
is a proper density function. Note, every Yi may have its own parameter θi . It should
also be noted that the class of all densities of type (5.15) is called an exponential
family with dispersion parameter φ with respect to the dominating measure ν.

Calculating the moment generating function for a random variable with density
(5.15) is easy:
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E
(
exp(uY )

) =
∫

exp

(
uy + θi y − ζ(θi )

φ

)
h(y, φ)ν(dy)

=
∫

exp

(
ζ(uφ + θi ) − ζ(θi )

φ

)
f (y|uφ + θi , φ)h(y, φ)ν(dy)

= exp

(
ζ(uφ + θi ) − ζ(θi )

φ

)
. (5.16)

The first and second derivative of this moment generating function with respect to u
at u = 0 gives the first and second moment of Y . Obviously, this entails

E(Yi ) = ζ ′(θi ), VAR(Yi ) = φζ ′′(θi ). (5.17)

Thus, the assumptions on φ and ζ ′′ assure that the variance is not zero. A natural
choice for g is the inverse of ζ ′ because then by (5.14) and (5.17) it holds that

β�Xi = g(E(Yi )) = θi .

Such a g is usually called the canonical link function.
Classical text books on statistics assume that the covariate vectors X1, . . . , Xn are

non-random or the analysis is conducted “conditioned” on X1, . . . , Xn . However, in
most scientific fields the covariates are random variables. Hence, we assume that the
covariate vector has distribution function H . In order to emphasize that θi is actually
a function of x and β we use the notation θx (β) to get

P(Y ∈ A, X ∈ B) =
∫

B

∫

A
f (y|θx (β), φ)ν(dy)H(dx). (5.18)

By (5.18) the conditional density of Y given X = x is f (y|θx (β), φ) and according
to Shorack (2000, Example 8.5.1) we obtain

E(exp(uY )|X = x) =
∫

exp(uy) f (y|θx , φ)ν(dy)

= exp

(
ζ(uφ + θx (β)) − ζ(θx (β))

φ

)

by applying the same steps that were used to derive the moment generating function
in the classical situation, that is non-random covariates, see (5.16). Again calculating
the first and second derivative of this moment generating function gives

E(Y |X = x) = ζ ′(θx (β)) and E(Y 2|X = x) = ζ ′(θx (β)) + φζ ′′(θx (β)).

This easily leads to

E(Y |X) = ζ ′(θX (β)), VAR(Y |X) = E
([Y − E(Y |X)]2|X) = φζ ′′(θX (β)).

(5.19)



5.3 Generalized Linear Model (Parametric) 123

Assuming that
g(E(Y |X = x)) = β�x (5.20)

we directly obtain the relation

g(ζ ′(θx (β))) = β�x .

That the second derivative of ζ is greater than zero for all θ implies that ζ ′ is invertible
and therefore θx (β) = (g ◦ ζ ′)−1(β�x). In order to have a more compact notation
we define

ϑ = (β, φ)

and denote the true parameters by ϑ0 = (β0, φ0). For the whole section we assume
that ϑ0 lies in the interior of

Ξ = {ϑ |
∫ ∫

f (y|θx (β), φ)ν(dy)H(dx) < ∞}.

In summary, this results in

Definition 5.45 Let D = (
f (·, θ, φ)

)
(θ,φ)∈Θ×(0,∞)

be an exponential family with
dispersion parameter φ > 0 and densities with respect to a σ−finite measure ν given
by

f (y, θ, φ) = exp
(θy − ζ(θ)

φ

)
h(y, φ),

such that ζ is twice continuously differentiable with ζ ′′(·) > 0. For (Y, X) ∈ R
1+p let

g : R → R be an invertible link function and set θx (β) = (g ◦ ζ ′)−1
(β�x). Assume

that there exists a (β0, φ0) ∈ Ξ such that the conditional distribution of Y given
X = x has ν−density

f (y | θx (β0), φ0) ≡ f (y, β0, φ0, x) = f (y, θx (β0), φ0),

then (Y, X) follows a parametric generalized linear model with link function g with
respect to the class D .

The mainframe for the following proofs of the almost sure convergence of the
maximum likelihood estimator is based on Perlman (1972) and the central tool is the
Kullback-Leibler information.

Definition 5.46 Suppose F and G are probability measures with strict positive den-
sities f and g with respect to a σ−finite measure ν on a measurable space (X,B).
Then

IK L(F : G) =
∫

log( f/g) f dν

defines the Kullback-Leibler information.
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We only need the following two properties of the Kullback-Leibler information.

Lemma 5.47 Suppose F and G are probability measures that are both dominated
by a σ−finite measure ν on a measurable space (X,B) such that the corresponding
ν−densities f and g are strict positive. Then

(i) IK L(F : G) ∈ [0,∞]
(ii) IK L(F : G) = 0 if and only if F = G.

Proof Both assertions follow from Jensen’s inequality, see Shorack (2000, Inequality
4.10). Denote by f and g the densities of F andG with respect to ν. Since the negative
of the logarithm is convex, Jensen’s inequality provides

IK L (F : G) =
∫

− log(g/ f ) f dν ≥ − log

(∫
(g/ f ) f dν

)
= − log

(∫
gdν

)
= 0.

According to the addendum to Jensen inequality Shorack (2000, Inequality 4.10),
equality holds if and only if g/ f = ∫

(g/ f ) f dν, F−a.e. Since
∫
(g/ f ) f dν = 1, this

implies that
∫
I{A} f dν = 0, where A = {x : f (x) �= g(x)}. Furthermore, since f

is strict positive, we have

ν(A) =
∫

I{A}
1

f
f dν = 0.

Denote by Ac the complement of A in X . For an arbitrarily chosen B ∈ B we get

G(B) =
∫

I{B}g dν =
∫

I{B}I{Ac}g dν =
∫

I{B}I{Ac} f dν = F(B)

which shows that F = G. This completes the proof. �

For our purposes, we need tomodify the Kullback-Leibler information as follows.

Definition 5.48 Let ϑ1, ϑ2 ∈ Ξ , then

KH (ϑ1, ϑ2) =
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2)H(dx)

defines the modified Kullback-Leibler information with respect to H , the df. of the
covariate vector X , where Fθx (β),φ denotes the conditional distribution of Y given
X = x .

Remark 5.49 Due to the inner product ofβ and x itmayhappen that θx (β1) = θx (β2),
which imply Fθx (β1),φ = Fθx (β2),φ . Therefore, if P(β�

1 X = β�
2 X) = 1 we have no

chance to distinguish β1 and β2, because the (conditional) distribution of Y does not
change.

We now establish similar results for the modified Kullback-Leibler information as
we did in Lemma 5.47 for the Kullback-Leibler information.
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Lemma 5.50 Let ϑ1, ϑ2 ∈ Ξ , then

(i) KH (ϑ1, ϑ2) ∈ [0,∞].
(ii) KH (ϑ1, ϑ2) = 0 if and only if

∫
I{φ1=φ2,θx (β1)=θx (β2)}H(dx) = 1.

Proof The first assertion follows directly from the definition of the modified
Kullback-Leibler information and from (i) of Lemma 5.47.
If

∫
I{φ1=φ2,θx (β1)=θx (β2)}H(dx) = 1, we easily verify that KH (ϑ1, ϑ2) = 0 holds true.

Finally, assume KH (ϑ1, ϑ2) = 0, then

0 = KH (ϑ1, ϑ2)

=
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2) H(dx)

=
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2)I{φ1=φ2,θx (β1)=θx (β2)} H(dx)

+
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2)(1 − I{φ1=φ2,θx (β1)=θx (β2)}) H(dx)

=
∫

IK L(Fθx (β1),φ1 : Fθx (β2),φ2)(1 − I{φ1=φ2,θx (β1)=θx (β2)}) H(dx),

where the last equality holds by (ii) of Lemma 5.47. Again, by (ii) of Lemma5.47 we
have that 0 < IK L(Fθx (β1),φ1 : Fθx (β2),φ2) on the complement of {φ1 = φ2, θx (β1) =
θx (β2)}, therefore 1 − I{φ1=φ2,θx (β1)=θx (β2)} = 0 holds true almost surely with respect
to H . �

The log likelihood of an i.i.d. sequence (Y1, X1), . . . , (Yn, Xn) is

�n(ϑ) = �n(β, φ)

=
n∑

i=1

log( f (yi |θxi (β), φ))

=
n∑

i=1

θxi (β)yi − ζ(θxi (β))

φ
+ log(h(yi , φ)).

According to SLLN

lim
n→∞ n−1�n(ϑ) = Eϑ0

(
�1(ϑ)

)

=
∫ ∫

log( f (y|θx (β), φ)) f (y|θx (β0), φ0)ν(dy)H(dx)

=: LH (ϑ0, ϑ),

if Eϑ0

(
�1(ϑ)

)
exists. We will now study LH (ϑ0, ·). The SLLN will allow us to carry

over the results to the corresponding expressions in terms of �n . First, we investigate
when LH (ϑ0, ·) has a unique maximum.
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Lemma 5.51 Assume that

(i) LH (ϑ0, ϑ0) < ∞
(ii) for all ϑ ∈ Ξ\{ϑ0} it holds that

∫
I{φ0=φ,θx (β0)=θx (β)}H(dx) < 1

then LH (ϑ0, ·) has a unique maximum at ϑ0.

Proof Due to assumption (ii) and Lemma 5.50 (ii) we obtain

0 < KH (ϑ0, ϑ)

=
∫

IK L(Fθx (β0),φ0 : Fθx (β),φ)H(dx)

=
∫ ∫

log

(
f (y|θx (β0), φ0)

f (y|θx (β), φ)

)
f (y|θx (β0), φ0)ν(dy)H(dx)

= LH (ϑ0, ϑ0) − LH (ϑ0, ϑ).

Note that assumption (i) is necessary to guarantee the last equality, i.e., it prevents
∞ − ∞. Altogether, this shows the assertion. �

Theorem 5.52 Assume that Ξ is compact and

(i) for all ϑ∗ ∈ Ξ exists an open neighborhood V ∗ = V (ϑ∗) of ϑ∗ such that

E

(
sup
ϑ∈V ∗

log f (Y |θX (β), φ)

)
< ∞.

Under the assumption of Lemma 5.51 it holds that ϑ̂n → ϑ0, as n → ∞, w.p.1, where
ϑ̂n is the maximum of �n(·).
Proof The continuity of the density functions and the compactness of Ξ assure
the existence of ϑ̂n ∈ Ξ . Denote by V an arbitrary open neighborhood of ϑ0. Let
U = Ξ\V . If lim supn→∞ supϑ∈U �n(ϑ) − �n(ϑ0) < 0, we can find an N ∈ N such
that supϑ∈U �n(ϑ) < �n(ϑ0) for all n > N . Hence, ϑ̂n ∈ V for all n > N . Therefore,
it is sufficient to prove

P(lim sup
n→∞

sup
ϑ∈U

�n(ϑ) − �n(ϑ0) < 0) = 1. (5.21)

Note that we might have measurability issues becauseU is uncountable. In this case
we would use the inner probability measure.

We will now find a finite cover V1, . . . , Vm for U , where every Vi will have the
property (5.21). Choose ϑ∗ ∈ U arbitrary and denote by Vε(ϑ

∗) open neighborhoods
of ϑ∗ with ⋂

ε>0

Vε(ϑ
∗) = {ϑ∗}.

Choosing ε > 0 such that Vε(ϑ
∗) ⊂ V ∗ and 0 < M < ∞, we obtain
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sup
ϑ∈Vε(ϑ∗)

n−1(�n(ϑ) − �n(ϑ0))

≤ n−1
n∑

i=1

sup
ϑ∈Vε(ϑ∗)

log f (yi |θxi (β), φ) − n−1
n∑

i=1

log f (yi |θxi (β0), φ0)

≤ n−1
n∑

i=1

sup
ϑ∈Vε(ϑ∗)

max{log f (yi |θxi (β), φ),−M} − n−1
n∑

i=1

log f (yi |θxi (β0), φ0).

Applying a series of convergence theorems will establish that this last expression
is less than zero. By assumption (i) the expectation of the following positive part is
finite:

E

((
sup

ϑ∈Vε(ϑ∗)
max{log f (Y |θX (β), φ),−M}

)+)
< ∞.

Furthermore, we have

sup
ϑ∈Vε(ϑ∗)

log f (yi |θxi (β), φ) ≤ sup
ϑ∈Vε(ϑ∗)

max{log f (yi |θxi (β), φ),−M}

≤
(

sup
ϑ∈Vε(ϑ∗)

max{log f (yi |θxi (β), φ),−M}
)+

.

First, we apply the SLLN and obtain that

lim sup
n→∞

sup
ϑ∈Vε(ϑ∗)

n−1(�n(ϑ) − �n(ϑ0))

is less or equal to

E

(
sup

ϑ∈Vε(ϑ∗)
max{log f (yi |θxi (β), φ),−M}

)
− L(ϑ0, ϑ0).

By Lebegue’s dominated convergence theorem this converges for ε → 0 to

E
(
max{log f (yi |θxi (β∗), φ∗),−M}) − L(ϑ0, ϑ0).

Finally, applying Loève (1977, Fatou-Lebesgue-Theorem, page 126), this converges
for M → ∞ to

LH (ϑ0, ϑ
∗) − LH (ϑ0, ϑ0) < 0.

The last inequality is a direct consequence of Lemma 5.51. SinceU is compact there
exist εi and ϑ∗

i such that U ⊂ ∪m
i=1Vεi (ϑ

∗
i ). This completes the proof. �

Note, the next corollary uses the same assumptions as Theorem 5.52 but assumption
(ii) replaces the compactness of Ξ .
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Corollary 5.53 Assume that

(i) for all ϑ∗ ∈ Ξ exists an open neighborhood V ∗ = V (ϑ∗) of ϑ∗ such that

E

(
sup
ϑ∈V ∗

log f (Y |θX (β), φ)

)
< ∞,

(ii) there exists a compact set C such that ϑ0 is an interior point of C and

E

(
sup

ϑ∈Ξ\C
log f (Y |θX (β), φ) − log f (Y |θX (β0), φ0)

)
< 0.

Under the assumption of Lemma 5.51 it holds that ϑ̂n → ϑ0 almost surely, where ϑ̂n

is the maximum of �n(·).
Proof Denote by V an arbitrary open neighborhood of ϑ0. Following the proof of
Theorem 5.52 it is sufficient to show

P(lim sup
n→∞

sup
ϑ∈Ξ\V

�n(ϑ) − �n(ϑ0) < 0) = 1.

Since C is compact, usingU = C\V , we directly obtain from the proof of Theorem
5.52, that

P(lim sup
n→∞

sup
ϑ∈U

�n(ϑ) − �n(ϑ0) < 0) = 1.

Similar as in the proof of Theorem 5.52, but now using (ii), we conclude

sup
ϑ∈Ξ\C

n−1(�n(ϑ) − �n(ϑ0))

< n−1
n∑

i=1

sup
ϑ∈Ξ\C

[log f (yi |θxi (β), φ) − log f (yi |θxi (β0), φ0)]

→ E

(
sup

ϑ∈Ξ\C
log f (Y |θX (β), φ) − log f (Y |θX (β0), φ0)

)
< 0.

Therefore, we obtain

P(lim sup
n→∞

sup
ϑ∈Ξ\C

�n(ϑ) − �n(ϑ0) < 0) = 1.

Without loss of generality we can assume that V ⊂ C . Hence, Ξ\V = Ξ\C ∪U ,
which finally leads to
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P(lim sup
n→∞

sup
ϑ∈Ξ\V

�n(ϑ) − �n(ϑ0) < 0)

= P

(
{lim sup

n→∞
sup

ϑ∈Ξ\C
�n(ϑ) − �n(ϑ0) < 0} ∪ {lim sup

n→∞
sup
ϑ∈U

�n(ϑ) − �n(ϑ0) < 0}
)

= 1.

This concludes the proof. �

The following lemma supports the upcoming proof of the asymptotic normality
of the maximum likelihood estimator.

Lemma 5.54 Let (Ωn,An,Pn) be a sequence of probability spaces. Let Xn (defined
on Ωn) be a random p-vector converging in distribution to X and let An (defined
on Ωn) be a random matrix converging in probability to a constant invertible matrix
A. If Xn = AnYn for all n for some random p-vector Yn (defined on Ωn), then
Yn = A−1Xn + oPn (1).

Proof Let Bn = {det(An) �= 0}. Since det(A) �= 0 and An → A in probability, we
have Pn(Bn) → 1 and I{Bn}A−1

n Xn = I{Bn}Yn = Yn − I{Bc
n }Yn . Obviously, I{Bn}A−1

n =
A−1 + oPn (1) and for all ε < 1

Pn(|I{Bc
n }Yn| > ε) ≤ Pn(I{Bc

n } > ε) = 1 − Pn(Bn) = o(1).

Furthermore, since Xn converges in distribution to X for all ε > 0 there exists a
K > 0 such that Pn(‖Xn‖∞ > K ) < ε, where ‖ · ‖∞ denotes the maximum norm
on Rp, which implies that ‖(A−1 − I{Bn}A−1

n )Xn‖∞ = oPn (1). Altogether, we have

Yn = I{Bn}A
−1
n Xn + oPn (1) = A−1Xn + oPn (1).

This concludes the proof. �

For sake of compactness, for a map m depending on ϑ or only β or φ, denote
by Dr (m) and Dr,s(m) the first partial derivative of m with respect to the r−th
component and the second partial derivative of m with respect to the r−th and s−th
component, respectively. Furthermore, if m is a map from R

p to R, then D(m)

denotes the gradient of m and if m is a map from R
p to R

k , then D(m) denotes
the Jacobi-matrix of m. For instance, f (y|θx (β), φ) is a function of ϑ , therefore
D( f (y|θx (β), φ)) denotes the gradient with respect to ϑ , whereas θx (β) is a function
of β only and therefore D(θx (β)) denotes the gradient with respect to β. Note also
that Dp+1( f (y|θx (β), φ)) is the partial derivative of f (y|θx (β), φ) with respect to
the last component of ϑ which is φ. For a function like c(y, φ) that only depends on
φ, we have D(c(y, φ)) = D1(c(y, φ)).

Theorem 5.55 If

(i) log f (y|θx (β), φ)has continuous secondderivativeswith respect toϑ and there
exits an open neighborhood V ⊂ Ξ of ϑ0 such that for all 1 ≤ r, s ≤ p + 1
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E

(
sup
ϑ∈V

∣∣Dr,s(log f (Y |θX (β), φ))
∣∣
)

< ∞,

(ii) ∫
Dp+1( f (y|θx (β0), φ0))ν(dy)H(dx) = 0,

(iii) for all 1 ≤ r, s ≤ p + 1

∫
Dr,s( f (y|θx (β0), φ0))ν(dy)H(dx) = 0,

(iv)
A := φ−1

0 E
(
ζ ′′(θX (β0))D(θX (β0))(D(θX (β0)))

�)

exist and is positive definite,
(v)

0 < B := E

((
D(log(h(Y, φ0))) − θX (β0)Y − ζ(θX (β0))

φ2
0

)2
)

< ∞,

(vi) ϑ̂n converges in probability to ϑ0

holds, then n1/2(ϑ̂n − ϑ0) → Z, where Z is multivariate normally distributed with
zero mean and covariance matrix

Σ−1 =
(
A 0
0 B

)−1

.

Proof Define sn(ϑ) := D
(
�n(ϑ)

)
and note that

sn(ϑ̂n) − sn(ϑ0) =
( ∫ 1

0
Dsn(ϑ0 + t (ϑ̂n − ϑ0)) dt

) (
ϑ̂n − ϑ0

)
.

Note that the right-hand side is a matrix-vector product. First, we substitute the
integral by Dsn(ϑ0). Define

Δn :=
∫ 1

0
Dsn(ϑ0 + t (ϑ̂n − ϑ0))dt − Dsn(ϑ0)

and Bε := {ϑ : ‖ϑ − ϑ0‖ ≤ ε}. W.l.o.g. we assume that Bε ⊂ V . We have by
Markov’s inequality for the r−th and s−th component of Δn , denoted by Δ(r,s)

n ,
that
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P(|Δ(r,s)
n /n| > ε̃) ≤ P(ϑ̂n /∈ Bε) + ε̃−1

E

(
sup
ϑ∈Bε

|Dr,s�1(ϑ) − Dr,s�1(ϑ0)|
)

.

(5.22)

Since ϑ̂n converges in probability toϑ0, the first term on the right-hand side converges
to zero. By the continuity assumption of (i)

lim
ε→0

sup
ϑ∈Bε

|Dr,s�1(ϑ) − Dr,s�1(ϑ0)| = 0.

Therefore, by assumption (i) and Lebesgue’s dominated convergence theorem the
second termon the right-hand side of (5.22) can bemade arbitrarily small. Altogether,
we obtain n−1Δn = oP(1) and since sn(ϑ̂n) = 0 the initial equality becomes

−n−1/2sn(ϑ0) = (n−1Dsn(ϑ0) + oP(1)) n
1/2(ϑ̂n − ϑ0). (5.23)

The final step is to apply the CTL to sn(ϑ0) and afterward Lemma 5.54. The function
sn consists of two parts, i.e.,

Dq�n(ϑ0) = 1

φ0

n∑

i=1

(yi − ζ ′(θxi (β0))Dq(θxi (β0))

for 1 ≤ q ≤ p and

Dp+1�n(ϑ0) =
n∑

i=1

D(c(yi , φ0)) − θxi (β0)yi − ζ(θxi (β0))

φ2
0

,

where c(y, φ) = log h(y, φ). Since (Yi , Xi )i=1,...,n is an i.i.d. sequence, we consider
in the following calculations of the first two moments only the i−th summand.
Obviously, the first components, 1 ≤ q ≤ p, of sn(ϑ0) are centered:

E
(
(Yi − ζ ′(θXi (β0))DqθXi (β0)

) = E
(
(E(Yi |Xi ) − ζ ′(θXi (β0)))DqθXi (β0)

)

(5.24)

= 0,

since E(Yi |Xi ) = ζ ′(θXi (β0)). By assumption (ii) also the last component of sn(ϑ0)

is centered:

E

(
D(c(Yi , φ0)) − θXi (β0)Yi − ζ(θXi (β0))

φ2
0

)
= E

(
Dp+1(�1(ϑ0))

)

=
∫

D( f (y|θx (β0), φ0))ν(dy)H(dx)

= 0.
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For the second moments, we start with the covariance of the q−th component and
the last component of sn(ϑ0). In order to simplify the notation, we write f for the
density of Y . In general, for all 1 ≤ r, s ≤ p + 1, we have

Dr,s(log f ) = 1

f

(
Dr,s f − 1

f
(Dr f )(Ds f )

)
= 1

f

(
Dr,s f − f Dr (log f )Ds(log f )

)
.

Therefore, considering the partial derivatives at ϑ0, by assumption (iii), we obtain

E
(
Dr,s(log f )

) =
∫

Dr,s( f )ν(dy)H(dx) − E (Dr (log f )Ds(log f ))

= 0 − COV (Dr (log f ), Ds(log f )) . (5.25)

In particular for r = p + 1, we additional have for the second derivatives at ϑ0 that

E

(
∂2 log f

∂φ∂β

)
= −φ−2

0 E

(
∂ log f

∂β

)
= 0

by Eq. (5.24), where ∂ log f/∂β is the gradient of log f with respect to the vector
β. This shows that the covariance of the q−th component (1 ≤ q ≤ p) and the last
component of sn equals zero. This is not surprising, since the likelihood equation of
β is independent of φ. Therefore, the covariance matrix of sn consists of two blocks.
According to the equations for the conditional expectation and variance for Y , see
(5.19), the first block is

COV
(
φ−1
0 (Y − ζ ′(θX (β0)))D(θX (β0))

) = φ−2
0 E

(
(Y − ζ ′(θX (β0)))

2S(X)
)

= φ−2
0 E

(
E[(Y − E(Y |X))2

∣∣X ]S(X)
)

= φ−1
0 E(ζ ′′(θX (β0))S(X)),

where
S(X) = D(θX (β0)) (D(θX (β0)))

� .

Note thatφ−1
0 in the last line is correct sinceVAR(Y |X) = φ0ζ

′′(θX (β0)). The second
block is

E

((
D(c(Y, φ0)) − θX (β0)Y − ζ(θX (β0))

φ2
0

)2
)

.

Thus, n−1/2sn(β0) converges in distribution to a multivariate normally distributed
random variable with zero mean and covariance matrix Σ that consists of those two
blocks. Finally, n−1Dsn(ϑ0) converges by the SLLN and (5.25) almost surely to−Σ .
Representation (5.23) and Lemma 5.54 complete the proof. �

The following corollary will be used later when we investigate goodness-of-fit-
tests.
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Corollary 5.56 Under the assumptions of Theorem 5.55 it holds for

L(Xi ,Yi , ϑ0) = Σ−1D(log( f (Yi |θXi (β0), φ0)))

that

1. n1/2(ϑ̂n − ϑ0) = n−1/2 ∑n
i=1 L(Xi ,Yi , β0, φ0) + oP(1),

2. E(L(Xi ,Yi , β0, φ0)) = 0,
3. E

(
L(Xi ,Yi , β0, φ0)L�(Xi ,Yi , β0, φ0)

)
exists and is positive definite.

Proof All calculations were already made in the proof of Theorem 5.55. Setting

L(Xi ,Yi , β0, φ0) = Σ−1D(log( f (Yi |θXi (β0), φ0)))

yield again the representation (5.23) for n1/2(ϑ̂n − ϑ0), where due to the SLLN
n−1Dsn(ϑ0) was substituted by −Σ . Since Σ is a constant matrix the calculations
of the first and second moment for the components of sn(ϑ0) in the proof of The-
orem 5.55 directly yield the assertions 2 and 3 of the corollary. This concludes the
proof. �

5.3.2 Mathematical Framework of Bootstrap MLE

Since a GLM makes an explicit assumption about the density of the Y , it is possible
to bootstrap the data in a parametric manner. After estimating the parameters on
the original dataset, for instance in a Poisson regression, we can create/bootstrap
a new dataset according to the fitted model. This is the backbone of RSS5.42. In
the following we investigate the behavior of the MLE estimator in such a bootstrap
world. This will lead to the same consistency results we already obtained in the non-
bootstrapped MLE in Sect. 5.3.1. Furthermore, the results of this chapter are used to
construct goodness-of-fit-tests for GLMs.

Remark 5.57 Bootstrapping in according to Resampling Scheme 5.42 means that
X∗
k;i are constants in the bootstrap world. Therefore, in the bootstrap world the

covariates have not a common distribution PX .

For ease of notation we suppress k in the following and due to Step (B) of the
resampling scheme we obtain X∗

i = Xi . Similar as before we obtain that the log
likelihood is

�∗
n(ϑ) =

n∑

i=1

θxi (β)y∗
in − ζ(θxi (β))

φ
+ log(h(y∗

in, φ))

with the corresponding derivatives (components of the score function s∗
n )
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Dq�
∗
n(ϑ) = 1

φ

n∑

i=1

(y∗
in − ζ ′(θxi (β))Dq(θxi (β))

for 1 ≤ q ≤ p and

Dp+1�
∗
n(ϑ) =

n∑

i=1

D(c(y∗
in, φ)) − θxi (β)y∗

in − ζ(θxi (β))

φ2
,

where c(y, φ) = log h(y, φ).

Lemma 5.58 Assume ϑ̂n → ϑ0 w.p.1 and the density f is continuous in ϑ at ϑ0. If
there are open neighborhoods V1 and V2 of ϑ0 such that

∫ ∫
sup

ϑ1∈V1

|A(y, x, ϑ1)| sup
ϑ2∈V2

f (y|θx (β2), φ2)ν(dy)H(dx) < ∞,

then under Resampling Scheme5.42, as n → ∞,

n−1
n∑

i=1

E
∗
n(A(Y ∗

in, Xi , ϑ̂n)) −→
∫ ∫

A(y, x, ϑ0) f (y|θx (β0), φ0)ν(dy)H(dx)

w.p.1 if A is continuous in ϑ at ϑ0.

Proof Obviously by our assumption it also holds true that

∫ ∫
sup

ϑ1∈V
|A(y, x, ϑ1)| sup

ϑ2∈V
| f (y|θx (β2), φ2) − f (y|θx (β0), φ0)| ν(dy)H(dx) < ∞.

We have w.p.1

∣∣∣∣∣n
−1

n∑

i=1

E
∗
n(A(Y ∗

in, Xi , ϑ̂n)) − n−1
n∑

i=1

∫
A(y, Xi , ϑ̂n) f (y|θXi (β0), φ0)ν(dy)

∣∣∣∣∣

≤ n−1
n∑

i=1

∫ ∣∣∣A(y, Xi , ϑ̂n)

∣∣∣
∣∣∣ f (y|θXi (β̂n), φ̂n) − f (y|θXi (β0), φ0)

∣∣∣ ν(dy)

≤ n−1
n∑

i=1

∫
sup

ϑ1∈V1
|A(y, Xi , ϑ1)| sup

ϑ2∈V2

∣∣ f (y|θXi (β2), φ2) − f (y|θXi (β0), φ0)
∣∣ ν(dy)

→
∫ ∫

sup
ϑ1∈V1

|A(y, x, ϑ1)| sup
ϑ2∈V2

| f (y|θx (β2), φ2) − f (y|θx (β0), φ0)| ν(dy)H(dx),

as n → ∞, where the second inequality follows from the fact that ϑ̂n converges to ϑ0

w.p.1 and the last step follows from the SLLN. By continuity of the density function
with respect to ϑ and Lebegue’s dominated convergence theorem the last expression
converges to zero by shrinking V2 toward the point set {ϑ0}. In the same manner we
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obtain, as n → ∞,

∣∣∣∣∣n
−1

n∑

i=1

∫
(A(y, Xi , ϑ̂n) − A(y, Xi , ϑ0)) f (y|θXi (β0), φ0)ν(dy)

∣∣∣∣∣

≤ n−1
n∑

i=1

∫
sup

ϑ1∈V1

|A(y, Xi , ϑ1) − A(y, Xi , ϑ0)| f (y|θXi (β0), φ0)ν(dy)

→
∫ ∫

sup
ϑ1∈V1

|A(y, x, ϑ1) − A(y, x, ϑ0)| f (y|θx (β0), φ0)ν(dy)H(dx),

which also converges to zero by the continuity of A at ϑ0 and Lebegue’s dominated
convergence theorem if we shrink V1 toward the point set {ϑ0}. Finally, one only
needs to observe that

n−1
n∑

i=1

∫
A(y, Xi , ϑ0) f (y|θXi (β0), φ0)ν(dy)

converges by the SLLN to

∫ ∫
A(y, x, ϑ0) f (y|θx (β0), φ0)ν(dy)H(dx),

which concludes the proof. �

Theorem 5.59 If Ξ is compact, the density f is continuous in ϑ at ϑ0 and

(i) there exists an open neighborhood V0 = V (ϑ0) of ϑ0 such that for all ϑ∗ ∈ Ξ

exists an open neighborhood V ∗ = V (ϑ∗) of ϑ∗ with

∫ ∫ (∣∣∣∣∣ sup
ϑ̃∈V ∗

log

(
f (y|θx (β̃), φ̃)

f (y|θx (β0), φ0)

)∣∣∣∣∣

)
sup
ϑ∈V0

f (y|θx (β), φ)ν(dy)H(dx) < ∞,

and

∫ ∫ ⎛

⎝
∣∣∣∣∣ sup
ϑ̃∈V ∗

log

(
f (y|θx (β̃), φ̃)

f (y|θx (β0), φ0)

)∣∣∣∣∣

2
⎞

⎠ sup
ϑ∈V0

f (y|θx (β), φ)ν(dy)H(dx) < ∞,

then under the assumptions of Lemma5.51 it holds w.p.1, as n → ∞, that ϑ̂∗
n → ϑ0

in probability with respect to P
∗
n, where ϑ̂∗

n is the maximizer of �∗
n(·).

