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Preface

This monograph contains contributions from the speakers at the 6th Italian-Japanese
Workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was
held in Cortona (Italy) during May 20–24, 2019. The first five workshops were
held in Sendai (Japan, 2009), Cortona (Italy, 2011), Tokyo (Japan, 2013), Palinuro
(Italy, 2015), and Osaka (Japan, 2017), and in all the occasions the proceedings
were subsequently published: see, respectively, Discrete Contin. Dyn. Syst. Ser. S
4 (2011), Springer INdAM Series 2 (2013), Kodai Math. J. 37 (2014), Springer
Proceedings in Mathematics & Statistics 176 (2016) and Applicable Analysis 98,
Issue 10 (2020). Based on the success of the previous workshops and the associated
publications, we believe that this monograph will be of great interest for the
mathematical community and in particular for researchers studying parabolic and
elliptic PDEs.

As would be expected from such a wide topic, the contributions are very diverse.
They cover many different fields of current research as follows: optimization prob-
lems, Sobolev inequalities, Hardy-type inequalities on trees, quasilinear chemotaxis
system, linear and nonlinear parabolic and elliptic equations, neutral inclusion,
Lane-Emden equation, fourth-order parabolic equation, and semilinear damped
wave equation. In order to guarantee quality, all the papers have been submitted
to two referees, chosen among the experts on related topics.

Naples, Italy Vincenzo Ferone
Otsu, Japan Tatsuki Kawakami
Firenze, Italy Paolo Salani
Osaka, Japan Futoshi Takahashi
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Poincaré and Hardy Inequalities
on Homogeneous Trees

Elvise Berchio, Federico Santagati, and Maria Vallarino

Abstract We study Hardy-type inequalities on infinite homogeneous trees. More
precisely, we derive optimal Hardy weights for the combinatorial Laplacian in this
setting and we obtain, as a consequence, optimal improvements for the Poincaré
inequality.

Keywords Graphs · Poincaré–Hardy inequalities · Homogeneous trees

1 Introduction

Given a linear, elliptic, second-order, symmetric nonnegative operator P on �,
where � is a (e.g. Euclidean) domain, a Hardy weight is a nonnegative function
W such that the following inequality holds

q(u) ≥
ˆ
�

Wu2 dx ∀u ∈ C∞
c (�), (1.1)

where q(u) = 〈u, Pu〉 is the quadratic form associated to P . Clearly, the final (and
most ambitious) goal is to get weights W such that inequality (1.1) is not valid
for V ≥ W, V �= W , i.e. the operator P − W is critical in the sense of [18,
Definition 2.1]. When P = −� is the Laplace–Beltrami operator on a Riemannian
manifold, the problem of the existence of Hardy weights has been widely studied
in the literature, either in the Euclidean setting, see e.g. [4, 9, 10, 20, 27–29] or on
general manifolds, see e.g. [11, 17, 18, 24, 26, 30, 35]. Recently, the attention has
also been devoted to the discrete setting, see e.g. [8, 21–23] and references therein.

The present paper is motivated by some recent results obtained in [5], see also [1]
and [6], within the context of Cartan–Hadamard manifolds M . In particular, when

E. Berchio (�) · F. Santagati · M. Vallarino
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2 E. Berchio et al.

M is the hyperbolic space H
N , i.e. the simplest example of manifold with negative

sectional curvature, the following Hardy weight has been determined when P being
the Laplace–Beltrami operator −�HN on H

N with N ≥ 3:

W(r) = (N − 1)2

4
+ 1

4 r2 + (N − 1)(N − 3)

4

1

sinh2 r
,

where r = d(o, x) > 0 denotes the geodesic distance of x from a fixed pole o ∈ H
N .

Besides, it is proved that the operator −�HN − W is critical in H
N \ {o}. It is

worth noticing that the number (N−1)2

4 in W(r) coincides with the bottom of the L2-
spectrum of −�HN . Hence, the existence of the above weight yields the following
improved Poincaré inequality:

ˆ
HN

|∇HN u|2 dvHN − (N − 1)2

4

ˆ
HN

u2 dvHN ≥
ˆ
HN

R u2 dvHN ∀u ∈ C∞
c (HN),

where the remainder term is

R(r) = 1

4 r2 + (N − 1)(N − 3)

4

1

sinh2 r
∼ 1

4 r2 as r → +∞, (1.2)

and, as a consequence of the criticality issue, all constants in (1.2) turn out to be
sharp.

Let � = (V ,E) denote a locally finite graph, where V and E denote a
countably infinite set of vertices and the set of edges respectively. We recall that the
combinatorial Laplacian � of a function f in the set C(V ) of real valued functions
defined on V is defined by

�f (x) :=
∑

y∼x

(
f (x) − f (y)

)
= m(x)f (x) −

∑

y∼x

f (y) ∀x ∈ V ,

where m(x) is the degree of x, i.e. the number of neighbors of x. The existence
of Hardy weights for the combinatorial Laplacian or for more general operators on
graphs has been recently studied in literature (see again [8, 21–23]).

We set our analysis on the case where the graph � is the homogeneous tree Tq+1,
i.e. a connected graph with no loops such that every vertex has q + 1 neighbours,
and we focus on the transient case, namely we always assume q ≥ 2. Tq+1 has been
the object of investigation of many papers either in the field of harmonic analysis
or of PDEs, see e.g. to [2, 3, 7, 12–16, 19, 31]. In particular, the homogeneous tree
is in many respects a discrete analogue of the hyperbolic plane; we refer the reader
to [7] for a discussion on this point. Therefore, since Tq+1 is the basic example of
graph of exponential growth, as H

N is the basic example of Riemannian manifold
with exponential growth, it is natural to investigate whether the above mentioned
results in H

N have a counterpart in Tq+1: this will be the main goal of the paper.
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In Tq+1 the operator � is bounded on �2 and its �2-spectrum is given by [(q1/2 −
1)2, (q1/2 + 1)2] (see [16]). Hence the following Poincaré inequality holds

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥ �q

∑

x∈Tq+1

ϕ2(x) ∀ϕ ∈ C0(Tq+1),

with �q := (q1/2 − 1)2.
By Keller et al. [22, Theorem 0.2] a Hardy weight for � on a transient graph

�, is given by Wopt = �G
1/2
o

G
1/2
o

, where Go(x) := G(x, o) is the positive minimal

Green function and o is a fixed point. Furthermore, Wopt is optimal in the sense of
Definition 2.2 below and this implies, in particular, that the operator � − Wopt

is critical. If � = Tq+1, then the function Go can be written explicitly, see
Proposition 2.3 below, and Wopt reads as follows:

Wopt (x) =
{
�q + q1/2 − q−1/2 if |x| = 0,

�q if |x| ≥ 1 ,
(1.3)

where, for each vertex x ∈ �, |x| = d(x, o) and d is the usual discrete metric.
By exploiting the super-solutions technique, in the present paper we provide the
following new family of Hardy weights for � on Tq+1:

Wβ,γ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

q + 1 − q1/2( 1
γ

+ 1
γ q

) if |x| = 0,

q + 1 − q1/2(2β + γ ) if |x| = 1,

q + 1 − q1/2[(1 + 1
|x| )

β + (1 − 1
|x| )

β ] if |x| ≥ 2,

where 0 ≤ β ≤ log2 q
1/2 and q−1/2 ≤ γ ≤ q−1/2 + q1/2 − 2β . Moreover, if

β = 1/2 we prove that the weight W1/2,γ is optimal (see again Definition 2.2),
hence the operator � − W1/2,γ is critical. We notice that

Wβ,γ (x) = �q + q1/2β(1 − β)

|x|2 + o
( 1

|x|2
)

as |x| → ∞ ,

hence the slowest decay at infinity occurs exactly for β = 1/2.
It is readily seen that the quadratic form inequality associated to � − Wopt in

(1.3) can be read as an (optimal) local improvement of the Poincaré inequality on
Tq+1 at o. A direct inspection reveals that the weights Wβ,γ satisfy Wβ,γ > �q

on Tq+1 for all 0 ≤ β ≤ log2
( 3

2 − 1
2q

)
and 1

2 + 1
2q ≤ γ ≤ 2 − 2β . Hence, for
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such values of β and γ , we derive the following family of global improved Poincaré
inequalities:

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥
∑

x∈Tq+1

�qϕ
2(x) +

∑

x∈Tq+1

Rβ,γ (x)ϕ
2(x) ∀ϕ ∈ C0(Tq+1), (1.4)

where

0 ≤ Rβ,γ (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q1/2(2 − 1
γ

− 1
γ q

) if |x| = 0,

q1/2(2 − 2β − γ ) if |x| = 1,

q1/2
(

2 − (1 + 1
|x| )

β − (1 − 1
|x| )

β

)
if |x| ≥ 2.

It is worth noticing that the maximum of Rβ,γ at o is reached by choosing γ as large
as possible, namely by taking γ = 2 − 2β . Since such value is maximum for β = 0,
we conclude that, among the weights Wβ,γ improving the Poincaré inequality, the
largest at o is W0,1 ≡ Wopt .

Even if (1.4) improves globally the Poincaré inequality, we do not know whether
this improvement is sharp on the whole Tq+1. Nevertheless, a sharp improvement is
provided by the critical weight W1/2,γ outside the ball B2(o). More precisely, there
holds

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥
∑

x∈Tq+1

�qϕ
2(x) +

∑

x∈Tq+1

R(x)ϕ2(x), ∀ϕ ∈ C0(Tq+1 \ B2(o)),

where

R(x) = q1/2
[

2 −
(

1 + 1

|x|
)1/2

−
(

1 − 1

|x|
)1/2]

if |x| ≥ 2

and the constant q1/2 is sharp. Notice that

R(x) ∼ q1/2 1

4|x|2 as |x| → +∞,

namely the decay of the remainder term is of the same order of that provided by
(1.2) in H

N , thereby confirming the analogy between Tq+1 and H
N .
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Following the arguments used in the particular case of a homogeneous tree, in
the last part of the paper we find a class of Hardy weights for the combinatorial
Laplacian on rapidly growing radial trees, i.e. trees where the number of neighbours
of a vertex x only depends on the distance of x from a fixed vertex o. This is a
first result which might shed light on future related investigations on more general
graphs.

The paper is organized as follows. In Sect. 2 we introduce the notation and we
state our main results, namely Theorem 2.7, where we provide a family of optimal
weights for � on Tq+1, and Theorem 2.11 where we state the related improved
Poincaré inequality. Section 3 is devoted to the proof of the statements of Sect. 2.
Finally, in Sect. 4 we present a generalization of our results in the context of radial
trees.

2 Notation and Main Results

We consider a graph � = (V ,E), where V and E denote a countably infinite set
of vertices and the set of edges respectively, with the usual discrete metric d . If
(x, y) ∈ E we say that x and y are neighbors and we write x ∼ y. We assume that
� is a connected graph, that is, for every x, y ∈ V there exists a finite sequence of
vertices x1, . . . , xn such that x0 = x, xn = y and xj ∼ xj+1 for j = 0, . . . , n − 1.
We also require that (x, y) ∈ E if and only if (y, x) ∈ E. We use the notation m(x)

to indicate the degree of x, that is the number of edges that are attached to x and
we assume that � is locally finite, i.e. m(x) < ∞ for all x ∈ V . When a vertex
o ∈ V is fixed let x �→ |x| be the function which associates to each vertex x the
distance d(x, o) and define Br(o) = {x s.t. |x| < r}. We denote by C(V ) the set of
real valued function defined on V and by C0(V ) the subspace consisting on finitely
supported functions. Finally, we introduce the space of square summable functions

�2(V ) = {f ∈ C(V ) s.t.
∑

x∈V
f 2(x) < +∞}.

This is a Hilbert space with the inner product

〈f, g〉 =
∑

x∈V
f (x)g(x),

and the induced norm ‖f ‖ = √〈f, f 〉. As shown in [33, 34]

〈�ϕ, ϕ〉�2 = 1

2

∑

x,y∈V
x∼y

(
ϕ(x) − ϕ(y)

)2

∀ϕ ∈ C0(V ).
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More generally, we consider Schrödinger operators H = � + Q where Q is any
potential. A function f is called H -(super)harmonic in V if

Hf (x) = 0 (Hf (x) ≥ 0) ∀x ∈ V.

By Hardy-type inequality for a positive Schrödinger operator H we mean an
inequality of the form

〈Hϕ, ϕ〉 ≥ 〈Wϕ, ϕ〉 ∀ϕ ∈ C0(V ),

where W �≡ 0 is a nonnegative function in C(V ). We write h(ϕ) and W(ϕ) in place
of 〈Hϕ, ϕ〉 and 〈Wϕ, ϕ〉, respectively. In particular we denote h�(ϕ) = 〈�ϕ, ϕ〉.

In [22] the authors introduce the notion of optimal weight for a Hardy-type
inequality; we recall some fundamental definitions that we need in the later
discussion.

Definition 2.1 Let h be a quadratic form associated with a Schrödinger operator
H , such that h ≥ 0 on C0(V ). The form h is called subcritical in V if there is a
nonnegative W ∈ C0(V ), W �≡ 0, such that h − W ≥ 0 on C0(V ). A positive form
h which is not subcritical is called critical in V .

In [23, Theorem 5.3] it is shown that the criticality of h is equivalent to the
existence of a unique positive function which is H -harmonic. Such a function is
called the ground state of h and we have the further definition:

Definition 2.2 Let h be a quadratic form associated with a Schrödinger operator H .
We say that a positive function W : V → [0,∞) is an optimal Hardy weight for h
in V if

• h − W is critical in V (criticality);
• h − W ≥ λW fails to hold on C0(V \ K) for all λ > 0 and all finite K ⊂ V

(optimality near infinity);
• the ground state of h − W , � /∈ �2

W (null-criticality), namely

∑

x∈V
�2(x)W(x) = +∞.

In the following, for shortness, we will say that the operator H is critical if and only
if its associated quadratic form h is critical.

Finally, we recall that a function u : V → R is named proper on V if u−1(K) is
finite for all compact sets K ⊂ u(V ).
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2.1 Hardy-Type Inequalities on Tq+1

In this subsection we shall state various Hardy-type inequalities on the homoge-
neous tree Tq+1 with q ≥ 2 . We start with an optimal inequality for � obtained by
combining the explicit formula of the Green function and [22, Theorem 0.2].

Proposition 2.3 For all ϕ ∈ C0(Tq+1) the following inequality holds:

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥
∑

x∈Tq+1

Wopt (x)ϕ
2(x),

where

Wopt (x) =
{
�q + q1/2 − q−1/2 if |x| = 0,

�q if |x| ≥ 1.
(2.1)

Furthermore, the weight Wopt is optimal for �.

Remark 2.4 As a consequence of the results of [22, Theorem 0.2] it follows that
G1/2 is the ground state of h� − Wopt . Furthermore, it is readily checked that

∑

x∈Tq+1

G(x)Wopt(x) = +∞ ,

namely G1/2 /∈ �2
Wopt

.

In the next theorem we state a family of Hardy-type inequalities depending on
two parameters β, γ . The weights Wβ,γ provided can be seen as a generalization of
Wopt . Indeed, if we fix β = 0 and γ = 1 in the statement below, we obtain Wopt .

Theorem 2.5 For all 0 ≤ β ≤ log2 q
1/2 and q−1/2 ≤ γ ≤ q1/2 + q−1/2 − 2β the

following inequality holds

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥
∑

x∈Tq+1

Wβ,γ (x)ϕ
2(x) ∀ϕ ∈ C0(Tq+1) ,

where Wβ,γ ≥ 0 is defined as follows:

Wβ,γ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

q + 1 − q1/2( 1
γ

+ 1
qγ

) if |x| = 0,

q + 1 − q1/2(2β + γ ) if |x| = 1,

q + 1 − q1/2[(1 + 1
|x|)

β + (1 − 1
|x|)

β ] if |x| ≥ 2.
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Remark 2.6 Notice that

Wβ,γ (x) = �q + q1/2β(1 − β)

|x|2 + o
( 1

|x|2
)

as |x| → ∞.

Since

max
β

β(1 − β) = 1/4,

which is reached for β = 1/2, W1/2,γ is the largest among the Wβ,γ at infinity.
On the other hand, in order to maximize the value of Wβ,γ at o, γ has to be

taken as large as possible, namely γ = q−1/2 + q1/2 − 2β . Since this quantity is
maximum for β = 0, the largest weight at o is W0,γ with γ = q−1/2 + q1/2 − 1.
Notice that: W0,γ ≡ Wopt for |x| ≥ 2, while W0,γ (o) > Wopt (o) and Wopt (|x| =
1) > W0,γ (|x| = 1), hence the two weights are not globally comparable.

The previous remark suggests that, in order to have the largest weight at infinity,
one has to fix β = 1/2 in Theorem 2.5. This intuition is somehow confirmed by the
statement below.

Theorem 2.7 For all q−1/2 ≤ γ ≤ q−1/2 + q1/2 − 21/2 the following inequality
holds

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥
∑

x∈Tq+1

W1/2,γ (x)ϕ
2(x) ∀ϕ ∈ C0(Tq+1),

where

W1/2,γ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

q + 1 − q1/2( 1
γ

+ 1
qγ

) if |x| = 0,

q + 1 − q1/2(21/2 + γ ) if |x| = 1,

q + 1 − q1/2[(1 + 1
|x|)

1/2 + (1 − 1
|x|)

1/2] if |x| ≥ 2.

Furthermore, the weights W1/2,γ are optimal Hardy weights for � in the sense of
Definition 2.2.

Using the same argument it is also possible to show that the weights we obtained
in Theorem 2.5 are optimal near infinity, i.e. the constant is sharp in Tq+1 \ K for
every compact set K .

Corollary 2.8 For all 0 ≤ β < min{log2 q
1/2, 1} and q−1/2 ≤ γ ≤ q−1/2+q1/2 −

2β the following inequality holds

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥
∑

x∈Tq+1

Wβ,γ (x)ϕ
2(x) ∀ϕ ∈ C0(Tq+1).

(2.2)
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Moreover, the constant 1 in front of the r.h.s. term is sharp at infinity, in the sense
that inequality (2.2) fails on C0(Tq+1 \ K) if we replace Wβ,γ with CWβ,γ , for all
C > 1 and all compact set K .

2.2 Improved Poincaré Inequalities

We shall provide three examples of improved Poincaré inequalities derived by the
Hardy-type inequalities stated in the previous subsection. We recall that the Poincaré
inequality on Tq+1 reads

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥ �q

∑

x∈Tq+1

ϕ2(x) ∀ϕ ∈ C0(Tq+1), (2.3)

and the constant �q is sharp in the sense that the above inequality cannot hold with
a constant � > �q .

The following improved Poincaré inequality is an immediate consequence of
Theorem 2.3.

Proposition 2.9 The following inequality holds

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥ �q

∑

x∈Tq+1

ϕ2(x) +
∑

x∈Tq+1

Rq(x)ϕ
2(x) ∀ϕ ∈ C0(Tq+1), (2.4)

where

Rq(x) =
{
q1/2 − q−1/2 if |x| = 0,

0 otherwise.

Furthermore, the operator � − �q − Rq is critical, hence the inequality does not
hold with any R > Rq .

Notice that (2.4) improves (2.3) only locally, namely at o. The next statement
provides a global improvement of (2.3).
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Theorem 2.10 For all 0 ≤ β ≤ log2
( 3

2 − 1
2q

)
and 1

2 + 1
2q ≤ γ ≤ 2 − 2β , it holds

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥ �q

∑

x∈Tq+1

ϕ2(x) +
∑

x∈Tq+1

Rβ,γ ϕ
2(x) ∀ϕ ∈ C0(Tq+1), (2.5)

where

0 ≤ Rβ,γ (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q1/2(2 − 1
γ

− 1
qγ

) if |x| = 0,

q1/2(2 − 2β − γ ) if |x| = 1,

q1/2
(

2 − (1 + 1
|x| )

β − (1 − 1
|x|)

β

)
if |x| ≥ 2.

Notice that (2.5) improves globally (2.3) but it gives no information about the
sharpness of Rβ,γ . A sharp improvement is instead provided by the next theorem
which holds for functions supported outside the ball B2(o).

Theorem 2.11 The following inequality holds

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥
∑

x∈Tq+1

�qϕ
2(x) +

∑

x∈Tq+1

R(x)ϕ2(x) ∀ϕ ∈ C0(Tq+1 \ B2(o)), (2.6)

where

R(x) = q1/2
[

2 −
(

1 + 1

|x|
)1/2

−
(

1 − 1

|x|
)1/2]

if |x| ≥ 2.

Moreover, the constant q1/2 is sharp in the sense that inequality (2.6) cannot hold

if we replace the remainder term R with C

[
2 − (1 + 1

|x|)
1/2 − (1 − 1

|x| )
1/2

]
and

C > q1/2.

3 Proofs of the Results

We collect here the proofs of the results stated in Sect. 2.
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3.1 Proofs of Hardy-Type Inequalities

Proof of Proposition 2.3 Consider the function ũ(x) = √
G(x, o), where G is the

Green function on Tq+1. By Keller et al. [22, Theorem 0.2] we only need to show
that

�ũ(x)

ũ(x)
= Wopt (x).

By the explicit formula for the Green function on Tq+1 given in [32, Lemma 1.24]
we have

ũ(x) =
√

q

q − 1

(
1

q

)|x|
.

For x �= o, we obtain that

�ũ(x)

ũ(x)
=

(
q + 1 −

(
1

q

)1/2

− q

(
1

q

)−1/2)
= (

q1/2 − 1
)2 = �q.

For x = o we get

�ũ(o)

ũ(o)
=

[
(q + 1)

(
q

q − 1

)1/2

− (q + 1)

(
1

(q − 1)1/2

)](
q − 1

q

)1/2

= q + 1 − q + 1

q1/2 = �q + q1/2 − q−1/2 > �q.

��
Proof of Theorem 2.5 The statement follows from [8, Proposition 3.1] by provid-
ing a suitable positive super-solution to the equation �u = Wβ,γ u in Tq+1. To this
aim, we define the function:

uβ,γ (x) =
{
q−|x|/2|x|β if |x| ≥ 1,

γ if |x| = 0.
(3.1)

Now, by writing u = uβ,γ , we have

�u(o)

u(o)
= q + 1 − (q + 1)

q−1/2

γ
= q + 1 − q1/2

( 1

γ
+ 1

qγ

)
,

which is nonnegative if γ ≥ q−1/2.
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Next, for every x such that |x| = 1, we have

�u(x)

u(x)
= q + 1 − q

q−12β

q−1/2 − γ

q−1/2 = q + 1 − q1/2(2β + γ ),

which is nonnegative if γ ≤ q1/2 + q−1/2 − 2β . The restriction β ≤ 1/2 log2 q

comes out to make the inequality consistent q−1/2 ≤ γ ≤ q−1/2 + q1/2 − 2β .
Finally, for every x such that |x| ≥ 2, we have

�u(x)

u(x)
= q + 1 − q

q−(|x|+1)/2(|x| + 1)β

q−|x|/2|x|β − q−(|x|−1)/2(|x| − 1)β

q−|x|/2|x|β

= q + 1 − q1/2
[(

1 + 1

|x|
)β

+
(

1 − 1

|x|
)β]

≥ 0. (3.2)

If β ≤ 1, then the function f : R
+ → R defined by f (x) = xβ is concave. It

follows that

f

(
1

2

(
1 + 1

|x|
)

+ 1

2

(
1 − 1

|x|
))

= f (1) ≥ 1

2
f

(
1 + 1

|x|
)

+ 1

2
f

(
1 − 1

|x|
)
,

that is equivalent to

2 ≥
(

1 + 1

|x|
)β

+
(

1 − 1

|x|
)β

.

Then,

�u(x)

u(x)
= q + 1 − q1/2

[(
1 + 1

|x|
)β

+
(

1 − 1

|x|
)β]

≥ q + 1 − 2q1/2

= �q > 0 ∀|x| ≥ 2,

which proves (3.2).
If log2 q

1/2 ≥ β > 1, notice that the function h : [2,+∞) → R defined by
h(x) = (1 + 1

x
)β + (1 − 1

x
)β is decreasing. Then h reaches its maximum at 2. Thus

to show the validity of (3.2) it suffices to prove that

h(x) ≤ h(2) =
(

3

2

)β

+
(

1

2

)β

≤ q1/2 + q−1/2. (3.3)

Notice that for every β ≥ 1

d

dβ

[(
3

2

)β

+
(

1

2

)β]
= 2−β(3β log(3/2) − log(2)) ≥ 0.
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Hence

(
3

2

)β

+
(

1

2

)β

≤
(

3

2

)log2 q1/2

+
(

1

2

)log2 q1/2

≤ 2log2 q1/2 + 2− log2 q1/2 = q1/2 + q−1/2,

so that (3.3) holds and the proof is concluded. ��
Remark 3.1 Note that the statement of Theorem 2.5 can be enriched by considering
the family of radial functions

uα,β,γ (x) =
{
qα|x||x|β if |x| ≥ 1,

γ if |x| = 0,

with α ∈ R and β and γ as in Theorem 2.5. Indeed, a straightforward computation
shows that for |x| ≥ 2

Wα,β,γ (x) = �uα,β,γ (x)

uα,β,γ (x)
= q + 1 − qα+1

(
1 + 1

|x|
)β

− q−α

(
1 − 1

|x|
)β

.

Nevertheless,

Wα,β,γ (x) = q + 1 − q1+α − q−α + o(1) as |x| → +∞,

which is maximum for α = −1/2. Therefore, the choice α = −1/2 turns out to be
the best to get a weight as large as possible at ∞.

We shall now prove our main result, i.e. Theorem 2.7.

Proof of Theorem 2.7 Consider the Schrödinger operator H := � + Q, with

Q(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if |x| = 0,

q1/2 if |x| = 1,

−�q if |x| ≥ 2.

Step 1. We construct an optimal Hardy weight for H . To this aim, we exploit [22,
Theorem 1.1] that provides an optimal Hardy weight for a Schrödinger operator
H by using H -harmonic functions.
For the sake of completeness we start by briefly recalling the statement of
[22, Theorem 1.1]: given two positive H -superharmonic functions u, v which
are H -harmonic outside a finite set, if the function u0 := u/v is proper and

supx∼y u0(x)/u0(y) < +∞, then W̃ := H [(uv)1/2]
(uv)1/2 is an optimal weight for H .
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Next we define

u(x) :=
{
γ if |x| = 0,

q−|x|/2 if |x| ≥ 1,

v(x) :=
{
γ if |x| = 0,

|x|q−|x|/2 if |x| ≥ 1.

Now we show that u, v satisfy the hypothesis of the above-mentioned theorem.
Indeed,

Hu(o) = (q + 1)(γ − q−1/2) + Q(o)γ ≥ 0,

Hv(o) = (q + 1)(γ − q−1/2) + Q(o)γ ≥ 0.

If |x| = 1, then

Hu(x) = (q + 1)q−1/2 − qq−1 − γ + q−1/2q1/2 = q1/2 + q−1/2 − γ ≥ 21/2,

Hv(x) = (q + 1)q−1/2 − 2q−1q − γ + Q(x)q−1/2

≥ q1/2 + q−1/2 − 2 − q−1/2 − q1/2 + 21/2 + 1 = 21/2 + 1 − 2 > 0.

If |x| ≥ 2, then

Hu(x) = (q + 1)q−|x|/2 − qq−(|x|+1)/2 − q−(|x|−1)/2 − �qq
−|x|/2

= q−|x|/2(q + 1 − 2q1/2 − �q) = 0;
Hv(x) = (q + 1)|x|q−|x|/2 − (|x| + 1)qq−(|x|+1)/2

− (|x| − 1)q−(|x|−1)/2 − �qq
−|x|/2

= |x|q−|x|/2(q + 1 − 2q1/2 − �q) = 0.

Define now

u0(x) := u(x)

v(x)
=

{
1 if |x| = 0,
1
|x| otherwise.
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The function u0 is proper because lim|x|→∞ u0(|x|) = 0 and u0(|x|) > u0(|x| +
1) > 0 for all |x| ≥ 1, thus u−1

0 (K) is finite for all compact set K ⊂ (0,∞).
Now consider x ∼ y and compute

u0(x)

u0(y)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if |x| = 0,

1/γ if |y| = 0 and |x| = 1,

1 + 1
|x| if |y| = |x| + 1 and |x| ≥ 1,

1 − 1
|x| if |y| = |x| − 1 and |x| ≥ 2.

Thus sup
x,y∈Tq+1

x∼y

u0(x)
u0(y)

< +∞. Hence, from [22, Theorem 1.1] we conclude that the

weight

W̃ (x) : = H [(uv)1/2](x)
(uv)1/2(x)

= �(uv)1/2(x)

(uv)1/2(x)
+ Q(x)

=

⎧
⎪⎪⎨

⎪⎪⎩

(q + 1)(1 − q−1/2

γ
) if |x| = 0,

(q + 1) − q1/2(21/2 + γ ) + q1/2 if |x| = 1,

(q + 1) − q1/2[(1 + 1
|x|)

1/2 + (1 − 1
|x|)

1/2] − �q if |x| ≥ 2

is an optimal weight for H .
Step 2. We derive an optimal Hardy weight for �. To this aim we prove that the

three conditions of Definition 2.2 are satisfied by the operator �−W1/2,γ , where
W1/2,γ := W̃ − Q.

• Criticality: the optimal Hardy inequality, obtained considering the quadratic
form h associated with H , namely

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

+
∑

x∈Tq+1

Q(x)ϕ2(x)

≥
∑

x∈Tq+1

(
�(uv)1/2(x)

(uv)1/2(x)
+ Q(x)

)
ϕ2(x)

is equivalent to the Hardy inequality associated to �

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

≥
∑

x∈Tq+1

�(uv)1/2(x)

(uv)1/2(x)
ϕ2(x) ∀ϕ ∈ C0(Tq+1).
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Moreover,

W1/2,γ (x) := �(uv)1/2(x)

(uv)1/2(x)

=

⎧
⎪⎪⎨

⎪⎪⎩

q + 1 − q1/2( 1
γ

+ 1
qγ

) if |x| = 0,

q + 1 − q1/2(21/2 + γ ) if |x| = 1,

q + 1 − q1/2[(1 + 1
|x| )

1/2 + (1 − 1
|x| )

1/2] if |x| ≥ 2,

is nonnegative. The optimality of W̃ for H implies that it does not exist a
nonnegative function f �≡ 0 such that

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

−
∑

x∈Tq+1

W1/2,γ (x)ϕ
2(x) ≥

∑

x∈Tq+1

f (x)ϕ2(x),

or, equivalently, � − W1/2,γ is critical.
• Null-criticality of �−W1/2,γ with respect toW1/2,γ : the function z = (uv)1/2

is the ground state of h� − W1/2,γ . Notice that

W1/2,γ (x) > Wopt (x) if |x| ≥ 2,

z(x) > G1/2(x) if |x| ≥ 2,

where Wopt is defined by (2.1) and G is the Green function. Then by
Remark 2.4

∑

x∈Tq+1

z2(x)W1/2,γ (x) = +∞.

• Optimality near infinity : suppose by contradiction that there exist λ > 0 and
a compact set K ⊂ Tq+1 such that

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

−
∑

x∈Tq+1

W1/2,γ (x)ϕ
2(x)

≥ λ
∑

x∈Tq+1

W1/2,γ (x)ϕ
2(x), (3.4)
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for all ϕ ∈ C0(Tq+1 \K). Then, (3.4) holds true on C0(Tq+1 \ (K ∪B2(o))).
Notice that Woptϕ

2 ≤ W1/2,γ ϕ
2 for all ϕ ∈ C0(Tq+1\(K∪B2(o))). It follows

that

1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

−
∑

x∈Tq+1

Wopt (x)ϕ
2(x)

≥ 1

2

∑

x,y∈Tq+1
x∼y

(
ϕ(x) − ϕ(y)

)2

−
∑

x∈Tq+1

W1/2,γ (x)ϕ
2(x)

≥ λ
∑

x∈Tq+1

W1/2,γ (x)ϕ
2(x) ≥ λ

∑

x∈Tq+1

Wopt (x)ϕ
2(x),

for all ϕ ∈ C0(Tq+1 \ (K ∪ B2(o))). This is a contradiction because Wopt is
optimal for �. We checked the three conditions given in Definition 2.2. Hence
W1/2,γ is optimal for �.

��
Proof of Corollary 2.8 For β < min{1/2 logq, 1} we have that Wβ,γ > Wopt on
B2(o)

c. Then, the thesis follows by repeating the same argument used for proving
(3.4). ��

3.2 Proof of Improved Poincaré Inequalities

Proof of Theorem 2.10 Given Wβ,γ = �uβ,γ

uβ,γ
, where uβ,γ is defined by (3.1), it

is easy to check that Wβ,γ is larger than �q on B2(o) choosing the parameters
0 ≤ β ≤ log2

( 3
2 − 1

2q

)
and 1

2 + 1
2q ≤ γ ≤ 2 − 2β .

Indeed,

q + 1 − (q + 1)q−1/2/γ ≥ q + 1 − 2q1/2

is equivalent to 1
2 + 1

2q ≤ γ , and

q + 1 − q1/2(2β + γ ) ≥ q + 1 − 2q1/2

is equivalent to γ ≤ 2 − 2β. Notice that for this choice of γ and β it follows that
β ≤ log2(

3
2 ) < 1, and we already proved in Theorem 2.5 that Wβ,γ ≥ �q on B2(o)

c

for all 0 ≤ β < 1. ��
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Proof of Theorem 2.11 We know from Theorem 2.7 that the optimal weight W1/2,γ
is larger than �q for |x| ≥ 2. Then we can define

R(x) = W1/2,γ (x) − �q ∀x ∈ Tq+1 \ B2(o),

and (2.6) follows. The sharpness of q1/2 is consequence of the optimality of W̃ for
H where W̃ and H are chosen such as in the proof of Theorem 2.7. ��

4 Hardy-Type Inequalities on Rapidly Growing Radial Trees

In view of the results obtained on the homogeneous tree, here we attempt to
generalise the family of Hardy inequalities given in Theorem 2.7 on a more general
context, namely on radial trees. This could pave the way to future investigations on
more general nonradial trees, by means of suitable comparison theorems, as in the
Riemannian setting.

Let T = (V ,E) be an infinite tree. We call T a radial tree if the degree m

depends only on |x| (see e.g. [8, 33]). In the following we set m = m − 1 to lighten
the notation. For future purposes, we also note that the volume of the ball Bn(o) is
given by

#B1(o) = 1,

#B2(o) = 2 + m(0),

#B3(o) = 2 + m(0) + (m(0) + 1)m(1),

...

#Bn(o) = 1 + (m(0) + 1)[1 + m(1) + m(1)m(2) + . . . + m(1)m(2)m(3) . . . m(n − 2)].

If particular, if T = Tq+1, then m ≡ q and we have that #Bn(o) ∼ qn−1 as n →
+∞.

Next, recalling that the proof of Theorem 2.5 relies on the exploitation of the
superharmonic functions uα,β and that uα,β(x) = |x|βqα|x| for all |x| ≥ 1, by
analogy, we consider on T the family of positive and radial functions:

uα,β(x) := |x|β�α(|x|) if |x| ≥ 1 . (4.1)

Regarding the choice of the function � , since in Tq+1 the function q |x| is related to

#B|x|+1(o) and since
#B|x|+1(o)

#B|x|(o) ∼ q = m as |x| → +∞, we assume that it satisfies
the following condition

�(|x| + 1) = m(|x|)�(|x|) for all |x| ≥ 1. (4.2)
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Clearly, if T = Tq+1, then (4.2) holds by taking �(|x|) = q |x|. We note that,
conversely, for a given positive � , condition (4.2) characterizes the tree we are
dealing with through its degree, see Remark 4.2 below.

By showing that the function u−1/2,β is superharmonic on T , we obtain the
following result.

Proposition 4.1 Let � : (0,+∞) → R be a positive function such that the map
(0,+∞) � s �→ �(s+1)

�(s)
is nondecreasing and let T be a radial tree with degreem+

1 satisfying condition (4.2). Then, for all β < 1 and 1
�1/2(1)

≤ γ ≤ 1
�1/2(1)

(
m(1)+

1 − m1/2(1)2β

)
the following inequality holds

1

2

∑

x,y∈T
x∼y

(
ϕ(x) − ϕ(y)

)2

≥
∑

x∈T
Wβ,γ ϕ

2(x) ∀ϕ ∈ C0(T ) ,

where Wβ,γ is the positive weight

Wβ,γ (x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(0) + 1 − m(0)+1
γ �1/2(1)

if |x| = 0,

m(1) + 1 − m1/2(1)2β − �1/2(1)γ if |x| = 1,

m(|x|) + 1 − m1/2(|x|)
(

1 + 1
|x|

)β − m1/2(|x| − 1)
(

1 − 1
|x|

)β
if |x| ≥ 2.

Remark 4.2 It is readily seen that, by taking �(s) = qs in Proposition 4.1, we
get T = Tq+1 and we re-obtain Theorem 2.7; however, Proposition 4.1 gives no
information about the criticality of the operator � − Wβ,γ on T . We also note that
condition (4.2) yields rapidly growing trees, such as those generated, for instance,
by the maps �a(s) = es

a
with a > 1.

Proof The proof follows the same lines of the proof of Theorem 2.5, namely we
show that the function uα,β in (4.1), with α = −1/2 and β < 1, is superharmonic in
T \ B2(0) and that it can be properly extended to o in order to get a superharmonic
function on the whole T . Hence the statement follows by invoking [8, Proposition
3.1].

If β < 1 and |x| ≥ 2 we have

�u−1/2,β(x) =
(
m(|x|) + 1

)
|x|β�−1/2(|x|) − m1/2(|x|)(|x| + 1)β�−1/2(|x|)+

− (|x| − 1)βm1/2(|x| − 1)�−1/2(|x|)
= u−1/2,β(x)

×
(
m(|x|) + 1 − m1/2(|x|)

(
1 + 1

|x|
)β − m1/2(|x| − 1)

(
1 − 1

|x|
)β

)
.
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Since by hypothesis the function m is nondecreasing, we get

�u−1/2,β(x)

= u−1/2,β(x)

((
m1/2(|x|)) − 1

)2 + m1/2(|x|)
(

2 −
(

1 + 1

|x|
)β −

(
1 − 1

|x|
)β)

+
(
m1/2(|x|) − m1/2(|x| − 1)

)(
1 − 1

|x|
)β

)
> 0,

for all |x| ≥ 2.
Then we choose γ := u−1/2,β(o) such that �u−1/2,β is nonnegative in B2(o).

By a direct computation we have

�u−1/2,β(o) = (m(0) + 1)(γ − �−1/2(1)) ≥ 0,

for γ ≥ �−1/2(1). Furthermore, for |x| = 1 we get

�u−1/2,β(x) = (m(1) + 1)�−1/2(1) − m(1)2β�−1/2(2) − γ ≥ 0,

for γ ≤ �−1/2(1)

(
m(1) + 1 − m1/2(1)2β

)
. This concludes the proof. ��
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Ground State Solutions for the Nonlinear
Choquard Equation with Prescribed
Mass

Silvia Cingolani and Kazunaga Tanaka

Abstract We study existence of radially symmetric solutions for the nonlocal
problem:

−Δu+ µu = (Iα ∗ F (u))f(u) in R
N

N

|u|2dx = c
(1)

where N ≥ 3, α ∈ (0, N), c > 0, Iα(x) = Aα

|x|N−α is the Riesz potential, F ∈
C1(R,R), F ′(s) = f (s), μ is a unknown Lagrange multiplier. Using a Lagrange
formulation of the problem (1), we develop new deformation arguments under a
version of the Palais-Smale condition introduced in the recent papers (Hirata and
Tanaka, Adv Nonlinear Stud 19:263–290, 2019; Ikoma and Tanaka, Adv Differ Equ
24:609–646, 2019) and we prove the existence of a ground state solution for the
nonlinear Choquard equation with prescribed mass, when F satisfies Berestycki-
Lions type conditions.
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1 Introduction

In this paper we study existence of radially symmetric solutions of the nonlocal
equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�u + μu = (Iα ∗ F(u))f (u) in R
N,ˆ

RN

|u|2dx = c

v ∈ H 1(RN),

(1.1)

where N ≥ 3, α ∈ (0, N), c > 0, Iα : R
N \ {0} → R the Riesz potential defined by

Iα(x) = �(N−α
2 )

�(α2 )π
N/22α|x|N−α

and F ∈ C1(R,R) and f (s) = F ′(s), μ is a Lagrange multiplier.
In 1954 the equation in (1.1) with N = 3, α = 2 and F(s) = 1

2 |s|2 was
introduced by Pekar in [31] to describe the quantum theory of a polaron at rest
and in 1976 it was arisen in the work of Choquard on the modeling of an electron
trapped in its own hole, in a certain approximation to Hartree–Fock theory of
one-component plasma [21] (see also [12, 13]). In particular it corresponds to the
stationary nonlinear Hartree equation. Indeed if v is a solution of (1.1), then the
wave function ψ(x, t) = eiμtv(x) is a solitary wave of the time-dependent Hartree
equation

iψt = −�ψ − (
1

4π |x| ∗ |ψ|2)ψ inR × R
3. (1.2)

In literature the nonlocal equation in (1.1) is usually called the nonlinear Choquard
equation.

Finally, we recall that the three-dimensional nonlocal equation was also proposed
by Penrose [26, 32–34] in his discussion on the self-gravitational collapse of
a quantum mechanical wave-function and in that context it is known as the
Schrödinger-Newton equation (see also [36]).

In 1977 Lieb [21] proved the existence and uniqueness up to translations of the
unique ground state solution of the equation

−�u + μu = (
1

4π |x| ∗ |u|2)u, x ∈ R
3

where μ is a fixed positive constant.
Due to its physical relevance, the existence of infinitely many standing wave

solutions to (1.2) with prescribed L2- norm has been faced by P.L. Lions in [23].
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Variational methods were also employed to derive existence and multiplicity
results of standing wave solutions for the nonlinear Choquard equation without
prescribed mass [5, 11, 19, 25, 27, 28, 30] and to study concentration phenomena in
the semiclassical limit [6, 9, 10, 20, 29, 35, 37]. Recently the existence of L2- nor-
malized solutions for the nonlinear Choquard equations has been investigated when
F(s) = |s|p or it is monotone and satisfies Ambrosetti-Rabinowitz assumptions in
[2, 38]. We also mention existence results of solutions for the Schrödinger-Poisson
equations with prescribed mass [3, 8, 18, 24].

In this work by means of a new deformation approach, we study the nonlinear
Choquard equation (1.1), where α ∈ (0, N) and F(s) is a general nonlinearity
which does not satisfy a monotonicity assumption nor Ambrosetti-Rabinowitz type
condition [1].

To give our main result, we assume that

(f1) f ∈ C(R,R);
(f2) there exists C > 0 such that for every s ∈ R,

|sf (s)| ≤ C(|s|N+α
N + |s|N+α+2

N );

(f3) F(s) = ´ s

0 f (t)dt satisfies

lim
s→0

F(s)

|s|N+α
N

= 0, lim
s→+∞

F(s)

|s|N+α+2
N

= 0;

(f4) there exists s0 ∈ R, s0 �= 0 such that F(s0) > 0;
(f5) f is odd and f is positive on (0,+∞).

We remark that the exponent N+α+2
N

appears as a L2-critical exponent for the
Choquard equations and the conditions (f1)–(f4) correspond to L2-subcritical
growths.

For this general class of nonlinearities, related to [4, 28], we introduce a
Lagrangian formulation of the nonlocal problem (1.1) and we extend a new
approach introduced by Hirata and the second author [15] for the local case. One
advantage of this method is that it can be also useful to derive multiplicity results
of normalized solutions in several different frameworks. Recently, existence and
multiplicity of L2-normalized solutions for fractional scalar field equations are
obtained in [7], detecting mini-max structures in a product space, by means of a
Pohozaev’s mountain. A similar approach to [7] has been performed in the present
paper. Precisely a radially symmetric solution (μ, u) of (1.1) corresponds to a
critical point of the functional T : (0,∞) × H 1

r (R
N) → R defined by

T (μ, u) = 1

2

ˆ
RN

|∇u|2 dx − 1

2

ˆ
RN

(Iα ∗F(u))F (u) dx + μ

2

(‖u‖2
2 − c

)
. (1.3)
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Using a new variant of the Palais-Smale condition [15, 16], which takes into account
Pohozaev’s identity, we will prove a deformation theorem, which enables us to apply
minimax arguments in the space R × H 1

r (R
N). As shown in [7], our deformation

arguments show that solutions without Pohozaev identity are deformable with a
suitable deformation flow. Therefore critical points with Pohozaev identity are just
essential since they give a topological contribution.

We state our main results.

Theorem 1.1 Suppose N ≥ 3, (f1)–(f4). Then there exists c0 such that for any
c > c0, the problem (1.1) has a radially symmetric solution. In addition if (f5)
holds, the solution is positive.

Theorem 1.2 Suppose N ≥ 3, (f1)–(f4) and

lim
s→0

F(s)

|s|N+α+2
N

= +∞. (1.4)

Then for any c > 0, the problem (1.1) has a radially symmetric solution. In addition
if (f5) holds, the solution is positive.

We remark that solutions obtained in above theorems are ground state solutions,
that is, they have least energy among all solutions. See Remarks 5.3 and 5.4.

2 Functional Settings

In what follows we use the notation:

‖u‖H 1 =
(ˆ

RN

|∇u|2 + u2 dx

)1/2

,

‖u‖r =
(ˆ

RN

|u|r dx
)1/r

for r ∈ [1,∞),

B(p,R) = {x ∈ R
N ; |x − p| < R}.

We recall the following generalized Hardy-Littlewood-Sobolev inequality [22].

Proposition 2.1 Let p, r > 1 and α ∈ (0, N) with 1
p

+ 1
r

= N+α
N

. Then there exists
a constant C = C(N, α, p, r) > 0 such that

∣∣∣∣
ˆ
RN

(Iα ∗ f )g dx

∣∣∣∣ ≤ C‖f ‖p‖g‖r (2.1)

for all f ∈ Lp(RN) and g ∈ Lr(RN).
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In what follows we denote by p the L2 critical exponent, i.e.

p = N + α + 2

N
.

We consider the functional T : (0,∞) × H 1
r (R

N) → R defined by (1.3). Using
Proposition 2.1, it is easy to see that T (μ, u) ∈ C1((0,∞)×H 1

r (R
N),R). Moreover

(μ, u) solves problem (1.1) if and only if ∂uT (μ, u) = 0 and ∂μT (μ, u) = 0.
Moreover we define the functional J : (0,∞) × H 1

r (R
N) → R by setting

J (μ, u) = 1

2

ˆ
RN

|∇u|2 dx − 1

2

ˆ
RN

(Iα ∗ F(u))F (u) dx + μ

2
‖u‖2

2. (2.2)

For a fixed μ > 0, u is critical point of J (μ, ·) means that u solves

{−�u + μu = (Iα ∗ F(u))f (u) in R
N,

u ∈ H 1
r (R

N).
(2.3)

It is immediate that

T (μ, u) = J (μ, u) − μ

2
c.

Finally by Proposition 3.1 in [28] each solution u of (2.3) belongs to W
2,2
loc (R

N)

and it satisfies Pohozaev’s identity (see [28, Proposition 3.5])

N − 2

2
‖∇u‖2

2 + N

2
μ‖u‖2

2 = N + α

2
D(u), (2.4)

where we set

D(u) =
ˆ
RN

(Iα ∗ F(u))F (u) dx.

Inspired by Pohozaev’s identity, we also introduce the functional P : (0,∞) ×
H 1

r (R
N) → R by setting

P(μ, u) = N − 2

2
‖∇u‖2

2 − N + α

2
D(u) + N

2
μ‖u‖2

2. (2.5)
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3 Geometry of T (μ, u)

In [28] Moroz and Van Schaftingen showed that, under the assumption (f1)–(f5), for
any μ > 0 the functional

u ∈ H 1
r (R

N) �→ J (μ, u) ∈ R

has the Mountain Pass geometry. Precisely, set

�μ = {γ (t) ∈ C([0, 1],H 1
r (R

N)); γ (0) = 0, J (μ, γ (1)) < 0}

the following MP value

a(μ) = inf
γ∈�μ

max
t∈[0,1]

J (μ, γ (t))

is well defined and attained at a positive radially symmetric ground state solution
uμ. Now set

� = {(μ, u) ∈ (0,∞) × H 1
r (R

N); P(μ, u) > 0} ∪ {(μ, 0); μ > 0},

we denote

∂� = {(μ, u) ∈ (0,∞) × H 1
r (R

N); P(μ, u) = 0, u �= 0}

the boundary of � with respect to the relative topology to the set (0,∞)×H 1
r (R

N).
We observe that

{(μ, 0) |μ > 0} ⊂ int (�). (3.1)

We prove the following proposition.

Proposition 3.1

(i) J (μ, u) ≥ 0 for all (μ, u) ∈ �.
(ii) J (μ, u) ≥ a(μ) > 0 for all (μ, u) ∈ ∂�.

Proof We notice that for all (μ, u) ∈ �

J (μ, u) ≥ J (μ, u) − P(μ, u)

N + α

= α + 2

2(N + α)
‖∇u‖2

2 + αμ

2(N + α)
‖u‖2

2

and thus (i) follows.
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The proposition (ii) follows from the fact that the mountain pass level a(μ)

coincides with the ground state energy level c (see Theorem 1 in [28]). �
To see that T (μ, u) = J (μ, u) − μ

2 c has a MP geometry in (0,∞) × H 1
r (R

N),
it is crucial to analyze the behavior of a(μ) as μ → ∞.

Lemma 3.2

lim
μ→∞

a(μ)

μ
= ∞.

Proof We write p = N+α+2
N

and q = N+α
N

. By (f3), for any δ > 0 there exists
Cδ > 0 such that

|F(s)| ≤ δ|s|p + Cδ|s|q for all s ∈ R.

For v(x) ∈ H 1
r (R

N), setting us(x) = sN/2v(sx), we have

D(us) = D(sN/2v(sx)) = s−N−αD(sN/2v(x))

≤ s−N−α

ˆ
RN

(Iα ∗ (δs
N
2 p|v|p + Cδs

N
2 q |v|q))(δs N

2 p|v|p + Cδs
N
2 q |v|q )

= s2
ˆ
RN

(Iα ∗ (δ|v|p + Cδs
−1|v|q))(δ|v|p + Cδs

−1|v|q)

≡ s2Dδ,Cδs
−1(v). (3.2)

Here we write for δ > 0 and A ≥ 0,

Dδ,A(v) =
ˆ
RN

(Iα ∗ (δ|v|p + A|v|q))(δ|v|p + A|v|q) dx,

Jδ,A(v) = 1

2
‖∇u‖2

2 + 1

2
‖u‖2

2 − 1

2
Dδ,A(u).

We also denote by b(δ,A) the MP value of Jδ,A(v). Taking into account the
continuity and monotonicity property of b(δ,A) with respect of each variable δ and
A and noting that Jδ,A(v) satisfies (PS) condition, we have

b(δ,A) → b(δ, 0) as A → 0,

b(δ, 0) → ∞ as δ → 0+.

Thus, we have from (3.2) that

J (μ, us) ≥ s2
(

1

2
‖∇v‖2

2 + 1

2
μs−2‖v‖2

2 − 1

2
Dδ,Cδs−1(v)

)
.
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Setting s = √
μ, we have

J (μ, u√
μ) ≥ μJδ,Cδμ−1/2(v)

and thus

a(μ)

μ
≥ b(δ, Cδμ

−1/2).

Therefore we have

lim inf
μ→∞

a(μ)

μ
≥ lim

A→0
b(δ,A) = b(δ, 0).

Since δ > 0 is arbitrary, we have

lim
μ→∞

a(μ)

μ
= ∞.

�
Corollary 3.3 For any c > 0, there exists Bc ∈ R such that

T (μ, u) ≥ Bc for all (μ, u) ∈ ∂�.

Next we show

Proposition 3.4 Assume (1.4) in addition to (f1)–(f5). Then

lim
μ→0

a(μ)

μ
= 0. (3.3)

Proof We fix u ∈ H 1
r (R

N) ∩ L∞(RN) with ‖u‖∞ = 1. We note that there exists
Ls > 0 such that

F(su(x)) ≥ √
Lss

p |u(x)|p for all s ∈ (0, 1] and x ∈ R
N,

Ls → ∞ as s → 0.

Recalling D1,0(u) = ´
RN (Iα ∗ |u|p)|u|p, we have for t > 0

J (μ, su(x/t)) ≤ 1

2
s2tN−2‖∇u‖2

2 + μ

2
s2tN‖u‖2

2 − 1

2
Lss

2ptN+αD1,0(u)

= μ−N−2
2

(
1

2
s2τN−2‖∇u‖2

2 + 1

2
s2τN‖u‖2

2 − 1

2
Lsμ

N−2
2 μ−N+α

2 s2pτN+αD1,0(u)

)

= μ−N−2
2 s2

(
1

2
‖∇u‖2

2τ
N−2 + 1

2
‖u‖2

2τ
N − 1

2
Lsμ

− 2+α
2 s2p−2D1,0(u)τ

N+α

)
.
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after setting t = μ−1/2τ . Moreover setting s = μN/4, we have

J (μ,μN/4u(x/(μ−1/2τ)) ≤ μ

(
1

2
‖∇u‖2

2τ
N−2 + 1

2
‖u‖2

2τ
N − 1

2
LμN/4D1,0(u)τ

N+α

)
.

For μ ∈ (0, 1),

τ �→ μN/4u(x/μ−1/2τ ); (0,∞) → H 1
r (R

N)

can be regarded as a path in �μ. Thus

a(μ)

μ
≤ max

τ∈(0,∞)

(
1

2
‖∇u‖2

2τ
N−2 + 1

2
‖u‖2

2τ
N − 1

2
LμN/4D1,0(u)τ

N+α

)
.

Since LμN/4 → ∞ as μ → 0, we have

R.H.S. → 0 as μ → 0+.

Thus we have the conclusion. �

4 Palais-Smale-Pohozaev Condition

Under the conditions (f1)–(f5), it seems hard to verify the standard Palais-Smale
condition for the functional T (λ, u). As in [15] we introduce a compactness
condition which is weaker than the standard Palais-Smale condition (see also
[14, 16, 17]). Precisely, we give the following definition. In this section we set
μ = eλ, with λ ∈ R and we write

T (λ, u) = 1

2
‖∇u‖2

2 − 1

2
D(u) + 1

2
eλ(‖u‖2

2 − c) : R × H 1
r (R

N) → R.

We also write

P(λ, u) = N − 2

2
‖∇u‖2

2 − N + α

2
D(u) + N

2
eλ‖u‖2

2,

� = {(λ, u) ∈ R × H 1
r (R

N); P(λ, u) > 0} ∪ {(λ, 0); λ ∈ R}.

Definition 4.1 For b ∈ R, we say that T (λ, u) satisfies the Palais-Smale-Pohozaev
condition at level b (shortly the (PSP)b condition), if for any sequence (λn, un) ⊂
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R × H 1
r (R

N) such that

T (λn, un) → b,

∂λT (λn, un) → 0.

∂uT (λn, un) → 0 strongly in (H 1
r (R

N))∗,

P(λn, un) → 0,

it happens that (λn, un) has a strongly convergent subsequence in R × H 1
r (R

N).

We remark that this compactness condition takes into consideration of the scaling
properties of T (λ, u), through Pohozaev functional P(λ, u).

We will show the following crucial result.

Theorem 4.2 Assume (f1)–(f5). Let b ∈ R, b < 0. Then T (λ, u) satisfies the
(PSP)b condition on R × H 1

r (R
N).

Proof Let b < 0 and (λj , uj ) ⊂ R × H 1
r (R

N) such that

T (λj , uj ) → b, (4.1)

∂λT (λj , uj ) → 0, (4.2)

∂uT (λj , uj ) → 0 strongly in (H 1
r (R

N))∗, (4.3)

P(λj , uj ) → 0. (4.4)

First we note that by (4.2)

eλj (‖uj‖2
2 − c) → 0. (4.5)

Step 1: λj is bounded from below as j → +∞.
We have

o(1) = P(λj , uj ) = N − 2

2
‖∇uj‖2

2

+(N + α)
{
T (λj , uj ) − 1

2
‖∇uj‖2

2 − eλj

2

(‖uj‖2
2 − c

)} + N

2
eλj ‖uj‖2

2

= −α + 2

2
‖∇uj‖2

2 + (N + α)
{
T (λj , uj ) − eλj

2

(‖uj‖2
2 − c

)} + N

2
eλj ‖uj‖2

2

= −α + 2

2
‖∇uj‖2

2 + (N + α)(b + o(1)) + N

2
eλj c + o(1).

Here we used (4.5).
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If λj is not bounded below, there exists a subsequence, still denoted by λj such
that λj → −∞. From the above identity, we derive a contradiction, since b < 0.

Step 2: ‖uj‖2
2 → c as j → +∞.

It follows from (4.5).
Step 3: ‖∇uj‖2

2, λj are bounded.
Since εj ≡ ‖∂uT (λj , uj )‖(H 1

r (R
N))∗ → 0, we have

‖∇uj‖2
2 −

ˆ
RN

(Iα ∗ F(uj ))f (uj )ujdx + eλj ‖uj‖2
2 ≤ εj‖uj‖H 1 . (4.6)

We observe that by (f3) for δ > 0 fixed, there exists Cδ > 0 such that

|F(s)| ≤ δ|s|p + Cδ|s|N+α
N

where p = N+α+2
N

and thus

‖F(uj )‖ 2N
N+α

≤ δ‖|uj |p‖ 2N
N+α

+ Cδ‖|uj |N+α
N ‖ 2N

N+α
= δ‖uj‖p2Np

N+α

+ Cδ‖uj‖
N+α
N

2 .

Therefore by (f2) we have

ˆ
RN

(Iα ∗ |F(uj )|)|f (uj )uj | dx

≤ C‖F(uj )‖ 2N
N+α

‖f (uj )uj‖ 2N
N+α

≤ C(δ‖uj ‖p2Np
N+α

+ Cδ‖uj‖
N+α
N

2 ) · C′(‖uj‖p2Np
N+α

+ ‖uj‖
N+α
N

2 )

= CC′δ‖uj ‖2p
2Np
N+α

+ CC′(δ + Cδ)‖uj‖p2Np
N+α

‖uj ‖
N+α
N

2 + CC′Cδ‖uj ‖
2(N+α)

N

2

= CC′δ‖uj ‖2p
2Np
N+α

+ CC′(δ + Cδ)(
δ

2
‖uj ‖2p

2Np
N+α

+ 1

2δ
‖uj ‖

2(N+α)
N

2 ) + CC′Cδ‖uj ‖
2(N+α)

N

2

≤ C′′δ‖uj ‖2p
2Np
N+α

+ C′′
δ ‖uj ‖

2(N+α)
N

2

and thus

‖∇uj‖2
2 + eλj ‖uj‖2

2 ≤
ˆ
RN

(Iα ∗ |F(uj )|)|f (uj )uj |dx + εj‖uj‖H 1

≤ C′′δ‖∇uj‖2
2‖uj‖2(p−1)

2 + C′′
δ ‖uj‖

2(N+α)
N

2 + εj‖uj‖H 1 .
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Since ‖uj‖2
2 = c + o(1), we have

(1 − C′′δ(c + o(1))p−1)‖∇uj‖2
2 + eλj (c + o(1))

≤ C′′
δ (c + o(1))

N+α
N + εj (‖∇uj‖2

2 + c + o(1))1/2.

For δ small enough, we have boundedness of ‖∇uj‖2 and eλj . Thus λj cannot
go to +∞ and thus by Step 1 we infer that λj is bounded.

Step 4: By the steps 1–2, the sequence (λj , uj ) is bounded in R × H 1
r (R

N) and
thus after extracting a subsequence, denoted in the same way, we may assume
that λj → λ0 and uj → u0 weakly in H 1

r (R
N) for some (λ0, u0) ∈ R×H 1

r (R
N).

Taking into account the assumptions (f1)–(f4), we have

ˆ
RN

(Iα ∗ F(uj ))f (uj )u0 dx →
ˆ
RN

(Iα ∗ F(u0))f (u0)u0 dx

and
ˆ
RN

(Iα ∗ F(uj ))f (uj )uj dx →
ˆ
RN

(Iα ∗ F(u0))f (u0)u0 dx.

Thus we derive that 〈∂uT (λj , uj ), uj 〉 → 0 and 〈∂uT (λj , uj ), u0〉 → 0, and
thus

‖∇uj‖2
2 + eλ0‖uj‖2

2 → ‖∇u0‖2
2 + eλ0‖u0‖2

2

which implies uj → u0 strongly in H 1
r (R

N).

�
Remark 4.3 We emphasize that the (PSP) condition does not hold at level b = 0.
Indeed we can consider the unbounded sequence (λj , 0) with λj → −∞, for which
we have

T (λj , 0) = ∂λT (λj , 0) = −eλj

2
c → 0

and

∂uT (λj , 0) = 0, P(λj , 0) = 0.

Now we denote

Kb = {(λ, u) ∈ R × H 1
r (R

N) | T (λ, u) = b, ∂λT (λ, u) = 0, ∂uT (λ, u) = 0}.

Clearly, ∂uT (λ, u) = 0 implies P(λ, u) = 0.
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Now for each c ∈ R we introduce the following notation

[T ≤ c] = {(λ, u) ∈ R × H 1
r (R

N) | T (λ, u) ≤ c}.

Following arguments strictly related to [15, Proposition 3.1, Corollary 4.3], we can
establish the following deformation theorem for the functional T (λ, u).

Theorem 4.4 Assume (f1)–(f4). Assume b < 0. Then Kb is compact in R ×
H 1

r (R
N) and Kb ∩ (R × {0}) = ∅.

Moreover for any open neighborhood U of Kb and ε̄ > 0 there exists ε ∈ (0, ε̄)
and a continuous map

η(t, λ, u) : [0, 1] × R × H 1
r (R

N) → R × H 1
r (R

N)

such that

(1o) η(0, λ, u) = (λ, u) ∀(θ, u) ∈ R × H 1
r (R

N);
(2o) η(t, λ, u) = (λ, u) ∀(θ, u) ∈ [T ≤ b − ε̄];
(3o) T (η(t, λ, u)) ≤ T (λ, u) ∀(t, λ, u) ∈ [0, 1] × R × H 1

r (R
N);

(4o) η(1, [T ≤ b + ε] \ U) ⊂ [T ≤ b − ε];
(5o) η(1, [T ≤ b + ε]) ⊂ [T ≤ b − ε] ∪ U ;
(6o) If Kb = ∅, we have η(1, [T ≤ b + ε]) ⊂ [T ≤ b − ε].

5 A Minimax Theorem

We go back to notation (2.2), i.e., we use μ instead of λ.
For any c > 0, let Bc be the constant defined in Corollary 3.3.
As a minimax class for T , we define

�c = {ξ(t) ∈ C([0, 1], (0,∞) × H 1
r (R

N)); ξ(0) ∈ (0,∞) × {0},
T (ξ(0)) ≤ Bc − 1, ξ(1) �∈ � and T (ξ(1)) ≤ Bc − 1}.

From the observation in Sect. 4, we can see �c �= ∅. See also proof of (i) of the
following Proposition 5.1. By (3.1) clearly ξ([0, 1]) ∩ ∂� �= ∅ for each ξ ∈ �c.

Then from Corollary 3.3, a minimax value

βc = inf
ξ∈�c

max
t∈[0,1]

T (ξ(t)) (5.1)

is well-defined and finite. Since Palais-Smale-Pohozaev condition holds just for b ∈
(−∞, 0), it is important to estimate βc. We have the following proposition.
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Proposition 5.1

(i) Assume (f1)–(f5). Then for sufficiently large c > 0 there exists ξ(t) ∈ �c

such that

max
t∈[0,1]

T (ξ(t)) < 0. (5.2)

(ii) Assume (1.4) in addition to (f1)–(f5). Then for any c > 0 there exists ξ(t) ∈
�c with the property (5.2).

(iii) limc→∞ βc

c
= −∞.

