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Abstract In this paper we consider the initial-boundary value problem for a fourth
order parabolic equation with gradient nonlinearity. The problem is regarded as the
L2-gradient flow for an energy functional which is unbounded from below. We first
prove the existence and the uniqueness of solutions to the problem via the Galerkin
method. Moreover, combining the potential well method with the Galerkin method,
we study the asymptotic behavior of global-in-time solutions to the problem.
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1 Introduction

We consider the following initial-boundary value problem for a fourth order
parabolic equation with gradient nonlinearity:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + (−Δ)2u = −∇ · (|∇u|p−2∇u) in Ω × (0, T ),

∂νu = ∂νΔu = 0 on ∂Ω × (0, T ),

u(·, 0) = u0(·) in Ω.

(P)

Here, Ω ⊂ R
N (N ≥ 2) is a smooth bounded domain, u0 ∈ L2(Ω), p > 2,

T > 0, ∂t := ∂/∂t and ∂ν denotes the outer normal derivative to ∂Ω . In this paper
we show the existence and the uniqueness of local-in-time solutions to problem (P)
and consider the asymptotic behavior of global-in-time solutions to problem (P) via
the Galerkin method.
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Fourth order parabolic equations with gradient nonlinearity appear in a model
of thin film growth. King–Stein–Winkler [8] studied the following continuum
model for epitaxial thin film growth proposed by Ortiz–Repetto–Si [11], based on
phenomenological considerations by Zangwill [15]:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + (−Δ)2u = ∇ · f (∇u) + g in Ω × (0, T ),

∂νu = ∂νΔu = 0 on ∂Ω × (0, T ),

u(·, 0) = u0(·) in Ω.

(1)

In the paper [8], they assumed that (1) has a gradient structure and the corresponding
energy is bounded from below (for example, f (z) = |z|p−2z − z and g ≡ 0).
Under these conditions, they studied the existence of global-in-time solutions and
large time behavior of solutions to (1). Recently problem (1) was studied in the
mathematical literature (e.g., see [4, 17, 18]). However, the approaches which were
used in these papers cannot be applied directly to problem (P). Indeed, problem (P)
is regarded as the L2-gradient flow for the energy functional

E(u) := 1

2

ˆ
Ω

|Δu|2 dx − 1

p

ˆ
Ω

|∇u|p dx

and the functional E is unbounded from below due to p > 2.
On the other hand, problem (P) was studied by Sandjo–Moutari–Gningue [13]

via the semigroup approach. They showed the existence of local-in-time solutions
to problem (P) under the condition 3 < p < 4. The assumption for p was required
for the Lipschitz continuity of the nonlinear term and hence this approach cannot be
adapted for the case 2 < p < 3 in problem (P). However, as in the result [7] which
is the whole space case for problem (P), the restriction p > 3 should be eliminated.

In this paper we prove the existence of local-in-time solutions to problem (P) in
the case

(a) u0 ∈ H 2
N (Ω) and 2 < p < pS, or (b) u0 ∈ L2

N (Ω) and 2 < p < p∗,

where

L2
N (Ω) :=

{

v ∈ L2(Ω)

∣
∣
∣
∣

ˆ
Ω

v dx = 0

}

⊂ L2(Ω),

H 2
N (Ω) :=

{
v ∈ H 2(Ω) ∩ L2

N (Ω) | ∂νv = 0 on ∂Ω
}

⊂ H 2(Ω),

and

p∗ := 2 + 4

N + 2
, pS :=

⎧
⎪⎨

⎪⎩

2N

N − 2
if N ≥ 3,

∞ if N = 2.



Asymptotic Behavior of Solutions to a Fourth Order Semilinear Parabolic Equation 249

Moreover, we study the asymptotic behavior of global-in-time solutions to prob-
lem (P) in the case (a). In order to formulate a definition of the solution to
problem (P), we set

V :=
{
ϕ ∈ H 1(0, T ;L2

N (Ω)) ∩ L2(0, T ;H 2
N (Ω)) | ∇ϕ ∈ (Lp(0, T ;Lp(Ω)))N

}
.

Definition 1.1 Let u0 ∈ L2
N (Ω) and T > 0. We say that a function

u ∈ C([0, T ]; L2
N (Ω)) ∩ L2(0, T ; H 2

N (Ω)) with ∇u ∈ (Lp(0, T ; Lp(Ω)))N

is a solution to problem (P) in Ω × [0, T ] if u satisfies
ˆ

Ω

[u(T )ϕ(T ) − u0ϕ(0)] dx

−
ˆ T

0

ˆ
Ω

u∂tϕ dx dt +
ˆ T

0

ˆ
Ω

[
ΔuΔϕ − |∇u|p−2∇u · ∇ϕ

]
dx dt = 0

(2)

for ϕ ∈ V . Moreover, we say that u is a global-in-time solution to problem (P) if u

is a solution to problem (P) in Ω × [0, T ′] for all T ′ > 0.

The first and the second main results of this paper are the existence and
the uniqueness of local-in-time solutions to problem (P) in the case (a) and (b)
respectively:

Theorem 1.1 Let u0 ∈ H 2
N (Ω) and assume that 2 < p < pS . Then the following

hold:
(i) There exist T > 0 and a solution u to problem (P) in Ω × [0, T ]. Moreover, the

solution u satisfies

u ∈ H 1(0, T ;L2
N (Ω))∩Cw([0, T ];H 2

N (Ω)) with ∇u ∈ (C([0, T ];Lp(Ω)))N .

(ii) If u1 and u2 are solutions to problem (P) in Ω × [0, T ] for some T > 0 and
satisfy

∇u1,∇u2 ∈ (L∞(0, T ; Lp(Ω)))N,

then it holds that u1 ≡ u2 in Ω × [0, T ].
Theorem 1.2 Let u0 ∈ L2

N (Ω) and assume that 2 < p < p∗. Then there exist
T > 0 and a unique solution u to problem (P) in Ω × [0, T ].
The precise definition of the space Cw([0, T ]; H 2

N (Ω)), see Sect. 2.
The other purpose of this paper is to study the asymptotic behavior of global-in-

time solutions to problem (P) in the case (a). In order to state our main result on
this topic, we introduce several notations. Let 0 < μ1 < μ2 < · · · be the strictly
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monotone increasing divergent sequence of all eigenvalues of the boundary value
problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δψ = μψ in Ω,

∂νψ = 0 on ∂Ω,ˆ
Ω

ψ dx = 0.