Proof Note that we might encounter measurability issues as in Theorem5.52 for
the MLE. Again, if this happens we consider the inner probability measure. The
continuity of the density functions and the compactness of Ξ assure the exis-
tence of ϑ̂∗

n ∈ Ξ . Denote by V (⊂ V0) an arbitrary open neighborhood of ϑ0. Since
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ϑ̂n → ϑ0 w.p.1, we can assume that ϑ̂n ∈ V for all n ∈ N. Let U = Ξ\V . Clearly,
supϑ∈U �∗

n(ϑ) < �∗
n(ϑ0) imply ϑ̂∗

n ∈ V . Therefore, it is sufficient to proof that w.p.1

P
∗
n

(
sup
ϑ∈U

�∗
n(ϑ) − �∗

n(ϑ0) < 0

)
−→ 1, as n → ∞. (5.26)

We will now find a finite cover B1, . . . , Bm for U , where every Bk will have the
property (5.26), i.e.,

P
∗
n

(
sup
ϑ∈Bk

�∗
n(ϑ) − �∗

n(ϑ0) ≥ 0

)
= oP∗

n
(1), as n → ∞, (5.27)

w.p.1, for k = 1, . . . ,m. For ϑ∗ ∈ U choose V ∗ according to the assumption (i). In
order to have a more compact notation we set

Win = sup
ϑ̃∈V ∗

log

(
f (Y ∗

in|θXi (β̃), φ̃)

f (Y ∗
in|θXi (β0), φ0)

)
.

We obtain

sup
ϑ̃∈V ∗

�∗
n(ϑ̃) − �∗

n(ϑ0) = n−1 sup
ϑ̃∈V ∗

n∑

i=1

log

(
f (Y ∗

in|θXi (β̃), φ̃)

f (Y ∗
in|θXi (β0), φ0)

)

≤ n−1
n∑

i=1

sup
ϑ̃∈V ∗

log

(
f (Y ∗

in|θXi (β̃), φ̃)

f (Y ∗
in|θXi (β0), φ0)

)

= n−1
n∑

i=1

Win.

Equation (5.27) holds if we establish

P
∗
n

(
n−1

n∑

i=1

Win ≥ 0

)
= P

∗
n

(
n−1

n∑

i=1

Win − E
∗
n(Win) ≥ −n−1

n∑

i=1

E
∗
n(Win)

)
= oP∗

n
(1).

For ε > 0 we get by Chebyshev’s inequality

P
∗
n

(
n−1

n∑

i=1

Win − E
∗
n(Win) ≥ ε

)

≤ (nε)−2
n∑

i=1

E
∗
n(W

2
in)
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≤ (nε)−2
n∑

i=1

∫ ∣∣∣∣∣ sup
ϑ̃∈V ∗

log

(
f (y|θXi (β̃), φ̃)

f (y|θXi (β0), φ0)

)∣∣∣∣∣

2

sup
ϑ∈V0

f (y|θXi (β), φ)ν(dy),

which convergesw.p.1 to zero by assumption (i) and the SLLN, as n → ∞. It remains
to show that n−1 ∑n

i=1 E
∗
n(Win) converges w.p.1 to a negative constant. Assumption

(i) and Lemma 5.58 yield w.p.1, as n → ∞,

n−1
n∑

i=1

E
∗
n(Win) →

∫ ∫
sup

ϑ̃∈V ∗
log

(
f (y|θx (β̃), φ̃)

f (y|θx (β0), φ0)

)
f (y|θx (β0), φ0)ν(dy)H(dx).

(5.28)

By assumption (i) and Lebegue’s dominated convergence theorem the right-hand
side of (5.28) converges to LH (ϑ0, ϑ

∗) − LH (ϑ0, ϑ0) by shrinking V ∗ toward {ϑ∗}.
Finally, Lemma5.51 implies LH (ϑ0, ϑ

∗) − LH (ϑ0, ϑ0) < 0.
In sum, w.p.1, for every ε > 0 we can choose for all ϑ∗ an open neighborhood

V ∗ of ϑ∗ and an N such that

P
∗
n( sup

ϑ∈V ∗
�∗
n(ϑ) − �∗

n(ϑ0) ≥ 0) ≤ ε

for n ≥ N , where N maybe subject to ω. Since Ξ is compact, we can select from
this cover ofU a finite cover B1, . . . , Bm which provides (5.26). Since V was chosen
arbitrary, this concludes the proof. �

Theorem 5.60 If the density f is continuous in ϑ at ϑ0 and

(i) log f (y|θx (β), φ)has continuous secondderivativeswith respect toϑ and there
exist open neighborhoods V1, V2 ⊂ Ξ of ϑ0 such that for all 1 ≤ r, s ≤ p + 1

∫ ∫
sup

ϑ1∈V1

|Dr (log f (y|θx (β1), φ1))|2 sup
ϑ2∈V2

f (y|θx (β2), φ2)ν(dy)H(dx) < ∞

and
∫ ∫

sup
ϑ1∈V1

∣∣Dr,s(log f (y|θx (β1), φ1))
∣∣ sup
ϑ2∈V2

f (y|θx (β2), φ2)ν(dy)H(dx) < ∞,

(ii) for all ϑ ∈ V2 it holds that

∫
Dp+1( f (y|θx (β), φ))ν(dy)H(dx) = 0,

(iii) for all 1 ≤ r, s ≤ p + 1 and all ϑ ∈ V2 it holds that

∫
Dr,s( f (y|θx (β), φ))ν(dy)H(dx) = 0,



138 5 Regression Analysis

(iv) for every x ∈ R
p the function

R1(x, β) = ζ ′′(θx (β))D(θx (β))(D(θx (β)))�

is continuous in β at β0 and

∫
sup

ϑ1∈V1

|R1(x, β1)|H(dx) < ∞

and
A = φ−1

0 E (R1(X, β0))

exists and is positive definite,
(v) for every x ∈ R

p and y ∈ R the function

R2(y, x, ϑ) = D(log(h(y, φ))) − θx (β)y − ζ(θx (β))

φ2

is continuous in ϑ at ϑ0 and

∫ ∫
sup

ϑ1∈V1

R2
2(y, x, ϑ1) sup

ϑ2∈V2

f (y|θx (β2), φ2)ν(dy)H(dx) < ∞,

and
0 < B = E

(
R2
2(Y, X, ϑ0)

)
< ∞,

(vi) ϑ̂∗
n − ϑ̂n = oP∗

n
(1) w.p.1,

(vii) ϑ̂n converges w.p.1 to ϑ0

holds, then n1/2(ϑ̂∗
n − ϑ̂n) → Z, where Z is multivariate normally distributed with

zero mean and covariance matrix

Σ−1 =
(
A 0
0 B

)−1

.

Remark 5.61 Note that the covariance matrix Σ of Theorem 5.60 equals the covari-
ance matrix of Theorem5.55, which is the CLT for the original MLE.

Proof (of Theorem 5.60)Note, this proof is closely in line with the proof of Theo-
rem 5.55 andwe partially reuse calculations from that previous proof. In order to have
more compact notation during the proof, define �(y, x, ϑ) = log( f (y|θx (β), φ)) and
denote by s∗

n the gradient of �∗
n and let Ds∗

n be the Jacobian matrix of the score func-
tion s∗

n . As before we also use D to denote by Drg and Dr,sg the first partial derivative
of g with respect to the r−th component of ϑ and the second partial derivative of g
with respect to the r−th and s−th component of ϑ , respectively.
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Note that

s∗
n (ϑ̂

∗
n ) − s∗

n (ϑ̂n) =
( ∫ 1

0
Ds∗

n (ϑ̂n + t (ϑ̂∗
n − ϑ̂n))dt

) (
ϑ̂∗
n − ϑ̂n

)
,

where the right-hand side is a matrix-vector product. First, we substitute the integral
by Ds∗

n (ϑ̂n). Define

Δn =
∫ 1

0
Ds∗

n (ϑ̂n + t (ϑ̂∗
n − ϑ̂n))dt − Ds∗

n (ϑ̂n)

and Bε = {ϑ : ‖ϑ − ϑ0‖ ≤ ε}. W.l.o.g. we assume that Bε ⊂ V2. We have by
Markov’s inequality for the r−th and s−th component of Δn , denoted by Δ(r,s)

n ,
that

P
∗
n(|Δ(r,s)

n /n| > ε̃) ≤ P
∗
n(ϑ̂

∗
n /∈ Bε) + ε̃−1

E
∗
n

(
I{ϑ̂∗

n ∈Bε}|Δ(r,s)
n /n|

)
. (5.29)

Since ϑ̂∗
n − ϑ̂n = oP∗

n
(1) w.p.1 and ϑ̂n converges w.p.1 to ϑ0, the first term on the

right-hand side converges to zero w.p.1. The second term on the right-hand side
converges also to zero as follows. For the sake of simplicity, we ignore the leading ε̃

since it is simply a constant. Due to the almost sure convergence of ϑ̂n to ϑ0 we can
assume that ϑ̂n ∈ Bε almost surely. Therefore, we have

E
∗
n

(
I{ϑ̂∗

n ∈Bε}|Δ(r,s)
n /n|

)

≤ E
∗
n

(
sup
ϑ∈Bε

∣∣∣∣∣n
−1

n∑

i=1

Dr,s�(Y
∗
in, Xi , ϑ) − Dr,s�(Y

∗
in, Xi , ϑ̂n)

∣∣∣∣∣

)

≤ n−1
n∑

i=1

E
∗
n

(
sup

ϑ,ϑ̃∈Bε

∣∣∣Dr,s�(Y
∗
in, Xi , ϑ) − Dr,s�(Y

∗
in, Xi , ϑ̃)

∣∣∣

)
.

By the assumptions on the second derivatives in (i) and Lemma5.58, the last expres-
sion converges w.p.1 to

∫ ∫
sup

ϑ,ϑ̃∈Bε

∣∣∣Dr,s�(y, x, ϑ) − Dr,s�(y, x, ϑ̃)

∣∣∣ f (y|θx (β0), φ0)ν(dy)H(dx),

which converges to zero if ε tends to zero due to the continuity of the second deriva-
tives of log f , see assumption (i), and Lebegue’s dominated convergence theorem.
Altogether, we obtain n−1Δn = oP∗

n
(1) and since s∗

n (ϑ̂
∗
n ) = 0 the initial equality

becomes

−n−1/2s∗
n (ϑ̂n) =

(
n−1Ds∗

n (ϑ̂n) + oP∗
n
(1)

) (
n1/2(ϑ̂∗

n − ϑ̂n)
)
. (5.30)



140 5 Regression Analysis

We now prepare the application of the CLT by investigating the limit of the variance
of n−1/2s∗

n (ϑ̂n). The function s∗
n consists of two parts, i.e.,

Dq�
∗
n(ϑ̂n) =

n∑

i=1

Dq�(Y
∗
in, Xi , ϑ̂n) = 1

φ̂n

n∑

i=1

(Y ∗
in − ζ ′(θXi (β̂n))Dq(θXi (β̂n))

for 1 ≤ q ≤ p and

Dp+1�
∗
n(ϑ̂n) =

n∑

i=1

Dp+1�(Y
∗
in , Xi , ϑ̂n) =

n∑

i=1

D(c(Y ∗
in , φ̂n)) − θXi (β̂n)Y ∗

in − ζ(θXi (β̂n))

φ̂2
n

,

where c(y, φ) = log h(y, φ). Following the proof of Theorem5.55 we easily con-
clude (under assumption (ii)) that every summand of s∗

n (ϑ̂n) is centered. Another
relation that can be directly reused (under assumption (iii)) from the proof of Theo-
rem5.55 is that

E
∗
n

(
Dr,s(log fin)

) = −COV∗
n (Dr (log fin), Ds(log fin)) (5.31)

for all 1 ≤ r, s ≤ p + 1, where fin is the density of Y ∗
in . In particular,

COV∗
n

(
Dp+1(log fin), Dq(log fin)

)

equals

−E
∗
n

(
∂2 log fin
∂φ∂βq

)
= φ̂−2

n E
∗
n

(
∂ log fin

∂βq

)
= 0

for all 1 ≤ q ≤ p, which is quite expectable because the likelihood equation of β

is independent of φ. By construction, Y ∗
1n, . . . ,Y

∗
nn is an independent sequence and

therefore, the covariance matrix of n−1/2s∗
n (ϑ̂n) consists of two blocks, and following

the proof of Theorem5.55 we obtain

COV∗
n

(
(n1/2φ̂n)

−1
n∑

i=1

(Y ∗
in − ζ ′(θXi (β̂n)))D(θXi (β̂n))

)
= (nφ̂n)

−1
n∑

i=1

E
∗
n(R1(Xi , β̂n)).

The right-hand side converges by assumption (iv) and Lemma5.58 w.p.1 to

A = φ−1
0 E(R1(X, β0)). (5.32)

Due to independence, the second block of n−1/2s∗
n (ϑ̂n) equals

E
∗
n

⎛

⎝
(
n−1/2

n∑

i=1

R2(Y
∗
in, Xi , ϑ̂n)

)2
⎞

⎠ = n−1
n∑

i=1

E
∗
n

(
R2
2(Y

∗
in, Xi , ϑ̂n)

)
.



5.3 Generalized Linear Model (Parametric) 141

By assumption (v) and again Lemma5.58, we conclude that the second block of
COV∗

n(n
−1/2s∗

n (ϑ̂n)) converges w.p.1 to

B = E
(
R2
2(Y, X, ϑ0)

)
. (5.33)

Note that due to equation (5.31) −n−1Ds∗
n (ϑ̂n) converges also to the asymptotic

covariance matrix of n−1/2s∗
n (ϑ̂n).

The final step is to apply the CLT to s∗
n (ϑ̂n) and afterward Lemma5.54. According

to the Cramér-Wold device, we have to investigate n−1/2a�s∗
n (ϑ̂n) for a ∈ R

p+1\{0}
arbitrary. Obviously, every summand of the linear combination is centered because
every component of s∗

n (ϑ̂n) is centered. Hence, it remains to proof that the Linde-
berg condition holds. But since the variance of n−1/2a�s∗

n (ϑ̂n) converges w.p.1, the
Lindeberg condition simplifies to

n∑

i=1

∫

{ |n−1/2
∑p+1

q=1 aq Dq�(y,Xi ,ϑ̂n )|≥δ}

⎛

⎝n−1/2
p+1∑

q=1

aq Dq�(y, Xi , ϑ̂n)

⎞

⎠
2

dP∗
n −→ 0, as n → ∞,

w.p.1, where δ > 0. The left-hand side is eventually bounded by

n−1
n∑

i=1

E
∗
n

⎛

⎝ sup
ϑ∈Bε

I{|∑p+1
q=1 aq Dq�(y,Xi ,ϑ)|≥δK 1/2}

⎛

⎝
p+1∑

q=1

aq Dq�(y, Xi , ϑ)

⎞

⎠
2⎞

⎠

for all K ∈ N which converges w.p.1, as n → ∞, to

E

⎛

⎝ sup
ϑ∈Bε

I{| ∑p+1
q=1 aq Dq�(Y,X,ϑ)|≥δK 1/2}

⎛

⎝
p+1∑

q=1

aq Dq�(Y, X, ϑ)

⎞

⎠
2⎞

⎠ .

This expression tends to zero by the assumption on the first derivative in (i) for
K → ∞, which proofs that the Lindeberg condition holds.

To sum up, the left-hand side of equation (5.30) is asymptotically normal dis-
tributed with an asymptotic variance consisting of the two blocks (5.32) and (5.33),
i.e.,Σ . Furthermore,we know that n−1Ds∗

n (ϑ0) converges to−Σ , as n → ∞. Apply-
ing Lemma 5.54 yields the result and concludes the proof. �
Corollary 5.62 Under the assumptions of Theorem5.60 it holds for

L(Xi ,Y
∗
in, β̂n, φ̂n) = Σ−1D(log( f (Y ∗

in|θXi (β̂n), φ̂n)))

that

1. n1/2(ϑ̂∗
n − ϑ̂n) = n−1/2 ∑n

i=1 L(Xi ,Y ∗
in, β̂n, φ̂n) + oP∗

n
(1), as n → ∞, w.p.1,

2. E
∗(L(Xi ,Y ∗

in, β̂n, φ̂n)) = 0 for all n ∈ N,
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3. n−1 ∑n
i=1 E

∗
(
L(Xi ,Y ∗

in, β̂n, φ̂n)L�(Xi ,Y ∗
in, β̂n, φ̂n)

)
converges w.p.1to Σ−1.

Proof All calculations were already made in the proof of Theorem 5.60. According
to the representation (5.30) and Lemma5.54 we can set

L(Xi ,Y
∗
in, β̂n, φ̂n) = Σ−1D(log( f (Y ∗

in|θXi (β̂n), φ̂n)))

to obtain assertion 1, since n−1Ds∗
n (ϑ̂n) converges to −Σ . Note, these are the sum-

mands of s∗
n (ϑ̂n) from the proof of Theorem 5.60 multiplied by Σ−1. In the proof it

was shown that the summands of s∗
n (ϑ̂n) are centered and the arithmetic mean of the

covariance of the summands converges w.p.1 to Σ . Since Σ is a constant matrix the
proof of Theorem 5.60 directly yield the assertions 2 and 3 of the corollary. �

5.4 Semi-parametric Model

Recall the situation of the classical linear model, where Y = β�X + ε. This was
extended to the parametric generalized linear model assuming that Y given X has a
distribution belonging to the exponential family and additionally that there exists a
link function g such that g(E(Y |X = x)) = m(x, β) = β�x . Another way to extend
the classical linear model is to consider Y = m(β�X) + ε and leave the distribution
of ε unspecified. Hence, we have the parametric componentβ and the non-parametric
component ε. In summary, we get

Definition 5.63 Let (Y, X) ∈ R
1+p and let g : R → R be an invertible link function.

If there exists β0 ∈ R
p such that for E(Y | X = x), the conditional distribution of Y

given X = x ,

E(Y | X = x) = g−1(β�
0 x) ≡ m(β�

0 x), for all x ∈ R
p,

applies, then (Y, X) follows a semi-parametric generalized linear model with link
function g.

Note that we also write m instead of g−1 to uniform the presentation.
Most of the time in this section we will only assume

Y = m(X, ϑ) + ε,

i.e., we are not restricted to β�X . One of the model definitions, see Definition 5.68,
is E(ε|X) = 0, and therefore yields E(Y |X) = m(X, ϑ).

The parametric bootstrap is not applicable anymore here because no parametric
form of ε is assumed. In this section, we will focus on the wild bootstrap, where
the resampling scheme is very similar to the resampling scheme we used for linear
models, see RSS 5.23. The only difference is how the estimators for the model
parameter and residuals are determined.
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Resampling Scheme 5.64

(A) Based on the i.i.d. observations (Yi , Xi )1≤i≤n ⊂ R
1+p calculate the ϑ̂n.

(B) Determine the estimated residuals ε̂i,n = Yi − m(Xi , ϑ̂n).
(C) Define the wild boostrap residuals by ε∗

i,n = ε̂i,n · τ ∗
i , where τ ∗

1 , . . . , τ ∗
n is an i.i.d.

sequence of Rademacher rvs. which is independent of (X1, ε1), . . . , (Xn, εn).
(D) Set X∗

i = Xi , Y ∗
i,n = m(Xi , ϑ̂n) + ε∗

i,n.

(E) Determine ϑ̂∗
n based on (Y ∗

i,n, X
∗
i ).

R-Example 5.65 The dataset in this example follows

m(X, ϑ) + ε = ϑa exp(X/ϑb) + ϑc exp(X/ϑd) + ε

with ϑ0 = (4,−2,−3,−10), ε ∼ N (0, 0.252) and X uniformly distributed on
[1, 30]. The following R-code generates 400 samples and fits a model.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
semiparametric_data <-
data.frame(X = runif(400, min = 1, max = 30)) %>%
dplyr::mutate(
mu = 4 * exp(-X/2) - 3 * exp(-X/10),
epsilon = rnorm(400, sd = 0.25),
Y = mu + epsilon)

fit_sp <- minpack.lm::nlsLM(
formula = Y ˜ a * exp(X/b) + c * exp(X/d),
data = semiparametric_data,
start = c(a = 4, b = -2, c = -3, d = -10),
control = nls.control(maxiter = 1000))

fit_sp

## Nonlinear regression model

## model: Y ˜ a * exp(X/b) + c * exp(X/d)

## data: semiparametric_data

## a b c d

## 3.707 -2.105 -3.025 -9.797

## residual sum-of-squares: 23.76

##

## Number of iterations to convergence: 3

## Achieved convergence tolerance: 1.49e-08

confint(fit_sp)

## Waiting for profiling to be done...

## 2.5% 97.5%

## a 3.174945 4.269019
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## b -2.824567 -1.609529

## c -3.844516 -2.601336

## d -10.959331 -8.551295

These large number of samples are necessary because otherwise estimating the
confidence intervals via confint is problematic and quickly results in an error. This is
also the reason why we started the optimization in ϑ0 which is unknown in practice.
Now, we implement the wild bootstrap and apply it to the fitted model.

rrademacher <- function(n) {
2 * rbinom(n = n, size = 1, prob = 1/2) - 1

}

bootstrap_sp <- function(data, fit_obj) {
# Step B
epsilon_hat <- residuals(fit_obj)
# Step C
boot_epsilon <- rrademacher(length(epsilon_hat)) * epsilon_hat
# Step D
boot_X <- data$X
boot_Y <- predict(fit_obj) + boot_epsilon
# Step E
minpack.lm::nlsLM(
formula = boot_Y ˜ a * exp( boot_X/b) + c * exp(boot_X/d),
start = coef(fit_obj),
control = nls.control(warnOnly = T, maxiter = 1000))

}
fit_wb <- lapply(
1:200,
function(dummy) bootstrap_sp(semiparametric_data, fit_sp))

coef_wb <- sapply(fit_wb, coef) %>%
t() %>%
as.data.frame()

tail(coef_wb)

## a b c d

## 195 3.988986 -2.127204 -3.145468 -9.381500

## 196 3.925056 -2.417854 -3.346528 -9.234672

## 197 3.892880 -1.869759 -2.908396 -9.994309

## 198 3.573355 -2.123758 -3.050824 -9.367015

## 199 3.997472 -1.589187 -2.686212 -10.280919

## 200 3.552934 -1.917992 -2.792621 -10.195711
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Fig. 5.11 Simulated non-linear model. Matrix of plots showing the distribution of the bootstrapped
parameters

This allows us to obtain 95% confidence intervals using quantiles

apply(coef_wb, 2, quantile, prob = c(0.025, 0.975))

## a b c d

## 2.5% 3.180270 -2.802138 -3.727098 -10.975106

## 97.5% 4.386482 -1.556582 -2.613631 -8.652354

However, there is strong correlation between the four components, see Fig. 5.11.

coef_wb %>%
GGally::ggpairs()
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With the 200 fitted bootstrap models we can easily visualize the impact on the
estimated function. First, we gather the predictions of all models

pred_wb <- sapply(fit_wb, predict) %>%
as.data.frame() %>%
dplyr::mutate(X = semiparametric_data$X) %>%
tidyr::gather(boot_model, y_pred_wb, -X)

Here, we see an excerpt of the covariates and the prediction of the first and last
bootstrapped models:

head(pred_wb)

## X boot_model y_pred_wb

## 1 9.339748 V1 -1.1281292

## 2 23.860849 V1 -0.2593153

## 3 12.860331 V1 -0.8058073

## 4 26.607505 V1 -0.1948618

## 5 28.273551 V1 -0.1638439

## 6 2.321138 V1 -1.1879945

tail(pred_wb)

## X boot_model y_pred_wb

## 79995 4.057115 V200 -1.4473640

## 79996 7.948244 V200 -1.2243636

## 79997 8.845801 V200 -1.1374968

## 79998 3.930696 V200 -1.4415745

## 79999 4.419501 V200 -1.4556303

## 80000 29.745860 V200 -0.1509946

Next, we plot the original observations with the corresponding model fit as well
as all 200 bootstrapped models, see Fig. 5.12.

semiparametric_data %>%
dplyr::mutate(y_pred = predict(fit_sp)) %>%
ggplot(aes(x = X, y = Y)) +
geom_point() +
geom_line(data = pred_wb,

aes(x = X, y = y_pred_wb, group = boot_model),
alpha = 0.1) +

geom_line(aes(y = y_pred), color = "red") +
theme_minimal()
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Fig. 5.12 Simulated non-linear model. Fitted model as solid red line and 200 bootstrapped models
as solid black lines

5.4.1 Mathematical Framework of LSE

The proofs rely heavily on Jennrich (1969). Especially, Theorem 2 of Jennrich (1969)
will be used multiple times. Therefore, we explicitly state the theorem next.

Theorem 5.66 (Theorem 2, Jennrich 1969) Let m be a function onX × Θ where
X is a Euclidean space andΘ is a compact subset of a Euclidean space. Let m(x, ϑ)

be a continuous function of ϑ for each x and a measurable function of x for each
ϑ . Assume also that |m(x, ϑ)| ≤ M(x) for all x and ϑ , where M is integrable with
respect to a probability distribution function F onX . If X1, X2, . . . , Xn is an i.i.d.
sample with distribution function F, then
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∥∥∥∥∥n
−1

n∑

i=1

m(Xi , ϑ) −
∫

m(x, ϑ)F(dx)

∥∥∥∥∥
ϑ∈Θ

−→ 0, as n → ∞,

w.p.1.

Corollary 5.67 Letϑ1, ϑ2, . . . , ϑn bea sequenceof randomvariableswith codomain
Θ . Under the assumptions of Theorem 5.66, but only assuming that there exists an
open neighborhood V of ϑ0 such that |m(x, ϑ)| ≤ M(x) for all x and ϑ ∈ V , then

n−1
n∑

i=1

m(Xi , ϑn) −→ E(m(X, ϑ0)), as n → ∞,

w.p.1 (in probability), if ϑn converges w.p.1 (in probability) to ϑ0 ∈ Θ .

Proof First assume that ϑn converges almost surely to ϑ0. Let Ṽ ⊂ V be a compact
subset such that ϑ0 is an inner point of Ṽ . Obviously,

∣∣∣∣∣n
−1

n∑

i=1

m(Xi , ϑn)I{ϑn /∈Ṽ }

∣∣∣∣∣ −→ 0, as n → ∞,

w.p.1 because ϑn converges to ϑ0 w.p.1.
The corresponding counterpart |n−1 ∑n

i=1 m(Xi , ϑn)I{ϑn∈Ṽ } − E(m(X, ϑ0))| is
bounded by

∥∥∥∥∥n
−1

n∑

i=1

m(Xi , ϑ) − E(m(X, ϑ))

∥∥∥∥∥
ϑ∈Ṽ

+ |E(m(X, ϑn)I{ϑn∈Ṽ } − m(X, ϑ0))|.

The first term converges to zero by Theorem 5.66 w.p.1 because Ṽ is compact. By
the assumption, the difference |m(x, ϑn)I{ϑn∈Ṽ } − m(x, ϑ0)| is dominated by 2M(x)
and converges w.p.1 to zero since ϑn converges to ϑ0 w.p.1. Applying Lebegue’s
dominated convergence theorem to E(|m(X, ϑn)I{ϑn∈Ṽ } − m(X, ϑ0)|) yields the first
part of the corollary.

Now assume that ϑn converges in probability to ϑ0. Then for every sub-sequence
nk exists a further sub-sequence nk ′ such that ϑnk′ converges to ϑ0 w.p.1. Applying
the first part of this corollary, we obtain

nk ′−1
nk′∑

i=1

m(Xi , ϑnk′ ) −→ E(m(X, ϑ0)), as k ′ → ∞,

w.p.1. This implies the convergence in probability for the original sequence and
completes the proof. �

We now list some general assumptions (GA) which will be used frequently in this
section.
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General Assumptions 5.68

(i) Θ compact.
(ii) X, X1, …, Xn is an i.i.d. sample with codomain X .
(iii) ε, ε1, …, εn is an i.i.d. sample, E(ε|X) = 0 w.p.1, E(ε2) = σ 2.
(iv) Yi = m(Xi , ϑ0) + εi , ϑ0 ∈ Θ .
(v) Q(ϑ) = E((m(X, ϑ0) − m(X, ϑ))2) has a unique minimum at ϑ = ϑ0.
(vi) m(x, ϑ) continuous in ϑ for all x ∈ X and measurable in x for all ϑ ∈ Θ .
(vii) there exists a measurable function M(x)with m2(x, ϑ) ≤ M(x) for all x ∈ X

and ϑ ∈ Θ; E(M(X)) < ∞.
(viii) E(M(X)|ε|) < ∞.

Lemma 5.69 Under the GA 5.68,

∥∥∥∥∥n
−1

n∑

i=1

m(Xi , ϑ)εi

∥∥∥∥∥
ϑ∈Θ

−→ 0, as n → ∞,

w.p.1.

Proof By the assumption of continuity and domination, i.e., assumption (vi)–(viii),
wedirectly obtain fromTheorem5.66 thatn−1 ∑n

i=1 m(Xi , ϑ)εi convergesw.p.1 uni-
formly inϑ toE(m(X, ϑ)ε) = E(m(X, ϑ)E(ε|X))which equals zero by assumption
(iii). �

Lemma 5.70 Under the GA 5.68,

∥∥∥∥∥n
−1

n∑

i=1

(Yi − m(Xi , ϑ))2 − Q(ϑ) − σ 2

∥∥∥∥∥
ϑ∈Θ

−→ 0, as n → ∞,

w.p.1.

Proof Setting D(x, ϑ) := m(x, ϑ0) − m(x, ϑ), we obtain

n−1
n∑

i=1

(Yi − m(Xi , ϑ))2 = n−1
n∑

i=1

(m(Xi , ϑ0) + εi − m(Xi , ϑ))2

= n−1
n∑

i=1

D2(Xi , ϑ) + 2n−1
n∑

i=1

D(Xi , ϑ)εi + n−1
n∑

i=1

ε2i .

Since m2 is dominated, i.e., assumption (vii), Theorem 5.66 implies that the first
term converges uniformly in ϑ to Q(ϑ)w.p.1. The second term converges uniformly
in ϑ to zero w.p.1 by Lemma 5.69. Finally, the last term, which is independent of ϑ ,
converges by the SLLN to σ 2 w.p.1. This concludes the proof. �

Theorem 5.71 Under the GA 5.68, ϑ̂n converges to ϑ0, as n → ∞, w.p.1.
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Proof Let Qn(ϑ) = n−1 ∑n
i=1(Yi − m(Xi , ϑ))2. Since Θ is compact and f is con-

tinuous in ϑ , there exists a ϑ̂n that minimizes Qn . By virtue of Lemma 5.70, Qn

converges uniformly and almost surely to Q + σ 2. Therefore, it exists a set Ω0 ⊂ Ω

with P(Ω0) = 1 such that Qn converges uniformly and the sequence ϑ̂n minimizes
Qn for allω ∈ Ω0. The following arguments are restricted to a fixedω ∈ Ω0. SinceΘ

is compact, ϑ̂n has a limit point ϑ̃ . We can assume that ϑ̂n converges to ϑ̃ . By Corol-
lary 5.67 we have Qn(ϑ̂n) → Q(ϑ̃) + σ 2 and Qn(ϑ0) → σ 2 because Q(ϑ0) = 0.
Since ϑ̂n minimizes Qn , it also holds for all n ∈ N that Qn(ϑ̂n) ≤ Qn(ϑ0). There-
fore, Q(ϑ̃) + σ 2 ≤ σ 2, which implies Q(ϑ̃) = 0. The uniqueness assumption (v)
yields that ϑ̃ = ϑ0. Since P(Ω0) = 1, this concludes the proof. �

Corollary 5.72 Under the GA 5.68, n−1 ∑n
i=1(Yi − m(Xi , ϑ̂n))

2 converges to σ 2,
as n → ∞, w.p.1.