Proof Let μ > 0. Since uμ is a MP solution, we have J (μ, uμ(x/t)) → −∞ as
t → +∞. Therefore there exists an optimal path γμ such that

a(μ) = max
t∈[0,1]J (μ, γμ(t))

and

T (μ, γμ(1)) ≤ Bc − 1. (5.3)

We also note that T (t, 0) → −∞ as t → ∞. Therefore joining the γμ(t) with
the path (μ + Lt, 0) with L large enough, we can find a path ξ(t) such that for μ

sufficiently large

max
t∈[0,1]T (ξ(t)) < 0 and ξ(t) ∈ �c

and thus we have (i).
(ii) If (1.4) holds, we can apply Proposition 3.4 and so we have

lim
μ→0

a(μ) − c
2μ

μ
= − c

2
< 0. (5.4)

By (5.3) and (5.4) we infer that for μ > 0 sufficiently small there exists ξμ(t) =
(μ, γμ(t)) such that

max
t∈[0,1]T (ξ(t)) < 0

and thus (ii).
(iii) Finally we have for any μ > 0

βc ≤ max
t∈[0,1]T (ξ(t)) = a(μ) − μ

2
c (5.5)
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and thus

lim sup
c→∞

βc

c
≤ lim

c→∞
a(μ)

c
− μ

2
= −μ

2
.

Since μ is arbitrary, we have (iii). �
We also have

Proposition 5.2

(i) For sufficiently large c > 0, βc < 0.
(ii) If (1.4) holds, then βc < 0 for all c > 0.

Proof By Proposition 5.1, we infer (i).
(ii) From (1.4) and Proposition 3.4, we derive for any c > 0

βc = inf
μ>0

(
a(μ) − 1

2
μc

)
< 0.

�
Finally using Theorem 4.4, we derive that the level βc, defined in (5.1), is critical

and thus Theorems 1.1 and 1.2 hold. For the positivity of the solutions, we remind
to Remark 5.3.

Remark 5.3 We remark that the Mountain Pass solutions found in Theorems 1.1
and 1.2 are minimizers of the functional L : Sc → R defined by

L(u) = 1

2

ˆ
RN

|∇u|2 dx − 1

2

ˆ
RN

(Iα ∗ F(u))F (u) dx

on the sphere

Sc = { u ∈ H 1
r (R

N) |‖u‖2
2 = c},

namely,

βc = κc,

where βc is given in (5.1) and κc = infu∈Sc L(u).
We just give an outline of the proof. Firstly we notice that we already proved that

κc > −∞

and clearly the solution u∗ obtained in Theorems 1.1 and 1.2 satisfies

0 > βc = L(u∗) ≥ κc. (5.6)
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On the other hand, for a minimizer u0 of L on Sc, that is, L(u0) = κc (for the
existence of a minimizer, see Remark 5.4 below), there exists a Lagrange multiplier
μ0 ∈ R such that

−�u0 + μ0u0 = (Iα ∗ F(u0))f (u0),

In particular, we have

‖∇u0‖2
2 + μ0‖u0‖2

2 =
ˆ
RN

(Iα ∗ F(u0))f (u0)u0 dx. (5.7)

We note that μ0 > 0 and u0 satisfies Pohozaev identity. In fact, we consider a
R-action � : R × Sc → Sc defined by

(�θv)(x) = e
N
2 θ v(eθx). (5.8)

Then we have ‖�θu‖2
2 = ‖u‖2

2 and

L(�θu0) = 1

2
e2θ‖∇u0‖2

2 − 1

2
e−(N+α)θ

ˆ
RN

(Iα ∗ F(e
N
2 θ u0(x)))F (e

N
2 θ u0(x)) dx.

Since u0 is a minimizer, we have d
dθ

∣∣
θ=0L(�θu0) = 0, that is,

‖∇u0‖2
2 + N + α

2

ˆ
RN

(Iα ∗ F(u0))F (u0) dx − N

2

ˆ
RN

(Iα ∗ F(u0))f (u0)u0 dx = 0.

(5.9)

From L(u0) = κc < 0, we have

1

2
‖∇u0‖2

2 − 1

2

ˆ
RN

(Iα ∗ F(u0))F (u0) dx = κc < 0. (5.10)

It follows form (5.7), (5.9), (5.10) that μ0 > 0 and Pohozaev identity:

N − 2

2
‖∇u0‖2

2 + N

2
μ0‖u0‖2

2 = N + α

2
D(u0). (5.11)

Thus from the argument for Theorems 1.1 and 1.2, we can find a path ξ0(t) ∈ �c

such that

max
t∈[0,1]T (ξ0(t)) = L(u0) = κc,

which implies βc ≤ κc. Together with (5.6) we have βc = κc.
If (f5) holds, the Mountain Pass solutions found in Theorems 1.1 and 1.2 are

positive (see [28, Proposition 5.2]).
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Remark 5.4 (Existence of a Minimizer of L on Sc) In order to show the existence
of the minimizer u0 of L on Sc, we use the action �θ on Sc defined in (5.8). We
introduce

L̂(θ, u) = L(�θu) : R × Sc → R.

We note that

inf
(θ,u)∈R×Sc

L̂(θ, u) = κc.

Applying Ekeland’s Principle to L̂ : R × Sc → R, we find a sequence (θj , uj ) ⊂
R × Sc such that

L̂(θj , uj ) → κc, ∂θ L̂(θj , uj ) → 0, duL̂(θj , uj ) → 0

Setting ûj (x) = e
N
2 θj uj (e

θj x), we observe for a suitable λj ∈ R, (λj , ûj ) is a
(PSP)κc -sequence for T (λ, u) introduced in Sect. 4. Thus, thanks to Theorem 4.2,
after extracting a subsequence, (ûj ) converges to a minimizer of L on Sc, provided
κc < 0.
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Optimization of the Structural
Performance of Non-homogeneous
Partially Hinged Rectangular Plates

Alessio Falocchi

Abstract We consider a non-homogeneous partially hinged rectangular plate
having structural engineering applications. In order to study possible remedies for
torsional instability phenomena we consider the gap function as a measure of the
torsional performances of the plate. We treat different configurations of load and we
study which density function is optimal for our aims. The analysis is in accordance
with some results obtained studying the corresponding eigenvalue problem in terms
of maximization of the ratio of specific eigenvalues. Some numerical experiments
complete the analysis.

Keywords Gap function · Torsional instability · Mass density

1 Introduction

We study a long narrow rectangular thin plate � ⊂ R
2, hinged at the short edges and

free on the remaining two, see [12]. This plate may model the deck of a bridge; since
this kind of structure exhibits problems of flutter instability, e.g. see [13, 15, 18], we
optimize its design in order to reduce the phenomenon. To this aim one may vary
the shape of the plate, see [6], or modify the materials composing it, see [3, 7, 8].

Here we fix the geometry of the plate, assuming that it has length π and width
2� with 2� � π so that

� = (0, π) × (−�, �) ⊂ R
2 ;

we assume that the plate is not homogeneous, i.e. it features variable density
function p = p(x, y); our aim is to find the optimal density configuration in order
to improve the structural performance of the plate.
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In a rectangular plate it is possible to distinguish vertical and torsional oscil-
lations; the most problematic are the second ones, that may cause the collapse of
the structure, see [13]. Then we consider a functional, named gap function, able
to measure the torsional performance of the plate, see also [5]. In particular, this
functional measures the gap between the displacements of the two free edges of the
structure; the higher is the gap the higher is the torsional motion of the plate. More
precisely, we maximize the maximum of the absolute value of the gap function in a
class of external forcing term; then we consider its minimization in a class of density
functions. Hence, our final goal is to find the worst force and the best density in order
to reduce the torsional oscillation of the plate.

Since the explicit solution of this minimaxmax problem is currently out of
reach, we proceed testing the plate with some motivated external forces. Then we
consider different densities p(x, y) in order to understand how the gap function
varies; the choice of p(x, y) is driven by some results proposed in [3]. Here the
authors present a study on the correspondent weighted eigenvalue problem and they
compare different density functions in order to find the optimal, maximizing the
ratio between the first torsional eigenvalue and the previous longitudinal; they tested
some density functions proposing theoretical and numerical justifications. We point
out that the study of a ratio of eigenvalues has some limits; first of all it requires
to consider two specific eigenvalues, moreover the direct optimization of the ratio
is very involved. As a consequence, the question is often dealt with in terms of
minimization or maximization of a single eigenvalue, see [3] for details. Here we
compare the density functions proposed in [3] and we observe that p(x, y) optimal
for [3] are optimal also with respect to the reduction of the gap function. This result
confirms that the gap function is a reliable measure for the torsional performances
of rectangular plates; furthermore, it is a useful tool to get information on optimal
reinforces in order to reduce torsional instability phenomena.

The paper is organized as follows. In Sect. 2 we introduce some preliminaries and
notations and we define longitudinal and torsional modes of vibration. In Sect. 3
we define the gap function, we write the minimaxmax problem we are interested
in and we state the existence results, proved in Sect. 6. In Sect. 4 we describe the
density functions that are meaningful for our aims. In Sect. 5 we study the problem
considering external forces in L2(�) and providing some numerical experiments to
support the theoretical results.

2 Preliminaries and Variational Setting

2.1 Definition of the Problem

We derive the stationary equation which we are interested in from the energy of
the system; we denote by u = u(x, y) the vertical displacement of the plate �

having mass surface density p = p(x, y). In general, since we are dealing with a
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non-homogeneous plate, we may consider the modulus of Young E = E(x, y) and
the Poisson ratio σ = σ(x, y) of the materials forming the plate not constant. We
suppose that an external force for the unit mass f = f (x, y) acts on the plate in the
vertical direction. Thanks to the Kirchhoff-Love theory [14, 16], the energy of the
plate is given by

E(u) = h3

12

ˆ
�

E

1 − σ 2

(
(�u)2

2
+ (1 − σ)(u2

xy − uxxuyy)

)
dxdy −

ˆ
�

pfu dxdy,

where h is its constant thickness, see also [12].
To proceed with the classical minimization of the functional, we need some

information on the regularity of the functions representing the materials composing
the plate, i.e. p(x, y), E(x, y), σ(x, y). We consider the possibility that the plate
is composed by different materials, hence we cannot assume the continuity of
the previous functions. In general discontinuous Young modulus and Poisson ratio
generate some mathematical troubles in finding the minimization problem in strong
form. For the civil engineering applications, which we are interested in, we point out
that the Poisson ratio does not vary so much with respect to the possible choice of
the materials; therefore, as a first approach, we suppose E and σ constant in space,
while the density of the plate is in general variable and possibly discontinuous.
Hence we have

E(u) = Eh3

12(1 − σ 2)

ˆ
�

(
(�u)2

2
+ (1 − σ)(u2

xy − uxxuyy)

)
dxdy −

ˆ
�

pfu dxdy;

in this framework we minimize the energy functional, we divide the differential

equation for the flexural rigidity Eh3

12(1−σ 2)
and, including it in the density function,

we obtain
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�2u = p(x, y)f (x, y) in �

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−�, �)

uyy(x,±�) + σuxx(x,±�) = uyyy(x,±�) + (2 − σ)uxxy (x,±�) = 0 for x ∈ (0, π) .

(2.1)

The boundary conditions on the short edges are of Navier type, see [17], and model
the situation in which the plate is hinged on {0, π} × (−�, �). Instead, the boundary
conditions on the large edges are of Neumann type, modeling the fact that the deck
is free to move vertically; for the Poisson ratio we shall assume

σ ∈
(

0,
1

2

)
, (2.2)

since most of the materials have values in this range.
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In the sequel we denote by ‖ · ‖q the norm related to the Lebesgue spaces Lq(�)

with 1 ≤ q ≤ ∞ and we refer to q ′ as the conjugate of q , i.e. 1/q + 1/q ′ = 1 with
the usual conventions; moreover, given a functional space V (�), in the notation of
the correspondent norm and scalar product we shall omit the set �, e.g. ‖ · ‖V :=
‖ · ‖V (�).

In the next sections we study the behaviour of the plate with respect to different
weight functions p and external forcing terms f .

2.2 Families of Forcing Terms and Weight Functions

We introduce

FV := {f ∈ V (�) : ‖f ‖V = 1}

the set of admissible forcing terms, fixed a certain functional space V . We introduce
a family of weights to which p belongs

Pα,β
L∞ :=

{
p ∈ L∞(�) : α ≤ p ≤ β , p(x, y) = p(x,−y) a.e. in �,

ˆ
�

p dxdy = |�|
}

(2.3)

where α, β ∈ R
+ with α < β fixed. When f belongs to certain functional spaces,

we need further regularity on the weight functions; therefore we introduce a second
family

Pα,β

H 2 :=
{
p ∈ H 2(�) : p ∈ Pα,β

L∞ and ∃ κ > 1 : ‖p‖H 2 � κ
√|�|

}
,

with α, β ∈ R
+ and α < β fixed. The integral condition in (2.3) represents

the preservation of the total mass of the plate; this is our fixed parameter, useful
to compare the results between different weights. The bound on ‖p‖H 2 in Pα,β

H 2

is merely a technical condition to gain compactness; by Hölder inequality the
preservation of the total mass condition yields ‖p‖H 2 ≥ √|�|. Therefore, we
choose κ > 1 to exclude the trivial case p ≡ 1 in �. Indeed, we will always
assume

0 < α < 1 < β ,

studying the effect of a non-constant weight on the solution of (2.1). The assumption
α < 1 < β is not restrictive; if we assume β = 1, it must be p ≡ 1 a.e. in �, since
otherwise we would have

´
�
p dx dy < |�|; similarly, if we consider α = 1.

Moreover, we are interested in designs which are symmetric with respect to the
mid-line of the roadway, being � very small with respect to π . From a mathematical
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point of view, this assures two classes of eigenfunctions for the correspondent
eigenvalue problem, respectively, even or odd in the y-variable; we shall clarify
this question in Sect. 2.4.

2.3 Existence and Uniqueness Result

We introduce the space

H 2∗ (�) = {
u ∈ H 2(�) : u = 0 on {0, π} × (−�, �)

}
,

where we study the weak solution of (2.1). Let us observe that the condition u = 0
has to be meant in a classical sense because � ⊂ R

2 and the energy space H 2∗ (�)

embeds into continuous functions. Furthermore, H 2∗ (�) is a Hilbert space when
endowed with the scalar product

(u, v)H 2∗ :=
ˆ
�

[
�u�v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx)

]
dx dy

and associated norm

‖u‖2
H 2∗

= (u, u)H 2∗ ,

which is equivalent to the usual norm in H 2(�), see [12, Lemma 4.1]. We denote by
H−2∗ (�) the dual space of H 2∗ (�) and 〈·, ·〉 its dual product. We write the problem
(2.1) in weak sense

(u, v)H 2∗ = 〈pf, v〉 ∀v ∈ H 2∗ (�). (2.4)

Let us clarify what we mean for the dual product in (2.4) with respect to the choice
of f and p.

If f ∈ FLq with q ∈ (1,∞] and p ∈ Pα,β

L∞ , we write
´
� pf v dxdy instead of

〈pf, v〉.
If f ∈ H−2∗ (�) we need further regularity on p, e.g. p ∈ Pα,β

H 2 . We introduce

the linear functional Tf : H 2∗ (�) → R such that Tf (v) := 〈f, v〉 for all v ∈ H 2∗ (�)

and we define

〈pf, v〉 := Tf (pv) ∀v ∈ H 2∗ (�). (2.5)

Indeed, H 2∗ (�) is a Banach algebra, being the H 2∗ (�)-norm equivalent to the
H 2(�)-norm, see [1, Theorem 5.23] applied to the Sobolev space Wm,p(�) with
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m = p = 2 and � ⊂ R
2 convex with Lipschitz boundary. Therefore, if p ∈ Pα,β

H 2

we get K > 0 such that

pv ∈ H 2∗ (�) ‖pv‖H 2∗ ≤ K‖p‖H 2∗ ‖v‖H 2∗ ∀v ∈ H 2∗ (�).

We state the following result.

Proposition 2.1 Let f ∈ FV and 0 < α < 1 < β. If

(i) V = Lq(�) with q ∈ (1,∞] and p ∈ Pα,β

L∞ ,

(ii) V = H−2∗ (�) and p ∈ Pα,β

H 2 ,

then the problem (2.4) admits a unique weak solution u ∈ H 2∗ (�) ⊂ C0(�).

Proof By [12] we have that the bilinear form (u, v)H 2∗ is continuous and coercive,
hence to apply Lax Milgram Theorem we consider the functional 〈pf, v〉.
(i) If p ∈ Pα,β

L∞ and f ∈ FLq with q ∈ (1,∞] then pf ∈ Lq(�); moreover
we have � ⊂ R

2 so that H 2∗ (�) is embedded in C0(�). Therefore, applying
Hölder inequality, we obtain C1 > 0 such that

|〈pf, v〉| =
∣∣∣∣
ˆ
�

pf v dxdy

∣∣∣∣ � ‖pf ‖q‖v‖q ′ ≤ C1‖v‖H 2∗ ∀v ∈ H 2∗ (�),

so that 〈pf, v〉 is a linear and continuous functional.
(ii) By (2.5) we observe that Tf (pv) is linear and continuous, indeed we have C2 >

0 such that

|Tf (pv)| = |〈f, pv〉| ≤ ‖f ‖
H−2∗ ‖pv‖H 2∗ ≤ C2‖v‖H 2∗ ∀v ∈ H 2∗ (�),

being H 2∗ (�) a Banach algebra.

The solution u is continuous since the space H 2∗ (�) embeds into C0(�). ��

2.4 Definition of Longitudinal and Torsional Modes

To tackle (2.1) we need some preliminary information on the associated eigenvalue
problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�2u = λp(x, y)u in �

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−�, �)

uyy (x,±�) + σuxx (x,±�) = uyyy(x,±�) + (2 − σ)uxxy (x,±�) = 0 for x ∈ (0, π) .

(2.6)
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As in [9], we introduce the subspaces of H 2∗ (�):

H 2
E (�) := {u ∈ H 2∗ (�) : u(x,−y) = u(x, y) ∀(x, y) ∈ �},

H 2
O(�) := {u ∈ H 2∗ (�) : u(x,−y) = −u(x, y) ∀(x, y) ∈ �},

where

H 2
E (�) ⊥ H 2

O(�), H 2∗ (�) = H 2
E (�) ⊕ H 2

O(�) . (2.7)

We say that the eigenfunctions in H 2
E (�) are longitudinal modes and those in

H 2
O(�) are torsionalmodes. For all u ∈ H 2∗ (�) we denote by ue = u(x,y)+u(x,−y)

2 ∈
H 2
E(�) and uo = u(x,y)−u(x,−y)

2 ∈ H 2
O(�) respectively its even and odd

components. Moreover, we set

H−2
E (�) := {f ∈ H−2∗ (�) : 〈f, v〉 = 0 ∀v ∈ H 2

O(�)},
H−2
O (�) := {f ∈ H−2∗ (�) : 〈f, v〉 = 0 ∀v ∈ H 2

E(�)}.

Since H 2∗ (�) = H−2
E (�) ⊕ H−2

O (�), there exists a unique couple (f e, f o) ∈
H−2
E (�) × H−2

O (�) such that f = f e + f o for all f ∈ H−2∗ (�). We endow
the space H−2∗ (�) with the norm ‖f ‖

H−2∗ := sup‖v‖
H2∗ =1〈f, v〉, observing that

‖f ‖
H−2∗ = max{‖f o‖

H−2∗ , ‖f e‖
H−2∗ } ∀f ∈ H−2∗ (�). (2.8)

When p ≡ 1 the whole spectrum of (2.6) is determined explicitly in [12] and
gives two class of eigenfunctions belonging respectively to H 2

E(�) or H 2
O(�).

Thanks to the symmetry assumption on p we obtain the same distinction for all
the linearly independent eigenfunctions of the weighted eigenvalue problem (2.6).

We denote by μm(p) and νm(p) respectively the ordered weighted longitudinal
and torsional eigenvalues of (2.6), repeated with their multiplicity; moreover, we
denote respectively by z

p
m(x, y) ∈ H 2

E(�) and θ
p
m(x, y) ∈ H 2

O(�), the corre-
sponding (ordered) longitudinal and torsional linearly independent eigenfunctions
of (2.6). We consider the eigenfunctions normalized in L2

p(�) (L2(�)-weighted),
i.e.

‖√p z
p
m‖2

2 =
ˆ
�

p (z
p
m)2 dxdy = 1 ‖√p θ

p
m‖2

2 =
ˆ
�

p (θ
p
m)

2 dxdy = 1.

(2.9)
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3 Gap Function

In real structures the most problematic motions are related to the torsional oscilla-
tions, i.e. those in which prevail torsional modes. How can we measure the torsional
behaviour? By Proposition 2.1, the solution of (2.1) is continuous; hence, we define
the gap function, see also [5],

Gf,p(x) := u(x, �) − u(x,−�) ∀x ∈ [0, π], (3.1)

depending on the weight p and on the external load f . This function gives for every
x ∈ [0, π] the difference between the vertical displacements of the free edges,
providing a measure of the torsional response. The maximal gap is given by

G∞
f,p := max

x∈(0,π)
|Gf,p(x)|. (3.2)

In this way we introduce the map G∞
f,p : FV × Pα,β

W → [0,+∞) with (f, p) �→
G∞
f,p, that we study respectively in the cases

(i) (V ,W) = (
Lq(�),L∞(�)

)
with q ∈ (1,∞]

(ii) (V ,W) = (
H−2∗ (�),H 2(�)

) (3.3)

for which Proposition 2.1 assures the uniqueness of a solution to (2.1).
Our aim is to find the worst f ∈ FV , i.e. the forcing term that maximizes G∞

f,p,

and the best weight p ∈ Pα,β
W that minimizes G∞

f,p. More precisely we want to solve
the minimaxmax problem

G∞ := min
p∈Pα,β

W

max
f∈FV

max
x∈(0,π)

|Gf,p(x)|,

in the cases (3.3).
In Sect. 6 we prove the existence results.

Theorem 3.1 Given p ∈ Pα,β
W with 0 < α < 1 < β, if

(i) W = L∞(�) and f ∈ FV with V = Lq(�) q ∈ (1,∞],
(ii) W = H 2(�) and f ∈ FV with V = H−2∗ (�),

then the problem

G∞
p := max

f∈FV

G∞
f,p (3.4)

admits solution.
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Theorem 3.2 Given f ∈ FV , if

(i) V = Lq(�) with q ∈ (1,∞] and p ∈ Pα,β
W (0 < α < 1 < β) with W =

L∞(�),
(ii) V = H−2∗ (�) and p ∈ Pα,β

W (0 < α < 1 < β) with W = H 2(�),

then the problem

min
p∈Pα,β

W

G∞
p , (3.5)

admits solution.

The next result shows that for p ∈ Pα,β
W (y-even), the worst force f ∈ FV in

terms of torsional performance can be sought in the class of the y-odd distributions
or functions.

Proposition 3.3

(i) Let (V ,W) as in (3.3)-(i) then problem (3.4) is equivalent to

max{G∞
f,p : f ∈ FLq , f (x,−y) = −f (x, y) a.e. in �}.

Moreover, if q ∈ (1,∞) any maximizer is necessarily odd with respect to y.
(ii) Let (V ,W) as in (3.3)-(ii), then problem (3.4) is equivalent to

max{G∞
f,p : f ∈ H−2

O , ‖f ‖
H−2∗ = 1}.

This proposition and its proof are inspired by Berchio et al. [7, Theorem 4.1–4.2],
where a similar problem is dealt with and further results are given. We underline
that the uniqueness of a y-odd maximizer is not guaranteed; indeed, solely in the
case (3.3)-(i) with q ∈ (1,∞) we obtain only odd maximizers. In the cases (3.3)-
(i) with q = ∞ and (3.3)-(ii) it is possible that other f , not necessarily odd, attain
the maximum, see also [7].

4 The Choice of the Weight Function p ∈ Pα,β

L∞

About the choice of the weight function p ∈ Pα,β
W we are mainly interested in

density functions not necessarily continuous, hence we consider W = L∞(�);
therefore, in the rest of the paper we focus on (3.4)–(3.5) in the case (V ,W) =(
Lq(�),L∞(�)

)
with q ∈ (1,∞].

We refer to some results obtained on the correspondent eigenvalue problem (2.6)
presented in [3]. Here the authors find the best rearrangement of materials in �
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which maximizes the ratio between two selected eigenvalues of (2.6), considering
the optimization problem:

R = sup
p∈Pα,β

L∞

ν(p)

μ(p)
, (4.1)

where ν(p) and μ(p) are respectively a torsional and a longitudinal eigenvalue. The
direct study of (4.1) is very involved, then there are some theoretical results on the
problem of maximization of the first torsional eigenvalue or minimization of the first
longitudinal eigenvalue with respect to p; these results give suggestions on (4.1) and
support some conjectures also thanks to numerical experiments. More precisely, in
[3] the authors proved theoretically that optimal weights p(x, y) in increasing or
reducing the first torsional or longitudinal eigenvalue must be of bang-bang type,
i.e.

p(x, y) = αχS(x, y) + βχ�\S(x, y) for a.e. (x, y) ∈ � ,

for a suitable set S ⊂ �, 0 < α < 1 < β and χS is the characteristic function of
S. In other words, the plate must be composed by two different materials properly
located in �; this is useful in engineering terms, since the manufacturing of two
materials with constant density is simpler than the assemblage of a material having
variable density. On the other hand this produces some mathematical troubles,
for instance when we consider as external forcing term f ∈ H−2∗ (�), see
Proposition 2.1.

In the sequel we distinguish five meaningful bang-bang configurations for p ∈
Pα,β

L∞ ; we list the cases representing on the right in black the localization of the
reinforcing material on the plate:

(i) p ≡ 1
This is a particular case when α = β = 1 that corresponds to the homogeneous
plate; we do not apply reinforcements, but we consider this case to compare it
with the non-homogeneous ones.

(ii) p∗(x, y)
This choice comes out from the study of the problem

ν
α,β

1 := sup
p∈Pα,β

L∞
ν1(p) . (4.2)

We call optimal pair for (4.2) a couple (p̂, θ
p̂

1 ) such that p̂ achieves the

supremum in (4.2) and θ
p̂
1 is an eigenfunction of ν1(p̂). In [3] the following

result is proved.
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Proposition 4.1 ([3]) Problem (4.2) admits an optimal pair (p̂, θ p̂
1 ) ∈ Pα,β

L∞ ×
H 2
O(�). Furthermore, θ p̂

1 and p̂ are related as follows

p̂(x, y) = βχŜ(x, y) + αχ�\Ŝ (x, y) for a.e. (x, y) ∈ � ,

where Ŝ = {(x, y) ∈ � : (θ
p̂
1 )2(x, y) � t̂} for some t̂ > 0 such that |Ŝ| =

1−α
β−α

|�|.
Since we do not know explicitly θ

p̂

1 , the function θ
p̂

1 is replaced by the
torsional eigenfunction θ1

1 (x, y) of (2.6) with p ≡ 1, i.e. an eigenfunction
corresponding to ν1(1). This is explicitly known, see [12]; for details on this
choice see [3]. Therefore we consider

p∗(x, y) := βχS∗(x, y) + αχ�\S∗(x, y) for a.e. (x, y) ∈ � ,

where S∗ := {(x, y) ∈ � : (θ1
1 )

2(x, y) ≤ t∗} for t∗ > 0 such that |S∗| =
1−α
β−α

|�|.
(iii) p̆(y)

In order to find a reinforce more suitable for manufacturing, inspired by
p∗(x, y), we consider a weight depending only on y and concentrated around
the mid-line y = 0, i.e.

p̆(x, y) = p̆(y) := βχĬ (y) + αχ(−�,�)\Ĭ (y) for a.e. (x, y) ∈ � ,

where Ĭ := ( − �(β−1)
β−α

,
�(β−1)
β−α

)
.

(iv) pi(x), i ∈ N
+

The reasons of this choice are quite involved. We give here only the main idea
and for details we refer to [3].

For i ∈ N
+, we set the minimum problem

μ
α,β
i := inf

p∈Pα,β

L∞
μi(p) , (4.3)

where μi(p) is the i-th longitudinal eigenvalue of (2.6). We call optimal pair

for (4.3) a couple (pi, z
pi

i ) such that pi achieves the infimum in (4.3) and z
pi

i is
an eigenfunction of μi(pi). In [8, Theorem 3.2] the following result is proved.

Proposition 4.2 ([8]) Set i = 1, then problem (4.3) admits an optimal pair
(p1, z

p1
1 ) ∈ Pα,β

L∞ × H 2
E (�). Furthermore, zp1

1 and p1 are related as follows

p1(x, y) = αχS1(x, y) + βχ�\S1(x, y) for a.e. (x, y) ∈ � ,



54 A. Falocchi

where S1 = {(x, y) ∈ � : (z
p1
1 )2(x, y) ≤ t1} for some t1 > 0 such that

|S1| = β−1
β−α

|�|.
Things become more involved for higher longitudinal eigenvalues and we

do not find an analytical expression as for i = 1. Focusing on upper bounds
for μi(p), see [3], we propose the following approximated optimal weight for
μ

α,β
i :

pi(x, y) = pi(x) := βχIi (x) + αχ(0,π)\Ii (x), for a.e. (x, y) ∈ � ,

where Ii :=
i⋃

h=1

(
π

2i
(2h − 1) − π

i

(1 − α)

2(β − α)
,
π

2i
(2h − 1) + π

i

(1 − α)

2(β − α)

)
.

(v) p(x)

We consider a weight concentrated near the short edges of the plate:

p(x, y) = p(x) := αχI (x) + βχ(0,π)\I (x) for a.e. (x, y) ∈ � ,

where I := (
π
2 − π(β−1)

2(β−α)
, π

2 + π(β−1)
2(β−α)

)
. This weight seems to be simple for

manufacturing and reasonable in order to increase R.

We denote by

P̂α,β := {p ∈ Pα,β
L∞ : p(x, y) coincides with 1 or p∗(x, y) or p̆(y) or p10(x) or p(x)

∀(x, y) ∈ �};

we shall explain in the next section why we are interested in p10(x) in the fourth
case.

5 L2(�) External Forcing Terms

When f ∈ FL2 it is possible to obtain more information on the solution of (2.4) and,
in turn, on the gap function. In this case we expand u in Fourier series, adopting an
orthonormal basis of L2

p composed by the eigenfunctions of (2.6). In Sect. 6 we
prove the following result.

Proposition 5.1 For m ∈ N
+, we denote by νm(p) and μm(p) the eigenvalues

of (2.6) and, respectively, θ
p
m(x, y) and z

p
m(x, y) the corresponding normalized

eigenfunctions, see (2.9).
If f ∈ FL2 and p ∈ Pα,β

L∞ then the unique solution of (2.4) reads

u(x, y) =
∞∑

m=1

[
am

νm(p)
θ
p
m(x, y) + bm

μm(p)
z
p
m(x, y)

]
(5.1)
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and

Gf,p(x) = 2
∞∑

m=1

am

νm(p)
θ
p
m(x, �) ∀x ∈ [0, π], (5.2)

where

am :=
ˆ
�

pf θ
p
m dxdy bm :=

ˆ
�

pf z
p
m dxdy.

If f ∈ FL2 and f (x,−y) = −f (x, y) a.e. in � then u(x, y) =
∞∑

m=1

am

νm(p)
θ
p
m(x, y).

Driven by Proposition 3.3, we shall consider y-odd forcing terms; in [2] the
authors conjectured as worst forcing term

f0(x, y) =
{

1 y ∈ [0, �]
−1 y ∈ [−�, 0).

Since ‖f0‖2 = √|�| and we are interested in f ∈ FL2 , we normalize f0, i.e.

f 0(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1√|�| y ∈ [0, �]
−1√|�| y ∈ [−�, 0).

We refer to Table 1 for numerical results about f 0.
A physical interesting case is when f is in resonance with the structure, i.e. when

f is a multiple of an eigenfunction of (2.6). The case in which f is proportional to

Table 1 The first torsional weighted eigenvalues ν1(p), ν2(p) and G∞
f,p defined in (3.2), assuming

(5.3)–(5.4) and N = 30

p ≡ 1 p∗(x, y) p̆(y) p10(x) p(x)

ν1(p) × 10−4 1.09 1.98 1.75 1.09 1.56

ν2(p) × 10−4 4.38 6.88 7.01 4.37 4.14

G∞
f 0,p

× 104 9.32 6.09 6.99 9.32 7.00

G∞
f 1,p

× 104 1.23×10 6.74 7.71 1.23×10 8.21

G∞
f 2,p

× 104 3.08 1.93 1.93 3.11 3.38

In bold we highlight the best values with respect to the weight tested
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a longitudinal mode is not interesting from our point of view since the gap function
vanishes. Hence, we consider f proportional to the j -th torsional mode, i.e.

fj (x, y) = θ
p

j (x, y);

since ‖fj‖2 �= 1, we consider f j (x, y) = θ
p
j (x, y)/‖θp

j ‖2 so that f j ∈ FL2 for all
j ∈ N

+. Trough Proposition 5.1, we readily obtain

am =
⎧
⎨

⎩
1/‖θpj ‖2 m = j

0 m �= j
u(x, y) = θ

p

j (x, y)

νj (p)‖θpj ‖2
Gfj ,p(x) = 2

θ
p

j (x, �)

νj (p)‖θpj ‖2
.

We provide now some numerical results considering a narrow plate, as it may be
the deck of a suspension bridge, composed by typical materials adopted for these
structures, i.e.

� = π

150
σ = 0.2, (5.3)

for details see [4, 10, 11]. We point out that with these parameters the eigenvalues
of the homogeneous plate (p ≡ 1) are ordered in the following sequence

μ1(1) < . . . < μ10(1) < ν1(1) < μ11(1) < . . .

Hence, the longitudinal eigenvalue closest to the first torsional from below is μ10(1);
for this reason we consider p ∈ P̂α,β fixing i = 10 for the fourth reinforce p10
proposed in Sect. 4. On the choice of the values 0 < α < 1 < β related to the
family Pα,β

L∞ , for the applicative purpose we may strengthen the plate with steel and
we may consider the other material composed by a mixture of steel and concrete;
therefore, the denser material has approximately triple density with respect to the
weaker. Thus, we assume

α = 0.5 β = 1.5. (5.4)

The numerical computation of the gap function in (5.2) is obtained truncating the
Fourier series at a certain N ≥ 1, integer; we compute the weighted eigenvalues
and eigenfunctions of (2.6), exploiting the explicit information we have in the case
p ≡ 1, see [12], and adopting the same numerical procedure described in [3].

In Table 1 we present the maximum values assumed by the gap function with
respect to the choice of f ∈ FL2 and p ∈ P̂α,β ; as one can expect, for f = f 0 the
absolute maximum is always attained in x = π/2, while for f = f j is assumed
where sin(jx) has stationary points; indeed, θp

j (x,±�) is qualitatively similar to
±A sin(jx) (A ∈ R

+, j ∈ N
+), see Fig. 1.
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Fig. 1 Plots of the gap functions Gf 0,p
(x) and Gf 1,p

(x) for x ∈ [0, π], varying p, assuming
(5.3)–(5.4) and N = 30
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∗

Fig. 2 Plots of j �→ G∞
f j ,1

and j �→ G∞
f j ,p

∗ , assuming (5.3)–(5.4) and N = 30

In Fig. 2 we plot j �→ G∞
f j ,p

when the plate is homogeneous and p = p∗;

through this result we conjecture that the gap function reduces in amplitude when
f j is in resonance with higher torsional modes.

The choice to strengthen the plate with densities like pi(x) (i ∈ N
+) needs

some remarks. In this paper we considered only the case p10(x), because it is
emblematic for all pi(x); indeed, the values of p10(x) in Table 1 are very similar
to those related to pi(x) with i = 4, . . . , 15, hence we do not show them. We
point out that these reinforces are thought to reduce the i-th longitudinal eigenvalue,
see [3]. From our analysis we observe that they are not so useful in modifying the
torsional eigenvalues and in lowering the gap function; this is confirmed also by
Fig. 1 where the gap function related to p10(x) is very close to the gap function
of the homogeneous plate. Numerically we observe that this trend is less and less
remarked as we increase the size of � with respect to (5.3). Hence, for � ! π

150 ,
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e.g. � = π
15 , it is possible that weights as pi(x) (i ∈ N

+) play a role in the torsional
performance of the plate, but this overcomes our applicative purposes.

The worst situation among the tested external forces appears when f = f 1
followed by f = f 0; this suggests that the forces f ∈ FL2 which maintain the same
(and opposite) sign along the two free edges of the plate seem to be the candidate
solutions of (3.4). Among the weight considered, the possible optimal reinforces
of (3.5) are p∗(x, y) or p̆(y), see Fig. 1. The weight p∗(x, y) provides very good
results for our aims, while p̆(y) is more suitable to maximize the second torsional
eigenvalue; this is also confirmed by the value of G∞

f 2,p
, i.e. the maximum of the gap

function when f is in resonance with the second torsional weighted eigenfunction.
In general, this agrees with the results obtained in [3], in which the problem is dealt
with a different point of view, based on the maximization of the eigenvalues ratio R
in (4.1).

6 Proofs

6.1 Proof of Theorem 3.1

Fixed p ∈ Pα,β
W with 0 < α < 1 < β, we prove the continuity of the map f �→ G∞

f,p

in the following lemma.

Lemma 6.1 Let (V ,W) the couple of functional spaces defined respectively in
(3.3)-(i) or in (3.3)-(ii). The map G∞

f,p : V → [0,+∞) is continuous when V is
endowed with the weak* topology.

Proof Let {fn}n ⊂ V be such that fn
∗
⇀ f in V for n → +∞. Denoting by un the

solution of (2.4) corresponding to fn, we have

(un, v)H 2∗ = 〈pfn, v〉 ∀v ∈ H 2∗ (�); (6.1)

since fn
∗
⇀ f in V , its V norm is bounded, then the above equality with v = un ∈

H 2∗ (�) ⊂ C0(�) gives respectively in the cases (3.3)-(i) and (3.3)-(ii)

(i) ‖un‖2
H 2∗

=
∣∣∣∣
ˆ
�

fn pun dxdy

∣∣∣∣ � β

ˆ
�

|fnun| dxdy � β‖fn‖q‖un‖q ′ ≤ C3‖un‖H 2∗ ,

(ii) ‖un‖2
H 2∗

= ∣∣〈pfn, un〉
∣∣ = ∣∣〈fn, pun〉

∣∣ � ‖fn‖H−2∗ ‖pun‖H 2∗ ≤ C4‖un‖H 2∗ ,

(6.2)

in which in the last inequality we used that H 2∗ (�) is a Banach algebra. Therefore
‖un‖H 2∗ ≤ C for some C > 0; thus we obtain, up to a subsequence, un ⇀ u in
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H 2∗ (�). Denoting by V ′ the dual space of V , we get pv ∈ V ′; hence we pass to the
limit (6.1)

(u, v)H 2∗ = 〈f, pv〉 ∀v ∈ H 2∗ (�),

obtaining by the uniqueness that u is the weak solution of (2.4).
The embedding H 2∗ (�) ⊂ C0(�) is compact, therefore un → u in C0(�),

implying that the gap function Gfn,p(x) converges uniformly to Gf,p(x) as n →
+∞ for all x ∈ [0, π]. Therefore G∞

fn,p
→ G∞

f,p as n → +∞. ��
Proof of Theorem 3.1 Completed Let p ∈ Pα,β

W fixed and {fn} ⊂ FV a maximiz-

ing sequence for (3.4); since ‖fn‖V = 1, we have, up to a subsequence, fn
∗
⇀ f

in V . By the lower semi continuity of the norms we have ‖f ‖V � ‖fn‖V = 1.
Through Lemma 6.1 we obtain

max
f∈FV

G∞
f,p = G∞

f ,p
;

we prove that ‖f ‖V = 1. For contradiction we suppose ‖f ‖V < 1; hence, we set
f̂ = f /‖f ‖V and by linearity we obtain G∞̂

f ,p
= G∞

f ,p
/‖f ‖V > G∞

f ,p
. This is

absurd. ��

6.2 Proof of Theorem 3.2

In the proof we shall use the compactness of the set Pα,β
W ; if W = L∞(�) the set

Pα,β
L∞ is compact for the L∞ weak* topology, see [3, Lemma 5.2]. If W = H 2(�)

we prove the following result.

Lemma 6.2 The set Pα,β

H 2 with 0 < α < 1 < β is compact for the H 2 weak
topology.

Proof Let {pn}n ⊂ Pα,β

H 2 , then by definition ‖pn‖H 2 ≤ κ
√|�|, hence, up to a

subsequence, we have pn ⇀ p in H 2(�) (as n → +∞) for some p ∈ H 2(�) and

‖p‖H 2 � lim inf
n→+∞ ‖pn‖H 2 ≤ κ

√|�|;

due to the compact embedding H 2(�) ⊂ C0(�), we obtain pn → p uniformly as
n → ∞. This implies α � p ≤ β and p(x,−y) = p(x, y) for all (x, y) ∈ �;
moreover, passing the limit under the integral, we obtain |�| = ´

�
pn dx dy →´

�
p dx dy, implying

´
�
p dx dy = |�|.

Therefore the limit point p ∈ Pα,β

H 2 and Pα,β

H 2 is compact for the H 2 weak
topology. ��
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Fixed f ∈ FV , we endow the spaces

(i) L∞(�) with the weak* topology,

(ii) H 2(�) with the weak topology
(6.3)

and we prove the continuity of the map p �→ G∞
p in the next lemma.

Lemma 6.3 Let (V ,W) the couple of functional spaces defined respectively in
(3.3)-(i) or in (3.3)-(ii). The map G∞

p : Pα,β
W → [0,+∞) is continuous when W

is endowed with the proper topology in (6.3).

Proof Let {pn}n ⊂ Pα,β
W be such that

(i) if W = L∞(�) pn
∗
⇀ p in L∞(�)

(ii) if W = H 2(�) pn ⇀ p in H 2(�)

for n → +∞; since Pα,β
W is compact for the respective topology (6.3), then p ∈

Pα,β
W .
We denote by un the solution of (2.4) corresponding to pn and we get

(un, v)H 2∗ = 〈pnf, v〉 ∀v ∈ H 2∗ (�); (6.4)

the above equality with v = un ∈ H 2∗ (�) ⊂ C0(�) gives respectively in the cases
(3.3)-(i) and (3.3)-(ii)

(i) ‖un‖2
H 2∗

=
∣∣∣∣
ˆ
�

pn f un dxdy

∣∣∣∣ � ‖pn‖∞‖f un‖1 � β‖f ‖q‖un‖q′ ≤ C5‖un‖H 2∗ ,

(ii) ‖un‖2
H 2∗

= ∣∣〈f, pnun〉
∣∣ � ‖f ‖

H−2∗ ‖pnun‖H 2∗ ≤ C6‖un‖H 2∗ ,

(6.5)

in which, in the last inequality we use that H 2∗ (�) is a Banach algebra, (2.5) and
pn ⇀ p in H 2(�). This implies ‖un‖H 2∗ � C for some C > 0; thus we get, up to a

subsequence, un ⇀ u in H 2∗ (�) and we pass to the limit (6.4)

(u, v)H 2∗ = 〈f, pv〉 ∀v ∈ H 2∗ (�),

obtaining by the uniqueness that u is the weak solution of (2.4).
As in Lemma 6.1 we use the compact embedding H 2∗ (�) ⊂ C0(�), implying

that the gap function Gpn(x) converges uniformly to Gp(x) as n → +∞ for all
x ∈ [0, π]. ��
Proof of Theorem 3.2 Completed By Lemma 6.3 we have that p �→ G∞

p is

continuous on Pα,β
W with respect to the proper topology associated to W in (6.3).
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Moreover the set Pα,β
W is compact for the correspondent topology, see [3, Lemma

5.2] and Lemma 6.2; this readily implies the existence of the minimum (3.5). ��

6.3 Proof of Proposition 3.3

We follow the lines of [7, Section 9], beginning with the second statement.
(ii) Let f ∈ F

H−2∗ and uf ∈ H 2∗ (�) the solution of (2.4). Being p(x, y) even
with respect to y, we use the decomposition (2.7) and we rewrite (2.4) as

(uo
f , v

o)H 2∗ + (ue
f , v

e)H 2∗ = 〈pf o, vo〉 + 〈pf e, ve〉 ∀v ∈ H 2∗ (�). (6.6)

By (3.1) we have Gf,p(x) = uo(x, �)−uo(x,−�); therefore, if f o = 0 then uo = 0
and G∞

f,p = 0, implying that f cannot be a solution of (3.4). Through (2.8) we infer
the existence of γ ∈ (0, 1] such that γ = ‖f o‖

H−2∗ � ‖f ‖
H−2∗ = 1. By linearity

and (6.6) we observe that the problem (w, v)H 2∗ = 1
γ
〈pf o, v〉 admits as solution

w = uo

γ
for all v ∈ H 2∗ (�). Hence, by linearity, G∞

f0
γ ,p

= 1
γ
G∞
f,p ≥ G∞

f,p. Therefore

for all f ∈ F
H−2∗ there exists g ∈ H−2

O (�) (g = f o/γ ) such that G∞
g,p ≥ G∞

f,p,
giving the thesis.

(i) In [7, Lemma 9.1] it is proved the following result: for q ∈ [1,∞], a > 0 and
φ ∈ Lq(] − a, a[) it holds

‖φo‖Lq(]−a,a[) � ‖φ‖Lq(]−a,a[). (6.7)

Hence for every q ∈ (1,∞], (6.7) combined with the arguments used in the proof
of Proposition 3.3-(ii) yields that f odd with respect to y is a maximizer.

For q ∈ (1,∞) we suppose, by contradiction, that f ∈ FLq is a non-odd
maximizer. We point out that the inequality (6.7) is strict for q ∈ (1,∞) if and only
if φ is non-odd (φ �≡ φo), see again [7, Lemma 9.1] for a proof. Therefore, being
f �≡ f o, we get ‖f o‖q < ‖f ‖q = 1; we take f = f o/‖f o‖q , so that ‖f ‖q = 1.

Since f e does not play a role in the gap function, we have G∞
f ,p

= G∞
f,p

‖f o‖q > G∞
f,p.

This is absurd. �

6.4 Proof of Proposition 5.1

We choose {zpm, θ
p
m}∞m=1 as orthonormal basis of L2

p(�) (and orthogonal basis of

H 2∗ (�)). Since f ∈ L2(�) ⊂ L2
p(�) we expand it in Fourier series

f (x, y) =
∞∑

m=1

[
amθ

p
m(x, y) + bmz

p
m(x, y)

]
,
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with am, bm ∈ R defined as

am :=
ˆ
�

pf θ
p
m dxdy bm :=

ˆ
�

pf z
p
m dxdy.

We write

u(x, y) =
∞∑

m=1

[
αmθ

p
m(x, y) + βmz

p
m(x, y)

]
,

where αm, βm ∈ R are defined as

αm :=
ˆ
�

pu θ
p
m dxdy βm :=

ˆ
�

pu z
p
m dxdy.

For all m ∈ N
+, zpm and θ

p
m solve:

(z
p
m, v)H 2∗ = μm(p) (p z

p
m, v)L2 ∀v ∈ H 2∗ (�)

(θ
p
m, v)H 2∗ = νm(p) (p θ

p
m, v)L2 ∀v ∈ H 2∗ (�) .

(6.8)

Then considering (2.4) with v = θ
p
m, v = z

p
m and putting v = u in (6.8) we have

αm = am

νm(p)
βm = bm

μm(p)

and (5.1).
Now we verify that u(x, y) written in Fourier series as (5.1) belongs to H 2∗ (�).

Through (6.8) we obtain that

{
θ
p
m√

νm(p)
,

z
p
m√

μm(p)

}∞

m=1
is an orthonormal basis in

H 2∗ (�); therefore, if

{
am√
νm(p)

,
bm√
μm(p)

}

m

⊂ �2(N+) we infer u ∈ H 2∗ (�). We

recall the variational representation of the eigenvalues of (2.6): for every m ∈ N
+ it

holds

λm(p) = inf
Wm⊂H 2∗ (�)
dimWm=m

sup
u∈Wm\{0}

‖u‖2
H 2∗

‖√pu‖2
2

,

implying the stability inequality

λm(1)

β
� λm(p) � λm(1)

α
,
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for every m ∈ N
+. In [12, Theorem 7.6] the authors find explicit bounds for the

eigenvalues when the plate is homogeneous (p ≡ 1); in general it holds λm(1) >

(1 − σ)2m4, where σ is the Poisson ratio, see (2.2). Then we obtain

λm(p) � λm(1)

β
>

(1 − σ)2m4

β

so that, being ‖f ‖2 = ‖√pθ
p
m‖2 = 1,

|am|√
νm(p)

≤
√
β‖f ‖2‖pθp

m‖2

(1 − σ)m2 ≤ β‖√
pθ

p
m‖2

(1 − σ)m2 = β

(1 − σ)m2

|bm|√
μm(p)

≤ β

(1 − σ)m2

and

∞∑

m=1

|am|2
νm(p)

+ |bm|2
μm(p)

� 2β2

(1 − σ)2

∞∑

m=1

1

m4 < ∞.

Through (5.1) we get

Gf,p(x) = 2
∞∑

m=1

am

νm(p)
θ
p
m(x, �) ∀x ∈ [0, π],

since z
p
m(x, y) is y-even.

If f is y-odd then bm = 0. �

7 Conclusions

In this paper we consider a stationary forced problem for a non-homogeneous
partially hinged rectangular plate, possibly modeling the deck of a bridge, on which
a non constant density function p(x, y), embodying the non-homogeneity, is given.
The main aim is to optimize the torsional performance of the plate, measured
through the so called gap function Gf,p(x), see (3.1), with respect to both the weight
p and the external forcing term f ; thus, we deal with the problem (3.2) where f and
p belong to suitable classes of functions.

In Theorem 3.1 we prove the existence of an optimal force f solution of (3.4)
fixed the weight p in proper functional spaces, while in the Theorem 3.2 we prove
the converse, i.e. the existence of an optimal density p solution of (3.5) fixed f .
Currently to find explicitly the solutions of (3.4) and (3.5) seems out of reach,
therefore we propose some choices of f and p and we proceed numerically. In
Proposition 3.3 we prove symmetry properties on the solutions of (3.4); motivated
by this result, we focus on y-odd forces f as optimal candidates of (3.4). On the
other hand about the possible optimal weight functions we study five meaningful
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density configurations; the latter are inspired by [3], where a similar problem in
terms of weight optimization of the ratio between a torsional and a longitudinal
eigenvalue is given, see (4.1).

We propose some numerical experiments when f ∈ L2(�), because it is
representative of the applications we have in mind; in this case, we state and
prove Proposition 5.1 allowing to find a numerical scheme useful to determine the
approximated solutions. Our analysis is performed imposing as parameters (5.3)–
(5.4), having sense in terms of civil engineering applications. We summarize our
main outcomes:

– The forces f ∈ FL2 which maintain the same (and opposite) sign along the two
free edges of the plate (e.g. f 0, f 1) seem to be the worst in terms of torsional
performance of the plate for each density function.

– If we consider f ∝ θ
p
j (x, y), i.e. proportional to the j -th weighted torsional

eigenfunction, we get the corresponding maximum of the gap function decreas-
ing with respect to j for every density function; this means that the worst case is
recorded for j = 1, i.e. when f is in resonance with the first weighted torsional
eigenfunction, see Fig. 2.

– To improve the torsional performance of the plate, we suggest to strengthen it
with a density function like p∗(x, y) or p̆(y), see Sect. 4. These weights have
a strong effect in increasing the first torsional eigenvalues and they reduce the
maximum of the gap function more than the others.

– Weights as pi(x) (i ∈ N
+), useful to reduce the i-th longitudinal eigenvalue,

generally do not affect the torsional response of the plate. We recorded the same
behaviour as in the homogeneous plate, hence we do not suggest this kind of
reinforce.

A future development in this field is the study of the corresponding evolutionary
problem. We point out that the presence of a possibly discontinuous coefficient
p(x, y) in front of the time-derivative term may lead to some problems, even just in
writing the equation in strong form.

Other researches may focus on other forces and density functions; is there a
density function that maximizes the second torsional eigenvalue better than those
in P̂α,β? How does the gap function vary in correspondence of such weight? In
[3] it is pointed out that p∗(x, y) may be the candidate maximizer of the first
torsional eigenvalue, but nothing is said about the maximizer of the second torsional
eigenvalue. It may be interesting to study this issue, since the deck of a suspension
bridge seems to be more prone to develop torsional instability on the second
torsional eigenvalue, see for instance [10, 13].
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Energy-Like Functional in a Quasilinear
Parabolic Chemotaxis System

Kentaro Fujie

Abstract This note deals with a one-dimensional quasilinear chemotaxis system.
The first part summarizes recent results, in which a new energy-like functional is
introduced and plays a key role. In the latter half, the energy-like functional will be
derived in a more general situation.

Keywords Chemotaxis · Global existence · Lyapunov functional

1 Summary of Recent Results

Consider the following one-dimensional quasilinear chemotaxis system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu = ∂x (a(u)∂xu − u∂xv) in (0, T ) × (0, 1),

∂t v = ∂2
x v − v + u in (0, T ) × (0, 1),

∂xu = ∂xv = 0 on (0, T ) × {0, 1},
u(0, ·) = u0, v(0, ·) = v0 in (0, 1),

(1.1)

where the nonlinearity a ∈ C[0,∞) ∩ C2(0,∞) is positive and (u0, v0) ∈
(W 1,∞(0, 1))2 is the pair of nonnegative initial data. Local existence and uniqueness
of classical solutions are known, see [3, 8].

The typical choice of the nonlinearity is a(u) = (1 + u)p with p ∈ R. In the
higher dimensional setting n ≥ 2, the power p = 1 − 2

n
is critical, that is, global

existence for any initial data for p > 1 − 2
n

(see [13]) and finite-time blowups when
p < 1 − 2

n
(see [9]) are known. In the critical case p = 1 − 2

n
, solutions exist
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globally for small data; whereas finite time blow-up solutions are constructed for
large initial data, see [12] in dimension 2 and [11] in dimensions 3 and 4.

In view of the above, the particular choice a(u) = 1/(1+u) is a natural candidate
for a critical one in the one-dimensional setting. For the subcritical case a(u) =
(1 + u)−p, p < 1, solutions emanating from any smooth data exist globally in time
and remain bounded, see [3], while in the supercritical case (p > 1) finite time
blow-up solutions are constructed under some additional restrictions in [8]. In the
critical case a(u) = 1/(1 + u) global existence result for small data is known [3].

Recently, in [2, 5] the following result was proven.

Theorem 1.1 Assume that the function a ∈ C[0,∞) ∩ C2(0,∞) satisfies the
following:

(A1) there is α > 0 such that sa(s) ≤ α for any s ≥ 0,
(A2)

´∞
1 a(s) ds = ∞, i.e. a �∈ L1(1,∞).

Then the problem (1.1) has a unique classical positive solution, which exists globally
in time. Moreover, the solution (u, v) of (1.1) is bounded.

Remark 1.2 The function a(s) = 1/(1 + s) satisfies assumptions (A1) and (A2).
Therefore no mass critical phenomenon occurs in the natural candidate for the
critical case.

Let us recall the classical Lyapunov functional associated with (1.1) is

L(u, v) :=
ˆ 1

0
b(u) dx −

ˆ 1

0
uv dx + 1

2
‖v‖2

H 1(0,1),

where b ∈ C2(0,∞) satisfies b′′(r) = a(r)
r

for r > 0 and b(1) = b′(1) = 0. It
satisfies, see [8],

d

dt
L(u, v) = −

ˆ 1

0
|∂tv|2 dx −

ˆ 1

0
u

∣∣∣∣
a(u)

u
∂xu − ∂xv

∣∣∣∣
2

dx.

Since the solution (u, v) has the mass conservation law:

ˆ 1

0
u(t) dx =

ˆ 1

0
u0 dx,

the embedding theorem allows us to have

ˆ 1

0
uv dx ≤ ‖v‖L∞(0,1)

ˆ 1

0
u dx ≤ 1

4
‖v‖2

H 1(0,1) + C‖u0‖2
L1(0,1),
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which yields that L is bounded from below:

|L(u(t), v(t))| ≤ C for all t > 0 (1.2)

with some C.
In the study of the higher dimensional system, the Lyapunov functional plays

a crucial role to decide behaviour of solutions, however the a priori estimate (1.2)
seems poor in the case a(u) = 1/(1 + u). Actually, when a(u) = 1/(1 + u) the a
priori estimate

´ 1
0 b(u) # ´ 1

0 u is not enough to guarantee global existence.
In [5, Lemma 3.3] the authors found the new Lyapunov-like functional which

yields an estimate sufficient to prove global existence result.

Lemma 1.3 Let (u, v) be a solution of (1.1) in (0, T ) × (0, 1) and let T be the
maximal existence time of the classical solution. Then the following identity holds:

d

dt
F(u) + D(u, v) =

ˆ 1

0

ua(u)(v + ∂tv)
2

4
dx, (1.3)

where

F(u) := 1

2

ˆ 1

0

(a(u))2

u
|∂xu|2 dx −

ˆ 1

0
u

ˆ u

1
a(r) dr dx,

D(u, v) :=
ˆ 1

0
ua(u)

∣∣∣∣∂x
(
a(u)

u
∂xu

)
− ∂2

x v + (v + ∂t v)

2

∣∣∣∣
2

dx.

Since the right-hand side of the above identity is not zero, the functional F(u)

could increase. In [2, 5] it is proved that the growth rate can be controlled and
the a priori estimate from the identity is sufficient to derive global existence and
boundedness of solutions.

Remark 1.4 The natural question is what the functional F(u) represents. In [6] the
following interpretation is given; if one consider the upper equation of (1.1) as a
continuity equation of density u with a velocity field given by V := a(u)

u
∂xu − ∂xv,

then the kinetic energy is

ˆ 1

0
uV 2 dx =

ˆ 1

0
u

∣∣∣∣
a(u)

u
∂xu − ∂xv

∣∣∣∣
2

dx.

We remark that the principle term of the above is included in the functional F(u).
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2 Nonlinear Sensitivity

Consider the following one-dimensional quasilinear chemotaxis system with non-
linear sensitivity:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu = ∂x (D(u)∂xu − S(u)∂xv) in (0, T ) × (0, 1),

∂t v = ∂2
xv − v + u in (0, T ) × (0, 1),

∂xu = ∂xv = 0 on (0, T ) × {0, 1},
u(0, ·) = u0, v(0, ·) = v0 in (0, 1),

(2.1)

where

D(u) = (1 + u)−p, S(u) = u(1 + u)−q with p, q ∈ R.

Furthermore we assume (u0, v0) ∈ (W 1,∞(0, 1))2 is the pair of nonnegative initial
data. Local existence and uniqueness of classical solutions are known, see [4, 10].
In this section we introduce a new energy-like identity in the system (2.1) according
to the same spirit of the previous section.

Let us first recall the classical Lyapunov functional associated with (2.1), see
[15]; the following identity holds:

d

dt
L(u, v) +

ˆ 1

0
|∂t v|2 +

ˆ 1

0
S(u) ·

∣∣∣∣
D(u)

S(u)
∂xu − ∂xv

∣∣∣∣
2

= 0,

where

L(u, v) :=
ˆ 1

0
G(u) −

ˆ 1

0
uv + 1

2
‖v‖2

H 1(0,1),

G(s) :=
ˆ s

1

ˆ σ

1

D(τ)

S(τ )
dτ dσ.

The next lemma claims a crucial identity, which is the generalization of [7,
Lemma 2.1].

Lemma 2.1 Let φ ∈ C3((0, 1)). Then the following identity holds:

S(φ)∂xM(φ) = ∂x

(
S(φ)D(φ)∂x

(
D(φ)

S(φ)
∂xφ

))
+ (D(φ))2S′′(φ)

2S(φ)
|∂xφ|2∂xφ,
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where

M(φ) := D(φ)D′(φ)
S(φ)

|∂xφ|2 − (D(φ))2S′(φ)
2(S(φ))2 |∂xφ|2 + (D(φ))2

S(φ)
∂2
xφ.

Proof The left-hand side of the identity is calculated as

S(φ)∂xM(φ)

= S(φ)

(
(D′(φ))2

S(φ)
|∂xφ|2∂xφ + D(φ)D′′(φ)

S(φ)
|∂xφ|2∂xφ

− D(φ)D′(φ)S′(φ)
(S(φ))2 |∂xφ|2∂xφ + D(φ)D′(φ)

S(φ)
∂x(|∂xφ|2)

)

+ S(φ)

(
− D(φ)D′(φ)S′(φ)

(S(φ))2 |∂xφ|2∂xφ − (D(φ))2S′′(φ)
2(S(φ))2 |∂xφ|2∂xφ

+ (D(φ))2(S′(φ))2

(S(φ))3 |∂xφ|2∂xφ − (D(φ))2S′(φ)
2(S(φ))2 ∂x(|∂xφ|2)

)

+ S(φ)

(
2D(φ)D′(φ)

S(φ)
∂2
xφ∂xφ − (D(φ))2S′(φ)

(S(φ))2 ∂2
xφ∂xφ + (D(φ))2

S(φ)
∂3
xφ

)

= (D′(φ))2|∂xφ|2∂xφ + D(φ)D′′(φ)|∂xφ|2∂xφ − 2D(φ)D′(φ)S′(φ)
S(φ)

|∂xφ|2∂xφ

+ D(φ)D′(φ)∂x(|∂xφ|2) − (D(φ))2S′′(φ)
2S(φ)

|∂xφ|2∂xφ

+ (D(φ))2(S′(φ))2

(S(φ))2 |∂xφ|2∂xφ − (D(φ))2S′(φ)
2S(φ)

∂x(|∂xφ|2)

+ 2D(φ)D′(φ)∂2
xφ∂xφ − (D(φ))2S′(φ)

S(φ)
∂2
xφ∂xφ + (D(φ))2∂3

xφ.

Since the direct calculations yield

∂x

(
D(φ)D′(φ)|∂xφ|2

)
= (D′(φ))2|∂xφ|2∂xφ + D(φ)D′′(φ)|∂xφ|2∂xφ

+ D(φ)D′(φ)∂x(|∂xφ|2),
∂x

(
(D(φ))2∂2

xφ
)

= 2D(φ)D′(φ)∂2
xφ∂xφ + (D(φ))2∂3

xφ,
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we compute that

S(φ)∂xM(φ) = ∂x

(
D(φ)D′(φ)|∂xφ|2

)
+ ∂x

(
(D(φ))2∂2

x φ
)

− 2D(φ)D′(φ)S′(φ)
S(φ)

|∂xφ|2∂xφ

− (D(φ))2S′′(φ)
2S(φ)

|∂xφ|2∂xφ + (D(φ))2(S′(φ))2

(S(φ))2
|∂xφ|2∂xφ

− (D(φ))2S′(φ)
2S(φ)

∂x(|∂xφ|2) − (D(φ))2S′(φ)
S(φ)

∂2
x φ∂xφ.

Due to the identity

∂xφ∂
2
xφ = 1

2
∂x

(
|∂xφ|2

)
,

we arrive at

S(φ)∂xM(φ) = ∂x

(
D(φ)D′(φ)|∂xφ|2

)
+ ∂x

(
(D(φ))2∂2

xφ
)

− 2D(φ)D′(φ)S′(φ)
S(φ)

|∂xφ|2∂xφ − (D(φ))2S′′(φ)
2S(φ)

|∂xφ|2∂xφ

+ (D(φ))2(S′(φ))2

(S(φ))2 |∂xφ|2∂xφ − (D(φ))2S′(φ)
S(φ)

∂x(|∂xφ|2)

= ∂x

(
D(φ)D′(φ)|∂xφ|2 + (D(φ))2∂2

xφ − (D(φ))2S′(φ)
S(φ)

|∂xφ|2
)

+ (D(φ))2S′′(φ)
2S(φ)

|∂xφ|2∂xφ

= ∂x

(
S(φ)D(φ)∂x

(
D(φ)

S(φ)
∂xφ

))
+ (D(φ))2S′′(φ)

2S(φ)
|∂xφ|2∂xφ.

The proof is completed. ��
In light of the above identity we have the following lemma, which is the generaliza-
tion of [5, Lemma 3.1].

Lemma 2.2 Let (u, v) be a solution of (2.1) in (0, T ) × (0, 1). Then the following
identity holds:

d

dt

(
1

2

ˆ 1

0

(D(u))2

S(u)
|∂xu|2

)
+
ˆ 1

0
S(u)D(u)

∣∣∣∣∂x
(
D(u)

S(u)
∂xu

)∣∣∣∣
2

=
ˆ 1

0
S(u)D(u)∂2

xv · ∂x
(
D(u)

S(u)
∂xu

)
+
ˆ 1

0

(
D(u)

S(u)
∂xu − ∂xv

)
· (D(u))2S′′(u)

2S(u)
|∂xu|2∂xu.
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Proof Multiplying the first equation of (2.1) by M(u) and integrating over (0, 1),
we have that

ˆ 1

0
∂tuM(u) =

ˆ 1

0
∂x (D(u)∂xu − S(u)∂xv)M(u)

=
ˆ 1

0
∂x

(
S(u)

(
D(u)

S(u)
∂xu − ∂xv

))
M(u).