(3)

Let P0 be the zero map. For each k ∈ N, we define Pk as the projection from
L2
N (Ω) to the subspace spanned by the eigenfunctions corresponding to μ1, μ2,

· · · , μk . Let k∗ ∈ N be the number such that

μ2
k∗ < (p − 1)μ2

1 ≤ μ2
k∗+1. (4)

We note that the condition p > 2 implies the existence of the number k∗. As a class
of initial data, we set

W :=
{
v ∈ H 2

N (Ω) | E(v) < d, I (v) > 0
}

,

where I denotes the Nehari functional given by

I (v) :=
ˆ

Ω

|Δv|2 dx −
ˆ

Ω

|∇v|p dx, v ∈ H 2
N (Ω),

and

d :=
(

1

2
− 1

p

)

S

p
p−2
p > 0, Sp := inf

v∈H 2
N (Ω),v �=0

‖Δv‖2
L2(Ω)

‖∇v‖2
Lp(Ω)

> 0. (5)

Then the third main result of this paper is stated as follows:

Theorem 1.3 Let u0 ∈ W and assume that 2 < p < pS . Then problem (P)
possesses the unique global-in-time solution u such that

‖Δu(t)‖L2(Ω) = O(e−μ2
1t ) as t → ∞. (6)

Moreover, it holds that

‖u(t) − Pk−1u(t)‖L2(Ω) = O(e−μ2
kt ) as t → ∞, 1 ≤ k ≤ k∗,

(7)

‖u(t) − Pk∗u(t)‖L2(Ω) = O(e−(1−ε)(p−1)μ2
1t ) as t → ∞, 0 < ε < 1,

(8)

where k∗ is the positive integer satisfying (4).
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One of the main ingredients of the strategy in the proof of Theorem 1.3 is the
potential well method introduced by Sattinger [14] and Payne–Sattinger [12]. The
assumption u0 ∈ W implies that E is bounded from below along the orbit of the
solution to problem (P) starting from u0. Then, combining the Galerkin method,
one can prove that problem (P) has a global-in-time solution. Indeed, [5] proved
the existence of global-in-time solutions to a related problem by the same strategy.
However, the strategy does not show the existence of local-in-time solutions to
problem (P) with more general initial data. Moreover, it is not clear how to derive
the asymptotic behavior of global-in-time solutions to problem (P), because useful
mathematical tools such as the comparison principle do not hold for fourth order
parabolic problems. In Theorems 1.1 and 1.2, making use of the Galerkin method
and the Aubin–Lions–Simon compactness theorem, we prove the existence of local-
in-time solutions to problem (P) without using the potential well method. To the best
of our knowledge, this is the first paper to prove the solvability of problem (P) for
u0 ∈ L2(Ω) and 2 < p < 3. Moreover, our argument based on the Galerkin method
and the potential well method enable to derive the precise asymptotic behavior of
the global-in-time solutions as in Theorem 1.3.

This paper is organized as follows. We introduce some notations and collect
several useful propositions in Sect. 2. We construct a solution to problem (P) with
the Galerkin method in Sect. 3. In Sect. 4, we give the characterization of stable
sets and study the asymptotic behavior of global-in-time solutions which converge
to 0. In appendix, we prove the uniqueness of solutions to problem (P) under the
assumption in Theorems 1.1 and 1.2.

2 Preliminaries

In this section we collect several notations and propositions which are used in this
paper. In what follows, we rewrite the norm ‖ · ‖Lq(Ω) as ‖ · ‖q for q ∈ [1,∞] and
the L2-inner product (·, ·)L2(Ω) as (·, ·)2.

We mention several remarks on L2
N (Ω) and H 2

N (Ω). As stated in [8], the map
Δ : H 2

N (Ω) → L2
N (Ω) is a homeomorphism and hence there exists a constant

c1 = c1(N) > 0 such that

c−1
1

2∑

k=0

‖∇kv‖2
2 ≤ ‖v‖2

H 2
N

:= ‖Δv‖2
2, v ∈ H 2

N (Ω). (9)

Moreover, H 2
N (Ω) is a Hilbert space with the inner product

(v,w)H 2
N

:=
ˆ

Ω

ΔvΔw dx, v,w ∈ H 2
N (Ω).
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Let X be a real Banach space and X∗ denote the dual space of X. We denote
Cw([0, T ]; X) by the set of all X-valued weak continuous functions. Here, we say
that u is an X-valued weak continuous function if for all F ∈ X∗ the function

[0, T ] � s �→ X∗〈F, u(s)〉X ∈ R

is continuous.
By (5) we see that Sp is the best constant for the following inequality:

Sp‖∇v‖2
p ≤ ‖Δv‖2

2, v ∈ H 2
N (Ω). (10)

We collect several useful propositions. The Gagliard–Nirenberg inequality (cf.
[1, Theorems 5.2 and 5.8]) and (9) lead the following interpolation inequality:

Proposition 2.1 Let 2 < p < pS . Then there exists a positive constant c2
depending only on N , Ω and p such that

‖∇v‖p ≤ c2‖Δv‖θ
2‖v‖1−θ

2 , v ∈ H 2
N (Ω),

where

θ := N(p − 2)

4p
+ 1

2
∈

(1

2
, 1

)
. (11)

Next we mention the property of the space of weak continuous functions (cf. [2,
Lemma II.5.9]).

Proposition 2.2 Let T > 0, X be a separable and reflexive real Banach space and
Y be a real Banach space such that the embedding X ⊂ Y is continuous. Then

L∞(0, T ; X) ∩ Cw([0, T ]; Y ) = Cw([0, T ]; X).

We introduce the Aubin–Lions–Simon compactness theorem (cf. [2, Theo-
rem II.5.16]).

Proposition 2.3 Let X0,X1,X2 be Banach spaces with the following properties:

• The embedding X0 ⊂ X1 is compact.
• The embedding X1 ⊂ X2 is continuous.

Let T > 0, q , r ∈ [1,∞] and set

Eq,r := {
v ∈ Lq(0, T ; X0)

∣
∣ ∂t v ∈ Lr(0, T ; X2)

}
.