Proof Obviously,

n−1
n∑

i=1

(Yi − m(Xi , ϑ̂n))
2 = n−1

n∑

i=1

(m(Xi , ϑ0) + εi − m(Xi , ϑ̂n))
2

−→
n→∞ E

(
(m(X, ϑ0) + ε − m(X, ϑ0))

2
)

= σ 2,

w.p.1, where the convergence is due to the consistence of the estimator ϑ̂n and
Corollary 5.67. �

Theorem 5.73 In addition to the GA 5.68, assume

(i) the first and second partial derivatives of f with respect to ϑ are continuous
in ϑ for all x ∈ X and measurable in x for all ϑ ∈ Θ

(ii)

A =
(
E

(
∂m(X, ϑ0)

∂ϑs

∂m(X, ϑ0)

∂ϑt

))

1≤s,t≤p

is positive definite
(iii)

Aσ =
(
E

(
ε2

∂m(X, ϑ0)

∂ϑs

∂m(X, ϑ0)

∂ϑt

))

1≤s,t≤p

is positive definite
(iv) there exists δ > 0 and M2(x) such that

∣∣∣∣
∂2m(x, ϑ)

∂ϑs∂ϑt

∣∣∣∣ ≤ M2(x)

for all x and ϑ in a closed ball Bδ(ϑ0) with E(M2(X)|ε|) < ∞
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(v) there exists δ > 0 and M3(x) such that

∣∣∣∣
∂m(x, ϑ)

∂ϑs

∂m(x, ϑ)

∂ϑt

∣∣∣∣ ≤ M3(x)

for all x and ϑ in a closed ball Bδ(ϑ0) with E(M3(X)) < ∞
(vi) there exists δ > 0 and M4(x) such that

∣∣∣∣m(x, ϑ̃)
∂2m(x, ϑ)

∂ϑs∂ϑt

∣∣∣∣ ≤ M4(x)

for all x and ϑ̃ and ϑ in a closed ball Bδ(ϑ0) with E(M4(X)) < ∞
(vii) ϑ̂n minimizes

∑n
i=1(m(Xi , ϑ) − Yi )2

(viii) ϑ̂n converges almost surely to ϑ0 and ϑ0 is an inner point of Θ ,

then
n1/2(ϑ̂n − ϑ0) → Z , as n → ∞,

in distribution, where Z is normally distributed with mean zero and variance
A−1Aσ A−�.

Proof Set Qn(ϑ) := (2n)−1 ∑n
i=1(m(Xi , ϑ) − Yi )2. Since ϑ̂n → ϑ0 and ϑ0 is an

inner point of Θ , we can assume that ϑ̂n is also an inner point of Θ for n > N . We
have

0 = ∂Qn(ϑ̂n)

∂ϑ
= ∂Qn(ϑ0)

∂ϑ
+

(∂2Qn(ϑ̃n)

∂ϑ∂ϑ�
) (

ϑ̂n − ϑ0
)

with ‖ϑ̃n − ϑ0‖ ≤ ‖ϑ̂n − ϑ0‖. Consider the first term on the right-hand side,

n1/2
∂Qn(ϑ0)

∂ϑ
= n−1/2

n∑

i=1

(m(Xi , ϑ0) − Yi )
∂m(Xi , ϑ0)

∂ϑ
= −n−1/2

n∑

i=1

εi
∂m(Xi , ϑ0)

∂ϑ
.

According to the CLT this converges in distribution to a centered normal random
variable with covariance matrix Aσ .

We now focus on the components of the second partial derivatives of Qn at ϑ̃n ,
i.e.,

∂2Qn(ϑ̃n)

∂ϑ∂ϑ� = n−1
n∑

i=1

∂m(Xi , ϑ̃n)

∂ϑ

∂m(Xi , ϑ̃n)

∂ϑ� + n−1
n∑

i=1

(m(Xi , ϑ̃n) − Yi )
∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

= n−1
n∑

i=1

∂m(Xi , ϑ̃n)

∂ϑ

∂m(Xi , ϑ̃n)

∂ϑ� − n−1
n∑

i=1

εi
∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

+ n−1
n∑

i=1

(
m(Xi , ϑ̃n) − m(Xi , ϑ0)

) ∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ� .
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Since ϑ̂n converges to ϑ0 w.p.1 and ‖ϑ̃n − ϑ0‖ ≤ ‖ϑ̂n − ϑ0‖, we can assume that
ϑ̃n ∈ Bδ(ϑ0) for all n > N . By the continuity assumptions and assumption (vi),
Corollary 5.67 implies that the third term converges to

E

(
(m(X, ϑ0) − m(X, ϑ0))

∂2m(X, ϑ0)

∂ϑ∂ϑ�

)
= 0.

Similar, by the continuity assumptions and assumption (iv), Corollary 5.67 implies
that the second term converges to

E

(
∂2m(X, ϑ0)

∂ϑ∂ϑ� ε

)
= E

(
∂2m(X, ϑ0)

∂ϑ∂ϑ� E(ε|X)

)
,

which is also zero because E(ε|X) = 0. Again, by the continuity assumptions and
assumption (v), Corollary 5.67 implies that the first term converges to

E

(
∂m(X, ϑ0)

∂ϑ

∂m(X, ϑ0)

∂ϑ�

)
= A.

At the beginning we stated that

−n1/2
∂Qn(ϑ0)

∂ϑ
=

(∂2Qn(ϑ̃n)

∂ϑ∂ϑ�
) (

n1/2(ϑ̂n − ϑ0)
)
. (5.34)

The left-hand side converges in distribution to a centered normal distributed random
variable with covariance matrix Aσ . Furthermore, the partial derivatives on the right-
hand side converge to A w.p.1. Since A is positive definite, Lemma 5.54 concludes
the proof. �

The last theorem gives the following asymptotic representation of the estimator.

Corollary 5.74 Under the assumptions of Theorem 5.73 it holds for

L(x, y, ϑ0) = A−1(y − m(x, ϑ0))
∂m(x, ϑ0)

∂ϑ

that

1. n1/2(ϑ̂n − ϑ0) = n−1/2 ∑n
i=1 L(Xi ,Yi , ϑ0) + oP(1), as n → ∞,

2. E(L(X,Y, ϑ0)) = 0,
3. E

(
L(X,Y, ϑ0)L�(X,Y, ϑ0)

)
exists and is positive definite.

Proof As shown in the proof of Theorem 5.73, we have that

∂2Qn(ϑ̃n)

∂ϑ∂ϑ� −→ A, as n → ∞,

w.p.1. Hence, according to Equation (5.34) we obtain the first result, i.e.,
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n1/2(ϑ̂n − ϑ0) = oP(1) + n−1/2
n∑

i=1

A−1(Yi − m(Xi , ϑ0))
∂m(Xi , ϑ0)

∂ϑ
,

as n → ∞. Due to the assumption that E(ε|X) = 0 we obtain the second result.
Finally,E

(
L(X,Y, ϑ0)L�(X,Y, ϑ0)

) = A−1Aσ A−� is positive definite since A and
Aσ are positive definite. �

5.4.2 Mathematical Framework of Wild Bootstrap LSE

In the wild bootstrap setup, as we have already stated in Sect. 5.2.2, we use P∗ instead
of P∗

n for the underlying probability measure of the bootstrap.

Lemma 5.75 Let Z1, Z2, . . . , Zn be an i.i.d. sequence of random variables and
assume that E

(|Z1|2+δ
)

< ∞ for some δ > 0. Then

∑

i≥1

(Zi/ i)
2 < ∞

w.p.1.

Proof Let κ = 1/(1 + δ/2). We have the following bound

∑

i≥1

Z2
i

i2
=

∑

i≥1

Z2
i

iκ
1

i2−κ
≤

∑

i≥1

Z2
i

iκ
1

i2−κ
I{Z2

i >iκ } +
∑

i≥1

1

i2−κ
.

The second sum on the right-hand side converges because κ < 1. The first sum on
the right-hand side is finite because lim supi→∞ Z2

i / i
κ ≤ 1 w.p.1. This is due to the

Borel-Cantelli lemma and the following inequality,

∑

i≥1

P

(
Z2
i

iκ
> 1

)
≤

∑

i≥1

P

( |Zi |2/κ
i

> 1

)

=
∑

i≥1

∫

[i−1,i)
P

(|Z1|2+δ > i
)
dz

≤
∑

i≥1

∫

[i−1,i)
P

(|Z1|2+δ > z
)
dz

=
∫ ∞

0
P

(|Z1|2+δ > z
)
dz

= E(|Z1|2+δ)

< ∞.

This concludes the proof. �
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Lemma 5.76 Under the GA 5.68, Resampling Scheme5.64 and the assumptions

(i) there exists a δ > 0 such that for all ϑ ∈ Θ the expectation E(|m(X, ϑ)ε|2+δ)

is finite,
(ii) E(M(X)ε2) < ∞, compare GA 5.68 (vii) and (viii),
(iii) for all δ > 0 exists a δ̃ > 0 such that |m(x, ϑ1) − m(x, ϑ2)| < δ for all x ∈ X

and ‖ϑ1 − ϑ2‖ < δ̃,

then ∥∥∥∥∥n
−1

∑

1≤i≤n

m(X∗
i , ϑ)εiτ

∗
i

∥∥∥∥∥
ϑ∈Θ

= oP∗(1)

w.p.1.

Proof Define ci,ω(ϑ) = m(Xi (ω), ϑ)εi (ω). Due to Definition 5.68 and assump-
tion (ii), Theorem5.66 guarantees that n−1 ∑n

i=1 c
2
i,ω(ϑ) converges uniformly in

ϑ w.p.1. Hence, there exist an Ω0, independent of ϑ , with P(Ω0) = 1 such that
n−1 ∑n

i=1 c
2
i,ω(ϑ) converge for all ϑ ∈ Θ and ω ∈ Ω0. By definition of the

Rademacher rvs. VAR∗(τ ∗
i ) = 1 and therefore we have by Lemma5.75 that

∑

i≥1

VAR∗(ci,ω(ϑ)τ ∗
i )

i2
=

∑

i≥1

c2i,ω(ϑ)

i2
< ∞

for all ω ∈ Ω0 and ϑ ∈ Θ . This allows to apply Shorack (2000, Theorem 10.4.4)
which implies

n−1
n∑

i=1

m(Xi (ω), ϑ)εi (ω)τ ∗
i (ω∗) −→ 0, as n → ∞, (5.35)

almost surely with respect to P
∗, for all ω ∈ Ω0 and all ϑ ∈ Θ . The final step is to

extend this result to uniform convergence in ϑ . Denote the sum on the left-hand side
of (5.35) by Zn,ω(ω∗, ϑ). In order to achieve uniform convergence, we have to show
that {Zn,ω(ω∗, ϑ), ω∗ ∈ Ω∗, n ≥ 1} is equicontinuous. By the equicontinuity of m
there exists for all δ > 0 a δ̃ such that |m(x, ϑ1) − m(x, ϑ2)| ≤ δ for all x ∈ X and
‖ϑ1 − ϑ2‖ ≤ δ̃. Since |τ ∗

i | = 1, we obtain

|Zn,ω(ω∗, ϑ1) − Zn,ω(ω∗, ϑ2)|

≤ n−1
n∑

i=1

|m(Xi (ω), ϑ1) − m(Xi (ω), ϑ2)| |εi (ω)| |τ ∗
i (ω∗)|

≤ δ2E(|ε|),

where the last inequality holds for n > N (ω) and ‖ϑ1 − ϑ2‖ ≤ δ̃. Since Θ is com-
pact, for allω ∈ Ω0, Yuan (1997, Lemma) yields that ‖Zn,ω(ω∗, ϑ)‖ϑ∈Θ converges to
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zero almost surely with respect to P∗, which also implies convergence in probability
with respect to P∗. Since P(Ω0) = 1, this concludes the proof. �

Lemma 5.77 Under the assumptions of Lemma5.76,

∥∥∥∥∥n
−1

n∑

i=1

m(X∗
i , ϑ)ε∗

i,n

∥∥∥∥∥
ϑ∈Θ

= oP∗(1), as n → ∞,

w.p.1.

Proof By definition ε∗
i,n = τ ∗

i ε̂i,n = τ ∗
i (Yi − m(Xi , ϑ̂n)) = τ ∗

i (m(Xi , ϑ0) + εi −
m(Xi , ϑ̂n)). Hence, for δ > 0,

P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)ε∗
i,n

∥∥∥∥∥
ϑ∈Θ

> δ

)

= P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)τ ∗
i (Yi − m(Xi , ϑ̂n))

∥∥∥∥∥
ϑ∈Θ

> δ

)

≤ P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)τ ∗
i εi

∥∥∥∥∥
ϑ∈Θ

> δ/2

)

+ P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)τ ∗
i (m(Xi , ϑ0) − m(Xi , ϑ̂n))

∥∥∥∥∥
ϑ∈Θ

> δ/2

)

= oP∗(1) + P
∗
(∥∥∥∥∥n

−1
n∑

i=1

m(Xi , ϑ)τ ∗
i (m(Xi , ϑ0) − m(Xi , ϑ̂n))

∥∥∥∥∥
ϑ∈Θ

> δ/2

)
,

where the last equality is due to Lemma 5.76. It remains to investigate the second
term. Let δ̃ > 0 and Bδ̃(ϑ0) be a ball around ϑ0. Since ϑ̂n converges to ϑ0 w.p.1 and
|τ ∗

i | = 1, the corresponding norm is bound by

n−1
n∑

i=1

∥∥∥m(Xi , ϑ)τ ∗
i (m(Xi , ϑ0) − m(Xi , ϑ̂n))

∥∥∥
ϑ∈Θ

≤ n−1
n∑

i=1

‖m(Xi , ϑ)‖ϑ∈Θ |τ ∗
i ||m(Xi , ϑ0) − m(Xi , ϑ̂n)|

≤ n−1
n∑

i=1

‖m(Xi , ϑ)‖ϑ∈Θ ‖m(Xi , ϑ0) − m(Xi , ϑ̃)‖ϑ̃∈Bδ̃ (ϑ0)

−→
n→∞ E

(
‖m(X, ϑ)‖ϑ∈Θ ‖m(X, ϑ0) − m(X, ϑ̃)‖ϑ̃∈Bδ̃ (ϑ0)

)

−→
δ̃→0

0,
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where the last convergence is due to Lebegue’s dominated convergence theorem
because ‖m(X, ϑ)‖ϑ∈Θ‖m(X, ϑ0) − m(X, ϑ̃)‖ϑ̃∈Bδ̃ (ϑ0)

converges to zero if δ̃ con-

verges to zero and is dominated by 2M(X) according to the GA 5.68. Since δ̃ was
arbitrary chosen, this concludes the proof. �

Lemma 5.78 Under the assumptions of Lemma 5.76,

∥∥∥∥∥n
−1

n∑

i=1

(Y ∗
i,n − m(X∗

i , ϑ))2 − Q(ϑ) − σ 2

∥∥∥∥∥
ϑ∈Θ

= oP∗(1), as n → ∞,

w.p.1.

Proof Define Δ(x, ϑ1, ϑ2) = m(x, ϑ1) − m(x, ϑ2), then

n−1
n∑

i=1

(Y ∗
i,n − m(X∗

i , ϑ))2 = n−1
n∑

i=1

(m(Xi , ϑ̂n) + ε∗
i,n − m(Xi , ϑ))2

= n−1
n∑

i=1

Δ2(Xi , ϑ̂n, ϑ) + 2n−1
n∑

i=1

Δ(Xi , ϑ̂n, ϑ)ε∗
i,n

+ n−1
n∑

i=1

ε∗2
i,n.

Due to Lemma 5.77 we have

P
∗
(∥∥∥∥∥n

−1
n∑

i=1

(Y ∗
i,n − m(X∗

i , ϑ))2 − Q(ϑ) − σ 2

∥∥∥∥∥
ϑ∈Θ

> δ

)

≤ P
∗
(∥∥∥∥∥n

−1
n∑

i=1

Δ2(Xi , ϑ̂n, ϑ) − Q(ϑ)

∥∥∥∥∥
ϑ∈Θ

> δ/3

)
+ oP∗(1)

+ P
∗
(∥∥∥∥∥n

−1
n∑

i=1

ε∗2
i,n − σ 2

∥∥∥∥∥
ϑ∈Θ

> δ/3

)
.

By definition τ ∗2
i,n = 1, therefore the third term becomes

I{|n−1
∑n

i=1 ε̂2i,n−σ 2|>δ/3},

which converges to zero by the strong consistency of the estimated residuals, see
Corollary 5.72. It remains to investigate

∥∥∥∥∥n
−1

n∑

i=1

Δ2(Xi , ϑ̂n, ϑ) − Q(ϑ)

∥∥∥∥∥
ϑ∈Θ

,
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which is bounded by

∥∥∥∥∥n
−1

n∑

i=1

Δ2(Xi , ϑ1, ϑ2) − Q̃(ϑ1, ϑ2)

∥∥∥∥∥
(ϑ1,ϑ2)∈Θ2

+
∥∥∥Q̃(ϑ̂n, ϑ) − Q̃(ϑ0, ϑ)

∥∥∥
ϑ∈Θ

,

where Q̃(ϑ1, ϑ2) = E
(
(m(X, ϑ1) − m(X, ϑ2))

2
)
. Note, Q(ϑ) = Q̃(ϑ0, ϑ). Since

Δ2(X, ϑ̂n, ϑ) is dominated by 4M(X) and Θ2 is compact, we can apply Theorem
5.66 and obtain

n−1
n∑

i=1

Δ2(Xi , ϑ1, ϑ2) −→ Q̃(ϑ1, ϑ2), as n → ∞,

uniformly in (ϑ1, ϑ2) ∈ Θ2 w.p.1. Note that Q̃ is a continuous function in (ϑ1, ϑ2)

because m2 is dominated by M which guarantees the continuity by Lebegue’s domi-
nated convergence theorem. Due to the compactness ofΘ2 it is also uniform continu-

ous. Therefore,
∥∥∥Q̃(ϑ̂n, ϑ) − Q̃(ϑ0, ϑ)

∥∥∥
ϑ∈Θ

converges to zero because ϑ̂n converges

to ϑ0 w.p.1. This concludes the proof. �

Theorem 5.79 UnderResampling Scheme5.64 and the assumptions of Lemma5.76,

‖ϑ̂∗
n − ϑ0‖ = oP∗(1), as n → ∞,

w.p.1.

Proof First observe that for all δ > 0 there exists an ε > 0 such that |ϑ − ϑ0| > δ

implies |Q(ϑ) − Q(ϑ0)| > ε. This can be seen by contradiction. Assume that there
exists a δ > 0 such that for all n ∈ N we find a ϑn with |ϑn − ϑ0| > δ and |Q(ϑn) −
Q(ϑ0)| ≤ n−1. Since Θ is compact we can assume that ϑn converges to ϑ̃ . By the
continuity of Q we also have Q(ϑ̃) = Q(ϑ0) = 0. By the uniqueness assumption
for ϑ0, we obtain ϑ̃ = ϑ0. But this contradicts our assumption that |ϑn − ϑ0| > δ for
all n. This yields the bound P

∗(|ϑ̂∗
n − ϑ0| > δ) ≤ P

∗(|Q(ϑ̂∗
n ) − Q(ϑ0)| > ε). Let

Q∗
n(ϑ) = n−1 ∑n

i=1(Y
∗
i,n − m(X∗

i , ϑ))2. We have w.p.1 that

Q(ϑ̂∗
n ) + σ 2 = oP∗(1) + Q∗

n(ϑ̂
∗
n )

= oP∗(1) + inf
ϑ∈Θ

Q∗
n(ϑ)

= oP∗(1) + inf
ϑ∈Θ

(oP∗(1) + Q(ϑ) + σ 2)

= oP∗(1) + inf
ϑ∈Θ

Q(ϑ) + σ 2

= oP∗(1) + Q(ϑ0) + σ 2,

where the first, third and fourth equality are due to the uniform convergence of Q∗
n ,

see Lemma 5.78, and the second and last equality are simply the definition of ϑ̂∗
n and



158 5 Regression Analysis

ϑ0. Therefore, P∗(|Q(ϑ̂∗
n ) − Q(ϑ0)| > ε) converges to zero with probability one for

all ε > 0. This concludes the proof. �

Theorem 5.80 Under Resampling scheme 5.64, assuming the GA 5.68 and in addi-
tion

(i) the first and second partial derivatives of m with respect to ϑ are continuous
in ϑ for all x ∈ X and measurable in x for all ϑ ∈ Θ ,

(ii)

A =
(
E

(
∂m(X, ϑ0)

∂ϑs

∂m(X, ϑ0)

∂ϑt

))

1≤s,t≤p

is positive definite,
(iii)

Aσ =
(
E

(
ε2

∂m(X, ϑ0)

∂ϑs

∂m(X, ϑ0)

∂ϑt

))

1≤s,t≤p

is positive definite,
(iv) there exists δ > 0 and M0(x), M1(x) and M2(x) such that for k = 0, 1, 2 and

s = 1, . . . , p,
∣∣∣mk(x, ϑ̃1)

∣∣∣

∣∣∣∣∣
∂m(x, ϑ̃2)

∂ϑs

∣∣∣∣∣

2

≤ Mk(x)

for all x ∈ X and ϑ̃1 and ϑ̃2 in a closed ball Bδ(ϑ0)withE(Mk(X)|ε|2−k) < ∞
for k = 0, 1, 2 and E(M0(X)) < ∞,

(v) there exists δ > 0 and M̃0(x), M̃1(x) and M̃2(x) such that for k = 0, 1, 2,
s = 1, . . . , p and t = 1, . . . , p,

∣∣∣mk(x, ϑ̃1)

∣∣∣

∣∣∣∣∣
∂2m(x, ϑ̃2)

∂ϑs∂ϑt

∣∣∣∣∣

2

≤ M̃k(x)

for all x ∈ X and ϑ̃1 and ϑ̃2 in a closed ball Bδ(ϑ0)withE(M̃k(X)|ε|2−k) < ∞
for k = 0, 1, 2,

(vi) ϑ̂n converges to ϑ0 w.p.1 and ϑ0 is an inner point of Θ ,
(vii) ‖ϑ̂∗

n − ϑ0‖ = oP∗(1), as n → ∞, w.p.1.

Then w.p.1
n1/2(ϑ̂∗

n − ϑ̂n) → Z , as n → ∞,

in distribution with respect to P
∗, where Z is normally distributed with mean zero

and variance A−1Aσ A−�.

Proof Set Q∗
n(ϑ) = (2n)−1 ∑n

i=1(m(X∗
i , ϑ) − Y ∗

i,n)
2 and let V ⊂ Θ be an open

neighborhood of ϑ0. Since all points in V are inner points of Θ , we have
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0 = ∂Q∗
n(ϑ̂

∗
n )

∂ϑ
I{ϑ̂∗

n ∈V } = ∂Q∗
n(ϑ̂n)

∂ϑ
I{ϑ̂∗

n ∈V } +
(

∂2Q∗
n(ϑ̃n)

∂ϑ∂ϑ� I{ϑ̂∗
n ∈V }

) (
ϑ̂∗
n − ϑ̂n

)

(5.36)

with ‖ϑ̃n − ϑ̂n‖ ≤ ‖ϑ̂∗
n − ϑ̂n‖. Note, ‖ϑ̂∗

n − ϑ̂n‖ = oP∗(1) due to the convergence of
ϑ̂∗
n as well as ϑ̂n to ϑ0. Consider the first term on the right-hand side of (5.36). Since

Y ∗
i,n = m(Xi , ϑ̂n) + τ ∗

i ε̂i,n ,

n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
= −n−1/2

n∑

i=1

τ ∗
i ε̂i,n

∂m(Xi , ϑ̂n)

∂ϑ
. (5.37)

We now apply the Cramér-Wold device and verify the Lindeberg condition to
show that the right-hand side converges to a multivariate normal distribution. Let
a ∈ R

p be arbitrary but fixed and define Z∗
i,n = n−1/2τ ∗

i ε̂i,n∂m(Xi , ϑ̂n)/∂ϑ . Obvi-

ously,E∗(a�Z∗
i,n) = 0 and VAR∗(a�Z∗

i,n) = n−1ε̂2i,n(a
�∂m(Xi , ϑ̂n)/∂ϑ)2. The sum

of these variances, denoted by s2n , appear in the Lindeberg condition. Therefore, we
investigate its behavior. We have

s2n =
n∑

i=1

VAR∗(a�Z∗
i,n)

= n−1
n∑

i=1

ε̂2i,n

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

= n−1
n∑

i=1

(m(Xi , ϑ0) − m(Xi , ϑ̂n))
2

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

+ 2n−1
n∑

i=1

(m(Xi , ϑ0) − m(Xi , ϑ̂n))εi

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

+ n−1
n∑

i=1

ε2i

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

−→ E

((
εa� ∂m(X, ϑ0)

∂ϑ

)2
)

, as n → ∞, (5.38)

w.p.1, where the convergence is due to assumption (iv) and Corollary 5.67 applied
to each individual sum.

Now, we check the validity of the Lindeberg condition. For ε̃ > 0,

n∑

i=1

1

s2n

∫

|a�Z∗
i,n |>ε̃sn

(a�Z∗
i,n)

2dP∗
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becomes
1

ns2n

n∑

i=1

ε̂2i,n

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

I{|ε̂i,na�∂m(Xi ,ϑ̂n)/∂ϑ |>n1/2 ε̃sn}

because |τ ∗
i | = 1. We now introduce a function J that bounds the indicator in a

continuous way. Let

J (t) =

⎧
⎪⎨

⎪⎩

1 if 1 ≤ |t |,
2|t | − 1 if 1/2 < |t | < 1,

0 if |t | ≤ 1/2.

Due to this definition we have that I{|y|>x} ≤ J (y/x) for x > 0. According to (5.38),
it is therefore sufficient to show that

1

ns20/2

n∑

i=1

ε̂2i,n

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

J

(
ε̂i,na�∂m(Xi , ϑ̂n)/∂ϑ

n1/2ε̃s0/2

)

converges to zero, where s20 denotes the limit of s2n . For fixed K > 0, this is eventually
bounded by

1

ns20/2

n∑

i=1

ε̂2i,n

(
a� ∂m(Xi , ϑ̂n)

∂ϑ

)2

J

(
ε̂i,na�∂m(Xi , ϑ̂n)/∂ϑ

K

)
,

which converges w.p.1, as n → ∞, by Corollary 5.67, see the argumentation for∑n
i=1 VAR

∗(a�Z∗
i,n), to

2s−2
0 E

((
εa� ∂m(X, ϑ0)

∂ϑ

)2

J

(
εa�∂m(X, ϑ0)/∂ϑ

K

))
−→
K→∞ 0.

The last convergence to zero is guaranteed by the definition of J (t) and assumption
(iv). This verifies the Lindeberg condition. According to the definition of Aσ in
assumption (iii), s20 = a�Aσ A�

σ a which yields w.p.1

n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
−→ Z , as n → ∞,

in distribution with respect to P
∗, where Z is a centered multivariate normally dis-

tributed random variable with covariance matrix Aσ . Note that with assumption (vii)
this also implies

n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
I{ϑ̂∗

n /∈V } = oP∗(1).
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We now focus on the components of the second partial derivatives of Qn at ϑ̃n ,
i.e., second term on the right-hand side of (5.36),

∂2Q∗
n(ϑ̃n)

∂ϑ∂ϑ� = n−1
n∑

i=1

∂m(Xi , ϑ̃n)

∂ϑ

∂m(Xi , ϑ̃n)

∂ϑ� + n−1
n∑

i=1

(m(Xi , ϑ̃n) − Y ∗
i,n)

∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

= n−1
n∑

i=1

∂m(Xi , ϑ̃n)

∂ϑ

∂m(Xi , ϑ̃n)

∂ϑ� − n−1
n∑

i=1

τ ∗
i ε̂i,n

∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

+ n−1
n∑

i=1

(
m(Xi , ϑ̃n) − m(Xi , ϑ̂n)

) ∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ� . (5.39)

Since ϑ̂n and ϑ̃n converges in probability (with respect to P
∗) to ϑ0, the continuity

assumptions, assumption (v) and Corollary 5.67 imply that the third term on the
right-hand side of (5.39) converges w.p.1 to

E

(
(m(X, ϑ0) − m(X, ϑ0))

∂2m(X, ϑ0)

∂ϑ∂ϑ�

)
= 0, as n → ∞,

in probabilitywith respect toP∗. In a similarway aswe handled
∑n

i=1 VAR
∗(a�Z∗

i,n),
assumption (v) and Corollary 5.67 provide w.p.1 that

n−1
n∑

i=1

(
ε̂i,n

∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

)2

−→ E

((
ε
∂2m(X, ϑ0)

∂ϑ∂ϑ�

)2
)

, as n → ∞,

in probability with respect to P
∗. Therefore, by Chebyshev’s inequality, w.p.1 the

second term on the right-hand side of (5.39), i.e.,

n−1
n∑

i=1

τ ∗
i ε̂i,n

∂2m(Xi , ϑ̃n)

∂ϑ∂ϑ�

converges in probability (with respect to P∗) to zero. Finally, by assumption (iv) and
again Corollary 5.67 w.p.1 the first term converges in probability (with respect to
P

∗) to A. In sum, with assumption (vii), we have w.p.1

∂2Q∗
n(ϑ̃n)

∂ϑ∂ϑ� I{ϑ̂∗
n ∈V } = A + oP∗(1) (5.40)

and as mentioned before

n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
I{ϑ̂∗

n /∈V } = oP∗(1).

Altogether, we obtain w.p.1 from (5.36)
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−n1/2
∂Q∗

n(ϑ̂n)

∂ϑ
+ oP∗(1) =

(
A + oP∗(1)

) (
n1/2(ϑ̂∗

n − ϑ̂n)
)
. (5.41)

Since A has an inverse we apply Lemma 5.54 to obtain w.p.1 that n1/2(ϑ̂∗
n − ϑ̂n)

converges in distribution to a centered multivariate normally distributed random
variable with covariance matrix A−1Aσ A−�. This concludes the proof. �

The last theorem shows that the asymptotic covariance of the bootstrapped estimator
is the same as the covariance of Theorem 5.73 and gives the following asymptotic
representation of the estimator.

Corollary 5.81 Under the assumptions of Theorem 5.80 it holds for

L(x, y, τ, ϑ) = A−1τ(y − m(x, ϑ))
∂m(x, ϑ)

∂ϑ

that

1. n1/2(ϑ̂∗
n − ϑ̂n) = n−1/2 ∑n

i=1 L(Xi ,Y ∗
i,n, τ

∗
i , ϑ̂n) + oP∗(1), as n → ∞, w.p.1,

2. E
∗(L(Xi ,Y ∗

i,n, τ
∗
i , ϑ̂n)) = 0 for all n,

3. n−1 ∑n
i=1 E

∗
(
L(Xi ,Y ∗

i,n, τ
∗
i , ϑ̂n)L�(Xi ,Y ∗

i,n, τ
∗
i , ϑ̂n)

)
−→ A−1Aσ A−�,

as n → ∞, w.p.1.

Proof According to Eq.5.37 and 5.41 we obtain the first assertion from the proof of
Theorem5.80. The second result follows directly from E

∗(τ ∗
i ) = 0. Finally, due to

E
∗(τ ∗2

i ) = 1 we obtain

E
∗ (

L(Xi , Y
∗
i,n, τ

∗
i , ϑ̂n)L

�(Xi , Y
∗
i,n, τ

∗
i , ϑ̂n)

)
= A−1ε̂2i,n

∂m(Xi , ϑ̂n)

∂ϑ

(
∂m(Xi , ϑ̂n)

∂ϑ

)�
A−�.