By the integration by parts and Lemma 2.1, it follows that

ˆ 1

0
∂tuM(u) = −

ˆ 1

0

(
D(u)

S(u)
∂xu − ∂xv

)
· S(u)∂xM(u)

= −
ˆ 1

0

(
D(u)

S(u)
∂xu − ∂xv

)
· ∂x

(
S(u)D(u)∂x

(
D(u)

S(u)
∂xu

))

−
ˆ 1

0

(
D(u)

S(u)
∂xu − ∂xv

)
· (D(u))2S ′′(u)

2S(u)
|∂xu|2∂xu

=
ˆ 1

0
∂x

(
D(u)

S(u)
∂xu − ∂xv

)
·
(
S(u)D(u)∂x

(
D(u)

S(u)
∂xu

))

−
ˆ 1

0

(
D(u)

S(u)
∂xu − ∂xv

)
· (D(u))2S ′′(u)

2S(u)
|∂xu|2∂xu

=
ˆ 1

0
S(u)D(u)

∣∣∣∣∂x
(
D(u)

S(u)
∂xu

)∣∣∣∣
2

−
ˆ 1

0
S(u)D(u)∂2

x v · ∂x
(
D(u)

S(u)
∂xu

)

−
ˆ 1

0

(
D(u)

S(u)
∂xu − ∂xv

)
· (D(u))2S ′′(u)

2S(u)
|∂xu|2∂xu. (2.2)

On the other hand, we infer that

d

dt

(
1

2

ˆ 1

0

(D(u))2

S(u)
|∂xu|2

)

=
ˆ 1

0

2D(u)D′(u)S(u) − (D(u))2S′(u)
2(S(u))2 |∂xu|2∂tu +

ˆ 1

0

(D(u))2

S(u)
∂xu∂x∂tu

=
ˆ 1

0

2D(u)D′(u)S(u) − (D(u))2S′(u)
2(S(u))2

|∂xu|2∂tu −
ˆ 1

0
∂x

(
(D(u))2

S(u)
∂xu

)
∂tu.

Since

−
ˆ 1

0
∂x

(
(D(u))2

S(u)
∂xu

)
∂tu

= −
ˆ 1

0

2D(u)D′(u)S(u) − (D(u))2S′(u)
(S(u))2 |∂xu|2∂tu −

ˆ 1

0

(D(u))2

S(u)
∂2
xu∂tu,
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we deduce that

d

dt

(
1

2

ˆ 1

0

(D(u))2

S(u)
|∂xu|2

)
= −

ˆ 1

0
∂tuM(u). (2.3)

Combining (2.2) and (2.3), we complete the proof. ��
Here we define the function � as follows:

�(φ) :=
ˆ φ

1

(ˆ r

1

τD(τ)S′(τ )
S(τ )

dτ + rD(r)

)
dr.

Lemma 2.3 Let (u, v) be a solution of (2.1) in (0, T ) × (0, 1). Then the following
identity holds:

d

dt

ˆ 1

0
�(u) =

ˆ 1

0
∂x

(
D(u)

S(u)
∂xu

)
uS(u)D(u) +

ˆ 1

0
∂x (uS(u)D(u)) · ∂xv.

Proof Testing the first equation of (2.1) by

ˆ u

1

rD(r)S′(r)
S(r)

dr + uD(u),

and integrating over (0, 1), we have

d

dt

ˆ 1

0
�(u)

=
ˆ 1

0
∂tu

(ˆ u

1

rD(r)S′(r)
S(r)

dr

)
+
ˆ 1

0
uD(u)∂tu

= −
ˆ 1

0
(D(u)∂xu − S(u)∂xv) · uD(u)S′(u)

S(u)
∂xu −

ˆ 1

0
∂x(uD(u))(D(u)∂xu − S(u)∂xv).

Since it follows from a straightforward computation that

−
ˆ 1

0
D(u)∂xu · uD(u)S′(u)

S(u)
∂xu −

ˆ 1

0
∂x(uD(u))D(u)∂xu =

ˆ 1

0
∂x

(
D(u)

S(u)
∂xu

)
uS(u)D(u),

ˆ 1

0
S(u)∂xv · uD(u)S′(u)

S(u)
∂xu +

ˆ 1

0
∂x(uD(u))S(u)∂x v =

ˆ 1

0
∂x (uS(u)D(u)) · ∂xv,

we conclude the proof. ��
Now we are in the position to construct the announced functional.
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Proposition 2.4 Let (u, v) be a solution of (2.1) in (0, T ) × (0, 1). The following
identity is satisfied:

d

dt
F(u(t)) +D(u(t), v(t)) =

ˆ 1

0

S(u)D(u)(v + ∂tv)
2

4

+
ˆ 1

0

(
D(u)

S(u)
∂xu − ∂xv

)
· (D(u))2S ′′(u)

2S(u)
|∂xu|2∂xu,

(2.4)

where

F(u(t)) := 1

2

ˆ 1

0

(D(u))2

S(u)
|∂xu|2 −

ˆ 1

0
�(u),

D(u(t), v(t)) :=
ˆ 1

0
S(u)D(u)

∣∣∣∣∂x
(
D(u)

S(u)
∂xu

)
− ∂2

xv + (v + ∂tv)

2

∣∣∣∣
2

.

Proof Multiplying the second equation of (2.1) by S(u)D(u)∂2
x v and integrating

over (0, 1) we have that

ˆ 1

0
S(u)D(u)∂tv∂

2
xv =

ˆ 1

0
S(u)D(u)|∂2

xv|2 −
ˆ 1

0
v · S(u)D(u)∂2

xv +
ˆ 1

0
uS(u)D(u)∂2

xv

=
ˆ 1

0
S(u)D(u)|∂2

xv|2 −
ˆ 1

0
v · S(u)D(u)∂2

xv −
ˆ 1

0
∂x (uS(u)D(u)) · ∂xv.

(2.5)

Combining Lemma 2.3 and (2.5) we get

d

dt

(
−
ˆ 1

0
�(u)

)
+
ˆ 1

0
S(u)D(u)|∂2

x v|2 −
ˆ 1

0
v · S(u)D(u)∂2

x v −
ˆ 1

0
S(u)D(u)∂t v∂

2
x v

= −
ˆ 1

0
∂x

(
D(u)

S(u)
∂xu

)
uS(u)D(u),

and then using the second equation of (2.1) we see that

d

dt

(
−
ˆ 1

0
�(u)

)
+
ˆ 1

0
S(u)D(u)|∂2

x v|2 −
ˆ 1

0
v · S(u)D(u)∂2

xv −
ˆ 1

0
S(u)D(u)∂tv∂

2
x v

= −
ˆ 1

0
∂x

(
D(u)

S(u)
∂xu

)
(∂t v − ∂2

x v + v)S(u)D(u).
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Thus it follows from Lemma 2.2 that

d

dt

(
1

2

ˆ 1

0

(D(u))2

S(u)
|∂xu|2 −

ˆ 1

0
�(u)

)
+
ˆ 1

0
S(u)D(u)

∣∣∣∣∂x
(
D(u)

S(u)
∂xu

)
− ∂2

x v

∣∣∣∣
2

+
ˆ 1

0
S(u)D(u)(v + ∂tv)∂x

(
D(u)

S(u)
∂xu − ∂xv

)

=
ˆ 1

0

(
D(u)

S(u)
∂xu − ∂xv

)
· (D(u))2S ′′(u)

2S(u)
|∂xu|2∂xu,

that is,

d

dt

(
1

2

ˆ 1

0

(D(u))2

S(u)
|∂xu|2 −

ˆ 1

0
�(u)

)
+
ˆ 1

0
S(u)D(u)

∣∣∣∣∂x
(
D(u)

S(u)
∂xu

)
− ∂2

x v + (v + ∂tv)

2

∣∣∣∣
2

=
ˆ 1

0

S(u)D(u)(v + ∂tv)
2

4
+
ˆ 1

0

(
D(u)

S(u)
∂xu − ∂xv

)
· (D(u))2S′′(u)

2S(u)
|∂xu|2∂xu,

which is the desired inequality. ��
By the direct calculations we can confirm that (1.3) is equal to (2.4) with q = 0.

Moreover, the functional in (2.4) also represents the kinetic energy of the system as
we noted in Remark 1.4. Unfortunately, for the case of general sensitivity S(u), we
have one involved term in the right hand side of (2.4). This term disturbs us to apply
similar estimates in [2, 5].

Remark 2.5 In the earlier literature (see [14, 15], also the survey [1, Section 3.6]),
p − q = 1 is the natural candidate for the critical condition.
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Solvability of a Semilinear Heat Equation
via a Quasi Scale Invariance

Yohei Fujishima and Norisuke Ioku

Abstract Solvability of semilinear heat equations with general nonlinearity is
investigated. Applying a quasi scale invariant transformation, we clarify the thresh-
old singularity of initial data for existence and nonexistence results.

Keywords Nonlinear heat equation · Local in time solvability · Singular initial
data · Quasi scale invariance

1 Introduction

In this paper we study the existence and nonexistence of solutions for a semilinear
heat equation

{
∂tu = Δu + f (u) in R

N × (0, T ),

u(x, 0) = u0(x) ≥ 0 in R
N,

(1)

where ∂t = ∂/∂t , N ≥ 1, T > 0, u0 is a nonnegative measurable initial function
and f ∈ C1([0,∞)) is a positive monotonically increasing function in (0,∞), that
is,

f (s) > 0, f ′(s) ≥ 0 for all s ∈ (0,∞). (2)
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It is well known that if u0 is bounded there exists a unique classical solution
of the problem (1) satisfying the initial condition in the sense that ‖u(t) −
etΔu0‖L∞(RN) → 0 (t → 0) for general nonlinearities f ∈ C1([0,∞)). On
the other hand, for unbounded initial data results on the existence or nonexistence
of solutions heavily depend on the growth rate of the nonlinear term f and the
singularity of the initial data u0.

The model problem in this direction is the solvability of the Cauchy problem

{
∂tu = Δu + up, x ∈ R

N, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ R
N.

(3)

This problem has been studied extensively by many mathematicians since the
pioneering work of Fujita [6]. Baras–Pierre [1] investigated the initial trace
problem, that determined a necessary condition on the initial data such that the
problem (3) possesses a local in time solution. The following can be obtained as
a corollary of Baras–Pierre [1]: There exists C > 0 such that the problem (3) cannot
possess nonnegative local in time solution if u0 satisfies

u0(x) ≥ C|x|− 2
p−1 , p > 1 + 2

N
,

in a neighborhood of the origin. On the other hand, Ishige–Kawakami–Sierżȩga [17,
Corollary 3.2] obtained a sufficient condition for the existence of the problem (3).
They determined that there exists C̃ > 0 such that if u0 satisfies

u0(x) ≤ C̃|x|− 2
p−1 , p > 1 + 2

N
,

then there exists a nonnegative global in time solution of the problem (3). It
is remarkable that they proved a corresponding result for a system of parabolic
equations with power type nonlinearities. Similar results on the solvability in a
weak space can be found in [16, 19, 31].

The aim of this paper is to generalize these results to nonlinearities f satisfy-
ing (2) and determine a threshold singularity of initial data u0 which separates the
existence and nonexistence of a local in time nonnegative classical solution of (1).
To this end, we apply the quasi scale invariance which was introduced in [4, 5]. In
what follows we always assume

F(s) :=
ˆ ∞

s

du

f (u)
< ∞ (s > 0). (4)

The quasi scaling function is defined by

uλ(x, t) := F−1
[ 1

λ2
F(u(λx, λ2t))

]
(λ > 0), (5)
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where F−1 is the inverse function of F . Then the function uλ satisfies

∂tuλ = Δuλ + f (uλ) + f (uλ)|∇u|2
f (u)2F(u)

[
f ′(u)F (u) − f ′(uλ)F (uλ)

]
(6)

if and only if u satisfies ∂tu = Δu + f (u). It should be mentioned that the scaling
(5) coincides with the well known scaling

uλ(x, t) := λ
2

p−1 u(λx, λ2t) (λ > 0), (7)

if we choose f (u) = up. We focus on the limit f ′(s)F (s) as s → ∞:

A := lim
s→∞ f ′(s)F (s), (8)

since the behavior of the function f ′F controls the remainder term in (6). Further-
more, we define p̃ as the Hölder conjugate of A, that is,

p̃ := A

A − 1
if 1 < A < ∞,

which can be considered as the growth rate of f (u). Indeed, one can check easily
that if f (u) = up then A = p

p−1 and hence p̃ = p.

It is remarkable that if f ∈ C2([0,∞)), the constants A and p̃ coincide

with lim
s→∞

f ′(s)2

f (s)f ′′(s)
and lim

s→∞
sf ′(s)
f (s)

, respectively, where the limits of the same

functions as s → 0 are introduced by Dupaigne-Farina [3]. Indeed, by the de
l’Hôpital rule we have

A = lim
s→∞

F(s)

1/f ′(s) = lim
s→∞

(F (s))′
(

1
f ′(s)

)′ = lim
s→∞

f ′(s)2

f (s)f ′′(s) ,

lim
s→∞

sf ′(s)
f (s)

= lim
s→∞

s

f (s)
f ′(s)

= lim
s→∞

1
f ′(s)2−f (s)f ′′(s)

f ′(s)2

= p̃.

This makes it easier to calculate A and p̃ if f ∈ C2([0,∞)).
To state the results, we define the uniformly local Lebesgue space for 1 ≤ p <

∞:

L
p
ul,ρ(R

N) :=
{
u ∈ L1

loc(R
N) : ‖u‖Lp

ul,ρ(R
N) := sup

y∈RN

‖uχBρ(y)‖Lp(RN) < ∞
}
,

where χA(·) is the characteristic function of A ⊂ R
N .
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We are ready to state our main results.

Theorem 1 Let N ≥ 1, ρ > 0 and f ∈ C1([0,∞)) satisfy (2) and (4). Assume
that the limit A = lim

s→∞ f ′(s)F (s) exists and 1 < A < 1+ N
2 , equivalently 1+ 2

N
<

p̃ < +∞. Then, there exist 0 < C1 < C2 such that the following hold.

(i) (Existence) Assume in addition that there exists a constant s1 > 0 such that

f ′(s)F (s) ≤ A for all s ≥ s1. (9)

If u0 satisfies 0 ≤ u0(x) ≤ max
{

0, F−1
( |x|2

C1

)}
for all x ∈ R

N then there

exists T > 0 and a local in time classical solution u ∈ C2,1(RN × (0, T ))

satisfying

lim
t→0

‖u(t) − etΔu0‖Lα
ul,ρ (R

N) = 0 (10)

for all 1 ≤ α < N
2 (p̃ − 1), and

u(t) → u0 in the sense of distributions. (11)

Furthermore, if f satisfies f ′(s)F (s) ≤ A for all s > 0 and f (0) = 0 then the
solution exists globally in time.

(ii) (Nonexistence) Assume in place of (i) that f is convex in [0,∞). If u0 satisfies

u0(x) ≥ max
{

0, F−1
( |x|2

C2

)}
for all x ∈ R

N , then there cannot exist a

nonnegative classical solution of (1) which satisfies the initial condition in the
sense of (10).

It should be mentioned that Theorem 1 coincides with known results if f (u) =
up (1 + 2

N
< p). Moreover, we have the following result with f (u) = up[log(e +

u)]q (1 + 2
N

< p, 0 ≤ q) as a direct application of Theorem 1.

Corollary 1 Let N ≥ 1, ρ > 0, 1 + 2
N

< p, 0 ≤ q and

f (s) = sp
[
log(e + s)

]q
, s > 0. (12)

Let u0(x) = C|x|− 2
p−1

[
log

(
e + 1

|x|
)]− q

p−1
. Then there exists 0 < C1 < C2 such

that the following hold.
(i) (Existence) If 0 < C ≤ C1 then there exists T > 0 and a local in time

classical solution u ∈ C2,1(RN × (0, T )) of (1) with (12) satisfying (10) and (11).
(ii) (Nonexistence) If C ≥ C2 then there cannot exist a nonnegative classical

solution of (1) with (12) which satisfies the initial condition in the sense of (10).

Remark 1 In this paper we exclude the endpoint cases A = 1+ N
2 (p̃ = 1+ 2

N
) and

A = 1 (p̃ = ∞). For the model problem (2) with the Fujita exponent p = 1 + 2
N

,
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Baras–Pierre [1] proved that there cannot exist a nonnegative classical solution of
(3) with p = 1 + 2

N
for

u0(x) = C|x|−N

[
log

(
e + 1

|x|
)]−N

2 −1

whenever C is sufficiently large. On the other hand, Hisa–Ishige [10] obtained
conversely that there exists a nonnegative classical solution of (3) with p = 1 + 2

N
for u0 with sufficiently small C > 0. As for the superpower type nonlinearity
p̃ = ∞, exponential nonlinearities are considered in [7, 11–15, 32, 34]. These
endpoint cases A = 1 + N

2 (p̃ = 1 + 2
N
) and A = 1 (p̃ = ∞) for general nonlinear

term f (u) will be discussed in a forthcoming paper.

It would be worthwhile to state some of related works for the problem (1) and
its model case (3). Classification of the existence or nonexistence in Lebesgue
spaces for the model problem (3) was studied by Weissler [35, 36], and uniqueness
and nonuniqueness was studied by Brezis-Cazenave [2], Ni–Sacks [27], and
Terraneo [33]. In [5], the authors investigated a generalization of Weissler’s result
to the problem (1) with general nonlinearity by introducing the invariant integral

ˆ
RN

1

F(uλ(x, 0))
N
2

dx =
ˆ
RN

1

F(u0(x))
N
2

dx (λ > 0)

under the scaling (5). The transformation (5) and the limit (8) were introduced in
[5]. See also [2, 8, 18, 22–24, 30] for the existence and nonexistence of solutions for
nonlinear parabolic equations and their qualitative properties. A singular stationary
solution is considered in [26]. We also refer to [21] and [29], which include further
numerous references on the topic.

At the end of this section, we summarize the outline of the proof of the existence
part in Theorem 1, so that the importance of the limit A and its Hölder conjugate p̃ is
clarified. The following generalized Cole–Hopf transformation, which is established
in our previous paper [5], plays an essential role:

Proposition 1 (Proposition 3.1 in [5]) Let f and g satisfy (2) and (4), and define

u(x, t) := F−1 (G(v(x, t))) with G(v) :=
ˆ ∞

v

ds

g(s)
(13)

for v ∈ C2,1(RN × (0, T )) and some T > 0. Then the equation ∂tv = Δv + g(v) is
equivalent to

∂tu − Δu − f (u) = |∇u|2
f (u)F (u)

[
g′(v)G(v) − f ′(u)F (u)

]
. (14)
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Proposition 1 suggests that a function g satisfying g′(s)G(s) ≡ A is a typical
nonlinearity having the property A = lim

s→+∞ f ′(s)F (s). Since G′(s) = − 1
g(s)

, the

equation g′(s)G(s) ≡ A can be regarded as an ordinary differential equation, and

its simplest solution is g(s) = (A − 1)s
A

A−1 . The following corollary is a direct

consequence of Proposition 1 with g(s) = (A − 1)s
A

A−1 = 1
p̃−1 s

p̃.

Corollary 2 Let A > 1. Let f satisfy (2) and (4) and assume that the limit A =
lim
s→∞ f ′(s)F (s) exists. Let v ∈ C2,1(RN × (0, T )) with T > 0 satisfies

∂t v = Δv + (A − 1)v
A

A−1 = Δv + 1

p̃ − 1
vp̃.

Then, the transformed function u(x, t) := F−1
(
v(x, t)−(p̃−1)

)
satisfies

∂tu − Δu − f (u) = |∇u|2
f (u)F (u)

(
A − f ′(u)F (u)

)
.

Once we obtain a solution v to the initial value problem of the model equation,

{
∂tv = Δv + |v|p in R

N × (0, T ),

v(x, 0) = v0 in R
N,

which comes from the transformation in Corollary 2, then the function u defined in
Corollary 2 is a supersolution of the original problem (1) provided that f ′(u)F (u) ≤
A and v0(x) = F (u0(x))

− 1
p̃−1 . Then applying the monotone method developed in

[17] and [31], we obtain the existence of a solution of (1). The proof of Proposition 1
can be found in [5].

2 Preliminaries

Here we summarize several properties which are used in the proof. The following
pointwise estimate is used to obtain the convergence to the initial data.

Proposition 2 (Lemma 3.1 in [5]) Let f ∈ C1([0,∞)) satisfy (2) and (4). Define
h(σ) := f

(
F−1(σ )

)
. Let A > 0 and assume that f ′(s)F (s) ≤ A for all s ≥ s1 for

some s1 > 0. Then there exists a constant C > 0 such that h(σ) ≤ Cσ−A for all
sufficiently small σ > 0.
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Consider the following semilinear heat equation:

{
∂tv = Δv + |v|p in R

N × (0, T ),

v(x, 0) = v0(x) in R
N,

(15)

where T > 0. We first state an existence result for the problem (15) in uniformly
local weak Lebesgue spaces. To show our main result, we recall the definition of the
symmetric decreasing rearrangement (the Schwarz symmetrization). Let A ⊂ R

N

be a measurable set and A be the ball centered at the origin with the same volume
as A. Then for any measurable function f over RN which satisfies |{x; |f (x)| >

λ}| < ∞ for all λ > 0, the symmetric decreasing rearrangement of f denoted by
f  is defined by

f  (x) =
ˆ ∞

0
χ{|f |>λ} (x)dλ,

where χA is the characteristic function of A ⊂ R
N . We denote Lp(RN) the

Lebesgue spaces endowed with the norm ‖u‖Lp(RN) := (´
RN |u(x)|pdx) 1

p . For
1 ≤ p < ∞ and 1 ≤ q < ∞, the weak Lebesgue space Lp,∞(RN) and the Lorentz
space Lp,q(RN) are defined by

Lp,∞(RN) :=
{
u ∈ L1

loc(R
N) : ‖u‖Lp,∞(RN ) := sup

x∈RN

|x|Np |u (x)| < ∞
}
,

Lp,q(RN) :=
{
u ∈ L1

loc(R
N) : ‖u‖Lp,q (RN ) :=

(ˆ
RN

(
|x|Np |u (x)|

)q dx

|x|N
)q

< ∞
}
.

See [9, Section 1.4.2] and [20, Section 3] for more details on weak Lebesgue spaces
and the Schwarz symmetrization. We define the uniformly local Lebesgue space for
1 ≤ p < ∞ as follows:

L
p
ul,ρ(R

N) :=
{
u ∈ L1

loc(R
N) : ‖u‖Lp

ul,ρ (R
N) := sup

y∈RN

‖uχBρ(y)‖Lp(RN) < ∞
}
.

In the same manner, the uniformly local weak Lebesgue space L
p,∞
ul,ρ (RN) is defined

by

L
p,∞
ul,ρ (R

N) :=
{
u ∈ L1

loc(R
N) : ‖u‖Lp,∞

ul,ρ (RN) := sup
y∈RN

‖uχBρ(y)‖Lp,∞(RN) < ∞
}
.
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We denote by L
p
ul,ρ(R

N) the closure of the space of bounded uniformly continuous

functions BUC(RN) in the space L
p
ul,ρ(R

N), that is,

L
p
ul,ρ(R

N) := BUC(RN)
‖·‖

L
p
ul,ρ

(RN )
.

Proposition 3 (Solvability in a Uniformly Local Weak Lebesgue Spaces) Let
N ≥ 1, 1 + 2

N
< p < ∞, and r = N

2 (p − 1). There exists ε > 0 such that for any
initial data v0 ∈ L

r,∞
ul,ρ(R

N) satisfying

‖v0‖Lr,∞
ul,ρ(R

N) ≤ ε

there exists a classical solution v ∈ C((0, ρ2);Lr,∞
ul,ρ(R

N))∩L∞
loc((0, ρ

2);L∞(RN))

of (15) satisfying

lim
t→0

‖v(t) − etΔv0‖Lα
ul,ρ(R

N) = 0 (16)

for 1 ≤ α < r , and

v(t) → v0 in the sense of distributions. (17)

Remark 2 If initial data v0 is sufficiently small in Lr,∞(RN), the solution exists
globally in time. This coincides with the case of ρ = ∞ in Proposition 3.

Remark 3 For the case α = r = N
2 (p − 1), the convergence

lim
t→0

‖v(t) − etΔv0‖Lr,∞(RN) = 0 (18)

does not hold in general. Indeed, if v0 = C|x|− 2
p−1 and C > 0 is small enough

there exists a self similar solution v in the form

v(x, t) = t
− 1

p−1 f (x/
√
t), x ∈ R

N, t > 0,

where f ∈ L∞(RN). See [29, Theorem 20.19]. A simple calculation shows us that
this solution satisfies

v(x, t) − etΔv0(x) =
ˆ t

0

ˆ
RN

(4π(t − s))−
N
2 e

− |x−y|2
4(t−s) s

− p
p−1 |f (y/

√
s)|pdyds

= t
− 1

p−1

ˆ 1

0

ˆ
RN

(4π(1 − s))−
N
2 e

− |x/√t−y|2
4(1−s) s

− p
p−1 |f (y/

√
s)|pdyds.
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Therefore,

‖v(·, t) − etΔv0‖Lr,∞(RN) = sup
x∈RN

|x| 2
p−1

(
v(·, t) − etΔv0(·)

) 
(x)

= sup
x∈RN

[( |x|√
t

) 2
p−1 ×

(ˆ 1

0

ˆ
RN

(4π(1 − s))−
N
2 e

− |·−y|2
4(1−s) s

− p
p−1

∣∣∣∣f
(

y√
s

)∣∣∣∣
p

dyds

) (
x√
t

)]

= C̃

for some constant C̃ > 0 which does not depend on t > 0. Here we used the fact
that

(
h(λ·)) (x) = h (λx) for λ > 0 and h : RN → R.

Proposition 3 is essentially obtained by Ishige-Kawakami-Sierżȩga [17, Corol-
lary 3.2]. We give an alternative proof of Proposition 3 by applying standard
contraction mapping argument.

The following linear estimate plays an essential role in the proof of Proposition 3.

In the following we consider the rescaled function ft (x) := t−N
2 f

(
x√
t

)
for t > 0.

Proposition 4 Let 1 < q < p < ∞ and F(x), H(x) be two real valued
functions in R

N satisfying |F(x)| ≤ H(x) for all x ∈ R
N . Assume that H

is bounded, integrable, radially symmetric, and decreasing in R
N . Then, for any

function g ∈ L
q,∞
ul,ρ (R

N), Ft ∗ g(x) is well-defined for all x ∈ R
N . Furthermore, the

estimate

‖Ft ∗ g‖Lp
ul,ρ (R

N) ≤
(
C1‖H‖L1ρ

−N
(

1
q − 1

p

)

+ C2‖H‖Lr t
−N

2

(
1
q − 1

p

))
‖g‖Lq,∞

ul,ρ (R
N)

holds, where r satisfies 1+ 1
p

= 1
q
+ 1

r
, and C1, C2 are positive constants depending

on N,p, q .

Corollary 3 (Lp
ul,ρ–Lq,∞

ul,ρ Estimates) If 1 ≤ q ≤ p ≤ ∞, there exists C > 0
depending only N such that

‖etΔv0‖Lp
ul,ρ (R

N) ≤ C

(
ρ

−N
(

1
q − 1

p

)

+ t
−N

2

(
1
q − 1

p

))
‖v0‖Lq

ul,ρ (R
N)

for all v0 ∈ L
q

ul,ρ(R
N).

If 1 < q < p < ∞, there exists Cp,q > 0 depending only p, q,N such that

‖etΔv0‖Lp
ul,ρ (R

N) ≤ Cp,q

(
ρ

−N
(

1
q
− 1

p

)

+ t
−N

2

(
1
q
− 1

p

))
‖v0‖Lq,∞

ul,ρ (R
N)

for all v0 ∈ L
q,∞
ul,ρ (R

N).
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The first assertion is nothing but Corollary 3.1 in Maekawa–Terasawa [25]. The
second assertion is a direct consequence of Proposition 4 by taking F(x) = H(x) =
(4π)−N

2 e− |x|2
4 .

Remark 4 By Chebyshev’s inequality, there holds

‖etΔv0‖Lp,∞
ul,ρ (RN) ≤ ‖etΔv0‖Lp

ul,ρ(R
N)

for all v0 ∈ L
q,∞
ul,ρ (R

N). This together with Corollary 3 yields Lp,∞
ul,ρ –Lq,∞

ul,ρ estimates
of the heat kernel.

Proof of Proposition 4 The proof is essentially the same as the proof of Theo-
rem 3.1 in Maekawa–Terasawa [25]. Here we only explain the difference between
the proof in [25] and ours. Our argument relies on the following weak Young
inequality (cf. [9, Theorem 1.4.24]): for any 1 < q < p < ∞ there exists C > 0
such that

‖f ∗ g‖Lp(RN) ≤ C‖f ‖Lr (RN)‖g‖Lq,∞(RN) for all f ∈ Lr(RN), g ∈ Lq,∞(RN),

(19)

where r satisfies 1 + 1
p

= 1
q

+ 1
r
. Maekawa–Terasawa applied Young’s inequality

for (3.13) in [25]. Replacing it with the weak Young inequality (19) for (3.13) in
[25], we obtain the desired estimate. ��

We are now in position to prove Proposition 3.

Proof of Proposition 3 Let 1 + 2
N

< p < ∞, r = N(p−1)
2 , and v0 ∈ L

r,∞
ul,ρ(R

N).

Take q such that max{p, r} < q < pr and define σ := N
2

(
1
r

− 1
q

)
and C′ :=

2 max{Cr,r , Cq,r }, where Ca,b is a constant which is determined in Corollary 3. We
consider the following set of functions:

X :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v ∈ C
(
(0, ρ2);Lr,∞

ul,ρ(R
N)

) ∩ L∞
loc

(
(0, ρ2);L q

ul,ρ(R
N)

) :
sup

0<t<ρ2
‖v(t)‖Lr,∞

ul,ρ (R
N) ≤ C′‖v0‖Lr,∞

ul,ρ (R
N),

sup
0<t<ρ2

tσ ‖v(t)‖Lq
ul,ρ (R

N) ≤ C′‖v0‖Lr,∞
ul,ρ(R

N)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

equipped with the metric dX(u, v) := sup{tσ‖u(t) − v(t)‖Lq
ul,ρ (R

N) : 0 < t < ρ2}.
Then (X, dX) is a complete metric space. Remark that L q

ul,ρ(R
N) ⊂ L

q

ul,ρ(R
N) ⊂

Lr
ul,ρ(R

N) since r < q . For any v ∈ X, define

Φ(v) := etΔv0 +
ˆ t

0
e(t−s)Δ|v(s)|p ds.
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We show that Φ is a contraction map from X to itself if the initial data u0
is sufficiently small in L

r,∞
ul,ρ(R

N). Assume that 0 < t < ρ2. It follows from
Corollary 3 that

‖Φ(v)‖Lr,∞
ul,ρ

(RN) ≤ Cr,r‖v0‖Lr,∞
ul,ρ

(RN ) +
ˆ t

0
‖e(t−s)Δ|v(s)|p‖Lr,∞

ul,ρ
(RN ) ds

≤ Cr,r‖v0‖Lr,∞
ul,ρ (R

N ) + Cr,
q
p

ˆ t

0

(
ρ

−N
(

p
q
− 1

r

)

+ (t − s)
−N

2

(
p
q
− 1

r

))
‖v(s)‖p

L
q
ul,ρ (R

N )
ds.

This together with v ∈ X yields that

‖Φ(v)‖Lr,∞
ul,ρ (R

N)

≤ Cr,r‖v0‖Lr,∞
ul,ρ (R

N) + Cr,
q
p

(
t1−σpρ

−N
(

p
q
− 1

r

))
C′p‖v0‖pLr,∞

ul,ρ (R
N)

+ Cr,
q
p

(
t
1−σp−N

2

(
p
q
− 1

r

) ˆ 1

0
(1 − s)

−N
2

(
p
q
− 1

r

)

s−σp ds

)
C′p‖v0‖pLr,∞

ul,ρ (R
N)
.

(20)

Then, since −σp > −1 and 1 − σp − N
2

(
p
q

− 1
r

)
= 0, we have

sup
0<t<ρ2

‖Φ(v)‖Lr,∞
ul,ρ (R

N) ≤ Cr,r‖v0‖Lr,∞
ul,ρ (R

N) + C1‖v0‖pLr,∞
ul,ρ (R

N)
(21)

for some constant C1 > 0. Similarly, we have

tσ ‖Φ(v)‖Lq
ul,ρ (R

N) ≤ Cq,r‖v0‖Lr,∞
ul,ρ(R

N) + tσ
ˆ t

0
‖e(t−s)Δ|v(s)|p‖Lq

ul,ρ (R
N) ds

≤ Cq,r‖v0‖Lr,∞
ul,ρ (R

N)

+ tσCq,
q
p

ˆ t

0

(
ρ

−N
(

p
q
− 1

q

)

+ (t − s)
−N

2

(
p
q
− 1

q

))
‖v(s)‖p

L
q
ul,ρ (R

N)
ds

≤ Cq,r‖v0‖Lr,∞
ul,ρ (R

N) + Cq, r
p

(
tσ+1−σpρ

−N
(

p
q
− 1

q

))
C′p‖v0‖Lr,∞

ul,ρ(R
N)

+ Cq, r
p

(
t
σ+1−σp−N

2

(
p
q − 1

q

) ˆ 1

0
(1 − s)

−N
2

(
p
q − 1

q

)

s−σp ds

)
C′p‖v0‖pLr,∞

ul,ρ(R
N)
.

(22)

Then, since −σp > −1, −N
2

(
p
q

− 1
q

)
> −1 and σ + 1 − σp − N

2

(
p
q

− 1
q

)
= 0,

we obtain

sup
0<t<ρ2

tσ ‖Φ(v)‖Lq
ul,ρ (R

N) ≤ Cq,r‖v0‖Lr,∞
ul,ρ (R

N) + C2‖v0‖pLr,∞
ul,ρ (R

N)
(23)
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for some C2 > 0. Therefore, if ‖v0‖Lr,∞
ul,ρ(R

N) is sufficiently small then the right hand

sides of (21) and (23) are bounded by C′‖v0‖Lr,∞
ul,ρ(R

N). Combining this, (21), and

(23), we obtain

sup
0<t<ρ2

‖Φ(v)‖Lr,∞
ul,ρ

≤ C′‖v0‖Lr,∞
ul,ρ

and sup
0<t<ρ2

tσ ‖Φ(v)‖Lq
ul,ρ

≤ C′‖v0‖Lr,∞
ul,ρ (R

N ).

Furthermore, it follows from the smoothing effect of the heat kernel that Φ(v) ∈
L∞

loc

(
(0, ρ2);L q

ul,ρ(R
N)

)
. It remains to prove that Φ(v) ∈ C

(
(0, ρ2);Lr,∞

ul,ρ(R
N)

)

if v ∈ X. Take t > 0 and h > 0. Then,

‖Φ(
v(t + h)

) − Φ
(
v(t)

)‖Lr,∞
ul,ρ(R

N)

=
∥∥∥∥
ˆ t+h

0
e(t+h−s)Δ|v(s)|pds −

ˆ t

0
e(t−s)Δ|v(s)|pds

∥∥∥∥
L
r,∞
ul,ρ(R

N)

≤
ˆ t+h

t

‖e(t+h−s)Δ|v(s)|p‖Lr,∞
ul,ρ (R

N)ds

+
ˆ t

0
‖e(t−s)Δ(ehΔ|v(s)|p − |v(s)|p)‖Lr,∞

ul,ρ (R
N)ds.

(24)

By the similar argument as in (20), there holds for some C3 > 0 that

ˆ t+h

t

‖e(t+h−s)Δ|v(s)|p‖Lr,∞
ul,ρ (R

N)ds

≤ C3

ˆ 1

t
t+h

(1 − s)
−N

2

(
p
q − 1

r

)

s−σpds‖v0‖pLr,∞
ul,ρ(R

N)
→ 0 (h → 0).

We estimate the second term of the right hand side in (24). By the similar argument
as in (20), we have

ˆ t

0
‖e(t−s)Δ(ehΔ|v(s)|p − |v(s)|p)‖Lr,∞

ul,ρ (R
N)ds

≤
ˆ t

0
(t − s)

−N
2

(
p
q − 1

r

)

‖(ehΔ − 1)|v(s)p|‖
L

q
p ,∞
ul,ρ (RN)

.

Since there exists C4 > 0 such that

‖(ehΔ − 1)|v(s)p|‖
L

q
p ,∞
ul,ρ (RN)

≤ C4‖v(s)‖Lq
ul,ρ (R

N) ≤ C4s
−σp‖v0‖Lq

ul,ρ (R
N)
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for all h > 0 and

lim
h→0

‖(ehΔ − 1)|v(s)p|‖
L

q
p ,∞
ul,ρ (RN)

= 0 a.e. s > 0

by |v(s)|p ∈ L
q
p

ul,ρ(R
N), one can apply the dominated convergence theorem to

obtain

lim
h→0

ˆ t

0
‖e(t−s)Δ(ehΔ|v(s)|p − |v(s)|p)‖Lr,∞

ul,ρ (R
N)ds = 0.

Thus Φ(v) ∈ C
(
(0, ρ2);Lr,∞

ul,ρ(R
N)

)
if v ∈ X. This completes the proof of that Φ

is a map from X to itself.
By the similar argument, we have for v,w ∈ X that

sup
0<t<ρ2

tσ ‖Φ(v) − Φ(w)‖Lq
ul,ρ(R

N) ≤ C5‖v0‖p−1
L
r,∞
ul,ρ (R

N )
sup

0<t<ρ2
tσ‖v − w‖Lq

ul,ρ (R
N)

(25)

for some C5 > 0. This proves that Φ is a contraction map from X to itself if
‖v0‖Lr,∞

ul,ρ (R
N) is sufficiently small. Thus, by the contraction mapping theorem we

obtain a fixed point v ∈ X.
It remains to prove the convergence to the initial data (16) and (17). Let 1 ≤

α < r . Take β such that α < β < r < pβ. Then, it is easily obtained by a similar
argument to (20) that

‖v(t) − etΔv0‖Lα
ul,ρ(R

N) ≤
ˆ t

0
‖e(t−s)Δ|v(s)|p‖Lα

ul,ρ(R
N)

≤
ˆ t

0
‖e(t−s)Δ|v(s)|p‖

L
β
ul,ρ(R

N)

≤ t
1−N

2

(
p
r
− 1

β

)

‖v0‖pLr,∞
ul,ρ (R

N)
→ 0 (t → 0),

(26)

since 1 − N
2

(
p
r

− 1
β

)
> 0 and L

q2
ul,ρ(R

N) ⊂ L
q1
ul,ρ(R

N) if q1 ≤ q2. This proves

(16). We next prove (17). Fix φ ∈ C∞
0 (RN). Then there holds

ˆ
RN

(v(x, t) − v0(x)) φ(x)dx

=
ˆ
RN

(
v(x, t) − etΔv0(x)

)
φ(x)dx +

ˆ
RN

(
etΔv0(x) − v0(x)

)
φ(x)dx.

(27)
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Since suppφ is compact, there exists k ∈ N and {xj }kj=1 ⊂ R
N such that suppφ ⊂

∪k
j=1Bρ(xj ). Therefore, for 1 < α < r we have by (16) that

∣∣∣∣
ˆ
RN

(
v(x, t) − etΔv0(x)

)
φ(x)dx

∣∣∣∣ ≤
k∑

j=1

ˆ
Bρ(xj )

∣∣(v(x, t) − etΔv0(x))φ(x)
∣∣ dx

≤ ‖v(t) − etΔv0‖Lα
ul,ρ(R

N) × ‖φ‖
Lα′

(RN)

→ 0
(28)

as t → 0. Moreover,

∣∣∣∣
ˆ
RN

(
etΔv0(x) − v0(x)

)
φ(x)dx

∣∣∣∣ =
∣∣∣∣
ˆ
RN

v0(x)
(
etΔφ(x) − φ(x)

)
dx

∣∣∣∣

≤ ‖v0‖Lr,∞
ul,ρ(R

N)‖etΔφ − φ‖
Lr′,1(RN)

→ 0

(29)

as t → 0. Here we applied the Hölder inequality in Lorentz spaces [9, Theo-
rem 1.4.17] and the density of C∞

0 (RN) ⊂ Lr ′,1(RN). More general density result
for smooth functions can be found in [28]. Combining (27), (28), and (29), we obtain
(17).

Smoothness of the solution is proved by the standard bootstrap argument. See for
instance [29, p. 81]. This completes the proof of Proposition 3. ��

3 Proof of the Results

3.1 Proof of the Existence Result (Theorem 1 (i))

Let r = N
2 (p̃ − 1). We consider the following initial value problem:

⎧
⎪⎨

⎪⎩

∂tv = Δv + (A − 1)v
A

A−1 = Δv + 1

p̃ − 1
vp̃ in R

N × (0, T ),

v(x, 0) = v0(x) in R
N,

(30)

where T > 0. Define

v0(x) := max
{
F(u0(x))

− 1
p̃−1 , F (s1)

− 1
p̃−1

}
, (31)
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where s1 is the constant appearing in (9). By the assumption on u0, the initial data
v0 satisfies

v0(x) ≤ max

{
C

1
p̃−1

1 |x|− 2
p̃−1 , F (s1)

− 1
p̃−1

}
. (32)

It follows from

(
v0χBρ(y)

) 
(x) ≤ max

{
C

1
p̃−1
1 |x|− 2

p̃−1 , F (s1)
− 1

p̃−1

}
χBρ(0) for y ∈ R

N

that

‖v0‖Lr,∞
ul,ρ (R

N) ≤ max

{
C

1
p̃−1
1 , ρ

2
p̃−1 F(s1)

− 1
p̃−1

}
.

Hence one can apply Proposition 3 if C1 and ρ are sufficiently small, and obtain
that there exists a local in time classical solution v of (30) satisfying (17). It should
be remarked that

v0(x) ≥ F(s1)
− 1

p̃−1 > 0 in R
N (33)

and hence

v(x, t) ≥ (etΔv0)(x) ≥ F(s1)
− 1

p̃−1 (34)

in R
N × (0, T ).

Here we construct a super solution for the original problem (1). Define the
function u ∈ C2,1(RN × (0, T )) by

u(x, t) := F−1
(
v(x, t)−

1
A−1

)
= F−1

(
v(x, t)−(p̃−1)

)
. (35)

Applying Corollary 2, we have

∂tu − Δu − f (u) = |∇u|2
f (u)F (u)

(
A − f ′(u)F (u)

)
.

It follows from (34) that

u(x, t) ≥ F−1(F (s1)) = s1 in R
N × (0, T ). (36)

Thus, since f ′(u)F (u) ≤ A in R
N × (0, T ) by (9) and (36), we obtain

∂tu ≥ Δu + f (u) in R
N × (0, T ). (37)
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Furthermore, by (31) we see that

u(x, 0) = max {u0(x), s1} ≥ u0(x) in R
N . (38)

Therefore, we see that the function ū is a supersolution of (1). Applying the
monotone methods (see the proof of Theorem 1.1 [5] for more details), we conclude
that there exists a local in time classical solution u for the problem (1).

We turn to the proof of the convergence to the initial data (10) and (11). Let 1 ≤
α < r . It follows from u(x, t) ≤ u(x, t) and Proposition 2 with f (s) = s

A
A−1 = sp̃

that

|u(t) − etΔu0| =
ˆ t

0
e(t−s)Δf (u(s))ds

≤
ˆ t

0
e(t−s)Δf (u(s)) ds ≤ C̃

ˆ t

0
e(t−s)Δv(s)p̃ ds

(39)

for some C̃ > 0. We have by the same argument as in (26) that

‖u(t) − etΔu0‖Lα
ul,ρ (R

N) ≤ C̃

ˆ t

0
‖e(t−s)Δv(s)p̃‖Lα

ul,ρ(R
N) ds → 0

as t → 0. This proves (10). It remains to prove (11). Fix φ ∈ C∞
0 (RN). Then there

holds
ˆ
RN

(u(x, t) − u0(x)) φ(x)dx =
ˆ
RN

(
u(x, t) − etΔu0(x)

)
φ(x)dx

+
ˆ
RN

(
etΔu0(x) − u0(x)

)
φ(x)dx.

(40)

It follows from the compactness of suppφ that there exists k ∈ N and {xj }kj=1 ⊂ R
N

such that suppφ ⊂ ∪k
j=1Bρ(xj ). Hence, by (10) we have

∣∣∣∣
ˆ
RN

(
u(x, t) − etΔu0(x)

)
φ(x)dx

∣∣∣∣ ≤
k∑

j=1

ˆ
Bρ(xj )

∣∣(u(x, t) − etΔu0(x))φ(x)
∣∣ dx

≤ ‖u(t) − etΔu0‖Lα
ul,ρ (R

N)‖φ‖
Lα′

(RN)
→ 0

(41)

as t → 0. To estimate the second term of (40), we prove the following pointwise
estimate:

F−1([a + b(s − s1)]−(p̃−1)) ≤ s (s > s1), (42)
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where

a = F(s1)
−(A−1), b = (A − 1)F (s1)

−A(−F ′(s1)).

Observe that a, b > 0 since F is positive and strictly decreasing. Since f ′(s)F (s) ≤
A (s > s1) and f ′(s) = F ′′(s)

F ′(s)2 , it suffices to solve

F(s)F ′′(s) − AF ′(s)2 ≤ 0.

Multiplying F(s)−A and integrating on (s1, s), we have

F(s)−AF ′(s) ≤ F(s1)
−AF ′(s1).

Again, integrating on (s1, s), we obtain

F(s)−(A−1) ≥ F(s1)
−(A−1) − (A − 1)F (s1)

−AF ′(s1)(s − s1).

This proves (42). Clearly the inequality (42) yields

F−1
( |x|2

C

)
≤ C1/(p̃−1)|x|− 2

p̃−1 − a

b
+ s1 for |x| <

(
C

ap̃−1

) 1
2

,

hence

u0(x) ≤ C6|x|− 2
p̃−1 + C7 (x ∈ R

N) (43)

for some C6, C7 > 0. Therefore, u0 ∈ L
r,∞
ul,ρ(R

N). Combining this and the similar
argument to (29), we have

∣∣∣∣
ˆ
RN

(
etΔu0(x) − u0(x)

)
φ(x)dx

∣∣∣∣ ≤ ‖u0‖Lr,∞
ul,ρ (R

N)‖etΔφ − φ‖
Lr′,1(RN)

→ 0

(44)

as t → 0. The estimates (41) and (44) yield the desired convergence (11).
It remains to prove the global existence if f satisfies f ′(s)F (s) ≤ A for all

s > 0 and f (0) = 0. Since f (0) = 0 and f ∈ C1([0,∞)), the mean value theorem
implies that there exists a > 0 such that f (s) = f (s)− f (0) ≤ as for small s > 0.
Hence lims→0 F(s) = ∞, and thus F−1(s) > 0 for all s > 0. Therefore u0 satisfies

u0(x) ≤ F−1
( |x|2

C

)
,
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and v0(x) := F(u0(x))
− 1

p̃−1 satisfies

‖v0‖Lr,∞(RN) ≤ C
1

p̃−1
1 .

Therefore, Proposition 3 and Remark 2 give us a global in time classical solution of
(30), and the function ū defined in (35) becomes a global supersolution in time of
the original problem (1). The monotone methods prove the existence of a global in
time classical solution. This completes the proof of Theorem 1 (i). ��

3.2 Proof of the Nonexistence Result (Theorem 1 (ii))

Fix C2 and u0 such that

(4π)−
N
2

ˆ
RN

e− |y|2
4 |y|2dy < C2 and u0(x) ≥ max

{
F−1

( |x|2
C2

)
, 0

}
.

The proof proceeds by contradiction. Assume that there exists a nonnegative
solution. Then, by Fujishima and Ioku [5, Lemma 4.1], the initial data satisfies

‖etΔu0‖L∞(RN) ≤ F−1(t) (45)

for small t > 0. Here we need the convexity of f which is assumed in Theorem 1
(ii).

On the other hand, since F−1 is a convex function, it follows from Jensen’s
inequality that

‖etΔu0‖L∞(RN) ≥ (4πt)−
N
2

ˆ
RN

e− |y|2
4t F−1

( |y|2
C2

)
dy

≥ F−1
(
(4πt)−

N
2

ˆ
RN

e− |y|2
4t

|y|2
C2

dy

)

= F−1
(
(4π)−

N
2

ˆ
RN

e− |y|2
4

|y|2
C2

dy × t

)

for all t > 0. Remark that

C̃ := (4π)−
N
2

ˆ
RN

e− |y|2
4

|y|2
C2

dy < 1.
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Applying the mean value theorem to F−1, we have

F−1(C̃t) = F−1(t) + f
(
F−1(C′t)

)
× (1 − C̃)t

for some C′ (C̃ < C′ < 1). This together with (45) yields that

F−1(t) ≥ F−1(t) + f
(
F−1(C′t)

)
× (1 − C̃)t.

This contradicts the positivity of f . ��
Remark 5 F−1 is a convex function under the assumption (2). Indeed, direct
computations show

d2

ds2 F
−1(s) = f ′(F−1(s)) × f (F−1(s)) ≥ 0

for all s > 0.

Remark 6 We used positivity of the initial data and solutions in both proofs of
the existence and the nonexistence in Theorem 1. Indeed, for the existence, our
argument relies on the super-subsolution method. Thanks to positivity of the initial
data and solutions, the zero function is clearly a subsolution. For the nonexistence,
we also need positivity to derive the decay estimate of the heat kernel (45). For more
details, see [5, Lemma 4.1].

3.3 Proof of Corollary 1

We apply Theorem 1 for f (s) := sp
[
log(e + s)

]q
(1 + 2

N
< p, 0 ≤ q). We have

by direct computations that

f ′(s) = psp−1 [log(e + s)
]q + q

sp

s + e

[
log(e + s)

]q−1
.

Thus

0 ≤ f ′(s) ≤ psp−1 [log(e + s)
]q + qsp−1 [log(e + s)

]q−1

for all s > 0. Moreover,

f ′′(s) = p(p − 1)sp−2 [log(e + s)
]q + 2pq

sp−1

s + e

[
log(e + s)

]q−1

− q
sp

(s + e)2

[
log(e + s)

]q−1 + q(q − 1)
sp

(s + e)2

[
log(e + s)

]q−2
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= p(p − 1)sp−2 [log(e + s)
]q + q

sp−1

s + e

[
log(e + s)

]q−1
{
p − s

s + e

}

+ q
sp

s + e

[
log(e + s)

]q−2
{
p log(e + s) + (q − 1)

s

s + e

}
≥ 0

for sufficiently large s > 0. Integrating by parts, we have

F(s) =
ˆ ∞

s

dη

ηp
[
log(e + η)

]q

=
[
η1−p

1 − p

[
log(e + η)

]−q

]∞

s

− q

p − 1

ˆ ∞

s

η1−p

e + η

[
log(e + η)

]−q−1
dη

= s1−p

p − 1

[
log(e + s)

]−q − q

p − 1

ˆ ∞

s

η1−p

e + η

[
log(e + η)

]−q−1
dη.

Therefore,

f ′(s)F (s) ≤ p

p − 1
+ q

p − 1

[
log(e + s)

]−1 − pq

p − 1

ˆ ∞

s

η1−p

η + e

[
log(e + η)

]−q−1
dη.

Define

h(s) = 1

p

[
log(e + s)

]−1 −
ˆ ∞

s

η1−p

η + e

[
log(e + η)

]−q−1
dη.

Since h(s) → 0 (s → ∞), it suffices to prove h′(s) > 0 for sufficiently large s > 0.
Indeed, there holds

h′(s) = s−p
[
log(e + s)

]−q−1
{
p − 1/2

p

s

s + e
− p − 1

p

}

+ s1−p

e + s

[
log(e + s)

]−q−1
{

1

2p
− q + 1

p

[
log(e + s)

]−1
}

> 0

for sufficiently large s > 0. Hence, f ′(s)F (s) ≤ p−1
p

for sufficiently large s > 0.
Therefore, f satisfies all assumptions in Theorem 1.

We next calculate the behavior of F−1
(|x|2). Since

lim
s→0

F(s)

s1−p
[
log(e + s)

]−q
= lim

s→∞
F(s)

s1−p
[
log(e + s)

]−q
= 1

p − 1
,
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there exists C′ > 0 such that

1

C′ s
1−p

[
log(e + s)

]−q ≤ F(s) ≤ C′s1−p
[
log(e + s)

]−q (46)

for all s > 0. Hence, F(s) = Css
1−p

[
log(e + s)

]−q for some Cs (1/C′ ≤ Cs ≤
C′). Define

F̃ (s) = s
− 1

p−1

[
log

(
e + 1

s

)]− q
p−1

.

It follows from

F̃ (F (s))

s
= C

− 1
p−1

s

[
log(e + s)

log(e + 1
Cs

sp−1[log(e + s)]q)

] q
p−1

that

1

C̃
F̃ (s) ≤ F−1(s) ≤ C̃F̃ (s)

for some C̃ > 0. This shows us that

1

C̃
|x|− 2

p−1

[
log

(
e + 1

|x|
)]− q

p−1 ≤ F−1
(
|x|2

)
≤ C̃|x|− 2

p−1

[
log

(
e + 1

|x|
)]− q

p−1

.

Therefore, applying Theorem 1 with u0 = C|x|− 2
p−1

[
log

(
e + 1

|x|
)]− q

p−1
, we

obtain Corollary 1. ��
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22. Laister, R., Robinson, J.C., Sierżȩga, M.: Non-existence of local solutions for semilinear heat

equations of Osgood type. J. Differ. Equ. 255, 3020–3028 (2013)
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Bounds for Sobolev Embedding
Constants in Non-simply Connected
Planar Domains

Filippo Gazzola and Gianmarco Sperone

Abstract In a bounded non-simply connected planar domain �, with a boundary
split in an interior part and an exterior part, we obtain bounds for the embedding
constants of some subspaces of H 1(�) into Lp(�) for any p > 1, p �= 2. The
subspaces contain functions which vanish on the interior boundary and are constant
(possibly zero) on the exterior boundary. We also evaluate the precision of the
obtained bounds in the limit situation where the interior part tends to disappear
and we show that it does not depend on p. Moreover, we emphasize the failure of
symmetrization techniques in these functional spaces. In simple situations, a new
phenomenon appears: the existence of a break even surface separating masses for
which symmetrization increases/decreases the Dirichlet norm. The question whether
a similar phenomenon occurs in more general situations is left open.

Keywords Embedding constants · Pyramidal functions · Symmetrization

1 Introduction

In the plane R
2 we consider an open, bounded, connected, and simply connected

domain K , with Lipschitz boundary ∂K . Then we remove K , seen as an obstacle,
from a larger square Q such that ∂K ∩ ∂Q = ∅, and we define the domain

Q = (−L,L)2 , � = Q \ K,

where L > diam(K), as shown in Fig. 1.
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Fig. 1 The planar domain �

with a smooth obstacle K

We focus our attention on the first order Hilbertian Sobolev space of functions
vanishing on ∂K , which is a proper part of ∂� having positive 1D-measure:

H 1∗ (�) = {v ∈ H 1(�) | v = 0 on ∂K} .

This space is rigorously defined as the closure of the space C∞
c (Q \K) with respect

to the Dirichlet norm: this is legitimate since |∂K| > 0 and the Poincaré inequality
holds in H 1∗ (�).

Motivated by the target of finding explicit thresholds for bifurcation from
uniqueness in stationary Navier-Stokes equations modeling a flow around an
obstacle, in a recent paper [7] we bounded some Sobolev embedding constants
for H 1∗ (�) ⊂ L4(�). We obtained a universal bound on the flow velocity for
the appearance of a lift force on the obstacle K exerted by a fluid entering Q

with constant velocity. In the present paper we drop this physical motivation and
we focus our attention on the functional analytic aspect and on the possibility of
obtaining similar inequalities in Lp(�) for any p > 1, p �= 2. To the best of our
knowledge, bounds in spaces of functions vanishing on a proper part of the boundary
were obtained in the past only for the critical Sobolev embedding [1, 9] (thereby in
space dimension n ≥ 3), where one can exploit scaling methods since the optimal
constant does not depend on the domain.

Given a subset D ⊂ R
2 and p > 1, throughout the paper we denote by ‖·‖p,D the

norm of the space Lp(D). The relative capacity of K with respect to Q is defined by

CapQ(K) = min
v∈H 1

0 (Q)

{ˆ
Q

|∇v|2 dx
∣∣∣ v = 1 in K

}
(1.1)

and the relative capacity potential ψ ∈ H 1
0 (Q), which achieves the minimum in

(1.1), satisfies

�ψ = 0 in �, ψ = 0 on ∂Q, ψ = 1 in K, CapQ(K) = ‖∇ψ‖2
2,�.

Then we consider a proper subspace of H 1∗ (�), namely

H 1
c (�) = {v ∈ H 1∗ (�) | v is constant on ∂Q} , (1.2)
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that can be rigorously characterized by using the relative capacity potential ψ .
Indeed,

H 1
c (�) = H 1

0 (�) ⊕ R(ψ − 1) , H 1
0 (�) ⊥ R(ψ − 1) ,

so that H 1
0 (�) has codimension 1 within H 1

c (�) and the “missing dimension” is
spanned by the function ψ − 1, see [7] for the details. Since � is a planar domain,
the embedding H 1∗ (�) ⊂ Lp(�) holds for any 1 < p < ∞, and we define the
Sobolev constants

Sp = min
w∈H 1∗ (�)\{0}

‖∇w‖2
2,�

‖w‖2
p,�

, S0
p = min

w∈H 1
0 (�)\{0}

‖∇w‖2
2,�

‖w‖2
p,�

,

S1
p = min

w∈H 1
c (�)\{0}

‖∇w‖2
2,�

‖w‖2
p,�

. (1.3)

Due to the inclusions H 1
0 (�) ⊂ H 1

c (�) ⊂ H 1∗ (�), we have Sp ≤ S1
p ≤ S0

p , for
every p > 1.

In Sect. 2 we obtain bounds for the constants S0
p and S1

p, extending the results in
[7] where only the case p = 4 was considered. To this end, we repeatedly use
some sharp Gagliardo-Nirenberg inequalities due to del Pino-Dolbeault [5] and
the behavior of pyramidal functions introduced in [7]. It turns out that the cases
p > 2 and p < 2 require slightly different approaches. We obtain both lower and
upper bounds for the constants S0

p and S1
p defined in (1.3) and we show that they

are quite precise. In particular, we analyze the case where the obstacle tends to
vanish (|K| → 0) and we show that the ratio between these bounds converges to
a universal constant π/4 ≈ 0.79, independently of the value of p > 1 (p �= 2),
see Theorem 2.3. Our bounds do not depend on the position of the obstacle and it is
therefore natural to expect that they might be improved, see Problem 2.1.

In Sect. 3 we address the question whether symmetrization techniques might be
employed to obtain additional bounds. It turns out that, at least in its simplest forms,
symmetrization is of no help in annuli, see Theorem 3.1. In its proof we exhibit
examples where any of the possible inequalities may hold: in case of different
(constant) conditions on the two connected components of the boundary

there is no a priori monotonicity of the Dirichlet norm under decreasing rearrangement
neither from an annulus into itself, nor from an annulus into a disk with the same measure.

Moreover, we determine explicitly a “break even surface” which separates the
cases where the mass of the gradient increases or decreases after symmetrization.
We believe that this phenomenon deserves further investigation, see Problem 3.1.
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2 Bounds for the Sobolev Embedding Constants

In Sect. 2.1 we provide lower bounds for the Sobolev embedding constants (1.3),
for a general Lipschitz obstacle K . Then, in Sect. 2.2 we derive upper bounds for
these constants and quantify the accuracy of our estimates when K is a square.

2.1 Lower Bounds

As mentioned in the introduction, the cases p ≶ 2 are different and we consider first
the case p < 2. Let

μ0 = the first zero of the Bessel function of first kind of order zero ≈ 2.40483 .

(2.1)

Then we have

Theorem 2.1 For any 1 < p < 2 and u ∈ H 1
0 (�) one has

‖u‖2
p,� ≤ |�| 2

p

π
min

{
1

μ2
0

,
1

2π

|Q|
|�| ,

(p
2

) 4−p
2−p

}
‖∇u‖2

2, � . (2.2)

For any 1 < p < 2 and u ∈ H 1
c (�) one has

‖u‖2
p,� ≤ |�| 2

p

π

(p
2

) 4−p
2−p

⎛
⎜⎝1 + 1

2

√√√√
(

2

p

) 4−p
2−p

log

( |Q|
|K|

)
⎞
⎟⎠

2(p−1)
p

×
⎡

⎢⎣1 + 1

2

√√√√
(

2

p

) 4−p
2−p

log

( |Q|
|K|

)

+ p

2 − p

|K|
|�|

⎛

⎝1

4

(
2

p

) 4−p
2−p

log

( |Q|
|K|

)⎞

⎠
p−1

⎤

⎥⎦

2
p

‖∇u‖2
2, �. (2.3)

Proof We begin by proving the following Poincaré inequality in �:

‖u‖2, � ≤ min

{
1

μ0

√ |�|
π

,
1

π

√ |Q|
2

}
‖∇u‖2, � ∀u ∈ H 1

0 (�). (2.4)
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Through the Faber-Krahn inequality [6, 8] we first bound the L2(�)-norm of
functions in terms of their Dirichlet norm by using the Poincaré inequality in �∗,
namely a disk having the same measure as �. Since |�| = |Q| − |K|, the radius of
�∗ is given by

R =
√ |�|

π
=

√ |Q| − |K|
π

.

Since the Poincaré constant (least eigenvalue of −�) in the unit disk is given by μ2
0,

see (2.1), the Poincaré constant in �∗ is given by μ2
0/R

2, which means that

min
w∈H 1

0 (�)

‖∇w‖2, �

‖w‖2, �
≥ min

w∈H 1
0 (�

∗)

‖∇w‖2, �∗

‖w‖2, �∗
= μ0

R
.

Therefore,

‖u‖2, � ≤ R

μ0
‖∇u‖2, � = 1

μ0

√ |�|
π

‖∇u‖2, � ∀u ∈ H 1
0 (�),

which provides the first bound in (2.4). On the other hand, the least eigenvalue for
the problem −�v = λv in H 1

0 (Q) is given by λ = π2/2L2. Therefore, the Poincaré
inequality in Q reads

‖u‖2,Q ≤
√

2L

π
‖∇u‖2,Q = 1

π

√ |Q|
2

‖∇u‖2,Q ∀u ∈ H 1
0 (Q),

yielding the second bound in (2.4) since any function of H 1
0 (�) can be extended by

0 in K , thereby becoming a function in H 1
0 (Q).

The first two bounds in (2.2) are obtained after applying both Hölder’s inequality
and (2.4)

‖u‖pp,� ≤ |�| 2−p
2 ‖u‖p2, �

≤ min

{
|�|

(
μ0

√
π
)p , |�| 2−p

2

(
1

π

√ |Q|
2

)p }
‖∇u‖p2, � ∀u ∈ H 1

0 (�).

To prove the third bound in (2.2), we recall the following (optimal) Gagliardo-
Nirenberg inequality in R

2 given by del Pino-Dolbeault [5, Theorem 2]:

‖u‖p,� ≤ π
p−2
2p

(p
2

) 4−p
2p ‖∇u‖

2−p
p

2,� ‖u‖
2(p−1)

p

2(p−1),� ∀u ∈ H 1
0 (�) ∀p ∈ (1, 2).