Then the following hold:

• If q �= ∞, then the embedding Eq,r ⊂ Lq(0, T ; X1) is compact.
• If q = ∞ and r > 1, then the embedding Eq,r ⊂ C([0, T ]; X1) is compact.
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We close Sect. 2 with a remark on the assumption on initial data.

Remark 2.1 Without loss of generality, we may assume that u0 and the solution u

to problem (P) satisfy

ˆ
Ω

u dx =
ˆ

Ω

u0 dx = 0, t ∈ (0, T ).

Indeed, setting

ũ(x, t) := u(x, t) − 1

|Ω |
ˆ

Ω

u0 dx and ũ0(x) := u0(x) − 1

|Ω |
ˆ

Ω

u0 dx,

we see that ũ is a solution to problem (P) with ũ0. Formally, integrating the both
side of the equation in problem (P), we have

d

dt

ˆ
Ω

u(x, t) dx = d

dt

ˆ
Ω

ũ(x, t) dx = 0

for t ∈ (0, T ). Hence it holds that

u is a solution to problem (P)

⇐⇒ ũ is a solution to problem (P) replaced u0 by ũ0.

3 Proof of Theorems 1.1 and 1.2

In this section we prove Theorems 1.1 and 1.2. We first construct approximate
solutions we use in the both of proofs. We consider the eigenvalue problem for
the Laplace equation under Neumann boundary condition:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δψ = λψ in Ω,

∂νψ = 0 on ∂Ω,ˆ
Ω

ψ dx = 0.

(12)

Let {(λk, ψk)}∞k=1 be a family of pairs with the following properties:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

For each k ∈ N, (λ,ψ) = (λk, ψk) satisfies (12),

0 < λ1 ≤ λ2 ≤ · · · ,

{ψk}∞k=1 : orthonormal basis of L2
N (Ω),

{λ−1
k ψk}∞k=1 : orthonormal basis of H 2

N (Ω).

(13)
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For each m ∈ N, we consider the solution am = (am
1 , · · · , am

m) to the following
ODE system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dam
k

dt
(t) + λ2

ka
m
k (t)=

ˆ
Ω

∣
∣
∣

m∑

i=1

am
i (t)∇ψi

∣
∣
∣
p−2 m∑

j=1

am
j (t)∇ψj · ∇ψk dx

for k ∈ {1, · · · ,m}, t ∈ (0, T ),

am
k (0) = (u0, ψk)2 for k ∈ {1, · · · ,m}.

(14)

We remark that there exists a unique solution am ∈ C1([0, T ];Rm) to (14) for some
T > 0 in the classical sense. Moreover, the solution can be uniquely extended if
|am

k | is bounded for each k ∈ {1, · · · ,m}. Define Tm > 0 as the maximal existence
time of the solution to (14), that is,

Tm := sup
{
τ > 0

∣
∣
∣ ∃am ∈ C1([0, τ ];Rm) : unique classical solution to (14)

}
.

Define um as

um(x, t) :=
m∑

k=1

am
k (t)ψk(x), (x, t) ∈ Ω × [0, Tm).

Since {ψk}∞k=1 satisfies (12) and (13), um satisfies

d

dt
(um(t), ψk)2 + (Δum(t),Δψk)2 =

ˆ
Ω

|∇um(t)|p−2∇um(t) · ∇ψk dx (15)

for k ∈ {1, · · · ,m} and t ∈ [0, Tm). Multiplying ∂t a
m
k by (15), summing k from 1

to m and integrating it on (t ′, t), we have

E(um(t)) +
ˆ t

t ′
‖∂tu

m(τ)‖2
2 dτ = E(um(t ′)), 0 ≤ t ′ ≤ t < Tm. (16)

Similarly, multiplying am
k by (15), we obtain

‖um(t)‖2
2 +

ˆ t

t ′
I (um(τ)) dτ = ‖um(t ′)‖2

2, 0 ≤ t ′ ≤ t < Tm. (17)

In particular, (16) implies that E(um(t)) is non-increasing with respect to t .
We prove Theorems 1.1 and 1.2 in Sects. 3.1 and 3.2, respectively.
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3.1 Proof of Theorem 1.1

By a standard argument in [10] we can prove the uniqueness of solutions to
problem (P). Thus we postpone the proof of the uniqueness to Sect. 5.1.

We divide the proof into three steps.

Step 1 : We derive a priori estimate of {um}∞m=1. Since u0 ∈ H 2
N (Ω), (10) and (13)

imply that

K = K(u0) := sup
m∈N

E(um(0)) < ∞, E(um(0)) → E(u0) as m → ∞.

Moreover, it follows from (10), (12) and (13) that

‖∇um(0)‖2
p ≤ S−1

p ‖Δum(0)‖2
2

= S−1
p

m∑

k=1

λ2
k(u0, ψk)

2
2 = S−1

p

m∑

k=1

(u0, λ
−1
k ψk)

2
H 2
N

≤ S−1
p ‖Δu0‖2

2.

(18)

Let L > S
−p/2
p ‖Δu0‖p

2 and set

TL,m := sup

{

τ > 0

∣
∣
∣
∣
∣

sup
0≤t≤τ

‖∇um(t)‖p
p ≤ L

}

≤ Tm.

Since ∇um ∈ (C([0, Tm); Lp(Ω)))N , we deduce from (18) that TL,m > 0. By (16)
and the definition of E we have

‖Δum(t)‖2
2 = 2E(um(t)) + 2

p
‖∇um(t)‖p

p ≤ 2K + 2

p
L, (19)

E(um(t)) = 1

2
‖Δum(t)‖2

2 − 1

p
‖∇um(t)‖p

p ≥ − 1

p
L, (20)

ˆ t

0
‖∂tu

m(τ)‖2
2 dτ = E(um(0)) − E(um(t)) ≤ K + 1

p
L, (21)

for t ∈ [0, TL,m], where we used (20) in (21).