Using a similar argumentation as for Equation (5.38) in proof of Theorem 5.80, we
obtain with Corollary 5.67 and assumption (v) of Theorem 5.80 that

n−1
n∑

i=1

ε̂2i,n
∂m(Xi , ϑ̂n)

∂ϑ

(
∂m(Xi , ϑ̂n)

∂ϑ

)�
−→ Aσ , as n → ∞,

w.p.1. Since A is a constant matrix, we directly obtain assertion 3, which completes
the proof. �

5.5 Exercises

Exercise 5.82 Simulate observations (Yi , xi )1≤i≤n , with n = 50, according to the
model
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Yi = xi β + εi , xi = i/n,

where β = 0.5, σ 2 = 4, and ε1, . . . , εn ∼ N (0, σ 2) are i.i.d.

(i) Use Theorem 5.10 to construct an approximative confidence interval for β to
the confidence level 0.9.

(ii) Use Theorem 5.17 with 1000 bootstrap replications to construct an approxi-
mative confidence interval to the level 0.9.

(iii) Repeat the steps (i) and (ii) 100 times. Determine the mean interval widths
for the 100 intervals based on normal approximation and for the 100 intervals
based on bootstrap approximation. Furthermore, obtain the coverage levels
corresponding to the two approximations.

Exercise 5.83 Take the model given under Exercise 5.82.

(i) Use Theorem 5.17 to construct a bootstrap-based test for

H0 : β = 0.4 against H1 : β > 0.4

and determine the approximative p−value based on 1000 bootstrap replica-
tions.

(ii) Repeat the generation of the observations according to the model 100 times
and use the bootstrap test developed under (i) for each dataset to calculate the
corresponding p−values. Visualize the edf. of the 100 p−values and interpret
the result.

Exercise 5.84 Use the model

Yi = xi β + εi , xi = i/n,

where ε1 = x1 δ1, . . . , εn = xn δn and δ1, . . . , δn ∼ N (0, σ 2) are i.i.d. ,β = 0.5, and
σ 2 = 4. Note, in this case the error terms in the model, i.e., εi , are not homoscedastic
anymore! Repeat the simulation studies of Exercises 5.82 and 5.83 with this model.

Exercise 5.85 Let the true model be Y = 10 + 5x + ε, where ε ∼ N (0, 1) and x
ranges from 1 to 20. Fit a linear model using only the x variable but no intercept.
(Using an R-formula, this can be achieved by Y ∼ x - 1). Why would the classical
bootstrap scheme 5.31 and the wild bootstrap scheme 5.23 return very different
bootstrap distributions for β̂?

Exercise 5.86 Try to reproduce the estimation from Example 5.2 using Equation
(5.2). Note, the diabetes status has to be recoded into 0 and 1.

Exercise 5.87 Try to reproduce the estimation from Example 5.2 using Remark 5.1
via the R-functions “stats::optim” or “stats:nlm”. Note, the diabetes status has to be
recoded into 0 and 1.
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Exercise 5.88 Proof that RSS 5.7 works.

Exercise 5.89 Prove Lemma 5.37.

Exercise 5.90 Prove Lemma 5.38.
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Chapter 6
Goodness-of-Fit Test for Generalized
Linear Models

Goodness-of-fit (GOF) tests in regression analysis are mainly based on the observed
residuals. In a series of articles, starting with Stute (1997), Stute established a general
approach for GOF tests which is based on a marked empirical process (MEP), a stan-
dardized cumulative sum process obtained from the observed residuals. Resting upon
the asymptotic limiting process of the MEP under the null hypothesis, Kolmogorov-
Smirnov or Cramér-vonMises type tests can be stated as GOF tests. Their asymptotic
distributions are derived through an application of the continuous mapping theorem.
Since, in most cases, the asymptotic distributions depend on the model and, there-
fore, are not distribution free, further concepts are necessary to obtain the critical
values for these tests.

In the literature, two approaches are discussed to handle the complicated struc-
ture of the limiting process of the MEP under the null hypothesis. In the first
approach, the MEP is transformed in such a way that the resulting limiting pro-
cess is a time-transformed Brownian motion with an assessable time transformation,
compare Nikabadze and Stute (1997) and (Stute and Zhu, 2002). Originally, this
technique was introduced by Khmaladze (1982) in the context of GOF tests based on
estimated empirical processes. The second concept is based on the bootstrap, where
the resampling scheme mimics the model under the null hypothesis. Resting upon
the bootstrap data, the (bootstrap) MEP is derived. If one can show that this MEP
tends to the same asymptotic process as the MEP of the original data does under the
null hypothesis, the bootstrap MEP can be used to determine the critical value for
the GOF statistic. Among others, this approach was used in Stute et al (1998) for
parametric regression, in Dikta et al (2006) for binary regression, and in van Heel
et al (2019) for multivariate binary regression models.

According to the general idea of bootstrap-based tests outlined in the introduction
of Chap.4, the bootstrap data has to be generated under the null hypothesis or close
to it. If the asymptotic distribution of the bootstrapped statistic is the same as the
corresponding one of the original data under the null hypothesis, critical values
obtained from the bootstrap statistic can be used since they are derived under the null
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hypothesis (the bootstrap data are generated under the null hypothesis) regardless
whether the original data are following the null hypothesis or the alternative.

Denote, as usual, byE(Y | X = x) the regression functionofY at x (the conditional
expectation of Y given X = x), and let

M = {
m(β�·, θ) : (β, θ) ∈ R

p × Θ ⊂ R
p+q

}

define a parametric class based on a known function m. The general test problem for
the GOF test is now

E(Y | X = ·) ∈ M versus E(Y | X = ·) /∈ M .

Within the context of GLM with link function g, whether parametric or semi-
parametric, there exists a β0 ∈ R

p such that

E(Y | X = x) = g−1(β�
0 x), for all x ∈ R

p.

Therefore, the MEP

R̄1
n : [−∞,∞] � u −→ R̄1

n(u) = n−1/2
n∑

i=1

(
Yi − g−1(β�

n Xi )
)
I{β�

n Xi≤u} (6.1)

can be used for the original data and

R1∗
n : [−∞,∞] � u −→ R1∗

n (u) = n−1/2
n∑

i=1

(
Y ∗
i − g−1(β∗

n
�Xi )

)
I{β�

n Xi≤u}

(6.2)
as bootstrap-based MEP, where the exact definition is given in Definitions 6.17 and
6.23, respectively.

In a parametric regression setup, whereMEP-based statistics will be used for GOF
tests, the following details will guarantee the validity of the bootstrap-based test:

1. Estimate the model parameter and build the MEP R̄1
n .

2. Determine the limit process of the MEP under the null hypothesis.
3. Generate bootstrap data according to the model, where the estimated parameters

are used.
4. Repeat step (1) based on the bootstrap data and use R1∗

n as bootstrap-based MEP.
5. Verify that the bootstrap-based MEP tends to the limit process which is derived

under (2).

The parameter estimation under (1) depends on the type of regressionmodel. If we
consider a semi-parametric GLM setup, LSE will be used to estimate the parameter
since no further information about the distribution type of the error term is available.
In this case, the wild bootstrap will be used. Otherwise, in the parametric GLM case,
MLE will be applied and the bootstrap will be implemented parametrically.
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Note that the indicator function in R1∗
n is based on βn and not on β∗

n , as one
would expect. This is mainly for performance reasons, see Remark 6.24. As shown
in Sects. 6.4 and 6.5, both processes converge in distribution to the same centered
Gaussian process R̄1∞ under the null hypothesis in the parametric and in the semi-
parametric setup, if the appropriate assumptions can be guaranteed. Furthermore,
the paths of R̄1∞ can be assumed to be continuous functions. Based on this result,
Kolmogorov-Smirnov (Dn) and Cramér-von Mises (W 2

n ) statistic are defined anal-
ogously to (4.7) and (4.8), respectively, by

Dn = sup
−∞≤t≤∞

∣∣R̄1
n(t)

∣∣, W 2
n = n−1

n∑

i=1

(
R̄1
n(β

�
n Xi )

)2
.

Both statistics can be used to reveal discrepancies between the assumed model and
the observations. By replacing R̄1

n with R1∗
n , we get

D∗
n = sup

−∞≤t≤∞

∣∣R1∗
n (t)

∣∣, W ∗
n
2 = n−1

n∑

i=1

(
R1∗
n (β�

n Xi )
)2

,

the corresponding bootstrap statistics. Since both processes R̄1
n and R1∗

n converge
against the same Gaussian process under the null hypothesis, it follows, applying the
continuous mapping theorem, that Dn and D∗

n as well as W
2
n and W ∗

n
2 also converge

against the same limit distribution. But since the bootstrap data are always generated
under the null hypothesis, we can now approximate the p-values of Dn and W 2

n as
usual by Monte Carlo application.

Our R-package bootGOF contains methods for performing the bootstrap tests we
describe in this chapter. It is available on https://github.com/MarselScheer/bootGOF
and CRAN. A brief introduction to the package can be found in the appendix. How-
ever, we deliberately do not use the bootGOF- package here because we want to
illustrate how such complex resampling schemes can be implemented from scratch
using simple (understandable) R-commands.

6.1 MEP in the Parametric Modeling Context

Usually modeling data is an iterative process where by fitting a model and investigat-
ing diagnostic aspects, like plots and test for assumptions, give ideas about potential
improvements or serious misspecification. The GOF test based on the MEP is an
additional tool that helps to detect if a fitted model contradicts the data one tries to
model.

In this section, we apply the GOF test, based on the marked empirical process, to
a real dataset in order to choose between a Poisson-, normal-, or negative-binomial

https://github.com/MarselScheer/bootGOF
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model. Afterward, the GOF test is applied to artificial datasets in order to get a feeling
for the test in situation where the truth is known.

Assume a parametric GLM with link function g. Under the notation stated in
Definition 5.45, the following resampling scheme will be used for the GOF test.

Resampling Scheme 6.1

(A) Calculate the MLE β̂n and φ̂n for (Y1, X1), . . . , (Yn, Xn).
(B) Obtain the MEP (6.1) and calculate Dn and/or W 2

n accordingly.
(C) Set X∗

�;i = Xi for all i = 1, . . . , n and all � = 1, . . . ,m.

(D) Generate Y ∗
�;i according to the density f (·, β̂n, φ̂n, Xi ) for all i = 1, . . . , n and

all � = 1, . . . ,m.
(E) Calculate the MLE β̂∗

�;n and φ̂∗
�;n based on (Y ∗

�;1, X
∗
�;1), . . . , (Y

∗
�;n, X

∗
�;n), the

MEP R∗1
�;n according to (6.2), D∗

�;n and/or W
∗2
�;n, for � = 1, . . . ,m.

(F) Determine the p−value of Dn within the simulated D∗
�;n, 1 ≤ � ≤ m and/or W 2

n

the p-value of W 2
n within the simulated W ∗2

�;n, 1 ≤ � ≤ m, respectively.

6.1.1 Implementation

First, we need the test statistic that will be resampled. The Cramér-von Mises test
can be implemented as follows:

Rn1 <- function(mod, est_b_time_x) {

# mod - a model fit,
# est_b_time_x - scalar product of the covariates and
# estimator of beta

o_idx <- order(est_b_time_x)
ordered_res <- residuals(mod, type = "response")[o_idx]
dplyr::tibble(est_b_time_x = est_b_time_x[o_idx],

res = ordered_res,
Rn1_x = cumsum(ordered_res) / sqrt(length(o_idx)),
ordering = o_idx)

}

CvM <- function(mod, est_b_time_x) {

# mod - a model fit,
# est_b_time_x - scalar product of the covariates and
# estimator of beta

Wn2 <- mean(Rn1(mod, est_b_time_x)$Rn1_xˆ2)
Wn2

}
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Note that this function itself uses the generic functions predict and residuals with
a specific type-parameter. A fit created with “stats::glm” can be safely passed to
the function because the corresponding functions “predict.glm” and “residuals.glm”
respect the defined type-parameter. However, other packages can be used to fit a
generalize linear model. Such packages usually provide their own set of predict- and
residuals-function. In that case, the type-parameter of the corresponding package-
specific function might have a different meaning or ignore the parameter completely,
which then could lead to the wrong test statistic or an error message. Although
“stats::glm” can fit various distributions, it does not offer the possibility to fit a
negative-binomial model. One option, which works properly with our function for
the test statistic, is “MASS::glm.nb”.

Next, we implement the Resampling Scheme6.1. Fortunately, R provides a lot of
infrastructure that allows an easy implementation.

gof_model_boot <- function(model, data, B = 1000) {

# mod - a model fit,
# + residuals(mod, type = "response") must return
# Y - m_est(X), where is the estimator of the
# regression function m
# + predict(model, type = "link") must return
# the scalar product of the covariates and
# estimator of beta
# + simulate(model) must generate generate
# target/dependent variables according to
# the fitted model
# data - observed data
# B - number of bootstrapped MEPs

# progress bar that appears if calculations will take more
# than 1 second
pb <- dplyr::progress_estimated(B, min_time = 1)

est_b_time_x <- predict(model, type = "link")
# Calculate the statistic for the original MEP
Wn2 <- CvM(model, est_b_time_x = est_b_time_x)

# copy to build up the bootstrap data set
data_boot <- data

# name of the target/dependent variable
y_name <- all.vars(formula(model), max.names = 1)

# bootstrap the statistic
Wn2_boot <- sapply(seq_len(B), function(i) {

pb$tick()$print() # print progress

# due to Step C only the target/dependent variable
# needs to be updated.
data_boot[[y_name]] <- simulate(model)[,1]
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# refit the model using the bootstrapped data set
m_boot <- update(model, formula. = formula(model),

data = data_boot)

# Calculate the statistic for the bootstrapped MEP
CvM(m_boot, est_b_time_x)

})
ret <- list(Wn2_boot = Wn2_boot,

Wn2 = Wn2,
pvalue_cvm = mean(Wn2_boot > Wn2))

ret
}

The following is only a convenient function for displaying the estimated marked
empirical process and model residuals while also showing bootstrapped versions.

plot_Rn1_and_residuals <- function(model, data, B) {
# mod - a model fit,
# + residuals(mod, type = "response") must return
# Y - m_est(X), where is the estimator of the
# regression function m
# + predict(model, type = "link") must return
# the scalar product of the covariates and
# estimator of beta
# + simulate(model) must generate generate
# target/dependent variables according to
# the fitted model
# data - observed data
# B - number of bootstrapped MEPs

y_name <- all.vars(formula(model), max.names = 1)
est_b_time_x <- predict(model, type = "link")
# MEP of the original model
org_model <- Rn1(model, est_b_time_x) %>% dplyr::as_tibble()

# bootstrapped MEP
boot_model <- purrr::map_dfr(seq_len(B), function(boot_idx){

# due to Step C only the target/dependent variable
# needs to be updated.
data[[y_name]] <- simulate(model, data = data)[,1]

# refit the model using the bootstrapped data set
# and calculate the MEP
update(model, formula. = formula(model), data = data) %>%
Rn1(est_b_time_x = est_b_time_x) %>%
dplyr::as_tibble() %>%
dplyr::mutate(original = FALSE, idx = boot_idx)

})

# statistics for the bootstrapped models
Wn2_boot <- boot_model %>%
dplyr::group_by(idx) %>%



6.1 MEP in the Parametric Modeling Context 171

dplyr::summarise(CvM = mean(Rn1_xˆ2))

pvalue_cvm <- mean(Wn2_boot$CvM > mean(org_model$Rn1_xˆ2))

plot_Rn1 <- boot_model %>%
ggplot(aes(x = est_b_time_x, y = Rn1_x)) +
geom_line(aes(group = idx), alpha = 0.1) +
geom_line(data = org_model, color = "red") +
ggtitle(paste0("p-value (CvM) = ", pvalue_cvm))

plot_res <- boot_model %>%
ggplot(aes(x = est_b_time_x, y = res)) +
geom_point(alpha = 0.1) +
geom_point(data = org_model, color = "red")

cowplot::plot_grid(plot_Rn1, plot_res, nrow = 2)
}

Similar as before, this function uses generic functions, namely, “simulate” and
“update”. A fit created with “stats::glm” or “MASS::glm.nb” can be safely passed
to this function. If another package is used, one should check that “simulate” really
simulates the dependent variable and “update” refits the model using the generated
dataset.

6.1.2 Bike Sharing Data

In Sect. 5.3, we prepared and analyzed the ridership data, which resulted in four
model candidates. The corresponding diagnostic plots were already presented and
briefly discussed in that section. Here, we apply the bootstrap-based goodness-of-fit
test to obtain another indicator for inappropriate models.

As a reminder, we briefly repeat the steps from Sect. 5.3, i.e., import and prepro-
cess/wrangle the dataset and subset it to the dates before hurricane “Sandy”:

ridership <- readr::read_csv("day.csv") %>%
data_preprocess()

## Parsed with column specification:
## cols(
## instant = col_double(),
## dteday = col_date(format = ""),
## season = col_double(),
## yr = col_double(),
## mnth = col_double(),
## holiday = col_double(),
## weekday = col_double(),
## workingday = col_double(),
## weathersit = col_double(),
## temp = col_double(),
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## atemp = col_double(),
## hum = col_double(),
## windspeed = col_double(),
## casual = col_double(),
## registered = col_double(),
## cnt = col_double()
## )

ridership <-
ridership %>%
dplyr::filter(dteday < lubridate::ymd("2012-10-29"))

In order to get an idea how the upcoming plots of the residuals and the estimated
marked empirical processwould look like if themodel is correct,we take the ridership
data and generate the target according to a fitted model and then apply the GOF test,
see Fig. 6.1.
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Fig. 6.1 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black if the ridership data would follow a negative-binomial model
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frml <- y ˜ temp + I(tempˆ2) + hum_imp + I(hum_impˆ2) +
windspeed + yr*season + workingday +
weathersit + holiday + christmas

fit_nb <- MASS::glm.nb(frml, data = ridership)
ridership_generated <- ridership
# generate riderships that follow a negative-binomial
# distribution according to the fitted model
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
ridership_generated$y <- simulate(fit_nb, data = data)[,1]
fit_nb_generated <- MASS::glm.nb(frml, data = ridership_generated)
plot_Rn1_and_residuals(fit_nb_generated,

data = ridership_generated, B = 100)

Obviously, the estimatedmarked empirical process in Fig. 6.1 does not showmore
extreme behavior than the 100 bootstrapped versions and the residuals show a similar
pattern as the residuals of the 100 bootstrapped model fits.

Fig. 6.2 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for the Poisson model
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Now,we apply the goodness-of-test to the fourmodel candidates from the previous
section. We start with the Poisson model, see Sect. 5.3 for the model output.

fit_poi <- glm(frml, data = ridership, family = poisson())
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
plot_Rn1_and_residuals(fit_poi, data = ridership, B = 100)

Figure6.2 reveals that the estimated marked empirical process (as well as the
residuals) in the observed data behave very differently than its bootstrapped version.
This results in rejecting the corresponding null hypothesis of the GOF test for our
fitted Poisson model. Fitting a quasi-Poisson model is possible but the parametric
bootstrap is not possible because the distribution is not fully defined. Therefore, for
the quasi-Poisson model one would have to use other diagnostic checks.

fit_qpoi <- glm(frml, data = ridership, family = quasipoisson())
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Fig. 6.3 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for the Gaussian model
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Trying the normal distributions without log-transformation also reveals that the
estimated marked empirical process behaves very differently as its bootstrapped
version, see Fig. 6.3.

fit_norm <- glm(frml, data = ridership, family = gaussian())
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
plot_Rn1_and_residuals(fit_norm, data = ridership, B = 100)

As in the last section, the normal distribution with log-transformations behaves
surprisingly well, though the residuals seem to behave differently compared to the
bootstrapped residuals, see Fig. 6.4.

fit_lognorm <-
ridership %>%
mutate(y = log(y)) %>%
glm(frml, data = ., family = gaussian())
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
plot_Rn1_and_residuals(fit_lognorm, data = ridership, B = 100)

Fig. 6.4 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for the Gaussian model with log-transformed target
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Finally, using the negative-binomial distribution shows not toomuch deviations of
the estimated marked empirical process from its bootstrapped versions, see Fig. 6.5.
However, the residuals at the right end of the plot seem to indicate that the boot-
strapped residuals have larger variance compared to the variance of the residuals
based on the original data.

fit_nb <- MASS::glm.nb(frml, data = ridership)
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
plot_Rn1_and_residuals(fit_nb, data = ridership, B = 100)

Anyway, at this point, one would probably decide to go on with the negative-
binomial model maybe also with the log-transformed Gaussian model (if the diag-
nostic checks for the quasi-Poisson model also indicate that it does not fit the data
well) and start investigating the low residuals that seem to stand apart from the
bootstrapped residuals as well as try to find the root cause for the smaller variance.

Fig. 6.5 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for the negative-binomial model
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6.1.3 Artificial Data

By generating the datasets we are able to judge if the result of the GOF test is correct.
This provides at least some ideas about the limits of the GOF test. Of course, the
simulations in this section are far from being exhaustive and, for instance, changing a
β of the true model or the distribution of the covariates may lead to different results.
Furthermore, a practitioner probably wants to investigate the GOF test himself in
a specific situation when he has created reasonable model candidates. Consider the
bike sharing example from the last section. It probably makes more sense in that
particular case to take the negative-binomial model that passed the GOF test and
artificially introduce additional covariates, for instance, a squared term, simulate the
outcome variable and then check whether and when the GOF test is able to detect
that a model without that new covariate is misspecified or just to get an idea of what
we could expect if the model would be correct like Fig. 6.1.

We use a simple linear (Gaussian) model

Y = β1X
2
1 + β2X2 + β3X3 + ε,

where X1 and X2 are uniformly distributed, X3 is Bernoulli distributed, see Fig. 6.6.

genData <- function(N, coef_x1_square, coef_x2, coef_x3) {
# N - sample size
# data is generated according to
# normal distribution with variance one
# and mean
# 10 + coef_x1_square * X1ˆ2 + coef_x2 * X2 + coef_x3 * X3

d <- data.frame(
X1 = runif(N, 0, 3),
X2 = runif(N, 1, 2),
X3 = rbinom(N, size = 1, prob = 0.3),
noise1 = runif(N),
noise2 = runif(N)

)
lin_comb <- 10 + coef_x1_square * d$X1ˆ2 +
coef_x2 * d$X2 +
coef_x3 * d$X3

d$X3 <- as.factor(d$X3)
d$Y <- rnorm(N, mean = lin_comb, sd = 1)
return(d)

}
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gaus_data <- genData(200, coef_x1_square = 1, coef_x2 = 2,

coef_x3 = 3)

GGally::ggpairs(gaus_data[, c("X1", "X2", "X3", "Y")])

One way to approach this dataset is to start with a backward selection.
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Fig. 6.6 Artificial dataset following the model Y = β1X2
1 + β2X2 + β3X3 + ε

fit <- glm(formula = Y ˜ X1 + X2 + X3 + noise1 + noise2,
data = gaus_data, family = "gaussian")

(fit)

##

## Call: glm(formula = Y ˜ X1 + X2 + X3 + noise1 + noise2,

## family = "gaussian",

## data = gaus_data)

##

## Coefficients:

## (Intercept) X1 X2 X31

## 8.3225 3.0601 1.9339 3.2109

## noise1 noise2
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Fig. 6.7 Diagnostic plots for a linear model that only incorporate first-degree terms for X1, X2,
and X3

## 0.1959 -0.3021

##

## Degrees of Freedom: 199 Total (i.e. Null); 194 Residual

## Null Deviance: 1699

## Residual Deviance: 253.8 AIC: 629.3

This rules out the noise variables and the usual diagnostic plots already look quite
promising, see Fig. 6.7.

fit <- glm(formula = Y ˜ X1 + X2 + X3,
data = gaus_data, family = "gaussian")

par(mfrow = c(2,2))
plot(fit)

However, the GOF test rejects the model, see Fig. 6.8. Though that figure does not
indicate how to improve themodel the residual plot in Fig. 6.7 indicates non-linearity.
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Fig. 6.8 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for a linear model that only incorporates first-degree terms for X1, X2,
and X3

plot_Rn1_and_residuals(fit, gaus_data, B = 100)

Therefore, we try second-order terms

fit <- glm(formula = Y ˜ X1 + X2 + X3 + I(X1ˆ2) + I(X2ˆ2) +
X1:X2 + X1:X3 + X2:X3,

data = gaus_data, family = "gaussian")
step(fit)

## Start: AIC=576.44

## Y ˜ X1 + X2 + X3 + I(X1ˆ2) + I(X2ˆ2) + X1:X2 + X1:X3 + X2:X3

##
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## Df Deviance AIC

## - X1:X2 1 189.18 574.45

## - X2:X3 1 189.28 574.56

## - I(X2ˆ2) 1 189.36 574.65

## - X1:X3 1 190.19 575.51

## <none> 189.17 576.44

## - I(X1ˆ2) 1 254.21 633.54

##

## Step: AIC=574.45

## Y ˜ X1 + X2 + X3 + I(X1ˆ2) + I(X2ˆ2) + X1:X3 + X2:X3

##

## Df Deviance AIC

## - X2:X3 1 189.28 572.56

## - I(X2ˆ2) 1 189.38 572.66

## - X1:X3 1 190.19 573.52

## <none> 189.18 574.45

## - I(X1ˆ2) 1 254.30 631.61

##

## Step: AIC=572.56

## Y ˜ X1 + X2 + X3 + I(X1ˆ2) + I(X2ˆ2) + X1:X3

##

## Df Deviance AIC

## - I(X2ˆ2) 1 189.50 570.79

## - X1:X3 1 190.31 571.64

## - X2 1 190.79 572.15

## <none> 189.28 572.56

## - I(X1ˆ2) 1 254.72 629.95

##

## Step: AIC=570.79

## Y ˜ X1 + X2 + X3 + I(X1ˆ2) + X1:X3

##

## Df Deviance AIC

## - X1:X3 1 190.50 569.84

## <none> 189.50 570.79

## - I(X1ˆ2) 1 255.20 628.32

## - X2 1 268.75 638.67

##

## Step: AIC=569.84

## Y ˜ X1 + X2 + X3 + I(X1ˆ2)

##

## Df Deviance AIC

## - X1 1 190.82 568.17

## <none> 190.50 569.84

## - I(X1ˆ2) 1 255.89 626.86
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## - X2 1 271.00 638.34

## - X3 1 582.17 791.27

##

## Step: AIC=568.17

## Y ˜ X2 + X3 + I(X1ˆ2)

##

## Df Deviance AIC

## <none> 190.82 568.17

## - X2 1 273.42 638.11

## - X3 1 584.96 790.22

## - I(X1ˆ2) 1 1471.54 974.72

##

## Call: glm(formula = Y ˜ X2 + X3 + I(X1ˆ2), family =

## "gaussian", data = gaus_data)

##

## Coefficients:

## (Intercept) X2 X31 I(X1ˆ2)

## 9.6133 2.2093 3.0953 0.9832

##

## Degrees of Freedom: 199 Total (i.e. Null); 196 Residual

## Null Deviance: 1699

## Residual Deviance: 190.8 AIC: 568.2

The diagnostic plots for the resulting model show that the non-linearity was
reduced, see Fig. 6.9 and also the GOF test does not reject the new model, see
Fig. 6.10.

fit <- glm(formula = Y ˜ I(X1ˆ2) + X2 + X3,
data = gaus_data, family = "gaussian")

par(mfrow = c(2,2))
plot(fit)

plot_Rn1_and_residuals(fit, gaus_data, B = 100)

In this particular situation, the GOF test clearly rejected our first model, while the
diagnostic plots only slightly indicated that the model is not correct. One should be
aware of the fact that thismight be also the otherway around. In order to illustrate this,
we generate a dataset, where the Bernoulli-distributed variable has a larger impact.
The diagnostic plots make it obvious that the model is misspecified, see Fig. 6.11, but
the GOF test is not able to detect that because this drastically increases the variance
of the bootstrapped MEP, see Fig. 6.12.
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Fig. 6.9 Diagnostic plots for a linear model that incorporate all terms of the true model

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gaus_data2 <- genData(200, coef_x1_square = 1, coef_x2 = 2,

coef_x3 = 6)
fit <- glm(formula = Y ˜ I(X1ˆ2) + X2, data = gaus_data2,

family = "gaussian")

plot_Rn1_and_residuals(fit, gaus_data2, B = 100)

In this particular situation and this particular example, the GOF test rejected the
model without X2

1. In order to get a feeling for how reproducible this outcome would
be, Fig. 6.13 shows the results of a small simulation study. Furthermore, in that
simulation study, we add a model that misses term X3 to see the performance of the
GOF test with respect to this alternative.
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Fig. 6.10 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for a linear model that incorporate all terms of the true model

gof_boot <- function(data, formula_str) {
# fits a guassian model, performs
# parametric GOF test and returns
# the corresponding p-values

# data - original data set
# formula_str - a formula as a string

frml <- as.formula(formula_str)
m <- glm(frml, data = data, family = gaussian())

gof <- gof_model_boot(m, data, B = 100)
gof$pvalue_cvm
}
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Fig. 6.11 Diagnostic plots for a linear model that incorporates all terms of the true model besides
X3

dg <- simTool::expand_tibble(
proc = "genData",
N = 200,
coef_x1_square = 1,
coef_x2 = 2,
coef_x3 = 6)
pg <- simTool::expand_tibble(
fun = c("gof_boot"),
formula_str = c("Y ˜ X1 + X2 + X3",

"Y ˜ I(X1ˆ2) + X2")
)

eg <- simTool::eval_tibbles(
data_grid = dg, proc_grid = pg,
replications = 100, ncpus = 3,
cluster_global_objects = ls())
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Fig. 6.12 Estimated marked empirical process and residuals in red and the corresponding boot-
strapped versions in black for a linear model that incorporates all terms of the true model besides
X3

eg$simulation %>%
ggplot(aes(x = results, color = formula_str)) +
stat_ecdf() +
geom_abline(slope = 1, intercept = 0) +
#facet_grid(formula_str ˜ N) +
theme(legend.position = "top")

As one can see fromFig. 6.13, theGOF test rejects themodelwithmissing X2
1 with

high probability but has a hard time if X3 is not part of the model. But excluding X3

from the model if it has such a large impact and then applying the GOF test makes
no sense. From that point of view, this aspect of the simulation makes no sense.
However, X3 might not have been recorded during the creation of the dataset. In
such a case, it would not be possible to include X3 in the model and the GOF test
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Fig. 6.13 Empirical cumulative distribution function of the p-values of the parametric GOF test

has only limited power to detect this. This shows that it makes it necessary to still
consult other tests and plots to get an overall picture of misspecifications.

6.2 MEP in the Semi-parametric Modeling Context

In Sect. 5.4, it was assumed that

Y = m(X, ϑ) + ε.

In the GLM context, this is specialized to
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Y = m(β�X) + ε,

compare Definition5.63.
The procedure for performing the GOF test is the same as the GOF test under the

parametric GLM. Only the parameter estimations are no longer done with MLE but
with LSE. Also the resampling is no longer performed according to a given distri-
bution model but with the wild bootstrap. This results in the following resampling
scheme.

Resampling Scheme 6.2

(A) Calculate the LSE β̂n based on (Y1, X1), . . . , (Yn, Xn).
(B) Determine the estimated residuals ε̂i = Yi − m(β�

n Xi ), for i = 1, . . . , n.
(C) Obtain the MEP (6.1) and calculate Dn and/or W 2

n accordingly.
(D) Define the wild bootstrap residual by ε∗

�,i = ε̂i · τ ∗
�,i , where (τ ∗

�,i )1≤�≤K ,1≤i≤n are
i.i.d. Rademacher random variables which are independent of (Y1, X1), . . . ,

(Yn, Xn), for i = 1, . . . , n and � = 1, . . . , K.
(E) Set X∗

�;i = Xi , for i = 1, . . . , n and � = 1, . . . , K.
(F) Set Y ∗

�;i = m(β�
n X∗

�;i ) + ε∗
�;i , for i = 1, . . . , n and � = 1, . . . , K.