(2.5)
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Since functions in H 1
0 (�) may be extended by zero outside �, they can be seen

as functions defined over the whole plane. An application of the Hölder inequality
shows that

‖u‖2(p−1), � ≤ |�| 2−p
2p(p−1) ‖u‖p,� ∀u ∈ H 1

0 (�)

which, combined with (2.5), yields the third bound in (2.2).
In order to prove (2.3) we restrict our attention to functions u ∈ H 1

c (�)\H 1
0 (�):

this restriction will be justified a posteriori because, if we manage proving (2.3) for
these functions, then it will also hold for functions in H 1

0 (�) since the constant in
(2.2) is smaller, see also Fig. 3 below. For functions u ∈ H 1

c (�) \H 1
0 (�), it suffices

to analyze the case where u ≥ 0 in � (by replacing u with |u|), u = 1 on ∂Q (by
homogeneity), and we define a.e. in Q the function

v(x, y) =
{

1 − u(x, y) if (x, y) ∈ �

1 if (x, y) ∈ K,

so that v ∈ H 1
0 (Q) and, after a zero extension outside Q, v satisfies (2.5). Let us put

Ap = Ap(u)
.= π

p−2
2

(p
2

) 4−p
2 ‖∇v‖2−p

2,Q = π
p−2

2

(p
2

) 4−p
2 ‖∇u‖2−p

2, � ,

so that (2.5) reads

ˆ
Q

|v|p ≤ Ap

ˆ
Q

|v|2(p−1)

%⇒
ˆ
�

[
|1 − u|p + |K|

|�| − Ap

(
|1 − u|2(p−1) + |K|

|�|
)]

≤ 0. (2.6)

The next step consists in finding α ∈ (0, 1) and β > 0 (possibly depending on p,
but having ratio independent of u) for which

|1 − s|p − Ap|1 − s|2(p−1) + (1 − Ap)
|K|
|�| ≥ αsp − βA

p
2−p
p ∀s ≥ 0. (2.7)

Given any p ∈ (0, 1) and γ ∈ R, the function s �→ |1− s|p−Ap|1− s|2(p−1)+γ is
symmetric with respect to s = 1, so it suffices to find α ∈ (0, 1) and β > 0 ensuring
(2.7) for every s ≥ 1. Thus, for all such α and β we define the function

ϕp(s) = (s − 1)p − Ap(s − 1)2(p−1) − αsp + (1 − Ap)
|K|
|�| + βA

p
2−p
p ∀s ≥ 1,
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and we seek α ∈ (0, 1) and β > 0 in such a way that ϕp has a non-negative
minimum value at some s > 1. Equivalently, we seek γ > 0 such that ϕp attains its
minimum at s0 = 1 + γAp, that is,

ϕ′(s0) = γ p−1A
p−1
p

[
p − 2(p − 1)γ p−2A

p−1
p

]
− pα(1 + γAp)

p−1 = 0,

thus fixing α in dependence of u through the expression

α = 1

p

(
γAp

1 + γAp

)p−1 [
p − 2(p − 1)γ p−2A

p−1
p

]
∈ (0, 1)

⇐⇒ γ >

(
2p − 2

p

) 1
2−p

A

p−1
2−p
p .

By imposing ϕ(s0) ≥ 0, we obtain the following lower bound for β:

β ≥ A

p
p−2
p

[
α
(
1 + γAp

)p + γ 2p−2A
2p−1
p

(
1 − γ 2−pA

1−p
p

)]
+ Ap − 1

A

p
2−p
p

|K|
|�| .

This condition is certainly satisfied if we choose

β = A

p
p−2
p

[
α
(
1 + γAp

)p + γ 2p−2A
2p−1
p

(
1 − γ 2−pA

1−p
p

)]
+ A

2p−2
p−2
p

|K|
|�| ≥ 0 ,

where one should take γ ≤ A

p−1
2−p
p in order to ensure that β ≥ 0. With the above

choices of α and β we obtain the ratio

β

α
=

pA

p
p−2
p

(
γAp

1 + γAp

)1−p

p − 2(p − 1)γ p−2A
p−1
p

×
{

1 + γAp

p
(γAp)

p−1
(
p − 2(p − 1)γ p−2A

p−1
p

)

+γ 2p−2A
2p−1
p

(
1 − γ 2−pA

1−p
p

)
+ Ap

|K|
|�|

}
, (2.8)

which depends on u and on γ > 0 such that

(
2p − 2

p

) 1
2−p

A

p−1
2−p
p < γ ≤ A

p−1
2−p
p .
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Hence, we still have the freedom of choosing γ . By taking γ = A

p−1
2−p
p (which,

numerically, appears to be close to the global minimum of the right-hand side of
(2.8)), we obtain

β

α
=

⎛

⎝1 + 1

Ap(u)
1

2−p

⎞

⎠
p−1 ⎛

⎝1 + 1

Ap(u)
1

2−p

+ p

2 − p

1

Ap(u)
2p−2
2−p

|K|
|�|

⎞

⎠ ,

(2.9)

where we emphasized the dependence of A on u. In order to obtain an upper bound
for the ratio β/α independent of u, we use [7, Remark 2.1] which states that

‖∇u‖2
2, � ≥ 4π

log(|Q|) − log(|K|) ∀u ∈ H 1
c (�) s.t. u = 1 on ∂Q, u ≥ 0 in �,

thus yielding

Ap(u) ≥ 22−p
(p

2

) 4−p
2

(
log

( |Q|
|K|

)) p−2
2

∀u ∈ H 1
c (�) s.t. u = 1 on ∂Q, u ≥ 0 in �.

Hence, from (2.9) we obtain the following uniform bound (independent of u)

β

α
≤

⎛

⎜⎝1 + 1

2

√√√√
(

2

p

) 4−p
2−p

log
( |Q|

|K|
)
⎞

⎟⎠

p−1

×
⎡

⎢⎣1 + 1

2

√√√√
(

2

p

) 4−p
2−p

log

( |Q|
|K|

)
+ p

2 − p

|K|
|�|

⎛

⎝1

4

(
2

p

) 4−p
2−p

log

( |Q|
|K|

)⎞

⎠
p−1

⎤

⎥⎦ .
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In turn, from (2.6), by replacing s with |u| in (2.7) and integrating over �, we obtain

‖u‖pp,� ≤ β

α
Ap(u)

p
2−p |�|

≤ π− p
2

(p
2

) p(4−p)
2(2−p) |�|

⎛

⎜⎝1 + 1

2

√√√√
(

2

p

) 4−p
2−p

log

( |Q|
|K|

)
⎞

⎟⎠

p−1

×
⎡
⎢⎣1 + 1

2

√√√√
(

2

p

) 4−p
2−p

log

( |Q|
|K|

)

+ p

2 − p

|K|
|�|

⎛

⎝1

4

(
2

p

) 4−p
2−p

log

( |Q|
|K|

)⎞

⎠
p−1

⎤
⎥⎦ ‖∇u‖p2, � ,

for every u ∈ H 1
c (�) such that u = 1 on ∂Q and u ≥ 0 in �. The bound in (2.3)

follows by taking the p-roots in the last inequality. ��
Remark 2.1 We point out that (2.4) provides an upper bound for the Poincaré
constant in H 1

0 (�) (for p = 2). On the other hand, a bound for the Poincaré constant
in H 1

c (�) for p = 2 cannot be obtained by taking the limit in (2.3) when p → 2,
because the right-hand side of (2.3) blows up. This is the reason why the analysis of
the case p = 2 has been excluded in the present article.

We now turn to the case p > 2.

Theorem 2.2 For any p > 2 and u ∈ H 1
0 (�) one has

‖u‖2
p,� ≤ |�| 2

p

π

(
p + 2

4

) p−6
p

min

{
1

μ2
0

,
1

2π

|Q|
|�|

} 2
p

‖∇u‖2
2, � . (2.10)
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For any p > 2 and u ∈ H 1
c (�) one has

‖u‖2
p,� ≤ |�| 2

p

π

(
p + 2

4

) p−6
p−2

⎛

⎜⎝1 + 1

2

√√√√
(
p + 2

4

) 6−p
p−2

log

( |Q|
|K|

)
⎞

⎟⎠

2(p−1)
p

(2.11)

×
⎡
⎢⎣1 + 1

2

√√√√
(
p + 2

4

) 6−p
p−2

log

( |Q|
|K|

)

+ 2p

p − 2

|K|
|�|

⎛

⎝1

4

(
p + 2

4

) 6−p
p−2

log

( |Q|
|K|

)⎞

⎠

p+2
4
⎤
⎥⎦

2
p

‖∇u‖2
2, �.

Proof For p > 2, del Pino-Dolbeault [5, Theorem 1] obtained the optimal constant
for the following Gagliardo-Nirenberg inequality in R

2:

‖u‖p,� ≤ π
2−p
4p

(
p + 2

4

) p−6
4p ‖∇u‖

p−2
2p

2, � ‖u‖
p+2
2p
p
2 +1, �

∀u ∈ H 1
0 (�). (2.12)

As in Theorem 2.1, we notice that functions in H 1
0 (�) may be extended by zero

outside Q, so they can be seen as functions defined over the whole plane. For general
exponents, the optimal constant in the Gagliardo-Nirenberg inequality is not known,
this is why we introduce the L

p
2 +1-norm. By combining (2.12) with the following

form of the Hölder inequality

‖u‖
p
2 +1
p
2 +1, �

≤ ‖u‖2, � ‖u‖p/2
p,� ∀u ∈ Lp(�) ,

we infer that

‖u‖2
p,� ≤ π

2−p
p

(
p + 2

4

) p−6
p ‖∇u‖

2(p−2)
p

2, � ‖u‖4/p
2, � ∀u ∈ H 1

0 (�) . (2.13)

Then (2.10) is obtained after inserting (2.4) into (2.13).
The proof of (2.11) follows exactly the procedure employed in the proof of

inequality (2.3) given in Theorem 2.1, and therefore is omitted here. ��
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Remark 2.2 Notice that the minimum in (2.2) and (2.10) is the consequence of the
Poincaré inequality (2.4) that we only use in the space H 1

0 (�). In particular, from
(2.10) we deduce that

‖u‖2
p,� ≤ |�|2/p

πμ
4/p
0

(
p + 2

4

) p−6
p ‖∇u‖2

2, � for all u ∈ H 1
0 (�) and p > 2.

(2.14)

On the other hand, by applying firstly (2.12) and then Hölder’s inequality, we also
have

‖u‖2
p,� ≤ |�|2/p

π

(
p + 2

4

) p−6
p−2 ‖∇u‖2

2, � for all u ∈ H 1
0 (�) and p > 2.

(2.15)

The ratio between the constants appearing in the right-hand sides of (2.14) and
(2.15) is plotted in Fig. 2 as a function of p > 2, showing that the smallest constant
corresponds to (2.14).

Theorems 2.1 and 2.2 yield (unpleasant) lower bounds for the Sobolev constants
in (1.3): it suffices to take the inverse of the constants appearing in (2.2), (2.3), (2.10)
and (2.11). The lower bounds for S1

p may be treated as functions of |Q|/|K| ∈
[1,∞): regardless of the value of p > 1, they vanish like

[
log (|Q|/|K|)]−1 as

|Q|/|K| → ∞, see the plots in Fig. 3 where we also compare them with the (larger)
lower bound for S0

p. One should also compare this uniform asymptotic behavior
with the result of Theorem 2.3.

In the case when K is a square, the explicit lower bounds for S1
p are as follows:

Fig. 2 Ratio between the
embedding constants given in
(2.14) and (2.15)

4 6 8 10
p

0.50

0.55

0.60
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2 4 6 8
|Q| / |K|

2
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6

8

2 4 6 8
|Q | / |K|

2

4

6

8

Fig. 3 Behavior of the lower bounds for Sp

0 (red) and Sp

1 (blue) as functions of |Q|/|K|, when
p = 3/2 (left) and p = 6 (right)

Corollary 2.1 For 0 < a < L, suppose that K = (−a, a)2. Then, for every 1 <

p < 2 we have

S1
p ≥L−4/p π

42/p

[
1 −

(
L

a

)−2
]− 2

p (
2

p

) 4−p
2−p

⎛
⎜⎝1 +

√√√√1

2

(
2

p

) 4−p
2−p

log

(
L

a

)
⎞
⎟⎠

2(1−p)
p

×
⎡
⎢⎣1 +

√√√√1

2

(
2

p

) 4−p
2−p

log

(
L

a

)

+ p

2 − p

1
(
L
a

)2 − 1

⎛

⎝1

2

(
2

p

) 4−p
2−p

log

(
L

a

)⎞

⎠
p−1

⎤

⎥⎦

− 2
p

,

and for every p > 2 we have

S1
p ≥ L−4/p π

42/p

[
1 −

(
L

a

)−2
]− 2

p

×
(
p + 2

4

) 6−p
p−2

⎛

⎜⎝1 +

√√√√1

2

(
p + 2

4

) 6−p
p−2

log

(
L

a

)
⎞

⎟⎠

2(1−p)
p

×
⎡

⎢⎣1 +

√√√√1

2

(
p + 2

4

) 6−p
p−2

log

(
L

a

)

+ 2p

p − 2

1
(
L
a

)2 − 1

⎛

⎝1

2

(
p + 2

4

) 6−p
p−2

log

(
L

a

)⎞

⎠

p+2
4

⎤

⎥⎦

− 2
p

.
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Problem 2.1 The bounds obtained in Theorems 2.1 and 2.2 for the Sobolev
constants merely depend on the measure of the obstacle K but they do not depend
on its position nor on its shape. It is natural to conjecture that obstacles close
to ∂Q might generate larger Sobolev constants. Moreover, it is well-known that
Steiner symmetrization [10] preserves the Lp norms of functions and reduces their
Dirichlet norm, see [2–4, 11] and references therein. In our 2D setting, the Steiner
symmetrization produces rearrangements that gain symmetry about a line. We are
here interested in a finite number of iterations by symmetrizing about the four lines
x = 0, y = 0 and y = ±x, namely the axes of symmetry of Q. Then, it appears
interesting to find the shape and the position of the optimal obstacle minimizing the
Sobolev constants among obstacles K of given measure.

2.2 Upper Bounds

It is natural to wonder whether the lower bounds for S0
p and S1

p so far obtained

are accurate. This can be tested through suitable upper bounds. For S0
p we take the

function w(x, y) = cos(πx
2L ) cos(πy2L), defined for (x, y) ∈ Q, so that w ∈ H 1

0 (Q)

and

‖w‖2
p,Q =

⎡

⎢⎢⎣
2L√
π

�

(
1 + p

2

)

�
(

1 + p

2

)

⎤

⎥⎥⎦

4/p

, ‖∇w‖2
2,Q = π2

2

%⇒ S0
p ≤ π2

2

⎡
⎢⎢⎣

√
π

2L

�
(

1 + p

2

)

�

(
1 + p

2

)

⎤
⎥⎥⎦

4/p

. (2.16)

Notice that the upper bound (2.16) holds for any obstacle K .
In order to derive an upper bound for S1

p, we recall the definition of pyramidal
function, introduced in [7, Theorem 2.2]. For 0 < d ≤ a < L, suppose that K =
(−a, a)×(−d, d) and divide the domain � into four trapezia T1, T2, T3, T4 as in the
left picture in Fig. 4. By pyramidal function we mean any function having the level
lines as in the right picture of Fig. 4, namely level lines parallel to ∂Q (and to the
rectangle K) in each of the trapezia. In particular, pyramidal functions are constant
on ∂K and constitute the following convex subset of H 1

0 (Q):

P(Q) = {u ∈ H 1
0 (Q) | u = 1 in K, u = u(y) in T1 ∪ T3, u = u(x) in T2 ∪ T4} .

(2.17)
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Fig. 4 The domain � (left) and the level lines of pyramidal functions (right)

Now, any V φ ∈ P(Q) is fully characterized by a (continuous) function

φ ∈ H 1([0, 1];R) such that φ(0) = 1 , φ(1) = 0 ,

giving the values of V φ on the oblique edges of the trapezia. For instance, consider
the right trapezia T5, T6 ⊂ Q being, respectively, half of the trapezia T1 and T2,
defined by

T5 =
{
(x, y) ∈ Q

∣∣∣ d < y < L, 0 < x < a + L − a

L − d
(y − d)

}
,

T6 =
{
(x, y) ∈ Q

∣∣∣ a < x < L, 0 < y < d + L − d

L − a
(x − a)

}
.

Since V φ is a function of y in T1 and a function of x in T2, φ and V φ are linked
through the formulas

V φ(x, y) = φ

(
y − d

L − d

)
∀(x, y) ∈ T5,

V φ(x, y) = φ

(
x − a

L − a

)
∀(x, y) ∈ T6. (2.18)

Whence,

∂V φ

∂y
(x, y) = 1

L − d
φ′

(
y − d

L − d

)
∀(x, y) ∈ T5,

∂V φ

∂x
(x, y) = 1

L − a
φ′

(
x − a

L − a

)
∀(x, y) ∈ T6. (2.19)

To avoid tedious computations, we restrict again our attention to the case d = a

(squared obstacle). The next result gives an upper bound for the constants S1
p and

measures the precision of the bounds in the limit situation where K is a vanishing
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square. Interestingly, the ratio between our lower and upper bounds for S1
p converges

to a limit that is independent of p.

Theorem 2.3 For 0 < a < L, suppose that K = (−a, a)2. Then, for every p > 1
(p �= 2) we have

S1
p ≤ 81− 2

p

L4/p

(
L

a

)4/p

log

(
L

a

)(ˆ L/a

1
t logp(t) dt

)−2/p

. (2.20)

Moreover, the ratio between the lower bounds in Corollary 2.1 and the upper
bound (2.20) tends to π/4 ≈ 0.79 as L/a → ∞, independently of the value of
p > 1 (p �= 2).

Proof Let P(Q) be as in (2.17) and let V φ ∈ P(Q) be defined by (2.18) with

φ(s) = log

(
a + (L − a)s

L

)/
log

( a

L

)
∀s ∈ [0, 1].

For symmetry reasons, the contribution of |∇V φ | over T1 ∪ T3 is four times the
contribution over T5, whereas the contribution of |∇V φ| over T2 ∪ T4 is four times
the contribution over T6. By taking into account all these facts, in particular (2.19),
we infer that

‖∇V φ‖2
2,� = 4

ˆ L

a

ˆ y

0

∣∣∣∣
∂V φ

∂y

∣∣∣∣
2

dx dy + 4
ˆ L

a

ˆ x

0

∣∣∣∣
∂V φ

∂x

∣∣∣∣
2

dy dx

= 4
ˆ L

a

y

∣∣∣∣
∂V φ

∂y

∣∣∣∣
2

dy + 4
ˆ L

a

x

∣∣∣∣
∂V φ

∂x

∣∣∣∣
2

dx

= 8

L − a

ˆ 1

0
[a + (L − a)s]φ′(s)2 ds

= 8

[
log

(
L

a

)]−1

. (2.21)

In a similar fashion, for every p > 1 we have

‖1 − V φ‖pp,� = 4
ˆ L

a

ˆ y

0

∣∣1 − V φ(y)
∣∣p dx dy + 4

ˆ L

a

ˆ x

0

∣∣1 − V φ(x)
∣∣p dy dx

= 4
ˆ L

a

y
∣∣1 − V φ(y)

∣∣p dy + 4
ˆ L

a

x
∣∣1 − V φ(x)

∣∣p dx

= 8(L − a)

ˆ 1

0
[a + (L − a)s] |1 − φ(s)|p ds.
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Through the change of variable t = a + (L − a)s, for s ∈ [0, 1], we then obtain

‖1 − V φ‖pp,� = 8a2
[

log

(
L

a

)]−p ˆ L/a

1
t logp(t) dt. (2.22)

We finally notice that if v ∈ P(Q), then 1 − v ∈ H 1
c (�) with v = 1 on ∂Q.

Therefore,

S1
p ≤ min

v∈P(Q)

‖∇v‖2
2,�

‖1 − v‖2
p,�

≤ ‖∇V φ‖2
2,�

‖1 − V φ‖2
p,�

∀p > 1,

which yields (2.20) in view of (2.21) and (2.22).
Next, for any 1 < p < 2, denote by R(z) the ratio between the lower bound for

S1
p given in Corollary 2.1 and the just proved upper bound (2.20), as a function of

z = L/a: for every z > 1 we have

R(z) =
π 2

2
p

−3
(

2

p

) 4−p
2−p

⎛

⎝ 1

z2 − 1

zˆ

1

t logp(t) dt

⎞

⎠

2
p

⎛

⎜⎝1 +

√√√√1

2

(
2

p

) 4−p
2−p

log(z)

⎞

⎟⎠

2(1−p)
p

log(z)

⎡

⎢⎣1 +
√

1

2

(
2

p

) 4−p
2−p

log(z) + p

2 − p

1

z2 − 1

⎛

⎝1

2

(
2

p

) 4−p
2−p

log(z)

⎞

⎠
p−1

⎤

⎥⎦

2
p

,

so that

R(z) ∼ π 2
2
p −2

⎛

⎝ 1

z2 logp(z)

zˆ

1

t logp(t) dt

⎞

⎠

2
p

as z → ∞.

An application of L’Hôpital’s rule yields

lim
z→∞

1

z2 logp(z)

zˆ

1

t logp(t) dt = 1

2
,

which concludes the proof, since the limit in the case p > 2 can be treated exactly
in the same way. ��
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Fig. 5 On the left: behavior of the lower and upper bounds for S1
3 as a function of L/a. On the

right: ratio between the upper and lower bounds for S1
3 as a function of L/a

Remark 2.3 If p > 1 is an integer we may explicitly compute

ˆ L/a

1
t logp(t) dt = p!

[(
L

a

)2 p∑

k=0

(−1)k

2k+1

1

(p − k)!
(

log

(
L

a

))p−k

− (−1)p

2p+1

]
.

By dropping the multiplicative term L−4/p, the lower and upper bounds for S1
p

in Corollary 2.1 and in Theorem 2.3 can be treated as functions of L/a ∈ (1,∞).
The plots in Fig. 5 describe the overall behavior for p = 3. Qualitatively, the same
plots are found for any value of p > 1 (p �= 2).

3 Failure of Elementary Symmetrization Methods

Theorems 2.1 and 2.2 may be extended to any space dimension n ≥ 3 and any
1 < p < 2n

n−2 but the question whether they might be improved arises naturally.
In particular, one wonders whether some symmetrization techniques [11] could be
used. In this section we show that, at least in its simplest forms, symmetrization is of
no help: we argue in any space dimension n ≥ 2 because this creates no additional
difficulties.

For any R > 0 we denote by BR ⊂ R
n the n-dimensional ball of radius R

centered at the origin. In the next statement we show that if we compare the Dirichlet
norm of a (radial) function in this annulus with that of its decreasing rearrangement,
nothing can be said a priori: both inequalities may occur.

Theorem 3.1 There exist radial functions f1, f2, f3, f4 ∈ H 1
c (B2 \ B1) such that

‖∇f1‖2, B2\B1 < ‖∇g1‖2, B2\B1 , ‖∇f2‖2, B2\B1 > ‖∇g2‖2, B2\B1 (3.1)
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and, for R = n
√

2n − 1,

‖∇f3‖2, B2\B1 < ‖∇g3‖2, BR , ‖∇f4‖2, B2\B1 > ‖∇g4‖2, BR , (3.2)

where gi denotes the decreasing rearrangement of fi , for i ∈ {1, 2, 3, 4}.
Proof First we prove (3.1). In the annulus B2 \ B1, take any positive strictly
increasing radial function f = f (r) over the interval [1, 2] such that f (1) = 0
and f (2) = 1. Its decreasing rearrangement within the annulus is given by

g(r) = f
(

n
√

2n + 1 − rn
)

∀r ∈ (1, 2).

Hence, as expected, we have

ˆ 2

1
rn−1g(r)p dr =

ˆ 2

1
rn−1f

(
n
√

2n + 1 − rn
)p

dr

=
ˆ 2

1
tn−1f (t)p dt ∀p > 1,

where we used the change of variables

t = n
√

2n + 1 − rn ⇐⇒ r = n
√

2n + 1 − tn. (3.3)

On the other hand, we have

g′(r) = −rn−1
(

2n + 1 − rn
) 1

n−1
f ′( n

√
2n + 1 − rn

)
∀r ∈ (1, 2),

so that, using again (3.3),

ˆ 2

1
rn−1f ′(r)2 dr =

ˆ 2

1
tn−1f ′( n

√
2n + 1 − tn

)2
dt

=
ˆ 2

1

(
2n + 1 − tn

)2− 2
n

tn−1 g′(t)2 dt.

The “break even” in the integral occurs whenever

(
2n + 1 − tn

)2− 2
n

tn−1 = tn−1 ⇐⇒ t = r∗ .=
(

2n−1 + 1

2

) 1
n

.



Bounds for Sobolev Embedding Constants in Non-simply Connected Planar Domains 121

1.2 1.4 1.6 1.8 2.0
r

0.2

0.4

0.6

0.8

1.0
f1(r)

1.2 1.4 1.6 1.8 2.0 r

0.2

0.4

0.6

0.8

1.0
g1(r)

Fig. 6 Plot of f1 and of its symmetric decreasing rearrangement g1, with n = 2 and r∗ = √
5/2

Let us consider first the function (see Fig. 6 when n = 2)

f1(r) =
{

r−1
r∗−1 if 1 < r ≤ r∗

1 if r∗ ≤ r < 2
%⇒ f ′

1(r) =
{ 1

r∗−1 if 1 < r < r∗

0 if r∗ < r < 2
,

so that

g1(r) =
⎧
⎨

⎩
1 if 1 < r ≤ r∗
n√2n+1−rn−1

r∗−1 if r∗ ≤ r < 2
%⇒

g′
1(r) =

⎧
⎨

⎩
0 if 1 < r < r∗

−rn−1

r∗−1
1

(2n+1−rn)1−1/n if r∗ < r < 2 .

Then we have

ˆ 2

1
rn−1f ′

1(r)
2 dr <

ˆ 2

1
tn−1g′

1(t)
2 dt ,

which proves the first of (3.1).
Next, consider the function (see Fig. 7 when n = 2)

f2(r) =
{

0 if 1 < r ≤ r∗

r−r∗
2−r∗ if r∗ ≤ r < 2

%⇒ f ′
2(r) =

{
0 if 1 < r < r∗

1
2−r∗ if r∗ < r < 2

,
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Fig. 7 Plot of f2 and of its symmetric decreasing rearrangement g2, with n = 2 and r∗ = √
5/2

so that

g2(r) =
⎧
⎨

⎩

n√2n+1−rn−r∗
2−r∗ if 1 < r ≤ r∗

0 if r∗ ≤ r < 2
%⇒

g′
2(r) =

⎧
⎨

⎩

−rn−1

2−r∗ 1
(2n+1−rn)1−1/n if 1 < r < r∗

0 if r∗ < r < 2 .

Then we have

ˆ 2

1
rn−1f ′

2(r)
2 dr >

ˆ 2

1
tn−1g′

2(t)
2 dt ,

which proves the second inequality in (3.1).
Let us now prove (3.2). Notice that |B2 \ B1| = ωn(2n − 1), where ωn is the

measure of the unit ball B1. Hence, the disk D of radius R = n
√

2n − 1 has the same
measure as B2 \B1 so that BR = (B2 \B1)

∗. Consider a positive strictly increasing
radial function f = f (r) over the interval (1, 2), then its decreasing rearrangement
within the disc BR is given by

g(r) = f
(

n
√

2n − rn
)

∀r ∈
(

0, n
√

2n − 1
)
.

We have again

ˆ n
√

2n−1

0
rn−1g(r)p dr =

ˆ 2

1
tn−1f (t)p dt ∀p > 1.

where we used the change of variables

t = n
√

2n − rn ⇐⇒ r = n
√

2n − tn. (3.4)
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On the other hand, we have

g′(r) = −rn−1
(

2n − rn
) 1

n −1
f ′( n

√
2n − rn

)
∀r ∈

(
0, n

√
2n − 1

)
.

so that, using again (3.4),

ˆ 2

1
rn−1f ′(r)2 dr =

ˆ n
√

2n−1

0

(
2n − tn

)2− 2
n

tn−1
g′(t)2 dt.

The “break even” in the integral occurs whenever

(
2n − tn

)2− 2
n

tn−1 = tn−1 ⇐⇒ t = r∗ .= 21− 1
n .

Let us consider first the function (see Fig. 8 when n = 2)

f3(r) =
{

r−1
r∗−1 if 1 < r ≤ r∗

1 if r∗ ≤ r < 2
%⇒ f ′

3(r) =
{ 1

r∗−1 if 1 < r < r∗

0 if r∗ < r < 2
,

so that

g3(r) =
⎧
⎨

⎩
1 if 0 < r < r∗
n√2n−rn−1

r∗−1 if r∗ < r < n
√

2n − 1

and

g′
3(r) =

⎧
⎨

⎩
0 if 0 < r < r∗

−rn−1

r∗−1
1

(2n−rn)1−1/n if r∗ < r < n
√

2n − 1 .
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Fig. 8 Plot of f3 and of its symmetric decreasing rearrangement g3, with n = 2 and r∗ = √
2
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Fig. 9 Plot of f4 and of its symmetric decreasing rearrangement g4, with n = 2 and r∗ = √
2

Then

ˆ 2

1
rn−1f ′

3(r)
2 dr <

ˆ n
√

2n−1

0
tn−1g′

3(t)
2 dt ,

thereby proving the first inequality in (3.2).
Finally, consider the function (see Fig. 9 when n = 2)

f4(r) =
{

0 if 1 < r ≤ r∗

r−r∗
2−r∗ if r∗ ≤ r < 2

%⇒ f ′
4(r) =

{
0 if 1 < r < r∗

1
2−r∗ if r∗ < r < 2

,

so that

g4(r) =
⎧
⎨

⎩

n√2n−rn−r∗
2−r∗ if 0 < r ≤ r∗

0 if r∗ ≤ r < n
√

2n − 1

and

g′
4(r) =

⎧
⎨

⎩

−rn−1

2−r∗ 1
(2n−rn)1−1/n if 0 < r < r∗

0 if r∗ < r < n
√

2n − 1 .

Then we have

ˆ 2

1
rn−1f ′

4(r)
2 dr >

ˆ n
√

2n−1

0
tn−1g′

4(t)
2 dt ,

proving also the second inequality in (3.2). ��
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One then naturally wonders if a result similar to Theorem 3.1 holds in any non-
simply connected domain, that is

Problem 3.1 Let � ⊂ R
n be the difference between two simply connected

bounded convex domains Q and K such that K ⊂ Q and ∂K ∩ ∂Q = ∅. Define
H 1

c (�) as in (1.2), and for any f ∈ H 1
c (�), let f ∗ be the symmetric decreasing

rearrangement of f on �∗, the n-dimensional ball having the same measure as �.
Does there exists a break even (n − 1)-dimensional surface such that if f ∈ H 1

c (�)

concentrates its mass inside (resp. outside) this surfaces, then the Dirichlet norm
of f in � is strictly smaller (resp. larger) than the Dirichlet norm of f ∗ in �∗?
The same question may be formulated by considering the symmetric decreasing
rearrangement of f on the annulus whose inner ball has the same measure of K and
whose outer ball has the same measure as Q.
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Sharp Estimate of the Life Span
of Solutions to the Heat Equation
with a Nonlinear Boundary Condition

Kotaro Hisa

Abstract Consider the heat equation with a nonlinear boundary condition

(P)

⎧
⎪⎪⎨

⎪⎪⎩

∂tu = �u, x ∈ RN+ , t > 0,

− ∂u

∂xN
u = up, x ∈ ∂RN+ , t > 0,

u(x, 0) = κψ(x), x ∈ RN+ ,

where N ≥ 1, p > 1, κ > 0 and ψ is a nonnegative measurable function in
RN+ := {y ∈ RN : yN > 0}. Let us denote by T (κψ) the life span of solutions
to problem (P). We investigate the relationship between the singularity of ψ at
the origin and T (κψ) for sufficiently large κ > 0 and the relationship between
the behavior of ψ at the space infinity and T (κψ) for sufficiently small κ > 0.
Moreover, we obtain sharp estimates of T (κψ), as κ → ∞ or κ → +0.

Keywords Life span · Heat equation · Nonlinear boundary condition · Blow-up

1 Introduction

Consider the heat equation with a nonlinear boundary condition

⎧
⎨

⎩
∂tu = �u, x ∈ RN+ , t > 0,

− ∂u

∂xN
= up, x ∈ ∂RN+ , t > 0,

(1.1)
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with the initial condition

u(x, 0) = κψ(x), x ∈ D := RN+ , (1.2)

where N ≥ 1, p > 1, κ > 0 and ψ is a nonnegative measurable function in RN+ :=
{y ∈ RN : yN > 0}. Let T (κψ) denote the maximal existence time of the minimal
solution to problem (1.1) with (1.2). We call T (κψ) the life span of solutions to
problem (1.1) with (1.2) (see Definitions 1.1 and 1.2). The life spans depend on a
lot of factors such as diffusion effect, nonlinearity of equations, boundary conditions
and the singularity or the decay of initial functions and they have been studied, see
e.g., [5, 10, 13, 14]. For related results on semilinear parabolic equations, see e.g.,
[4, 5, 8–11, 13–21] and references therein.

Problem (1.1) can be physically interpreted as a nonlinear radiation law and it
has been studied in many papers (see e.g., [1–3, 5–7, 10, 12–14]). Among others,
the author of this paper and Ishige [10] obtained necessary conditions and sufficient
conditions for the solvability of problem (1.1) and identified the strongest singularity
of the initial function for the existence of solutions to problem (1.1). In this paper,
applying the results in [10], we obtain sharp estimates of the life span T (κψ) as
κ → ∞ or κ → +0 and show that the behavior of the life span T (κψ) as κ → ∞
and κ → +0 depends on the singularity and the decay of ψ , respectively. The proofs
of our results require careful treatments of parameters in the results in [10].

Before stating the main results of this paper, we have to define the life span
T (κψ) of solutions to (1.1) with (1.2) exactly. To do that, we formulate the
definition of solutions to (1.1). Let G = G(x, y, t) be the Green function for the
heat equation on RN+ with the homogeneous Neumann boundary condition. For
y = (y1, · · · , yN) ∈ RN , y ′ is given by y ′ = (y1, · · · , yN−1).

Definition 1.1 Let u be a nonnegative and continuous function in D×(0, T ), where
0 < T < ∞.

• Let ϕ be a nonnegative measurable function in RN+ . We say that u is a solution to
(1.1) in [0, T ) with u(0) = ϕ if u satisfies

u(x, t) =
ˆ
D

G(x, y, t)ϕ(y) dy +
ˆ t

0

ˆ
RN−1

G(x, y ′, 0, t − s)u(y ′, 0, s)p dy ′ds

for (x, t) ∈ D × (0, T ).

• We say that u is a minimal solution to (1.1) in [0, T ) with u(0) = ϕ if u is a
solution to (1.1) in [0, T ) with u(0) = ϕ and satisfies

u(x, t) ≤ w(x, t) in D × (0, T )

for any solution w to (1.1) in [0, T ) with w(0) = ϕ.

Remark 1.1 Let u be a solution to problem (1.1) with u(0) = ϕ in the sense of
Definition 1.1. Then u satisfies the initial condition in the sense of distributions, that
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is,

lim
t→+0

ˆ
D

u(y, t)η(y) dy =
ˆ
D

ϕ(y)η(y) dy

for all η ∈ C0(RN).

Since the minimal solution is unique, we can define the life span T (κψ) as
follows:

Definition 1.2 The life span T (κψ) of solutions to (1.1) with (1.2) is defined by
the maximal existence time of the minimal solution to (1.1) with (1.2).

Next, we set up notation. For any x ∈ RN and r > 0, set

B+(x, r) := {y ∈ RN : |x − y| < r} ∩ D.

For any set E, let χE be the characteristic function which has value 1 in E and value
0 outside E. For any two nonnegative functions f1 and f2 defined in (0,∞), we
write f1(τ ) ∼ f2(τ ) as τ → ∞(resp.+0) if there exists a constant C > 0 such that
C−1f2(τ ) ≤ f1(τ ) ≤ Cf1(τ ) for sufficiently large (resp. small) τ > 0.

Now we are ready to state the main results of this paper. In Theorem 1.1 we
obtain the relationship between the singularity of ψ and the life span T (κψ) as
κ → ∞ and give sharp estimates to the life span as κ → ∞. Appendix contains a
brief summary of Theorem 1.1 (see Tables 1, 2 and 3 in Appendix). In what follows
we set p∗ := 1 + 1/N .

Theorem 1.1 Assume that

ψ(x) := |x|−A

[
log

(
e + 1

|x|
)]−B

χB+(0,1)(x) ∈ L1(RN+) \ L∞(RN+),

where 0 ≤ A ≤ N and

B > 0 if A = 0, B ∈ R if 0 < A < N, B > 1 if A = N.

(1.3)

Then T (κψ) → 0 as κ → ∞ and the following holds:

(i) T (κψ) satisfies

T (κψ) ∼

⎧
⎪⎨

⎪⎩

[
κ(log κ)−B

]− 2(p−1)
−A(p−1)+1 if A < min

{
N,

1

p − 1

}
,

[
κ(log κ)−B+1

]− 2(p−1)
−A(p−1)+1 if 1 < p < p∗, A = N, B > 1,
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and

| logT (κψ)| ∼
⎧
⎨

⎩
κ

1
B if p > p∗, A = 1

p − 1
, B > 0,

κ
1

B−N−1 if p = p∗, A = N, B > N + 1,

as κ → ∞;
(ii) Let p > p∗. If, either

A > 1/(p − 1) and B ∈ R or A = 1/(p − 1) and B < 0,

then problem (1.1)with (1.2) possesses no local-in-time solutions for all κ > 0.
If

A = 1/(p − 1) and B = 0,

then problem (1.1) with (1.2) possesses no local-in-time solutions for suffi-
ciently large κ > 0;

(iii) Let p = p∗. If

A = N and B < N + 1,

then problem (1.1)with (1.2) possesses no local-in-time solutions for all κ > 0.
If

A = N and B = N + 1,

then problem (1.1) with (1.2) possesses no local-in-time solutions for suffi-
ciently large κ > 0.

We remark that when ψ is as in Theorem 1.1, ψ satisfies (1.3) if and only if ψ ∈
L1

loc(R
N+). It is obvious that T (κψ) = 0 for all κ > 0 if (1.3) does not hold.

Remark 1.2 When B = 0, Ishige and Sato [13] have already obtained sharp
estimates of the life span T (κψ) as κ → ∞ in the case when ψ(x) = |x|−A in
a neighborhood of the origin, where

0 ≤ A < N if 1 < p < p∗ and 0 ≤ A <
1

p − 1
if p ≥ p∗,

and proved that T (κψ) ∼ κ
− 2(p−1)

−A(p−1)+1 as κ → ∞. This also follows from
Theorem 1.1.

Remark 1.3 Let N = 1 and let ψ be a continuous, positive and bounded function
in R. Fernández Bonder and Rossi [5] obtained the precise asymptotic behavior of
the life span T (κψ) as κ → ∞, that is, limκ→∞ κ2(p−1)T (κψ) = T (ψ(0)).
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Theorem 1.2 gives sharp estimates to the life span T (κψ) as κ → +0 with
ψ behaving like |x|−A(A > 0) at the space infinity. Appendix contains a brief
summary of Theorem 1.2 (see Tables 4 and 5 in Appendix).

Theorem 1.2 Let A > 0 and ψ(x) = (1 + |x|)−A. Then T (κψ) → ∞ as κ → 0
and the following holds:

(i) Let 1 < p < p∗ or 0 < A < 1/(p − 1). Then

T (κψ) ∼

⎧
⎪⎪⎨

⎪⎪⎩

κ
−
(

1
2(p−1)− 1

2 min{A,N}
)−1

if A �= N,

(
κ−1

log(κ−1)

)
(

1
2(p−1)−N

2

)−1

if A = N,

as κ → +0;
(ii) Let p = p∗ and A ≥ 1/(p − 1). Then

log T (κψ) ∼

{
κ−(p−1) if A > N,

κ
− p−1

p if A = N,

as κ → +0;
(iii) Let p > p∗ and A ≥ 1/(p − 1). Then problem (1.1) with (1.2) possesses a

global-in-time solution if κ > 0 is sufficiently small.

Remark 1.4 Sharp estimates of the life span T (κψ) as κ → +0 have been already
obtained in some cases. Specifically, if ψ satisfies

ψ(x) = (1 + |x|)−A (A > 0)

for all x ∈ D, then the following holds:

T (κψ) ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κ
−
(

1
2(p−1)−A

2

)−1

if p ≥ p∗, 0 ≤ A < 1/(p − 1),

κ
−
(

1
2(p−1)− 1

2 min {A,N}
)−1

if p < p∗, A �= N,

(
κ−1

log(κ−1)

)( 1
2(p−1)−N

2

)−1

if p < p∗, A = N,

as κ → +0 (see [13]).

Finally, we show that limκ→0 T (κψ) = ∞ does not necessarily hold for
problem (1.1) if ψ has an exponential growth as xN → ∞.

Theorem 1.3 Let p > 1, λ > 0 and ψ(x) := exp (λx2
N). Then

lim
κ→+0

T (κψ) = (4λ)−1. (1.4)
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Remark 1.5 Let ψ(x) = exp (λx2
N). Set

v(x, t) :=
ˆ
D

G(x, y, t)ψ(y) dy.

Then v is a solution to

⎧
⎪⎪⎨

⎪⎪⎩

∂tv = �v, x ∈ RN+ , t > 0,

− ∂v

∂xN
= 0, x ∈ ∂RN+ , t > 0,

v(x, 0) = ψ(x), x ∈ RN+ ,

and

v(x, t) = (1 − 4λt)−
1
2 exp

(
λx2

N

1 − 4λt

)
,

where N ≥ 1. Moreover, v does not exist after t = (4λ)−1.

The rest of this paper is organized as follows. In Sect. 2, we review some of the
facts on the solvability of problem (1.1), which have been already obtained in [10].
In Sect. 3, we give upper estimates and lower estimates to the life span T (κψ) as
κ → ∞ (see Propositions 3.1 and 3.2). By combining these estimates, we can prove
Theorem 1.1. In Sect. 4, we prove Theorem 1.2 by the same method as in Sect. 3 (see
Propositions 4.1 and 4.2) and prove Theorem 1.3. Appendix contains summaries of
Theorems 1.1 and 1.2.

2 Necessary Conditions and Sufficient Conditions
for the Solvability of Problem (1.1)

In what follows the letter C denotes a generic positive constant depending only on
N and p. For any L ≥ 0, we set

DL := {(x ′, xN) : x ′ ∈ RN−1, xN ≥ L
1
2 },

D′
L := {(x ′, xN) : x ′ ∈ RN−1, 0 ≤ xN < L

1
2 }.

Now we review necessary conditions for the solvability of problem (1.1), which
have been obtained in [10].
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Theorem 2.1 Let p > 1 and u be a solution to (1.1) in [0, T ) with u(0) = ϕ, where
0 < T < ∞. Then for any δ > 0, there exists γ1 = γ1(N, p, δ) > 0 such that

sup
x∈RN

exp

(
− (1 + δ)

x2
N

4σ 2

) ˆ
B+(x,σ )

ϕ(y) dy ≤ γ1σ
N− 1

p−1 (2.1)

for 0 < σ ≤ T 1/2. In particular, in the case of p = p∗, there exists γ ′
1 = γ ′

1(N, δ) >

0 such that

sup
x∈RN

exp

(
− (1 + δ)

x2
N

4σ 2

) ˆ
B+(x,σ )

ϕ(y) dy ≤ γ ′
1

[
log

(
e + T

1
2

σ

)]−N

(2.2)

for 0 < σ ≤ T 1/2.

Remark 2.1 If 1 < p ≤ p∗ and μ �≡ 0 in D, then problem (1.1) possesses no
nonnegative global-in-time solutions. See [3] and [7].

Next, we review sufficient conditions for the solvability of problem (1.1), which
have been obtained also in [10]. For any measurable function φ in RN and any
bounded Borel set E, we set

−
ˆ
E

φ(y) dy = 1

|E|
ˆ
E

φ(y) dy, φE(x) := φ(x)χE(x),

where |E| is the Lebesgue measure of E.

Theorem 2.2 Let 1 < p < p∗, T > 0 and δ ∈ (0, 1). Set λ := (1 − δ)/4T . Then
there exists γ2 = γ2(N, p, δ) > 0 with the following property: If ϕ is a nonnegative
measurable function in RN+ satisfying

sup
x∈D

−
ˆ
B+(x,T 1/2)

e−λy2
Nϕ(y) dy ≤ γ2T

− 1
2(p−1) , (2.3)

then there exists a solution u to (1.1) in [0, T ) with u(0) = ϕ.

Theorem 2.3 Let p > 1, a ∈ (1, p), T > 0 and δ ∈ (0, 1). Let ϕ be a nonnegative
measurable function in RN+ . Set ϕ1 := ϕDT , ϕ2 := ϕD′

T
and λ := (1 − δ)/4T . Then

there exists γ3 = γ3(N, p, a, δ) > 0 with the following property: Assume that ϕ1
satisfies

sup
x∈D

−
ˆ
B+(x,T 1/2)

e−λy2
Nϕ1(y) dy ≤ γ3T

− 1
2(p−1) . (2.4)
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Furthermore, assume that ϕ2 satisfies

sup
x∈D′

T

[
−
ˆ
B+(x,σ )

ϕ2(y)
a dy

] 1
a ≤ γ3σ

− 1
p−1 for 0 < σ ≤ T

1
2 . (2.5)

Then there exists a solution u to (1.1) in [0, T ) with u(0) = ϕ.

Theorem 2.4 Let p = p∗, T > 0 and δ ∈ (0, 1). Let ϕ be a nonnegative
measurable function in RN+ . Set ϕ1 := ϕDT , ϕ2 := ϕD′

T
, λ := (1 − δ)/4T and

�(s) := s[log(e+ s)]N, ρ(s) := s−N

[
log

(
e+ 1

s

)]−N

for s > 0. (2.6)

Then there exists γ4 = γ4(N, δ) > 0 with the following property: Assume that ϕ1
satisfies

sup
x∈DT

−
ˆ
B+(x,T 1/2)

e−λy2
Nϕ1(y) dy ≤ γ4T

− 1
2(p−1) . (2.7)

Furthermore, assume that ϕ2 satisfies

sup
x∈D′

T

�−1
[

−
ˆ
B+(x,σ )

�(T
1

2(p−1) ϕ2(y)) dy

]
≤ γ4ρ(σT

− 1
2 ) for 0 < σ ≤ T

1
2 .

(2.8)

Then there exists a solution u to (1.1) in [0, T ) with u(0) = ϕ.

3 Proof of Theorem 1.1

For simplicity of notation, we write Tκ instead of T (κψ). In this section we study the
behavior of Tκ as κ → ∞ and prove Theorem 1.1. In order to prove Theorem 1.1,
we obtain upper and lower estimates of Tκ as κ → ∞. Proposition 3.1 gives upper
estimates of Tκ as κ → ∞. In the rest of this paper, for any two nonnegative
functions f1 and f2 defined in a subset E of [0,∞), we write f1(t) ) f2(t) for
all t ∈ E if C−1f2(t) ≤ f1(t) ≤ Cf2(t) for all t ∈ E.

Proposition 3.1 Let ψ be a nonnegative measurable function in D such that

ψ(y) ≥ |y|−A

[
log

(
e + 1

|y|
)]−B

, y ∈ B+(0, 1), (3.1)
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where 0 ≤ A ≤ N and B are as in (1.3). Then limκ→∞ T (κψ) = 0. Furthermore,
the following holds:

(i) Let 1 < p < p∗. Then there exists γ > 0 such that

T (κψ) ≤ γ [κ(log κ)−B ]− 2(p−1)
−A(p−1)+1 if A < N, B ∈ R, (3.2)

T (κψ) ≤ γ [κ(log κ)−B+1]− 2(p−1)
−A(p−1)+1 if A = N, B > 1, (3.3)

for sufficiently large κ > 0;
(ii) Let p > p∗. If, either

A > 1/(p − 1) and B ∈ R or A = 1/(p − 1) and B < 0,
(3.4)

then problem (1.1)with (1.2) possesses no local-in-time solutions for all κ > 0.
If

A = 1/(p − 1) and B = 0,

then problem (1.1) with (1.2) possesses no local-in-time solutions for suffi-
ciently large κ > 0. Furthermore,

(a) if A < 1/(p − 1), then (3.2) holds;
(b) if A = 1/(p − 1) and B > 0, then there exists γ ′ > 0 such that

T (κψ) ≤ exp(−γ ′κ
1
B )

for sufficiently large κ > 0;

(iii) Let p = p∗. If

A = N and B < N + 1,

then problem (1.1)with (1.2) possesses no local-in-time solutions for all κ > 0.
If

A = N and B = N + 1,

then problem (1.1) with (1.2) possesses no local-in-time solutions for suffi-
ciently large κ > 0. Furthermore,

(c) if A < N , then (3.2) holds;
(d) if A = N and B > N + 1, then there exists γ ′′ > 0 such that

T (κψ) ≤ exp(−γ ′′κ
1

B−N−1 )

for sufficiently large κ > 0.



136 K. Hisa

Proof We assume that (1.1) with (1.2) possesses a solution in [0, Tκ). For any p >

1, by (2.1) and (3.1) we can find a constant γ1 > 0 such that

γ1σ
N− 1

p−1 ≥ κ

ˆ
B+(0,σ )

ψ(y) dy ≥ κ

ˆ
B+(0,σ )

|y|−A

[
log

(
e + 1

|y|
)]−B

dy > 0

(3.5)

for 0 < σ ≤ T
1/2
κ . Firstly, we show that limκ→∞ Tκ = 0 by contradiction. Assume

that there exist {κj }∞j=1 and c∗ > 0 such that

lim
j→∞ κj = ∞, Tκj > c2∗ for all j = 1, 2, · · · .

By (3.5) with σ = c∗, we have

γ1c
N− 1

p−1∗ ≥ κj

ˆ
B+(0,c∗)

|y|−A

[
log

(
e + 1

|y|
)]−B

dy, j = 1, 2, · · · ,

where γ1 is a constant independent of κj . Since limj→∞ κj = ∞, we have a
contradiction. Since c∗ is arbitrary, we have

lim
κ→∞ Tκ = 0.

Without loss of generality we can assume that Tκ > 0 is sufficiently small.
We prove assertion (i). Let 1 < p < p∗. For any p > 1, by (3.5) we have

γ1 ≥

⎧
⎪⎪⎨

⎪⎪⎩

Cκσ
−A+ 1

p−1

[
log

(
e + σ−1

) ]−B

if A < N, B ∈ R,

Cκσ
−N+ 1

p−1

[
log

(
e + σ−1

) ]−B+1

if A = N, B > 1,

(3.6)

for 0 < σ ≤ T
1/2
κ and sufficiently large κ > 0. We notice that for any a1 > 0 and

a2 ∈ R,

�(τ) := τa1[log(e + τ−1)]a2 is increasing for sufficiently small τ > 0, (3.7)

�−1 satisfies

�−1(τ ) ) τ
1
a1 [log(e + τ−1)]−

a2
a1 for sufficiently small τ > 0 (3.8)



Sharp Estimate of the Life Span of Solutions to the Heat Equation with a. . . 137

and �−1(τ ) is also increasing sufficiently small τ > 0. We consider the case where
A < N and B ∈ R. Set

a1 := −A + 1

p − 1
> 0 and a2 := −B.

By (3.6)–(3.8) we have

σ ≤ C�−1(Cγ1κ
−1)

≤ C(Cγ1κ
−1)

(−A+ 1
p−1 )

−1[log(e + (Cγ1κ
−1)−1)]B(−A+ 1

p−1 )
−1

≤ C[κ(log κ)−B]− p−1
−A(p−1)+1

for 0 < σ ≤ T
1/2
κ . Setting σ = T

1/2
κ , we obtain (3.2). Similarly, we can obtain

(3.3). Thus assertion (i) follows.
We prove assertion (ii). Let p > p∗. We can assume that

A < N and B ∈ R or A = N and B > 1 (3.9)

because

ˆ
B+(0,σ )

|y|−A

[
log

(
e + 1

|y|
)]−B

dy = ∞

for all σ > 0 when A and B do not satisfy (3.9). By (3.5), this implies that Tκ = 0
for all κ > 0. By (3.9), we have (3.6). Since A and B satisfy (3.4), the right hand
side of (3.6) goes to infinity as σ → +0. This implies that Tκ = 0 for all κ > 0.
In the case where A = 1/(p − 1) and B = 0 (this condition also satisfies (3.9)), it
follows from (3.6) that

γ1 ≥ Cκ. (3.10)

Since (3.10) does not hold for sufficiently large κ > 0, this implies that Tκ = 0 for
sufficiently large κ > 0. Furthermore, if A < 1/(p−1), we obtain (3.2) by a similar
argument to the proof of assertion (i). Then we obtain (a). It remains to consider the
case where A = 1/(p − 1) and B > 0. Since Tκ > 0 is sufficiently small, by (3.6)
we have

γ κ−1 ≥ C[log(e + T
− 1

2
κ )]−B ≥ C[log(T

− 1
2

κ )]−B.
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Since B > 0, this implies that there exists a constant γ ′ > 0 such that

Tκ ≤ exp(−γ ′κ
1
B )

for sufficiently large κ > 0 and (b) follows. Thus assertion (ii) is proved.
Finally, we prove assertion (iii). Let A = N . Since p = p∗ and B > 1, by (2.2)

we have

γ ′
1

[
log

(
e + T

1
2
κ

σ

)]−N

≥ κ

ˆ
B+(0,σ )

ψ(y) dy

≥ κ

ˆ
B+(0,σ )

|y|−A

[
log

(
e + 1

|y|
)]−B

dy

≥ Cκ[log(e + σ−1)]−B+1

(3.11)

for 0 < σ ≤ T
1/2
κ . In the case of B < N + 1, we see that (3.11) does not hold

for sufficiently small σ > 0. This implies that Tκ = 0 for all κ > 0. In the case of
B = N + 1, it follows from (3.11) with σ = Tκ(< T

1/2
κ ) that

γ ′
1[log(e + T

− 1
2

κ )]−N ≥ Cκ[log(e + T −1
κ )]−N .

This inequality implies that

γ ′
1 ≥ Cκ. (3.12)

Since (3.12) does not hold for sufficiently large κ > 0, this implies that Tκ = 0 for
sufficiently large κ > 0. In the case of A < N , since (3.6) holds, we obtain (3.2)
by a similar argument to the proof of assertion (i). Then we obtain (c). In the case
where A = N and B > N + 1, since Tκ > 0 is sufficiently small, by (3.11) with
σ = Tκ(< T

1/2
κ ) we have

Cγ ′
1κ

−1 ≤ [log(e + T −1
κ )]−B+N+1 ≤ [log(T −1

κ )]−B+N+1.

Since B − N − 1 > 0, this implies that there exists a constant γ ′′ > 0 such that

Tκ ≤ exp(−γ ′′κ
1

B−N−1 )

for sufficiently large κ > 0. Thus assertion (iii) follows and the proof of
Proposition 3.1 is complete. ��

In Proposition 3.2 we obtain lower estimates of Tκ as κ → ∞ and show the
optimality of the estimates of Tκ in Proposition 3.1.
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Proposition 3.2 Let ψ be a nontrivial nonnegative measurable function in D such
that suppψ ⊂ B(0, 1) and

ψ(y) ≤ |y|−A

[
log

(
e + 1

|y|
)]−B

, y ∈ B+(0, 1), (3.13)

where 0 ≤ A ≤ N and B are as in (1.3).

(i) Let 1 < p < p∗. Then there exists γ > 0 such that

T (κψ) ≥ γ [κ(log κ)−B ]− 2(p−1)
−A(p−1)+1 if A < N, B ∈ R, (3.14)

T (κψ) ≥ γ [κ(log κ)−B+1]− 2(p−1)
−A(p−1)+1 if A = N, B > 1.

(ii) Let p > p∗.

(a) If A < 1/(p − 1), then (3.14) holds;
(b) If A = 1/(p − 1) and B > 0, then there exists γ ′ > 0 such that

T (κψ) ≥ exp(−γ ′κ
1
B )

for sufficiently large κ > 0;

(iii) Let p = p∗.

(c) If A < N , then (3.14) holds;
(d) If A = N and B > N + 1, then there exists γ ′′ > 0 such that

T (κψ) ≥ exp(−γ ′′κ
1

B−N−1 )

for sufficiently large κ > 0.

Proof We first consider the case where p > p∗ and A < 1/(p − 1)(< N). Let
a ∈ (1, p) be such that aA < N . By the Jensen inequality and (3.13), we have

σ
1

p−1 sup
x∈D

−
ˆ
B+(x,σ )

κψ(y) dy ≤ σ
1

p−1 sup
x∈D

[
−
ˆ
B+(x,σ )

[κψ(y)]a dy
] 1

a

≤ Cκσ
1

p−1

[
−
ˆ
B+(0,σ )

|y|−Aa

[
log

(
L + 1

|y|
)]−aB

dy

] 1
a

≤ Cκσ
1

p−1 −A

[
log

(
e + 1

σ

)]−B

(3.15)
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for sufficiently small σ > 0. Let c be a sufficiently small positive constant and set

T̃κ := c[κ(log κ)−B]− 2(p−1)
−A(p−1)+1 .

Since A < 1/(p − 1), by (3.7) we have

Cκσ
1

p−1 −A

[
log

(
e + 1

σ

)]−B

≤ Cκσ
1

p−1 −A

[
log

(
e + 1

σ

)]−B∣∣∣∣
σ=T̃

1/2
κ

≤ Cc
1

2(p−1)−A
2

for 0 < σ ≤ T̃
1/2
κ and sufficiently large κ > 0. Taking a sufficiently small c > 0 if

necessary, we obtain

Cκσ
1

p−1 −A

[
log

(
e + 1

σ

)]−B

≤ γ3, (3.16)

for 0 < σ ≤ T̃
1/2
κ and sufficiently large κ > 0, where γ3 is as in Theorem 2.3. Then

(3.15) and (3.16) yield (2.4) and (2.5). Applying Theorem 2.3, we see that (1.1) with
(1.2) possesses a solution in [0, T̃κ) and

Tκ ≥ T̃κ = c[κ(log κ)−B]− 2(p−1)
−A(p−1)+1

for sufficiently large κ > 0. So we have (a). Similarly, we have (b) and (c).
Furthermore, we can prove (3.14) in the case of 1 < p < p∗ by using the above
argument with a = 1 and applying Theorem 2.2.

Next we consider the case where 1 < p < p∗, A = N and B > 1, let c be a
sufficiently small positive constant and set

T̃ ′
κ := c[κ(log κ)−B+1]− 2(p−1)

−A(p−1)+1 .

Taking a sufficiently small c > 0 if necessary, by (3.13) we have

T̃
′ 1

2(p−1)
κ sup

x∈D
−
ˆ
B+(x,T̃

′1/2
κ )

κψ(y) dy

≤ CκT̃
′ 1

2(p−1)
κ −

ˆ
B+(0,T̃ ′1/2

κ )

|y|−N

[
log

(
1

|y|
)]−B

dy

≤ CκT̃
′ 1

2(p−1)−N
2

κ

[
log

(
1

T̃
′1/2
κ

)]−B+1

≤ Cc
1

2(p−1)−N
2 ≤ γ2

(3.17)
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for sufficiently large κ > 0, where γ2 is as in Theorem 2.2. Then (3.17) yields (2.3).
Applying Theorem 2.2, we see that (1.1) with (1.2) possesses a solution in [0, T̃ ′

κ)

and

Tκ ≥ T̃ ′
κ = c[κ(logκ)−B+1]− 2(p−1)

−A(p−1)+1

for sufficiently large κ > 0. So we have assertion (i).
It remains to prove (d). Let p = p∗, A = N and B > N+1. Let c be a sufficiently

small positive constant and set

T̂κ := exp(−c−1κ
1

B−N−1 )

for sufficiently large κ > 0. We can assume that T̂κ > 0 is sufficiently small. Let �
be as in (2.6). By (3.7) and (3.8) with a1 = 1 and a2 = N , we see that �−1 satisfies

�−1(τ ) ) τ [log(e + τ−1)]−N for sufficiently small τ > 0

and �−1(τ ) is increasing for sufficiently small τ > 0. Similarly to (3.15), we have

sup
x∈D

�−1
[

−
ˆ
B+(x,σ )

�

(
T̂

1
2(p−1)
κ κψ(y)

)
dy

]

≤ �−1

[
−
ˆ
B+(0,σ )

�

(
T̂

N
2

κ κ |y|−N

[
log

(
e + 1

|y|
)]−B

)
dy

] (3.18)

for 0 < σ ≤ T̂
1/2
κ . Since

log

[
e + T̂

N
2

κ κ |y|−N

[
log

(
e + 1

|y|
)]−B]

≤ log

[(
e + T̂

N
2

κ κ |y|−N

)(
e +

[
log

(
e + 1

|y|
)]−B)]

≤ log

[
CT̂

N
2

κ κ |y|−N

]
≤ C log

[
T̂

N
2

κ κ |y|−N

]
≤ C log

1

|y|
for y ∈ B+(0, σ ), 0 < σ ≤ T̂

1/2
κ and sufficiently large κ , we have

−
ˆ
B+(0,σ )

�

(
T̂

N
2

κ κ|y|−N

[
log

(
e + 1

|y|
)]−B

)
dy

= −
ˆ
B+(0,σ )

T̂
N
2

κ κ|y|−N

[
log

(
e + 1

|y|
)]−B

[
log

[
e + T̂

N
2

κ κ|y|−N

[
log

(
e + 1

|y|
)]−B]]N

dy

≤ CT̂
N
2

κ κ −
ˆ
B+(x,σ )

|y|−N

[
log

1

|y|
]−B+N

dy ≤ Cκσ−N T̂
1

2(p−1)
κ

[
log

1

σ

]−B+N+1
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for 0 < σ ≤ T̂
1/2
κ and sufficiently large κ > 0. This together with (3.18) implies

that

sup
x∈D

−
ˆ
B+(x,σ )

T̂
1

2(p−1)
κ κψ(y) dy ≤ sup

x∈D
�−1

[
−
ˆ
B+(x,σ )

�

(
T̂

1
2(p−1)
κ κψ(y)

)
dy

]

≤ �−1

(
−
ˆ
B+(0,σ )

�

(
T̂

N
2

κ κ |y|−N

[
log

(
e + 1

|y|
)]−B

)
dy

)

≤ �−1

(
Cκσ−N T̂

1
2(p−1)
κ

[
log

1

σ

]−B+N+1
)

≤ Cκσ−N T̂
N
2

κ

[
log

1

σ

]−B+N+1(
log

[
e + CT̂

N
2

κ κσ−N

[
log

1

σ

]−B+N+1])−N

≤ Cκσ−N T̂
N
2

κ

[
log

1

σ

]−B+1

(3.19)

for 0 < σ ≤ T̂
1/2
κ and sufficiently large κ > 0. On the other hand, since T̂κ > 0 is

sufficiently small, we have

ρ(σ T̂
− 1

2
κ ) = σ−N T̂

N
2

κ

[
log

(
e + T̂

1
2
κ

σ

)]−N

≥ σ−N T̂
N
2

κ

[
log

1

σ

]−N

(3.20)

for 0 < σ ≤ T̂
1/2
κ and sufficiently large κ , where ρ is as in (2.6). Since B > N + 1

and

κ

[
log

1

σ

]−B+1+N

≤ Cκ

[
log

1

T̂
1
2
κ

]−B+1+N

= CcB−N−1, (3.21)

taking a sufficiently small c > 0 if necessary, (3.19), (3.20) and (3.21) yield (2.7)
and (2.8). Applying Theorem 2.4, we see that

Tκ ≥ T̂κ = exp(−c−1κ
1

B−N−1 )

for sufficiently large κ > 0. This implies (d). The proof of Proposition 3.2 is
complete. ��
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4 Proofs of Theorems 1.2 and 1.3

We state two results on the behavior of Tκ as κ → +0. If ψ is a bounded function
in RN , then Tκ → ∞ as κ → +0 and the behavior of Tκ depends on the decay of ψ
at the space infinity. In order to prove Theorem 1.2, It suffice to prove the following
propositions. In Proposition 4.1 we obtain upper estimates of Tκ as κ → +0.

Proposition 4.1 LetN ≥ 1 and p > 1. LetA > 0 andψ be a nonnegativeL∞(D)-
function such that ψ(x) ≥ (1 + |x|)−A for x ∈ D.

(i) Let p = p∗ and A ≥ 1/(p − 1) = N . Then there exists γ > 0 such that

log T (κψ) ≤
{
γ κ−(p−1) if A > N,

γ κ
− p−1

p if A = N,

for sufficiently small κ > 0.
(ii) Let 1 < p < p∗ or A < 1/(p − 1). Then there exists γ ′ > 0 such that

T (κψ) ≤

⎧
⎪⎪⎨

⎪⎪⎩

γ ′κ−
(

1
2(p−1)− 1

2 min{A,N}
)−1

if A �= N,

γ ′
(

κ−1

log(κ−1)

)
(

1
2(p−1)−N

2

)−1

if A = N,

for sufficiently small κ > 0.