Step 2 : We show a lower estimate for TL,m. It follows from (21) that

‖um(t) − um(t ′)‖2
2 =

ˆ
Ω

(ˆ t

t ′
∂tu

m(τ) dτ

)2

dx

≤ (t − t ′)
ˆ t

t ′
‖∂tu

m(τ)‖2
2 dτ ≤

(

K + 1

p
L

)

(t − t ′)
(22)
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for 0 ≤ t ′ ≤ t ≤ TL,m. Moreover, we observe from Proposition 2.1, (19) and (22)
that

‖∇um(t) − ∇um(t ′)‖p ≤ c2‖Δum(t) − Δum(t ′)‖θ
2‖um(t) − um(t ′)‖1−θ

2

≤ 23θ/2c2

(

K + L

p

)1/2

(t − t ′)(1−θ)/2
(23)

for 0 ≤ t ′ ≤ t ≤ TL,m, where c2 is obtained in Proposition 2.1 and θ is as in (11).
Hence by (18) and (23) we see that

‖∇um(t)‖p ≤ ‖∇um(0)‖p + 23θ/2c2

(

K + L

p

)1/2

t(1−θ)/2

≤ S
−1/2
p ‖Δu0‖2 + 23θ/2c2

(

K + L

p

)1/2

T
(1−θ)/2
L,m

for t ∈ [0, TL,m]. Combining this estimate with the definition of TL,m, we have

S
−1/2
p ‖Δu0‖2 + 23θ/2c2

(

K + L

p

)1/2

T
(1−θ)/2
L,m ≥ L1/p,

that is,

TL,m ≥ T∗ :=
[

p

23θ c2
2(Kp + L)

(
L1/p − S

−1/2
p ‖Δu0‖2

)2
]1/(1−θ)

(24)

for m ∈ N.

Step 3 : We construct a solution to problem (P). We observe from (19), (21) and
(24) that

sup
t∈[0,T∗]

‖Δum(t)‖2
2 ≤ 2K + 2

p
L,

ˆ T∗

0
‖∂tu

m(τ)‖2
2 dτ ≤ K + 1

p
L.

Then, up to subsequence, there exists u ∈ L∞(0, T∗; H 2
N (Ω))∩H 1(0, T∗; L2

N (Ω))

such that

um ∗
⇀ u weakly-* in L∞(0, T∗; H 2

N (Ω)) as m → ∞, (25)

um ⇀ u weakly in H 1(0, T∗; L2
N (Ω)) as m → ∞. (26)
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Moreover, by Proposition 2.3 we have

∇um → ∇u in (C([0, T∗]; Lp(Ω)))N as m → ∞.

By Proposition 2.2 we see that u belongs to Cw([0, T∗]; H 2
N (Ω)).

Recalling that um satisfies

ˆ T∗

0

ˆ
Ω

[
∂tu

mψkζ + ΔumΔψkζ − |∇um|p−2∇um · ∇ψkζ
]

dt dx = 0

for m ∈ N, k ∈ N and ζ ∈ C∞([0, T∗]), we deduce from (25) and (26) that

ˆ
Ω

[u(T∗)ζ(T∗) − u0ζ(0)] η dx

+
ˆ T∗

0

ˆ
Ω

[
−uη∂tζ + ΔuΔηζ − |∇u|p−2∇u · ∇ηζ

]
dx dt = 0

for η ∈ H 2
N (Ω) and ζ ∈ C∞([0, T∗]). By a density argument (cf. [16,

Proposition 23.23 (iii)]), we see that u satisfies (2) for ϕ ∈ V . Hence we complete
the proof of Theorem 1.1.

3.2 Proof of Theorem 1.2

Along the same line as in Sect. 3.1, we postpone the proof of the uniqueness of
solutions to Sect. 5.2. We divide the proof of Theorem 1.2 into three steps.

Step 1 : We derive a priori estimate of {um}∞m=1. Since u0 ∈ L2
N (Ω), relation (13)

implies that ‖um(0)‖2
2 ≤ ‖u0‖2

2 for m ∈ N. Let L > 0 and set

T̃L,m := sup

{

τ > 0

∣
∣
∣
∣

ˆ τ

0
‖∇um(t)‖p

p dt ≤ L

}

∈ (0, Tm].

By (17) and the definition of I we have

‖um(t)‖2
2 +

ˆ t

0
‖Δum(τ)‖2

2 dτ = ‖um(0)‖2
2 +

ˆ t

0
‖∇um(τ)‖p

p dτ ≤ ‖u0‖2
2 + L

(27)

for t ∈ [0, T̃L,m].
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Step 2 : We show a lower estimate for T̃L,m. It follows from Proposition 2.1 that

ˆ t

0
‖∇um(τ)‖p

p dτ

≤ c
p

2

ˆ t

0
‖Δum(τ)‖θp

2 ‖um(τ)‖(1−θ)p

2 dτ

≤ c
p

2

(

sup
τ∈[0,t ]

‖um(τ)‖2
2

)(1−θ)p/2 ˆ t

0
‖Δum(τ)‖θp

2 dτ

≤ c
p

2

(

sup
τ∈[0,t ]

‖um(τ)‖2
2

)(1−θ)p/2 (ˆ t

0
‖Δum(τ)‖2

2 dτ

)θp/2

t1−θp/2

(28)

for t ∈ [0, T̃L,m], where θ is as in (11). Here, we note that the condition 2 < p < p∗
is equivalent to 0 < θp < 2. If T̃L,m < ∞, it follows from (27) and (28) that

L =
ˆ T̃L,m

0
‖∇um(τ)‖p

p dτ ≤ c
p

2 (‖u0‖2
2 + L)p/2T̃

1−θp/2
L,m ,

that is,

T̃L,m ≥ T̃∗ :=
(

L

c
p

2 (‖u0‖2
2 + L)p/2

)−(1−θp)/2

.

Step 3 : We construct a solution to problem (P). We observe from (27) that

sup
t∈[0,T∗]

‖um(t)‖2
2 ≤ ‖u0‖2

2 + L,

ˆ T∗

0
‖Δum(τ)‖2

2 dτ ≤ ‖u0‖2
2 + L. (29)

These clearly imply that

sup
t∈[0,T∗]

m∑

l=1

|(um(t), ψl)2|2 ≤ ‖u0‖2
2 + L. (30)

Moreover, by (15) and (29) we have

|(um(t), ψk)2 − (um(t ′), ψk)|

≤
ˆ t

t ′
‖Δum(τ)‖2‖Δψk‖2 dτ +

ˆ t

t ′

ˆ
Ω

‖∇um(τ)‖p−1
p ‖∇ψk‖p dτ

≤ (‖u0‖2
2 + L)1/2‖Δψk‖2(t − t ′)1/2 + L(p−1)/p‖∇ψk‖p(t − t ′)1/p
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for 1 ≤ k ≤ m and 0 ≤ t ′ ≤ t ≤ T̃∗. Then, extracting a subsequence, we find
ck ∈ C([0, T̃∗]) such that

(um(t), ψk)2 → ck(t) uniformly in [0, T̃∗] as m → ∞

for k ∈ N. Set

u(t) :=
∞∑

k=1

ck(t)ψk, t ∈ [0, T̃∗].