(G) Calculate theLSE β̂∗
�;n basedon (Y ∗

�;1, X
∗
�;1), . . . , (Y

∗
�;n, X

∗
�;n), for� = 1, . . . , K.

(H) Obtain the MEP R∗1
�;n according to (6.2), D∗

�;n and/or W
∗2
�;n, for � = 1, . . . , K.

(I) Determine the p−value of Dn within the simulated D∗
�;n, 1 ≤ � ≤ K and/or the

p−value of W 2
n within the simulated W ∗2

�;n, 1 ≤ � ≤ K, respectively.

For this section, we generate artificial data following the very simple model

Y = sin(0.5X) + ε,

where X is uniformly distributed and ε is normally distributed.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gen_data <- function(N = 200, sd = 0.2) {
dplyr::mutate(
data.frame(X = runif(N, min = 6, max = 14)),
mu = sin(0.5 * X),
epsilon = rnorm(N, sd = sd),
Y = mu + epsilon)

}
nonlinear <- gen_data()

Assuming that we did not know the model, Fig. 6.14 clearly indicates a polynomial
relation.

GGally::ggpairs(nonlinear[, c("X", "Y")])

One way to model such data (within a linear model) is to start with a simple model,
in this case a polynomial of order two, and then gradually increase the complexity
by increasing the degree of a polynomial. If there are some indications (maybe due
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Fig. 6.14 Scatterplot of artificial data following Y = sin(0.5X) + ε

to the theory of the problem at hand) that the pattern follows the sine function and
one still wishes to model it with a linear model, it makes more sense to add the terms
from the corresponding Taylor series, which in case of the sine function are only odd
monomials. The common diagnostic plots for linear models do not indicate serious
problems for a simple quadratic model, see Fig. 6.15

par(mfrow = c(2,2))
quadratic_fit <- glm(Y ˜ X + I(Xˆ2), data = nonlinear)
plot(quadratic_fit)

However, the wild bootstrap GOF test rejects the model (p-value = 0.024). The
following two sections will implement the GOF test based on the wild bootstrap for
the model specified in this section and apply it in a simulation study.
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Fig. 6.15 Diagnostic plots of a linear model that incorporates the first two polynomial degrees,
where Y = sin(0.5X) + ε

6.2.1 Implementation

The implementation of the wild bootstrap is tailored to the model

Y = sin(aX) + ε.

However, it is very similar to the implementation of GOF test using the parametric
bootstrap. Basically, the difference is how the Y is generated and how the model
is fitted. But the implementation is not so generic as for the parametric case. The
calculation of β�

n X is tailored to the situation that X is univariate. The main reason
is that we will also use “minpack::nlsLM” for fitting a model and there seems to be
no easy way to get this linear combination from the fit. Therefore, we prefer this
simple implementation instead of a more generic but more complicated version.
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rrademacher <- function(n) {
2 * rbinom(n = n, size = 1, prob = 1/2) - 1

}

gof_wb_boot <- function(model, data, B = 1000) {
# mod - a model fit (stats::glm or minpack.lm::nlsLM)
# + for models based on nlsLM it is assumed that
# the formula is of the type fun(para * X), where
# ’para’ is the parameter and ’X’ is the covariate
# data - observed data, column with name ’X’
# is the only covariate
# B - number of bootstrapped MEPs

# progress bar that appears if calculations will take more
# than 1 second
pb <- dplyr::progress_estimated(B, min_time = 1)

if (inherits(model, "nls")) {
# only models of type fun(para * X) are supported
est_b_time_x <- data$X * coef(model)

} else {
est_b_time_x <- predict(model, type = "response")

}

# statistics for the original model
Wn2 <- CvM(model, est_b_time_x = est_b_time_x)
epsilon_hat <- residuals(model)
y_hat <- predict(model)

# copy to build up the bootstrap data set
data_boot <- data
y_name <- all.vars(formula(model), max.names = 1)

# statistics for the boostrap models
Wn2_boot <- sapply(seq_len(B), function(i) {

pb$tick()$print() # print progress

# according to Step E only the target/dependent
# variable needs to be updated
tau <- rrademacher(length(epsilon_hat))
data_boot[[y_name]] <- y_hat + tau * epsilon_hat

# refit the model using the bootstrapped data set
m_boot <- update(model, formula. = formula(model),

data = data_boot)
# statistic for the boostrapped model fit
CvM(m_boot, est_b_time_x)

})
ret <- list(Wn2_boot = Wn2_boot,

Wn2 = Wn2,
pvalue_cvm = mean(Wn2_boot > Wn2))

ret
}
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6.2.2 Artificial Data

We use linear models with different polynomial degrees in this simulation and the
wild bootstrap GOF test to check them. Note, in Sect. 6.3, we will come back to a
similar situation and compare the parametric and wild bootstrap version of the GOF
test.

gof_boot_nls <- function(data) {
# performs a least square estimation
# for sin(a * X) and a
# semi-parametric GOF test
# returns the corresponding p-values

# data - original data set

fit <- minpack.lm::nlsLM(Y ˜ sin(a * X),
data = data,
start = c(a = 0.5),
control = nls.control(maxiter = 500))

gof <- gof_wb_boot(fit, data, B = 100)
gof$pvalue_cvm

}

gof_boot_lm <- function(data, formula_str) {
# fits a guassian model, performs
# semi-parametric GOF test and returns
# the corresponding p-values

# data - original data set
# formula_str - a formula as a string

frml <- as.formula(formula_str)
fit <- glm(frml, data = data, family = gaussian())
gof <- gof_wb_boot(fit, data, B = 100)
gof$pvalue_cvm

}
dg <- simTool::expand_tibble(proc = "gen_data", N = 100,

sd = 0.2)
pg <- dplyr::bind_rows(
simTool::expand_tibble(fun = "gof_boot_nls"),
simTool::expand_tibble(
fun = "gof_boot_lm",
formula_str = c("Y ˜ X + I(Xˆ2)",

"Y ˜ X + I(Xˆ2) + I(Xˆ3)",
"Y ˜ X + I(Xˆ3) + I(Xˆ5)"
))

)
eg <- simTool::eval_tibbles(
data_grid = dg, proc_grid = pg,
replications = 100, ncpus = 3,
cluster_global_objects = ls())



6.2 MEP in the Semi-parametric Modeling Context 193

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
results

y

fun
gof_boot_lm

gof_boot_nls

formula_str
−

Y ~ X + I(X^2)

Y ~ X + I(X^2) + I(X^3)

Y ~ X + I(X^3) + I(X^5)

Fig. 6.16 Empirical cumulative distribution function of the p-values of GOF test based on the
wild bootstrap for the semi-parametric model and of the parametric GOF test for the linear models,
Y = sin(0.5X) + ε is conditionally normal distributed

Figure 6.16 shows the results of the simulation study. First note that the wild
bootstrap shows a uniform distribution for the p−values, as expected since this is
the correct model. Furthermore, the quadratic model as before shows a high chance
to be rejected by the GOF test. Of course, increasing the complexity results in less
rejections which is plausible because the sine function can be approximated this way.
However, it is more effective to just use polynomials of an odd degree, which is also
reflected by Fig. 6.16.

eg$simulation %>%
dplyr::mutate(formula_str = ifelse(is.na(formula_str), "-",

formula_str)) %>%
ggplot(aes(x = results, linetype = fun, color = formula_str)) +
stat_ecdf() +
stat_function(fun = identity)
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6.3 Comparison of the GOF Tests under the Parametric
and Semi-parametric Setup

In general, we can assume that the parametric GOF test performs better than the
corresponding wild bootstrap version, simply because in the parametric case we
have more information and also explicitly use it. Here, we want to briefly compare
both bootstrap versions. In order to do this, we use a similar setting as in Sect. 6.2.
There we used the sine function to generate non-linear relation, i.e.,

E(Y |X) = sin(aX),

where X is uniformly distributed on the interval [6, 14] and the error followed a
centered normal distribution. Here, we use two different distribution for Y , i.e., a
normal distribution and a Poisson distribution. Since the Poisson distribution does
not allow negative values, we extend the model by considering

E(Y |X) = 4 + 2 sin(0.5X).

However, the corresponding Taylor series still contains only odd monomials and the
simulations are also restricted to models of various polynomial degrees. So within
the framework of generalized linear models, like in Sect. 5.3, all models we pick
will be wrong. Within the semi-parametric setting we could choose the correct
model but applying the GOF test has currently no theoretical foundation because
β1 + β2 sin(β3X) cannot be written as m(β�X). Figure 6.17 shows the results with
conditionally normal distribution.

eg_para_vs_wb$simulation %>%
ggplot(aes(x = results, linetype = fun, color = rhs)) +
stat_ecdf() +
facet_grid(N˜., labeller = label_both) +
stat_function(fun = identity, color = "black")

Since the least square estimator and maximum likelihood estimator are the same
in this setting, any differences are only due to the generation of Y in the bootstrap
world. At the first glance, it seems that wild bootstrap outperforms the parametric
bootstrap for the small sample size N = 10. Although the theory is currently not rich
enough, we applied also the semi-parametric GOF test, which shows that the GOF
test is too liberate, i.e., the red dashed curve is above the diagonal. This, of course, is
just an indicator of why the performance seems to be better. Furthermore, the models
that are closer to the true model got rejected more often, which, of course, is a bit
unusual. Another indicator that the performance advantage of the semi-parametric
GOF test is probably spurious is that the same simulation based on sample size
N = 200 shows that the performance of the semi-parametric GOF test degrades for
the models with higher polynomials. For instance, according to ecdf of the p−values
for the semi-parametric GOF test under the model X + I (X3) + I (X5), around 25%
of the p−values are below 0.05 for N = 10 and this decreases to around 5% for
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Fig. 6.17 Empirical cumulative distribution function of the p−values ofGOF test based on thewild
bootstrap (gof_LSE) for the semi-parametric model and of the parametric GOF test for the linear
models (gof_glm), where E(Y |X) = 4 + 2 sin(0.5X) and Y is conditionally normal distributed.
Sample size of the generated dataset is denoted by N . The right-hand side (rhs) describes which
model was tested

N = 200. Note also that Fig. 6.17 shows that the p−values of the semi-parametric
GOF test under the true model now seem to follow a uniform distribution. In this
particular situation, both methods seem to have roughly equal performance, where
for small sample size the semi-parametric GOF test may be too liberal. One reason
why the semi-parametric GOF test is too liberal could be the Radermacher random
variables, because this only changes the signs of the residuals and hence this only
introduces little variation in the bootstrap datasets if the sample size is small.
Changing the conditional distribution to Poisson changes the results as expected,
i.e., that the parametric GOF test results in more rejections if the sample size is
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Fig. 6.18 Empirical cumulative distribution function of the p-values of GOF test based on the wild
bootstrap (gof_LSE) for the semi-parametric model and of the parametric GOF test for the linear
models (gof_glm), where E(Y |X) = 4 + 2 sin(0.5X) and Y is conditionally Poisson distributed.
Sample size of the generated dataset is denoted by N . The right-hand side (rhs) describes which
model was tested

sufficient. Furthermore, both GOF tests indicate that it is more efficient to use only
odd polynomial degrees which corresponds also to our expectations, see Fig. 6.18.

eg_para_vs_wb2$simulation %>%
ggplot(aes(x = results, linetype = fun, color = rhs)) +
stat_ecdf() +
facet_grid(N˜., labeller = label_both) +
stat_function(fun = identity, color = "black")

Again, for small sample size it seems that the performancegain of the semi-parametric
GOF test is probably spurious for same reasons as before.
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6.4 Mathematical Framework: Marked Empirical
Processes

This excursion outlines some fundamental results of marked empirical processes
(MEP) based on residuals given in Stute (1997) and Stute and Zhu (2002).

Since the following explanations are quite complex in their notation, we provide
a short guideline in advance. In general, all analyzed MEPs are cumulative sum
(cusum) error processes, which each propagate in a one-dimensional direction. The
direction of the propagation is given within each indicator variable. If the indicator
variable contains an estimated parameter, we speak here of an MEP that propagates
in an estimated direction. We will consider three basic types of MEPs.

1. If the process is based on the true error and unfolds in a fixed, not estimated
direction, then the process is called BMEP in the following and is always denoted
with Rn .

2. If the MEP is based on estimated errors and unfolds in a fixed direction, then R1
n

is chosen to denote the process. Processes of this kind are called EMEP in the
following text.

3. Finally, there is a third type which will be called EMEPE. These processes are
based on estimated errors and also on an estimated propagation direction. For
these processes, we use the notation R̄1

n .

Furthermore, in our considerations, we make constant use of mathematical rules
for conditional expectation without explicitly stating them in each case. A list of
these rules can be found in Shorack (2000, Chapter 8.4 – 8.6). Only the concept of
conditional variance is explained in more detail at this point. Let Y ∈ L2(Ω,A ,P)

and X be another random variable over (Ω,A ,P). Then we denote in the following
with

VAR(Y |X) = E
(
(Y − E(Y |X))2

∣∣X
)

the conditional variance of Y given X .
The space D[0, 1] provided with the Skorokhod topology is the metric space for

investigating the convergence in distribution of the empirical process, see Billingsley
(1968, Chapter 3). The processes to be examined in this section will usually be in
D[−∞,∞].
Definition 6.3 Define D[−∞,∞] as the collection of all right continuous func-
tions f : R → R whose left-sided limits exist and for which limx→∞ f (x) and
limx→−∞ f (x) exist in R also applies.

Remark 6.4 Now consider a continuous, strictly increasing transformation

A : [−∞,∞] −→ [0, 1].

For example, a continuous, strictly increasing distribution function for A can be used
here. Then the transformation
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T : D[0, 1] � f −→ T ( f ) = f ◦ A ≡ f A ∈ D[−∞,∞]

is a bijective transformation. Let s denote the Skorokhod metric on D[0, 1]. Then

sA : D[−∞,∞] × D[−∞,∞] � ( f A, gA) −→sA( f A, gA)

= s( f A ◦ A−1, gA ◦ A−1)

defines ametric on D[−∞,∞]whichmakes T to an isometric transformation. Thus,
we can identify D[−∞,∞] with D[0, 1]. Among other things, this isometry states
that all theorems for convergence in distribution with respect to D[0, 1] can now be
transferred to D[−∞,∞] accordingly. So we do not need to consider the limitation
by the domain [0, 1] anymore, if the process to be considered is in D[−∞,∞].

6.4.1 The Basic MEP

Definition 6.5 Let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sequence in R
2 such that

E(|Y |) < ∞ and denote the conditional expectation of Y given X = x by m(x),
that is,

E(Y | X = x) = m(x).

Then

[−∞,∞] � x −→ Rn(x) := n−1/2
n∑

i=1

(
Yi − m(Xi )

)
I{Xi≤x} ∈ R (6.3)

defines the basic marked empirical process (BMEP).

Note that Rn(x) is defined for x = ±∞ by

Rn(−∞) = 0 and Rn(∞) = n−1/2
n∑

i=1

(
Yi − m(Xi )

)
.

This extends Rn continuously from R to [−∞,∞] and allows to handle supx∈R∣∣Rn(x)
∣∣, since Rn ∈ D[−∞,∞].

Asymptotic analysis of the simple empirical process often uses the transformation
of the process to the uniformly empirical process, see Sect. 3.4. A similar procedure
is also possible with the BMEP, as described in Stute (1997) and as we will illustrate
in detail now.

Since F−1 ◦ F(X) = X with probability 1, compare Shorack and Wellner (1986,
Chapter 1, Proposition 3, Equation (27)), where F and F−1 denote the distribution
and quantile function of X , respectively, we get with probability 1
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Rn(x) = n−1/2
n∑

i=1

(
Yi − m ◦ F−1 ◦ F(Xi )

)
I{F−1◦F(Xi )≤x}

= n−1/2
n∑

i=1

(
Yi − m ◦ F−1(F(Xi ))

)
I{F(Xi )≤F(x)}

= R̂n(F(x)),

where

R̂n(u) = n−1/2
n∑

i=1

(
Yi − m ◦ F−1(F(Xi ))

)
I{F(Xi )≤u}, for 0 ≤ u ≤ 1. (6.4)

While Rn ∈ D[−∞,∞], we have R̂n ∈ D[0, 1] and we can interpret R̂n as a
BMEP based on the F(X)−sample if m ◦ F−1(u) = E(Y | F(X) = u), for PF(X)

almost all 0 ≤ u ≤ 1.

Lemma 6.6 Let Y ∈ L2(Ω,A ,P). Denote the distribution and quantile func-
tion of X by F and F−1, respectively. With m(x) = E(Y | X = x) and σ 2(x) =
VAR(Y | X = x) we get

(i) The conditional expectation of Y given F(X) = u, that is E(Y | F(X) = u), is
well defined for PF(X) almost all 0 ≤ u ≤ 1 and

E(Y | F(X) = u) = E(Y | X = F−1(u)) = m ◦ F−1(u).

(ii) The conditional variance of Y given F(X) = u, that is VAR(Y | F(X) = u), is
well defined for PF(X) almost all 0 ≤ u ≤ 1 and

VAR(Y | F(X) = u) = VAR(Y | X = F−1(u)) = σ 2 ◦ F−1(u).

(iii) If F is continuous then F(X) is uniformly distributed on [0, 1] and, with U =
F(X), the last equalities read as follows:

E(Y |U = u) = m(F−1(u)), VAR(Y |U = u) = σ 2(F−1(u)),

for PU almost all 0 ≤ u ≤ 1.

Proof For the first equation, let B be an arbitrarily chosen Borel set of the unit
interval. Then

∫
I{F(X)∈B} Y dP =

∫
I{F(x)∈B} E(Y | X = x)PX (dx)

=
∫

I{F(x)∈B} E(Y | X = F−1 ◦ F(x))PX (dx)

=
∫

I{u∈B}E(Y | X = F−1(u))PF(X)(du),
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where the second equality is based onPX ({x ∈ R : F−1(F(x)) = x}) = 1, compare
Shorack and Wellner (1986, Chapter 1, Proposition 3, Equation (27)). This proves,
according to Shorack (2000, Chapter 8, Notation 4.1),

m(F−1(u)) = E(Y | F(X) = u), for PF(X) almost all u.

This proves (i). Analogously, part (ii) can be shown, and (iii) is obvious. �

Remark 6.7 The last lemma tells us that a change of the regressor from X to F(X)

causes a change of the regression function from m to m ◦ F−1, which is now the
regression function of Y with respect to F(X). Thus, we can transform the BMEP
to R̂n(F(x)), where

R̂n(u) = n−1/2
n∑

i=1

(
Yi − m ◦ F−1(F(Xi ))

)
I{F(Xi )≤u}, for 0 ≤ u ≤ 1,

which is now theBMEPcorresponding to (Y1, F(X1)), . . . , (Yn, F(Xn)). In addition,
if F is continuous then F(X) is uniformly distributed on the unit interval and we
can set Ui = F(Xi ). Now R̂n is the transformed Rn to the uniform case. It is the
counterpart to the uniform empirical process.

As we discussed in Sect. 4.4, the asymptotic behavior of the empirical process
is the mathematical backbone in the context of model diagnostics for parametric
distribution families of i.i.d. observations in R. The main asymptotic result of the
BMEP is given in the next theorem, compare Stute (1997, Theorem 1.1), and it
shows that the BMEP has the potential to play the empirical processes counterpart
in the regression context. However, in the following theorem, we will not make use
of the transformation to the uniform case as it was done in the proof of Stute (1997,
Theorem 1.1). The reasons for this are discussed after the proof at the end of this
section. Instead, we will refer to Remark6.4 in the proof.

Theorem 6.8 Assume that E(Y 2) < ∞ and

H : [−∞,∞] � u −→ H(u) =
∫

I{x≤u} σ 2(x) F(dx) ∈ R (6.5)

is continuous. Then

Rn −→ R∞ in distribution in the space D[−∞,∞].

R∞ is a centered Gaussian process with covariance function

K (s, t) = H(s ∧ t) =
∫

I{x≤s∧t}σ 2(x) F(dx), (6.6)
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where F denotes the distribution function of X, s ∧ t = min(s, t), and σ 2(x) =
VAR(Y | X = x), the conditional variance of Y given X = x.

Remark 6.9 The covariance function of the limiting centered Gaussian process R∞
is identical to the covariance function of the process B(H), where B is a standard
Brownian motion on the positive real line with H given under (6.5). Therefore, the
paths of R∞ are continuous.

Corollary 6.10 IfE(Y 2) < ∞ and F is continuous, the continuity assumption (6.5)
is fulfilled.

Proof (of Theorem 6.8) The following proof is based on Stute (1997, Proof of The-
orem 1.1) with some adjustments which are discussed in Example 6.12. It is an
application of Billingsley (1968, Theorem 15.6).

Conditioning on X1, . . . , Xn guarantees

E(Rn(x)) = n−1/2
n∑

i=1

E
(
I{Xi≤x}E

(
(Yi − m(Xi ))

∣∣Xi
)) = 0,

for every −∞ ≤ x ≤ ∞. Since the terms in the sum of Rn(x) are centered (expec-
tation is 0) and i.i.d., we get in addition that

E(R2
n(x)) ≤ E

(
(Y − m(X))2

) ≤ E(Y 2) < ∞.

Overall, Rn(x) ∈ L2
0(Ω,A ,P), the space of square-integrable centered functions on

(Ω,A ,P) , for −∞ ≤ x ≤ ∞.
To apply Billingsley (1968, Theorem 15.6), we will show that the finite-

dimensional distributions (fidis) of Rn converge to those of R∞. Take −∞ ≤
x1, . . . , xk ≤ ∞, for k ∈ N and apply themultivariate central limit theorem, Billings-
ley (1995, Theorem 29.5) to get that

(Rn(x1), . . . , Rn(xk)) −→ N (0,Σ), as n → ∞,

in distribution, where Σ = (σi, j )1≤i, j≤k is the covariance matrix defined by

σi, j = COV(Rn(xi ), Rn(x j )), for 1 ≤ i, j ≤ k.

Since

COV(Rn(xi ), Rn(x j )) = E
(
I{X≤xi } I{X≤x j } (Y − m(X))2

)

=
∫

I{t≤xi∧x j }σ
2(t) F(dt) = K (xi , x j ),

the first part of the proof is done.
To prove tightness, we adapt Billingsley (1968, (15.21) in Theorem 15.6) accord-

ing to Remark 6.4 to D[−∞,∞].
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For −∞ ≤ x1 ≤ x ≤ x2 ≤ ∞, set

αi = I{x1<Xi≤x}
(
Yi − m(Xi )

)

and
βi = I{x<Xi≤x2}

(
Yi − m(Xi )

)

to obtain

E

(
(Rn(x) − Rn(x1))

2(Rn(x2) − Rn(x))
2
)

= n−2
E

(( ∑

1≤i≤n

αi
)2( ∑

1≤ j≤n

β j
)2)

.

Due to the indicator functions involved in the definition of αi and βi , αi βi = 0.
Conditioning on Xi shows that E(αi ) = 0 = E(βi ), for 1 ≤ i ≤ n. Furthermore,
α1, . . . , αn and β1, . . . , βn are i.i.d. sequences, where, in addition, αi is independent
from β j , for 1 ≤ i = j ≤ n. Overall, this results in

n−2
E

(( ∑

1≤i≤n

αi
)2( ∑

1≤ j≤n

β j
)2) = n − 1

n
E(α2

1)E(β2
1 )

≤ (
H(x) − H(x1)

)(
H(x2) − H(x)

)

≤ (
H(x2) − H(x1)

)2
.

Since H is a nondecreasing, continuous function, the proof is complete. �

Remark 6.11 The continuity assumption (6.5) in Theorem 6.8 is not dispensable
even though it does not appear in Stute (1997, Theorem 1.1). In the proof of Stute
(1997, Theorem 1.1), it is noted for the verification of tightness that E(Y |U = u) =
m(F−1(u)). This then implies the continuity of H , our assumption (6.5). However,
the following example shows that E(Y |U = u) = m(F−1(u)) does not generally
have to be true if F is discontinuous. Nevertheless, in the main application of the
theorem continuity of F has to be guaranteed anyway and the missing assumption in
Stute (1997, Theorem 1.1) does not affect its importance in statistical application!

Example 6.12 Let U be a uniformly distributed random variable defined on some
probability space (Ω,A ,P). Set X = I{U≤0.5} and Y = U . The Bernoulli-distributed
random variable X has distribution, respectively, quantile function

F(x) = P(X ≤ x) =

⎧
⎪⎨

⎪⎩

0 : x < 0

0.5 : 0 ≤ x < 1

1 : x ≥ 1

F−1(u) =
{
0 : 0 ≤ u ≤ 0.5

1 : 0.5 < u ≤ 1
,
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respectively. Elementary calculation of E(Y | X = x), for x ∈ {0, 1}, yields

E(Y | X = F−1(u)) = m ◦ F−1(u) = 3/4 − F−1(u)
/
2.

Since E(Y |U = u) = u, we finally get

E(Y |U = u) = m ◦ F−1(u), for all 0 ≤ u ≤ 1.

This contradicts
E(Y |U = u) = m ◦ F−1(u)

asserted in Stute (1997, Proof of Theorem 1.1). �

6.4.2 The MEP with Estimated Model Parameters
Propagating in a Fixed Direction

The result obtained under Theorem 6.8 for the BMEP represents an initial theoretical
basis which, however, still has to be extended for statistical applications. If, for exam-
ple, there is a parameterized regression, then the corresponding parameter must be
estimated and instead of the true regression function m we now consider a estimated
regression function. If the true m is replaced by the estimated one in the BMEP,
then the true errors are replaced by the estimated errors, i.e., by the residuals. This,
of course, affects the limit distribution. The extension of the BMEP with estimated
parameters goes back to Stute (1997) and we present the result here in our context.

Definition 6.13 Let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sequence in R
2 such that

E(|Y |) < ∞ and denote the conditional expectation of Y given X = x by m(x).
Assume that m belongs to a parametric family

M = {
m(·, θ) : θ ∈ Θ

}

such that m(x) = m(x, θ0), for some true parameter θ0 ∈ Θ ⊂ R
p. Let θn be an

estimator of θ0. Then

[−∞,∞] � x −→ R1
n(x) := n−1/2

n∑

i=1

(
Yi − m(Xi , θn)

)
I{Xi≤x} ∈ R (6.7)

defines the estimated marked empirical process (EMEP).

The direction of propagation of EMEP, which is determined by the indicator, is
given here by R, as with the BMEP itself, since the covariate X is real. Therefore,
the process propagates in a fixed direction.
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For the analysis of the asymptotic behavior of R1
n , we now, of course, need further

assumptions which we list below:

(i) n1/2(θn − θ0) = n−1/2 ∑n
i=1 l(Xi ,Yi , θ0) + oP(1).

(ii) E(l(Xi ,Yi , θ0)) = 0.
(iii) L(θ0) = E(l(X,Y, θ0)l�(X,Y, θ0)) exists.
(iv) w(x, θ) = ∂m(x, θ)/∂θ = (w1(x, θ), . . . , wp(x, θ))� exists for θ in a neigh-

borhood V ⊂ Θ of θ0 and is continuous with respect to θ .
(v) There exists an F-integrable function M(x) such that |wi (x, θ)| ≤ M(x) for

all θ ∈ V ⊂ Θ , 1 ≤ i ≤ p, and V given in 6.4.2(iv).

The first three conditions 6.4.2(i)–(iii) are usually met for least squares or maxi-
mum likelihood estimates.

Let W (t, θ) = (W1(t, θ), . . . ,Wp(t, θ))� be defined by

Wi (t, θ) = E
(
wi (X, θ)I{X≤t}

)
.

Lemma 6.14 Let θn converge in probability to θ0 and assume that θ̂n : R → Θ is
a measurable function such that θ̂n(x) lies for each x ∈ R and n ∈ N on the line
segment that connects θn and θ0. If 6.4.2(iv) and (v) hold, then, for 1 ≤ i ≤ p,

(i) sup−∞≤t≤∞
∣∣ ∫ t

−∞ wi (x, θ̂n(x)) − wi (x, θ0)Fn(dx)
∣∣ = oP(1),

(ii) lim supn→∞ sup−∞≤t≤∞
∣∣ ∫ t

−∞ wi (x, θ0) (Fn − F)(dx)
∣∣ = 0 w.p.1.

Proof For ε, δ > 0 we get by the Markov theorem,

P

(
sup

−∞≤t≤∞

∣∣∣∣

∫ t

−∞
wi (x, θ̂n(x)) − wi (x, θ0) Fn(dx)

∣∣∣∣ > ε

)

≤ 1

ε
E

(

sup
|θ−θ0|<δ

|wi (X, θ) − wi (X, θ0)|
)

+ P
(|θn − θ0| > δ

)
,

for 1 ≤ i ≤ p. Due to 6.4.2(v), the expectation on the right side is finite and the
integrand converges to 0 according to 6.4.2(iv) if δ tends to 0. The first assertion now
follows from the dominated convergence theorem and the assumed convergence of
θn to θ0.

For the second assertion, we fix K > 0 and apply 6.4.2(v) to obtain

lim sup
n→∞

sup
−∞≤t≤∞

∣∣
∫ t

−∞
wi (x, θ0) (Fn − F)(dx)

∣∣

≤ lim sup
n→∞

sup
|t |≤K

∣∣
∫ t

−K
wi (x, θ0) (Fn − F)(dx)

∣∣

+ lim sup
n→∞

∫
M(x)I{|x |>K } Fn(dx) +

∫
M(x)I{|x |>K } F(dx).
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According to Theorem 5.66, the first term on the right side is identical to 0 for each
fixed K w.p.1. Due to the SLLN, the second term is identical to the third term w.p.1.
However, since the third term converges with K → ∞ against 0, the second assertion
is proven. �

The main result of this section is the following theorem, compare Stute (1997,
Theorem 1.2).

Theorem 6.15 Assume E(Y 2) < ∞, F is continuous and conditions 6.4.2(i)–6.4.2
(v) are met. Then, under m(·) = m(·, θ0), we have, uniformly in x,

R1
n(x) = Rn(x) − n1/2

n∑

i=1

W�(x, θ0)l(Xi ,Yi , θ0) + oP(1), as n → ∞.

Furthermore, R1
n converges in D[−∞,∞] to a centered Gaussian process R1∞ with

covariance function

K 1(s, t) = K (s, t) + W�(s, θ0)L(θ0)W (t, θ0)

− W�(s, θ0)E(I{X≤t}(Y − m(X, θ0))l(X,Y, θ0))

− W�(t, θ0)E(I{X≤s}(Y − m(X, θ0))l(X,Y, θ0)).

Proof By definition,

R1
n(x) = n−1/2

n∑

i=1

I{Xi≤x}[Yi − m(Xi , θn)]

= Rn(x) − n−1/2
n∑

i=1

I{Xi≤x}[m(Xi , θn) − m(Xi , θ0)].