Proof Since ψ ∈ L∞(D), by Theorem 2.3 we have

Tκ ≥ Cκ−(p−1)

for sufficiently small κ > 0. This implies that limκ→0 Tκ = ∞. Without loss of
generality, we can assume that Tκ > 0 is sufficiently large. For any p > 1, we see
that

ˆ
B+(0,σ )

κψ(y) dy ≥ κ

ˆ
B+(0,σ )

(1 + |y|)−A dy

≥
⎧
⎨

⎩

Cκ if σ > 1, A > N,

Cκ log(e + σ) if σ > 1, A = N,

CκσN−A if σ > 1, A < N,

(4.1)

for σ > 1 and sufficiently small κ > 0. In the case of p = p∗, it follows from (2.2)
that

ˆ
B+(0,σ )

κψ(y) dy ≤ γ ′
1

⎡

⎣log

(
e + T

1
2
κ

σ

)⎤

⎦
−N
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for 0 < σ ≤ T
1/2
κ and sufficiently small κ > 0. This implies that

ˆ
B+(0,T 1/4

κ )

κψ(y) dy ≤ Cγ ′
1[log Tκ ]−N, (4.2)

ˆ
B+(0,T 1/2

κ )

κψ(y) dy ≤ Cγ ′
1, (4.3)

for sufficiently small κ > 0. By (4.1) and (4.2) with σ = T
1/4
κ we obtain

assertion (i). Furthermore, by (4.1) and (4.3) with σ = T
1/2
κ we obtain assertion (ii)

in the case where p = p∗ and A < 1/(p − 1).
We prove assertion (ii) in the case of 1 < p < p∗. By (2.1) we see that

ˆ
B+(0,T 1/2

κ )

κψ(y) dy ≤ γ1T
N
2 − 1

2(p−1)
κ . (4.4)

By (4.1) and (4.4), we obtain assertion (ii) in the case of 1 < p < p∗. Similarly, we
obtain assertion (ii) in the case of p > p∗. Thus Proposition 4.1 follows. ��

In Proposition 4.2 we obtain lower estimates of Tκ as κ → +0 and show the
optimality of the estimates of Tκ in Proposition 4.1.

Proposition 4.2 Let N ≥ 1 and p > 1. Let A > 0 and ψ be a nonnegative
measurable function in D such that suppψ ⊂ D and 0 ≤ ψ(x) ≤ (1 + |x|)−A for
x ∈ D.

(i) Let p = p∗ and A ≥ 1/(p − 1) = N . Then there exists γ > 0 such that

log T (κψ) ≥
{
γ κ−(p−1) if A > N,

γ κ
− p−1

p if A = N,

for sufficiently small κ > 0.
(ii) Let 1 < p < p∗ or A < 1/(p − 1). Then there exists γ ′ > 0 such that

T (κψ) ≥

⎧
⎪⎪⎨

⎪⎪⎩

γ ′κ−
(

1
2(p−1)− 1

2 min{A,N}
)−1

if A �= N,

γ ′
(

κ−1

log(κ−1)

)
(

1
2(p−1)−N

2

)−1

if A = N,

for sufficiently small κ > 0.

Proof Let p = p∗ and A > N . Let c be a sufficiently small positive constant and
set

T̂κ := exp(cκ−(p−1)) = exp(cκ− 1
N ).
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Let L ≥ e be such that

τ [log(L + τ )]−N is increasing in [0,∞).

Then we see that �(τ) ) τ [log(L + τ )]N and �−1(τ ) ) τ [log(e + τ )]−N )
τ [log(L + τ )]−N for all τ > 0. Similarly to (3.19), we have

sup
x∈D

−
ˆ
B+(x,σ )

T̂
1

2(p−1)
κ κψ(y) dy ≤ sup

x∈D
�−1

[
−
ˆ
B+(x,σ )

�

(
T̂

1
2(p−1)
κ κψ(y)

)
dy

]

≤ �−1
[

−
ˆ
B+(0,σ )

�

(
T̂

N
2

κ κ(1 + |y|)−A

)
dy

]

(4.5)

for all σ > 0. Since

log

[
L + T̂

N
2

κ κ(1 + |y|)−A

]
≤ log(CT̂

N
2

κ ) ≤ Ccκ− 1
N (4.6)

for sufficiently small κ > 0, we have

−
ˆ
B+(0,σ )

�

(
T̂

N
2

κ κ(1 + |y|)−A

)
dy ≤ CcN T̂

N
2

κ −
ˆ
B+(0,σ )

(1 + |y|)−A dy ≤ CcN T̂
N
2

κ σ−N

(4.7)

for 0 < σ ≤ T̂
1/2
κ and sufficiently small κ > 0. This together with (4.5) implies that

sup
x∈D

−
ˆ
B+(x,σ )

T̂
1

2(p−1)
κ κψ(y) dy ≤ sup

x∈D
�−1

[
−
ˆ
B+(x,σ )

�

(
T̂

1
2(p−1)
κ κψ(y)

)
dy

]

≤ CcNσ−NT̂
N
2

κ

(
log

[
L + CcNT̂

N
2

κ σ−N

])−N

≤ CcNσ−N T̂
N
2

κ

(
log

[
L + T̂

1
2
κ

σ

])−N

= CcNρ(σ T̂
− 1

2
κ )

for 0 < σ ≤ T̂
1/2
κ and sufficiently small κ > 0. Therefore, taking a sufficiently

small c > 0 if necessary, we apply Theorem 2.4 to see that (1.1) with (1.2) possesses
a solution in [0, T̂κ ) and

Tκ ≥ T̂κ = exp(cκ−(p−1))

for all sufficiently small κ > 0.
In the case of A = N , setting

Ťκ := exp(cκ− p−1
p ) = exp(cκ− 1

N+1 ),
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similarly to (4.6) and (4.7), we have

−
ˆ
B+(0,σ )

�

(
Ť

N
2

κ κ(1 + |y|)−A

)
dy

≤ CκŤ
N
2

κ (log Ťκ )
N −
ˆ
B+(x,σ )

(1 + |y|)−N dy ≤ CκŤ
N
2

κ σ−N(log Ťκ )
N+1 = CcN+1Ť

N
2

κ σ−N

for 0 < σ ≤ Ť
1/2
κ and sufficiently small κ > 0. Then we apply the same argument

as in the case of A > N to see that

Tκ ≥ Ťκ = exp(cκ− p−1
p )

for sufficiently small κ > 0. Thus assertion (i) follows.
We show assertion (ii). Let 1 < p < p∗ and 0 < A < N . Let c be a sufficiently

small positive constant and set

T̃κ := cκ
−
(

1
2(p−1)−A

2

)−1

.

Then

sup
x∈D

−
ˆ
B+(x,T̃

1
2

κ )

κψ(y) dy ≤ Cκ −
ˆ
B+(0,T̃

1
2

κ )

(1 + |y|)−A dy ≤ CκT̃
−A

2
κ = Cc

1
2(p−1) − A

2 T̃
− 1

2(p−1)
κ

for sufficiently small κ > 0. Then we have assertion (ii) in the case where 1 < p <

p∗ and 0 < A < N . Similarly, we can prove assertion (ii) in the other cases and
assertion (ii) follows. Thus the proof of Proposition 4.2 is complete. ��

Finally, we show that limκ→0 Tκ = ∞ does not necessarily hold for prob-
lem (1.1) if ψ has an exponential growth as xN → ∞.

Proof of Theorem 1.3 Let κ > 0 and δ > 0. It follows from Theorem 2.1 that

γ1T
N
2 − 1

2(p−1)
κ > exp

(
−(1 + δ)

x2
N

4Tκ

) ˆ
B+(x,T

1/2
κ )

κψ(y) dy

≥ C exp

(
−(1 + δ)

x2
N

4Tκ

)
κT

N
2

κ exp

(
λ(xN − T

1
2
κ )2

)

≥ CκT
N
2

κ exp

{(
λ − 1 + δ

4Tκ

)
x2
N

}
exp

(
− 2λT

1
2
κ xN + λTκ

)
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for all x ∈ DTκ , where γ1 is as in Theorem 2.1. Letting xN → ∞, we see that
λ − (1 + δ)/4Tκ ≤ 0. Since δ > 0 is arbitrary, we obtain

lim sup
κ→+0

Tκ ≤ (4λ)−1. (4.8)

On the other hand, it follows that

−
ˆ
B+(x,T̃

1/2
δ )

exp

(
−(1 − δ)

y2
N

4T̃δ

)
κ exp (λy2

N) dy = κ, x ∈ DT̃δ
,

where T̃δ := (1 − δ)/4λ. Then we deduce from Theorem 2.3 that Tκ ≥ T̃δ for
sufficiently small κ > 0. Since δ > 0 is arbitrary, we obtain lim infκ→+0 Tκ ≥
(4λ)−1. This together with (4.8) implies (1.4). Thus Theorem 1.3 follows. ��
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Appendix

By Theorem 1.1, we obtain Tables 1, 2 and 3. These tables show the behavior of the
life span T (κψ) as κ → ∞ when ψ is as in Theorem 1.1, that is,

ψ(x) := |x|−A

[
log

(
e + 1

|x|
)]−B

χB+(0,1)(x) ∈ L1(RN+) \ L∞(RN+),

Table 1 The behavior of Tκ in the case of 1 < p < p∗ (as κ → ∞)
��������B

A
A < N A = N

B > 1 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
−A(p−1)+1 Tκ ∼

[
κ(log κ)−B+1

]− 2(p−1)
−A(p−1)+1

B ≤ 1 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
−A(p−1)+1 0

Table 2 The behavior of Tκ in the case of p > p∗ (as κ → ∞)
��������B

A
A < 1

p−1 A = 1
p−1

1
p−1 < A ≤ N

B > 0 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
−A(p−1)+1 | log Tκ | ∼ κ

1
B 0

B = 0 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
−A(p−1)+1 0 0

B < 0 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
−A(p−1)+1 0 0



148 K. Hisa

Table 3 The behavior of Tκ in the case of p = p∗ (as κ → ∞)
��������B

A
A < N A = N

B > N + 1 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
−A(p−1)+1 | log Tκ | ∼ κ

1
B−N−1

B = N + 1 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
−A(p−1)+1 0

B < N + 1 0 0

Table 4 The behavior of Tκ in the case of A �= N (as κ → +0)
����p

A
A < 1

p−1 A = 1
p−1 A > 1

p−1

p < p∗ Tκ ∼ κ
−
(

1
2(p−1) − 1

2 min{A,N}
)−1

Tκ ∼ κ
−
(

1
2(p−1) − N

2

)−1

Tκ ∼ κ
−
(

1
2(p−1) − N

2

)−1

p = p∗ Tκ ∼ κ
−
(

1
2(p−1) − A

2

)−1

(A = N , see Table 5) log Tκ ∼ κ−(p−1)

p > p∗ Tκ ∼ κ
−
(

1
2(p−1) − A

2

)−1

∞ ∞

Table 5 The behavior of Tκ

in the case of A = N (as
κ → +0)

����p

A
A = N

p < p∗ Tκ ∼

(
κ−1

log(κ−1)

)
(

1
2(p−1) − N

2

)−1

p = p∗ log Tκ ∼ κ
− p−1

p

p > p∗ ∞

where 0 ≤ A ≤ N and

B > 0 if A = 0, B ∈ R if 0 < A < N, B > 1 if A = N.

For simplicity of notation, we write Tκ instead of T (κψ).
By Theorem 1.2, we obtain Tables 4 and 5. These tables show the behavior of

the life span T (κψ) as κ → +0 when ψ is as in Theorem 1.2, that is, ψ(x) =
(1 + |x|)−A(A > 0).
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Abstract An inclusion is said to be neutral to uniform fields if upon insertion into
a homogenous medium with a uniform field it does not perturb the uniform field
at all. It is said to be weakly neutral if it perturbs the uniform field mildly. Such
inclusions are of interest in relation to invisibility cloaking and effective medium
theory. There have been some attempts lately to construct or to show existence of
such inclusions in the form of core-shell structure or a single inclusion with the
imperfect bonding parameter attached to its boundary. The purpose of this paper is to
review recent progress in such attempts. We also discuss about the over-determined
problem for confocal ellipsoids which is closely related with the neutral inclusion,
and its equivalent formulation in terms of Newtonian potentials. The main body
of this paper consists of reviews on known results, but some new results are also
included.
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Keywords Neutral inclusion · Weakly neutral inclusion (=polarization tensor
vanishing structure) · Core-shell structure · Imperfect bonding parameter ·
Over-determined problem · Confocal ellipsoids · Invisibility cloaking · Effective
property

1 Introduction

This is a survey on recent progress in study on existence and construction of neutral
and weakly neutral inclusions, and a related over-determined problem for confocal
ellipsoids. The main body of the paper consists of reviews on known results with
brief but coherent explanations. However, we include some new results as well.

To explain the problems related to the neutral and weakly neutral inclusion, let
us consider the following conductivity problem:

(CP)

{
∇ · σ∇u = 0 in R

d,

u(x) − a · x = O(|x|−d+1) as |x| → ∞,

for d = 2 or 3, where a is a constant vector so that −a = −∇(a·x) is the background
uniform field and σ is a piecewise constant function representing the conductivity
distribution.

We first consider the problem (CP) when the conductivity distribution σ is given
by

σ = σcχ(D) + σmχ(Rd \ D), (1.1)

where D is a simply connected bounded domain in R
d whose boundary ∂D is

Lipchitz continuous. Here χ(D) denotes the characteristic function of D (χ(Rd \D)

likewise), and σc and σm are constants representing conductivities of D (the core)
and R

d \D (the matrix), respectively. In absence of the inclusion D, the solution to
(CP) is nothing but a · x. Thus, if we denote by u the solution to (CP) in presence of
the inclusion, u(x) − a · x represents the perturbation occurred by insertion of the
inclusion D into the homogeneous medium with the uniform field −a. As we see
from Fig. 1, the uniform field is perturbed outside (and inside) the inclusion.

It is known (see, e.g., [2]) that the leading order term of the perturbation outside
the inclusion can be expressed in terms of the dipolar expansion. In fact, we have
the following expansion at infinity:

u(x) − a · x = 1

ωd

〈a,Mx〉
|x|d + O(|x|−d) as |x| → ∞, (1.2)

where ωd is the surface area of the unit sphere in R
d and M = (Mij ) is the d ×

d matrix determined by the domain D and the conductivity contrast σc/σm. The
matrix M is called the polarization (or polarizability) tensor (PT in abbreviation,
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Fig. 1 Perturbation of the
uniform field; inside and
outside the inclusion (with
the boundary in blue)

afterwards) associated with D. The PT is a signature of the existence of the inclusion
D and has been effectively used to detect some properties of the inclusion D, for
which we refer to [2]. It also plays an important role in the theory of composites and
effective medium, for which we refer to [2, 31].

If D is a simply connected domain (or a union of simply connected domains),
then M is positive-definite if σc − σm > 0 and negative-definite if σc − σm < 0.
In fact, optimal bounds for PT, called the Hashin-Shtrikman bounds, are known,
which will be explained in Sect. 2. Therefore, if D is simply connected, then there
is x̂ = x/|x| such that 〈a,Mx̂〉 �= 0 and for such x the following holds

|u(x) − a · x| ≥ C|x|−d+1 as |x| → ∞ (1.3)

for some C > 0. The dipolar expansion (1.2) shows that in general the solution u to
(CP) admits the following:

u(x) − a · x = O(|x|−d+1) as |x| → ∞. (1.4)

Furthermore, (1.3) shows that the decay rate O(|x|−d+1) cannot be replaced by a
faster rate, say O(|x|−d).

However, if the inclusion is of a core-shell structure, then the situation can be
quite different. Let D be a bounded domain and � be a bounded domain containing
D so that (D,�) becomes a coated structure or a core-shell structure. Suppose that
the conductivity distribution is given by

σ = σcχ(D) + σsχ(� \ D) + σmχ(Rd \ �). (1.5)
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Fig. 2 Neutral inclusion: The
uniform field is not perturbed
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In particular, if (D,�) is a pair of concentric disks or balls, and if the conductivities
σc, σs and σm are scalars and satisfy

(d − 1 + σc/σs)(σm/σs − 1) + f (1 − σc/σs)(σm/σs + d − 1) = 0 (1.6)

for d = 2 or 3, where f = |D|/|�| (the volume fraction), then the solution u to
(CP) satisfies

u(x) − a · x ≡ 0 in R
d \ �, (1.7)

namely, the uniform field is not perturbed at all (see Fig. 2). In fact, with the
conductivity given by (1.5), the solution u to (CP) is harmonic in R

d\(∂D∪∂�), and
along the interfaces ∂D and ∂� it satisfies the transmission conditions: continuity
of the potential and continuity of the flux, namely,

σc∂νu|− = σs∂νu|+ on ∂D, σs∂νu|− = σm∂νu|+ on ∂�, (1.8)

where the subscripts + and − indicate the limits from outside and inside D (or
�), respectively. If D and � are concentric disks or balls, one can use spherical
harmonics to find the solution explicitly to satisfy these interface conditions, and
show that (1.6) implies (1.7).

This easy-to-prove fact was first discovered by Hashin [12], and significance of
the discovery lies in its implications. Since insertion of inclusions does not perturb
the outside uniform field, the effective conductivity of the assemblage filled with
such inclusions of many different scales is the same as σm (the conductivity of the
matrix) satisfying (1.6). It is also proved that such an effective conductivity is one of
the Hashin-Shtrikman bounds on the effective conductivity of arbitrary two-phase
composites [12, 13] (see also [31]).

The inclusion (D,�) of core-shell structure (or any other structure), which does
not perturb the uniform field −a upon its insertion, that is, satisfying (1.7), is said to
be neutral to the field −a. If the inclusion is neutral to all uniform fields, it is said to
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be neutral to multiple uniform fields. The concentric disks (or balls) satisfying (1.6)
is neutral to multiple uniform fields. If σm is anisotropic (σc and σs are scalars),
then confocal ellipsoids whose common foci are determined by σm can be neutral
to multiple fields. We include a proof of this fact in Sect. 3.

Now the question is if there are coated inclusions other than concentric disks or
balls neutral to multiple uniform fields (or confocal ellipses or ellipsoids when σm
is anisotropic), more generally, if we can coat a given domain D of general shape
by a shell so that the resulting inclusion (D,�) is neutral to multiple uniform fields.
The answer is proven to be no in two dimensions. In fact, it has been proved that if
(D,�) is neutral to multiple uniform fields, then � and D are concentric disks if σm
is isotropic, and confocal ellipses if σm is anisotropic (and the foci are determined
by σm). This was proved by Milton-Serkov [32] when σc = 0 or ∞, and by Kang-
Lee [15] when σc is finite. Since these two-dimensional results are proved using
either the Riemann mapping or existence of harmonic conjugates, the methods of
proofs cannot be extended to three dimensions. It is worth mentioning that there
are many different shapes of coated inclusions neutral to a single uniform field as
shown in two dimensions in [14, 32]. In three dimensions, it is proved in [19] that the
coated inclusion (D,�) being neutral to multiple fields is equivalent to existence of
a solution to a certain over-determined problem defined on �\D. It is then proved as
a consequence that if σm is isotropic, then the only inclusions of core-shell structure
is a pair of concentric balls. Extension of this result to the anisotropic case has not
been achieved and is open. We will review recent development on neutral inclusions
and the related over-determined problem in Sect. 3. We also include in the same
section a proof of their equivalence to a certain formulation in terms of Newtonian
potentials.

Other than applications to the theory of composite as explained earlier, there
is another interest in neutral inclusions in relation to invisibility cloaking. The
neutrality condition (1.7) means that the uniform field is unperturbed at all outside
the inclusion, namely, there is no difference of the field with or without the inclusion.
It means that the inclusion is invisible from the probe by uniform fields. This was
also observed in [24]. Recently, the idea of neutrally coated inclusions has been
extended to construct multi-coated circular structures which are neutral not only
to uniform fields but also to fields of higher degree [4]. It was proved there that the
multi-coated structure combined with a transformation optics dramatically enhances
the near cloaking proposed in [25].

Since there is no coated inclusion, other than concentric disks and balls if σm
is isotropic, neutral to multiple fields (invisible by uniform fields), we may ask if
there are inclusions which are vaguely visible by uniform fields. They are weakly
neutral inclusions. In general, the solution u to (CP) satisfies the decay condition
u(x)− a · x = O(|x|1−d) at ∞ and if the inclusion is neutral, then u(x)− a · x ≡ 0
outside the inclusion. This property means that the field outside the inclusion is
not perturbed even though the inclusion is inserted. The weakly neutral inclusions
perturb the fields mildly:

u(x) − a · x = O(|x|−d) as |x| → ∞. (1.9)
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If (1.9) holds for all constant vectors a, then the inclusion is said to be weakly neutral
to multiple uniform fields. According to (1.2), in order for (1.9) to hold for all a, the
corresponding PT must vanish. Thus weakly neutral inclusions are also called PT-
vanishing inclusions. We now formulate the weakly neutral inclusion problem:

Weakly Neutral Inclusion Problem. Given a domain D can we find a domain
� containing D so that the resulting inclusion of core-shell structure becomes
weakly neutral to multiple uniform fields, or equivalently, its PT vanishes.

In Sect. 4, we present two classes of domains which admit coatings so that
the resulting inclusions of core-shell structure become weakly neutral to multiple
uniform fields. One class is the collection of domains D such that the coefficients
bD vanish. Here bD is the leading coefficient of the conformal mapping from the
exterior of the unit disk onto the exterior of D (see (4.1)). For such domains we
construct the coating explicitly. This is a new result. The other class is that of small
perturbations of disks, for which it is proved in [20] that there are coatings so that
the resulting inclusions become weakly neutral to multiple uniform fields.

There is yet another way, other than coating, to achieve weak neutrality. It is by
introducing an imperfect bonding parameter on the boundary of the given domain.
We review the result of [16] on this in Sect. 5.

This paper is organized in the following way. Section 2 is to review general
properties of the PT, including the Hashin-Shtrikman bounds. In Sect. 3, we discuss
problems and progress on neutral inclusions and related over-determined problem
for confocal ellipsoids and an equivalent formulation in terms of the Newtonian
potential. We also include a discussion on Neumann ovaloids. Section 4 is to discuss
progress on the weakly neutral inclusion problem. Section 5 is for discussion on the
construction of weakly neutral inclusion by imperfect bonding parameters.

2 Layer Potentials and Polarization Tensors

In this section we represent the PT appearing in the dipolar expansion (1.2) in terms
of layer potentials and recall the optimal Hashin-Shtrikman (HS) bounds on traces
of the PT and its inverse.

2.1 Layer Potentials

Let �(x) be the fundamental solution to the Laplacian, that is, �(x) =
1/(2π) log |x| in two dimensions, and �(x) = −(4π |x|)−1 in three dimensions. Let
D be a bounded simply connected domain with a Lipschitz continuous boundary.
The single layer potential of a function ϕ ∈ H−1/2(∂D) (the L2-Sobolev space of
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order −1/2 on ∂D) is defined by

S∂D[ϕ](x) :=
ˆ
∂D

�(x − y)ϕ(y) dS(y), x ∈ R
d, (2.1)

where dS is the line or surface element on ∂D. Let ∂ν denote the outward normal
derivative on ∂D. It is well known (see, for example, [2]) that the following jump
relation holds:

∂νS∂D[ϕ](x)∣∣± =
(

±1

2
I + K∗

∂D

)
[ϕ](x), a.e. x ∈ ∂D, (2.2)

where I is the identity operator and K∗
∂D is the operator defined by

K∗
∂D[ϕ](x) = 1

ωd

ˆ
∂D

〈x − y, ν(x)〉
|x − y|d ϕ(y) dS(y).

Here, 〈 , 〉 the scalar product in R
d . The boundary integral operator K∗

∂D is called
the Neumann-Poincaré (NP) operator.

2.2 Polarization Tensors

Let ul , 1 ≤ l ≤ d , be the solution to (CP) when a · x = xl and the conductivity
distribution σ is given by (1.1). Then it is known (see, e.g., [2]) that ul can be
represented as

ul(x) = xl + S∂D[ϕ(l)](x), x ∈ R
d , (2.3)

where ϕ(l) is the unique solution in H
−1/2
0 (∂D) (H−1/2(∂D) functions with the

mean zero) to the integral equation

(
σc + σm

2(σc − σm)
I − K∗

∂D

)
[ϕ(l)] = νl, (2.4)

where νl is the l-th component of the outward unit normal vector field ν on ∂D.
By expanding out the term S∂D[ϕ(l)](x) in (2.3) as |x| → ∞, we see that the PT
M = M(D) = (mll′)dl,l′=1 in this case is given by

mll′ =
ˆ
∂D

xl′ϕ
(l) dS. (2.5)
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If the conductivity distribution σ is given by (1.5), the solution ul can be
represented as

ul(x) = xl + S∂D[ϕ(l)
1 ](x) + S∂�[ϕ(l)

2 ](x), x ∈ R
d,

where (ϕ
(l)
1 , ϕ

(l)
2 ) ∈ H

−1/2
0 (∂D) × H

−1/2
0 (∂�) is the unique solution to the system

of integral equations

[−λI + K∗
∂D ∂νS∂�

∂νS∂D −μI + K∗
∂�

][
ϕ
(l)
1

ϕ
(l)
2

]
= −

[
ν∂Dl
ν∂�l

]
. (2.6)

Here we denote the unit outward normal vector fields on ∂D and ∂� by ν∂D and
ν∂�, respectively. The numbers λ and μ are given by

λ = σc + σs

2(σc − σs)
and μ = σs + σm

2(σs − σm)
. (2.7)

For unique solvability of the integral equation we refer to [20]. In this case, the PT
M = M(D,�) = (mll′)dl,l′=1 of the core-shell structure (D,�) is given by

mll′ =
ˆ
∂D

xl′ϕ
(l)
1 dS +

ˆ
∂�

xl′ϕ
(l)
2 dS. (2.8)

It is known that M is a symmetric matrix (see, e.g., [2]).

2.3 Hashin-Shtrikman Bounds

If the conductivity distribution is given by (1.1), then the following optimal bounds
on traces of the PT M and its inverse hold: with k = σc/σm,

Tr(M) < |D|(k − 1)(d − 1 + 1

k
), (2.9)

and

|D|Tr(M−1) ≤ d − 1 + k

k − 1
, (2.10)

where Tr stands for trace. These bounds are obtained by Lipton [28] under the
assumption of periodicity, and by Capdeboscq-Vogelius [7] without the assumption
of periodicity, and called the Hashin-Shtrikman (HS) bounds after the names
of scientists who found optimal bounds of effective properties of two phase
composites, as described in the paragraph right after (1.8).
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Fig. 3 Hashin-Shtrikman
bounds for the PT
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The first one is an upper bound (the green line in Fig. 3) and the second one is a
lower one (the pink curve in Fig. 3). The upper bound is never attained by a domain,
while the lower bound is attained by ellipses and ellipsoids, and the converse is also
true. In fact, it is proved in [17, 18] that the simply connected domain whose PT
satisfies the lower HS-bounds is an ellipse in two dimensions and an ellipsoid in
three dimensions. This is an isoperimetric inequality for the PT and a generalized
version of the Pólya-Szegö conjecture [35]. The original Pólya-Szegö conjecture
asserts that the PT attains its minimal trace on and only on disks or balls. The
constant trace lines of the PT are those parallel to the green line in Fig. 3. Thus the
minimal trace is attained at the point of tangency of the line parallel to the green line
to the pink curve. The generalized version asserts that if eigenvalues of the PT lies
on the pink curve, then the domain must be an ellipse or an ellipsoid. The original
Pólya-Szegö conjecture is now proved as a simple consequence of the generalized
version. See Theorem 3.4 of this paper for more discussion on this. The bounds
(2.9) and (2.10) are optimal in the sense that any matrix satisfying (2.9) and (2.10)
is actually the PT associated with a domain (see [3, 6] for proofs).

3 Neutral Inclusions and an Over-determined Problem

In this section, the conductivity distribution σ is given by (1.5) with the inclusion
(D,�) of core-shell structure. We assume that the conductivity of the matrix, σm,
is in general anisotropic, i.e., a symmetric matrix. We review the result saying that
if σm is isotropic, i.e., its eigenvalues are all the same, then the only inclusion of the
core-shell structure neutral to multiple uniform fields is concentric balls. We also
prove the equivalence of the neutral inclusion problem with an over-determined
problem for confocal ellipsoids, and an equivalent formulation of the problem using
the Newtonian potentials. In relation to these problems, we include at the end of this
section a subsection on quadrature domains and Neumann ovaloids.
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3.1 An Over-determined Problem for Confocal Ellipsoids

It was proved in [19] that if (D,�) is neutral to multiple uniform fields and σc > σs ,
then the following over-determined problem admits a solution:

(ODP)

⎧
⎨

⎩

�w = 1 in � \ D,

∇w = 0 on ∂�,

∇w(x) = Ax + b on ∂D,

where A is a symmetric matrix and b is a constant vector, provided that ∂D is
connected and R

3 \ D is simply connected. This problem is over-determined since
∇w is prescribed on ∂� and ∂D. The matrix A is determined by σm. If σm is
isotropic for example, so is A.

Let us briefly recall the proof. Suppose, after diagonalization, that

σm = diag[σm,1, σm,2, σm,3]. (3.1)

Let ej , j = 1, 2, 3, be the standard basis of R3 and let uj be the solution to (CP)
when a = ej . The inclusion (D,�) being neutral to multiple uniform fields means
that uj (x) − xj = 0 in R

3 \ � for j = 1, 2, 3. Let

βj := σm,j

σs
− 1, (3.2)

and

v = (β−1
1 u1, β

−1
2 u2, β

−1
3 u3)

T . (3.3)

The crux of the proof in [19] lies in proving that v is linear inside D. In fact, it is
proved that v(x) = c0x + b0 (x ∈ D) for some constant c0 and vector b0. It is here
where the assumption σc > σs is needed.1 It is then shown that ∇v is symmetric,
and hence, thanks to the assumption that ∂D is connected and R

3 \ D is simply
connected, there is a function ψ in � \ D such that v = ∇ψ . Moreover, �ψ =∑3

j=1 β
−1
j + 1 in � \ D. Thus w, defined by

w(x) := ψ(x) − 1

2

3∑

j=1

β−1
j x2

j , (3.4)

is the solution to (ODP) with A = c0I − diag[β−1
1 , β−1

2 , β−1
3 ] (I is the identity

matrix). If σm is isotropic, so is A as mentioned before. The converse is also true,

1We believe it is true without this assumption even though we do not know how to prove it.
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namely, if (ODP) admits a solution, then (D,�) is neutral. For this, see Theorem 3.5
below.

Remark The assumption that ∂D is connected and R
3 \ D is simply connected in

[19, Theorem 1.2] can be replaced with the weaker one that � \ D is connected.
Indeed, instead of using Stokes’ theorem, by combining the formula [19, (2.18)]
with the fact that v(x) = c0x + b0 (x ∈ D), we see that the function ψ is explicitly
given by

ψ(x) = c0

(
1 − σc

σs

) ˆ
D

�(x − y)dy + 1

2
x · Bx +

ˆ
�

�(x − y)dy. (3.5)

Hence the function w = w(x) is given by

w(x) = c0

(
1 − σc

σs

) ˆ
D

�(x − y)dy +
ˆ
�

�(x − y)dy. (3.6)

For a domain D in three dimensions and a domain � containing D, the assumption
that � \D is connected is really more general than that ∂D is connected and R

3 \D
is simply connected. In fact, this general assumption allows us to choose the genus
of a closed surface ∂D arbitrarily. If the genus does not equal zero, R3 \ D is not
simply connected, but � \ D is connected.

Note that if � and D are concentric balls centered at the origin whose respective
radii are re and ri , then the solution w to (ODP) is given by

w(x) = r3
e

3|x| + 1

6
|x|2. (3.7)

In this case, b = 0 and A = 1
3 (−r3

e /r
3
i + 1)I which is isotropic. We emphasize that

w is radial in this case.
It is shown in [19] that confocal ellipsoids admit a solution to (ODP). In fact, if

∂D is an ellipsoid given by

x2
1

c2
1

+ x2
2

c2
2

+ x2
3

c2
3

= 1, (3.8)

the confocal ellipsoidal coordinate ρ is given by

x2
1

c2
1 + ρ

+ x2
2

c2
2 + ρ

+ x2
3

c2
3 + ρ

= 1, (3.9)

and the confocal ellipsoid ∂� is given by ρ = ρ0 for some ρ0 > 0. Let

g(ρ) = (c2
1 + ρ)(c2

2 + ρ)(c2
3 + ρ), (3.10)
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and

ϕj (ρ) =
ˆ ∞

ρ

1

(c2
j + s)

√
g(s)

ds, j = 1, 2, 3. (3.11)

Then the function w, defined by

w(x) = 1

2

ˆ ∞

ρ

1√
g(s)

ds − 1

2

3∑

j=1

ϕj (ρ)x
2
j + 1

2

3∑

j=1

ϕj (ρ0)x
2
j , (3.12)

is a solution of (ODP) with the equation �w = 1 replaced by �w = 2/
√
g(ρ0) and

the matrix A given by

A = diag[ϕ1(ρ0) − ϕ1(0), ϕ2(ρ0) − ϕ2(0), ϕ3(ρ0) − ϕ3(0)].

Note that b = 0 and A is anisotropic.
The following problem arises naturally:

An over-determined problem for confocal ellipsoids. Prove that if (ODP)
admits a solution (in H 1(� \ D)), then � and D are confocal ellipsoids (or
ellipses) and the common foci (when the volumes are fixed) is determined by the
eigenvalues of A.

The two-dimensional problem can be solved using the conformal mapping
between � \ D and an annulus [1, Theorem 10, p. 255]. If A is isotropic, this
problem is solved in three dimensions as the following theorem shows. The case
of anisotropic A has not been solved and is open.

Theorem 3.1 ([19]) Let D and � be bounded domains with Lipschitz boundaries
in R3 withD ⊂ �. Suppose that� \D is connected. If (ODP) admits a solution for
A = cI for some constant c where I is the identity matrix in three dimensions, then
D and � are concentric balls.

As an immediate consequence, we have the following Corollary:

Corollary 3.2 Suppose that σc > σs and σm is isotropic in addition to hypotheses
of Theorem 3.1. If (D,�) is neutral to multiple uniform fields, then D and � are
concentric balls in three dimensions.

Theorem 3.1 is proved as follows. Suppose that (ODP) admits a solution w for
A = cI . Then, by (ODP), |� \ D| = −3c|D|, and hence c �= 0. Introduce the
angular derivative:

Aij = (xj + bj

c
)∂i − (xi + bi

c
)∂j , i �= j,
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where b = (b1, b2, b3) is the constant vector appearing in (ODP) and ∂j denotes the
partial derivative with respect to xj -variable. One can see that �Aijw = Aij�w =
0 in � \ D, Aijw = 0 on ∂�, and Aijw = 0 on ∂D provided that A = cI . Hence
Aijw = 0 in � \ D, which implies that w is radial. Using this fact, one can prove
Theorem 3.1. We emphasize that this argument using the angular derivative does not
work if A is not isotropic.

3.2 The Newtonian Potential Formulation of the Problem

Consider the conductivity problem (CP) when the conductivity distribution σ is
given by (1.1). As one can see from Fig. 4, the field inside D is uniform if D is an
ellipse (or an ellipsoid). This a rather surprising fact that the field inside elliptic or
ellipsoidal inclusions is uniform seems to have been known for long time and its
proof goes back to Poisson (1826) and Maxwell (1873) (see [30]). The converse is
also true as we explain it in the sequel. For doing so, we need to recall the notion of
the Newtonian potential.

The Newtonian potential of the domain D, which we denote by ND , is defined by

ND(x) := 1

|D|
ˆ
D

�(x − y)dy. (3.13)

Usually the Newtonian potential is defined without the averaging factor 1/|D|, but
here it is more convenient to define it with the averaging factor. Since �ND(x) =
1/|D| for x ∈ D, we have

ND = a quadratic part + a harmonic part in D.

Potential field
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Fig. 4 Field inside an ellipse or an ellipsoid is uniform
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If D is an ellipse or an ellipsoid, then the harmonic part of ND is quadratic and so
is ND inside D. In fact, this is equivalent to the fact that the field inside elliptic
or ellipsoidal inclusions is uniform. Moreover, this property of the Newtonian
potential’s being a quadratic function inside the domain characterizes the ellipsoid
and the ellipse:

Theorem 3.3 Let D be a simply connected bounded domain with the Lipschtiz
boundary. If ND is quadratic inside D, thenD is an ellipse or an ellipsoid.

This characterization of ellipsoids was proved by Dive in 1931 [9] and by
Nikliborc in 1932 [34] (see also [8]). The reason why Dive and Nikliborc considered
this problem was to prove the converse of a theorem due to Newton. Let D be a
simply connected domain whose center of mass is 0 ∈ D and let λD be a dilation
of D by λ > 1, i.e., λD = {λx : x ∈ D}. A theorem of Newton states that if D

is an ellipsoid, then the gravitational force induced by the mass λD \ D is zero in
D [23]. Dive and Nikliborc independently proved that the converse is true: If the
gravitational force induced by the uniform mass on λD \ D is zero in D, then D

must be an ellipsoid.
The following theorem was proved using the characterization of ellipsoids by

Newtonian potentials.

Theorem 3.4 ([17, 18]) The following are equivalent for a simply connected
bounded domainD:

(i) The polarization tensor M associated with D attains the lower Hashin-
Shtrikman bound (2.10).

(ii) The solution to the conductivity problem (CP) when the conductivity distribu-
tion σ is given by (1.1) is linear inside D.

(iii) D is an ellipse in two dimensions and an ellipsoid in three dimensions.

This theorem resolves the generalized Pólya-Szegö conjecture explained before.
That the linearity of the solution to (CP) when σ is given by (1.1) characterizes
ellipsoids is known as the Eshelby’s conjecture in the field of composites theory.
Actually the Eshelby’s conjecture (1961) [10] asserts that the inclusion inside which
the field is uniform (or equivalently, the strain is constant) for a uniform loading is
an ellipse or an ellipsoid. The corresponding conjecture for the electro-static case
is proved by Theorem 3.4. The Eshelby’s conjecture (for the elasto-static case) was
proved by Sendecyj [37] in two dimensions and by Kang-Milton [18] and Liu [29]
in three dimensions.

We now formulate the over-determined problem for the confocal ellipsoids in
terms of the Newtonian potential. It is proved in [19] that the problem (ODP) admits
a solution if and only if

N�(x) − ND(x) =
{

0, x ∈ R
3 \ �,

a quadratic polynomial, x ∈ D.
(3.14)
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Now the problem is to show that D and � are confocal ellipsoids if (3.14) holds. If
� and D are confocal ellipsoids, then both N� and ND are quadratic polynomials
inside D, and so is N� − ND . A proof of the fact that N� = ND outside �

can be found in [30, p.61]. In the problem (3.14), the quadratic polynomial inside
D determines the common foci of D and �. For example, one can see from
Theorem 3.1 that if the quadratic polynomial is of the form c|x|2 + l.o.t, then �

and D are concentric balls.
Now we can show the following theorem.

Theorem 3.5 Suppose that ∂D is connected and R
3 \ D is simply connected.

Consider the following statements:

(i) (D,�) is neutral to multiple uniform fields for some σ given by (1.5).
(ii) The problem (ODP) admits a solution for some A and b.
(iii) The Newtonian potential formulation (3.14) holds.

The following implications hold to be true:

(i) ⇒ (ii) if σc > σs, (ii) ⇒ (iii), (iii) ⇒ (i). (3.15)

Proof The first implication was proved in [19] and the proof is briefly reviewed at
the beginning of this section. The second implication was proved in the same paper.
We prove the third implication, namely, if (3.14) holds, then there are conductivities
σc, σs and σm such that (D,�) is neutral to multiple uniform fields.

Let

w(x) := |�|(N�(x) − ND(x)). (3.16)

By a rotation and a translation, if necessary, we may assume that

w(x) =
{

0, x ∈ R
3 \ �,

∑3
j=1 αjx

2
j + α, x ∈ D,

(3.17)

for some constants α1, α2, α3 and α. In particular, there is no linear term in the
quadratic function. Define uj by

uj (x) := βj∂j

⎛

⎝w(x) + 1

2

3∑

j=1

β−1
j x2

j

⎞

⎠ , (3.18)

where βj ’s are defined by (3.2) with the conductivities to be determined later.
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We claim that uj is the solution to (CP) satisfying (1.7) with a = ej . In fact, we
see from the definition (3.16) of w that

∂jw(x) =
ˆ
�

∂xj �(x − y) dy − f−1
ˆ
D

∂xj �(x − y) dy

= −
ˆ
�

∂yj �(x − y) dy + f −1
ˆ
D

∂yj �(x − y) dy

= −
ˆ
∂�

�(x − y) νj (y) dS(y) + f −1
ˆ
∂D

�(x − y) νj (y) dS(y),

where the last equality follows from the divergence theorem. Here, f is the volume
fraction, namely, f = |D|/|�|. Thus,

∂jw(x) = −S∂�[νj ](x) + f −1S∂D[νj ](x). (3.19)

Since the single layer potential is continuous across the boundary, uj is continuous
across the interfaces ∂� and ∂D.

Thanks to the jump relation (2.2) and (3.17), we have, on ∂�,

∂ν(∂jw)|+ = −
(

1

2
I + K∗

∂�

)
[νj ] + f −1∂νS∂D[νj ] = 0,

and hence

∂ν(∂jw)|− = −
(

−1

2
I + K∗

∂�

)
[νj ] + f −1∂νS∂D[νj ] = νj .

Thus,

σm,j ∂νuj |+ = σm,j νj ,

and

σs∂νuj |− = σs(βj + 1)νj ,

on ∂�. Since σm,j = σs(βj + 1) by the definition (3.2) of βj , we infer that

σm,j ∂νuj |+ = σs∂νuj |− on ∂�. (3.20)

Similarly, thanks to (2.2), we have from (3.17) and (3.19) that, on ∂D,

∂ν(∂jw)|− = −∂νS∂�[νj ] + f−1
(

−1

2
I + K∗

∂D

)
[νj ] = 2αjνj ,
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and hence

∂ν(∂jw)|+ = −∂νS∂�[νj ] + f −1
(

1

2
I + K∗

∂D

)
[νj ] = (2αj + f −1)νj .

Thus, we have

σc∂νuj |− = σcβj (2αj + β−1
j )νj

and

σs∂νuj |+ = σsβj (2αj + f −1 + β−1
j )νj .

Thus,

σs∂νuj |+ = σc∂νuj |− on ∂D (3.21)

if and only if

σcβj (2αj + β−1
j ) = σsβj (2αj + f −1 + β−1

j ),

or equivalently, by letting γ := 1 − σc/σs ,

2αjβjγ + f −1βj + γ = 0. (3.22)

So if we choose γ and βj (or σc, σs and σm,j ) so that (3.22) holds, then (D,�) is
neutral to multiple uniform fields.

There is yet another restriction when we solve (3.22) for γ and βj ; σc, σs and
σm,j should be positive. This condition can be easily fulfilled. In fact, the following
relation follows easily from (3.22):

σm,j = σs

(
1 − γ

2αj γ + f −1

)
.

The quantity 2αj γ + f −1 in the above is nonzero since γ can be chosen small as
we see shortly. Thus the positivity is achieved if

1 − γ

2αj γ + f −1
> 0

which in turn can be achieved by taking γ so that

|γ | ≤ min
1≤j≤3

f −1

|1 − 2αj | + 1
.

This completes the proof. ��
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In the course of the proof, we derived the neutrality condition for confocal
ellipsoids.

Corollary 3.6 Let D and � be confocal ellipsoids whose boundaries are respec-
tively given by (3.8) and (3.9). If the conductivity distribution σ given by (1.5) and
(3.1) satisfies

2αjf

(
σm,j

σs
− 1

)(
1 − σc

σs

)
+

(
σm,j

σs
− 1

)
+ f

(
1 − σc

σs

)
= 0, j = 1, 2, 3,

(3.23)

then (D,�) is neutral to multiple uniform fields. Here f is the volume fraction and
αj ’s are constants given by (3.17), i.e.,

αj = −1

4

ˆ ρ0

0

1

c2
j + s

√
(c2

1 + ρ0)(c
2
2 + ρ0)(c

2
3 + ρ0)

√
(c2

1 + s)(c2
2 + s)(c2

3 + s)

ds, j = 1, 2, 3. (3.24)

Let us look into the neutrality condition (3.22) or (3.23) further. According to
(3.16) and (3.17),

1 − f−1 = �w = 2
3∑

j=1

αj in D.

We then have from (3.22)

1 − f−1 = −3f−1

γ
−

3∑

j=1

1

βj

,

and hence

−1 + 3

γ
+ f

⎛

⎝1 +
3∑

j=1

1

βj

⎞

⎠ = 0.

Writing it in terms of conductivities, we have

2σs + σc

σs − σc
+ f

3

3∑

j=1

σm,j + 2σs
σm,j − σs

= 0. (3.25)

This is a necessary neutrality condition when σm is anisotropic. In particular, if σm
is a scalar, namely, σm,j = σm, then it is exactly the neutrality condition (1.6) of
concentric balls.



Neutral Inclusions, Weakly Neutral Inclusions, and an Over-determined. . . 169

3.3 Quadrature Domains-Neumann Ovaloids

Let us look further into the Newtonian potential formulation (3.14) of the problem.
The problem is to prove that if it holds, then D and � must be confocal ellipsoids.
We show that the condition (3.14) in R

3 \ � alone does not yield the answer.
The condition (3.14) in R

3 \ � yields

ˆ
∂�

N�(x)g(x) dS =
ˆ
∂�

ND(x)g(x) dS

for any g ∈ H−1/2(∂�). By changing the order of integrations, we have

1

|�|
ˆ
�

u(x)dx = 1

|D|
ˆ
D

u(x)dx, (3.26)

where u(x) = S∂�[g](x), x ∈ �. Thus (3.26) holds for all u ∈ H 1
h (�) where

subscript h means that it is a collection of harmonic functions in �. The condition
(3.26) does not guarantee that D and � are confocal ellipsoids as will be seen in
what follows, and the condition (3.14) in D should be utilized.

In fact, an open set � ⊂ R
d is called a quadrature domain (see, e.g., [38, (4.1)],

and also [11, 36]) if there exists a distribution μ with a compact support in � such
that

ˆ
�

u(x)dx = 〈μ, u〉 for all u ∈ H 1
h (�). (3.27)

The simplest class of quadrature domains may be balls: It is well known as the mean
value property:

ˆ
�

u(x)dx = |�|u(c) for all u ∈ H 1
h (�), (3.28)

where c is the center of the ball. In this case the distribution μ is the point mass (the
Dirac delta) multiplied by the volume of �.

Ellipsoids are also quadrature domains. Let

� =
{
x ∈ R

d |
d∑

i=1

x2
i

a2
i

< 1

}
(a1 ≥ a2 ≥ · · · ≥ ad−1 > ad > 0),

and let

F =
{
x ∈ R

d−1|
d−1∑

i=1

x2
i

a2
i − a2

d

< 1

}
.
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The lower dimensional set F is called the focal ellipsoid of �. The following
quadrature identity holds (see, e.g., [26, 27]):

ˆ
�

u(x)dx = 2
d−1∏

i=1

ai

(a2
i − a2

d)
1/2

ˆ
F

(
1 −

d−1∑

i=1

x2
i

a2
i − a2

d

)1/2

u(x ′, 0) dx ′

(3.29)

for all u ∈ H 1
h (�). Here, x ′ is (x1, . . . , xd−1). Note that if D and � are confocal

ellipsoids, then their focal ellipsoids are the same, and hence (3.26) holds.
There is yet another class of domains satisfying (3.26). A domain � ⊂ R

d is
called a Neumann ovaloid if it admits the following quadrature identity

ˆ
�

u(x)dx = C (u(p1) + u(p2)) for all u ∈ H 1
h (�), (3.30)

where p1 and p2 are distinct points in R
d and C > 0 is a constant. If C is sufficiently

small compared to |p1 −p2|, then a union of two balls of the same radius centered at
p1 and p2 satisfies the identity (3.30). However, if C is sufficiently large, then there
is an axially-symmetric domain satisfying (3.30). For example, if � is the domain
in R

2 bounded by the curve

(
x2

1 + x2
2

)2 = α2
(
x2

1 + x2
2

)
+ 4ε2x2

1 , (3.31)

where α and ε are some positive constants (see Fig. 5), then it admits a quadrature
identity (3.30) with C = |�|/2 (see [38, pp. 19–20] for a proof). In this case, the
relation among |�|, α and ε is given by |�| = π(α2 + 2ε2). These two-dimensional
Neumann ovals were discovered by C. Neumann [33]. The uniqueness of the
Neumann oval in two dimensions was proved in [36]. The existence and uniqueness
of the higher dimensional Neumann ovaloids are known (see [22] and references
therein), but there is no known explicit expression except four-dimensional (and
two-dimensional) ones, to the best of our knowledge. We refer to a recent paper [22]

Fig. 5 Neumann ovals with
same foci
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for an explicit parametrization of a four-dimensional Neumann ovaloid. If (D,�)

are Neumann ovaloids with same foci, then (3.26) holds.

4 Weakly Neutral Inclusions

We now consider the weakly neutral inclusion problem presented at the end of
Introduction, namely, the problem of coating a given domain of general shape by
another domain so that the resulting inclusion of core-shell structure satisfies the
weak neutrality condition (1.9), namely, its polarization tensor vanishes. In this
section we present two classes of domains for which the weakly neutral inclusion
problem can be solved. The first one is defined by a conformal mapping from the
exterior of the unit disk onto the exterior of the domain, and construction of the
coating is explicit. This result is new. The other class are small perturbations of a
disk for which existence of a coating is proved. This result is from [20, 21]. Note
that neutral inclusions are weakly neutral. Thus concentric disks or balls can be
realized as weakly neutral inclusions. However, no other examples of weakly neutral
inclusions were known.

4.1 bD-vanishing Domains

Let D be a bounded simply connected domain in C = R
2 with the Lipschitz

continuous boundary, and let z = �(ζ ) is the Riemann mapping from |ζ | > 1
(C \ U , where U is the unit disk) onto C \ D. The conformal mapping � takes the
form

�(ζ ) = b−1ζ + b0 + b1

ζ
+ h.o.t.

By dilating and translating D if necessary, we assume that b−1 = 1 and b0 = 0, and
denote b1 by bD, so that the Riemann mapping � takes the form

�(ζ ) = ζ + bD

ζ
+ h.o.t. (4.1)

The domains we consider in this subsection are such that bD = 0. The following
lemma shows that there are plenty of domains satisfying this condition.

Lemma 4.1 Let D be a simply connected domain and suppose that the Riemann
mapping � from C \ U onto C \ D is of the form (4.1). If D is invariant under the
rotation around 0 by the angle 2π/n for a positive integer n ≥ 3, then bD = 0.
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Proof Let ζn = ei2π/n. Define the function � by

�(ζ ) := ζn�(ζ−1
n ζ ) = ζ + bDζ 2

n

ζ
+ h.o.t.

From the rotational symmetry of D, � is also the Riemann mapping from C \ U

onto C \ D. Hence, by the uniqueness of the Riemann mapping of the form (4.1),
we infer that � = �. In particular,

bD = bDζ 2
n .

Since n ≥ 3, ζ 2
n �= 1, and hence bD = 0. ��

We want to coat D by an another bounded domain � so that the PT of the
coated structure vanishes. Let the conductivity distribution σ be given by (1.5).
Furthermore, we assume that σc = 0 or ∞. This assumption is required because
we use the conformal mapping from C \ U onto C \ D.

If σc = ∞, (CP) is of the form

(CP)∞

⎧
⎪⎪⎨

⎪⎪⎩

∇ · σ∇u = 0 in R
2 \ D,

u = λ(constant) on ∂D,

u(x) − a · x = O(|x|−1) as |x| → ∞,

where σ = σsχ(� \ D) + σmχ(R2 \ �). The constant λ is determined by the
condition

´
∂D ∂νu|+ = 0. If σc = 0, then the problem, which we denote by (CP)0,

is (CP)∞ with boundary condition on ∂D is replaced with ∂νu = 0. The problem
is to find σs , σm and � so that the solution u to either (CP)∞ or (CP)0 satisfies the
weak neutrality condition (1.9).

Since u(x)−a ·x tends to 0 as |x| → ∞ and D, � are simply connected, there are
functions Um and Us analytic in C \� and � \D, respectively, such that ,Um = u

and ,Us = u in their respective domains (, stands for the real part). One can see
using the Cauchy-Riemann equations that the transmission conditions to be satisfied
by u on ∂� is equivalent to

(1 + σs/σm)Us + (1 − σs/σm)Us = 2Um + c on ∂�, (4.2)

for some constant c. Moreover, Um admits the following expansion at ∞:

Um(z) = αz + α1(α)

z
+ h.o.t.,

where α = a1 − ia2. Thus the weak neutrality condition (1.9) is equivalent to

α1(α) = 0 for all α (or equivalently, for α = 1, i). (4.3)
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With the conformal mapping � in (4.1), let V α
m = Um ◦ � and V α

s = Us ◦ �.
Then we have

V α
m(ζ ) = α�(ζ ) + α1(α)

�(ζ )
+ h.o.t. = αζ + αbD + α1(α)

ζ
+ h.o.t. . (4.4)

Let U ′ be a simply connected domain containing U defined by

�(∂U ′) = ∂�. (4.5)

The transmission condition (4.2) is transformed by � to

(1 + σs/σm)V α
s + (1 − σs/σm)V α

s = 2V α
m + c on ∂U ′. (4.6)

If bD = 0, then (4.4) takes the form

V α
m(ζ ) = αζ + α1(α)

ζ
+ h.o.t.

Thus (4.3) is fulfilled if and only if V α
m satisfies

|V α
m(ζ ) − αζ | = O

(
|ζ |−2

)
as |ζ | → ∞, (4.7)

for α = 1, i. Since ,(V α) is the solution to (CP)∞ with D and � replaced by U and
U ′, respectively, (4.7) is satisfied if (U,U ′) is a neutral inclusion. Since σc = ∞ and
U is the unit disk, it suffices to take U ′ to be a disk of radius r and the conductivities
σs, σm to satisfy the neutrality condition (1.6), which is

(σm/σs − 1) − r2(σm/σs + 1) = 0 (4.8)

if σc = ∞, and

(σm/σs − 1) + r2(σm/σs + 1) = 0 (4.9)

if σc = 0.
We arrive at the following theorem:

Theorem 4.2 Let D be a simply connected domain such that bD = 0 after rotation
and translation and suppose that its conductivity σc is either ∞ or 0. If we take
σs , σm and r to satisfy (4.8) if σc = ∞ and (4.9) if σc = 0, then (D,�) where �

is defined by (4.5) with ∂U ′ being the circle with the radius r is weakly neutral to
multiple uniform fields.
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Fig. 6 The core-shell structure defined by the conformal mapping �(ζ) = ζ + 1
4ζ 2 . Field

perturbations with the coating ((c) and (d)) are much weaker than those without it ((a) and (b))

We now present two results of numerical experiments. In Fig. 6, the conformal
mapping for the domain D and the conductivity σs are given by

�(ζ ) = ζ + 1

4ζ 2
and σs = 0.5. (4.10)

It shows the domains D and its coating � determined by the method described
above. Figure 7 is with the conformal mapping

�(ζ ) = ζ + 1

4ζ 3
and σs = 0.3. (4.11)
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Fig. 7 The core-shell structure defined by the conformal mapping �(ζ) = ζ + 1
4ζ 3 . Field

perturbations with the coating ((c) and (d)) are much weaker than those without it ((a) and (b))

In both examples, σm is chosen to be 1. They clearly show that field perturbation
with the coating is much weaker than that without it.

4.2 Small Perturbation of Disks

We now review the result from [20] which shows that a small perturbation of a
disk allows a coating such that the resulting core-shell structure is a weakly neutral
inclusion, namely, a PT-vanishing structure. It is an existence result based on the
implicit function theorem, so we do not know how small the perturbation can be.
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Let D0 be a disk of radius ri centered at the origin. For a given function h on the
unit circle T , the perturbation Dh of D0 is defined to be

∂Dh := {
x | x = (ri + h(x̂))x̂, |x̂| = 1

}
. (4.12)

The function h defining the perturbed domain Dh belongs to the space W 2,∞(T ),
the class of functions on T whose derivatives up to order 2 are bounded.

To define domains for the coating, we let �0 be the disk of radius re centered
at the origin such that (D0,�0) be a neutral inclusions, namely, the radius and the
conductivities are chosen so that the neutrality condition (1.6) is satisfied. We then
define perturbations of �0 as follows:

∂�b := {
x | x = (re + b(x̂))x̂, |x̂| = 1

}
, (4.13)

where b is of the form

b(θ) = b(x̂) = b0 + b1 cos 2θ + b2 sin 2θ. (4.14)

Here b0, b1, b2 are real constants.
If h and b are sufficiently small, then (Dh,�b) defines an inclusion of the core-

shell structure. Let M(h, b) = M(Dh,�b) be the PT of (Dh,�b) as defined in
(2.8). Since M is symmetric, we may regard M as a three-dimensional vector-valued
function. Since the collection of all b of the form (4.14) is of three dimensions, M
can be regarded as a mapping from U × V into R

3, where U and V are some
neighborhoods of 0 in W 2,∞(T ) and R

3, respectively. Since (D0,�0) is neutral, we
have M(0, 0) = 0. It is then proved that

det
∂M

∂(b0, b1, b2)
(0, 0) �= 0. (4.15)

Then an implicit function theorem is invoked to arrive at the following theorem.

Theorem 4.3 ([20]) There is ε > 0 such that for each h ∈ W 2,∞(T ) with
‖h‖2,∞ < ε there is b = b(h) of the form (4.14) such that

M(h, b(h)) = 0, (4.16)

namely, the inclusion (Dh,�b(h)) of the core-shell structure is weakly neutral to
multiple uniform fields. The mapping h �→ b(h) is continuous.

Proving (4.15) is quite technical. This two-dimensional theorem has been
extended in [21] to three dimensions, which is even more technically complicated,
to show that small perturbations of a sphere allow coatings so that the resulting
inclusions of the core-shell structure are weakly neutral to multiple uniform fields.
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For that, the functions b in (4.14) is replaced with

b(x̂) = b0 +
5∑

j=1

bjY
2
j (x̂), (4.17)

where Y 2
j (x̂) are spherical harmonics of order 2 (there are five linearly independent

ones). Then the PT is regarded as a local mapping from W 2,∞(S)×R
6 (S is the unit

sphere) into R
6, and an analogy to (4.15) is proved.

5 Weakly Neutral Inclusions by Imperfect Bonding

So far we consider neutral or weakly neutral inclusions of the core-shell structure.
There is yet another method to achieve neutrality: It is by introducing an imperfect
bonding parameter on ∂D. The perfect bonding is characterized by the continuity
of the flux and the potential along the interface ∂D as given in (1.8), while the
imperfect bonding is characterized by either discontinuity of the potential or that of
the flux along the interface. The former one is referred to as the low conductivity
(LC) type, while the latter as the high conductivity (HC) type (see, e.g., [5]).

The LC type imperfect interface problem is described as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ · σ∇u = 0 in D ∪ (Rd \ D),

β(u|+ − u|−) = σm∂νu|+ on ∂D,

σc∂νu|− = σm∂νu|+ on ∂D,

u(x) − a · x = O(|x|−d+1) as |x| → ∞.

(5.1)

Here, β is the interface parameter of the LC type, which is a non-negative function
defined on the interface ∂D.

It is proved in [39] that if D is a disk (or a ball) of radius r and

β = 1

r

σcσm

σc − σm
, (5.2)

then the solution u to (5.1) satisfies

u(x) − a · x ≡ 0 for all x ∈ R
d \ �, (5.3)

in other words, D with β is neutral. See Fig. 8.
It is proved in [16], based on the neutrality criterion obtained in [5], that the

only neutral inclusions with the imperfect bonding parameters are disks (balls) with
constant interface parameters if σm is isotropic, and ellipses (ellipsoids) if σm is
anisotropic. In the same paper a way to construct an imperfect bonding parameter
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Fig. 8 Neutral inclusion by
imperfect interface [39]
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on the boundary of arbitrary domain has been investigated. For that purpose it is
assumed that D is a perfect conductor, meaning that σc = ∞, which is to use the
conformal mapping as in (4.1). Under this assumption, the problem (5.1) in two
dimensions becomes the following one:

⎧
⎪⎪⎨

⎪⎪⎩

�u = 0 in R
2 \ D,

β(u − λ) = ∂νu|+ on ∂D,

u(x) − a · x = O(|x|−1) as |x| → ∞.

(5.4)

The following theorem is obtained.

Theorem 5.1 ([16]) Let D be a bounded simply connected domain in R
2 with

the Lipschitz boundary which admits the conformal mapping � of the form (4.1).
Assume that

|bD| ≤ 2 − √
3. (5.5)

Define β on ∂D by

β(z) =
(

1

1 + |bD| + 1

1 − |bD| − 1 +
(

2

1 + |bD| − 2

1 − |bD|
)

cos 2θ

)
1

|�′
D(eiθ )|

(5.6)

for z = �D(eiθ ). Then the solution u to the problem (5.4) satisfies u(x) − a · x =
O(|x|−2) as |x| → ∞, namely, (D, β) is weakly neutral to multiple uniform fields.

It is helpful to mention that the condition (5.5) is imposed, even though the
definition (5.6) makes sense without the condition, to guarantee the function β
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Fig. 9 Upper: the solution with the imperfect bonding parameter, Lower: without it. The solution
in the upper one is less perturbed than that in the lower one

defined by (5.6) being positive. The positivity of β is required to assure uniqueness
of the solution to (5.4). Figure 9 clearly shows that the field with the imperfect
bonding parameter is less perturbed than that without it.
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Nonexistence of Radial Optimal
Functions for the Sobolev Inequality
on Cartan-Hadamard Manifolds

Tatsuki Kawakami and Matteo Muratori

Abstract It is well known that the Euclidean Sobolev inequality holds on any
Cartan-Hadamard manifold of dimension n ≥ 3, i.e. any complete, simply
connected Riemannian manifold with nonpositive sectional curvature. Moreover, in
the very special case of the Euclidean space itself, the optimal constant is achieved
by the Aubin-Talenti functions. On a generic Cartan-Hadamard manifold M

n, one
may ask whether there exist at all optimal functions. Here we prove, with ad
hoc arguments that do not take advantage of the validity of the so-called Cartan-
Hadamard conjecture (claiming that such optimal constant is always Euclidean),
that this is false at least for functions that are radially symmetric with respect to the
geodesic distance from a fixed pole. More precisely, we show that if the optimum
in the Sobolev inequality is achieved by some radial function, then M

n must be
isometric to R

n.

Keywords Sobolev inequality · Optimal constants · Radial functions ·
Cartan-Hadamard manifolds

1 Introduction

A Cartan-Hadamard manifold is a complete and simply connected Riemannian
manifold M

n with everywhere nonpositive sectional curvature. By the Cartan-
Hadamard theorem, any such manifold turns out to be topologically equivalent to
the Euclidean space R

n; more precisely, the exponential map centered at any point
o ∈ M

n is a diffeomorphism. We refer to Sect. 2.1 for an account on this and further
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basic properties of Cartan-Hadamard manifolds. From the functional point of view,
a remarkable and by now well-established fact is the validity, on every such manifold
of dimension n ≥ 3, of the Euclidean Sobolev inequality

‖f ‖L2∗
(Mn) ≤ C ‖∇f ‖L2(Mn) ∀f ∈ C1

c (M
n) , 2∗ := 2n

n − 2
, (1.1)

for some positive constant C > 0. Here, with the term Euclidean, we simply mean
that the exponent appearing in the left-hand side of (1.1) is exactly the same as the
one corresponding to the case M

n ≡ R
n. It is possible to establish (1.1) through

several techniques: see Sect. 2.4 for an explicit proof and for references to other
arguments available in the literature. As concerns the value of the optimal constant,
which will be denoted by C, the situation is more complicated. Indeed, it has been
an open question whether C coincides with the Euclidean best constant CE, namely
the one achieved in R

n by the celebrated Aubin-Talenti functions [3, 36]. It is
plain, due to the local Euclidean structure of M

n, that C cannot be smaller than
CE (see Sect. 2.5). The fact that C = CE, as of this writing, is only known up to
dimension n = 4 as a consequence of the validity of the so-calledCartan-Hadamard
conjecture, a longstanding problem in geometric analysis. The latter asserts that the
isoperimetric inequality, or equivalently the 1-Sobolev inequality

‖f ‖L1∗
(Mn) ≤ C1 ‖∇f ‖L1(Mn) ∀f ∈ C1

c (M
n) , 1∗ := n

n − 1
, (1.2)

holds with Euclidean best constant C1 and the optimal functions are characteristic
functions of Euclidean balls, i.e. equality is achieved if and only if Mn ≡ R

n and
f = χBr , r > 0, after a routine extension of (1.2) to the BV space. Once C1 in (1.2)
can be taken equal to the Euclidean isoperimetric constant, then a Schwarz-type
symmetrization technique allows one to show that the same holds for (1.1), namely
C = CE. We refer the reader to [24, Section 8] for an overview of the literature and
the main techniques used until recently to attack the Cartan-Hadamard conjecture,
along with its relation to p-Sobolev inequalities.