Then it follows from (13), (29) and (30) that ‖u(t)‖2
2 ≤ ‖u0‖2

2 + L and

|(um(t) − u(t), η)2|

≤
M∑

k=1

|(η,ψk)2|
∣
∣(um(t) − u(t), ψk)2

∣
∣ +

∣
∣
∣
∣
∣
∣

(

um(t) − u(t),

∞∑

k=M+1

(η, ψk)2ψk

)

2

∣
∣
∣
∣
∣
∣

≤
M∑

k=1

|(η,ψk)2|
∣
∣(um(t) − u(t), ψk)2

∣
∣ + 21/2(‖u0‖2

2 + L)1/2

( ∞∑

k=M+1

(η,ψk)
2
2

)1/2

for η ∈ L2
N (Ω). Hence we see that (um(t), η)2 converges to (u(t), η)2 uniformly

in [0, T̃∗] for η ∈ L2
N (Ω) and u ∈ Cw([0, T̃∗]; L2

N (Ω)). Along the same argument
as in step 3 in Sect. 3.1, we see that

um ⇀ u weakly in L2(0, T∗; H 2
N (Ω)) as m → ∞,

∂um

∂xj

⇀
∂u

∂xj

weakly in Lp(0, T∗; Lp(Ω)) as m → ∞ for 1 ≤ j ≤ N

and u satisfies (2) for ϕ ∈ V . Moreover, we observe from the same argument as in
[10, Chapter III, Section 4] that u ∈ C([0, T̃∗]; L2

N (Ω)). Hence we complete the
proof of Theorem 1.2.

4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We first show two lemmas.

Lemma 4.1 Let v ∈ H 2
N (Ω) \ {0} and assume that 2 < p < pS . Then

λ∗ :=
(

‖Δv‖2
2

‖∇v‖p
p

) 1
p−2

> 0
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is the unique maximum point of the function

(0,∞) � λ �→ E(λv) ∈ R

and λ∗ satisfies

E(λ∗v) =
(

1

2
− 1

p

) (
‖Δv‖2

2

‖∇v‖2
p

) p
p−2

, I (λv)

⎧
⎪⎪⎨

⎪⎪⎩

> 0 if λ ∈ (0, λ∗),

= 0 if λ = λ∗,

< 0 if λ ∈ (λ∗,∞).

Moreover, it holds that

d = inf
v∈H 2

N (Ω),v �=0
E(λ∗v),

where d is defined in (5).

Lemma 4.1 follows from a direct calculation. Thus we omit the proof.

Lemma 4.2 Let u0 ∈ W and assume that 2 < p < pS . Then there exists m∗ ∈ N

such that Tm = ∞ and um(t) ∈ W for t ∈ (0,∞) if m ≥ m∗, where {um(t)}∞m=1
denotes the family of functions constructed in the proof of Theorem 1.1.

Proof Since u0 ∈ W , we find m∗ ∈ N such that

um(0) ∈ W if m ≥ m∗.

This together with (16) implies that E(um(t)) < d for m ≥ m∗ and t ∈ (0, Tm).
From now on, we let m ≥ m∗. Assume that I (um(t∗)) = 0 holds for some t∗ ∈
(0, Tm). Then by Lemma 4.1 we have

E(um(t∗)) =
(

1

2
− 1

p

) (
‖Δum(t∗)‖2

2

‖∇um(t∗)‖2
p

) p
p−2

≥ d

and it contradicts to E(um(t∗)) < d . Hence um(t) ∈ W for t ∈ (0, Tm). Moreover,
this together with (17) implies that

m∑

k=1

(am
k (t))2 = ‖um(t)‖2

2 = ‖um(0)‖2
2 −

ˆ t

0
I (um(τ)) dτ ≤ ‖u0‖2

2

for t ∈ (0, Tm). Thus we have Tm = ∞.

We are in a position to prove Theorem 1.3.



Asymptotic Behavior of Solutions to a Fourth Order Semilinear Parabolic Equation 261

Proof (Theorem 1.3) Let {um(t)}∞m=1 be the family of functions constructed in the
proof of Theorem 1.1 and {μk}∞k=1 be as in (3). By the variational characterization
of eigenvalues, we have

μ2
k‖v − Pk−1v‖2

2 ≤ ‖Δ(v − Pk−1v)‖2
2, k ∈ N, v ∈ H 2

N (Ω), (31)

where Pk is as in Sect. 1.
Let m∗ ∈ N be the number obtained in Lemma 4.2. From now on, we let m ≥ m∗.

By Lemma 4.2 we have

E(um(t)) < d, t > 0. (32)

Moreover, since

E(um(t)) =
(

1

2
− 1

p

)

‖Δum(t)‖2
2 + 1

p
I (um(t)), t > 0, (33)

it follows from Lemma 4.2 that

‖Δum(t)‖2
2 <

(
1

2
− 1

p

)−1

E(um(t)), t > 0. (34)

Hence, combining (32) with (34), we have

‖Δum(t)‖2
2 < S

p/(p−2)
p , t > 0, (35)

where we use (5) in (35).
In the following, we consider the decaying estimate for um. We divide the proof

into five steps.

Step 1 : We show that ‖Δum(t)‖2 → 0 as t → ∞. The argument in Step 1 is based
on [6] (see also [9]). Combining with (10), (16) and (34), we see that

‖∇um(t)‖p
p ≤ S

− p
2

p ‖Δum(t)‖p
2

< S
− p

2
p

(
1

2
− 1

p

)− p−2
2

E(um(t))
p−2

2 ‖Δum(t)‖2
2

≤ S
− p

2
p

(
1

2
− 1

p

)− p−2
2

E(um(0))
p−2

2 ‖Δum(t)‖2
2

=
(

E(um(0))

d

) p−2
2 ‖Δum(t)‖2

2
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for t > 0. This implies that

I (um(t)) > γ ‖Δum(t)‖2
2, t > 0, (36)

where

γ := 1 − sup
m≥m∗

(
E(um(0))

d

) p−2
2 ∈ (0, 1).