A Taylor expansion of the terms of the sum results in

m(Xi , θn) − m(Xi , θ0) = (θn − θ0)
�w(Xi , θni ),

where θni is between θn and θ0. Hence,

R1
n(x) = Rn(x) − n1/2(θn − θ0)

�n−1
n∑

i=1

I{Xi≤x}w(Xi , θni )

= Rn(x) − n1/2(θn − θ0)
�n−1

n∑

i=1

I{Xi≤x}(w(Xi , θni ) − w(Xi , θ0))

− n1/2(θn − θ0)
�

(

n−1
n∑

i=1

I{Xi≤x}w(Xi , θ0) − W (x, θ0)

)

− n1/2(θn − θ0)
�W (x, θ0)

= Rn(x) − n1/2(θn − θ0)
�W (x, θ0) + oP(1),
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uniformly in x , where the last equality follows from Lemma 6.14. Since W (·, θ0) is
bounded, assumption 6.4.2(i) yields

n1/2(θn − θ0)
�W (x, θ0) = n−1/2

n∑

i=1

l�(Xi ,Yi , θ0)W (x, θ0) + oP(1), (6.8)

uniformly in x which shows the first assertion of the theorem.
This representation of R1

n shows that the two sequences (R1
n)n∈N and (R̂1

n)n∈N,
where

R̂1
n(x) = n−1/2

n∑

i=1

(
(Yi − m(Xi , θ0)) I{Xi≤x} − l�(Yi , Xi , θ0)W (x, θ0)

)
,

are asymptotically equivalent in the sense of Billingsley (1968, Theorem 4.1). There-
fore, we can do the remaining part of the proof with (R̂1

n)n∈N.
In order to prove tightness of (R̂1

n)n∈N, it remains to show, by virtue of Theorem
6.8, that the right-hand side of (6.8) is also tight in D[−∞,∞]. By assumption
6.4.2(ii) and 6.4.2(iii) the sequence (Sn)n∈N, where Sn = n−1/2 ∑n

i=1 l(Xi ,Yi , θ0),
tends to a multivariate normal distribution and therefore is tight inRp. SinceW (·, θ0)
is a bounded deterministic continuous function, the sequence (S�

n W (·, θ0))n∈N) is
tight in C[−∞,∞]. Since C−tightness implies D−tightness, we have shown that
(R̂1

n)n∈N is tight in D[−∞,∞].
The convergence of the fidis of (R̂1

n)n∈N is a consequence of the multivariate
CLT. Hence, it remains to calculate the covariance function K 1(s, t) of R1∞ which is
identical to the covariance function of the centered process R̂1

n . Recall the definition
of L(θ0) given under 6.4.2(iii) to get

COV(R̂1
n(s), R̂

1
n(t)) = E

(
I{X≤s∧t}(Y − m(X, θ0))

2
) + W�(s, θ0)L(θ0)W (t, θ0)

− W�(t)E
(
I{X≤s}(Y − m(X, θ0))l(Y, X, θ0)

)

− W�(s)E
(
I{X≤t}(Y − m(X, θ0))l(Y, X, θ0)

)
.

Note that the first term on the right side is the covariance of the BMEP limit process
R∞. �

Remark 6.16 Under the assumptions of Theorem 6.15, Shorack (2000, Chapter 12,
Theorem 2.1 (1)) can be directly verified from the covariance function of R1∞. This
shows that the limiting process R1∞ can be realized in C[−∞,∞].
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6.4.3 The MEP with Estimated Model Parameters
Propagating in an Estimated Direction

Previously, all MEPs were based on one-dimensional random variables X , which
were used to define the corresponding processes via the indicators I{X≤x}. If the input
variables X are multidimensional, then the indicator set (−∞, x] can be replaced by
the quadrantwith upper right corner x , i.e., by the {z ∈ R

p : zi ≤ xi , for 1 ≤ i ≤ p}.
However, if the model under consideration is a linear or a generalized linear model,
then the multidimensional vector X acts on Y by a corresponding linear combination
of its components andwe can switch to a one-dimensional input, namely, to this linear
combination. The corresponding process thus realizes itself again in D[−∞,∞].
However,wepay aprice for this traceability to the one-dimensional case; the direction
in which the process evolves is determined by the linear combination. It is thus based
on the estimated parameters and therefore propagates in an estimated direction.

Definition 6.17 Let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sequence in R
1+p such that

E(|Y |) < ∞ and denote the conditional expectation of Y given X = x by m(x).
Assume that m belongs to a parametric family

M = {
m(·, ϑ) : ϑ = (β, θ) ∈ R

p × Θ ⊂ R
p+q

}

such thatm(x) ≡ m(x, ϑ0) = m0(β
�
0 x, θ0), for some true parameter (β0, θ0) ≡ ϑ0 ∈

R
p × Θ and a Borel-measurable function m0 : R → R.
Let ϑn = (βn, θn) be an estimator of ϑ0. Then

[−∞,∞] � u −→ R̄1
n(u) := n−1/2

n∑

i=1

(
Yi − m0(β

�
n Xi , θn)

)
I{β�

n Xi≤u} ∈ R (6.9)

defines the estimated marked empirical process in estimated direction (EMEPE).

Remark 6.18 The specific form m(x) = m0(β
�
0 x, θ0) implies that w.p.1

E(Y | X) = m(X) = m0(β
�
0 X, θ0) = E(Y | β�

0 X), (6.10)

i.e., E(Y | X) is measurable with respect to the smaller σ -field (β�
0 X)−1(B∗), where

B∗ denotes the Borel σ−field onR. Be aware that this is a very restrictive condition,
because it means that all the information from X concerningE(Y |X) is already stored
in the information given by the projection of X onto the line defined by β0! Note that
in the following we will not distinguish between m and m0, but will always use m,
even if m0 is meant. So instead of writing m0(β

�x) we will use m(β�x). Thus, the
EMEPE will be

[−∞,∞] � u −→ R̄1
n(u) := n−1/2

n∑

i=1

(
Yi − m(β�

n Xi , θn)
)
I{β�

n Xi≤u} ∈ R. (6.11)
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Remark 6.19 If m(x) = m(β�
0 x, θ0) applies, then

ei = Yi − m(β�
0 Xi , θ0)

denotes the true error. If ϑn is an estimator of ϑ0, then

ei (ϑn) = Yi − m(β�
n Xi , θn)

defines the estimated error, that is, the residual. Furthermore, according to (6.10),

E(e | X) = 0 = E(e | β�
0 X, θ0). (6.12)

For the conditional variance with respect to X = x , we set

σ 2(x) = E
(
(Y − m(X))2

∣∣ X = x
) = VAR

(
Y | X = x

)
(6.13)

and define

σ 2
ϑ0

(t) = E
(
(Y − m(β�

0 X, θ0))
2
∣∣β�

0 X = t
) = VARϑ0

(
Y | β�

0 X = t
)
. (6.14)

For the functional limit theorem of the EMEPE, we again need some assumptions,
which are directly derived from those of Sect. 6.4.2. We also need an additional
assumption to control the estimated direction of EMEPE.

(i) n1/2(ϑn − ϑ0) = n−1/2 ∑n
i=1 l(Xi ,Yi , ϑ0) + oP(1).

(ii) E(l(Xi ,Yi , ϑ0)) = 0.
(iii) L(ϑ0) = E(l(X,Y, ϑ0)l�(X,Y, ϑ0)) exists and is positive definite.
(iv) w(x, ϑ) = ∂m(x, ϑ)/∂ϑ = (w1(x, ϑ), . . . , wp+q(x, ϑ))� exists for ϑ in a

neighborhood V ⊂ R
p × Θ of ϑ0 and is continuous with respect to ϑ .

(v) There exists an PX -integrable function M(x) such that |wi (x, ϑ)| ≤ M(x) for
all ϑ ∈ V ⊂ R

p × Θ , 1 ≤ i ≤ p + q, and V given in 6.4.3(iv).
(vi) The function

H : R
p+1 � (β, u) −→ H(u, β) :=

∫
I{β�X≤u}σ 2(X) dP ∈ R

is uniformly continuous in u at β0.

Set W (t) = W (t, ϑ0) = (W1(t, ϑ0), . . . ,Wp+q(t, ϑ0))
�, where

Wi (t) = E

(
wi (X, ϑ0)I{β�

0 X≤t}
)

. (6.15)

The following technical lemma is of decisive importance for the functional limit
theorem of the EMEPE that will follow later.
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Lemma 6.20 Assume thatE(Y 2) < ∞, 6.4.3(vi), andm(x) = m(β�
0 x, θ0) holds for

all x ∈ R
p. Then we get for every ε > 0:

P

(

sup
u∈R

sup
{β : |β−β0|≤δ}

∣∣∣n−1/2
n∑

i=1

(
I{β�Xi≤u} − I{β�

0 Xi≤u}
)
ei

∣∣∣ ≥ ε

)

−→ 0,

as δ → 0.

Proof The proof is based on the theory of generalized empirical processes, as pre-
sented in the textbooks of van der Vaart and Wellner (1996) and Kosorok (2008),
respectively.

For each β ∈ R
p and u ∈ R the set H = Hβ,u = {x ∈ R

p : β�x ≤ u} defines a
half-space in R

p. Denote the set of all half-spaces of Rp by

H = {
H = Hβ,u, β ∈ R

p, u ∈ R
}
.

Based on this collection of sets we now define a function class of indicators through

F = {
I{H×R} : H ∈ H

}

and modify this class by multiplying the individual indicators by the function

h : R
p+1 � (x, y) −→ h(x, y) = y − m(β�

0 x, θ0) ∈ R

to get
Fh = {

h I{H×R} : H ∈ H
}
.

Based on this collection of measurable functions, we consider the generalized empir-
ical process (αn( f )) f ∈F h ,

αn( f ) = n−1/2
n∑

i=1

f (Xi ,Yi ).

Note that according to (6.12) E(αn( f )) = 0.
The paths of this generalized empirical process are elements of the space l∞(Fh),

that is, the space of all function l : Fh � f −→ l( f ) ∈ R such that sup f ∈F h
|l( f )| ≡

‖l‖F h < ∞. Themetric d∞(l1, l2) = ‖l1 − l2‖F h turns l∞(Fh) into themetric space
(l∞(Fh), d∞).

First, we note that for every f ∈ Fh we have f (X,Y ) ∈ L2(Ω,A ,P). Further-
more, for each f ∈ Fh and (x, y) ∈ R

p+1, | f (x, y)| ≤ |h(x, y)|, and h(X,Y ) ∈
L2(Ω,A ,P). That is, |h| is an envelope of Fh .

In general, there are measurability problems in the study of generalized empirical
processes. However, these problems are always negligible if the considered function
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class is pointwise measurable (PM), see Kosorok (2008, Section 8.2, p. 142). The
classFh is PM according to Kosorok (2008, Lemma 8.10).

According to van der Vaart and Wellner (1996, Example 3.9.33), the class H
of all half-spaces is a Vapnik-C̆ervonenkis class (VC). The same is obviously true
for the classHR = {H × R : H ∈ H }. Now, apply Kosorok (2008, Lemma 9.8) to
get that the subgraphs of the associated indicator functions of HR are VC, wherein
the subgraph of a real-valued function f defined on some set A is the set {(a, t) :
t < f (a)}. This shows that F is VC. In addition, Fh is VC due to Kosorok (2008,
Lemma 9.9 (vi)).

Overall, we have now seen thatFh is a PM VC class with envelope |h| such that
E(h2) < ∞. This shows that Fh is a PX,Y Donsker class, see Kosorok (2008, last
para., p. 165) and we can apply Kosorok (2008, Lemma 8.17) to get for every ε > 0

P

(

sup
f,g∈F h :ρ( f,g)≤δ

∣∣αn( f ) − αn(g)
∣∣ > ε

)

−→ 0, for δ → 0, (6.16)

where

ρ( f, g) =
(
E

(
( f (X,Y ) − g(X,Y ))2

))1/2
.

According to (6.16), the proof is complete if we can show that for an arbitrary δ > 0

sup
u∈R

E

((
I{β�X≤u} − I{β�

0 X≤u}
)2
h2(X,Y )

)
≤ δ, for β → β0. (6.17)

Note that

E

((
I{β�X≤u} − I{β�

0 X≤u}
)2
h2(X,Y )

)
= E

(∣∣I{β�X≤u} − I{β�
0 X≤u}

∣∣h2(X,Y )
)

.

Denote the integral on the right by A(β, β0, u). Then, for K > 0, we get by condi-
tioning with respect to X

A(β, β0, u) ≤
∫ ∣∣I{β�x≤u} − I{β�

0 x≤u}
∣∣σ 2(x)I{‖x‖≤K }PX (dx)

+
∫

σ 2(x)I{‖x‖>K }PX (dx)

= A1(β, β0, u, K ) + A2(K ).

Now choose an arbitrary γ > 0 and note that |β�x − β�
0 x | ≤ ‖β − β0‖ ‖x‖, where

‖ · ‖ denotes the Euclidean norm on Rp, to get
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A1(β, β0, u, K ) ≤
∫ ∣∣I{β�x≤u} − I{β�

0 x≤u}
∣∣σ 2(x)I{‖x‖≤K }I{|β�x−β�

0 x |≤γ }PX (dx)

+ I{‖β−β0‖>γ/K }
∫

σ 2(x)PX (dx)

≤
∫ (

I{β�
0 x≤u+γ } − I{β�

0 x≤u−γ }
)
σ 2(x)I{‖x‖≤K }I{|β�x−β�

0 x |≤γ }PXdx)

+ I{‖β−β0‖>γ/K }
∫

σ 2(x)PX (dx)

≤
(
H(u + γ, β0) − H(u − γ, β0)

)
+ I{‖β−β0‖>γ/K }

∫
σ 2(x)PX (dx)

= A1,1(β0, u, γ ) + A1,2(β, β0, γ, K ).

Overall, we have that

A(β, β0, u) ≤ A1,1(β0, u, γ ) + A1,2(β, β0, γ, K ) + A2(K ).

Since E(σ 2(X)) < ∞, we can find a K > 0 such that A2(K ) < δ. By assumption
6.4.3(vi), H is uniformly continuous in u at β0 and we therefore can find a γ > 0
such that for a given δ > 0, sup|u−v|≤2 γ |H(u, β0) − H(v, β0)| ≤ δ. In conclusion,
if we take ‖β − β0‖ < min(2 γ, γ /K ) we get

sup
u∈R

E

((
I{β�X≤u} − I{β�

0 X≤u}
)2
h2(X,Y )

)
≤ 2 δ,

which completes the proof of the lemma. �

Remark 6.21 The proof of the last lemma has shown that H is a PM VC class.
Thus, it is also a Glivenko-Cantelli (GC) class, that is, w.p.1

sup
H∈H

∣∣∣1/n
n∑

i=1

I{Xi∈H} −
∫

I{X∈H}dP
∣∣∣ −→ 0, as n → ∞.

InterpretH as the class of indicator functions based on the half-spaces and multiply
each indicator by a function w, such that E(|w(X)|) < ∞, then Kosorok (2008,
Corollary 9.27) guarantees that

sup
H∈H

∣∣∣1/n
n∑

i=1

w(Xi )I{Xi∈H} −
∫

w(X)I{X∈H}dP
∣∣∣ −→ 0, as n → ∞,

w.p.1.

The main result of this section is the following theorem, compare Stute and Zhu
(2002, Theorem1).

Theorem 6.22 Assume E(Y 2) < ∞, Fβ0 , the distribution function of β�
0 X, is con-

tinuous, conditions 6.4.3(i) – 6.4.3(vi) are met, and m(x) = m(β�
0 x, θ0) holds for
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all x ∈ R
p. Then, R̄1

n converges in D[−∞,∞] to a centered Gaussian process
R̄1∞ = R∞ − W�V , where V is a centered (p + q)−dimensional normal vector
with covariance L(ϑ0), W is defined in (6.15), and R∞ is a centered Gaussian
process with covariance function

K (s, t) = E
(
R∞(s) R∞(t)

) =
∫

I{u≤s∧t}σ 2
ϑ0

(u) Fβ0(du).

The covariance between R∞ and W�V is given by

COV(R∞(s),W�(t)V ) = W�(t)E
((
Y − m(β�

0 X, θ0)
)
l(X,Y, ϑ0)I{β�

0 X≤s}
)

,

(6.18)
and the covariance function of R̄1∞ by

K̄ 1(s, t) = K (s, t) + W�(s)L(ϑ0)W (t)

− W�(s)E(I{β�
0 X≤t}(Y − m(β�

0 X, θ0))l(X,Y, ϑ0)) (6.19)

− W�(t)E(I{β�
0 X≤s}(Y − m(β�

0 X, θ0))l(X,Y, ϑ0)).

Proof As the proof will show, the EMEPE is stochastically equivalent to an EMEP
in which the estimated direction of evolution, βn , is replaced by the true direction
β0. To do this, we first define the associated EMEP R1

n

R1
n(u) = n−1/2

n∑

i=1

(
Yi − m(Xi , ϑn)

)
I{β�

0 Xi≤u}, for u ∈ [−∞,∞].

Note that we change the notation m(β�X, θ) back to m(X, ϑ), since the subsequent
proof is closely based on Theorem 6.15 and this theorem uses the notation m(X, ϑ).
Related to R1

n is the BMEP Rn , which is defined by

Rn(u) = n−1/2
n∑

i=1

(
Yi − m(Xi , ϑ0)

)
I{β�

0 Xi≤u}, for u ∈ [−∞,∞].

Due to (6.10), Rn is a BMEP with respect to the input β�
0 X1, . . . , β

�
0 Xn . Since Fβ0

is continuous and E(Y 2) < ∞, we can apply Corollary 6.10 and Theorem 6.8 to get
that Rn tends in distribution to the centered Gaussian process R∞ in D[−∞,∞]
with covariance function

K (s, t) =
∫

I{u≤s∧t}σ 2
ϑ0

(u) Fβ0(du).

The asymptotics of EMEP R1
n can be obtained as in the proof from Theorem 6.15

and we derive that R1
n tends in distribution in D[−∞,∞] to a centered Gaussian

process R1∞ with covariance function
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K 1(s, t) = K (s, t) + W�(s, ϑ0)L(ϑ0)W (t, ϑ0)

− W�(s, ϑ0)E(I{β�
0 X≤t}(Y − m(X, ϑ0))l(X,Y, ϑ0))

− W�(t, ϑ0)E(I{β�
0 X≤s}(Y − m(X, ϑ0))l(X,Y, ϑ0)).

Now take the true error ei = Yi − m(β�
0 Xi , θ0) and split R1

n(u) − R̄1
n(u) as follows:

R1
n(u) − R̄1

n(u) = n−1/2
n∑

i=1

ei
(
I{β�

0 Xi≤u} − I{β�
n Xi≤u}

)

+ n−1/2
n∑

i=1

(
m(β�

n Xi , θn) − m(β�
0 Xi , θ0)

)(
I{β�

n Xi≤u} − I{β�
0 Xi≤u}

)

= A1(βn, ϑ0, u) + A2(ϑn, ϑ0, u).

According to Lemma 6.20, since ϑn → ϑ0 in probability,

sup
u∈R

|A1(βn, ϑ0, u)| −→ 0, as n → ∞,

in probability. For A2(ϑn, ϑ0, u), we use a Taylor expansion and derive by Lemma
6.14, similar as in the proof of Theorem 6.15, that

A2(ϑn, ϑ0, u) = n1/2
(
ϑn − ϑ0

)�
n−1

n∑

i=1

w(Xi , ϑ0)
(
I{β�

n Xi≤u} − I{β�
0 Xi≤u}

) + oP(1),

uniformly in u, as n → ∞. Since n1/2
(
ϑn − ϑ0) tends to a normal distribution, it

remains to show that

sup
u∈R

∣∣∣n−1
n∑

i=1

wk(Xi , ϑ0)
(
I{β�

n Xi≤u} − I{β�
0 Xi≤u}

)∣∣∣ −→ 0, as n → ∞,

in probability, for 1 ≤ k ≤ p + q. For this, assume that |βn − β0| < γ for γ > 0.
Then, for 1 ≤ k ≤ p + q the supremum is bounded from above by

sup
u∈R,|β−β0|<γ

∣∣∣n−1
n∑

i=1

wk(Xi , ϑ0)I{β�Xi≤u} − E
(
wk(X, ϑ0)I{β�X≤u}

)∣∣∣

+
∣∣∣n−1

n∑

i=1

wk(Xi , ϑ0)I{β�
0 Xi≤u} − E

(
wk(X, ϑ0)I{β�

0 X≤u}
)∣∣∣

+ sup
u∈R,|β−β0|<γ

E
(
M(X)|I{β�X≤u} − I{β�

0 X≤u}|
)
.

According to Remark 6.21, the first two terms in the above bound tend to 0. Since
βn → β0 in probability, as n → ∞, the third term tends to 0 with the same argu-
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mentation that was used to prove (6.17). This finally completes the proof of the
theorem. �

6.5 Mathematical Framework: Bootstrap of Marked
Empirical Processes

This section examines the asymptotics of bootstrap variants of the BMEP and EMEP
processes in the GLM context. At first, this is done, in general, without using a
special resamplingmethod and without distinguishing between parametric and semi-
parametric models. Specifications of the theoretical results obtained with respect to
these two concrete models are given at the end of this section.

Let us recall Definition 6.17 of the EMEPE R̄1
n and the proof of Theorem 6.22.

There it was shown that R̄1
n is asymptotically equivalent to the particular EMEP

R1
n(u) = n−1/2

n∑

i=1

(
Yi − m(β�

n Xi , θn)
)
I{β�

0 Xi≤u}.

The corresponding bootstrap analog to this EMEP is given in the following definition.

Definition 6.23 Assume the setup of Definition 6.17, let (Y ∗
1,n, X1), . . . , (Y ∗

n,n, Xn)

be the bootstrap data according to some resampling scheme such that E∗
n(Y

∗
i,n) =

m(Xi , ϑn), where ϑn = (βn, θn) is the estimate of ϑ0 based on the original data.
Denote with ϑ∗

n = (β∗
n , θ

∗
n ) the estimated parameter based on the bootstrap data.

Then

[−∞,∞] � u −→ R1∗
n (u) = n−1/2

n∑

i=1

(
Y ∗
i,n − m(β∗

n
�Xi , θ

∗
n )

)
I{β�

n Xi≤u} (6.20)

defines the bootstrapped estimated marked empirical process.

Remark 6.24 For a direct transfer of EMEPE into the bootstrap world, instead of the
indicator I{β�

n Xi≤u}, one would have to actually use the indicator I{β∗
n

�Xi≤u} in Defini-
tion 6.23. But, as already noted, EMEPE and EMEP are stochastically equivalent for
the original data. Furthermore, the bootstrap version of EMEP has the big advantage
that in Monte Carlo simulations to determine corresponding statistics, the values of
β�
n X1, . . . , β

�
n Xn only have to be sorted once and not separately for each individual

bootstrap dataset, which would be necessary in the case of the indicator I{β∗
n

�Xi≤u}.
Due to this performance advantage, we have only considered the EMEP variant for
the bootstrap procedure here.
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Note that

R1∗
n (u) = n−1/2

n∑

i=1

(
Y ∗
i,n − m(β∗

n
�Xi , θ

∗
n )

)
I{β�

n Xi≤u}

= n−1/2
n∑

i=1

(
Y ∗
i,n − m(βn

�Xi , θn)
)
I{β�

n Xi≤u}

− n−1/2
n∑

i=1

(
m(β∗

n
�Xi , θ

∗
n ) − m(βn

�Xi , θn)
)
I{β�

n Xi≤u}

= R∗
n(u) − S∗

n (u).

Within the bootstrap world, the first process on the right side, that is,

R∗
n(u) = n−1/2

n∑

i=1

(
Y ∗
i,n − m(βn

�Xi , θn)
)
I{β�

n Xi≤u}, (6.21)

can be interpreted as a bootstrap version of a BMEP, sinceE∗
n(Y

∗
i,n) = m(βn

�Xi , θn).
The second process

S∗
n (u) = n−1/2

n∑

i=1

(
m(β∗

n
�Xi , θ

∗
n ) − m(βn

�Xi , θn)
)
I{β�

n Xi≤u} (6.22)

deals with the influence of parameter estimation in m.
The two bootstrap methods considered so far have two things in common. First,

the Xi from the underlying dataset is taken directly into the bootstrap dataset, i.e.,
X∗
i,n = Xi . So X∗

i,n in the bootstrap dataset is deterministic and not random like
in the original dataset! Second, the corresponding Y ∗

i,n has the property E
∗
n(Y

∗
i,n) =

m(β�
n Xi , θn).

The goal in this chapter is to prove that w.p.1, R1∗
n converges toward the same

limit process R̄1∞ as R̄1
n does.

To get a more compact notation, we will writem(x, ϑ) form(β�x, θ) in different
places, where ϑ = (β, θ).

In the forthcoming proofs, we will base ourselves on arguments which require a
special condition and which we now summarize in advance in the following defini-
tion.

Definition 6.25 Let V be a compact neighborhood of ϑ0 and

h : R
p+1 × V � (x, y, ϑ) −→ h(x, y, ϑ) ∈ R

a measurable function such that h(x, y, ϑ) is continuous in ϑ = (β, θ) for all ϑ ∈ V
and (x, y) ∈ R

p+1. We call such a function h uniformly dominated by M over V at
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ϑ0 if there exists a PX,Y− integrable function M such that |h(x, y, ϑ)| ≤ M(x, y)
for all ϑ ∈ V and (x, y) ∈ R

p+1.

In the following two sections, we will sometimes use a technical argument in the
proofs, which we next formulate here as a lemma. The proof of this lemma is based
in its technique on the proof of Lemma 6.20.

Lemma 6.26 Let h be uniformly dominated by M over V at ϑ0 and assume that

H : R � u −→ H(u) = E
(|h(X,Y, ϑ0)|I{β�

0 X≤u}) ∈ R

is uniformly continuous in u. Then we get

(i) As n → ∞,

sup
ϑ∈V, u∈R

∣∣∣
1

n

n∑

i=1

h(Xi ,Yi , ϑ)I{β�Xi≤u} − E
(
h(X,Y, ϑ)I{β�X≤u}

)∣∣∣ −→ 0, w.p.1.

(ii) As ε → 0,

sup
‖ϑ−ϑ0‖≤ε, u∈R

∣∣∣E
(
h(X,Y, ϑ)I{β�X≤u}

) − E
(
h(X,Y, ϑ0)I{β�

0 X≤u}
)∣∣∣ −→ 0.

(iii) If ϑn → ϑ0 w.p.1, then, as n → ∞,

sup
u∈R

∣∣∣
1

n

n∑

i=1

h(Xi ,Yi , ϑn)I{β�
n Xi≤u} − E

(
h(X,Y, ϑ0)I{β�

0 X≤u}
)∣∣∣ −→ 0,

w.p.1.

Proof Theorem 5.66 guarantees that

G = {
h(·, ·, ϑ) : ϑ ∈ V

}

is a PM-GC class (pointwise measurable Glivenko-Cantelli class) with integrable
envelope M . As already pointed out in the proof of Lemma 6.20, the collection

F = {
I{H×R} : H is half-space in Rp

}

is a PM-VC class and therefore a PM-GC class. In summary, we then get from
Kosorok (2008, Corollary 9.27) that

F = {
h(·, ·, ϑ)I{β�·≤u} : (β, θ) = ϑ ∈ V and u ∈ R

}

is a PM-GC class which completes the proof of part (i) of the lemma.
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For (ii), first observe that

sup
‖ϑ−ϑ0‖≤ε, u∈R

∣∣∣E
(
h(X,Y, ϑ)I{β�X≤u}

) − E
(
h(X,Y, ϑ0)I{β�

0 X≤u}
)∣∣∣

≤ E
(

sup
‖ϑ−ϑ0‖≤ε

∣∣h(X,Y, ϑ) − h(X,Y, ϑ0)
∣∣)

+ sup
‖β−β0‖<ε, u∈R

E
(∣∣h(X,Y, ϑ0)

∣∣ ∣∣I{β�X≤u} − I{β�
0 X≤u}

∣∣).

The assumptions, according to the dominated convergence theorem, guarantee that
the first term on the right side converges to 0 as ε → 0. Denote the expectation
appearing in the second term on the right side by A(β, u, ε) and choose K > 0 to
get

A(β, u, ε) ≤ E
(∣∣h(X,Y, ϑ0)

∣∣ ∣∣I{β�X≤u} − I{β�
0 X≤u}

∣∣I{‖X‖≤K }
)

+ E
(∣∣h(X,Y, ϑ0)

∣∣I{‖X‖>K }
)

= A1(β, u, ε, K ) + A2(K ).

Next select γ > 0 to get

A1(β, u, ε, K ) ≤ E
(∣∣h(X,Y, ϑ0)

∣∣ ∣∣I{β�X≤u} − I{β�
0 X≤u}

∣∣I{‖X‖≤K }I{|β�X−β�
0 X |≤γ }

)

+ I{‖β−β0‖>γ/K }E
(∣∣h(X,Y, ϑ0)

∣∣)

≤ E
(∣∣h(X,Y, ϑ0)

∣∣ ∣∣I{β�
0 X≤u+γ } − I{β�

0 X≤u−γ }
∣∣)

+ I{‖β−β0‖>γ/K }E
(∣∣h(X,Y, ϑ0)

∣∣)

= (
H(u + γ ) − H(u − γ )

) + I{‖β−β0‖>γ/K }E
(∣∣h(X,Y, ϑ0)

∣∣)

= A1,1(u, γ ) + A1,2(β, γ, K ).

All in all, this means that we have

A(β, u, ε) ≤ A1,1(u, γ ) + A1,2(β, γ, K ) + A2(K ).

Nowfix δ > 0. SinceE(|h(X,Y, ϑ0)|) < ∞, we can find a K > 0 such that A2(K ) <

δ. H is uniformly continuous and we can therefore find a γ > 0 such that, uniformly
in u, A1,1 < δ. If we take ε < min(γ, γ /K ), then A1,2(β, γ, K ) = 0, and we get for
such an ε that A(β, u, ε) < 2 δ. This shows that

sup
‖β−β0‖<ε, u∈R

A(β, u, ε) −→ 0,

as β → β0. Overall, this proves part (ii) of the lemma.
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Since ϑn −→ ϑ0 w.p.1, part (iii) now follows directly from (i) and (ii). This
completes the proof of the lemma. �

6.5.1 Bootstrap of the BMEP

To prove a corresponding functional limit theorem for the bootstrap version of the
BMEP we will make use of the following assumptions.

(i) E
∗
n(Y

∗
i,n) = m(β�

n Xi , θn) ≡ m(Xi , ϑn), where we set as before ϑn = (βn, θn).
There exists a δ > 0 and a non-negative function

he : R
p × R × R

p × Θ � (x, y, β, θ) ≡ (x, y, ϑ) −→ he(x, y, ϑ) ∈ R

such thatE∗
n(|Y ∗

i,n − m(Xi , ϑn)|2+δ) = he(Xi ,Yi , ϑn) and he is uniformly dom-
inated by Me over V at ϑ0 for some function Me and a compact neighborhood
V of ϑ0.

(ii) There exists a non-negative function

hv : R
p × R × R

p × Θ � (x, y, β, θ) ≡ (x, y, ϑ) −→ hv(x, y, ϑ) ∈ R

such that VAR∗
n(Y

∗
i,n) = hv(Xi ,Yi , ϑn) and for all u ∈ R

E
(
hv(X,Y, ϑ0)I{β�

0 X≤u}
) =

∫
I{t≤u}σ 2

ϑ0
(t) Fβ0(dt),

where Fβ0 is the distribution function of β�
0 X and σ 2

ϑ0
is defined under (6.14).

Furthermore, hv is uniformly dominated by Mv over V at ϑ0 for some function
Mv and a compact neighborhood V of ϑ0 and the function

Hv : R × V � (u, β, θ) ≡ (u, ϑ) −→ Hv(u, ϑ) := E
(
I{β�X≤u}hv(X,Y, ϑ)

)

is uniformly continuous in u at ϑ0.
(iii) ϑn −→ ϑ0, as n → ∞, w.p.1.

The first two conditions seem somewhat unusual at first glance. They specify
conditions for the bootstrap moments, which depend on the respective resampling
procedure. Thus, we can treat the two resampling methods with only one theorem.

Theorem 6.27 Assume that conditions 6.5.1(i), 6.5.1(ii), and 6.5.1(iii) are met.
Then, w.p.1, the process R∗

n converges in D[−∞,∞] to a centered Gaussian process
R∞ with covariance function

K (s, t) = E
(
R∞(s) R∞(t)

) =
∫

I{u≤s∧t}σ 2
ϑ0

(u) Fβ0(du).
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Proof To prove the assertion we use again Billingsley (1968, Theorem 15.6).
For this, we first show that the fidis of R∗

n converge in distribution to those of
R∞. Let k ∈ N and take −∞ ≤ t1 < . . . < tk ≤ ∞. According to Cramér-Wold, see
Billingsley (1968, Theorem 7.7), we have to show that, w.p.1, for every 0 = a ∈ R

k

k∑

j=1

a j R
∗
n(t j ) −→ N (0, a�Σa), as n → ∞,

in distribution, where Σ = (σ j,�)1≤ j,�≤k and σ j,� = COV(R∞(t j ), R∞(t�)) =
K (t j , t�).