The aim of the present paper is to give a first contribution to the study of possible
optimal functions, i.e. nontrivial functions attaining the identity in (1.1) with C = C.
Indeed, regardless of the knowledge of the value of the optimal constant C, it is
reasonable to ask whether (1.1) admits at all optimal functions and, in case of
positive answer, what is the shape of the latter. We will work in the simplified
radially-symmetric framework, that is we will consider functions f (x) ≡ f (r(x))

that depend only on the geodesic distance r(x) := d(x, o) from a fixed pole o ∈ M
n,

namely radial functions. This may appear as a strong restriction, nevertheless radial
symmetry has proved to play a major role in the investigation of extremal functions
for a wide class of Sobolev-type inequalities. The literature here is huge: without any
claim of completeness, in addition to the pioneering papers [3, 36], we quote [12–14]
and references therein for a thorough study of symmetry/symmetry-breaking issues
in Caffarelli-Kohn-Nirenberg inequalities, the latter being functional inequalities of
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the type of (1.1) (possibly in interpolation form) with respect to power-type weights
in R

n. In fact (1.1), especially when restricted to radial functions, can be seen as a
Euclidean weighted inequality. See in particular Sect. 2.2 below and [32].

Our main result is the following.

Theorem 1.1 Let Mn (n ≥ 3) be a Cartan-Hadamard manifold. Suppose that the
Sobolev inequality (1.1) admits a (nontrivial) radial optimal function. Then M

n is
isometric to Rn.

Clearly the above theorem can be interpreted both in terms of nonexistence and in
terms of rigidity, in the sense that as soon as M

n �≡ R
n there exists no (radial)

optimal function to (1.1) and, should such a function exist, it is necessarily an
Aubin-Talenti profile on M

n ≡ R
n. Note that optimal functions are naturally sought

in Ḣ 1(Mn), i.e. the closure of C1
c (M

n) with respect to the L2(Mn) norm of the
gradient. We will give three different proofs of Theorem 1.1 in Sect. 3. In fact
the third one, provided in Sect. 3.3, takes advantage of arguments similar to those
used in [15, Theorem 1.3], where the same result was proved upon assuming the
Cartan-Hadamard conjecture (see also [26] for analogous issues regarding Morrey-
Sobolev inequalities). However, we want to emphasize that none of our proofs takes
advantage of the Cartan-Hadamard conjecture; the strategies we employ only rely on
classical Laplacian and volume-comparison tools (Sect. 2.2), along with the specific
structure of the inequality in the radially-symmetric framework.

The investigation of optimal constants in functional inequalities has a long story.
As we have already commented, the very first result dealing with the optimal
functions for the Euclidean Sobolev inequality is due to two simultaneous and
independent papers by T. Aubin [3] and G. Talenti [36]. In a series of subsequent
articles [1, 2, 4], Aubin continued the analysis of Sobolev-type inequalities and
optimality issues on Riemannian manifolds. Some improvements on [3] were then
achieved by Hebey and Vaugon [25] and Hebey [23]. In [9, 27] it was shown,
upon assuming curvature or volume-growth bounds from below, respectively, that
a Riemannian manifold supporting the Sobolev inequality (1.1) with Euclidean
constant is necessarily isometric to R

n. For topological rigidity results in the same
spirit, see also [34].

Concerning Poincaré inequalities, H.P. McKean [31] proved that, if on a Cartan-
Hadamard manifold the sectional curvature is bounded from above by a negative
constant −k, then in addition to (1.1) we have

‖f ‖L2(Mn) ≤ 2√
k (n − 1)

‖∇f ‖L2(Mn) ∀f ∈ C1
c (M

n) . (1.3)

This is equivalent to the fact that the infimum of the spectrum of (minus) the
Laplace-Beltrami operator on M

n is bounded from below by the constant k(N −
1)2/4 to k(n − 1)2/4, in other words −� has an explicit spectral gap. Moreover,
such constant is sharp since it is attained on the hyperbolic space Hn of curvature
−k. Also the requirement on the “nondegeneracy” of the curvature is, in some
sense, sharp. Indeed, in [29] it was shown that, on any complete noncompact



186 T. Kawakami and M. Muratori

Riemannian manifold, the (essential) spectrum of −� starts from zero as soon as
the Ricci curvature vanishes at infinity. An alternative, and much simpler proof of
(1.3) was carried out in [32], by means of one-dimensional techniques which are to
some extent related to the arguments we develop in Sect. 3. Such paper deals with
the validity of (radial) inequalities that interpolate between (1.1) and (1.3), under
(power-type) bounds from above on the sectional curvature ofMn. In the special, but
significant case of the hyperbolic space, it is worth quoting the recent contributions
[6], where the Poincaré inequality is established with optimal remainder terms
of Hardy type, and [33], where the author proves a remarkable inequality on
H

n yielding simultaneously the optimal Sobolev and Poincaré constants. In wider
geometric settings, Hardy-type inequalities were also addressed in [8], for a class of
nonstandard weights.

Finally, we recall that the Sobolev inequality (1.1), along with related Gagliardo-
Nirenberg and Poincaré inequalities, was successfully exploited to prove (sharp)
L1 − L∞ smoothing effects for the porous medium equation [21] and finite-time
extinction estimates for the fast diffusion equation [7] on Cartan-Hadamard man-
ifolds, thus reinforcing the well-known connection between (nonlinear) diffusion
equations and functional inequalities. In this regard, we also mention [20], where
Faber-Krahn inequalities on Riemannian manifolds are investigated and consequent
heat-kernel bounds are established.

2 Preliminary Material

In the following, we will provide an overview of the essential notions and tools that
one needs to know when dealing with Cartan-Hadamard manifolds (Sects. 2.1–2.3),
along with some well-established results regarding the Sobolev inequality, of which
however we believe it is worth giving a direct proof, since we try to be as much as
possible self contained (see in particular Sects. 2.4 and 2.5).

2.1 Basics of Cartan-Hadamard Manifolds

We recall that a Cartan-Hadamard manifold is an n-dimensional Riemannian
manifold (M, g) which is complete, simply connected and has everywhere non-
positive sectional curvature. This assumption entails a very strong topological
(and geometric) consequence, due to the Cartan-Hadamard theorem (see e.g. [28,
Theorem 1.10] or [10, Theorem II.6.2]): the cut-locus of any point o ∈ M is empty,
so that the exponential map ToM ≡ R

n � y �→ expo y ∈ M is actually a global
diffeomorphism and therefore M is in particular a manifold with a pole (we refer
to [16] for an excellent monograph on this class of manifolds). More than that: any
point can play the role of a pole.
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Before proceeding further, let us fix some notations. The (standard) symbol ToM

stands for the tangent space of M at o ∈ M , and we recall that expo is the map that
to any element y ∈ ToM associates the point reached at time t = 1 by the constant-
speed geodesic that starts from o at t = 0 with velocity y. In general the exponential
map is well defined only for small y, but as we have just seen on Cartan-Hadamard
manifolds it is in fact global.

We employ the symbol “≡” instead of “=” for identities that should be
understood up to suitable (implicit) transformations. In the case of Riemannian
manifolds, by (M1, g1) ≡ (M2, g2) we mean that M1 is isometric to M2, i.e. there
exists a diffeomorphism from M1 onto M2 which is also an isometry with respect to
g1 and g2. Finally, in order to lighten notations, an n-dimensional Cartan-Hadamard
manifold is simply denoted by M

n and d(·, ·) is the corresponding distance on M
n

induced by its metric g.
At the level of curvatures, we denote by Sect(x) the sectional curvature at x ∈ M

with respect to a generic plane in the tangent space TxM , whereas Secto(x) stands
for the sectional curvature with respect to any plane in TxM containing the radial
direction, also known as radial sectional curvature. Similarly, we denote by Ric(x)
the Ricci curvature at x ∈ M as a quadratic form, whereas the number Rico(x)
stands for the Ricci curvature evaluated in the radial direction, i.e. the radial Ricci
curvature.

In the sequel, o ∈ M
n will tacitly be considered a fixed reference point elected

as a pole, unless otherwise specified. In view of what we have recalled above, it is
possible to exploit radial coordinates about o, namely to any x ∈ M

n \ {o} one can
associate in a unique way a couple (r, θ) ∈ (0,∞) × S

n−1, where S
n−1 represents

the (n− 1)-dimensional unit sphere endowed with the usual round metric. Note that
r is the distance between x and o, while θ is the starting direction of the geodesic
that connects o to x. In this way, the metric g of Mn at x ≡ (r, θ) can be written as
follows:

g ≡ dr2 + 〈A(r, θ) dθ, dθ〉θ , (2.1)

for a suitable linear map A(r, θ) giving rise to a quadratic form in the tangent space
of Sn−1 at θ . Here the symbol 〈·, ·〉θ stands for the inner product of such tangent
space that induces the norm ‖ ·‖θ , and in (2.1) we identify an element of the tangent
space of Mn at x ≡ (r, θ) with (dr, dθ), where dr is an arbitrary real number that
represents displacement in the radial direction and dθ is an element of the tangent
space of Sn−1 at θ , that represents angular displacement.

To our purposes, a key role is played by the positive scalar function

A(r, θ) :=
√

det
[
A(r, θ)

] ∀(r, θ) ∈ (0,∞) × S
n−1 .

In fact A(r, θ) coincides with the density of the volume measure of Mn, which we
denote by dμ, with respect to the product measure dr ⊗ dθ . Here and below, with
some abuse of notation, the symbol dr stands for the Lebesgue measure on (0,∞)
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and dθ for the volume (i.e. surface) measure of Sn−1, still endowed with the standard
round metric. It is plain that, since the metric of Mn is locally Euclidean, or more
rigorously g is differentiable on M

n, in particular we have

lim
r↓0

A(r, θ)

rn−1 = 1 uniformly w.r.t. θ ∈ S
n−1 . (2.2)

Let us denote by Br the geodesic ball of radius r > 0, implicitly centered at o,
i.e. the open set of points in M

n whose distance from o is less than r . If the center
of the ball is another point x �= o, we will write more explicitly Br(x). Similarly,
the boundary of Br , that is the geodesic sphere of all points at distance r from o, is
denoted by Sr . Note that Sr itself is an (n − 1)-dimensional Riemannian manifold
embedded in M

n. From the definition of A(r, θ), we infer that for any fixed r > 0 the
function θ �→ A(r, θ) is the density, with respect to dθ , of the volume (i.e. surface)
measure dσ of Sr ; as a result,

σ(Sr) =
ˆ
Sn−1

A(r, θ) dθ . (2.3)

2.2 Laplace-Beltrami Operator, Radial Functions and Sobolev
Spaces

After the previous introductory section, we are in position to describe more precisely
the functional setting in which we work. First of all, given a smooth function f on
M

n, the Laplace-Beltrami operator (also Laplacian for short) applied to f reads, in
radial coordinates (see [17, Section 3] or [22, Section 2.2]),

�f = ∂2f

∂r2 + m(r, θ)
∂f

∂r
+ �Srf , (2.4)

where �Sr represents the Laplace-Beltrami operator on the submanifold Sr and

m(r, θ) := ∂

∂r

[
logA(r, θ)

] ∀x ≡ (r, θ) ∈ (0,∞) × S
n−1 . (2.5)

It is immediate to check that in fact m(r, θ) coincides with the Laplacian of the
distance function r ≡ r(x) := d(x, o), which is of key importance in the analysis
of partial differential equations on manifolds due to crucial comparison results (see
the next section). Note that, upon integrating (2.5) from a fixed r0 > 0 to r > r0,
we obtain the identity

ˆ r

r0

m(s, θ) ds = logA(r, θ) − logA(r0, θ) ∀(r, θ) ∈ (r0,∞) × S
n−1 ,

(2.6)
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that is

A(r, θ) = e

´ r
r0
m(s,θ) ds+cθ ∀(r, θ) ∈ (r0,∞)×S

n−1 , where cθ := log A(r0, θ) .

Strictly related to the Laplacian is the gradient operator, which for C1(Mn)

functions reads (in radial coordinates)

∇f ≡
(
∂f
∂r

,∇Sr f
)

%⇒ |∇f |2 =
∣∣∣ ∂f∂r

∣∣∣
2 + ∥∥∇Sr f

∥∥2
θ
,

where ∇Sr is in turn the gradient operator of the submanifold Sr . Clearly both �Sr

and ∇Sr can explicitly be written in terms of A(r, θ), which we avoid since we will
only deal with radial functions, namely functions on M

n that depend solely on the
radial coordinate, i.e. f (r, θ) ≡ f (r). In this special case, we adopt the simplified
notation ∂f

∂r
≡ f ′.

Given a measurable function f : M
n → R and p ∈ [1,∞), we define its

Lp(Mn) norm as

‖f ‖p
Lp(Mn) :=

ˆ
Mn

|f |p dμ =
ˆ ∞

0

ˆ
Sn−1

|f (r, θ)|p A(r, θ) dθdr .

Analogously, for a C1(Mn) function, the L2(Mn) norm of its gradient is defined as

‖∇f ‖2
L2(Mn)

:=
ˆ
Mn

|∇f |2 dμ =
ˆ ∞

0

ˆ
Sn−1

(∣∣∣ ∂f∂r
∣∣∣
2 + ∥∥∇Sr f

∥∥2
θ

)
A(r, θ) dθdr .

In particular, upon setting

ψ%(r) :=
[´

Sn−1 A(r, θ) dθ∣∣Sn−1
∣∣

] 1
n−1

∀r > 0 , (2.7)

where
∣∣Sn−1

∣∣ is the total surface measure of the (n−1)-dimensional unit sphere, we
deduce that for a C1(Mn) radial function f the identities

‖f ‖p
Lp(Mn) =

∣∣∣Sn−1
∣∣∣
ˆ ∞

0
|f (r)|p ψ%(r)

n−1dr (2.8)

and

‖∇f ‖2
L2(Mn)

=
∣∣∣Sn−1

∣∣∣
ˆ ∞

0

∣∣f ′(r)
∣∣2 ψ%(r)

n−1dr (2.9)

hold. The reason for the notation ψ% in (2.7) will be clearer in the next subsection.
Finally, we denote by Ḣ 1(Mn) the Sobolev space defined as the closure of

C1
c (M

n) with respect to ‖∇(·)‖L2(Mn), endowed with the latter norm. It is apparent
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that all the above formulas still hold for functions in Ḣ 1(Mn), up to interpreting
partial derivatives in the weak sense. Clearly the Sobolev inequality (1.1) extends to
the whole Ḣ 1(Mn), and it is (a priori) in this space that optimal functions should be
sought.

2.3 Model Manifolds, Laplacian and Volume Comparison

A model manifold is an n-dimensional Riemannian manifold (M, g) with a pole
o ∈ M whose metric can be written, with respect to the radial coordinates about o,
as (see [19, Section 3.10])

g = dr2 + ψ(r)2 ‖dθ‖2
θ ,

where ψ : [0,∞) → [0,∞) is a function belonging to the class

F :=
{
ψ ∈ C∞((0,∞)) ∩ C1([0,∞)) : ψ(0) = 0 , ψ(r) > 0 ∀r > 0 , ψ ′(0) = 1

}
.

(2.10)

In other words, it corresponds to the particular case of (2.1) when A(r, θ) is the
identity times ψ(r)2. Hence, it follows that A(r, θ) = ψ(r)n−1. For instance, the
Euclidean space R

n corresponds to ψ(r) = r , while the hyperbolic space H
n

corresponds to ψ(r) = sinh r . Note that, in general, a model manifold need not be
Cartan-Hadamard: the latter property is equivalent to requiring that ψ is in addition
convex. Outside the class of Cartan-Hadamard manifolds, we recover the unit sphere
S
n−1 with the choice ψ(r) = sin r , at least for r ranging in the bounded interval

[0, π).
Having introduced model manifolds, we can briefly recall some classical results

that compare, in radial coordinates, the Laplacian of the distance function (w.r.t. to
a given pole o) of a Cartan-Hadamard manifold M

n with the Laplacian of the
distance function of the model manifold which attains the curvature bounds. More
precisely, if

Secto(x) ≤ −ψ ′′(r)
ψ(r)

∀(r, θ) ≡ x ∈ M
n \ {o} (2.11)

for some function ψ ∈ F , then

m(r, θ) ≥ (n − 1)
ψ ′(r)
ψ(r)

∀(r, θ) ∈ (0,∞) × S
n−1 . (2.12)
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Similarly, if

Rico(x) ≥ −(n − 1)
ψ ′′(r)
ψ(r)

∀(r, θ) ≡ x ∈ M
n \ {o} (2.13)

for another function ψ ∈ F , then

m(r, θ) ≤ (n − 1)
ψ ′(r)
ψ(r)

∀(r, θ) ∈ (0,∞) × S
n−1 .

We point out that the equality cases of the above inequalities do correspond to model
manifolds, i.e. the radial sectional curvature of a model manifold coincides with the
right-hand side of (2.11), and the same holds for the radial Ricci curvature in (2.13).
Moreover, the Laplacian of the distance function on a model manifold is also a radial
function that equals the right-hand side of (2.12). For further details, see e.g. [22,
Section 2.2] and references therein. Our entire focus here is on Cartan-Hadamard
manifolds. We mention, however, that the above comparison results do hold in much
more general Riemannian frameworks, up to a possible weak interpretation of the
inequalities: we refer the reader to [30, Sections 1.2.3 and 1.2.5] (see also [16,
Section 2] or [17, Section 15]).

Because a Cartan-Hadamard manifold has everywhere nonpositive sectional
curvature, by applying (2.11) and (2.12) with the trivial choice ψ(r) = r we
immediately deduce that

m(r, θ) ≥ n − 1

r
∀(r, θ) ∈ (0,∞) × S

n−1 . (2.14)

This simple inequality has a key consequence that will be crucial to our strategy,
namely the fact that the volume measure of Mn is larger than the Euclidean one:

A(r, θ) ≥ rn−1 ∀(r, θ) ∈ (0,∞) × S
n−1 . (2.15)

To establish (2.15) let us notice that, by virtue of (2.6) and (2.14), for every r0 > 0
it holds

log

(
rn−1

rn−1
0

)
≤ log

(
A(r, θ)

A(r0, θ)

)
∀(r, θ) ∈ (r0,∞) × S

n−1 ,

so that by taking exponentials and letting r0 ↓ 0, using (2.2), we obtain (2.15).
We mention that (2.15) is the analogue, in the very special Cartan-Hadamard set-

ting, of the celebrated Bishop-Gromov comparison theorem: see e.g. [24, Theorem
1.1] or [30, Theorem 1.13] for a more general statement. As a particular case of the
latter, one deduces that the volume of geodesic balls of a Riemannian manifold with
nonnegative Ricci curvature is at most Euclidean. On Cartan-Hadamard manifolds,
given the nonpositive sectional curvature, we have the opposite inequality.
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2.4 A Simple Proof of the Sobolev Inequality
on Cartan-Hadamard Manifolds

For completeness, we provide an elementary proof of the validity of the Sobolev
inequality on any n-dimensional (n ≥ 3) Cartan-Hadamard manifold. A proof of
the 1-Sobolev inequality, from which the standard Sobolev inequality (1.1) easily
follows (see [24, Lemma 8.1]), can be found e.g. in [24, Theorem 8.3].

The argument we outline here exploits a comparison result between heat kernels,
which is in fact a particular case of [18, Theorem 4.2]. That is, let K(x, y, t) be the
heat kernel of Mn, namely the (minimal) solution to

{
∂
∂t
K(·, y, ·) = �K(·, y, ·) in M

n × (0,+∞) ,

K(·, y, 0) = δy in M
n ,

(2.16)

where δy stands for the Dirac delta centered at a given but arbitrary y ∈ M
n. Let KE

denote the Euclidean heat kernel, that is

KE(r, t) = e− r2
4t

(4πt)
n
2

∀(r, t) ∈ [0,∞) × (0,+∞) ,

which solves the analogue of (2.16) in R
n with r replaced by |x − y|. For each

y ∈ M
n, the function M

n × (0,+∞) � (x, t) �→ KE(d(x, y), t) turns out to be a
supersolution to (2.16). Indeed, it is plain that ∂

∂r
KE ≤ 0; hence, from Laplacian

comparison (recall (2.4) and (2.14)), we have:

∂

∂t
KE = ∂2

∂r2KE + n − 1

r

∂

∂r
KE ≥ ∂2

∂r2 KE + m(r, θ)
∂

∂r
KE .

Upon setting r ≡ r(x) := d(x, y), the above inequality is equivalent to the fact that
(x, t) �→ KE(d(x, y), t) is a supersolution to the differential equation in (2.16). On
the other hand, because the volume measure of Mn is locally Euclidean, i.e. (2.2)
holds, it is straightforward to check that this function also attains a Dirac delta
centered at y as t ↓ 0. Hence, by the comparison principle and the arbitrariness
of y, we infer that

K(x, y, t) ≤ KE(d(x, y), t) ≤ 1

(4πt)
n
2

∀(x, y, t) ∈ M
n × M

n × (0,+∞) .

(2.17)

As concerns the just mentioned comparison principle, we limit ourselves to
observing that the latter can rigorously be established by both approximating δy
with a sequence of smooth radially decreasing data and filling M

n with a sequence
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of geodesic balls centered at y, solving the analogues of (2.16) with homogeneous
Dirichlet boundary conditions.

Once (2.17) has been proved, (1.1) is then a consequence of well-known equiva-
lence results between pointwise heat-kernel bounds and the validity of Sobolev-type
inequalities: see e.g. [19, Corollary 14.23] or [11, Lemma 2.1.2 and Theorem 2.4.2].

However, we point out that in the above argument the optimality of the constants
is not preserved in the passage from the bound (2.17) to (1.1). ��

2.5 The Optimal Sobolev Constant Is Not Smaller Than the
Euclidean One

The fact that the optimal constant C in the Sobolev inequality (1.1) cannot be smaller
than the Euclidean optimal constant CE, which is attained in R

n by the Aubin-
Talenti functions (see [3, 36])

fb(x) ≡ fb(|x|) :=
(

1 + b |x|2
)− n−2

2 ∀x ∈ R
n , where b > 0 is an arbitrary constant,

(2.18)

is a consequence of the local Euclidean structure of Mn, and it is actually true on
any n-dimensional Riemannian manifold where (1.1) holds. Note that in (2.18) there
should appear a further degree of freedom due to translations and another one due
to multiplication by constants which we omit since it is inessential to our purposes
(we only need scaling invariance). Because in Sect. 3 we will consistently take
advantage of such inequality, we believe it is worth providing a direct (elementary
and classical) proof.

To this end, first of all note that, thanks to (2.2) and (2.15), for every ε ∈ (0, 1)
there exists a positive constant c(ε) such that

rn−1 ≤ A(r, θ) ≤ (1 + c(ε)) rn−1 ∀(r, θ) ∈ (0, ε) × S
n−1 , lim

ε↓0
c(ε) = 0 .

(2.19)

We can therefore exploit (2.19) along with the explicit expression of the Aubin-
Talenti functions. Let us consider the following “truncated” versions of (2.18): given
ε ∈ (0, 1), we set

fb,ε(x) ≡ fb,ε(|x|) := [fb(|x|) − fb(ε)]+ ∀x ∈ R
n .

It is readily seen that

lim
b→∞

∥∥fb,ε
∥∥
L2∗

(Rn)∥∥∇fb,ε
∥∥
L2(Rn)

= CE ∀ε ∈ (0, 1) ,
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because fb, and hence also fb,ε , is concentrating at the origin as b → +∞.
Consider now the function gb,ε(x) := fb,ε(d(x, o)), which belongs to Ḣ 1(Mn) and
is supported by construction in Bε. Thanks to (2.19) and the fact that gb,ε is radial,
recalling (2.8) and (2.9), for every ε ∈ (0, 1) we have

∥∥fb,ε
∥∥
L2∗

(Rn)
≤ ∥∥gb,ε

∥∥
L2∗

(Mn)
≤ (1 + c(ε))

1
2∗

∥∥fb,ε
∥∥
L2∗

(Rn)
,

∥∥∇fb,ε
∥∥
L2(Rn)

≤ ∥∥∇gb,ε
∥∥
L2(Mn)

≤ (1 + c(ε))
1
2
∥∥∇fb,ε

∥∥
L2(Rn)

.

As a consequence, since the definition of C yields

∥∥fb,ε
∥∥
L2∗

(Rn)

(1 + c(ε))
1
2
∥∥∇fb,ε

∥∥
L2(Rn)

≤
∥∥gb,ε

∥∥
L2∗

(Mn)∥∥∇gb,ε
∥∥
L2(Mn)

≤ C ∀b > 0 , ∀ε ∈ (0, 1) ,

by letting b → +∞ we infer that

CE

(1 + c(ε))
1
2

≤ C ∀ε ∈ (0, 1) ,

whence the thesis upon letting ε ↓ 0. ��

3 The Proof(s)

We provide three different proofs of Theorem 1.1. The conclusion of each of them
will be that the volume measure of Mn is purely Euclidean, under the existence of
an optimal radial profile for (1.1). For this reason, we first need a (rather intuitive)
result ensuring that such property means that the Cartan-Hadamard manifold at hand
is (isometric to) the Euclidean space.

Lemma 3.1 Let Mn be a Cartan-Hadamard manifold. Suppose that its volume
measure is Euclidean, that is

A(r, θ) = rn−1 ∀(r, θ) ∈ (0,∞) × S
n−1

with respect to radial coordinates about a fixed pole o ∈ M
n. ThenMn ≡ R

n.

Proof We already know that the exponential map R
n � y �→ expo y ∈ M

n is a
diffeomorphism, by the Cartan-Hadamard theorem (recall Sect. 2.1). Let us show
that it is also an isometry. Given any two points x1 = expo y1 and x2 = expo y2,
because a Cartan-Hadamard manifold is a CAT(0) space (see [5, Theorem 1.3.3] or
[10, Exercise IV.12]) we have

d(x1, x2) ≥ |y1 − y2| , (3.1)
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i.e. the length of the side of a geodesic triangle in M
n opposite to the angle formed

by the first two sides is not smaller than the length of side of the Euclidean triangle
whose first two sides have the same length and angle. Our aim is to prove that (3.1)
is in fact an identity. Suppose by contradiction that there exist x1, x̃2 ∈ M

n such that

r := d(x1, x̃2) > |y1 − ỹ2| .

It is plain that (3.1) yields

(
expo

)−1
(Br(x1)) ⊂ BE

r (y1) ,

where BE
r (y1) stands for the Euclidean ball of radius r centered at y1. Hence, by

continuity and the fact that the exponential map is a diffeomorphism, we deduce
that actually there exists a nonempty open set � ⊂ BE

r (y1) such that

(
expo

)−1
(Br(x1)) ⊂ BE

r (y1) \ � .

Since, by assumption, the volume measure dμ of Mn is Euclidean, this would imply

μ(Br(x1)) =
ˆ
(expo)

−1
(Br (x1))

dy ≤
ˆ
BE
r (y1)\�

dy <

∣∣∣BE
r (y1)

∣∣∣ ,

where dy denotes the n-dimensional Lebesgue measure and |·| the corresponding
volume of measurable sets. However, due to volume comparison (see (2.15) in
Sect. 2.3), this yields a contradiction since μ(Br ) ≥ ∣∣BE

r

∣∣ on any Cartan-Hadamard
manifold, independently of the pole where Br is centered. ��

We are now in position to prove Theorem 1.1.

3.1 First Proof: A Weighted Euclidean Inequality

The starting point consists of exploiting a suitable modification of the radial change
of variables introduced in [22, Section 7] (see also [37, Section 6] in the case of the
hyperbolic space). That is, let us set

ds

sn−1 = dr

ψ%(r)n−1 ,

or more precisely

1

(n − 2)sn−2 =
ˆ ∞

r

dt

ψ%(t)n−1 , (3.2)
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where ψ% is as in (2.7). It is not difficult to check that ψ% belongs to the class F
defined in (2.10). Moreover,ψ ′

% ≥ 1 everywhere. Indeed, by combining (2.5), (2.14)
and (2.15), we have

ψ ′
%(r) =

´
Sn−1

∂
∂r

A(r, θ) dθ

(n − 1)
∣∣Sn−1

∣∣

[´
Sn−1 A(r, θ) dθ∣∣Sn−1

∣∣

] 1
n−1 −1

≥ 1

r

[ ´
Sn−1 A(r, θ) dθ∣∣Sn−1

∣∣

] 1
n−1

≥ 1 .

(3.3)

As a consequence,

1

(n − 2)sn−2 ≤
ˆ ∞

r

ψ ′
%(t)

ψ%(t)n−1 dt = 1

(n − 2)ψ%(r)n−2 ,

that is

ρ(s) := ψ%(r(s))

s
≤ 1 ∀s > 0 . (3.4)

Let us write Rayleigh quotients in terms of the new variable s. To this end, given a
(nontrivial) radial function f ≡ f (r) ∈ C1

c (M
n), we can construct another radial

function f̂ ≡ f̂ (s) := f (r(s)) ∈ C1
c (R

n), where r(s) is obtained according to (3.2).
It is plain that, for every p ∈ [1,∞), the following identities hold (recall (2.8)):

‖f ‖p
Lp(Mn)∣∣Sn−1

∣∣ =
ˆ ∞

0
|f (r)|p ψ%(r)

n−1dr =
ˆ ∞

0

∣∣∣f̂ (s)

∣∣∣
p

ρ(s)2(n−1)sn−1ds =

∥∥∥f̂
∥∥∥
p

L
p
ρ (Rn)∣∣Sn−1
∣∣ ,

where for a measurable function g : Rn → R we set

‖g‖p
L
p
ρ (R

n)
:=

ˆ
Rn

|g(y)|p ρ(|y|)2(n−1)dy .

Similarly (recall (2.9)), we have:

‖∇f ‖2
L2(Mn)∣∣Sn−1

∣∣ =
ˆ ∞

0

∣∣f ′(r)
∣∣2 ψ%(r)

n−1dr =
ˆ ∞

0

∣∣∣∣f̂
′(s) sn−1

ψ∗(r(s))n−1

∣∣∣∣
2
ψ∗(r(s))2(n−1)

sn−1 ds

=
ˆ ∞

0

∣∣∣f̂ ′(s)
∣∣∣
2
sn−1ds

=

∥∥∥∇f̂

∥∥∥
2

L2(Rn)∣∣Sn−1
∣∣ .
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Hence, by virtue of (3.4) and the Euclidean Sobolev inequality, we deduce that

‖∇f ‖L2(Mn)

‖f ‖L2∗
(Mn)

=

∥∥∥∇f̂

∥∥∥
L2(Rn)∥∥∥f̂

∥∥∥
L2∗
ρ (Rn)

≥

∥∥∥∇f̂

∥∥∥
L2(Rn)∥∥∥f̂

∥∥∥
L2∗

(Rn)

≥ 1

CE
. (3.5)

Note that (3.5) yields equivalence between the (radial) Sobolev inequality on M
n

and a (radial) weighted Euclidean Sobolev inequality. Clearly the latter can be
extended to any nontrivial f ∈ Ḣ 1(Mn) and therefore any nontrivial f̂ ∈ Ḣ 1(Rn),
still in the radial framework. Suppose now that u ∈ Ḣ 1(Mn) is a radial optimal
function for the Sobolev inequality in M

n. Since we know from Sect. 2.5 that the
corresponding best constant cannot be smaller than the Euclidean one, from (3.5)
applied to f = u we deduce that in fact equality holds, whence

∥∥∇û
∥∥
L2(Rn)∥∥û

∥∥
L2∗

(Rn)

= 1

CE
.

This means that û is necessarily an Aubin-Talenti profile and

∥∥û
∥∥
L2∗
ρ (Rn)

= ∥∥û
∥∥
L2∗

(Rn)
%⇒

ˆ ∞

0

∣∣û(s)
∣∣2∗

(1 − ρ(s)) ds = 0 .

Because û is everywhere positive (recall (2.18)) and ρ(s) ≤ 1 for all s > 0, we infer
that ρ(s) = 1 for all s > 0; from the definition of ρ(s), it follows that ψ%(r(s)) = s

for all s > 0. In view of (3.2), this identity can be rewritten as

ψ%(r)
n−2 = s(r)n−2 = 1

(n − 2)
´∞
r

dt
ψ%(t)n−1

∀r > 0 ,

that is

d

dr

(ˆ ∞

r

dt

ψ%(t)n−1

)
= −

[
(n − 2)

ˆ ∞

r

dt

ψ%(t)n−1

] n−1
n−2 ∀r > 0 ,

which upon integration yields

ˆ ∞

r

dt

ψ%(t)n−1
= 1

(n − 2)rn−2
∀r > 0 ,

so that s(r) = r and therefore ψ%(r) = r for all r > 0. Because A(r, θ) ≥ rn−1 for
all r > 0 and θ ∈ S

n−1, from the definition of ψ% we can finally deduce that in fact
A(r, θ) = rn−1, namely M

n ≡ R
n thanks to Lemma 3.1. ��



198 T. Kawakami and M. Muratori

3.2 Second Proof: The Euler-Lagrange Equation

First of all let us observe that, by classical variational arguments (see e.g. [35,
Chapter I]), we can assume with no loss of generality that a radial optimal function
is nonnegative and satisfies, up to a multiplication by a constant, the Euler-Lagrange
equation

− �u = −u′′ − m(r, θ) u′ = u2∗−1 in M
n , (3.6)

where the spherical component �Sr of the Laplace-Beltrami operator in (2.4) has
been neglected since u is by assumption radial. Due to elliptic regularity (see again
[35, Appendix B]), we deduce that u is at least C1,α locally. Thanks to (2.5), note
that (3.6) can be rewritten as

− 1

A(r, θ)

∂

∂r

(
A(r, θ) u′) = u2∗−1 in M

n , (3.7)

which immediately implies that u is strictly radially decreasing, in particular it
is everywhere strictly positive and therefore C∞(Mn) still by elliptic (bootstrap)
regularity. Hence, recalling (2.14), from (3.6) it follows

− u′′ − n − 1

r
u′ ≤ u2∗−1 ∀r > 0 . (3.8)

As in Sect. 2.5 we have established that the optimal Sobolev constant C cannot be
smaller than the Euclidean one CE, we have:

(ˆ ∞

0

ˆ
Sn−1

u(r)2∗
A(r, θ) dθdr

) 2
2∗

=C2
ˆ ∞

0

ˆ
Sn−1

∣∣u′(r)
∣∣2 A(r, θ) dθdr

≥C2
E

ˆ ∞

0

ˆ
Sn−1

∣∣u′(r)
∣∣2 A(r, θ) dθdr .

(3.9)

On the other hand, multiplying (3.7) by uA(r, θ) and integrating, we obtain:

ˆ ∞

0

ˆ
Sn−1

∣∣u′(r)
∣∣2 A(r, θ) dθdr =

ˆ ∞

0

ˆ
Sn−1

u(r)2∗
A(r, θ) dθdr ,

whence, in view of (3.9),

(ˆ ∞

0

ˆ
Sn−1

u(r)2∗
A(r, θ) dθdr

) 2∗−2
2∗

≤ 1

C2
E

. (3.10)
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Since A(r, θ) ≥ rn−1, the radial profile u, now interpreted as a function in R
n, is

also an admissible competitor for the Euclidean Sobolev inequality, i.e.

(ˆ ∞

0
u(r)2∗

rn−1
∣∣∣Sn−1

∣∣∣ dr
) 2

2∗
≤ C2

E

ˆ ∞

0

∣∣u′(r)
∣∣2 rn−1

∣∣∣Sn−1
∣∣∣ dr . (3.11)

By exploiting (3.8) as above, we deduce that

ˆ ∞

0

∣∣u′(r)
∣∣2 rn−1

∣∣∣Sn−1
∣∣∣ dr ≤

ˆ ∞

0
u(r)2∗

rn−1
∣∣∣Sn−1

∣∣∣ dr . (3.12)

Hence, upon combining (3.11) and (3.12), we end up with

1

C2
E

≤
(ˆ ∞

0
u(r)2∗

rn−1
∣∣∣Sn−1

∣∣∣ dr
) 2∗−2

2∗
. (3.13)

Finally, (3.10) and (3.13) yield

ˆ ∞

0

ˆ
Sn−1

u(r)2∗ [
A(r, θ) − rn−1

]
dθdr ≤ 0 .

Since u is everywhere strictly positive and A(r, θ) ≥ rn−1, this means that actually
A(r, θ) = rn−1, namely M

n is isometric to the n-dimensional Euclidean space due
to Lemma 3.1. ��

3.3 Third Proof: The (Radial) Isoperimetric Inequality

We borrow the main ideas from the proof [24, Proposition 8.2], also taking
advantage of the fact that the functions we consider are purely radial. This approach
is in some sense the dual of the one carried out in Sect. 3.1, where starting from the
optimal function u we constructed a Euclidean function û preserving the L2 norm of
the gradient and increasing the L2∗

norm. Conversely, here we aim at constructing
a Euclidean function that has the same L2∗

norm but lowers the L2 norm of the
gradient. To our purpose, let �,�E : (0,∞) → (0,∞) be defined as follows:

�(v) :=
ˆ
Sn−1

A(R(v), θ) dθ , �E(v) :=
∣∣∣Sn−1

∣∣∣
1
n
(nv)

n−1
n ∀v > 0 ,

where v �→ R(v) is the inverse function of r �→ μ(Br). In other words, recalling
formula (2.3), �(v) is the surface measure of the geodesic sphere on M

n that
encloses the geodesic ball of volume v, while �E(v) is the surface measure of the
Euclidean sphere that encloses the Euclidean ball of volume v. It is not difficult
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to check that �(v) ≥ �E(v) for all v > 0, namely that the radial Euclidean
isoperimetric inequality holds in M

n. Indeed, this is equivalent to showing that

ψ%(r) ≥ &(r) ∀r > 0 , (3.14)

where ψ% is defined in (2.7) and r �→ &(r) is the function that to any r > 0
associates the radius of the Euclidean ball whose volume coincides with μ(Br).
Such a function can easily be computed by imposing

ˆ r

0
ψ%(t)

n−1dt =
ˆ &(r)

0
tn−1dt %⇒ &(r) =

(
n

ˆ r

0
ψ%(t)

n−1dt

) 1
n ∀r > 0 .

(3.15)

Hence (3.14) does hold by virtue of the property ψ ′
% ≥ 1 (recall (3.3)):

&(r) =
(
n

ˆ r

0
ψ%(t)

n−1dt

) 1
n ≤

(
n

ˆ r

0
ψ%(t)

n−1 ψ ′
%(t) dt

) 1
n = ψ%(r) ∀r > 0 .

Now let us consider a nonnegative radial function f ≡ f (r) ∈ C1(Mn) and its
corresponding transformed radial function f̃ ≡ f̃ (&) ∈ C1(Rn) according to the
following implicit relation:

V(�) := μ({f ≥ �}) =
∣∣∣
{
f̃ ≥ �

}∣∣∣ ∀� > 0 , (3.16)

where in this case |·| stands for the Euclidean volume function. Of course (3.16)
does not determine f̃ in a unique way unless f̃ is additionally required to be
radially decreasing, which gives rise to an analogue of the well-established Schwarz
symmetrization, originally employed by Talenti [36]. Note that, by construction, the
functions f and f̃ share the same Lp norms (possibly infinite). Indeed, for any
p ∈ [1,∞), by Fubini’s theorem and (3.16) we have:

‖f ‖p

Lp(Mn)
=
ˆ
Mn

f p dμ = 1

p

ˆ
Mn

(ˆ f

0
�p−1d�

)
dμ = 1

p

ˆ ∞

0
�p−1

(ˆ
f≥�

dμ

)
d�

= 1

p

ˆ ∞

0
�p−1 V(�) d�

=
∥∥∥f̃

∥∥∥
p

Lp(Rn)
.

(3.17)

Let us deal with gradients (i.e. radial derivatives). In the sequel, we additionally
require that f ′(r) < 0 for all r > 0, f̃ ′(&) < 0 for all & > 0 and inf f = 0, so that
in particular f and f̃ are strictly radially decreasing (therefore everywhere positive)
and vanish at infinity. Note that, under such assumptions, we have f (r) = f̃ (&(r)),
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where &(r) is given in (3.15). In this case it is easy to check that � �→ V(�) is also a
C1((0, c)) function with V ′(�) < 0 for all � ∈ (0, c), c > 0 being the maximum of
f . Moreover, the following identities hold:

f ′(f−1(�)
)

= �(V(�))
V ′(�)

and f̃ ′(f̃−1(�)
)

= �E(V(�))
V ′(�)

∀� ∈ (0, c) .

(3.18)

In fact (3.18) is a simple consequence of the (radial) co-area formula

ˆ
Mn

g dμ =
ˆ ∞

0
g(r) ψ%(r)

n−1dr = −
ˆ c

0

g
(
f −1(�)

)
ψ%(R(V(�)))n−1

f ′(f−1(�)
) d� ,

(3.19)

valid for any measurable radial function g ≥ 0, with the particular choice g =
χ{f≥z} for each level z ∈ (0, c). Clearly the same holds for f ≡ f̃ and M

n ≡ R
n.

We point out that an analogue of (3.19) is available for a wider class of nonradial
functions and general manifolds: see [24, Section 8.2] and [10, Chapter III].
However, in our simplified setting it follows directly from the change of variables
r = f−1(�) inside the integral.

At this point we are in position to conclude the proof. Indeed, if a (nonnegative)
radial optimal function u ≡ u(r) ∈ Ḣ 1(Mn) exists, by virtue of the Euler-Lagrange
equation (3.6) we know that it is smooth, positive and satisfies u′(r) < 0 for all
r > 0 (see the beginning of the proof in Sect. 3.2). By choosing f = u and g =
|∇u|2 = |u′|2 in (3.19), using (3.18), we obtain:

‖∇u‖2
L2(Mn)

= −
ˆ c

0

�(V(�))2

V ′(�) d� ≥ −
ˆ c

0

�E(V(�))2

V ′(�) d� = ‖∇ũ‖2
L2(Rn)

,

where in the last passage we have exploited the radial isoperimetric inequality
established in the beginning along with (3.18) and (3.19) also applied to f̃ = ũ

and M
n = R

n. On the other hand, the optimality of u yields

‖∇u‖L2(Mn) ≤ ‖u‖L2∗
(Mn)

CE

(3.17)= ‖ũ‖L2∗
(Rn)

CE
≤ ‖∇ũ‖L2(Rn) .

Hence, by combining the last two formulas we end up with the identity

−
ˆ c

0

�(V(�)) − �E(V(�))

V ′(�)
d� = 0 ,

which yields �(V(�)) = �E(V(�)) for every � ∈ (0, c) since � ≥ �E, and it is
readily seen that this implies ψ%(r) = r for all r > 0, which proves the thesis in
view of Lemma 3.1. ��
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Semiconvexity of Viscosity Solutions
to Fully Nonlinear Evolution Equations
via Discrete Games

Qing Liu

Abstract In this paper, by using a discrete game interpretation of fully nonlinear
parabolic equations proposed by Kohn and Serfaty (Commun Pure Appl Math
63(10):1298–1350, 2010), we show that the spatial semiconvexity of viscosity
solutions is preserved for a class of fully nonlinear evolution equations with concave
parabolic operators. We also reduce the game-theoretic argument to the viscous and
inviscid Hamilton-Jacobi equations, categorizing the semiconvexity regularity of
solutions in terms of semiconcavity of the Hamiltonian.

Keywords Discrete games · Semiconvexity of viscosity solutions · Fully
nonlinear parabolic equations · Hamilton-Jacobi equations

1 Introduction

1.1 Background and Motivation

The convexity of solutions is known to be an important geometric property for
elliptic and parabolic equations. It has been studied in [4, 17–19, 21, 24, 26, 29]
for classical solutions of various equations and also in [1, 10, 15, 20, 23, 33] with
viscosity techniques in different contexts.

In this work, we study semiconvexity preserving properties for the following
fully nonlinear parabolic equation

ut + F(x, t,∇u,∇2u) = 0 in R
n × (0,∞) (1.1)
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with a bounded continuous initial value

u(·, 0) = u0 in R
n, (1.2)

where F : Rn × [0, T ) ×R
n × Sn → R is a (possibly degenerate) elliptic operator.

Here Sn denotes the set of n × n symmetric real matrices. More precisely, we
assume

(A0) F(x, t, p,X1) ≤ F(x, t, p,X2) for any x, p ∈ R
n, t ≥ 0, X1,X2 ∈ Sn with

X1 ≥ X2;
(A1) for any R > 0, there exists L(R) > 0 such that

|F(x, t, p1,X1) − F(x, t, p2,X2)| ≤ L(R)(|p1 − p2| + |X1 − X2|)

for all x ∈ R
n, t ≥ 0, p1, p2 ∈ R

n, X1,X2 ∈ Sn satisfying

|p1| + |p2| + |X1| + |X2| ≤ R.

We here do not explicitly impose any assumptions on the continuity of F with
respect to x and t . However, throughout this work, we assume that the comparison
principle always holds for locally bounded semicontinuous sub- and supersolutions
of (1.1):

(CP) Let u and v be respectively an upper semicontinuous subsolution and a lower
semicontinuous supersolution in R

n × (0,∞). Assume that u and v are
bounded in R

n × [0, T ) for all T > 0. If u(·, 0) ≤ v(·, 0), then u ≤ v in
R

n × [0,∞).

We refer to [8, 14, 15] for more assumptions on u0 and F to guarantee the
general wellposedness of fully nonlinear parabolic equations in the framework of
viscosity solutions. We will also study related semiconvexity results for Hamilton-
Jacobi equations in the form

ut + F(x, t,∇u) − σ�u = 0 in R
n × (0,∞), (1.3)

with a given σ ≥ 0; consult [2, 11] as well for existence and uniqueness of viscosity
solutions in this case.

The classical convexity/concavity preserving properties for (1.1) with Lipschitz
initial data and F independent of x and t is given in [15]; see also [14]. We here
recall their main result.

Theorem 1.1 (Convexity Preserving Properties [15, Theorem 3.1]) Assume that
F is independent of x and t and satisfies (A0) and (A1). Assume also that X �→
F(p,X) is concave. Let u0 be Lipschitz in R

n. If u0 is convex in R
n, then u(·, t) is

also convex for all t ≥ 0.
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The authors of [15] adapted the proof of so-called convexity/concavity maximum
principle, proposed by Korevaar [29], Kawohl [25], and Kennington [26], to
the framework of viscosity solutions. Such a convexity result also holds for the
equations with mild singularities at ∇u = 0, including the mean curvature flow
equation and normalized p-Laplace equations (1 < p ≤ ∞). See also [1, 15, 23, 38]
for related results with PDE proofs on convexity of solutions to various nonlinear
elliptic or parabolic problems.

An alternative proof is given in [33] to show the convexity preserving property
for level set curvature flow equations and parabolicp-Laplace equations by adopting
discrete game-theoretic interpretations provided by in [27, 34, 36, 37]. The main
idea is to iteratively use the so-called dynamic programming principle to track the
spatial convexity of the game value uε , which is a locally uniform approximation of
the solution u.

1.2 Main Results

In this work, following the method in [33], we intend to generalize the notion of
convexity that can be preserved by (1.1) via a unified game-theoretic approach.
We are particularly interested in the question whether the same preserving property
holds for semiconvexity; we refer the reader to the book [5] for an introduction of
semiconcave/semiconvex functions and their applications in the study of Hamilton-
Jacobi equations.

Let us briefly review the notion of semiconvex functions below. A function f ∈
C(Rn) is called c-convex for c ∈ R if

f (x + h) + f (x − h) ≥ 2f (x) + c|h|2 for all x, h ∈ R
n.

(In the literature this kind of property is sometimes called c-convexity with c = −c

if c ≤ 0, which is exactly opposite to our terminology.) A continuous function f

is said to be semiconvex if it is c-convex for some c ≤ 0. See [41] for applications
of semiconvex functions in optimal transport. Moreover, any c-convex function is
convex if c = 0 and uniformly convex if c > 0. When f ∈ C2(Rn), the above
definition clearly yields ∇2f ≥ cI in R

n.
Our main result, Theorem 1.2 below, shows that the c-convexity with c < 0

is preserved by fully nonlinear equations as in (1.1), as long as F is concave in
(x, p,X). We later need the following growth assumption on F for the game method
to work.

(A2) There exist C > 0, σ1, σ2 > 0 such that

|F(x, t, p,X)| ≤ C(1 + |p|σ1 + |X|σ2 ) for all x ∈ R
n, t ≥ 0, p ∈ R

n and X ∈ Sn.

(1.4)
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It implies that F is uniformly bounded in x, t . As mentioned above, we also assume
that

(A3) F satisfies the following concavity: there exists K ≥ 0 such that

F(x+h, t, p1, X1)+F(x−h, t, p2, X2) ≤ 2F

(
x, t,

p1 + p2

2
,
X1 + X2

2

)
+K|h|2

for all x, h ∈ R
n, t ≥ 0, p1, p2 ∈ R

n and X1,X2 ∈ Sn.

Theorem 1.2 (Semiconvexity Preserving Property) Suppose that (A0)–(A3)
hold. Assume that the comparison principle (CP) holds for (1.1)–(1.2) with initial
value u0 continuous and bounded in Rn. Let u be the unique solution of (1.1)–(1.2).
If u0 is c0-convex in R

n for some c0 < 0, then u(·, t) is c(t)-convex for all t ≥ 0,
where c(t) = c0 − Kt .

For first order Hamilton-Jacobi equations

ut + F(x, t,∇u) = 0 in R
n × (0,∞), (1.5)

semiconvexity of solutions are studied in [30, 31]; see also [22, 32], [9, Chapter 3.3]
and [5, Chapter 1.6 and Chapter 5.3]. Our result is thus a generalization of these
results for possibly degenerate parabolic equations.

As pointed out in [32] and [5], there are basically two classical methods to
obtain such type of semiconvexity estimates for (1.5). The first combines the
vanishing viscosity approach with an estimate of lower bound of ∇2u for the
regularized equation. The other method is based on the Hopf-Lax formula, which
gives an explicit representation of the solution. The first method is more flexible
but requires heavy work on Hessian estimates of the solution. The second is more
straightforward, but restrictive assumptions on the structure of H are needed.

As for semiconvexity/semiconcavity estimates for second order equations, the
PDE method is applied much more widely; we refer to [12, 39] for more recent
results on viscous Hamilton-Jacobi equations with Hessian estimates. Our method in
this work somehow develops the idea of the second approach above in the context of
fully nonlinear parabolic equations. In Sect. 3, following the strategy in [33], we give
a short elementary proof of Theorem 1.2 via the dynamic programming principle
arising in deterministic discrete games. The key idea is to establish semiconvexity
estimates for the value function uε uniformly in ε > 0.

1.3 Generalizations

One may also consider a variant of Theorem 1.2 for preservation of uniform
convexity, that is, we investigate the situation when c0 > 0 and therefore u0
cannot be bounded in R

n. A similar result is expected to still hold; indeed, we
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show in Theorem 3.1 that the game value uε does preserve uniform convexity when
K = 0. In order to conclude the estimate for the solution u instead of uε, we need
a comparison principle to guarantee the convergence uε → u as ε → 0. We choose
not to discuss this case in detail in this work, since such a comparison principle
needs to hold for unbounded solutions with a general growth at space infinity and
will require more assumptions on F or u0; see for example [3, 7, 14].

Besides the discussion for general second order equations, in Sect. 4 we reduce
our game-theoretic interpretation to first order Hamilton-Jacobi equations ((1.3)
with σ = 0) and use it to prove classical results on semiconvexity regularity
of viscosity solutions. Although these results are more or less well known in the
literature ([5] etc. for a comprehensive introduction), our approach in this note
enables us to track a precise lower bound of the semiconvexity constant during the
evolution even at the discrete level by choosing proper strategies of game players.
In Sect. 5.1, by including a term of average integral in the dynamic programming
equation, we also discuss similar results in the viscous case (σ > 0), which are
consistent with those in [12, 39]. Our game-based estimates hold uniformly in
σ > 0.

We conclude Sect. 5 by discussing how to handle the case when the general
operator F depends also on the unknown function u. It turns out that our arguments
in the previous sections still work provided that F is Lipschitz in the unknown.

The rest of the paper is organized in the following way. In Sect. 2, we review the
game interpretations for fully nonlinear parabolic equations proposed in [28] and
introduce an adaptation of the game to first order problems. In Sect. 3, we apply
the game-theoretic approach to our study of semiconvexity preserving properties
for second order evolution equations. We also include detailed analysis in Sect. 4
for semiconvexity of solutions to the first order time-dependent Hamilton-Jacobi
equations via precise estimates on the associated game values. Section 5 is devoted
to several remarks on how to further extend the methods in the previous sections to
viscous Hamilton-Jacobi equations or general parabolic equations depending on the
unknown.

2 The Game-Theoretic Interpretations

Let us give a brief review of the discrete games in relation to (1.1) introduced by
Kohn and Serfaty [28]. With the comparison principle at hand, we may use this
game interpretation to obtain the existence of viscosity solutions to (1.1)–(1.2).
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2.1 Fully Nonlinear Parabolic Equations

Let α, β, γ ∈ (0, 1) satisfy

γ <
1

3
, α + γ < 1, β + 2γ < 2, max{ασ1, βσ2} < 2, (2.1)

β < 1 − γ, α(σ1 − 1) < γ + 1, β(σ2 − 1) < 2γ, βσ2 < 1 + γ. (2.2)

We fix a step size ε > 0 and (x, t) ∈ R
n ×[0,∞). Set the total steps of the game

to be N = [t/ε2]. Let y0 = x.
At the k-th step (k = 1, 2, . . . , N),

• Player I chooses pk ∈ R
n,Xk ∈ Sn satisfying |pk| ≤ ε−α and |Xk| ≤ ε−β ;

• Player II then picks wk ∈ R
n with |wk| ≤ ε−γ ;

• Once the choices of both players are determined, the game position moves from
yk−1 to a new point yk = yk−1 + √

2εwk . Meanwhile, Player II pays the amount
lk to Player I, where

lk = √
2ε〈pk,wk〉 + ε2

(
〈Xkwk,wk〉 + F(yk−1, kε

2, pk,Xk)
)
. (2.3)

Player II receives from Player I a terminal fee u0(yN) after the last around.
The game outcome for Player II at (x, t), determined by pk,Xk, ak,wk for all
k = 1, . . . , N , is therefore

J ε(x, t) = u0(yN) −
N∑

k=1

lk. (2.4)

Suppose that Player I wants to minimize J ε(x, t) while Player II intends to
maximize the amount. The value function of the game is thus defined to be

uε(x, t) = min
p1,X1

max
w1

min
p2,X2

max
w2

. . . min
pN,XN

max
wN

J ε(x, t). (2.5)

It is obvious that the value function satisfies the so-called dynamic programming
principle:

uε(x, t) = min
p,X

max
w

{
uε

(
x + √

2εw, t − ε2
)

− √
2ε〈p,w〉 − ε2〈Xw,w〉 − ε2F(x, t, p,X)

}

(2.6)

for (x, t) ∈ R
n × [ε2,∞), and

uε(x, t) = u0(x) for (x, t) ∈ R
n × [0, ε2). (2.7)

The convergence of uε can be proved by using (2.6) above.
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Theorem 2.1 (Game Convergence for General Parabolic Equations, [28, The-
orem 2.2]) Suppose that (A0), (A1) and (A2) hold. Assume that the comparison
principle (CP) holds for (1.1). Let uε be the value function defined as in (2.5) with
u0 continuous and bounded in R

n. Then uε → u locally uniformly in R
n × [0,∞)

as ε → 0, where u is the unique viscosity solution to (1.1)–(1.2).

Remark 2.2 We obtain the same convergence result as in Theorem 2.1 if the objec-
tives of both players are exchanged, i.e., the value function is defined by switching
minp,X maxw to maxp,X minw in (2.5). In this case, the dynamic programming
principle reads

uε(x, t) = max
p,X

min
w

{
uε

(
x + √

2εw, t − ε2
)

− √
2ε〈p,w〉 − ε2〈Xw,w〉 − ε2F(x, t, p,X)

}

(2.8)

for t ≥ ε2.

Remark 2.3 This result can be generalized for spatially unbounded solutions that
bear a growth condition provided that a comparison principle is available; see [6]
for an approach based on stochastic games.

2.2 First Order Hamilton-Jacobi Equations

Since we are also interested in the time-dependent first order Hamilton-Jacobi
equations, let us consider discrete games in the special case (1.5).

Suppose we can obtain a unique viscosity solution of (1.5) for any given bounded
continuous initial condition (1.2). A game interpretation following Sect. 2.1 is given
below.

We essentially take γ = −1/2 in our game setting in Sect. 2.1. Let α ∈ (0, 1)
satisfy

α(σ1 − 1) <
1

2
.

Let ε > 0 and N be defined as in the game before. Set again y0 = x. At the k-th
step (k = 1, 2, . . . , N),

• Player I chooses pk ∈ R
n satisfying |pk| ≤ ε−α ;

• Player II then picks wk ∈ R
n with |wk| ≤ ε1/2;

• Once the choices of both players are determined, the game position moves from
yk to a new point yk +√

2εwk . Meanwhile, Player II pays the amount lk to Player
I, where

lk = √
2ε〈pk,wk〉 + ε2F(yk−1, kε

2, pk). (2.9)
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The total cost of the game and value function are defined as in (2.4) and (2.5)
respectively.

In this case, the dynamic programming principle reads

uε(x, t) = min
p

max
w

{
uε

(
x + √

2εw, t − ε2
)

− √
2ε〈p,w〉 − ε2F(x, t, p)

}
.

(2.10)

Theorem 2.4 (Game Convergence for Hamilton-Jacobi Equations) Suppose
that F is independent ofX and satisfies (A1) and (A2). Assume that the comparison
principle (CP) holds for (1.5). Let uε be the value function as defined above with
u0 bounded and continuous in R

n. Then uε → u locally uniformly in R
n × [0,∞)

as ε → 0, where u is the unique viscosity solution to (1.5) with the initial condition
(1.2).

We will not rigorously prove this theorem, since it streamlines the proof of
Theorem 2.1. Instead, we give a quick formal proof below to show how this new
game is related to the first order evolution equation (1.5).

Suppose that uε is smooth in R
n × (0,∞). Then by Taylor expansion on (2.10),

we have

0 = min
p

max
w

{√
2ε〈∇uε(x, t) − p,w〉 − ε2F(x, t, p)

}
− ε2uε

t (x, t) + o(ε2),

where we used the assumption that |w| ≤ ε1/2. It is clear that the maximum on
the right hand side is attained when w has the same direction as ∇uε − p with
|w| = ε1/2, i.e.,

0 = min
p

{√
2ε

3
2 |∇uε(x, t) − p| − ε2F(x, t, p)

}
− ε2uε

t (x, t) + o(ε2).

Noticing that the right hand side is dominated by the term with ε3/2, we find that the
minimum is attained near p = ∇uε and therefore get

0 = −ε2F(x, t,∇uε(x, t)) − ε2uε
t (x, t) + o(ε2).

Dividing this relation by ε2 and sending ε → 0, we see that the limit u satisfies
(1.5).

Remark 2.5 Similar to the general case, we may consider the inverse game, whose
value function also converges to the unique solution of (1.5) with (1.2). The dynamic
programming equation for the inverse game is

uε(x, t) = max
p

min
w

{
uε

(
x + √

2εw, t − ε2
)

− √
2ε〈p,w〉 − ε2F(x, t, p)

}

(2.11)

for all t ≥ ε2.
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We conclude this section by remarking that for our later application, in Sect. 5.1
we will introduce an alternative game approach, based on slight modification of the
game in Sect. 2.2, to the viscous Hamilton-Jacobi equation (1.3).

3 Semiconvexity Preserving for Parabolic Equations

Let us now consider the c-convexity preserving properties for nonlinear parabolic
equations by games. We now use the dynamic programming principle (2.6) to prove
Theorem 1.2.

Theorem 3.1 (Semiconvexity Preserving for Parabolic Game Values) Suppose
that (A0)–(A3) hold. Let uε be the value function defined as in (2.5) with u0 ∈
C(Rn). If u0 is c0-convex in Rn for some c0 ∈ R, then uε(·, t) is cε(t)-convex for all
ε > 0 and t ≥ 0, where cε(t) = c0 − KNε2 with N = [t/ε2].

It is clear that by Theorem 2.1 and Remark 2.2, Theorem 1.2 is an immediate
consequence of Theorem 3.1.

Proof of Theorem 3.1 Similar to the proof for convexity preserving properties as in
[33], our proof here is based on iterations of (2.6). Fix h ∈ R

n and ε > 0 arbitrarily.
By (2.6), for any x ∈ R

n, there exist p± ∈ R
n,X± ∈ Sn with |p±| ≤ ε−α and

|X±| ≤ ε−β

uε(x ± h, ε2) ≥ u0

(
x ± h + √

2εw
)

− √
2ε〈p±, w〉−ε2〈X±w,w〉

− ε2F(x ± h, ε2, p±,X±)

(3.1)

for any w ∈ R
n with |w| ≤ ε−γ . Summing up these two inequalities and applying

the c0-convexity of u0, we get

uε(x + h, ε2)+uε(x − h, ε2) ≥ 2u0(x + √
2εw) + c0|h|2 − √

2ε〈(p+ + p−), w〉

− ε2〈(X+ + X−)w,w〉 − ε2
(
F(x + h, ε2, p+, X+) + F(x − h, ε2, p−, X−)

)

(3.2)

for any w ∈ R
n with |w| ≤ ε−γ .

In view of (A3), it follows that for any w,

uε(x + h, ε2)+uε(x − h, ε2) ≥ 2u0(x + √
2εw) + c0|h|2 − √

2ε〈p+ + p−,w〉

− ε2〈(X+ + X−)w,w〉 − 2ε2F

(
x, ε2,

p+ + p−
2

,
X+ + X−

2

)
− ε2K|h|2.
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Since
∣∣∣∣
p+ + p−

2

∣∣∣∣ ≤ ε−α,

∣∣∣∣
X+ + X−

2

∣∣∣∣ ≤ ε−β,

we have

uε(x + h, ε2) + uε(x − h, ε2) ≥ 2uε(x, ε2) + (c0 − Kε2)|h|2

for any x ∈ R
n.

Iterating this argument, we end up with

uε(x + h, t) + uε(x − h, t) ≥ 2uε(x, t) + (c0 − KNε2)|h|2

for all (x, t) ∈ R
n × [0,∞). ��

Remark 3.2 One may also prove semiconcavity preserving property provided that
F is convex. In this case, we can take the original game instead of the inverse one
and apply an argument symmetric to the proof above.

Remark 3.3 We may prove a similar result for generalized semiconvexity. Indeed,
for some 1 < θ ≤ 2 and c0 < 0, when u0 satisfies

u0(x + h) + u0(x − h) ≥ 2u0(x) + c0|h|θ ,

for all x, h ∈ R
n, we can apply the same argument to show that

u(x + h, t) + u(x − h, t) ≥ 2u(x, t) + c0|h|θ

for all x, h ∈ R
n and t ≥ 0. This inequality can be viewed as a half of Hölder-

Zygmund regularity (equivalent to C1,θ−1 class) in space; consult [40] for an
introduction.

The concavity of p �→ F(x, t, p,X) turns out to be necessary to deduce c-
convexity preserving, as suggested in the following example.

Example 3.4 Consider the following one-dimensional time-dependent eikonal
equation

ut + |ux | = 0 in R

with initial condition

u0(x) = −
√
x2 + δ2 x ∈ R

for some δ > 0. It is clear that u0 enjoys c-convexity with c = −1/δ.
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Using an optimal control interpretation [2], one can express the unique solution
by

u(x, t) = min|x−y|≤t
u0(y), (x, t) ∈ R

n × [0,∞)

and therefore

u(x, t) =
{

−√
(x + t)2 + δ2 for x ≥ 0;

−√
(x − t)2 + δ2 for x ≤ 0,

it is not difficult to see that

ux(x, t) =
{

−(x + t)((x + t)2 + δ2)−1/2 for x > 0,

−(x − t)((x − t)2 + δ2)−1/2 for x < 0,

which indicates a breakdown of the semiconvexity at x = 0 and any t > 0.
The initial value u0 in the current example is not bounded, but it can be easily

modified to be bounded without essentially changing the example.