Hence by (33) and (36) we obtain

E(um(t)) <

[
1

γ

(
1

2
− 1

p

)

+ 1

p

]

I (um(t)), t > 0. (37)

On the other hand, we deduce from (17), (31) and (34) that

ˆ ∞

t

I (um(τ)) dτ ≤ ‖u(t)‖2
2 ≤ μ−2

1 ‖Δum(t)‖2
2 < μ−2

1

(
1

2
− 1

p

)−1

E(um(t))

(38)

for t > 0. Thus it follows from (37) and (38) that

ˆ ∞

t

E(um(τ)) dτ < AE(um(t)), i.e.,
d

dt

[

e
t
A

ˆ ∞

t

E(um(τ)) dτ

]

< 0,

(39)

for t > 0, where

A := 1

μ2
1

(
1

γ
+ 2

p − 2

)

.

Therefore, combining (32) with (39), we have

ˆ ∞

t

E(um(τ)) dτ < e1− t
A

ˆ ∞

A

E(um(τ)) dτ < Ae1− t
A E(um(A)) < Ade1− t

A

(40)

for t > A. Since it follows from um(t) ∈ W and (33) that E(um(t)) > 0, by (16)
and (34) we see that

ˆ ∞

t

E(um(τ)) dτ ≥
ˆ A+t

t

E(um(τ)) dτ

≥ AE(um(A + t)) > A

(
1

2
− 1

p

)

‖Δum(A + t)‖2
2

(41)



Asymptotic Behavior of Solutions to a Fourth Order Semilinear Parabolic Equation 263

for t > 0. This together with (40) implies that

‖Δum(t)‖2
2 ≤ e2S

p
p−2
p e− t

A , t > 2A.

Therefore, recalling (35), we obtain

‖Δum(t)‖2
2 ≤ cAe− t

A , t > 0, (42)

where cA is a constant which is independent of m and t .

Step 2 : We derive a modified decay rate. Fix ε ∈ (0, 1) arbitrarily. We first prove
the following: there exists cε > 0 such that

‖um(t)‖2 ≤ cεe
−(1−ε)μ2

1t , t > 0. (43)

Multiplying am
k by (15) and summing k from 1 to m, we see that

1

2

d

dt
‖um(t)‖2

2 + ‖Δum(t)‖2
2 = ‖∇um(t)‖p

p, t > 0. (44)

This together with (10) implies that

1

2

d

dt
‖um(t)‖2

2 + ‖Δum(t)‖2
2 ≤ S

−p/2
p ‖Δum(t)‖p

2 , t > 0. (45)

Thanks to (42), we find Tε > 0 such that

S
−p/2
p ‖Δum(t)‖p−2

2 < ε, t > Tε. (46)

Thus we observe from (45) and (46) that

d

dt
‖um(t)‖2

2 + 2(1 − ε)‖Δum(t)‖2
2 ≤ 0, t > Tε.

Hence by (31), we have

d

dt

(
e2(1−ε)μ2

1t‖um(t)‖2
2

)
≤ 0, i.e., e2(1−ε)μ2

1t‖um(t)‖2
2 ≤ e2(1−ε)μ2

1Tε ‖um(Tε)‖2
2

for t > Tε. This clearly implies (43), because it follows from (9) and (35) that
‖um(t)‖2

2 < c1S
p/(p−2)
p for t > 0.

Moreover, it follows from (17), (37) and (43) that for ε ∈ (0, 1)

ˆ ∞

t

E(um(τ)) dτ < cε

[
1

γ

(
1

2
− 1

p

)

+ 1

p

]

e−2(1−ε)μ2
1t , t > 0.
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Along the same argument as in (41), we have

ˆ ∞

t

E(um(τ)) dτ ≥
(

1

2
− 1

p

)

‖Δum(t + 1)‖2
2, t > 0.

Thus we find that c̃ε > 0 such that

‖Δum(t)‖2 ≤ c̃εe
−(1−ε)μ2

1t , t > 0. (47)

Step 3 : We derive the precise decay rate: there exist c∗, c̃∗ > 0 such that

‖um(t)‖2 ≤ c∗e−μ2
1t , t > 0, (48)

‖Δum(t)‖2 ≤ c̃∗e−μ2
1t , t > 0. (49)

Fix ε ∈ (0, 1) arbitrarily. By (31), (44), (47) and Proposition 2.1 we have

d

dt
‖um(t)‖2

2 + 2μ2
1‖um(t)‖2

2 ≤ 2c
p

2 c̃θp
ε e−θp(1−ε)μ2

1t‖um(t)‖(1−θ)p

2 , t > 0,

that is,

d

dt

(
e2μ2

1t‖um(t)‖2
2

)
≤ 2c

p

2 c̃θp
ε e(θpε−(p−2))μ2

1t
(
e2μ2

1t‖um(t)‖2
2

)(1−θ)p/2
, t > 0,

where θ is as in (11). Since p > 2 implies that

(1 − θ)p = 2N − (N − 2)p

4
∈ (0, 1),

we have

(
e2μ2

1t‖um(t)‖2
2

)1−(1−θ)p/2 ≤ ‖u0‖2−(1−θ)p

2 + 4c
p

2 c̃
θp
ε

2 − (1 − θ)p

ˆ t

0
e(θpε−(p−2))μ2

1s ds

for t > 0. Taking ε > 0 sufficiently small, we see that (48) holds for some positive
constant c∗ > 0. Similarly to (47), we obtain (49).

Step 4 : We show the asymptotic behavior of um. Fix ε ∈ (0, 1) and 1 ≤ k ≤ k∗
arbitrarily. We first prove the following: there exists cε,k > 0 such that

‖um(t) − Pk−1u
m(t)‖2 ≤ cε,ke

−(1−ε)μ2
kt , t > 0, (50)
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where μk , Pk are as in Sect. 1. Similarly to (44), we see that

1

2

d

dt
‖um(t) − Pk−1u

m(t)‖2
2 + ‖Δ(um(t) − Pk−1u

m(t))‖2
2

=
ˆ

Ω

|∇um(t)|p−2∇um(t) · ∇(um(t) − Pk−1u
m(t)) dx, t > 0.