Set

Z∗
n =

k∑

j=1

a j R
∗
n(t j ) = n−1/2

n∑

i=1

((
Y ∗
i,n − m(Xi , ϑn)

)( k∑

j=1

a j I{β�
n Xi≤t j }

))

≡
n∑

i=1

ξ ∗
i,n Ai,n,

where ξ ∗
i,n = n−1/2

(
Y ∗
i,n − m(Xi , ϑn)

)
. Note that ξ ∗

1,n, . . . , ξ
∗
n,n are independent and

centered, because of 6.5.1(i). Furthermore, A1,n, . . . , An,n are deterministic with
respect to P∗

n .
We first consider the variance of Z∗

n and get

VAR∗
n(Z

∗
n) =

∑

1≤ j,�≤k

a j

(
1/n

n∑

i=1

I{β�
n Xi≤t j∧t�}VAR

∗
n(Y

∗
i,n)

)
a�

=
∑

1≤ j,�≤k

a j

(1
n

n∑

i=1

I{β�
n Xi≤t j∧t�}hv(Xi ,Yi , ϑn)

)
a�,

where the last equality follows from 6.5.1(ii). Now apply Lemma 6.26 to get that
w.p.1

1

n

n∑

i=1

I{β�
n Xi≤t j∧t�}hv(Xi ,Yi , ϑn) −→

∫
I{u≤t j∧t�}σ

2
ϑ0

(u) Fβ0(du) = K (t j , t�),

as n → ∞, that is,

VAR∗
n(Z

∗
n) −→ a�Σa, as n → ∞,w.p.1. (6.23)

SinceΣ is positive semi-definite, a�Σa ≥ 0. If a�Σa = 0, Chebyshev’s inequality
guarantees that Z∗

n = oP∗
n
(1) and we have that w.p.1,

Z∗
n −→ N (0, a�Σa), as n → ∞.
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In this case, N (0, a�Σa) = N (0, 0) is a degenerated normal distribution. Now
assume that a�Σa > 0. To prove the asymptotic normality of Z∗

n , Serfling (1980,
Corollary to Theorem 1.9.3) can be applied and we have to show that the Lyapunov
condition

1

VAR∗
n(Z

∗
n)

(2+ν)/2

n∑

i=1

E
∗
n

(∣∣ξ ∗
i,n Ai,n

∣∣2+ν
)

−→ 0, as n → ∞ (6.24)

is fulfilled w.p.1, for some ν > 1, where the null set does not depend on a.
Since a�Σa > 0, (6.23), and |Ai,n| ≤ ‖a‖ k, the Lyapunov condition (6.24) is,

therefore, fulfilled if we can prove that

n∑

i=1

E
∗
n

(∣∣ξ ∗
i,n

∣∣2+δ
)

= 1

n1+δ/2

n∑

i=1

E
∗
n

((
Y ∗
i,n − m(Xi , ϑn)

)2+δ
)

= 1

nδ/2

1

n

n∑

i=1

he(Xi ,Yi , ϑn)

−→ 0, as n → ∞,w.p.1,

where δ > 0 and he are chosen according to assumption 6.5.1(i). The assumed prop-
erties of he together with the w.p.1 convergence ϑn → ϑ0 now yield according to
Theorem 5.66

sup
ϑ∈V

∣∣∣
1

n

n∑

i=1

he(Xi ,Yi , ϑ) − E(he(X,Y, ϑ0))

∣∣∣ −→ 0, as n → ∞,w.p.1,

where V is chosen according to 6.5.1(i). This proves the convergence of the finite-
dimensional distributions against N (0,Σ).

It remains to show that (R∗
n)n∈N is tight. Since D[−∞,∞] can be identified

with D[0, 1], compare Remark 6.4, we can adjust Billingsley (1968, Theorem 15.6)
accordingly to prove tightness. For this let−∞ ≤ u1 ≤ u ≤ u2 ≤ ∞. As in the proof
of Theorem 6.8, we get from Lemma 6.26 that w.p.1

lim sup
n→∞

E
∗
n

((
R∗
n(u) − R∗

n(u1)
)2(

R∗
n(u2) − R∗

n(u)
)2)

≤ lim sup
n→∞

(1
n

n∑

i=1

E
∗
n

(
(Y ∗

i,n − m(Xi , ϑn))
2I{u1<β�

n Xi≤u2}
))2

= lim sup
n→∞

(1
n

n∑

i=1

E
∗
n

(
hv(Xi ,Yi , ϑn)I{u1<β�

n Xi≤u2}
))2

= (
Hv(u2, ϑ0) − Hv(u1, ϑ0)

)2
.
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Note that Hv(·, ϑ0) is uniformly continuous.
With a small adaptation in the proof of Billingsley (1968, Theorem 15.6), more

precisely under Billingsley (1968, (15.30) in the proof of Theorem 15.6), this last
result now yields that, with w.p.1, (R∗

n)n∈N is tight. �

6.5.2 Bootstrap of the EMEP

Additionally to the assumptions 6.5.1(i), 6.5.1(ii), and 6.5.1(iii) of Section 6.5.1, we
need further conditions to handle the process S∗

n .

(iv) n1/2(ϑ∗
n − ϑn) −→ Z in distribution, as n → ∞, w.p.1, where Z is a zero

mean multivariate distribution with covariance matrix L(ϑ0).
(v) L(ϑ0) = E(l(X,Y, ϑ0)l�(X,Y, ϑ0)) exists and is positive definite.
(vi) n1/2(ϑ∗

n − ϑn) = n−1/2 ∑n
i=1 l(Xi ,Y ∗

i,n, ϑn) + oP∗
n
(1), as n → ∞, w.p.1.

(vii) E
∗
n(l(Xi ,Y ∗

i,n, ϑn)) = 0 and there exists a δ > 0 and a non-negative function

hl,e : R
p × R × R

p × Θ � (x, y, β, θ) ≡ (x, y, ϑ) −→ hl,e(x, y, ϑ) ∈ R

such that E∗
n(‖l(Xi ,Y ∗

i,n, ϑn)‖2+δ) = hl,e(Xi ,Yi , ϑn). Furthermore, hl,e is uni-
formly dominated over V at ϑ0 for some function Ml,e and a compact neigh-
borhood V at ϑ0.

(viii) The covariance matrix

L∗
n(ϑn) = 1

n

n∑

i=1

E
∗
n
(
l(Xi , Y

∗
i,n, ϑn)l

�(Xi , Y
∗
i,n, ϑn)

) −→ L(ϑ0), as n → ∞,w.p.1.

(ix) For every x ∈ R
p, w(x, ϑ) = ∂m(x, ϑ)/∂ϑ = (w1(x, ϑ), . . . , wp+q(x, ϑ))�

exists and is continuous with respect to ϑ for every ϑ in a neighborhood of ϑ0

(not depending on x).
(x) For 1 ≤ i ≤ p + q, wi (x, ϑ) is uniformly dominated by some Mw over V at

ϑ0.
(xi) The function

W : R × Vβ � (u, β) −→ W (u, β) = E
(
w(X, ϑ0)I{β�X≤u}

) ∈ R
p+q

is uniformly continuous in u at β0, where Vβ = {β : (β, θ0) ∈ V } and V is
given under 6.5.2(ix).

(xii) There exists a function

hcov : R
p × R × R

p × Θ � (x, y, β, θ) ≡ (x, y, ϑ) −→ hcov(x, y, ϑ) ∈ R
p+q

such that E∗
n

(
(Y ∗

i,n − m(Xi , ϑn)) l(Xi ,Y ∗
i,n, ϑn)

) = hcov(Xi ,Yi , ϑn) and for all
u ∈ R
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E
(
hcov(X,Y, ϑ0)I{β�

0 X≤u}
) = E

(
(Y − m(β�

0 X, θ0)) l(X,Y, ϑ0) I{β�
0 X≤u}

)
.

Furthermore, each component hcov,r , where 1 ≤ r ≤ p + q, is uniformly dom-
inated by Mcov,r over V at ϑ0 for some function Mcov,r and a compact neigh-
borhood V of ϑ0, and the function

Hcov : R × V � (u, β, θ) ≡ (u, ϑ) −→Hcov(u, ϑ)

= E
(
I{β�X≤u}hcov(X,Y, ϑ)

) ∈ R
p+q

is uniformly continuous in u at ϑ0.

In the following two remarks, we examine the validity of the moment condi-
tions stated above for the resampling procedures used in the parametric and semi-
parametric bootstraps, respectively.

Remark 6.28 According to the Resampling Scheme5.42 for the parametric case,
Y ∗
i,n has density

f (y|θXi (βn), φn) = exp
(θXi (βn)y − ζ(θXi (βn))

φn

)
h(y, φn),

where βn and φn are the MLE corresponding to the original dataset and θx (β) =
(g ◦ ζ ′)−1(β�x). Now apply (5.19) to get

VAR∗
n(Y

∗
i,n) = hv(Xi ,Yi , ϑn) = φnζ

′′(θXi (βn)).

This representation of hv can be used to find conditions that guarantee the validity
of assumption 6.5.1(ii). The situation is similar with assumption 6.5.1(i).

Various assumptions state that for some function u

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) = h(Xi ,Yi , ϑn)

is uniformly dominated by a function M over a compact neighborhood V of ϑ0. In
case of the parametric bootstrap, we have

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) =
∫

u(Xi , y, ϑn) f (y|θXi (βn), φn)ν(dy),

which is only a function of Xi and ϑn . Looking at the density of Y ∗
i,n reveals that one

could also write it as

exp
(
K1(Xi , ϑn)y + c(y, φn)

)
K2(Xi , ϑn)

which even simplifies further, for instance, for the normal, Poisson, Bernoulli,
gamma, and inverse Gaussian distribution to

exp
(
K1(Xi , ϑn)y + K3(φn)c(y)

)
K2(Xi , ϑn).
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Therefore, if ‖Xi‖ is bounded by some K , one can try to shrink the neighborhood V
and obtain the bound

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) ≤
∫

I{‖Xi‖<K }u(Xi , y, ϑn) exp
(
C1y + C3c(y)

)
C2ν(dy).

On the basis of such a representation, conditions can then be formulated that
ultimately guarantee the required integrability conditions.

Finally, note that Corollary 5.62 already provides a linear expansion and assump-
tion 6.5.2(vi) and 6.5.2(viii) as well as E

∗
n(l(Xi ,Y ∗

i,n, ϑn)) = 0 from assumption
6.5.2(vii).

Remark 6.29 According to the Resampling scheme 5.64 a wild bootstrap is used
and

Y ∗
i,n = m(Xi , ϑn) + τi

(
Yi − m(Xi , ϑn)

)
,

where τi is a Rademacher variable, that is,P(τ = 1) = 1/2 = P(τ = −1), also inde-
pendent of Xi and Yi .

Various assumptions state that for some function u

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) = h(Xi ,Yi , ϑn)

is uniformly dominated by a function M over a compact neighborhood V of ϑ0.
Obviously,

E
∗
n

(
u(Xi ,Y

∗
i,n, ϑn)

) = u(Xi ,Yi , ϑn)I{τi=−1} + u(Xi , 2m(Xi , ϑn) − Yi , ϑn)I{τi=1}

.
On the basis of such a representation, conditions can then be formulated that

ultimately guarantee the required integrability conditions.
Finally, note that Corollary 5.81 already provides a linear expansion and assump-

tion 6.5.2(vi) and 6.5.2(viii) as well as E
∗
n(l(Xi ,Y ∗

i,n, ϑn)) = 0 from assumption
6.5.2(vii).

The following lemmashows that condition6.5.2(iv) is a consequenceof conditions
6.5.1(iii), 6.5.2(v), 6.5.2(vi), 6.5.2(vii), and 6.5.2(viii). In order to obtain a more
compact notation, we have retained it in the list of conditions.

Lemma 6.30 Assume that conditions 6.5.1(iii), 6.5.2(v), 6.5.2(vi), 6.5.2(vii), and
6.5.2(viii) hold. Then, w.p.1,

n−1/2(ϑ∗
n − ϑn) −→ Z , as n → ∞,

where Z is multivariate normally distributed with zero mean and covariance matrix
L(ϑ0).

Proof Due to 6.5.2(vi) and Cramér-Wold, see Billingsley (1968, Theorem 7.7), we
have to show that, w.p.1, for every 0 = a ∈ R

p+q
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Z∗
n = n−1/2

n∑

i=1

a�l(Xi ,Y
∗
i,n, ϑn) −→ N (0, a�L(ϑ0)a), as n → ∞,

in distribution.According to Serfling (1980,Corollary toTheorem1.9.3), this follows
if we can show that for some ν > 0 the Lyapunov condition

1

VAR∗
n(Z

∗
n)

(2+ν)/2

n∑

i=1

E
∗
n

(∣∣n−1/2a�l(Xi ,Y
∗
i,n, ϑn)

∣∣2+ν
)

−→ 0, as n → ∞,w.p.1

holds, where the null set does not depend on a.
For the variance, we get from 6.5.2(viii)

VAR∗
n(Z

∗
n) = 1

n

n∑

i=1

a�
E

∗
n

(
l(Xi ,Y

∗
i,n, ϑn) l

�(Xi ,Y
∗
i,n, ϑn)

)
a = a�L∗

n(ϑn)a

−→ a�L(ϑ0)a,

as n → ∞, w.p.1, where the null set does not depend on a. Since L(ϑ0) is positive
definite and a = 0, a�L(ϑ0)a > 0. Thus, the Lyapunov condition is fulfilled if we
can show that w.p.1

1

n1+ν/2

n∑

i=1

E
∗
n

(∣∣a�l(Xi ,Y
∗
i,n, ϑn)

∣∣2+ν
)

−→ 0, as n → ∞.

Apply 6.5.2(vii) and choose ν = δ to get

1

nδ/2

1

n

n∑

i=1

E
∗
n

(∣∣a�l(Xi ,Y
∗
i,n, ϑn)

∣∣2+δ
)

≤ ‖a‖2+δ

nδ/2

1

n

n∑

i=1

hl,e(Xi ,Yi , ϑn).

Corollary 5.67 together with assumption 6.5.1(iii) completes the proof. �

As we have outlined in the introduction to this chapter,

R1∗
n (u) = R∗

n(u) + S∗
n (u),

where S∗
n (u) is defined in (6.22). The main part now is to handle the process S∗

n .
Note that assumptions 6.5.2(iv) and 6.5.1(iii) imply

P
∗
n(‖ϑ∗

n − ϑ0‖ > ε) −→ 0, as n → ∞,w.p.1, (6.25)

for ε > 0. Except for an oP∗
n
(1) term we can therefore assume that ϑ∗

n and ϑn are in
the neighborhood V from assumption 6.5.2(ix) and we can apply Taylor’s expansion
to get

m(x, ϑ∗
n ) = m(x, ϑn) + (ϑ∗

n − ϑn)
�w(x, ϑ̂∗

n (x)),
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where ϑ̂∗
n (x) is in the line segment connecting ϑ∗

n and ϑn . Now, as under (6.15), we
set W (t) = W (t, ϑ0) = (W1(t, ϑ0), . . . ,Wp+q(t, ϑ0))

�, where

Wi (t) = Wi (t, ϑ0) = E

(
wi (X, ϑ0)I{β�

0 X≤t}
)

.

If we insert this in S∗
n , then the following decomposition is obtained.

S∗
n (u) = n1/2

(
ϑ∗
n − ϑn

)�
n−1

n∑

i=1

w(Xi , ϑ̂
∗
n (x))I{β�

n Xi≤u} + oP∗
n
(1)

= n1/2
(
ϑ∗
n − ϑn

)�
W (u, ϑ0) (6.26)

+ n1/2
(
ϑ∗
n − ϑn

)�
n−1

n∑

i=1

(
w(Xi , ϑ̂

∗
n (Xi )) − w(Xi , ϑ0)

)
I{β�

n Xi≤u}

+ n1/2
(
ϑ∗
n − ϑn

)�(
n−1

n∑

i=1

w(Xi , ϑ0)I{β�
n Xi≤u} − W (u, ϑ0)

)

+ oP∗
n
(1).

Lemma 6.31 Let ϑ̂∗
n : R

p → V be a measurable function such that ϑ̂∗
n (x) lies for

each x ∈ R
p in the line segment that connects ϑ∗

0 and ϑ0 and assume that 6.5.1(iii),
6.5.2(iv), 6.5.2(ix), 6.5.2(x), and 6.5.2(xi) hold. Then, w.p.1, for 1 ≤ j ≤ p + q, as
n → ∞,

(i) supu∈R
∣∣∣n−1 ∑n

i=1 w j (Xi , ϑ0)I{β�
n Xi≤u} − Wj (u, ϑ0)

∣∣∣ −→ 0,

(ii) supu∈R
∣∣∣n−1 ∑n

i=1

(
w j (Xi , ϑ̂

∗
n (Xi )) − w j (Xi , ϑ0)

)
I{β�

n Xi≤u}
∣∣∣ = oP∗

n
(1).

Proof Since w j (X, ϑ0) is integrable and the collection of half-spaces in Rp forms a
GC class, we get from Kosorok (2008, Corollary 9.27) that w.p.1

sup
β∈Rp, u∈R

∣∣∣n−1
n∑

i=1

w j (Xi , ϑ0)I{β�Xi≤u} − E
(
w j (X, ϑ0)I{β�X≤u}

)∣∣∣ −→ 0, as n → ∞.

Therefore, we obtain from 6.5.1(iii) that for every ε > 0

lim sup
n→∞

sup
u∈R

∣∣∣n−1
n∑

i=1

w j (Xi , ϑ0)I{β�
n Xi≤u} − Wj (u, ϑ0)

∣∣∣

≤ lim sup
n→∞

sup
β∈Rp, u∈R

∣∣∣n−1
n∑

i=1

w j (Xi , ϑ0)I{β�Xi≤u} − E
(
w j (X, ϑ0)I{β�X≤u}

)∣∣∣

+ sup
‖β−β0‖<ε, u∈R

∣∣E
(
w j (X, ϑ0)I{β�X≤u}

) − Wj (u, ϑ0)
∣∣

= sup
‖β−β0‖<ε, u∈R

∣∣En
(
w j (X, ϑ0)I{β�X≤u}

) − Wj (u, ϑ0)
∣∣,
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w.p.1. But the last term on the right side tends to 0, as ε → 0, under the stated
assumptions, with similar arguments as we used in the proof of Lemma 6.26. For the
second part, we get from (6.25) that

sup
u∈R

∣∣∣n−1
n∑

i=1

(
w j (Xi , ϑ̂

∗
n (Xi )) − w j (Xi , ϑ0)

)
I{β�

n Xi≤u}
∣∣∣

≤ n−1
n∑

i=1

sup
‖ϑ−ϑ0‖<ε

∣∣w j (Xi , ϑ) − w j (Xi , ϑ0)
∣∣ + oP∗

n
(1).

Now, by condition 6.5.2(x),

n−1
n∑

i=1

sup
‖ϑ−ϑ0‖<ε

∣∣w j (Xi , ϑ)−w j (Xi , ϑ0)
∣∣

−→ E

(
sup

‖ϑ−ϑ0‖<ε

∣∣w j (Xi , ϑ) − w j (Xi , ϑ0)
∣∣
)
,

as n → ∞, w.p.1. Due to the assumptions 6.5.2(ix) and 6.5.2(x), the last expectation
tends to 0, as ε → 0, by an application of the dominated convergence theorem. This
proves the lemma. �

Under the assumptions of Lemma 6.31 we get from (6.26) that uniformly in u

S∗
n (u) = n1/2

(
ϑ∗
n − ϑn

)�
W (u, ϑ0) + oP∗

n
(1), w.p.1.

Now, use the asymptotic linear representation of ϑ∗
n of condition 6.5.2(vi) for

further modification of S∗
n to get

S∗
n (u) = n−1/2

n∑

i=1

l�(Xi ,Y
∗
i,n, ϑn)W (u) + oP∗

n
(1), w.p.1, (6.27)

uniformly in u. Here and in the rest of this section we use W (u) for W (u, ϑ0).

Theorem 6.32 Assume that conditions 6.5.1(i)–6.5.1(iii) and 6.5.2(v)–6.5.2(xii)
hold. Then, w.p.1, R1∗

n converges in D[−∞,∞] to a centered Gaussian process
R̄1∞ with covariance function

K̄ 1(s, t) = K (s, t) + W�(s)L(ϑ0)W (t)

− W�(s)E(I{β�
0 X≤t}(Y − m(β�

0 X, θ0))l(X,Y, ϑ0))

− W�(t)E(I{β�
0 X≤s}(Y − m(β�

0 X, θ0))l(X,Y, ϑ0)),

where K (s, t) is the covariance function of the BMEP given in Theorem 6.27.
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Proof Due to the assumed conditions, we can use the representation of S∗
n obtained

under (6.27) to get that the two sequences (R1∗
n )n∈N and (R̂1∗

n )n∈N, where

R̂1∗
n (u) = n−1/2

n∑

i=1

((
Y ∗
i,n − m(β�

n Xi , θn)
)
I{β�

n Xi≤u} − l�(Xi ,Y
∗
i,n, ϑn)W (u)

)
,

are asymptotically equivalent in the sense of Billingsley (1968, Theorem 4.1). To
prove the assertion, we apply Billingsley (1968, Theorem 15.6) to (R̂1∗

n )n∈N. Note
that

R̂1∗
n (u) = R∗

n(u) − n−1/2
n∑

i=1

l�(Xi ,Y
∗
i,n, ϑn)W (u)

and (R∗
n)n∈N is tight in D[−∞,∞] according to Theorem 6.27. Furthermore, the

proof of Lemma 6.30 shows that n−1/2 ∑n
i=1 l

�(Xi ,Y ∗
i,n, ϑn) converges to a zero

mean multivariate normal distribution with covariance matrix L(ϑ0), w.p.1. By
assumption 6.5.2(xi), W (·) is continuous. Thus, n−1/2 ∑n

i=1 l
�(Xi ,Y ∗

i,n, ϑn)W (u)

is tight inC[−∞,∞] and therefore also tight in D[−∞,∞]. All in all, the tightness
of (R̂1∗

n )n∈N results, w.p.1.
It remains to show that the fidis of R̂1∗

n converge in distribution to those of R̄1∞. For
this, let k ∈ N, take−∞ ≤ u1 < . . . < uk ≤ ∞, and 0 = a ∈ R

k . To apply Cramér-
Wold, we have to show that w.p.1

Z∗
n =

k∑

j=1

a j R̂
1∗
n (u j ) −→ N (0, a�Σa), for n → ∞,

in distribution, where Σ = (σr,s)1≤r,s≤k and σr,s = COV(R̄1∞(ur ), R̄1∞(us)) =
K̄ 1(ur , us). A simple rearrangement of the terms in Z∗

n results in

Z∗
n =

n∑

i=1

Y ∗
i,n − m(Xi , ϑn)√

n

k∑

j=1

a j I{β�
n Xi≤u j } − l�(Xi ,Y ∗

i,n, ϑn)√
n

k∑

j=1

a jW (u j )

=
n∑

i=1

ξ ∗
i,n Ai,n − η∗�

i,n B,

where ξ ∗
i,n = n−1/2(Y ∗

i,n − m(Xi , ϑn)) and η∗
i,n = n−1/2l(Xi ,Y ∗

i,n, ϑn). These vari-
ables are centered and (ξ ∗

1,n, η
∗
1,n), . . . , (ξ

∗
n,n, η

∗
n,n) are independent. Furthermore,

Ai,n and B are deterministic with respect to P
∗
n . For the variance of Z

∗
n , this results

in
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VAR∗
n(Z

∗
n) =

n∑

i=1

A2
i,nVAR

∗
n(ξ

∗
i,n) +

n∑

i=1

B�
E

∗
n

(
η∗
i,nη

∗�
i,n

)
B

− 2B�
n∑

i=1

E
∗
n(ξ

∗
i,nη

∗
i,n)Ai,n.

As we have seen in the proof of Theorem 6.27,

n∑

i=1

A2
i,nVAR

∗
n(ξ

∗
i,n) −→

∑

1≤r,s≤k

ar K (us, ur )as, as n → ∞,w.p.1.

Assumption 6.5.2(viii) guarantees that w.p.1, as n → ∞,

n∑

i=1

B�
E

∗
n

(
η∗
i,nη

∗�
i,n

)
B −→ B�L(ϑ0)B =

∑

1≤r,s≤k

asW
�(us)L(θ0)W (ur )ar .

For the last term, conditions 6.5.1(iii), 6.5.2(xii) together with Lemma 6.26 imply
that, w.p.1, as n → ∞,

B�
n∑

i=1

E
∗
n(ξ

∗
i,nη

∗
i,n)Ai,n

=
∑

1≤r,s≤k

arW
�(ur )

1

n

n∑

i=1

hcov(Xi ,Yi , ϑn)I{β�
n Xi≤us }as

−→
∑

1≤r,s≤k

arW
�(ur )E

(
(Y − m(β�

0 X, θ0))l(X,Y, ϑ0)I{β�
0 X≤us }

)
as .

All in all this shows that w.p.1, as n → ∞

VAR∗
n(Z

∗
n) −→

∑

1≤r,s≤k

ar K̄
1(ur , us)as = a�Σa.

If a�Σa = 0, Chebyshev’s inequality implies that Z∗
n = oP∗

n
(1) and we have that

Z∗
n −→ N (0, a�Σa), as n → ∞.

Now assume that a�Σa > 0. According to Serfling (1980, Corollary to Theorem
1.9.3), the validity of the Lyapunov condition

1

VAR∗
n(Z

∗
n)

(2+ν)/2

n∑

i=1

E
∗
n

(|ξ ∗
i,n Ai,n − B�η∗

i,n|2+ν
) −→ 0, as n → ∞,w.p.1,
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for some ν > 0, implies the asymptotic normality of Z∗
n . Note that

E
∗
n

(|ξ ∗
i,n Ai,n − B�η∗
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))
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Conditions 6.5.1(i) and 6.5.2(vii) allow us to apply the same arguments used to verify
the Lyapunov condition in the proof of Theorem 6.27. This completes the proof. �

Remark 6.33 Note that K̄ 1 matches the covariance given under (6.19). Thus, the
bootstrap version of the EMEP converges to the same process as the EMEPE does.

6.6 Exercises

Exercise 6.1 TheKolmogorov-Smirnov (Dn) and Cramér-vonMises (W 2
n ) statistics

are used in the GOF test. If you want to use another statistics, which property is
necessary so that all GOF-related theorems hold true.

Exercise 6.2 Atwhich point in themathematical framework of themarked empirical
process is the fact necessary that at least one of the covariates is a continuous random
variable.

Exercise 6.3 Compare the performance of the GOF test using the Kolmogorov-
Smirnov and Cramér-von Mises statistics. For instance, extend the plots shown in
Fig. 6.18.

Exercise 6.4 Plot the p−values of the GOF test based on the Kolmogorov-Smirnov
(KS) statistics against the p−values of the GOF test based on the Cramér-von Mises
(CvM) statistics. Make sure that each p−value pair was generated on the same
original and bootstrap datasets.

Investigate a situation where the p-value based on the KS is small and the p-value
based on CvM is large and vice versa. Can you modify one of the datasets in order
to make the difference between the p-values even larger?
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Appendix A
boot Package

A helpful tool for bootstrapping is the boot package which comes preinstalled with
R.

rownames(installed.packages(priority= "recommended"))

## [1] "boot" "class" "cluster" "codetools"

## [5] "foreign" "KernSmooth" "lattice" "MASS"

## [9] "Matrix" "mgcv" "nlme" "nnet"

## [13] "rpart" "spatial" "survival"

The functions from the boot package can be used after loading the library

library(boot)

In this section, we do not describe the whole package, but only what is important
for this book. Note, that one can find many different packages for bootstrapping on
CRAN. These packagesmust be installed by the usermanually through the command

install.packages("packagename")

A.1 Ordinary Bootstrap

Suppose we have a sample X1, . . . , Xn ∼ F of independent random variables and a
test statistic T0 = T (X1, . . . , Xn). Denote by Fn the edf of X1, . . . , Xn . A common
task is to generate independent random variables X∗

i1, . . . , X
∗
in ∼ Fn , 1 ≤ i ≤ m and

calculate T ∗
i = T (X∗

i1, . . . , X
∗
in). This can easily be accomplished by the function

“boot”. The test statistic must be implemented as an R-function that has the two
arguments one for the original sample and one for an index vector. This index vector
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is generated by “boot” and passed to our R-function. Denote by j1, . . . , jn the index
vector, then X j1 , . . . , X jn are independent with distribution function Fn . Lets look at
an example.

R-Example A.1 We generate 20 normal distributed random variables with mean 5
and standard deviation 2 and use the arithmetic mean as the test statistic T . Then we
let the function “boot” calculate m = 100 bootstrap replicates of T .

arithMean <- function(originalSample, indexVector){
mean(originalSample[indexVector])

}

set.seed(1234) # setting the seed for reproducability
x <- rnorm(20, mean=5, sd=2) # the original sample
print(b <- boot::boot(data=x, statistic=arithMean, R=100))

##

## ORDINARY NONPARAMETRIC BOOTSTRAP

##

##

## Call:

## boot::boot(data = x, statistic = arithMean, R = 100)

##

##

## Bootstrap Statistics :

## original bias std. error

## t1* 4.529284 0.01409941 0.3707043

The object b returned by “boot” contains the arithmetic mean of the original
sample and the arithmetic means of the 100 bootstrap samples.

b$t0

## [1] 4.529284

head(as.vector(b$t))

## [1] 4.553685 4.871633 4.937805 4.458266 4.707033 3.966022

Plotting b results in two plots. The first shows a histogram for the 100 calculated
test statistics with the test statistic of the original sample as a dashed vertical line. The
second plot is a Q–Q plot of the 100 ordered test statistics against normal quantiles,
cf. Fig.A.1.
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Fig. A.1 Standard plot for an object returned by boot()

plot(b)

In order to see what the function “boot” does, we reproduce the 100 bootstrap
replicates of T manually.

set.seed(1234) # setting the seed for reproducability
x <- rnorm(20, mean=5, sd=2) # the original sample
n <- length(x)
m <- 100
indices <- sample.int(n=n, size=n*m, replace=TRUE)
dim(indices) <- c(m, n)
repsOfT <- sapply(1:100, function(i){
arithMean(x, indices[i,])

})
print(all(repsOfT == b$t))

## [1] TRUE

As can be seen from the last R-code the function “boot” generates, by default, all
m × n indices at once. One can force “boot” to generate random indices separately
for every single bootstrap replication by passing simple = TRUE to “boot”.
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A.2 Parametric Bootstrap

Another common task is to generate independent random variables X∗
i1, . . . , X

∗
in ∼

F̂ , 1 ≤ i ≤ m, where F̂ is a parametric estimate of F . Afterward, like in the ordinary
bootstrap, we calculate T ∗

i = T (X∗
i1, . . . , X

∗
in). In the case of the ordinary bootstrap,

the function boot() generated random indices, which were passed together with
the original sample to our implementation of the test statistic. Now, beside the imple-
mentation of our test statistic, we have to implement a function that generates data
according to F̂ . This function must have two parameters. The first argument should
be the original sample and the second argument for other information needed like
the estimated parameter for F̂ . Since “boot” does not generate any random indices,
our implementation of the test statistic requires only one parameter.