On the other hand, it is not clear to us if the concavity of X �→ F(p,X) implied
by (A3) is necessary, although this assumption is usually imposed in the classical
concavity preserving results [15, 23]. It would be interesting to find an example
showing solutions fail to preserve concavity without the concavity of F(p,X) with
respect to X.

The Hamiltonian in Example 3.4 is not semiconcave. We study first order
equations with semiconcave Hamiltonians in Sect. 4, where a local-in-time semi-
convexity preserving property can be obtained; Theorems 4.2 and 4.5.

Combining Theorem 1.2 with the results in [15], we can show preservation of
spatial C1,1 regularity of concave solutions to (1.1)–(1.2) when F is independent of
x and t .

Corollary 3.5 (C1,1 Regularity Preserving for Spatially Concave Solutions)
Suppose that (A0)–(A3) hold. Assume further that F = F(p,X) is affine in X;
namely,

1

2
F(p,X1) + 1

2
F(p,X2) = F

(
p,

X1 + X2

2

)

for all p1, p2 ∈ R
n and X1,X2 ∈ Sn. Assume that u0 ∈ C1,1(Rn) is Lipschitz and

satisfies

cI ≤ ∇2u0 ≤ 0 a.e. in Rn
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for some c ≤ 0. Let u be the unique solution of (1.1)–(1.2). Then u(·, t) ∈ C1,1(Rn)

and

(c − Kt)I ≤ ∇2u(·, t) ≤ 0 a.e. in R
n

holds for all t ≥ 0.

Proof Since u0 is Lipschitz, we can use [15, Theorem 2.1] to show that the solution
u satisfies the comparison principle (for unbounded solutions) and is Lipschitz in
space. We thus can apply Theorem 1.2 to get the (c − Kt)-convexity of u(·, t) for
any t ≥ 0. On the other hand, the symmetric version of Theorem 1.1 (for concavity)
implies that u(·, t) is concave in R

n for all t ≥ 0. The C1,1 regularity in space
follows immediately. ��

This result can be viewed as a parabolic version of that in [16]. A typical example
that satisfies the assumptions above is the semilinear equations in the form

ut − tr(A∇2u) + H(∇u) = 0 in R
n × (0,∞)

with H : Rn → R concave and A ∈ Sn positive semidefinite.

4 Semiconvexity Preserving for Hamilton-Jacobi Equations

Let us use the game-theoretic method to investigate the semiconvexity of the
solution of the first order Hamilton-Jacobi equation (1.5) with (1.2). In this special
case, we are able to quantify the change of semiconvexity of the solution in space
during the evolution.

4.1 Semiconvexity Preserving at the Discrete Level

We hereafter adopt an assumption on the semiconcavity of F :

(A4) There exist K1 ≥ 0,K2,K3 ∈ R such that

F(x+h, t, p+ch)+F(x−h, t, p−ch) ≤ 2F (x, t, p)+|h|2(K1 +2K2c+K3c
2)

for all x, p, h ∈ R
n, c ∈ R and t ≥ 0.

When F is smooth in x and p, a sufficient condition of (A4) is

(
∇2

xF ∇x∇pF

∇x∇pF ∇2
pF

)
≤

(
K1I K2I

K2I K3I

)

for all (x, t, p) ∈ R
n × [0,∞) × R

n.
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Theorem 4.1 (Semiconvexity of Game Values for HJ Equations) Suppose that
F is independent of X and satisfies (A2) and (A4). Let uε be the value function of
the inverse game for (1.5) with u0 ∈ C(Rn). Assume that u0 is c0-convex in R

n for
some c0 ∈ R. Then uε satisfies

uε(x + h, t) + uε(x − h, t) ≥ 2uε(x, t) + cε(t)|h|2 + Sε(t)ε (4.1)

for all x ∈ R
n, t ≥ ε2, h ∈ R

n and ε > 0, where cε : [0,∞) → R is defined by

{
cε(t) = cε(t − ε2) − K1ε

2 − c2
ε(t − ε2)K3ε

2 − 2cε(t − ε2)K2ε
2 if t ≥ ε2, (4.2)

cε(t) = c0 if 0 ≤ t < ε2, (4.3)

and Sε : [0,∞) → R is given by

⎧
⎪⎪⎨

⎪⎪⎩

Sε(t) = 2ε2
[t/ε2]−1∑

k=0

min
{
cε(kε

2), 0
}

if t ≥ ε2, (4.4)

Sε(t) = 0 if 0 ≤ t < ε2. (4.5)

Proof The proof is again based on an iteration of DPP (2.11). Take h ∈ R
n

arbitrarily. In view of (2.11), there exists p0 ∈ R
n with |p0| ≤ ε−α such that

uε(x, ε2) = min
w

{
u0(x + √

2εw) − √
2ε〈p0, w〉 − ε2F(x, ε2, p0)

}
. (4.6)

Also, for p = p0 ± c0h ∈ R
n, there exist w± ∈ R

n with |w±| ≤ ε
1
2 such that

uε(x±h, ε2) ≥ u0(x±h+√
2εw±)−√

2ε〈p0±c0h,w±〉−ε2F(x±h, ε2, p0±c0h).

Summing these two inequalities and using c0-convexity of u0, we have

uε(x + h, ε2)+uε(x − h, ε2) ≥ 2u0

(
x +

√
2

2
ε(w+ + w−)

)

+ c0

∣∣∣∣∣h +
√

2ε

2
(w+ − w−)

∣∣∣∣∣

2

− √
2ε〈p0 + c0h,w+〉 − √

2ε〈p0 − c0h,w−〉

− ε2
(
F(x + h, ε2, p0 + c0h) + F(x − h, ε2, p0 − c0h)

)

≥ 2u0

(
x +

√
2

2
ε(w+ + w−)

)
+ c0|h|2 + c0

2
ε2|w+ − w−|2

−√
2ε〈p0,w+ + w−〉 − ε2

(
F(x + h, ε2, p0 + c0h) + F(x − h, ε2, p0 − c0h)

)
.
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In view of (A4) and the size of |w±|, it follows that

uε(x + h, ε2) + uε(x − h, ε2) ≥ 2u0

(
x +

√
2

2
ε(w+ + w−)

)
+ c0|h|2

−√
2ε〈p0,w+ + w−〉 − 2ε2F(x, ε2, p0) − ε2|h|2(K1 + 2c0K2 + c2

0K3) + 2ε3 min{c0, 0}.

By (4.6), we get

uε(x + h, ε2) + uε(x − h, ε2)

≥ 2uε(x, ε2) +
(
c0 − K1ε

2 − 2c0K2ε
2 − c2

0K3ε
2
)

|h|2 + 2ε3 min{c0, 0}
≥ 2uε(x, ε2) + cε(ε

2)|h|2 + Sε(ε
2)ε,

where cε(t) and Sε(t) are given respectively by (4.2)–(4.3) and by (4.4)–(4.5).
Iterating the argument above yields (4.1). ��

4.2 Semiconvexity in the Continuum Limit

In order to track the change of semiconvexity of u(·, t) for all t ≥ 0, we pass to the
limit of (4.2) as ε → 0. It suffices to solve a first order ordinary differential equation
in the form

c′(t) = −K1 − 2K2c(t) − K3c
2(t), (4.7)

where c(t) is the limit of cε(t) as ε → 0.
In fact, if there is a unique C1 solution c(t) in [0, T ] with c(0) = c0 for some

T > 0, then cε → c uniformly in [0, T ] as ε → 0. As a result, in [0, T ] the
Riemann sum Sε(t) is bounded uniformly for all ε > 0 small and consequently the
error term Sε(t)ε → 0 as ε → 0. Hence, under the comparison principle (CP), the
c(t)-convexity of u(·, t) for t ∈ [0, T ] can be deduced immediately by passing to
the limit of (4.1).

Let us discuss several different cases below. Set

D = K2
2 − K1K3.

4.2.1 The Case D < 0

In this case, we can only obtain local-in-time semiconvexity estimates. Since we
assume K1 ≥ 0, it is clear that K1,K3 > 0.
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We can solve (4.7) for c(t) in [0, T ), where

T = 1√−D

(
π

2
+ arctan

(
c0K3 + K2√−D

))
(4.8)

and

c(t) =
√−D

K3
tan

(
arctan

(
c0K3 + K2√−D

)
− √−Dt

)
− K2

K3
. (4.9)

Hence, we get the following result.

Theorem 4.2 (Semiconvexity Preserving for HJ Equations, Part I) Suppose
that F is independent of X and satisfies (A2) and (A4) with K1 > 0 and
K1K3 > K2

2 . Assume that the comparison principle (CP) holds for (1.5). Let
D = K2

2 − K1K3. Let u be the unique viscosity solution of (1.5) with a bounded
continuous initial value (1.2). If u0 is c0-convex in R

n for some c0 < 0, then u(·, t)
is c(t)-convex in R

n for t ∈ [0, T ), where T and c(t) are given by (4.8) and (4.9)
respectively.

In particular, if K1,K3 > 0 and K2 = 0, we have

T = 1√
K1K3

(
π

2
+ arctan

(√
K3

K1
c0

))
(4.10)

and

c(t) =
√

K1

K3
tan

(
arctan

(√
K3

K1
c0

)
− √

K1K3t

)
. (4.11)

4.2.2 The Case D > 0

We also assume that K3 �= 0.
Let us again solve (4.7). We have

c(t) = (
√
D − K2)(c0K3 + K2 + √

D) + (
√
D + K2)(c0K3 + K2 − √

D)e−2
√
Dt

K3(c0K3 + K2 + √
D) − K3e−2

√
Dt (c0K3 + K2 − √

D)

(4.12)

for all t ≥ 0 if

c0K3 + K2 − √
D

c0K3 + K2 + √
D

< 1. (4.13)

The condition (4.13) holds when c0K3 + K2 + √
D > 0.
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Note that the latter essentially does not require any semiconvexity assumption on
u0. We will therefore discuss the smoothing effect of the Hamilton-Jacobi equation
under the assumptions that K3 < 0 and K2

2 > K1K3; see Corollary 4.4.
On the other hand, if

c0K3 + K2 − √
D

c0K3 + K2 + √
D

> 1, (4.14)

then u(·, t) is c(t)-convex for 0 ≤ t < T with

T = 1

2
√
D

log
c0K3 + K2 − √

D

c0K3 + K2 + √
D

(4.15)

and c(t) given as in (4.12).

Theorem 4.3 (Semiconvexity Preserving for HJ Equations, Part II) Suppose
that F is independent of X and satisfies (A2) and (A4) with K3 �= 0 and K1K3 <

K2
2 . Assume that (CP) holds for (1.5). Let D = K2

2 − K1K3. Let u be the unique
viscosity solution of (1.5) with a bounded continuous initial value (1.2). If u0 is c0-
convex in Rn for some c0 < 0, then u(·, t) is c(t)-convex in Rn for t ∈ [0, T ), where
c(t) is given by (4.12) and

(1) T = ∞ if (4.13) holds;
(2) T is finite and given by (4.15) if (4.14) holds.

Moreover, in the case (1), there holds

c(t) →
√
D − K2

K3
as t → ∞.

Since any bounded continuous function on R
n can be uniformly approximated

by a semiconvex function via sup-convolutions, Theorem 4.3 implies the following
result on a regularizing effect of the Hamiltonian F(x, t, p) that is uniformly
concave in p. We assume that K1 > 0 and K3 < 0, which implies that (4.13)
holds for c0 < 0.

Corollary 4.4 (Regularizing Effect) Suppose that F is independent of X and
satisfies (A2) and (A4) with K1 > 0 and K3 < 0. Assume that (CP) holds for
(1.5). Let u be the unique viscosity solution of (1.5) with a bounded continuous
initial value (1.2). Then the unique solution u of (1.5) with (1.2) satisfies

u(x + h, t) + u(x − h, t) − 2u(x, t) ≥ (
√
D − K2) + (

√
D + K2)e

−2
√
Dt

K3(1 − e−2
√
Dt )

|h|2

(4.16)

for all t > 0, where D = K2
2 − K1K3 > 0.
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Proof Let us take the sup-convolution on u0, getting

u0,θ (x) = sup
y∈Rn

{
u0(y) − |x − y|2

2θ

}
(4.17)

for any θ > 0. It is not difficult to see that u0,θ is (−1/θ)-convex. We use u0,θ as a
new initial value of Eq. (1.5) and apply Theorem 4.3 to obtain c(t, θ)-convexity of
u(·, t) for all t ≥ 0, where c(t, θ) is given as in (4.12) with c0 replaced by −1/θ .
Now for every t > 0, letting θ → 0, we have

c(t, θ) → (
√
D − K2) + (

√
D + K2)e

−2
√
Dt

K3(1 − e−2
√
Dt)

as θ → 0. This completes the proof. ��
The result above has applications in asymptotic analysis. In fact, for a particular

F that satisfies the assumptions in Corollary 4.4, the large-time profile of the
solution to (1.5) with a Lipschitz initial value was shown in [13] to be semiconvex
via a PDE method. We here provided an alternative proof about the semiconvexity
based on discrete games.

4.2.3 The Case D = 0

Let us finally discuss this critical case when D = 0. In principle, one can consider
it as a limit case of the others by perturbing Ki (i = 1, 2, 3). Instead of categorizing
all of the subcases, we only consider two simple but important special cases. We
omit the proofs of the results below, since they are again based on solving (4.7) as
in the proof of Theorem 4.2.

Theorem 4.5 (Local-in-time Semiconvexity Preserving for Semiconcave HJ
Equations) Suppose that F is independent of X and satisfies (A2) and (A4) with
K1 = K2 = 0 and K3 > 0. Assume that the comparison principle (CP) holds
for (1.5). Let u be the unique viscosity solution of (1.5) with a bounded continuous
initial value (1.2). If u0 is c0-convex in R

n for some c0 < 0, then u(·, t) is c(t)-
convex in Rn for t ∈ [0, T ), where

T = − 1

c0K3
(4.18)

and

c(t) = c0

1 + c0K3t
≤ 0. (4.19)



222 Q. Liu

This result corresponds to the formation of shocks in one-dimensional Burgers’
equation such as

ut + 1

2
(u2)x = 0, (4.20)

whose space integral gives rise to the eikonal equation

ut + 1

2
(ux)

2 = 0 in R × (0,∞).

Then the semiconvexity estimate as in Theorem 4.5 implies a Lipschitz estimate for
(4.20). More precisely, given a Lipschitz initial value for (4.20) with space derivative
greater than c0 < 0, the spatial Lipschitz continuity will not break down before the
moment T given as in (4.18); see [9] for a classical proof via the Hopf-Lax formula.

Let us turn to the case when K1 = K2 = 0 and K3 < 0.

Theorem 4.6 (Global-in-time Semiconvexity Preserving for Concave HJ Equa-
tions) Suppose that F is independent of X and satisfies (A2) and (A4) with K1 =
K2 = 0 andK3 < 0. Assume that (CP) holds for (1.5). Let u be the unique viscosity
solution of (1.5) with a bounded continuous initial value (1.2). If u0 is c0-convex in
R

n for some c0 < 0, then u(·, t) is c(t)-convex in R
n for any t ≥ 0, where c(t) is

given by (4.19).

Following the proof of Corollary 4.4, we can use Theorem 4.6 to get the classical
semiconcavity estimate for the simplest Hamilton-Jacobi equation

ut + H(∇u) = 0 in R
n × (0,∞), (4.21)

as shown in [30] (also presented in [9, Lemma 4, Chapter 3.3]). In order to be
consistent with those classical results, we drop the boundedness of u0 but assume
it to be Lipschitz, which is sufficient to keep the comparison principle valid in this
case.

Corollary 4.7 ([9, 30]) Suppose thatH : Rn → R is locally Lipschitz and satisfies

H(p + h) + H(p − h) ≤ 2H(p) + K3|h|2

for some K3 < 0. Let u0 be Lipschitz in R
n. Then the unique solution u of (4.21)

with (1.2) satisfies

u(x + h, t) + u(x − h, t) − 2u(x, t) ≥ − 1

K3t
|h|2 (4.22)

for all t > 0.

Proof We again take the sup-convolution u0,θ as in (4.17) for θ > 0. We use u0,θ
as a new initial value of Eq. (1.5) and obtain a unique solution uθ , which is c(t, θ)-
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convex with

c(t, θ) = − 1

θ − K3t

by an analogous argument in Theorem 4.5, especially (4.19) with c0 = −1/θ .
Sending θ → 0, we end up with (4.22) for all t > 0. ��

5 Further Generalizations

We give several remarks on possible generalizations of our argument in the previous
sections.

5.1 Viscous Hamilton-Jacobi Equations

Let us first extend our results in Sect. 4 to the viscous Hamilton-Jacobi equation
(1.3). To this end, instead of using the general game setting in Sect. 2.1, we slightly
modify the game in Sect. 2.2 to interpret the solution of (1.3) with σ satisfying

σ <
1

2(n + 2)
. (5.1)

Our game below is no longer deterministic. In fact, the stochastic game setting
is analogous to the Tug-of-War game with noise proposed in [34, 35]. Suppose that
F satisfies the same assumptions as in Sect. 2.2. Let α also be given as in Sect. 2.2.
Let

μ1 = 2σ(n + 2), μ2 = 1 − μ1. (5.2)

Following (2.11), we first state the dynamic programming principle

uε(x, t) = max
|p|≤ε−α

min
|w|≤ε1/2

{
μ1u

ε
(
x + √

2εw, t − ε2
)

− √
2εμ1〈p,w〉 − ε2F(x, t, p)

+ μ2

 
Bε(x)

uε
(
y, t − ε2

)
dy

}
for x ∈ R

n and t ≥ ε2

(5.3)
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with initial value (2.7). Here
ffl
A f (y) dy denotes the average value of f ∈ C(Rn)

in a bounded Lebesgue measurable set A ⊂ R
n, that is,

 
A

f (y) dy = 1

|A|
ˆ
A

f (y) dy,

where |A| denotes the Lebesgue measure of A.
By the formal expansion as shown in Sect. 2.2, we can easily observe that this

DPP does lead to the Cauchy problem for (1.3).

Theorem 5.1 (Game Convergence for Viscous Hamilton-Jacobi Equations)
Suppose that σ > 0 satisfies (5.1), and F is independent ofX and satisfies (A1) and
(A2). Assume that u0 is bounded and continuous in Rn. Assume that (CP) holds. Let
μ1, μ2 be given by (5.2) and uε satisfy the dynamic programming principle (5.3)
and (2.7). Then uε → u locally uniformly in R

n × [0,∞) as ε → 0, where u is the
unique viscosity solution to (1.3) with the initial condition (1.2).

We now briefly introduce the game rules corresponding to the dynamic program-
ming equation (5.3). Fix x ∈ R

n and t ≥ 0. As before, let N = [t/ε2].
At the k-th step (k = 1, 2, . . . , N),

• We toss a biased coin with probabilities μ1 and μ2 to respectively get a head and
a tail.

• If it is a head, then we play the deterministic game as described in Sect. 2.2; that
is, Player I chooses pk ∈ R

n with |pk| ≤ ε−α , then Player II takes wk ∈ R
n

with |wk| ≤ ε1/2, and the game state moves from yk to a new point yk + √
2εwk .

Player I receives from Player II the following amount of payment:

lk = √
2εμ1〈pk,wk〉 + ε2F(yk, kε

2, pk).

• On the other hand, if we get a tail, the game state moves randomly according to
the uniform probability density to a point in the ball Bε(yk).

We define uε(x, t) to be the expected value of the cost J ε(x, t) as in (2.4), optimized
by both players.

We remark that although it is somehow obvious that the value function uε should
satisfy (5.3) under the game rules above, its proof is not trivial at all. Since in
this work we are more interested in the connection between (5.3) and the equation
(1.3), we refer the reader to [34] for detailed derivation of dynamic programming
equations of stochastic discrete games.

We now study the semiconvexity property for (1.3) by using the associated
dynamic programming principle (5.3). It turns out that, despite the presence of an
extra mean value part in (5.3), the same argument on semiconvexity in Sect. 4 still
holds. The linear term �u essentially maintains the semiconvexity property of the
original first order equation. Our game estimate holds uniformly for all σ > 0.
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Theorem 5.2 (Semiconvexity of Game Values for Viscous HJ Equation) Sup-
pose that σ > 0 satisfies (5.1), F is independent of X and satisfies (A1), (A2) and
(A4). Assume that u0 ∈ C(Rn). Let μ1, μ2 be given by (5.2) and uε satisfy the
dynamic programming principle (5.3) with (2.7). If u0 is c0-convex in R

n for some
c0 ∈ R, then uε satisfies (4.1) for all σ > 0, x ∈ R

n, t ≥ ε2, h ∈ R
n and ε > 0,

where cε, Sε : [0,∞) → R are given respectively by (4.2)–(4.3) and by (4.4)–(4.5).

The proof is essentially the same as that of Theorem 4.1. The only difference lies
at the averaged integral term. However, since we have

μ2

 
Bε(x)

u0(y +h) dy +μ2

 
Bε(x)

u0(y −h) dy ≥ 2μ2

 
Bε(x)

u0(y) dy + c0μ2|h|2

provided that u0 is c0-convex in R
n, we can easily adapting the iterative argument

in Theorem 4.1 to the current case.

Remark 5.3 We emphasize that the semiconvexity estimate in Theorem 5.2 does
not depend on σ > 0. Moreover, the assumption (5.1) is only technical. Indeed, for
any λ > 0, if we rescale the solution u by taking v(x, t) = u(x, λt), then v solves

vt + λF(x, λt,∇v) − λσ�v = 0 in R
n × (0,∞).

Letting F̃ (x, t, p) = λF(x, λt, p), one is thus able to study (1.3) with F replaced
by F̃ and with a general σ . We then can adopt Theorem 5.2 with a new set of Ki

(i = 1, 2, 3) in (A4) in this general case.

As a consequence of Theorems 5.2 and 5.1, we can obtain, in the viscous case,
all of the results similar to those in Sect. 4.2 including Theorems 4.2, 4.3 and
Corollary 4.4 uniformly in σ > 0. The proof will also be the same; according to
the sign of D, we divide our discussion into different cases and repeat the same
arguments when passing to the limit as ε → 0. In particular, the viscous version of
Theorem 4.3 generalizes the results in [12, 39] and our game-theoretic method is
very different from theirs.

5.2 Parabolic Operators Involving the Unknown

We finally mention how to handle the case when the operator F involves the
unknown function u. Our method here can apply to a general class of fully nonlinear
equations including the u-dependent versions of those equations discussed in the
previous sections. Let us only generalize our results for (1.1); that is, we consider

ut + F(x, t, u,∇u,∇2u) = 0 in R
n × (0,∞) (5.4)
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with a bounded continuous initial value (1.2). We still assume that F is degenerate
elliptic, locally Lipschitz etc. as in (A0)–(A2), i.e.,

(B0) F(x, t, r, p,X1) ≤ F(x, t, r, p,X2) for any x, p ∈ R
n, r ∈ R t ≥ 0,

X1,X2 ∈ Sn with X1 ≥ X2;
(B1) for any R > 0, there exists L(R) > 0 such that

|F(x, t, r, p1,X1) − F(x, t, r, p2,X2)| ≤ L(R)(|p1 − p2| + |X1 − X2|)

for all r ∈ R, x ∈ R
n, t ≥ 0 and p1, p2 ∈ R

n, X1,X2 ∈ Sn satisfying

|p1| + |p2| + |X1| + |X2| ≤ R;

(B2) there exist C > 0, σ1, σ2 > 0 such that

|F(x, t, p,X)| ≤ C(1 + |p|σ1 + |X|σ2)

for all x ∈ R
n, r ∈ R, t ≥ 0, p ∈ R

n and X ∈ Sn.

Moreover, we assume that

(B3) there exists K ≥ 0 such that

F(x + h, t, r1, p1,X1)+F(x − h, t, r2, p2,X2)

≤ 2F

(
x, t,

r1 + r2

2
,
p1 + p2

2
,
X1 + X2

2

)
+ K|h|2

for all x, h ∈ R
n, t ≥ 0, r1, r2 ∈ R, p1, p2 ∈ R

n and X1,X2 ∈ Sn

and

(B4) r �→ F(x, t, r, p,X) is Lipschitz, i.e., there exists �1,�2 ∈ R with �1 ≤ �2
such that

�1(r1 − r2) ≤ F(x, t, r1, p,X) − F(x, t, r2, p,X) ≤ �2(r1 − r2)

for all r1 ≥ r2, x, p ∈ R
n, t ≥ 0 and X ∈ Sn.

Besides, we assume that the comparison principle holds for (5.4). As in the previous
sections, we need a game-theoretic scheme for this general equation in order to study
the evolution of semiconvexity.
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Although the associated discrete game in this case is studied in [28], we do not
directly use their dynamic programming equation but instead consider the following
variant of (2.6):

uε(x, t) = min
p,X

max
w

{
uε

(
x + √

2εw, t − ε2
)

− √
2ε〈p,w〉

−ε2〈Xw,w〉 − ε2F
(
x, t, uε(x, t − ε2), p,X

) }

(5.5)

with uε(·, t) = u0 in R
n for t < ε2, where the sets of p,X,w are taken as in

Sect. 2.1.
Take v(x, t) = e�2t u(x, t). Then v is the unique viscosity solution of

vt + F (x, t, v,∇v,∇2v) = 0 in R
n × (0,∞) (5.6)

with v(·, 0) = u0 in R
n, where

F(x, t, r, p,X) = −�2r + e�2tF
(
x, t, re−�2t , pe−�2t , Xe−�2t

)
. (5.7)

It is clear that

(�1 − �2)(r1 − r2) ≤ F(x, t, r1, p,X) − F(x, t, r2, p,X) ≤ 0 (5.8)

for all r1 ≥ r2, x, p ∈ R
n, t ≥ 0 and X ∈ Sn, due to (B4).

If we take vε(x, t) = e�2tuε(x, t), then the DPP corresponding to vε becomes

vε(x, t) = min
p,X

max
w

{
vε

(
x + √

2εw, t − ε2
)

− √
2ε〈p,w〉

−ε2〈Xw,w〉 − ε2F
(
x, t, vε(x, t − ε2), p,X

) }
.

(5.9)

We next use (5.9) to show a result similar to Theorem 3.1 for (5.4). Suppose u0
is c0-convex with c0 ≤ 0. Let us fix h ∈ R

n and ε > 0 arbitrarily. Fix x ∈ R
n. In

view of (5.9), there exist p± ∈ R
n,X± ∈ Sn with |p±| ≤ ε−α and |X±| ≤ ε−β

such that for any w ∈ R
n with |w| ≤ ε−γ , we have

vε(x ± h, ε2) ≥ u0

(
x ± h + √

2εw
)

− √
2ε〈p±, w〉 − ε2〈X±w,w〉

−ε2F(x ± h, ε2, u0(x ± h), p±, X±).

(5.10)
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By (B3) and the c0-convexity of u0 together with the monotonicity of F in (5.8), we
get

vε(x + h, ε2) + vε(x − h, ε2)

≥ 2u0(x + √
2εw) + c0|h|2 − √

2ε〈(p+ + p−), w〉 − ε2〈(X+ + X−)w,w〉

− 2ε2F

(
x, ε2,

u0(x + h) + u0(x − h)

2
,
p+ + p−

2
,
X+ + X−

2

)
− ε2Ke�2ε

2 |h|2

≥ 2u0(x + √
2εw) + c0|h|2 − √

2ε〈(p+ + p−), w〉 − ε2〈(X+ + X−)w,w〉

− 2ε2F

(
x, ε2, u0(x) + c0

2
|h|2, p+ + p−

2
,
X+ + X−

2

)
− ε2Ke�2ε

2 |h|2

(5.11)

for any w ∈ R
n with |w| ≤ ε−γ . By (5.8) again, we have

vε(x + h, ε2) + vε(x − h, ε2)

≥ 2u0(x + √
2εw) + c0|h|2 − √

2ε〈(p+ + p−), w〉 − ε2〈(X+ + X−)w, w〉

− 2ε2F

(
x, ε2, u0(x),

p+ + p−
2

,
X+ + X−

2

)
+ ε2c0(�2 − �1)|h|2 − ε2Ke�2ε

2 |h|2,
(5.12)

which implies that vε(·, ε2) is cε(ε
2)-convex with

cε(ε
2) = c0

(
1 + ε2(�2 − �1)

)
− ε2Ke�2ε

2
.

By iterating the argument above, we have the following result.

Theorem 5.4 (Semiconvexity Preserving for the Discrete Scheme Involving u)
Suppose that (B0)–(B4) hold. Let vε satisfy Eq. (5.9) with initial value vε(·, t) =
u0 ∈ C(Rn) for t < ε2 and F given by (5.7). If u0 is c0-convex in R

n for some
c0 ≤ 0, then vε(·, t) is cε(t)-convex for all ε > 0 and t ≥ ε2, where cε(t) = c0 for
0 ≤ t < ε2 and

cε(t) = cε(t − ε2)
(

1 + ε2(�2 − �1)
)

− ε2Kε�2t (5.13)

for t ≥ ε2.

To investigate the semiconvexity of u, we should consider the limit of cε(t)e−�2t ,
but for our simplicity of calculations, we send ε → 0 in (5.13) directly. We see that
the limit c of cε satisfies

c′(t) = (�2 − �1)c(t) − Ke�2t
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for all t > 0 and therefore,

c(t) =
(
c0 + K

�1

)
e(�2−�1)t − K

�1
e�2t

if �1 �= 0 and

c(t) = c0 − Kt

if �1 = 0.
Since uε → u as ε → 0 under (CP) as shown in [28], we are immediately led to

the following consequence.

Theorem 5.5 (Semiconvexity Preserving for Parabolic Equations Depending on
u) Suppose that (B0)–(B4) hold. Assume that the comparison principle holds (CP)
for (5.4). Let u be the unique solution of (5.4) and (1.2). If u0 is c0-convex in Rn for
some c0 < 0, then u(·, t) is c(t)-convex for all t ≥ 0, where

c(t) =
{
(c0 + K/�1) e

−�1t − K/�1 if �1 �= 0,

(c0 − Kt)e−�2t if �1 = 0.

Semiconvexity preserving properties for viscous or inviscid Hamilton-Jacobi
equations can be similarly obtained by using the argument here to generalize the
results in Sect. 4.
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An Interpolating Inequality for Solutions
of Uniformly Elliptic Equations

Rolando Magnanini and Giorgio Poggesi

Abstract We extend an inequality for harmonic functions, obtained in Magnanini
and Poggesi (Calc Var Partial Differ Equ 59(1):Paper No. 35, 2020) and Poggesi
(The Soap Bubble Theorem and Serrin’s problem: quantitative symmetry, PhD
thesis, Università di Firenze, 2019), to the case of solutions of uniformly elliptic
equations in divergence form, with merely measurable coefficients. The inequality
for harmonic functions turned out to be a crucial ingredient in the study of the
stability of the radial symmetry for Alexandrov’s Soap Bubble Theorem and Serrin’s
problem. The proof of our inequality is based on a mean value property for elliptic
operators stated and proved in Caffarelli (The Obstacle Problem. Lezioni Fermiane.
[Fermi Lectures]. Accademia Nazionale dei Lincei, Rome; Scuola Normale Superi-
ore, Pisa, 1998) and Blank and Hao (Commun Anal Geom 23(1):129–158, 2015).
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1 Introduction

Let � be a bounded domain in R
N , N ≥ 2, and denote its boundary by �. The

volume of � and the (N − 1)-dimensional Hausdorff measure of � will be denoted,
indifferently, by |�| and |�|. Let A(x) be an N × N symmetric matrix whose
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entries aij (x), i, j = 1, . . . , N , are measurable functions in �. We assume that
A(x) satisfies the (uniform) ellipticity condition:

λ |ξ |2 ≤ 〈A(x) ξ, ξ〉 ≤ � |ξ |2 for any x ∈ �, ξ ∈ R
N . (1.1)

Here, λ and � are positive constants. Associated to A(x) we consider a uniformly
elliptic linear operator L in divergence form, defined formally by

Lv = div[A(x)∇v], (1.2)

for every x ∈ �.
In what follows, we shall use two scaling invariant quantities: for 1 ≤ p ≤ ∞

the number ‖v‖p,� will denote the Lp-norm of a measurable function v : � → R

with respect to the normalized Lebesgue measure dx/|�| and, for 0 < α ≤ 1, we
define the scaling invariant Hölder seminorm

[v]α,� = sup

{(
d�

2

)α |v(x1) − v(x2)|
|x1 − x2|α : x1, x2 ∈ �, x1 �= x2

}
, (1.3)

where d� is the diameter of �. Also, the mean value of v on � will be indicated by
v�.

We let �α(�) be the set of weak solutions v of class C0,α(�) of Lv = 0 in �.
We denote by Br and Sr the ball and sphere of radius r centered at the origin. To
avoid unessential technicalities, we state here our main result in the case in which
� is a ball. The case of general domains will be treated later on.

Theorem 1.1 Take p ∈ [1,∞). There exists a positive constant K , which only
depends on N , p, α, λ, and�, such that, for any v ∈ �α(Br ), the following holds:

max
Sr

v − min
Sr

v ≤ K [v]
N

N+α p

α,Br
‖v − vBr ‖

αp
N+αp

p,Br
. (1.4)

Moreover, (1.4) is optimal in the sense that the equality sign holds for some
v ∈ �α(Br).

We recall that, by De Giorgi-Nash-Moser’s theorem, we have that a solution of
Lu = 0 is locally of class C0,α(�) for some α ∈ (0, 1] that depends on N,λ and �.
Moreover that regularity can be extended up to the boundary provided u is Hölder-
continuous on � and � is sufficiently smooth—e.g., � satisfies a uniform exterior
cone condition (see [10, Theorem 8.29]) or, more in general, condition (A) defined
in [12, pag. 6] (see [12, Theorem 1.1 of Chapter 4]).

The reader’s attention should be focused on the quantitative character of (1.4).
This says that the oscillation of a solution of an elliptic equation can be controlled,
up to the boundary, by its Lp-norm in the domain, provided some a priori
information is given on its Hölder seminorm.
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The effectiveness of an inequality like (1.4) can be understood from an important
application of it, that was first given in [14], and then refined in [15–18] (see also
[13] for a survey on those issues). There, rougher versions of (1.4) for harmonic
functions were used to obtain quantitative rigidity estimates for the spherical
symmetry in two celebrated problems in differential geometry and potential theory:
Alexandrov’s Soap Bubble Theorem and Serrin’s overdetermined problem. For the
reader’s convenience, we recall these two rigidity results. Alexandrov’s Soap Bubble
Theorem [1–3] states that, if a compact hypersurface, embedded in the Euclidean
space, has constant mean curvature, then it must be a sphere. Serrin’s symmetry
result [19] asserts that a solution of the Poisson’s equation �u = N in a bounded
domain, subject to constant Dirichlet and Neumann boundary conditions exists if
and only if the domain is a ball. In [16] and [15] the two results are shown to
be intimately connected. Moreover, this fact and the rougher version of (1.4) help
to obtain quantitative estimates of spherical symmetry in both problems. Another
application of an inequality like (1.4) can be found in [9].

Theorem 1.1 improves the result obtained in [18, Lemma 3.14] (and hence the
previous ones) from various points of view. As already mentioned, it extends the
analogous estimates obtained for harmonic functions to the case of a uniformly
elliptic linear operator in divergence form with merely measurable coefficients.
Moreover, it removes the restriction of smallness of the term ‖v − v�‖p,B that was
present in the previous inequalities. In doing so, it clears up which are the essential
ingredients to consider to obtain a best possible bound. Finally, It also relaxes the
former Lipschitz assumption on the solutions to a weaker Hölder continuous a priori
information.

The proof of the existence of the optimal constant K in (1.4) is obtained by a
quite standard variational argument. The necessary compactness of the optimizing
sequence is derived from a rougher version of (1.4), which is proved in Lemma 2.2.
More precisely, Lemma 2.2 shows that an inequality like (1.4) holds for sub-
solutions of the equation Lv = 0 and it provides an explicit upper bound for the
constant K . The proof of this lemma extends the arguments, first used in [14]
and refined in [15, 16, 18] for (sub-)harmonic functions, to the case of an elliptic
operator. The crucial ingredient to do so is a mean value theorem for elliptic
equations in divergence form (see Theorem 2.1) the proof of which is sketched in
[8, Remark at page 9] and given with full details in [7, Theorem 6.3].

The proof of Theorem 1.1 is given in Sect. 2. There, we also provide a proof
for the case of smooth domains. In this case, the constant K also depends on the
ratio between the diameter and the radius of a uniform interior touching ball for the
relevant domain. In Sect. 3, we show that the proof’s scheme can be extended to
two instances of non-smooth domains: those satisfying either the uniform interior
cone condition or the so-called local John’s condition. The dependence of K on the
relevant parameters follows accordingly.
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2 The Inequality in a Ball and in Smooth Domains

We recall the already mentioned result introduced by L. Caffarelli [8, Remark on
page 9], the proof of which is provided in full details in [7, Theorem 6.3]. In what
follows, Br(x0) denotes the ball of radius r centered at x0.

Theorem 2.1 (Mean Value Property for Elliptic Operators) Let � be an open
subset of RN . Let L be the elliptic operator defined by (1.1)–(1.2) and pick any
x0 ∈ �. Then, there exist two constants c, C that only depend on N,λ and �, and,
for 0 < r < r0 with r0 ≥ dist(x0, �)/C, an increasing family of domains Dr(x0)

which satisfy the properties:

(i) Bcr(x0) ⊂ Dr(x0) ⊂ BCr(x0);
(ii) for any v satisfying Lv ≥ 0, we have that

v(x0) ≤ 1

|Dr(x0)|
ˆ
Dr(x0)

v(y) dy ≤ 1

|Dρ(x0)|
ˆ
Dρ(x0)

v(y) dy, (2.1)

for any 0 < r < ρ < r0.

Issues related to this theorem and the study of the geometric properties of the sets
Dr(x0) have been recently studied by I. Blank and his collaborators in [4–6].

2.1 The Inequality for a Ball

We begin our presentation by considering the case of a ball. This will avoid extra
technicalities. We will later show how to extend our arguments to other types of
domains.

The following lemma gives a rough estimate for sub-solutions of the elliptic
equation Lv = 0.

Lemma 2.2 Take p ≥ 1. Let v ∈ C0,α(Br), 0 < α ≤ 1, be a weak solution of
Lv ≥ 0 in Br . Then we have that

max
Sr

v − min
Sr

v ≤ 2
(

1 + αp

N

)(
N

αp

) αp
N+αp

(
C

c

) αN
N+αp [v]

N
N+α p

α,Br
‖v − vBr ‖

αp
N+αp

p,Br
.

(2.2)

Proof Without loss of generality, we can assume that vBr = 0. Let x1 and x2 be
points on Sr that respectively minimize and maximize v on Sr and, for 0 < σ < r ,
define the two points yj = xj − σxj/r , j = 1, 2. Notice that xj/r is the exterior
unit normal vector to Sr at the point xj .
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By (1.3) and the fact that 2r is the diameter of Br , we have that

|v(xj )| ≤ |v(yj )| + [v]α,Br

(σ

r

)α

, j = 1, 2. (2.3)

Being as 0 < σ < r , we have that Bσ (yj ) ⊂ �. Thus, we apply Theorem 2.1 by
choosing x0 = yj , j = 1, 2, and r = σ/C. By item (i), we have that

B c
C σ (yj ) ⊂ Dσ

C
(yj ) ⊂ Bσ (yj ) ⊂ Br, j = 1, 2. (2.4)

Also, item (ii) gives that

|v(yj )| ≤ 1

|Dσ
C
(yj )|

ˆ
D σ

C
(yj )

|v| dy ≤

1

|Dσ
C
(yj )|1/p

⎡

⎣
ˆ
Dσ

C
(yj )

|v|p dy

⎤

⎦
1/p

≤ |B|− 1
p

(
C

c σ

)N/p (ˆ
Br

|v|p dy

)1/p

. (2.5)

The second inequality is a straightforward application of Hölder’s inequality and, in
the last inequality, we used (2.4), that also gives that

|Dσ
C
(yj )| ≥ |B|

( c

C

)N

σN .

Putting together (2.3) and (2.5) yields

max
Sr

v − min
Sr

v ≤ 2

[(
C

c

)N/p

‖v‖p,Br

(σ
r

)−N/p + [v]α,Br

(σ

r

)α

]
, (2.6)

for every 0 < σ < r .
Therefore, in order to minimize the right-hand side of the last inequality, we can

conveniently choose

σ ∗

r
=

[
N

αp

(
C

c

)N/p ‖v‖p,Br

[v]α,Br

]p/(N+αp)

(2.7)

and obtain (2.2) if σ ∗ < r .
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On the other hand, if σ ∗ ≥ r , by (1.3) we can write:

max
Sr

v − min
Sr

v ≤ 2α [v]α,Br ≤ 2α [v]α,Br

(
σ ∗

r

)α

.

Thus, (2.7) gives

max
Sr

v − min
Sr

v ≤ 2α

(
N

αp

) αp
N+αp

(
C

c

) αN
N+αp [v]

N
N+α p

α,Br
‖v‖

αp
N+αp

p,Br
.

Therefore, (2.2) always holds true, since 2α ≤ 2(1 + αp/N). ��
Proof of Theorem 1.1 Lemma 2.2 tells us that (1.4) holds with

K = sup
{

max
Sr

v − min
Sr

v : v ∈ �α(Br) with [v]
N

N+α p

α,Br
‖v − vBr ‖

αp
N+αp

p,Br
≤ 1

}
,

and

K ≤ 2
(

1 + αp

N

)(
N

αp

) αp
N+αp

(
C

c

) αN
N+αp

.

We are thus left to prove the existence of a v ∈ �α(Br) that attains the supremum.
Again, we assume that vBr = 0 in the supremum and take a maximizing sequence
of functions vn, that is

[vn]
N

N+α p

α,Br
‖vn‖

αp
N+αp

p,Br
≤ 1 and max

Sr
vn − min

Sr
vn → K as n → ∞.

Observe that

‖vn‖p,Br ≤ 2
αN

N+αp , n ∈ N,

since

‖v‖p,Br = ‖v − vBr ‖p,Br ≤ 2α[v]α,Br , v ∈ �α(Br ).

We can then extract a subsequence of functions, that we will still denote by vn,
that weakly converges in Lp(Br) to a function v ∈ Lp(Br). By the mean value
property of Theorem 2.1, the sequence converges uniformly to v on the compact
subsets of Br , and hence v satisfies the mean value property of Theorem 2.1 in Br .
The converse of the mean value theorem (see, e.g., [4, Theorem 1.2]) then gives that
Lv = 0 in Br .
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Next, we fix x1, x2 ∈ Br with x1 �= x2. Notice that

rα
|vn(x1) − vn(x2)|

|x1 − x2|α ≤ [vn]α,Br ≤ ‖vn‖− αp
N

p,Br
,

where the second inequality follows from the normalizations of the maximizing
sequence that we assumed above. Thus, the local uniform convergence and the
semicontinuity of the Lp-norm with respect to weak convergence give that

rα
|v(x1) − v(x2)|

|x1 − x2|α ≤ ‖v‖− αp
N

p,Br
.

Since x1 and x2 are arbitrary, we infer that [v]α,Br ‖v‖
αp
N

p,Br
≤ 1. This means that v

extends to a function of class C0,α(Br).
If we now prove that vn → v uniformly on Sr , we will have that

K = lim
n→∞

(
max
Sr

vn − min
Sr

vn

)
= max

Sr
v − min

Sr
v,

and the proof would be complete. For any x ∈ Sr and y ∈ Br , we can easily show
that

lim sup
n→∞

|vn(x) − v(x)| ≤ r−α |x − y|α lim sup
n→∞

[vn]α,Br + |v(y) − v(x)| ≤

r−α |x − y|α‖v‖− αp
N

p,Br
+ |v(y) − v(x)|.

Since y ∈ Br is arbitrary and v is continuous up to Sr , the right-hand side can
be made arbitrarily small, and hence we infer that vn converges to v pointwise on
Sr . The convergence turns out to be uniform on Sr . In fact, if xn ∈ Sr maximizes
|vn − v| on Sr then by compactness xn → x as n → ∞ for some x ∈ Sr , modulo a
subsequence. Thus,

max
Sr

|vn − v| = |vn(xn) − v(xn)| ≤

r−α |xn − x|α[vn]α,Br + |vn(x) − v(x)| + |v(x) − v(xn)|,

and the right-hand side vanishes as n → ∞, by the continuity of v and the pointwise
convergence of vn. The proof is complete. ��
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2.2 The Inequality for Smooth Domains

The extension of Theorem 1.1 to the case of bounded domains with boundary �

of class C2 is not difficult. We recall that such domains satisfy a uniform interior
sphere condition. In other words, there exists ri > 0 such that for each z ∈ � there
is a ball of radius ri contained in � the closure of which intersects � only at z.

Theorem 2.3 Take p ∈ [1,∞). Let � ⊂ R
N be a bounded domain with boundary

� of class C2 and let L be the elliptic operator defined by (1.1)–(1.2).
If v ∈ �α(�), then

max
�

v − min
�

v ≤ K [v]
N

N+α p

α,� ‖v − v�‖
αp

N+αp

p,� (2.8)

for some optimal constantK , which only depends on N , p, α, λ, �, and d�/ri .

Proof The proof runs similarly to that of Theorem 1.1. We just have to make some
necessary changes to the proof of Lemma 2.2,

We take x1 and x2 in � that respectively minimize and maximize v on � and
define the corresponding y1, y2 by yj = xj − σν(xj ), j = 1, 2, where ν(xj ) is
the exterior unit normal vector to � at the point xj . This time we use the restriction
0 < σ < ri , so that Bσ (yj ) ⊂ �, j = 1, 2.

Next, we must replace (2.3) by

|v(xj )| ≤ |v(yj )| + [v]α,�
(

2σ

d�

)α

, j = 1, 2, (2.9)

and (2.5) by

|v(yj )| ≤ |B|− 1
p

(
C

c σ

)N/p (ˆ
�

|v|p dy

)1/p

, j = 1, 2.

Thus, we arrive at

max
�

v − min
�

v ≤ 2

[(
C

c

)N/p

‖v‖p,�
(

2σ

d�

)−N/p

+ [v]α,�
(

2σ

d�

)α
]

(2.10)

for 0 < σ < ri , in place of (2.6). Here, we used that |�| ≤ |B| (d�/2)N .
In order to minimize the right-hand side of (2.10), this time we can choose

2σ ∗

d�
=

[
N

αp

(
C

c

)N/p ‖v‖p,�
[v]α,�

]p/(N+αp)

,
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and obtain that (2.8) holds true with

K ≤ max

[
2
(

1 + αp

N

)
,

(
d�

ri

)α](
N

αp

) αp
N+αp

(
C

c

) αN
N+αp

, (2.11)

if σ ∗ < ri .
On the other hand, if σ ∗ ≥ ri , (1.3) gives:

max
�

v − min
�

v ≤ 2α [v]α,� ≤
(

2σ ∗

ri

)α

[v]α,� =
(

N

αp

) αp
N+αp

(
C

c

) αN
N+αp

(
d�

ri

)α

[v]
N

N+α p

α,� ‖v‖
αp

N+αp

p,� .

Again, (2.8) and (2.11) hold true. ��
Remark 2.4 Theorem 2.3 can be compared with [18, Lemma 3.14], that was proved
for the Laplace operator. In that case, we have that c = C = 1 and the seminorm in
(1.3) can be replaced by the maximum of (d�/2) |∇v| on �.

3 The Inequality for Two Classes of Non-smooth Domains

In this section, for future reference, we consider and carry out some details for two
cases of domains with non-smooth boundary.

3.1 Domains with Corners

Given θ ∈ [0, π/2] and h > 0, we say that � satisfies the (θ, h)-uniform interior
cone condition, if for every x ∈ � there exists a finite right spherical cone Cx (with
vertex at x and axis in some direction ex ), having opening width θ and height h,
such that

Cx ⊂ � and Cx ∩ � = {x} .

Theorem 3.1 Take p ∈ [1,∞). Let � ⊂ R
N be a bounded domain satisfying the

(θ, h)-uniform interior cone condition and let L be the elliptic operator defined by
(1.1)–(1.2).

If v ∈ �α(�), then (2.8) holds true for some optimal constant K , which only
depends on N , p, α, λ, �, d�/h, and θ .

Proof The proof runs similarly to that of Theorem 2.3. We just have to take care of
the bound for K .
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Let x1 and x2 be the usual extremum points for v on �. This time, instead, we
define the two points yj = xj − σexj , j = 1, 2, for

0 < σ <
h

1 + sin θ
.

Notice that, in view of the (θ, h)-uniform interior cone condition, the ball
Bσ sin θ (yj ) is contained in �. Thus, by proceeding as in the proof of Theorem 2.3
(this time applying Theorem 2.1 with r = sin θ

C
σ and x0 = yj , j = 1, 2), we arrive

at the inequality

max
�

v − min
�

v ≤ 2

[(
C

c sin θ

)N/p

‖v‖p,�
(

2σ

d�

)−N/p

+ [v]α,�
(

2σ

d�

)α
]
,

for every 0 < σ < h/(1 + sin θ). Hence, this time we can choose

2σ ∗

d�
=

[
N

αp

(
C

c sin θ

)N/p ‖v‖p,�
[v]α,�

]p/(N+αp)

,

and obtain that (2.8) holds true with

K ≤ max

[
2
(

1 + αp

N

)
,

(
d�

h

)α

(1 + sin θ)α
](

N

αp

) αp
N+αp

(
C

c sin θ

) αN
N+αp

,

(3.1)

if σ ∗ < h/(1 + sin θ).
On the other hand, if σ ∗ ≥ h/(1 + sin θ), by (1.3) we have that

max
�

v − min
�

v ≤ 2α [v]α,� ≤
(

2σ ∗

h

)α

(1 + sin θ)α [v]α,� =
(

N

αp

) αp
N+αp

(
C

c sin θ

) αN
N+αp

(
d�

h

)α

(1 + sin θ)α [v]
N

N+α p

α,� ‖v‖
αp

N+αp

p,� .

Again, (2.8) and (3.1) hold true. ��

3.2 Locally John’s Domains

Following [11, Definition 3.1.12], we say that a bounded domain � ⊂ R
N satisfies

the (b0, R)-local John condition if there exist two constants, b0 > 1 and R > 0, with
the following properties. For every x ∈ � and r ∈ (0, R] we can find xr ∈ Br(x)∩�
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such that Br/b0(xr ) ⊂ �. Also, for each z in the set �r(x) defined by Br(x)∩�, we
can find a rectifiable path γz : [0, 1] → �, with length ≤ b0r , such that γz(0) = z,
γz(1) = xr , and

dist(γz(t), �) >
|γz(t) − z|

b0
for any t > 0. (3.2)

The constants b0, R, the point xr , and the curve γz are respectively called John’s
constants, John’s center (of �r(x)), and John’s path. The class of domains
satisfying the local John condition is huge and contains, among others, the so-called
non-tangentially accessible domains (see [11, Lemma 3.1.13]).

Theorem 3.2 Take p ∈ [1,∞). Let � ⊂ R
N be a bounded domain satisfying the

(b0, R)-local John condition and letL be the elliptic operator defined by (1.1)–(1.2).
If v ∈ �α(�), then (2.8) holds true for some optimal constant K , which only

depends on N , p, α, λ, �, d�/R, and b0.

Proof Let x be one of the usual extremum points for v on �. Let γx be a John’s path
from x to the John’s center xR of �R(x). Since BR/b0(xR) ⊂ � we have that

|x − xR| ≥ dist(xR, �) >
R

b0
.

Thus, for 0 < σ < R/b0, we can find a point y on the John’s curve γx such that
|x − y| = σ . Hence, by (1.3) we have that (2.9) still holds true.

In view of (3.2) we have that Bσ/b0(y) ⊂ �. Thus, proceeding as we did to obtain
Eq. (2.5) (this time applying Theorem 2.1 with r = σ/(Cb0) and x0 = y), we get
that

|v(y)| ≤
( |�|

|B|
) 1

p
[
C b0

c σ

]N/p

‖v‖p,�.

This, (2.9), and the inequality |�| ≤ |B| (d�/2)N then yield that

max
�

v − min
�

v ≤ 2

[(
C b0

c

)N/p (
2 σ

d�

)−N/p

‖v‖p,� + [v]α,�
(

2 σ

d�

)α
]
,

for every 0 < σ < R/b0. Hence, this time we can choose

2 σ ∗

d�
=

[
N

α p

(
C b0

c

)N/p ‖v‖p,�
[v]α,�

]p/(N+αp)

, (3.3)
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and have that (2.8) holds true with

K ≤ max

[
2
(

1 + αp

N

)
,

(
d�b0

R

)α](
N

αp

) αp
N+αp

(
Cb0

c

) αN
N+αp

, (3.4)

if σ ∗ < R/b0.
On the other hand if σ ∗ ≥ R/b0, since by (1.3) we have that

max
�

v − min
�

v = v(x1) − v(x2) ≤ 2α [v]α,�
(
σ ∗b0

R

)α

≤ [v]α,�
(
2 σ ∗)α

(
b0

R

)α

,

by (3.3) we immediately get

max
�

v − min
�

v ≤
(
d�b0

R

)α (
N

αp

) αp
N+αp

(
Cb0

c

) αN
N+αp [v]

N
N+α p

α,� ‖v‖αp/(N+αp)
p,� .

Hence, (2.8) and (3.4) still hold true. ��
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Asymptotic Behavior of Solutions for a
Fourth Order Parabolic Equation with
Gradient Nonlinearity via the Galerkin
Method

Nobuhito Miyake and Shinya Okabe

Abstract In this paper we consider the initial-boundary value problem for a fourth
order parabolic equation with gradient nonlinearity. The problem is regarded as the
L2-gradient flow for an energy functional which is unbounded from below. We first
prove the existence and the uniqueness of solutions to the problem via the Galerkin
method. Moreover, combining the potential well method with the Galerkin method,
we study the asymptotic behavior of global-in-time solutions to the problem.

Keywords Fourth order parabolic equation · Gradient nonlinearity · Epitaxial
growth · Galerkin method

1 Introduction

We consider the following initial-boundary value problem for a fourth order
parabolic equation with gradient nonlinearity:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + (−Δ)2u = −∇ · (|∇u|p−2∇u) in Ω × (0, T ),

∂νu = ∂νΔu = 0 on ∂Ω × (0, T ),

u(·, 0) = u0(·) in Ω.

(P)

Here, Ω ⊂ R
N (N ≥ 2) is a smooth bounded domain, u0 ∈ L2(Ω), p > 2,

T > 0, ∂t := ∂/∂t and ∂ν denotes the outer normal derivative to ∂Ω . In this paper
we show the existence and the uniqueness of local-in-time solutions to problem (P)
and consider the asymptotic behavior of global-in-time solutions to problem (P) via
the Galerkin method.
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Fourth order parabolic equations with gradient nonlinearity appear in a model
of thin film growth. King–Stein–Winkler [8] studied the following continuum
model for epitaxial thin film growth proposed by Ortiz–Repetto–Si [11], based on
phenomenological considerations by Zangwill [15]:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + (−Δ)2u = ∇ · f (∇u) + g in Ω × (0, T ),

∂νu = ∂νΔu = 0 on ∂Ω × (0, T ),

u(·, 0) = u0(·) in Ω.

(1)

In the paper [8], they assumed that (1) has a gradient structure and the corresponding
energy is bounded from below (for example, f (z) = |z|p−2z − z and g ≡ 0).
Under these conditions, they studied the existence of global-in-time solutions and
large time behavior of solutions to (1). Recently problem (1) was studied in the
mathematical literature (e.g., see [4, 17, 18]). However, the approaches which were
used in these papers cannot be applied directly to problem (P). Indeed, problem (P)
is regarded as the L2-gradient flow for the energy functional

E(u) := 1

2

ˆ
Ω

|Δu|2 dx − 1

p

ˆ
Ω

|∇u|p dx

and the functional E is unbounded from below due to p > 2.
On the other hand, problem (P) was studied by Sandjo–Moutari–Gningue [13]

via the semigroup approach. They showed the existence of local-in-time solutions
to problem (P) under the condition 3 < p < 4. The assumption for p was required
for the Lipschitz continuity of the nonlinear term and hence this approach cannot be
adapted for the case 2 < p < 3 in problem (P). However, as in the result [7] which
is the whole space case for problem (P), the restriction p > 3 should be eliminated.

In this paper we prove the existence of local-in-time solutions to problem (P) in
the case

(a) u0 ∈ H 2
N (Ω) and 2 < p < pS, or (b) u0 ∈ L2

N (Ω) and 2 < p < p∗,

where

L2
N (Ω) :=

{
v ∈ L2(Ω)

∣∣∣∣
ˆ
Ω

v dx = 0

}
⊂ L2(Ω),

H 2
N (Ω) :=

{
v ∈ H 2(Ω) ∩ L2

N (Ω) | ∂νv = 0 on ∂Ω
}

⊂ H 2(Ω),

and

p∗ := 2 + 4

N + 2
, pS :=

⎧
⎪⎨

⎪⎩

2N

N − 2
if N ≥ 3,

∞ if N = 2.
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Moreover, we study the asymptotic behavior of global-in-time solutions to prob-
lem (P) in the case (a). In order to formulate a definition of the solution to
problem (P), we set

V :=
{
ϕ ∈ H 1(0, T ;L2

N (Ω)) ∩ L2(0, T ;H 2
N (Ω)) | ∇ϕ ∈ (Lp(0, T ;Lp(Ω)))N

}
.

Definition 1.1 Let u0 ∈ L2
N (Ω) and T > 0. We say that a function

u ∈ C([0, T ];L2
N (Ω)) ∩ L2(0, T ;H 2

N (Ω)) with ∇u ∈ (Lp(0, T ;Lp(Ω)))N

is a solution to problem (P) in Ω × [0, T ] if u satisfies
ˆ
Ω

[u(T )ϕ(T ) − u0ϕ(0)] dx

−
ˆ T

0

ˆ
Ω

u∂tϕ dx dt +
ˆ T

0

ˆ
Ω

[
ΔuΔϕ − |∇u|p−2∇u · ∇ϕ

]
dx dt = 0

(2)

for ϕ ∈ V . Moreover, we say that u is a global-in-time solution to problem (P) if u
is a solution to problem (P) in Ω × [0, T ′] for all T ′ > 0.

The first and the second main results of this paper are the existence and
the uniqueness of local-in-time solutions to problem (P) in the case (a) and (b)
respectively:

Theorem 1.1 Let u0 ∈ H 2
N (Ω) and assume that 2 < p < pS . Then the following

hold:
(i) There exist T > 0 and a solution u to problem (P) inΩ × [0, T ]. Moreover, the

solution u satisfies

u ∈ H 1(0, T ;L2
N (Ω))∩Cw([0, T ];H 2

N (Ω)) with ∇u ∈ (C([0, T ];Lp(Ω)))N .

(ii) If u1 and u2 are solutions to problem (P) in Ω × [0, T ] for some T > 0 and
satisfy

∇u1,∇u2 ∈ (L∞(0, T ;Lp(Ω)))N,

then it holds that u1 ≡ u2 in Ω × [0, T ].
Theorem 1.2 Let u0 ∈ L2

N (Ω) and assume that 2 < p < p∗. Then there exist
T > 0 and a unique solution u to problem (P) in Ω × [0, T ].
The precise definition of the space Cw([0, T ];H 2

N (Ω)), see Sect. 2.
The other purpose of this paper is to study the asymptotic behavior of global-in-

time solutions to problem (P) in the case (a). In order to state our main result on
this topic, we introduce several notations. Let 0 < μ1 < μ2 < · · · be the strictly
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monotone increasing divergent sequence of all eigenvalues of the boundary value
problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δψ = μψ in Ω,

∂νψ = 0 on ∂Ω,ˆ
Ω

ψ dx = 0.

(3)

Let P0 be the zero map. For each k ∈ N, we define Pk as the projection from
L2
N (Ω) to the subspace spanned by the eigenfunctions corresponding to μ1, μ2,

· · · , μk . Let k∗ ∈ N be the number such that

μ2
k∗ < (p − 1)μ2

1 ≤ μ2
k∗+1. (4)

We note that the condition p > 2 implies the existence of the number k∗. As a class
of initial data, we set

W :=
{
v ∈ H 2

N (Ω) | E(v) < d, I (v) > 0
}
,

where I denotes the Nehari functional given by

I (v) :=
ˆ
Ω

|Δv|2 dx −
ˆ
Ω

|∇v|p dx, v ∈ H 2
N (Ω),

and

d :=
(

1

2
− 1

p

)
S

p
p−2
p > 0, Sp := inf

v∈H 2
N (Ω),v �=0

‖Δv‖2
L2(Ω)

‖∇v‖2
Lp(Ω)

> 0. (5)

Then the third main result of this paper is stated as follows:

Theorem 1.3 Let u0 ∈ W and assume that 2 < p < pS . Then problem (P)
possesses the unique global-in-time solution u such that

‖Δu(t)‖L2(Ω) = O(e−μ2
1t ) as t → ∞. (6)

Moreover, it holds that

‖u(t) − Pk−1u(t)‖L2(Ω) = O(e−μ2
kt ) as t → ∞, 1 ≤ k ≤ k∗,

(7)

‖u(t) − Pk∗u(t)‖L2(Ω) = O(e−(1−ε)(p−1)μ2
1t ) as t → ∞, 0 < ε < 1,

(8)

where k∗ is the positive integer satisfying (4).
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One of the main ingredients of the strategy in the proof of Theorem 1.3 is the
potential well method introduced by Sattinger [14] and Payne–Sattinger [12]. The
assumption u0 ∈ W implies that E is bounded from below along the orbit of the
solution to problem (P) starting from u0. Then, combining the Galerkin method,
one can prove that problem (P) has a global-in-time solution. Indeed, [5] proved
the existence of global-in-time solutions to a related problem by the same strategy.
However, the strategy does not show the existence of local-in-time solutions to
problem (P) with more general initial data. Moreover, it is not clear how to derive
the asymptotic behavior of global-in-time solutions to problem (P), because useful
mathematical tools such as the comparison principle do not hold for fourth order
parabolic problems. In Theorems 1.1 and 1.2, making use of the Galerkin method
and the Aubin–Lions–Simon compactness theorem, we prove the existence of local-
in-time solutions to problem (P) without using the potential well method. To the best
of our knowledge, this is the first paper to prove the solvability of problem (P) for
u0 ∈ L2(Ω) and 2 < p < 3. Moreover, our argument based on the Galerkin method
and the potential well method enable to derive the precise asymptotic behavior of
the global-in-time solutions as in Theorem 1.3.

This paper is organized as follows. We introduce some notations and collect
several useful propositions in Sect. 2. We construct a solution to problem (P) with
the Galerkin method in Sect. 3. In Sect. 4, we give the characterization of stable
sets and study the asymptotic behavior of global-in-time solutions which converge
to 0. In appendix, we prove the uniqueness of solutions to problem (P) under the
assumption in Theorems 1.1 and 1.2.

2 Preliminaries

In this section we collect several notations and propositions which are used in this
paper. In what follows, we rewrite the norm ‖ · ‖Lq(Ω) as ‖ · ‖q for q ∈ [1,∞] and
the L2-inner product (·, ·)L2(Ω) as (·, ·)2.

We mention several remarks on L2
N (Ω) and H 2

N (Ω). As stated in [8], the map
Δ : H 2

N (Ω) → L2
N (Ω) is a homeomorphism and hence there exists a constant

c1 = c1(N) > 0 such that

c−1
1

2∑

k=0

‖∇kv‖2
2 ≤ ‖v‖2

H 2
N

:= ‖Δv‖2
2, v ∈ H 2

N (Ω). (9)

Moreover, H 2
N (Ω) is a Hilbert space with the inner product

(v,w)H 2
N

:=
ˆ
Ω

ΔvΔw dx, v,w ∈ H 2
N (Ω).