(51)

Combining (51) with (10) and (49) we have

1

2

d

dt
‖um(t) − Pk−1u

m(t)‖2
2 + ‖Δ(um(t) − Pk−1u

m(t))‖2
2

≤ ‖∇um(t)‖p−1
p ‖∇(um(t) − Pk−1u

m(t))‖p

≤ S
−p/2
p c̃

p−1∗ e−(p−1)μ2
1t‖Δ(um(t) − Pk−1u

m(t))‖2

≤ ε‖Δ(um(t) − Pk−1u
m(t))‖2

2 + S
−p
p c̃

2(p−1)∗
4ε

e−2(p−1)μ2
1t

for t > 0. Hence by (31) we obtain

d

dt

(
e2(1−ε)μ2

kt‖um(t) − Pk−1u
m(t)‖2

2

)
≤ S

−p
p c̃

2(p−1)∗
2ε

e−2((p−1)μ2
1−μ2

k)t

and we can find the constant cε,k > 0 satisfying (50). Along the same line as the
above argument, we find cε,k∗+1 > 0 such that

‖um(t) − Pk∗u
m(t)‖2 ≤ cε,k∗+1e

−(1−ε)(p−1)μ2
1t , t > 0. (52)

On the other hand, we observe from (10), (49), (50) and (51) that

ˆ ∞

t

‖Δ(um(τ) − Pk−1u
m(τ))‖2

2 dt

≤ 1

2
‖um(t) − Pk−1u

m(t)‖2
2 +

ˆ ∞

t

‖∇um(τ)‖p−1
p ‖∇(um(t) − Pk−1u

m(t))‖p dτ

≤ 1

2
cε,ke

−2(1−ε)μ2
kt + c̃

p−1∗ S
−p/2
p

ˆ ∞

t

e−(p−1)μ2
1τ ‖Δ(um(t) − Pk−1u

m(t))‖2 dτ

≤ 1

2
cε,ke

−2(1−ε)μ2
kt + c̃

2(p−1)∗ S
−p
p

2

ˆ ∞

t

e−2(p−1)μ2
1τ dτ

+ 1

2

ˆ ∞

t

‖Δ(um(t) − Pk−1u
m(t))‖2

2 dτ
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and hence there exists c̃ε,k > 0 such that

ˆ ∞

t

‖Δ(um(τ) − Pk−1u
m(τ))‖2

2 dt ≤ c̃ε,ke
−2(1−ε)μ2

kt , t > 0. (53)

We improve the decay rate in (50). By (10), (31), (48) and (51) we have

1

2

d

dt
‖um(t) − Pk−1u

m(t)‖2
2 + μ2

k‖um(t) − Pk−1u
m(t)‖2

2

≤ S
−p/2
p c̃

p−1∗ e−(p−1)μ2
1t‖Δ(um(t) − Pk−1u

m(t))‖2

and hence

d

dt

(
e2μ2

kt‖um(t) − Pk−1u
m(t)‖2

2

)

≤ 2S
−p/2
p c̃

p−1∗ e(2μ2
k−(p−1)μ2

1)t‖Δ(um(t) − Pk−1u
m(t))‖2

≤ S
−p
p c̃

2(p−1)∗ e2((1+δ)μ2
k−(p−1)μ2

1)t + e2(1−δ)μ2
kt‖Δ(um(t) − Pk−1u

m(t))‖2
2

for δ ∈ (0, 1). Integrating this inequality, we see that

e2μ2
kt‖um(t) − Pk−1u

m(t)‖2
2

≤ ‖u0‖2
2 + S

−p
p c̃

2(p−1)∗
ˆ t

0
e2((1+δ)μ2

k−(p−1)μ2
1)τ dτ

+
ˆ t

0
e2(1−δ)μ2

kτ‖Δ(um(τ) − Pk−1u
m(τ))‖2

2 dτ

≤ ‖u0‖2
2 + S

−p
p c̃

2(p−1)∗
ˆ t

0
e2((1+δ)μ2

k−(p−1)μ2
1)τ dτ

+
ˆ ∞

0
‖Δ(um(τ) − Pk−1u

m(τ))‖2
2 dτ

+ 2(1 − δ)μ2
k

ˆ t

0
e2(1−δ)μ2

kτ

ˆ ∞

τ

‖Δ(um(η) − Pk−1u
m(η))‖2

2 dη dτ.

Taking ε > 0, δ > 0 sufficiently small, by (53) we find c̃k > 0 such that

‖um(t) − Pk−1u
m(t)‖2 ≤ c̃ke

−μ2
kt , t > 0. (54)
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Step 5 : Letting m → ∞, we obtain the conclusion. It follows from the proof of
Theorem 1.1 and Lemma 4.2 that um satisfies

um ∗
⇀ u weakly-* in L∞(0, T ; H 2

N (Ω)) as m → ∞, (55)

um → u in C([0, T ]; L2
N (Ω)) as m → ∞, (56)

for T ∈ (0,∞). Combining (56) with (52) and (54), we obtain (7) and (8).
We prove (6). Fix t > 0 arbitrarily. Then (49) and (55) imply that

ess sup
τ∈(t,t+1)

‖Δu(τ)‖2 ≤ lim inf
m→∞ ess sup

τ∈(t,t+1)

‖Δum(τ)‖2 ≤ c̃∗e−μ2
1t

and hence there exists N = Nt ⊂ (t, t + 1) of measure zero such that

‖Δu(τ)‖2 ≤ c̃∗e−μ2
1t , τ ∈ (t, t + 1) \ Nt .

Let {τk}∞k=1 ⊂ (t,∞) \ Nt such that τk → t as k → ∞. Since u ∈
Cw([0,∞); W

2,2
N (Ω)), we have

‖Δu(t)‖2 ≤ lim inf
k→∞ ‖Δu(τk)‖2 ≤ c̃∗e−μ2

1t .

Since t > 0 is arbitrary, we obtain (6). Therefore, Theorem 1.3 follows.

5 Appendix

In this section, we prove the uniqueness of solutions to problem (P). Let u1 and
u2 be solutions to problem (P). In what follows, by the letter C we denote generic
positive constants (which may depend on u1 and u2) and they may have different
values also within the same line.