R-Example A.2 The original sample is 10 independent normal random variables
X1, . . . , X10 with mean 3 and standard deviation 2. Our test statistic is the trimmed
arithmetic mean and the bootstrap samples follow a normal distribution with mean
X̄10 and standard deviation s210,where X̄10 and s210 are the empiricalmean and standard
deviation of X1, . . . , X10.

set.seed(1234)
x <- rnorm(10, mean = 3, sd = 2)

generateData <- function(originalSample, paraEstimates){
rnorm(length(originalSample), paraEstimates[1],
paraEstimates[2])

}

trimmedMean <- function(x){
mean(x, trim = 0.1)

}

# pass the estimated model parameter to the argument mle
boot::boot(data = x, statistic = trimmedMean, R = 100,
sim = "parametric", ran.gen=generateData,
mle = c(mean(x), sd(x)))

##

## PARAMETRIC BOOTSTRAP

##

##

## Call:

## boot::boot(data = x, statistic = trimmedMean, R = 100,

## sim = "parametric",

## ran.gen = generateData, mle = c(mean(x), sd(x)))

##

##
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## Bootstrap Statistics :

## original bias std. error

## t1* 3.325981 -0.0157458 0.318165

A.3 Confidence Intervals

The function “boot.ci” takes an object returned by “boot” and calculates various
confidence intervals.

arithMean <- function(originalSample, indexVector){
mean(originalSample[indexVector])

}

set.seed(1234) # setting the seed for reproducability
x <- rnorm(20, mean=5, sd=2) # the original sample
b <- boot::boot(data=x, statistic=arithMean, R=999)
boot::boot.ci(b, conf=0.9, type=c("norm","basic", "perc", "bca"))

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 999 bootstrap replicates

##

## CALL :

## boot::boot.ci(boot.out = b, conf = 0.9, type = c("norm",

## "basic",

## "perc", "bca"))

##

## Intervals :

## Level Normal Basic

## 90% ( 3.926, 5.119 ) ( 3.969, 5.160 )

##

## Level Percentile BCa

## 90% ( 3.899, 5.089 ) ( 3.780, 5.041 )

## Calculations and Intervals on Original Scale

There is also another type of confidence intervals that can be calculated with
“boot.ci”. In order to obtain these so-called studentized confidence interval, we have
to calculate the variance of every bootstrap sample X∗

i1, . . . , X
∗
in and for the original

sample and pass them to “boot.ci”. We illustrate this in the following example.

R-Example A.3 Again, we generate 20 normal distributed random variables with
mean 5 and standard deviation 2 and use the arithmetic mean as the test statistic T .
Then we let the function “boot” calculate m = 999 bootstrap replicates of T and the
variance of the bootstrap sample X∗

i1, . . . , X
∗
in , 1 ≤ i ≤ m.
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arithMean <- function(originalSample, indexVector){
bootstrapSample = originalSample[indexVector]
c(mean(bootstrapSample), var(bootstrapSample))

}

set.seed(1234) # setting the seed for reproducability
x <- rnorm(20, mean=5, sd=2) # the original sample
b <- boot::boot(data=x, statistic=arithMean, R=999)
# note b$t[,2] contains the variance estimate var(bootstrapSample)
# from the function arithMean()
boot::boot.ci(b, conf=0.9, type="stud",

var.t0=var(x), var.t=b$t[,2])

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 999 bootstrap replicates

##

## CALL :

## boot::boot.ci(boot.out = b, conf = 0.9, type = "stud",

## var.t0 = var(x),

## var.t = b$t[, 2])

##

## Intervals :

## Level Studentized

## 90% ( 3.849, 5.171 )

## Calculations and Intervals on Original Scale
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An R-Package that facilitates simulation studies. It disengages the researcher from
administrative source code.

The simTool package is designed for statistical simulations that have two com-
ponents. One component generates the data and the other one analyzes the data. The
main aims of the simTool package are the reduction of the administrative source
code (mainly loops and management code for the results) and a simple applicability
of the package that allows the user to quickly learn how to work with the simTool
package. Parallel computing is also supported. Finally, convenient functions are pro-
vided to summarize the simulation results.

The workflow is quite easy and natural. One defines two data.frames (or tibbles),
the first one represents the functions that generate the datasets and the second one
represents the functions that analyze the data. They should follow three rules:

• the first column (a character vector) defines the functions to be called.
• the other columns are the parameters that are passed to function specified in the
first column.

• the entry NA will not be passed to the function specified in the first column.

These two data.frames are passed to “eval_tibbles” which conducts the simulation.
Afterward, the results can nicely be displayed as a data.frame. We now define the
data generation functions for our first simulation.

print(dg <- dplyr::bind_rows(
expand_tibble(fun = "rexp", n = c(10L, 20L), rate = 1:2),
expand_tibble(fun = "rnorm", n = c(10L, 20L), mean = 1:2)

))

## # A tibble: 8 x 4

## fun n rate mean

## <chr> <int> <int> <int>

## 1 rexp 10 1 NA

## 2 rexp 20 1 NA
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## 3 rexp 10 2 NA

## 4 rexp 20 2 NA

## 5 rnorm 10 NA 1

## 6 rnorm 20 NA 1

## 7 rnorm 10 NA 2

## 8 rnorm 20 NA 2

This data.frame represents 8 R-functions. For instance, the second row represents
a function that generates 20 exponential distributed random variables with rate 1.
Since mean=NA in the second row, this parameter is not passed to “rexp”. Similar,
we define the data.frame for data analyzing functions.

print(pg <- dplyr::bind_rows(
expand_tibble(proc = "min"),
expand_tibble(proc = "mean", trim = c(0.1, 0.2))

))

## # A tibble: 3 x 2

## proc trim

## <chr> <dbl>

## 1 min NA

## 2 mean 0.1

## 3 mean 0.2

The following pseudo-code shows what the package in principle does

1. convert dg to R-functions {g_1, ..., g_k}

2. convert pg to R-functions {f_1, ..., f_L}

3. initialize result object

4. append dg and pg to the result object

5. t1 = current.time()

6. for g in {g_1, ..., g_k}

7. for r in 1:replications (optionally in a

parallel manner)

8. data = g()

9. for f in {f_1, \ldots, f_L}

10. append f(data) to the result object (opt.

apply a post-analyze-function)

11. optionally append data to the result object

12. optionally summarize the result object over all

replications but separately for

f_1, ..., f_L (and optional group variables)

13. t2 = current.time()

14. Estimate the number of replications per hour from

t1 and t2
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The object returned by “eval_tibbles” is a list of class eval_tibbles.

dg <- expand_tibble(fun = "rnorm", n = 10, mean = 1:2)
pg <- expand_tibble(proc = "min")
eg <- eval_tibbles(data_grid = dg, proc_grid = pg,

replications = 2)
eg

## # A tibble: 4 x 6

## fun n mean replications proc results

## <chr> <dbl> <int> <int> <chr> <dbl>

## 1 rnorm 10 1 1 min -0.189

## 2 rnorm 10 1 2 min -0.440

## 3 rnorm 10 2 1 min -0.546

## 4 rnorm 10 2 2 min 0.927

## Number of data generating functions: 2

## Number of analyzing procedures: 1

## Number of replications: 2

## Estimated replications per hour: 87028786

## Start of the simulation: 2021-01-23 14:05:42

## End of the simulation: 2021-01-23 14:05:42

As stated in command line 12 we can summarize the result objects over all repli-
cations but separately for all data analyzing functions.

dg <- expand_tibble(fun = "runif", n = c(10, 20, 30))
pg <- expand_tibble(proc = c("min", "max"))
eval_tibbles(
data_grid = dg, proc_grid = pg, replications = 1000,
summary_fun = list(mean = mean)

)

## # A tibble: 6 x 6

## fun n replications summary_fun proc value

## <chr> <dbl> <int> <chr> <chr> <dbl>

## 1 runif 10 1 mean min 0.0885

## 2 runif 10 1 mean max 0.910

## 3 runif 20 1 mean min 0.0488

## 4 runif 20 1 mean max 0.953

## 5 runif 30 1 mean min 0.0317

## 6 runif 30 1 mean max 0.970

## Number of data generating functions: 3

## Number of analyzing procedures: 2

## Number of replications: 1000

## Estimated replications per hour: 49413706

## Start of the simulation: 2021-01-23 14:05:42
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## End of the simulation: 2021-01-23 14:05:42

eval_tibbles(
data_grid = dg, proc_grid = pg, replications = 1000,
summary_fun = list(mean = mean, sd = sd)

)

## # A tibble: 12 x 6

## fun n replications summary_fun proc value

## <chr> <dbl> <int> <chr> <chr> <dbl>

## 1 runif 10 1 mean min 0.0925

## 2 runif 10 1 mean max 0.909

## 3 runif 10 1 sd min 0.0814

## 4 runif 10 1 sd max 0.0855

## 5 runif 20 1 mean min 0.0465

## 6 runif 20 1 mean max 0.951

## 7 runif 20 1 sd min 0.0427

## 8 runif 20 1 sd max 0.0450

## 9 runif 30 1 mean min 0.0313

## 10 runif 30 1 mean max 0.969

## 11 runif 30 1 sd min 0.0304

## 12 runif 30 1 sd max 0.0299

## Number of data generating functions: 3

## Number of analyzing procedures: 2

## Number of replications: 1000

## Estimated replications per hour: 48842125

## Start of the simulation: 2021-01-23 14:05:42

## End of the simulation: 2021-01-23 14:05:42

Sometimes the analyzing functions return quite complicated objects like a model
fit.

regData <- function(n, SD) {
x <- seq(0, 1, length = n)
y <- 10 + 2 * x + rnorm(n, sd = SD)
tibble(x = x, y = y)

}
eval_tibbles(
expand_tibble(fun = "regData", n = 5L, SD = 1:2),
expand_tibble(proc = "lm", formula = c("y˜x", "y˜I(xˆ2)")),
replications = 2

)

## # A tibble: 8 x 7

## fun n SD replications proc formula results
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## <chr> <int> <int> <int> <chr> <chr> <list>

## 1 regData 5 1 1 lm y˜x <lm>

## 2 regData 5 1 1 lm y˜I(xˆ2) <lm>

## 3 regData 5 1 2 lm y˜x <lm>

## 4 regData 5 1 2 lm y˜I(xˆ2) <lm>

## 5 regData 5 2 1 lm y˜x <lm>

## 6 regData 5 2 1 lm y˜I(xˆ2) <lm>

## 7 regData 5 2 2 lm y˜x <lm>

## 8 regData 5 2 2 lm y˜I(xˆ2) <lm>

## Number of data generating functions: 2

## Number of analyzing procedures: 2

## Number of replications: 2

## Estimated replications per hour: 656228

## Start of the simulation: 2021-01-23 14:05:42

## End of the simulation: 2021-01-23 14:05:42

The parameter post_analyze (if specified) is applied directly after the result was
generated (see command line 10). Note, “purrr::compose” can be very handy if your
post-analyzing-function can be defined by a few single functions:

eval_tibbles(
expand_tibble(fun = "regData", n = 5L, SD = 1:2),
expand_tibble(proc = "lm", formula = c("y˜x", "y˜I(xˆ2)")),
post_analyze = purrr::compose(function(mat)
mat["(Intercept)", "Estimate"], coef, summary.lm),

replications = 2
)

## # A tibble: 8 x 7

## fun n SD replications proc formula results

## <chr> <int> <int> <int> <chr> <chr> <dbl>

## 1 regData 5 1 1 lm y˜x 10.3

## 2 regData 5 1 1 lm y˜I(xˆ2) 10.5

## 3 regData 5 1 2 lm y˜x 10.6

## 4 regData 5 1 2 lm y˜I(xˆ2) 10.6

## 5 regData 5 2 1 lm y˜x 10.7

## 6 regData 5 2 1 lm y˜I(xˆ2) 10.7

## 7 regData 5 2 2 lm y˜x 10.4

## 8 regData 5 2 2 lm y˜I(xˆ2) 10.5

## Number of data generating functions: 2

## Number of analyzing procedures: 2

## Number of replications: 2

## Estimated replications per hour: 483826

## Start of the simulation: 2021-01-23 14:05:42

## End of the simulation: 2021-01-23 14:05:42
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Sometimes the result object is a data.frame itself:

presever_rownames <- function(mat) {
rn <- rownames(mat)
ret <- tibble::as_tibble(mat)
ret$term <- rn
ret

}

eval_tibbles(
expand_tibble(fun = "regData", n = 5L, SD = 1:2),
expand_tibble(proc = "lm", formula = c("y˜x", "y˜I(xˆ2)")),
post_analyze = purrr::compose(
presever_rownames, coef, summary, identity),

replications = 3
)

## # A tibble: 24 x 11

## fun n SD replications proc formula Estimate

## <chr> <int> <int> <int> <chr> <chr> <dbl>

## 1 regD... 5 1 1 lm y˜x 9.97

## 2 regD... 5 1 1 lm y˜x 1.90

## 3 regD... 5 1 1 lm y˜I(xˆ... 10.3

## 4 regD... 5 1 1 lm y˜I(xˆ... 1.66

## 5 regD... 5 1 2 lm y˜x 10.1

## 6 regD... 5 1 2 lm y˜x 1.40

## 7 regD... 5 1 2 lm y˜I(xˆ... 10.2

## 8 regD... 5 1 2 lm y˜I(xˆ... 1.53

## 9 regD... 5 1 3 lm y˜x 9.61

## 10 regD... 5 1 3 lm y˜x 1.81

## # ... with 14 more rows, and 4 more variables: ‘Std.

## # Error‘ <dbl>, ‘t value‘ <dbl>, ‘Pr(>|t|)‘ <dbl>,

## # term <chr>

## Number of data generating functions: 2

## Number of analyzing procedures: 2

## Number of replications: 3

## Estimated replications per hour: 465502

## Start of the simulation: 2021-01-23 14:05:42

## End of the simulation: 2021-01-23 14:05:42

To summarize the replications, it is necessary to additional group the calculations
with respect to another variable. This variable can be passed to group_for_summary.

eval_tibbles(
expand_tibble(fun = "regData", n = 5L, SD = 1:2),
expand_tibble(proc = "lm",

formula = c("y˜x", "y˜I(xˆ2)")),
post_analyze = purrr::compose(
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presever_rownames, coef, summary, identity),
summary_fun = list(mean = mean, sd = sd),
group_for_summary = "term",
replications = 3

)

## # A tibble: 16 x 12
## fun n SD replications summary_fun proc formula
## <chr> <int> <int> <int> <chr> <chr> <chr>
## 1 regD... 5 1 1 mean lm y˜x
## 2 regD... 5 1 1 mean lm y˜x
## 3 regD... 5 1 1 mean lm y˜I(xˆ...
## 4 regD... 5 1 1 mean lm y˜I(xˆ...
## 5 regD... 5 1 1 sd lm y˜x
## 6 regD... 5 1 1 sd lm y˜x
## 7 regD... 5 1 1 sd lm y˜I(xˆ...
## 8 regD... 5 1 1 sd lm y˜I(xˆ...
## 9 regD... 5 2 1 mean lm y˜x
## 10 regD... 5 2 1 mean lm y˜x
## 11 regD... 5 2 1 mean lm y˜I(xˆ...
## 12 regD... 5 2 1 mean lm y˜I(xˆ...
## 13 regD... 5 2 1 sd lm y˜x
## 14 regD... 5 2 1 sd lm y˜x
## 15 regD... 5 2 1 sd lm y˜I(xˆ...
## 16 regD... 5 2 1 sd lm y˜I(xˆ...
## # ... with 5 more variables: term <chr>, Estimate <dbl>,
## # ‘Std. Error‘ <dbl>, ‘t value‘ <dbl>, ‘Pr(>|t|)‘ <dbl>
## Number of data generating functions: 2
## Number of analyzing procedures: 2
## Number of replications: 3
## Estimated replications per hour: 327024
## Start of the simulation: 2021-01-23 14:05:42
## End of the simulation: 2021-01-23 14:05:42

Sometimes it is handy to access the parameter constellation that was used during
the data generation in the (post) data analyzing phase. Of course, one could write
wrapper functions for every data generating function and append the parameter con-
stellation from the data generation as attributes to the dataset, but the purpose of
this package is to reduce such administrative source code. Hence, if the (post) data
analyzing function has an argument .truth, then “eval_tibbles”will manage that hand-
over. A brief example should explain this. Suppose we want to estimate the bias of
the empirical quantile estimator if the data is normally distributed.

dg <- expand_tibble(fun = c("rnorm"), mean = c(1,1000),
sd = c(1,10), n = c(10L, 100L))

pg <- expand_tibble(proc = "quantile", probs = 0.975)
post_ana <- function(q_est, .truth){
tibble::tibble(bias = q_est - stats::qnorm(

0.975, mean = .truth$mean, sd = .truth$sd))
}
eval_tibbles(dg, pg, replications = 10ˆ3,

discard_generated_data = TRUE,
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ncpus = 2,
post_analyze = post_ana,
summary_fun = list(mean = mean))

## # A tibble: 8 x 9

## fun mean sd n replications summary_fun proc

## <chr> <dbl> <dbl> <int> <int> <chr> <chr>

## 1 rnorm 1 1 10 1 mean quan...

## 2 rnorm 1000 1 10 1 mean quan...

## 3 rnorm 1 10 10 1 mean quan...

## 4 rnorm 1000 10 10 1 mean quan...

## 5 rnorm 1 1 100 1 mean quan...

## 6 rnorm 1000 1 100 1 mean quan...

## 7 rnorm 1 10 100 1 mean quan...

## 8 rnorm 1000 10 100 1 mean quan...

## # ... with 2 more variables: probs <dbl>, bias <dbl>

## Number of data generating functions: 8

## Number of analyzing procedures: 1

## Number of replications: 1000

## Estimated replications per hour: 1807516

## Start of the simulation: 2021-01-23 14:05:43

## End of the simulation: 2021-01-23 14:05:45

If we want to do the analysis for different distributions, we could modify our
post data analyzing function, but we can also simply add a .truth-column to the data
generating grid. In this case, the information from the .truth-column is directly passed
to the .truth-parameter:

dg <- dplyr::bind_rows(
expand_tibble(fun = c("rnorm"), mean = 0, n = c(10L, 100L),

.truth = qnorm(0.975)),
expand_tibble(fun = c("rexp"), rate = 1, n = c(10L, 100L),

.truth = qexp(0.975, rate = 1)),
expand_tibble(fun = c("runif"), max = 2, n = c(10L, 100L),

.truth = qunif(0.975, max = 2))
)
pg <- expand_tibble(proc = "quantile", probs = 0.975)
post_ana <- function(q_est, .truth){
ret <- q_est - .truth
names(ret) <- "bias"
ret

}
eval_tibbles(dg, pg, replications = 10ˆ3,

discard_generated_data = TRUE,
ncpus = 2,
post_analyze = post_ana,
summary_fun = list(mean = mean))
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## # A tibble: 6 x 11

## fun mean n .truth rate max replications

## <chr> <dbl> <int> <dbl> <dbl> <dbl> <int>

## 1 rnorm 0 10 1.96 NA NA 1

## 2 rnorm 0 100 1.96 NA NA 1

## 3 rexp NA 10 3.69 1 NA 1

## 4 rexp NA 100 3.69 1 NA 1

## 5 runif NA 10 1.95 NA 2 1

## 6 runif NA 100 1.95 NA 2 1

## # ... with 4 more variables: summary_fun <chr>, proc <chr>,

## # probs <dbl>, bias <dbl>

## Number of data generating functions: 6

## Number of analyzing procedures: 1

## Number of replications: 1000

## Estimated replications per hour: 3886143

## Start of the simulation: 2021-01-23 14:05:46

## End of the simulation: 2021-01-23 14:05:46

In the same fashion one could write a data analyzing function with a parameter
.truth. To go even a step further, we store the analytic quantile function in the .truth-
column:

dg <- dplyr::bind_rows(
expand_tibble(
fun = c("rnorm"), mean = 0, n = c(10L, 1000L),
.truth = list(function(prob) qnorm(prob, mean = 0))),

expand_tibble(
fun = c("rexp"), rate = 1, n = c(10L, 1000L),
.truth = list(function(prob) qexp(prob, rate = 1))),

expand_tibble(
fun = c("runif"), max = 2, n = c(10L, 1000L),
.truth = list(function(prob) qunif(prob, max = 2)))

)
bias_quantile <- function(x, prob, .truth) {
est <- quantile(x, probs = prob)
ret <- est - .truth[[1]](prob)
names(ret) <- "bias"
ret

}
pg <- expand_tibble(proc = "bias_quantile", prob = c(0.9, 0.975))
eval_tibbles(dg, pg, replications = 10ˆ3,

discard_generated_data = TRUE,
ncpus = 1,
summary_fun = list(mean = mean))

## # A tibble: 12 x 11

## fun mean n .truth rate max replications

## <chr> <dbl> <int> <list> <dbl> <dbl> <int>
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## 1 rnorm 0 10 <fn> NA NA 1

## 2 rnorm 0 10 <fn> NA NA 1

## 3 rnorm 0 1000 <fn> NA NA 1

## 4 rnorm 0 1000 <fn> NA NA 1

## 5 rexp NA 10 <fn> 1 NA 1

## 6 rexp NA 10 <fn> 1 NA 1

## 7 rexp NA 1000 <fn> 1 NA 1

## 8 rexp NA 1000 <fn> 1 NA 1

## 9 runif NA 10 <fn> NA 2 1

## 10 runif NA 10 <fn> NA 2 1

## 11 runif NA 1000 <fn> NA 2 1

## 12 runif NA 1000 <fn> NA 2 1

## # ... with 4 more variables: summary_fun <chr>, proc <chr>,

## # prob <dbl>, bias <dbl>

## Number of data generating functions: 6

## Number of analyzing procedures: 2

## Number of replications: 1000

## Estimated replications per hour: 2150355

## Start of the simulation: 2021-01-23 14:05:47

## End of the simulation: 2021-01-23 14:05:48

But one should keep in mind that if one calculates the quantile during the (post)
analyzing phase that this happens on replication level. To be more precise lets look
at an excerpt of the pseudo-code from the beginning of the vignette:

6. for g in {g_1, ..., g_k}

7. for r in 1:replications (optionally

in a parallel manner)

8. data = g()

9. for f in {f_1, \ldots, f_L}

10. append f(data) to the result object (opt.

apply a post-analyze-function)

Nomatter if one extends the data analyzing function f_1, . . ., f_L or the post-analyze-
function with an argument .truth the calculation are made for every single replication
during Step 10. Hence, the operations are not vectorized!

Finally, by specifying ncpus larger than 1 a cluster objected is created for the user.

eval_tibbles(
data_grid = dg, proc_grid = pg, replications = 10,
ncpus = 2, summary_fun = list(mean = mean)

)

## # A tibble: 12 x 11

## fun mean n .truth rate max replications
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## <chr> <dbl> <int> <list> <dbl> <dbl> <int>

## 1 rnorm 0 10 <fn> NA NA 1

## 2 rnorm 0 10 <fn> NA NA 1

## 3 rnorm 0 1000 <fn> NA NA 1

## 4 rnorm 0 1000 <fn> NA NA 1

## 5 rexp NA 10 <fn> 1 NA 1

## 6 rexp NA 10 <fn> 1 NA 1

## 7 rexp NA 1000 <fn> 1 NA 1

## 8 rexp NA 1000 <fn> 1 NA 1

## 9 runif NA 10 <fn> NA 2 1

## 10 runif NA 10 <fn> NA 2 1

## 11 runif NA 1000 <fn> NA 2 1

## 12 runif NA 1000 <fn> NA 2 1

## # ... with 4 more variables: summary_fun <chr>, proc <chr>,

## # prob <dbl>, bias <dbl>

## Number of data generating functions: 6

## Number of analyzing procedures: 2

## Number of replications: 10

## Estimated replications per hour: 63536

## Start of the simulation: 2021-01-23 14:05:49

## End of the simulation: 2021-01-23 14:05:49

As it is stated in command line 7, the replications are parallelized. In our case,
this means that roughly every CPU conducts 5 replications.

The parameter cluster_seed must be an integer vector of length 6 and serves the
same purpose as the function set.seed. By default, cluster_seed equals rep(12345, 6).
Note, in order to reproduce the simulation study it is also necessary that ncpus does
not change.

Further information about the simTool-package is on the package-web-site. 1

1 http://marselscheer.github.io/simTool/index.html

http://marselscheer.github.io/simTool/index.html
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Our package helps to perform goodness-of-fit tests according to Chap.6. In order
to illustrate how the package can be applied we will reproduce some of the results
from that chapter. More detailed information about the package can be found on
https://github.com/MarselScheer/bootGOF.The package supports the classeslm and
glm. Hence, the normal model with log-transformed ridership fitted in Sect. 6.1.2,
compare R-object fit_lognormal, can easily be tested by calling

library(bootGOF)
set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gof_test <- bootGOF::GOF_model(
model = fit_lognorm,
data = ridership,
nmb_boot_samples = 100,
simulator_type = "parametric",
y_name = "y",
Rn1_statistic = bootGOF::Rn1_CvM$new())

gof_test$get_pvalue()

## [1] 0.05

This is the same p-value as we obtained in Sect. 6.1.2. All models of class lm
and glm are covered by this function. However, semi-parametric models can also be
treated by the package but additional information must be passed. The reason why
semi-parametric models have to be handled differently is that the linear component
that is necessary for the test is not always a natural component of such models.
Consider again the simple model from Sect. 6.2

Y = sin(aX) + ε,

where X is uniformly distributed and ε is normally distributed. After fitting a model
with a least square estimator the linear component aX cannot be extracted in general
from the model fit directly because the fitting algorithm is not really aware of that
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linear component.Usually, such fitting algorithms treat the equation in amore general
way like Y = m(a, X) + ε. However, the goodness-of-fit test explicitly uses such a
linear component. Therefore, the package has to know how to extract it from the
model object. We generate a dataset to illustrate how the package can be applied in
such a situation.

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gen_data <- function(N = 200, sd = 0.2) {
dplyr::mutate(
data.frame(X = runif(N, min = 6, max = 14)),
mu = sin(0.5 * X),
epsilon = rnorm(N, sd = sd),
Y = mu + epsilon)

}
nonlinear <- gen_data()

As in Sect. 6.2 we use the following least square estimator

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
library(minpack.lm)
fit <- minpack.lm::nlsLM(Y ˜ sin(a * X),
data = nonlinear,
start = c(a = 0.5),
control = nls.control(maxiter = 500))

fit

## Nonlinear regression model

## model: Y ˜ sin(a * X)

## data: nonlinear

## a

## 0.4988

## residual sum-of-squares: 7.362

##

## Number of iterations to convergence: 2

## Achieved convergence tolerance: 1.49e-08

In order to create a goodnes-of-fit-test, we have to use “GOF_model_test”, which
expect three interfaces. The first interface requires that we implement three functions
“yhat”, “y_minus_yhat” and “beta_x_covariates”, which are the predictions for the
dependent variable (also called target-variable), the residuals on the scale of the
dependent variable and the inner product of the estimated parameters and the inde-
pendent variables (also called covariates or features). The only thing that does not
work out of the box and requires a dedicated implementation is “beta_x_covariates”
because that is the linear component aX . Furthermore, the object returned by “min-
pack.lm::nlsLM” does not contain the original dataset but that dataset is necessary
to calculate the inner product. Hence, we make a list that contains the model fit and
the data that was used to fit the model.
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fit_and_data <- list(fit = fit, data = nonlinear)

Now we can implement the interface

library(R6)
my_nls_info_extractor <- R6::R6Class(
classname = "my_nls_info_extractor",
inherit = GOF_model_info_extractor,
public = list(
yhat = function(model) {
predict(object = model$fit)

},
y_minus_yhat = function(model) {
residuals(object = model$fit)

},
beta_x_covariates = function(model) {
a_hat <- coef(object = model$fit)
X <- model$data$X
ret <- a_hat * X
return(ret)

}
))

my_info_extractor <- my_nls_info_extractor$new()

Clearly, only “beta_x_covariates” requires really some implementation efforts.
Since we did not make an assumption about the distribution of ε, we cannot use
a parametric resampling scheme. However, we can apply the wild bootstrap that
uses only the predictions and the residuals. The class “GOF_sim_wild_rademacher”
implements this wild bootstrap but needs an info extractor to obtain the preditions
and residuals. Since we already implemented that interface we can reuse it:

my_simulator <- GOF_sim_wild_rademacher$new(
gof_model_info_extractor = my_info_extractor

)

Finally, we need to implement the interface “GOF_model_trainer” which requires
a function “refit” that is able to update the model object by refitting it to a new
dataset. R already provides the necessary function, i.e., “stats::update”. However,
we combined the fitted model with the dataset in a list. Since the package will
bootstrap multiple datasets and refit the model to the new data sets, we need to take
this list into account:

my_nls_trainer <- R6::R6Class(
classname = "GOF_nls_trainer",
inherit = GOF_model_trainer,
public = list(
refit = function(model, data) {
fit <- update(object = model$fit, data = data)
ret <- list(fit = fit, data = data)
return(ret)

}))
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my_trainer <- my_nls_trainer$new()

Now we can invoke the goodness-of-fit test by providing all three implemented
interfaces to “GOF_model_test”:

set.seed(123,kind ="Mersenne-Twister",normal.kind ="Inversion")
gof_test <- GOF_model_test$new(
model = fit_and_data,
data = nonlinear,
nmb_boot_samples = 500,
y_name = "Y",
Rn1_statistic = Rn1_CvM$new(),
gof_model_info_extractor = my_info_extractor,
gof_model_resample = GOF_model_resample$new(
gof_model_simulator = my_simulator,
gof_model_trainer = my_trainer

)
)
gof_test$get_pvalue()

## [1] 0.852

As expected, we obtain a rather large p-value because we used the correct model
for fitting the data. Again, objects of class lm or glm can be easily tested without
knowledge about the three interfaces. But they allow the user to also apply the
goodness-of-fit test to models that are not directly supported by the package. See
the vignettes of the package for more details about the architecture and the three
interfaces.
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sessionInfo()

## R version 3.6.2 (2019-12-12)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 10 (buster)
##
## Matrix products: default
## BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.3.5.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices datasets
## [6] utils methods base
##
## other attached packages:
## [1] R6_2.4.1 minpack.lm_1.2-1 bootGOF_0.1.0
## [4] GGally_1.4.0 webshot_0.5.2 profvis_0.3.6
## [7] dplyr_0.8.3 xtable_1.8-4 simTool_1.1.4
## [10] codetools_0.2-16 tidyr_1.0.0 lubridate_1.7.4
## [13] readr_1.3.1 cowplot_1.0.0 ggplot2_3.2.1
## [16] boot_1.3-23 knitr_1.26
##
## loaded via a namespace (and not attached):
## [1] tidyselect_0.2.5 xfun_0.11
## [3] purrr_0.3.3 reshape2_1.4.3
## [5] colorspace_1.4-1 vctrs_0.2.1
## [7] htmltools_0.4.0 utf8_1.1.4
## [9] rlang_0.4.2 pillar_1.4.3
## [11] glue_1.3.1 withr_2.1.2
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## [13] RColorBrewer_1.1-2 lifecycle_0.1.0
## [15] plyr_1.8.5 stringr_1.4.0
## [17] munsell_0.5.0 gtable_0.3.0
## [19] htmlwidgets_1.5.1 evaluate_0.14
## [21] labeling_0.3 parallel_3.6.2
## [23] fansi_0.4.0 highr_0.8
## [25] Rcpp_1.0.3 checkmate_2.0.0
## [27] renv_0.9.3 backports_1.1.5
## [29] scales_1.1.0 farver_2.0.1
## [31] hms_0.5.2 digest_0.6.23
## [33] stringi_1.4.3 grid_3.6.2
## [35] cli_2.0.0 tools_3.6.2
## [37] magrittr_1.5 lazyeval_0.2.2
## [39] tibble_2.1.3 crayon_1.3.4
## [41] pkgconfig_2.0.3 zeallot_0.1.0
## [43] MASS_7.3-51.4 ellipsis_0.3.0
## [45] assertthat_0.2.1 reshape_0.8.8
## [47] compiler_3.6.2
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