Let t0, t1 ∈ (0, T ) with t0 < t1, h ∈ (0, min{t0, T − t1, t1 − t0}/2). Define

Wh(x, t) := 1

h

ˆ t+h

t

χ[t0,t1](τ )w(x, τ ) dτ, W̃h(x, t) := 1

h

ˆ t

t−h

Wh(x, τ ) dτ,

for (x, t) ∈ Ω × [0, T ], where w := u1 − u2 and

χ[t0,t1](t) :=
{

1 if t ∈ [t0, t1],
0 if t ∈ R \ [t0, t1].
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We remark that W̃h belongs to V and satisfies the following properties (cf. [3]):

W̃h → χ[t0,t1]w as h ↘ 0 in L2(0, T ; H 2
N (Ω)), (57)

∇W̃h → χ[t0,t1]∇w as h ↘ 0 in (Lp(0, T ; Lp(Ω)))N . (58)

Taking ϕ = W̃h in (2), we see that

−
ˆ T

0

ˆ
Ω

w∂t W̃h dx dt +
ˆ T

0

ˆ
Ω

ΔwΔW̃h dx dt

=
ˆ T

0

ˆ
Ω

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · ∇W̃h dx dt

≤ C

ˆ T

0
(‖∇u1(t)‖p−2

p + ‖∇u2(t)‖p−2
p )‖∇w(t)‖p‖∇W̃h(t)‖p dt.

(59)

On the other hand, setting

wh(x, t) := 1

h

ˆ t+h

t

w(x, τ ) dτ,

we see that

−
ˆ T

0

ˆ
Ω

w∂tW̃h dx dt

=
ˆ T

0

ˆ
Ω

∂twh(x, t)Wh(x, t) dx dt

=
ˆ t1−h

t0

ˆ
Ω

∂twh(x, t)wh(x, t) dx dt +
(ˆ t0

t0−h

+
ˆ t1

t1−h

) ˆ
Ω

∂twh(x, t)Wh(x, t) dx dt

= 1

2
(‖wh(t1 − h)‖2

2 − ‖wh(t0)‖2
2) +

(ˆ t0

t0−h

+
ˆ t1

t1−h

) ˆ
Ω

∂twh(x, t)Wh(x, t) dx dt

→ 1

2
(‖w(t1)‖2

2 − ‖w(t0)‖2
2) as h ↘ 0.

This together with (57), (58) and (59) implies that

1

2
(‖w(t1)‖2

2 − ‖w(t0)‖2
2) +

ˆ t1

t0

‖Δw(t)‖2
2 dt

≤ C

ˆ t1

t0

(‖∇u1(t)‖p−2
p + ‖∇u2(t)‖p−2

p )‖∇w(t)‖2
p dt.

(60)

Since t0, t1 ∈ (0, T ) are arbitrary, (60) holds for t0, t1 ∈ [0, T ].
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We prove the uniqueness of solutions to problem (P) in Theorems 1.1 and 1.2 in
Sect. 5.1 and Sect. 5.2, respectively.

5.1 Uniqueness of Solutions in Theorem 1.1

Since ∇u1, ∇u2 ∈ (L∞(0, T ; Lp(Ω)))N and w(0) = 0, we observe from (60) that

‖w(t)‖2
2 + 2

ˆ t

0
‖Δw(τ)‖2

2 dτ ≤ C

ˆ t

0
‖∇w(τ)‖2

p dτ

for t ∈ [0, T ]. By Proposition 2.1 and the Young inequality we have

‖w(t)‖2
2 ≤ C

ˆ t

0
‖w(τ)‖2

2 dτ, i.e.,
d

dt

(

e−Ct

ˆ t

0
‖w(τ)‖2

2 dτ

)

≤ 0.

This implies that w ≡ 0 and we complete the proof of the uniqueness in
Theorem 1.1.

5.2 Uniqueness of Solutions in Theorem 1.2

Fix t0, t1 ∈ [0, T ] arbitrarily. By Proposition 2.1 and uj ∈ C([0, T ]; L2
N (Ω)) we

have

ˆ t1

t0

‖∇uj (t)‖p−2
p ‖∇w(t)‖2

p dt

≤ C

(

sup
t∈[t0,t1]

‖w(t)‖2
2

)1−θ ˆ t1

t0

‖Δuj (t)‖(p−2)θ
2 ‖Δw(t)‖2θ

2 dt

(61)

for j = 1, 2. Moreover, since 2 < p < p∗ is equivalent to 0 < θp < 2, it holds that

ˆ t1

t0

‖Δuj (t)‖(p−2)θ

2 ‖Δw(t)‖2θ
2 dt

≤ C(t1 − t0)
1−θp/2

(ˆ t1

t0

‖Δuj (t)‖2
2 dt

)(p−2)θ/2 (ˆ t1

t0

‖Δw(t)‖2
2 dt

)θ

≤ C(t1 − t0)
1−θp/2

(ˆ t1

t0

‖Δw(t)‖2
2 dt

)θ
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for j = 1, 2. This together with (60) and (61) we have

1

2
(‖w(t1)‖2

2 − ‖w(t0)‖2
2) +

ˆ t1

t0

‖Δw‖2
2 dt

≤ C(t1 − t0)
1−θp/2

(ˆ t1

t0

‖Δw(t)‖2
2 dt

)θ
(

sup
t∈[t0,t1]

‖w(t)‖2
2

)1−θ

≤ 1

2

ˆ t1

t0

‖Δw(t)‖2
2 dt + C(t1 − t0)

(2−θp)/2(1−θ) sup
t∈[t0,t1]

‖w(t)‖2
2,

that is,

‖w(t1)‖2
2 ≤ ‖w(t0)‖2

2 + c0(t1 − t0)
(2−θp)/2(1−θ) sup

t∈[t0,t1]
‖w(t)‖2

2, (62)

where c0 > 0 is a constant depending on N , p, Ω , u1 and u2. Let δ > 0 be such
that

c0δ
(2−θp)/2(1−θ) <

1

2
.

Since w(0) = 0, we observe from (62) and 0 < θp < 2 that w(t) = 0 for t ∈ [0, δ].
Iterating this argument, we obtain w ≡ 0 in [0, T ] and we complete the proof of the
uniqueness in Theorem 1.2.
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