252 N. Miyake and S. Okabe

Let X be a real Banach space and X∗ denote the dual space of X. We denote
Cw([0, T ];X) by the set of all X-valued weak continuous functions. Here, we say
that u is an X-valued weak continuous function if for all F ∈ X∗ the function

[0, T ] � s �→ X∗〈F, u(s)〉X ∈ R

is continuous.
By (5) we see that Sp is the best constant for the following inequality:

Sp‖∇v‖2
p ≤ ‖Δv‖2

2, v ∈ H 2
N (Ω). (10)

We collect several useful propositions. The Gagliard–Nirenberg inequality (cf.
[1, Theorems 5.2 and 5.8]) and (9) lead the following interpolation inequality:

Proposition 2.1 Let 2 < p < pS . Then there exists a positive constant c2
depending only on N , Ω and p such that

‖∇v‖p ≤ c2‖Δv‖θ2‖v‖1−θ
2 , v ∈ H 2

N (Ω),

where

θ := N(p − 2)

4p
+ 1

2
∈
(1

2
, 1

)
. (11)

Next we mention the property of the space of weak continuous functions (cf. [2,
Lemma II.5.9]).

Proposition 2.2 Let T > 0, X be a separable and reflexive real Banach space and
Y be a real Banach space such that the embeddingX ⊂ Y is continuous. Then

L∞(0, T ;X) ∩ Cw([0, T ]; Y ) = Cw([0, T ];X).

We introduce the Aubin–Lions–Simon compactness theorem (cf. [2, Theo-
rem II.5.16]).

Proposition 2.3 LetX0,X1,X2 be Banach spaces with the following properties:

• The embeddingX0 ⊂ X1 is compact.
• The embeddingX1 ⊂ X2 is continuous.

Let T > 0, q , r ∈ [1,∞] and set

Eq,r := {
v ∈ Lq(0, T ;X0)

∣∣ ∂t v ∈ Lr(0, T ;X2)
}
.

Then the following hold:

• If q �= ∞, then the embedding Eq,r ⊂ Lq(0, T ;X1) is compact.
• If q = ∞ and r > 1, then the embedding Eq,r ⊂ C([0, T ];X1) is compact.
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We close Sect. 2 with a remark on the assumption on initial data.

Remark 2.1 Without loss of generality, we may assume that u0 and the solution u

to problem (P) satisfy

ˆ
Ω

u dx =
ˆ
Ω

u0 dx = 0, t ∈ (0, T ).

Indeed, setting

ũ(x, t) := u(x, t) − 1

|Ω |
ˆ
Ω

u0 dx and ũ0(x) := u0(x) − 1

|Ω |
ˆ
Ω

u0 dx,

we see that ũ is a solution to problem (P) with ũ0. Formally, integrating the both
side of the equation in problem (P), we have

d

dt

ˆ
Ω

u(x, t) dx = d

dt

ˆ
Ω

ũ(x, t) dx = 0

for t ∈ (0, T ). Hence it holds that

u is a solution to problem (P)

⇐⇒ ũ is a solution to problem (P) replaced u0 by ũ0.

3 Proof of Theorems 1.1 and 1.2

In this section we prove Theorems 1.1 and 1.2. We first construct approximate
solutions we use in the both of proofs. We consider the eigenvalue problem for
the Laplace equation under Neumann boundary condition:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δψ = λψ in Ω,

∂νψ = 0 on ∂Ω,ˆ
Ω

ψ dx = 0.

(12)

Let {(λk, ψk)}∞k=1 be a family of pairs with the following properties:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

For each k ∈ N, (λ,ψ) = (λk, ψk) satisfies (12),

0 < λ1 ≤ λ2 ≤ · · · ,
{ψk}∞k=1 : orthonormal basis of L2

N (Ω),

{λ−1
k ψk}∞k=1 : orthonormal basis of H 2

N (Ω).

(13)
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For each m ∈ N, we consider the solution am = (am
1 , · · · , am

m) to the following
ODE system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dam
k

dt
(t) + λ2

ka
m
k (t)=

ˆ
Ω

∣∣∣
m∑

i=1

am
i (t)∇ψi

∣∣∣
p−2 m∑

j=1

am
j (t)∇ψj · ∇ψk dx

for k ∈ {1, · · · ,m}, t ∈ (0, T ),

am
k (0) = (u0, ψk)2 for k ∈ {1, · · · ,m}.

(14)

We remark that there exists a unique solution am ∈ C1([0, T ];Rm) to (14) for some
T > 0 in the classical sense. Moreover, the solution can be uniquely extended if
|am

k | is bounded for each k ∈ {1, · · · ,m}. Define Tm > 0 as the maximal existence
time of the solution to (14), that is,

Tm := sup
{
τ > 0

∣∣∣ ∃am ∈ C1([0, τ ];Rm) : unique classical solution to (14)
}
.

Define um as

um(x, t) :=
m∑

k=1

am
k (t)ψk(x), (x, t) ∈ Ω × [0, Tm).

Since {ψk}∞k=1 satisfies (12) and (13), um satisfies

d

dt
(um(t), ψk)2 + (Δum(t),Δψk)2 =

ˆ
Ω

|∇um(t)|p−2∇um(t) · ∇ψk dx (15)

for k ∈ {1, · · · ,m} and t ∈ [0, Tm). Multiplying ∂t a
m
k by (15), summing k from 1

to m and integrating it on (t ′, t), we have

E(um(t)) +
ˆ t

t ′
‖∂tum(τ)‖2

2 dτ = E(um(t ′)), 0 ≤ t ′ ≤ t < Tm. (16)

Similarly, multiplying am
k by (15), we obtain

‖um(t)‖2
2 +

ˆ t

t ′
I (um(τ)) dτ = ‖um(t ′)‖2

2, 0 ≤ t ′ ≤ t < Tm. (17)

In particular, (16) implies that E(um(t)) is non-increasing with respect to t .
We prove Theorems 1.1 and 1.2 in Sects. 3.1 and 3.2, respectively.
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3.1 Proof of Theorem 1.1

By a standard argument in [10] we can prove the uniqueness of solutions to
problem (P). Thus we postpone the proof of the uniqueness to Sect. 5.1.

We divide the proof into three steps.

Step 1 : We derive a priori estimate of {um}∞m=1. Since u0 ∈ H 2
N (Ω), (10) and (13)

imply that

K = K(u0) := sup
m∈N

E(um(0)) < ∞, E(um(0)) → E(u0) as m → ∞.

Moreover, it follows from (10), (12) and (13) that

‖∇um(0)‖2
p ≤ S−1

p ‖Δum(0)‖2
2

= S−1
p

m∑

k=1

λ2
k(u0, ψk)

2
2 = S−1

p

m∑

k=1

(u0, λ
−1
k ψk)

2
H 2
N

≤ S−1
p ‖Δu0‖2

2.

(18)

Let L > S
−p/2
p ‖Δu0‖p2 and set

TL,m := sup

{
τ > 0

∣∣∣∣∣ sup
0≤t≤τ

‖∇um(t)‖pp ≤ L

}
≤ Tm.

Since ∇um ∈ (C([0, Tm);Lp(Ω)))N , we deduce from (18) that TL,m > 0. By (16)
and the definition of E we have

‖Δum(t)‖2
2 = 2E(um(t)) + 2

p
‖∇um(t)‖pp ≤ 2K + 2

p
L, (19)

E(um(t)) = 1

2
‖Δum(t)‖2

2 − 1

p
‖∇um(t)‖pp ≥ − 1

p
L, (20)

ˆ t

0
‖∂tum(τ)‖2

2 dτ = E(um(0)) − E(um(t)) ≤ K + 1

p
L, (21)

for t ∈ [0, TL,m], where we used (20) in (21).

Step 2 : We show a lower estimate for TL,m. It follows from (21) that

‖um(t) − um(t ′)‖2
2 =

ˆ
Ω

(ˆ t

t ′
∂tu

m(τ) dτ

)2

dx

≤ (t − t ′)
ˆ t

t ′
‖∂tum(τ)‖2

2 dτ ≤
(
K + 1

p
L

)
(t − t ′)

(22)



256 N. Miyake and S. Okabe

for 0 ≤ t ′ ≤ t ≤ TL,m. Moreover, we observe from Proposition 2.1, (19) and (22)
that

‖∇um(t) − ∇um(t ′)‖p ≤ c2‖Δum(t) − Δum(t ′)‖θ2‖um(t) − um(t ′)‖1−θ
2

≤ 23θ/2c2

(
K + L

p

)1/2

(t − t ′)(1−θ)/2
(23)

for 0 ≤ t ′ ≤ t ≤ TL,m, where c2 is obtained in Proposition 2.1 and θ is as in (11).
Hence by (18) and (23) we see that

‖∇um(t)‖p ≤ ‖∇um(0)‖p + 23θ/2c2

(
K + L

p

)1/2

t(1−θ)/2

≤ S
−1/2
p ‖Δu0‖2 + 23θ/2c2

(
K + L

p

)1/2

T
(1−θ)/2
L,m

for t ∈ [0, TL,m]. Combining this estimate with the definition of TL,m, we have

S
−1/2
p ‖Δu0‖2 + 23θ/2c2

(
K + L

p

)1/2

T
(1−θ)/2
L,m ≥ L1/p,

that is,

TL,m ≥ T∗ :=
[

p

23θ c2
2(Kp + L)

(
L1/p − S

−1/2
p ‖Δu0‖2

)2
]1/(1−θ)

(24)

for m ∈ N.

Step 3 : We construct a solution to problem (P). We observe from (19), (21) and
(24) that

sup
t∈[0,T∗]

‖Δum(t)‖2
2 ≤ 2K + 2

p
L,

ˆ T∗

0
‖∂tum(τ)‖2

2 dτ ≤ K + 1

p
L.

Then, up to subsequence, there exists u ∈ L∞(0, T∗;H 2
N (Ω))∩H 1(0, T∗;L2

N (Ω))

such that

um ∗
⇀ u weakly-* in L∞(0, T∗;H 2

N (Ω)) as m → ∞, (25)

um ⇀ u weakly in H 1(0, T∗;L2
N (Ω)) as m → ∞. (26)
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Moreover, by Proposition 2.3 we have

∇um → ∇u in (C([0, T∗];Lp(Ω)))N as m → ∞.

By Proposition 2.2 we see that u belongs to Cw([0, T∗];H 2
N (Ω)).

Recalling that um satisfies

ˆ T∗

0

ˆ
Ω

[
∂tu

mψkζ + ΔumΔψkζ − |∇um|p−2∇um · ∇ψkζ
]
dt dx = 0

for m ∈ N, k ∈ N and ζ ∈ C∞([0, T∗]), we deduce from (25) and (26) that

ˆ
Ω

[u(T∗)ζ(T∗) − u0ζ(0)] η dx

+
ˆ T∗

0

ˆ
Ω

[
−uη∂tζ + ΔuΔηζ − |∇u|p−2∇u · ∇ηζ

]
dx dt = 0

for η ∈ H 2
N (Ω) and ζ ∈ C∞([0, T∗]). By a density argument (cf. [16,

Proposition 23.23 (iii)]), we see that u satisfies (2) for ϕ ∈ V . Hence we complete
the proof of Theorem 1.1.

3.2 Proof of Theorem 1.2

Along the same line as in Sect. 3.1, we postpone the proof of the uniqueness of
solutions to Sect. 5.2. We divide the proof of Theorem 1.2 into three steps.

Step 1 : We derive a priori estimate of {um}∞m=1. Since u0 ∈ L2
N (Ω), relation (13)

implies that ‖um(0)‖2
2 ≤ ‖u0‖2

2 for m ∈ N. Let L > 0 and set

T̃L,m := sup

{
τ > 0

∣∣∣∣
ˆ τ

0
‖∇um(t)‖pp dt ≤ L

}
∈ (0, Tm].

By (17) and the definition of I we have

‖um(t)‖2
2 +

ˆ t

0
‖Δum(τ)‖2

2 dτ = ‖um(0)‖2
2 +

ˆ t

0
‖∇um(τ)‖pp dτ ≤ ‖u0‖2

2 + L

(27)

for t ∈ [0, T̃L,m].
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Step 2 : We show a lower estimate for T̃L,m. It follows from Proposition 2.1 that

ˆ t

0
‖∇um(τ)‖pp dτ

≤ c
p

2

ˆ t

0
‖Δum(τ)‖θp2 ‖um(τ)‖(1−θ)p

2 dτ

≤ c
p

2

(
sup

τ∈[0,t ]
‖um(τ)‖2

2

)(1−θ)p/2 ˆ t

0
‖Δum(τ)‖θp2 dτ

≤ c
p

2

(
sup

τ∈[0,t ]
‖um(τ)‖2

2

)(1−θ)p/2 (ˆ t

0
‖Δum(τ)‖2

2 dτ

)θp/2

t1−θp/2

(28)

for t ∈ [0, T̃L,m], where θ is as in (11). Here, we note that the condition 2 < p < p∗
is equivalent to 0 < θp < 2. If T̃L,m < ∞, it follows from (27) and (28) that

L =
ˆ T̃L,m

0
‖∇um(τ)‖pp dτ ≤ c

p

2 (‖u0‖2
2 + L)p/2T̃

1−θp/2
L,m ,

that is,

T̃L,m ≥ T̃∗ :=
(

L

c
p

2 (‖u0‖2
2 + L)p/2

)−(1−θp)/2

.

Step 3 : We construct a solution to problem (P). We observe from (27) that

sup
t∈[0,T∗]

‖um(t)‖2
2 ≤ ‖u0‖2

2 + L,

ˆ T∗

0
‖Δum(τ)‖2

2 dτ ≤ ‖u0‖2
2 + L. (29)

These clearly imply that

sup
t∈[0,T∗]

m∑

l=1

|(um(t), ψl)2|2 ≤ ‖u0‖2
2 + L. (30)

Moreover, by (15) and (29) we have

|(um(t), ψk)2 − (um(t ′), ψk)|

≤
ˆ t

t ′
‖Δum(τ)‖2‖Δψk‖2 dτ +

ˆ t

t ′

ˆ
Ω

‖∇um(τ)‖p−1
p ‖∇ψk‖p dτ

≤ (‖u0‖2
2 + L)1/2‖Δψk‖2(t − t ′)1/2 + L(p−1)/p‖∇ψk‖p(t − t ′)1/p
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for 1 ≤ k ≤ m and 0 ≤ t ′ ≤ t ≤ T̃∗. Then, extracting a subsequence, we find
ck ∈ C([0, T̃∗]) such that

(um(t), ψk)2 → ck(t) uniformly in [0, T̃∗] as m → ∞

for k ∈ N. Set

u(t) :=
∞∑

k=1

ck(t)ψk, t ∈ [0, T̃∗].

Then it follows from (13), (29) and (30) that ‖u(t)‖2
2 ≤ ‖u0‖2

2 + L and

|(um(t) − u(t), η)2|

≤
M∑

k=1

|(η,ψk)2|
∣∣(um(t) − u(t), ψk)2

∣∣ +
∣∣∣∣∣∣

(
um(t) − u(t),

∞∑

k=M+1

(η, ψk)2ψk

)

2

∣∣∣∣∣∣

≤
M∑

k=1

|(η,ψk)2|
∣∣(um(t) − u(t), ψk)2

∣∣ + 21/2(‖u0‖2
2 + L)1/2

( ∞∑

k=M+1

(η,ψk)
2
2

)1/2

for η ∈ L2
N (Ω). Hence we see that (um(t), η)2 converges to (u(t), η)2 uniformly

in [0, T̃∗] for η ∈ L2
N (Ω) and u ∈ Cw([0, T̃∗];L2

N (Ω)). Along the same argument
as in step 3 in Sect. 3.1, we see that

um ⇀ u weakly in L2(0, T∗;H 2
N (Ω)) as m → ∞,

∂um

∂xj
⇀

∂u

∂xj
weakly in Lp(0, T∗;Lp(Ω)) as m → ∞ for 1 ≤ j ≤ N

and u satisfies (2) for ϕ ∈ V . Moreover, we observe from the same argument as in
[10, Chapter III, Section 4] that u ∈ C([0, T̃∗];L2

N (Ω)). Hence we complete the
proof of Theorem 1.2.

4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We first show two lemmas.

Lemma 4.1 Let v ∈ H 2
N (Ω) \ {0} and assume that 2 < p < pS . Then

λ∗ :=
(

‖Δv‖2
2

‖∇v‖pp

) 1
p−2

> 0
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is the unique maximum point of the function

(0,∞) � λ �→ E(λv) ∈ R

and λ∗ satisfies

E(λ∗v) =
(

1

2
− 1

p

)(
‖Δv‖2

2

‖∇v‖2
p

) p
p−2

, I (λv)

⎧
⎪⎪⎨

⎪⎪⎩

> 0 if λ ∈ (0, λ∗),

= 0 if λ = λ∗,

< 0 if λ ∈ (λ∗,∞).

Moreover, it holds that

d = inf
v∈H 2

N (Ω),v �=0
E(λ∗v),

where d is defined in (5).

Lemma 4.1 follows from a direct calculation. Thus we omit the proof.

Lemma 4.2 Let u0 ∈ W and assume that 2 < p < pS . Then there exists m∗ ∈ N

such that Tm = ∞ and um(t) ∈ W for t ∈ (0,∞) if m ≥ m∗, where {um(t)}∞m=1
denotes the family of functions constructed in the proof of Theorem 1.1.

Proof Since u0 ∈ W , we find m∗ ∈ N such that

um(0) ∈ W if m ≥ m∗.

This together with (16) implies that E(um(t)) < d for m ≥ m∗ and t ∈ (0, Tm).
From now on, we let m ≥ m∗. Assume that I (um(t∗)) = 0 holds for some t∗ ∈
(0, Tm). Then by Lemma 4.1 we have

E(um(t∗)) =
(

1

2
− 1

p

)(
‖Δum(t∗)‖2

2

‖∇um(t∗)‖2
p

) p
p−2

≥ d

and it contradicts to E(um(t∗)) < d . Hence um(t) ∈ W for t ∈ (0, Tm). Moreover,
this together with (17) implies that

m∑

k=1

(am
k (t))2 = ‖um(t)‖2

2 = ‖um(0)‖2
2 −

ˆ t

0
I (um(τ)) dτ ≤ ‖u0‖2

2

for t ∈ (0, Tm). Thus we have Tm = ∞.

We are in a position to prove Theorem 1.3.
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Proof (Theorem 1.3) Let {um(t)}∞m=1 be the family of functions constructed in the
proof of Theorem 1.1 and {μk}∞k=1 be as in (3). By the variational characterization
of eigenvalues, we have

μ2
k‖v − Pk−1v‖2

2 ≤ ‖Δ(v − Pk−1v)‖2
2, k ∈ N, v ∈ H 2

N (Ω), (31)

where Pk is as in Sect. 1.
Let m∗ ∈ N be the number obtained in Lemma 4.2. From now on, we let m ≥ m∗.

By Lemma 4.2 we have

E(um(t)) < d, t > 0. (32)

Moreover, since

E(um(t)) =
(

1

2
− 1

p

)
‖Δum(t)‖2

2 + 1

p
I (um(t)), t > 0, (33)

it follows from Lemma 4.2 that

‖Δum(t)‖2
2 <

(
1

2
− 1

p

)−1

E(um(t)), t > 0. (34)

Hence, combining (32) with (34), we have

‖Δum(t)‖2
2 < S

p/(p−2)
p , t > 0, (35)

where we use (5) in (35).
In the following, we consider the decaying estimate for um. We divide the proof

into five steps.

Step 1 : We show that ‖Δum(t)‖2 → 0 as t → ∞. The argument in Step 1 is based
on [6] (see also [9]). Combining with (10), (16) and (34), we see that

‖∇um(t)‖pp ≤ S
− p

2
p ‖Δum(t)‖p2

< S
− p

2
p

(
1

2
− 1

p

)− p−2
2

E(um(t))
p−2

2 ‖Δum(t)‖2
2

≤ S
− p

2
p

(
1

2
− 1

p

)− p−2
2

E(um(0))
p−2

2 ‖Δum(t)‖2
2

=
(
E(um(0))

d

) p−2
2 ‖Δum(t)‖2

2
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for t > 0. This implies that

I (um(t)) > γ ‖Δum(t)‖2
2, t > 0, (36)

where

γ := 1 − sup
m≥m∗

(
E(um(0))

d

) p−2
2 ∈ (0, 1).

Hence by (33) and (36) we obtain

E(um(t)) <

[
1

γ

(
1

2
− 1

p

)
+ 1

p

]
I (um(t)), t > 0. (37)

On the other hand, we deduce from (17), (31) and (34) that

ˆ ∞

t

I (um(τ)) dτ ≤ ‖u(t)‖2
2 ≤ μ−2

1 ‖Δum(t)‖2
2 < μ−2

1

(
1

2
− 1

p

)−1

E(um(t))

(38)

for t > 0. Thus it follows from (37) and (38) that

ˆ ∞

t

E(um(τ)) dτ < AE(um(t)), i.e.,
d

dt

[
e

t
A

ˆ ∞

t

E(um(τ)) dτ

]
< 0,

(39)

for t > 0, where

A := 1

μ2
1

(
1

γ
+ 2

p − 2

)
.

Therefore, combining (32) with (39), we have

ˆ ∞

t

E(um(τ)) dτ < e1− t
A

ˆ ∞

A

E(um(τ)) dτ < Ae1− t
A E(um(A)) < Ade1− t

A

(40)

for t > A. Since it follows from um(t) ∈ W and (33) that E(um(t)) > 0, by (16)
and (34) we see that

ˆ ∞

t

E(um(τ)) dτ ≥
ˆ A+t

t

E(um(τ)) dτ

≥ AE(um(A + t)) > A

(
1

2
− 1

p

)
‖Δum(A + t)‖2

2

(41)
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for t > 0. This together with (40) implies that

‖Δum(t)‖2
2 ≤ e2S

p
p−2
p e− t

A , t > 2A.

Therefore, recalling (35), we obtain

‖Δum(t)‖2
2 ≤ cAe

− t
A , t > 0, (42)

where cA is a constant which is independent of m and t .

Step 2 : We derive a modified decay rate. Fix ε ∈ (0, 1) arbitrarily. We first prove
the following: there exists cε > 0 such that

‖um(t)‖2 ≤ cεe
−(1−ε)μ2

1t , t > 0. (43)

Multiplying am
k by (15) and summing k from 1 to m, we see that

1

2

d

dt
‖um(t)‖2

2 + ‖Δum(t)‖2
2 = ‖∇um(t)‖pp, t > 0. (44)

This together with (10) implies that

1

2

d

dt
‖um(t)‖2

2 + ‖Δum(t)‖2
2 ≤ S

−p/2
p ‖Δum(t)‖p2 , t > 0. (45)

Thanks to (42), we find Tε > 0 such that

S
−p/2
p ‖Δum(t)‖p−2

2 < ε, t > Tε. (46)

Thus we observe from (45) and (46) that

d

dt
‖um(t)‖2

2 + 2(1 − ε)‖Δum(t)‖2
2 ≤ 0, t > Tε.

Hence by (31), we have

d

dt

(
e2(1−ε)μ2

1t‖um(t)‖2
2

)
≤ 0, i.e., e2(1−ε)μ2

1t‖um(t)‖2
2 ≤ e2(1−ε)μ2

1Tε‖um(Tε)‖2
2

for t > Tε. This clearly implies (43), because it follows from (9) and (35) that
‖um(t)‖2

2 < c1S
p/(p−2)
p for t > 0.

Moreover, it follows from (17), (37) and (43) that for ε ∈ (0, 1)

ˆ ∞

t

E(um(τ)) dτ < cε

[
1

γ

(
1

2
− 1

p

)
+ 1

p

]
e−2(1−ε)μ2

1t , t > 0.
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Along the same argument as in (41), we have

ˆ ∞

t

E(um(τ)) dτ ≥
(

1

2
− 1

p

)
‖Δum(t + 1)‖2

2, t > 0.

Thus we find that c̃ε > 0 such that

‖Δum(t)‖2 ≤ c̃εe
−(1−ε)μ2

1t , t > 0. (47)

Step 3 : We derive the precise decay rate: there exist c∗, c̃∗ > 0 such that

‖um(t)‖2 ≤ c∗e−μ2
1t , t > 0, (48)

‖Δum(t)‖2 ≤ c̃∗e−μ2
1t , t > 0. (49)

Fix ε ∈ (0, 1) arbitrarily. By (31), (44), (47) and Proposition 2.1 we have

d

dt
‖um(t)‖2

2 + 2μ2
1‖um(t)‖2

2 ≤ 2cp2 c̃
θp
ε e−θp(1−ε)μ2

1t‖um(t)‖(1−θ)p

2 , t > 0,

that is,

d

dt

(
e2μ2

1t‖um(t)‖2
2

)
≤ 2cp2 c̃

θp
ε e(θpε−(p−2))μ2

1t
(
e2μ2

1t‖um(t)‖2
2

)(1−θ)p/2
, t > 0,

where θ is as in (11). Since p > 2 implies that

(1 − θ)p = 2N − (N − 2)p

4
∈ (0, 1),

we have

(
e2μ2

1t‖um(t)‖2
2

)1−(1−θ)p/2 ≤ ‖u0‖2−(1−θ)p

2 + 4cp2 c̃
θp
ε

2 − (1 − θ)p

ˆ t

0
e(θpε−(p−2))μ2

1s ds

for t > 0. Taking ε > 0 sufficiently small, we see that (48) holds for some positive
constant c∗ > 0. Similarly to (47), we obtain (49).

Step 4 : We show the asymptotic behavior of um. Fix ε ∈ (0, 1) and 1 ≤ k ≤ k∗
arbitrarily. We first prove the following: there exists cε,k > 0 such that

‖um(t) − Pk−1u
m(t)‖2 ≤ cε,ke

−(1−ε)μ2
kt , t > 0, (50)
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where μk , Pk are as in Sect. 1. Similarly to (44), we see that

1

2

d

dt
‖um(t) − Pk−1u

m(t)‖2
2 + ‖Δ(um(t) − Pk−1u

m(t))‖2
2

=
ˆ
Ω

|∇um(t)|p−2∇um(t) · ∇(um(t) − Pk−1u
m(t)) dx, t > 0.

(51)

Combining (51) with (10) and (49) we have

1

2

d

dt
‖um(t) − Pk−1u

m(t)‖2
2 + ‖Δ(um(t) − Pk−1u

m(t))‖2
2

≤ ‖∇um(t)‖p−1
p ‖∇(um(t) − Pk−1u

m(t))‖p
≤ S

−p/2
p c̃

p−1∗ e−(p−1)μ2
1t‖Δ(um(t) − Pk−1u

m(t))‖2

≤ ε‖Δ(um(t) − Pk−1u
m(t))‖2

2 + S
−p
p c̃

2(p−1)∗
4ε

e−2(p−1)μ2
1t

for t > 0. Hence by (31) we obtain

d

dt

(
e2(1−ε)μ2

kt‖um(t) − Pk−1u
m(t)‖2

2

)
≤ S

−p
p c̃

2(p−1)∗
2ε

e−2((p−1)μ2
1−μ2

k)t

and we can find the constant cε,k > 0 satisfying (50). Along the same line as the
above argument, we find cε,k∗+1 > 0 such that

‖um(t) − Pk∗u
m(t)‖2 ≤ cε,k∗+1e

−(1−ε)(p−1)μ2
1t , t > 0. (52)

On the other hand, we observe from (10), (49), (50) and (51) that

ˆ ∞

t

‖Δ(um(τ) − Pk−1u
m(τ))‖2

2 dt

≤ 1

2
‖um(t) − Pk−1u

m(t)‖2
2 +

ˆ ∞

t

‖∇um(τ)‖p−1
p ‖∇(um(t) − Pk−1u

m(t))‖p dτ

≤ 1

2
cε,ke

−2(1−ε)μ2
kt + c̃

p−1∗ S
−p/2
p

ˆ ∞

t

e−(p−1)μ2
1τ ‖Δ(um(t) − Pk−1u

m(t))‖2 dτ

≤ 1

2
cε,ke

−2(1−ε)μ2
kt + c̃

2(p−1)∗ S
−p
p

2

ˆ ∞

t

e−2(p−1)μ2
1τ dτ

+ 1

2

ˆ ∞

t

‖Δ(um(t) − Pk−1u
m(t))‖2

2 dτ
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and hence there exists c̃ε,k > 0 such that

ˆ ∞

t

‖Δ(um(τ) − Pk−1u
m(τ))‖2

2 dt ≤ c̃ε,ke
−2(1−ε)μ2

kt , t > 0. (53)

We improve the decay rate in (50). By (10), (31), (48) and (51) we have

1

2

d

dt
‖um(t) − Pk−1u

m(t)‖2
2 + μ2

k‖um(t) − Pk−1u
m(t)‖2

2

≤ S
−p/2
p c̃

p−1∗ e−(p−1)μ2
1t‖Δ(um(t) − Pk−1u

m(t))‖2

and hence

d

dt

(
e2μ2

kt‖um(t) − Pk−1u
m(t)‖2

2

)

≤ 2S−p/2
p c̃

p−1∗ e(2μ
2
k−(p−1)μ2

1)t‖Δ(um(t) − Pk−1u
m(t))‖2

≤ S
−p
p c̃

2(p−1)∗ e2((1+δ)μ2
k−(p−1)μ2

1)t + e2(1−δ)μ2
kt‖Δ(um(t) − Pk−1u

m(t))‖2
2

for δ ∈ (0, 1). Integrating this inequality, we see that

e2μ2
kt‖um(t) − Pk−1u

m(t)‖2
2

≤ ‖u0‖2
2 + S

−p
p c̃

2(p−1)∗
ˆ t

0
e2((1+δ)μ2

k−(p−1)μ2
1)τ dτ

+
ˆ t

0
e2(1−δ)μ2

kτ‖Δ(um(τ) − Pk−1u
m(τ))‖2

2 dτ

≤ ‖u0‖2
2 + S

−p
p c̃

2(p−1)∗
ˆ t

0
e2((1+δ)μ2

k−(p−1)μ2
1)τ dτ

+
ˆ ∞

0
‖Δ(um(τ) − Pk−1u

m(τ))‖2
2 dτ

+ 2(1 − δ)μ2
k

ˆ t

0
e2(1−δ)μ2

kτ

ˆ ∞

τ

‖Δ(um(η) − Pk−1u
m(η))‖2

2 dη dτ.

Taking ε > 0, δ > 0 sufficiently small, by (53) we find c̃k > 0 such that

‖um(t) − Pk−1u
m(t)‖2 ≤ c̃ke

−μ2
kt , t > 0. (54)



Asymptotic Behavior of Solutions to a Fourth Order Semilinear Parabolic Equation 267

Step 5 : Letting m → ∞, we obtain the conclusion. It follows from the proof of
Theorem 1.1 and Lemma 4.2 that um satisfies

um ∗
⇀ u weakly-* in L∞(0, T ;H 2

N (Ω)) as m → ∞, (55)

um → u in C([0, T ];L2
N (Ω)) as m → ∞, (56)

for T ∈ (0,∞). Combining (56) with (52) and (54), we obtain (7) and (8).
We prove (6). Fix t > 0 arbitrarily. Then (49) and (55) imply that

ess sup
τ∈(t,t+1)

‖Δu(τ)‖2 ≤ lim inf
m→∞ ess sup

τ∈(t,t+1)
‖Δum(τ)‖2 ≤ c̃∗e−μ2

1t

and hence there exists N = Nt ⊂ (t, t + 1) of measure zero such that

‖Δu(τ)‖2 ≤ c̃∗e−μ2
1t , τ ∈ (t, t + 1) \ Nt .

Let {τk}∞k=1 ⊂ (t,∞) \ Nt such that τk → t as k → ∞. Since u ∈
Cw([0,∞);W 2,2

N (Ω)), we have

‖Δu(t)‖2 ≤ lim inf
k→∞ ‖Δu(τk)‖2 ≤ c̃∗e−μ2

1t .

Since t > 0 is arbitrary, we obtain (6). Therefore, Theorem 1.3 follows.

5 Appendix

In this section, we prove the uniqueness of solutions to problem (P). Let u1 and
u2 be solutions to problem (P). In what follows, by the letter C we denote generic
positive constants (which may depend on u1 and u2) and they may have different
values also within the same line.

Let t0, t1 ∈ (0, T ) with t0 < t1, h ∈ (0,min{t0, T − t1, t1 − t0}/2). Define

Wh(x, t) := 1

h

ˆ t+h

t

χ[t0,t1](τ )w(x, τ ) dτ, W̃h(x, t) := 1

h

ˆ t

t−h

Wh(x, τ ) dτ,

for (x, t) ∈ Ω × [0, T ], where w := u1 − u2 and

χ[t0,t1](t) :=
{

1 if t ∈ [t0, t1],
0 if t ∈ R \ [t0, t1].
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We remark that W̃h belongs to V and satisfies the following properties (cf. [3]):

W̃h → χ[t0,t1]w as h ↘ 0 in L2(0, T ;H 2
N (Ω)), (57)

∇W̃h → χ[t0,t1]∇w as h ↘ 0 in (Lp(0, T ;Lp(Ω)))N . (58)

Taking ϕ = W̃h in (2), we see that

−
ˆ T

0

ˆ
Ω

w∂t W̃h dx dt +
ˆ T

0

ˆ
Ω

ΔwΔW̃h dx dt

=
ˆ T

0

ˆ
Ω

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · ∇W̃h dx dt

≤ C

ˆ T

0
(‖∇u1(t)‖p−2

p + ‖∇u2(t)‖p−2
p )‖∇w(t)‖p‖∇W̃h(t)‖p dt.

(59)

On the other hand, setting

wh(x, t) := 1

h

ˆ t+h

t

w(x, τ ) dτ,

we see that

−
ˆ T

0

ˆ
Ω

w∂tW̃h dx dt

=
ˆ T

0

ˆ
Ω

∂twh(x, t)Wh(x, t) dx dt

=
ˆ t1−h

t0

ˆ
Ω

∂twh(x, t)wh(x, t) dx dt +
(ˆ t0

t0−h

+
ˆ t1

t1−h

) ˆ
Ω

∂twh(x, t)Wh(x, t) dx dt

= 1

2
(‖wh(t1 − h)‖2

2 − ‖wh(t0)‖2
2) +

(ˆ t0

t0−h

+
ˆ t1

t1−h

) ˆ
Ω

∂twh(x, t)Wh(x, t) dx dt

→ 1

2
(‖w(t1)‖2

2 − ‖w(t0)‖2
2) as h ↘ 0.

This together with (57), (58) and (59) implies that

1

2
(‖w(t1)‖2

2 − ‖w(t0)‖2
2) +

ˆ t1

t0

‖Δw(t)‖2
2 dt

≤ C

ˆ t1

t0

(‖∇u1(t)‖p−2
p + ‖∇u2(t)‖p−2

p )‖∇w(t)‖2
p dt.

(60)

Since t0, t1 ∈ (0, T ) are arbitrary, (60) holds for t0, t1 ∈ [0, T ].
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We prove the uniqueness of solutions to problem (P) in Theorems 1.1 and 1.2 in
Sect. 5.1 and Sect. 5.2, respectively.

5.1 Uniqueness of Solutions in Theorem 1.1

Since ∇u1, ∇u2 ∈ (L∞(0, T ;Lp(Ω)))N and w(0) = 0, we observe from (60) that

‖w(t)‖2
2 + 2

ˆ t

0
‖Δw(τ)‖2

2 dτ ≤ C

ˆ t

0
‖∇w(τ)‖2

p dτ

for t ∈ [0, T ]. By Proposition 2.1 and the Young inequality we have

‖w(t)‖2
2 ≤ C

ˆ t

0
‖w(τ)‖2

2 dτ, i.e.,
d

dt

(
e−Ct

ˆ t

0
‖w(τ)‖2

2 dτ

)
≤ 0.

This implies that w ≡ 0 and we complete the proof of the uniqueness in
Theorem 1.1.

5.2 Uniqueness of Solutions in Theorem 1.2

Fix t0, t1 ∈ [0, T ] arbitrarily. By Proposition 2.1 and uj ∈ C([0, T ];L2
N (Ω)) we

have

ˆ t1

t0

‖∇uj (t)‖p−2
p ‖∇w(t)‖2

p dt

≤ C

(
sup

t∈[t0,t1]
‖w(t)‖2

2

)1−θ ˆ t1

t0

‖Δuj (t)‖(p−2)θ
2 ‖Δw(t)‖2θ

2 dt

(61)

for j = 1, 2. Moreover, since 2 < p < p∗ is equivalent to 0 < θp < 2, it holds that

ˆ t1

t0

‖Δuj (t)‖(p−2)θ
2 ‖Δw(t)‖2θ

2 dt

≤ C(t1 − t0)
1−θp/2

(ˆ t1

t0

‖Δuj (t)‖2
2 dt

)(p−2)θ/2 (ˆ t1

t0

‖Δw(t)‖2
2 dt

)θ

≤ C(t1 − t0)
1−θp/2

(ˆ t1

t0

‖Δw(t)‖2
2 dt

)θ
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for j = 1, 2. This together with (60) and (61) we have

1

2
(‖w(t1)‖2

2 − ‖w(t0)‖2
2) +

ˆ t1

t0

‖Δw‖2
2 dt

≤ C(t1 − t0)
1−θp/2

(ˆ t1

t0

‖Δw(t)‖2
2 dt

)θ
(

sup
t∈[t0,t1]

‖w(t)‖2
2

)1−θ

≤ 1

2

ˆ t1

t0

‖Δw(t)‖2
2 dt + C(t1 − t0)

(2−θp)/2(1−θ) sup
t∈[t0,t1]

‖w(t)‖2
2,

that is,

‖w(t1)‖2
2 ≤ ‖w(t0)‖2

2 + c0(t1 − t0)
(2−θp)/2(1−θ) sup

t∈[t0,t1]
‖w(t)‖2

2, (62)

where c0 > 0 is a constant depending on N , p, Ω , u1 and u2. Let δ > 0 be such
that

c0δ
(2−θp)/2(1−θ) <

1

2
.

Since w(0) = 0, we observe from (62) and 0 < θp < 2 that w(t) = 0 for t ∈ [0, δ].
Iterating this argument, we obtain w ≡ 0 in [0, T ] and we complete the proof of the
uniqueness in Theorem 1.2.
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A Note on Radial Solutions to the Critical
Lane-Emden Equation with a Variable
Coefficient

Daisuke Naimen and Futoshi Takahashi

Abstract In this note, we consider the following problem

{
−�u = (1 + g(x))u

N+2
N−2 , u > 0 in B,

u = 0 on ∂B,

where N ≥ 3 and B ⊂ R
N is the unit ball centered at the origin and g(x) is a

radial Hölder continuous function such that g(0) = 0. We prove the existence and
nonexistence of radial solutions by the variational method with the concentration
compactness analysis and the Pohozaev identity.

Keywords Elliptic equation · Variational method · Critical problem

1 Introduction

We study the following problem

{
−�u = (1 + g(x))u

N+2
N−2 , u > 0 in B

u = 0 on ∂B,
(1.1)

where B ⊂ R
N is the unit ball centered at the origin with N ≥ 3, g is a locally

Hölder continuous function in B and radial, i.e., g(x) = g(|x|). We note that a
typical case is given by g(x) = |x|β with β ≥ 0. We will show some existence and
nonexistence results for (1.1).
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First let us consider the next basic problem which is extensively investigated by
many authors;

{
−�u = u

N+2
N−2 , u > 0 in �,

u = 0 on ∂�,
(1.2)

where � is a smooth bounded domain in R
N with N ≥ 3. Since the nonlinearity

u
N+2
N−2 has the critical growth, as is well-known, due to the lack of the compactness of

the associated Sobolev embeddingH 1
0 (�) ↪→ L

2N
N−2 (�), the existence/nonexistence

of solutions of (1.2) becomes a very delicate and interesting question. In fact, in
contrast to the subcritical case, we can prove that (1.2) has no smooth solution if �
is a star-shaped domain by the Pohozaev identity [15] (see also [6]). Hence in order
to ensure the existence of solutions of (1.2), we need some “perturbation” to (1.2).
A celebrated work in this direction is given by [6]. They add a lower order term λuq

(1 ≤ q < (N + 2)/(N − 2)) to the critical nonlinearity u
N+2
N−2 (i.e., replace u

N+2
N−2

by u
N+2
N−2 + λuq ) and successfully show the existence of solutions of (1.2). After

that, [4, 5, 8] prove that the topological perturbation to the domain can also induce
solutions to (1.2). See also [10, 14] for the effect of the geometric perturbation to
the domain. Furthermore, another perturbation is found by Ni [13]. He considers a

variable coefficient |x|α with α > 0 on u
N+2
N−2 . More precisely he investigates

{
−�u = |x|αup, u > 0 in B,

u = 0 on ∂B,
(1.3)

where α > 0 and p ∈ (1, N+2+2α
N−2 ). The crucial role of the variable coefficient |x|α

appears in the following compactness lemma for radially symmetric functions in
H 1

0 (B). Here we define Hr(B) is a subspace of H 1
0 (B) which consists of all radial

functions.

Lemma 1.1 ([13]) The map u �→ |x|mu from Hr(B) to Lp(B) is compact, for
p ∈ [1, m̃) where

m̃ =
{

2N
N−2−2m if m < N−2

2

∞ otherwise .

Applying this, one successfully obtains the existence of a mountain pass solution

of (1.3) for all p ∈
(

1, N+2+2α
N−2

)
. The exponent p can be supercritical (i.e.,

p > N+2
N−2 ) if α > 0. We here note that, for the critical or supercritical case in

(1.3), the essential point to assure the existence seems that u
N+2
N−2 has a variable

coefficient which is radial and attains 0 at the origin (see Example 2.1 in [17]).
In view of this it is an interesting question that whether it is possible to ensure
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the existence of solutions in the case where the coefficient does not attain 0 at the
origin. Very recently, Ai-Cowan [2] study another problem including our problem
(1.1). Applying their dynamical system approach, which is developed in [1], the
authors in [2] can confirm the existence of radially symmetric solutions of (1.1)
for the case g(x) = |x|β with β ∈ (0, N − 2). An interesting point in this
case is that the coefficient (1 + g(x)) attains a local minimum at the origin that
is not 0. Hence we cannot apply Lemma 1.1 directly. Then it is an interesting
question to investigate how the coefficient can exclude the non-compactness of their
nonlinearity. Motivated by this, we investigate (1.1) via the variational method. Our
aim is to give a variational interpretation on the results in [2] and further, to extend
their results to a more general coefficient which has a local minimum at the origin.

Now in order to explain our main results, we give a comment on the results in
[2]. In the variational point of view, it seems better to write the right hand side of the

equation of (1.1) as u
N+2
N−2 + g(x)u

N+2
N−2 . Then the first term is actually noncompact.

On the other hand, the second one becomes compact by Lemma 1.1 if g(x) behaves
like |x|β with β > 0. Then we clearly expect that it would play the role of the
subcritical perturbation λuq with 1 ≤ q < (N + 2)/(N − 2) in [6] mentioned
above.

Then, it is natural to consider the next more general problem. (See also the
generalization in [2].)

{
−�u = u

N+2
N−2 + λk(x)f (u), u > 0 in B,

u = 0 on ∂B
(1.4)

where λ > 0 is a parameter and k : B → R and f : R → R satisfy some of the
next assumptions.

(k1) k(x) �≡ 0 is a nonnegative Hölder continuous function on B and radial, i.e.,
k(x) = k(|x|).

(k2) k(x) = O(|x|β) (|x| → 0) for some β > 0.
(k3) There exist constants γ ≥ β > 0 and C, δ > 0 such that k(|x|) ≥ C|x|γ for

all |x| ∈ (0, δ).
(f1) f (t) is locally Hölder continuous function on [0,∞] and f (t) ≥ 0 for all

t > 0 and f (t) = 0 for all t ≤ 0.
(f2) limt→0

f (t)
t

= 0 and limt→∞ f (t)
tq

= 0 for q = (N + 2 + 2β)/(N − 2).
(f3) There exists a constant θ > 2 such that f (t)t ≥ θF (t) for all t ≥ 0 where

F(t) := ´ t

0 f (s)ds.

Now, we give our main results.

Theorem 1.2 We have the following.

(i) If k, f satisfy (k1), (k2), (k3), (f1), (f2), (f3) and further,

(f4) limt→∞ f (t)
tp

= ∞ for p = max
{

1, 2γ+6−N
N−2

}
,

then (1.4) admits a radially symmetric solution for all λ > 0.
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(ii) If k, f verify (k1), (k2), (f1), (f2), (f3) and further,

(k4) there exists a point x0 ∈ B such that k(x0) > 0 and,
(f5) there exists a constant c > 0 such that f (t) > 0 for all t ∈ (0, c),

then, there exists a constant λ∗ > 0 such that (1.4) has a radially symmetric
solution for all λ > λ∗.

Remark 1.3 The hypothesis in Theorem 1.2 (i) permits the case where k(x) = |x|β
for β > 0 and f (u) = u

q
+ with any q ∈ (max{1, (2β + 6 −N)/(N − 2)}, (N + 2 +

2β)/(N − 2)). The condition q > max{1, (2β + 6 − N)/(N − 2)} is assumed to
lower the mountain pass energy down to the level for which the local compactness
of the Palais-Smale sequences is valid. See Lemmas 2.3 and 2.4 for the detail. On
the other hand, (ii) is valid for f (u) = u

q
+ with any q ∈ (1, (N + 2 + 2β)/(N − 2)).

Remark 1.4 A similar problem is considered in [7] and [9]. The existence and
nonexistence for the linear perturbation case with k(r) = rβ for β > 0 and
f (t) = t+ are completed by [7]. Furthermore, the superlinear perturbation case
with k(r) = rβ for β > 0 and f (t) = t

q
+ with q ∈ (1, (N + 2 + 2β)/(N − 2)) is

treated in [9]. Our theorem gives a generalization of a part of their results.

A nonexistence result on (1.4) is given by the Pohozaev identity as follows.

Theorem 1.5 Let λ ∈ R, k(x) = |x|β with β ≥ 0, f (u) = u
q
+ and q ≥ 1. Then

(1.4) admits no solution if one of the following is true;

(i) q ∈ [1, (2β + N + 2)/(N − 2)] and λ ≤ 0, or
(ii) q ≥ 2β+N+2

N−2 and λ ≥ 0, or,
(iii) β = 0 and q = (N + 2)/(N − 2).

Remark 1.6 The same conclusion holds even if we replace the domain B by any
star-shaped domain. See the argument in Sect. 3.

Now we come back to our main question on (1.1). The desired existence results
are given as a corollary of (i) of Theorem 1.2.

Corollary 1.7 We assume

(g1) g(x) is Hölder continuous and g ≥ −1 on B and radial, i.e., g(x) = g(|x|),
(g2) g(0) = 0, and
(g3) there exist constants γ ∈ (0, N − 2), δ ∈ (0, 1] and C > 0 such that g(|x|) ≥

C|x|γ for all |x| ∈ (0, δ).

Then (1.1) admits at least one radially symmetric solution.

Remark 1.8 This theorem generalizes Theorem 2 in [2] for the case g(|x|, u) =
g(|x|). To see this, note first that their condition (6) in [2] implies (g2) and (g3).
Furthermore, since (g3) is a condition for the behavior of g only near the origin,
we can easily construct an example which satisfies (g2) and (g3), but not (6). In
addition, they prove Theorem 2 in [2] by dynamical system approach while we shall
prove it via the variational method with the concentration compactness analysis.
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Hence our proof can give a variational interpretation and a generalization of their
theorem.

By Corollary 1.7, we have the existence of solution of (1.1) if g(x) = λ|x|β with
β ∈ (0, N − 2) and λ > 0. For the case including β ≥ N − 2, we have the next
corollary as a direct consequence of (ii) in Theorem 1.2.

Corollary 1.9 Let λ > 0, g(x) = λk(x) and k(x) is a nonnegative Hölder
continuous function in B such that k(0) = 0 and k(x) = k(|x|). Furthermore,
assume there exists a point x0 ∈ B such that k(x0) > 0. Then there exists a constant
λ∗ > 0 such that (1.1) admits at least one radially symmetric solution for all λ > λ∗.

Remark 1.10 Corollary 1.9 implies that if g(x) = λ|x|β with β > 0, a radially
symmetric solution exists for all sufficiently large λ > 0. Furthermore, we remark
that this generalizes Theorem 1 of [2].

The existence results above are best possible in the following sense. We have the
following nonexistence result.

Theorem 1.11 Let g(x) = λ|x|β with β ≥ 0 and λ ∈ R. Then (1.1) does not admit
any radially symmetric solution if β = 0 and λ ∈ R, or β ≥ 0 and λ ≤ 0. In
addition if β ≥ N − 2, there exists a constant λ∗ > 0 which depends on β and N

such that (1.1) has no radially symmetric solution for all λ ∈ [0, λ∗].
Remark 1.12 In our computation, we can choose

λ∗ =
⎧
⎨

⎩

2(N−1)
N−2 if β = N − 2,

2(N−1)
N−2

(
2N−2+β
β−N+2

) β−N+2
N−2

if β > N − 2.

For the detail, see the proof of Theorem 1.11 in Sect. 3.

Organization of This Paper

This paper consists of three sections with an appendix. In Sect. 2, we give the proof
of the existence results. In Sect. 3, we show the nonexistence assertions by the
Pohozaev identity. Lastly in Appendix A, we give a remark on the proof for the
critical case for the reader’s convenience. Throughout this paper we define Hr(B)

as a subspace of H 1
0 (B) which consists of all the radial functions. Furthermore we

put 2∗ = 2N/(N − 2) and define the Sobolev constant S > 0 as usual by

S := inf
u∈H 1

0 (B)\{0}
‖u‖2´

B
|u|2∗

dx
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where ‖u‖2 = ´
B |∇u|2dx. Finally we define Bs(0) as a N dimensional ball

centered at the origin with radius s > 0.

2 Existence Results

In this section, we give a proof of the existence results of our main theorems and
corollaries. In the following we always suppose (k1), (k2), (f1) and (f2). For the
problem (1.4), we define the associated energy functional

I (u) = 1

2
‖u‖2 − 1

2∗

ˆ
B

u2∗
+ dx −

ˆ
B

kF(u)dx (u ∈ Hr(B)).

Then noting our assumptions and Lemma 1.1, it is standard to see that I (u) is well-
defined and continuously differentiable on Hr(B). In addition, by (k1) and (f1), the
usual elliptic theory and the strong maximum principle ensure that every critical
point of I is a solution of (1.4). Hence our aim becomes to look for critical points
of I . We first prove the mountain pass geometry of I [3].

Lemma 2.1 We have

(a) ∃ρ, a > 0 such that I (u) ≥ a for all u ∈ Hr(B) with ‖u‖ = ρ, and
(b) for all u ∈ Hr(B) \ {0}, I (tu) → −∞ as t → ∞,

for all λ > 0.

Proof First note that by (f1) and (f2), we have that for any ε > 0, there exists a
constant C > 0 such that |f (t)| ≤ εt + Ctp for all t ≥ 0 and some p ∈ (1, (N +
2 + 2β)/(N − 2)). Then Lemma 1.1 and the Sobolev inequality give

I (u) ≥
(

1

2
− λε

μ1

)
‖u‖2 − λC‖u‖p+1 − C‖u‖2∗

for all u ∈ Hr(B). Taking ε ∈ (0, μ1/(4λ)), we get (a) for all λ ∈ (0,∞).
Next, since k(x)f (u) ≥ 0 for all x ∈ B and u ∈ R, we have for all t > 0 and

u ∈ Hr(B) \ {0} that

I (tu) ≤ t2

2
‖u‖2 − t2∗

2∗

ˆ
B

u2∗
+ dx.

Since 2 < 2∗, we obtain I (tu) → −∞ as t → ∞, which shows (b). This finishes
the proof. ��

Noting Lemma 2.1, we define

� := {γ ∈ C([0, 1],Hr(B)) | γ (0) = 0, γ (1) = e}
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with e ∈ Hr(B) satisfying ‖e‖ > ρ and I (e) ≤ 0. Then we put

cλ := inf
γ∈� max

u∈γ ([0,1])
I (u).

We next show the local compactness property of the Palais-Smale sequences of I .
Here, as usual, we say that (un) ⊂ Hr(B) is a (PS)c sequence for I if I (un) → c

for some c ∈ R and I ′(un) → 0 in H−1
r (B) as n → ∞ where H−1

r (B) is the dual
space of Hr(B).

Lemma 2.2 Suppose f satisfies (f3) and λ > 0. If (un) ⊂ Hr(B) is a (PS)c
sequence for a value c < SN/2/N , then (un) contains a subsequence which strongly
converges in Hr(B) as n → ∞.

Proof By (f3), we obtain that

c + o(1) = I (un) − 1

min{2∗, θ} 〈I
′(un), un〉 + o(1)‖un‖

≥
(

1

2
− 1

min{2∗, θ}
)

‖un‖2 + o(1)‖un‖

This shows the boundedness of (un) in Hr(B). Hence noting (f1), (f2) and
Lemma 1.1, we have that, up to a subsequence, there exists a nonnegative function
u ∈ Hr(B) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

un ⇀ u weakly in H 1
0 (B),´

B kf (un)dx → ´
B kf (u)dx,´

B rβ |un|s+1dx → ´
B rβ |u|s+1dx for any s ∈ [1, (N + 2 + 2β)/(N − 2)),

un → u a.e. on B,

(2.1)

as n → ∞. Furthermore, since (un) ⊂ Hr(B), the concentration compactness
lemma (Lemma I.1 in [12]) implies that there exist values ν0, μ0 ≥ 0 such that

|∇un|2 ⇀ dμ ≥ |∇u|2 + μ0δ0,

(un)
2∗
+ ⇀ dν = u2∗ + ν0δ0,

in the measure sense where δ0 denotes the Dirac measure with mass 1 which
concentrates at 0 ∈ R

N and

Sν
2

2∗
0 ≤ μ0. (2.2)

Let us show ν0 = 0. If not, we define a smooth test function φ in R
N such that

φ = 1 on B(0, ε), φ = 0 on B(0, 2ε)c and 0 ≤ φ ≤ 1 otherwise. We also assume
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|∇φ| ≤ 2/ε. Then noting (f1), (f2) and using (k1), (k2), (2.1) and Lemma 1.1, we
get

0 = lim
n→∞〈I ′(un), unφ〉

= lim
n→∞

(ˆ
B

∇un · ∇(unφ)dx −
ˆ
B

(un)
2∗
+ φdx − λ

ˆ
B

kf (un)unφdx

)

= lim
n→∞

(ˆ
B

|∇un|2φdx −
ˆ
B

(un)
2∗
+ φdx − λ

ˆ
B

kf (un)unφdx +
ˆ
B

un∇un · ∇φdx

)

=
ˆ
B

φdμ −
ˆ
B

φdν + o(1)

where o(1) → 0 as ε → 0. It follows that

0 ≥ μ0 − ν0.

Then by (2.2), we obtain

ν0 ≥ S
N
2 .

Using this estimate, we have by (f3) that

c = lim
n→∞

(
I (un) − 1

2
〈I ′(un), un〉

)

≥ 1

N
lim

n→∞

ˆ
B

dν

≥ S
N
2

N

which contradicts our assumption. It follows that

lim
n→∞

ˆ
B

(un)
2∗
+ dx =

ˆ
B

u2∗
dx.

Then the usual argument proves un → u in Hr(B). We finish the proof. ��
Next we estimate the mountain pass energy cλ. To do this, we use the Talenti

function Uε(x) := ε
N−2

2

(ε2+|x|2) N−2
2

[16]. Moreover we define a cut off function ψ ∈
C∞

0 (B) such that ψ(x) = ψ(|x|), supp{ψ} ⊂ Bδ(0) and ψ = 1 on Bη(0) for
some η ∈ (0, δ). We set uε := ψUε and vε := uε/‖uε‖L2∗

(B) ∈ Hr(B). Then, if
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q > max(2γ + 6 − N)/(N − 2), a similar calculation with that in [6] shows that

⎧
⎪⎪⎨

⎪⎪⎩

‖vε‖2 = S + O(εN−2)

‖vε‖L2∗
(B) = 1,´

B
kv

q+1
ε dx ≥ C

´
B

|x|γ vq+1
ε dx = C′εa + O(εN−2)

(2.3)

where a = γ + N − (N−2)(q+1)
2 and C,C′ > 0 are constants. Let us prove the next

lemma (Cf. Lemma 2.1 in [6]).

Lemma 2.3 Assume that k verifies (k3). Then if

lim
ε→0

εγ+2
ˆ ε−1

0
F

⎡

⎣
(

ε−1

1 + r2

)N−2
2

⎤

⎦ rγ+N−1dr = ∞ (2.4)

holds, we have cλ < SN/2/N for all λ > 0.

Proof Let vε ∈ Hr(B) as above. Then from Lemma 2.1, we find a constant tε > 0
such that I (tεvε) = maxt≥0 I (tvε). Since

0 = d

dt
|t=tε I (tvε) = tε‖vε‖2 − t2∗−1

ε −
ˆ
B

kf (tεvε)vεdx

and
´
B
kf (vε)vεdx ≥ 0 by (k1) and (f1), we have

tε ≤ ‖vε‖
2

2∗−2 =: Tε.

Since Tε = ‖vε‖
2

2∗−2 is the maximum point of the map t �→ t2

2 ‖vε‖2 − t2∗
2∗ , we get

by (2.3) that for any t > 0

I (tvε) ≤ I (tεvε)

≤ T 2
ε

2
‖vε‖2 − T 2∗

ε

2∗ −
ˆ
B

kF(tεvε)dx

≤ S
N
2

N
−
ˆ
B

kF(tεvε)dx + O(εN−2).

Therefore once we prove

lim
ε→0

ε−(N−2)
ˆ
B

kF(tεvε)dx = ∞, (2.5)

we conclude cλ ≤ I (tεvε) < SN/2/N for all small ε > 0. This completes the proof.
Lastly let us ensure (2.5). To do this, we first claim that limε→0 tε = S(N−2)/4.
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Indeed, using (f2), for any δ > 0, there exists a constant Cδ > 0 such that

ˆ
B

kf (tεvε)vε

tε
dx ≤ tq−1

ε δ

ˆ
B

|x|βvq+1
ε dx + Cδ

ˆ
B

|x|βv2
ε dx.

Since tε ≤ Tε = O(1),
´
B |x|βvq+1

ε dx = O(1) by q = (N + 2 + 2β)/(N − 2) and´
B

|x|βv2
ε dx = o(1) as ε → 0, we get

0 ≤ lim sup
ε→0

ˆ
B

kf (tεvε)vε

tε
dx ≤ O(1)δ.

Since δ > 0 can be chosen arbitrarily small, we conclude that

lim
ε→0

ˆ
B

kf (tεvε)vε

tε
dx = 0.

Then since 〈I ′(tεvε), vε〉 = 0, we have

tε =
(

‖vε‖2 −
ˆ
B

kf (tεvε)vε

tε
dx

) 1
2∗−2

.

This with (2.3) proves that limε→0 tε = S(N−2)/4. In particular, tε converges to a
positive value as ε → 0. Now we calculate by (k3) that

ε−(N−2)
ˆ
B

kF(tεvε)dx ≥ C1ε
−(N−2)

ˆ η

0
F

[
tε

(
ε

ε2 + r2

)N−2
2

]
rγ+N−1dr

≥ C2ε
γ+2

ˆ η
ε

0
F

⎡

⎣tε

(
ε−1

1 + r2

)N−2
2

⎤

⎦ rγ+N−1dr

≥ C3ε
γ+2

ˆ D
ε

0
F

⎡

⎣
(

ε−1

1 + r2

)N−2
2

⎤

⎦ rγ+N−1dr

for some constant C1, C2, C3,D > 0 where in the last inequality we replace
ε/t

(N−2)/2
ε by ε which does not change the conclusion below. If D ≥ 1, we clearly

get (2.5) by our assumption (2.4). If D < 1, we obtain

εγ+2
ˆ D

ε

0
F

⎡

⎣
(

ε−1

1 + r2

)N−2
2

⎤

⎦ rγ+N−1dr =εγ+2
ˆ 1

ε

0
F

⎡

⎣
(

ε−1

1 + r2

) N−2
2

⎤

⎦ rγ+N−1dr

− εγ+2
ˆ 1

ε

D
ε

F

⎡

⎣
(

ε−1

1 + r2

)N−2
2

⎤

⎦ rγ+N−1dr.



A Note on Radial Solutions to the Critical Lane-Emden Equation with a. . . 283

Finally, note that (f2) shows

εγ+2
ˆ 1

ε

D
ε

F

⎡

⎣
(

ε−1

1 + r2

)N−2
2

⎤

⎦ rγ+N−1dr = o(1)

where o(1) → 0 as ε → 0. This finishes the proof. ��
The next lemma confirms that under our assumptions, f (t) satisfies (2.4).

Lemma 2.4 Assume (k3). Then, if f satisfies (f4), then (2.4) holds true.

Proof By (f4), for any M > 0, there exists a constant R > 0 such that f (t) ≥
Mtp where p = max{1, 2γ+6−N

N−2 }. Furthermore, note that if r ≤ Cε−1/2 for C =
(2R)−(N−2)/2, we get

(
ε−1

1 + r2

)N−2
2

≥ R

for all small ε > 0. It follows that

εγ+2
ˆ ε−1

0
F

⎡

⎣
(

ε−1

1 + r2

) N−2
2

⎤

⎦rγ+N−1dr ≥ εγ+2
ˆ Cε

− 1
2

0
F

⎡

⎣
(

ε−1

1 + r2

) N−2
2

⎤

⎦ rγ+N−1dr

≥ εγ+2 M

p + 1

ˆ Cε
− 1

2

0

(
ε−1

1 + r2

) (N−2)(p+1)
2

rγ+N−1dr

→ ∞

as ε → 0. This completes the proof. ��
Lemma 2.5 If k, f satisfy (k4) and (f5), we have a constant λ∗ > 0 such that
cλ < SN/2/N for all λ > λ∗.

Proof Since k(x0) > 0 by (k4), there exist constants 0 < r1 < |x0| < r2 < 1 such
that k > 0 on B(0, r2)\B(0, r1). Then we choose a radial function u ∈ C∞

0 (B)\{0}
such that u ≥ 0 and supp{u} ⊂ B(0, r2) \ B(0, r1). Then by Lemma 2.1, we have a
constant tλ > 0 such that I (tλu) = maxt>0 I (tu). Since d

dt
|t=tλI (tu) = 0, we get

‖u‖2 − t2∗−2
λ

ˆ
B

u2∗
+ dx − λ

ˆ
B

kf (tλu)u

tλ
dx = 0

It follows that tλ → 0 as λ → ∞. If not, there exists a sequence (λn) ⊂ (0,∞)

such that λn → ∞ and tλn → t0 > 0 for some value t0 > 0 as n → ∞. But this is
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impossible in view of the previous formula and (f5). Then it follows from (k1) and
(f1) that

cλ ≤ I (tλu) ≤ t2
λ‖u‖2 → 0

as λ → ∞. This finishes the proof. ��
Then we prove the existence assertions of main theorems.

Proof of Theorem 1.2 First note that under the assumption in Lemma 2.1 and the
mountain pass theorem ([3], see also Theorem 2.2 in [6]), there exists a (PS)cλ
sequence (un) ⊂ Hr(B) of I . Hence our aim is to see that (un) has a subsequence
which strongly converges in Hr(B). This fact follows from Lemmas 2.1, 2.2, 2.3
and 2.4, which proves (i). The proof of (ii) is completed by Lemmas 2.1, 2.2 and 2.5.
This completes the proof of Theorem 1.2. ��
Proof of Corollary 1.7 The proof is clear from (i) of Theorem 1.2. ��
Remark 2.6 Here we remark on (g1) and (g2). We first note that non-negativity of
k in (k1) is needed only to apply the maximum principle. Hence it is clear that in
the present case it can be weakened to g ≥ −1 in (g1). Furthermore, by (g1), the
associated energy functional

I (u) = 1

2
‖u‖2 − 1

2∗

ˆ
B

(1 + g)|u|2∗
dx

is always well-defined. Hence we can weaken (k2) in Theorem 1.2 to the condition
k(0) = 0. Finally, in the present case, since we do not assume k(|x|) = O(|x|β) for
β > 0, in principle, we cannot use Lemma 1.1 directly in the proof of Lemma 2.2.
Although the modification is trivial, we will give the modified proof in Appendix A
for the readers’ convenience.

Proof of Corollary 1.9 The proof is immediate by (ii) of Theorem 1.2. ��

3 Nonexistence Results

In this section, we prove the nonexistence results by the Pohozaev identity. Since
some results still hold true for the star-shaped domain, we first consider the problem

{
−�u = |u|2∗−2u + g|u|q−1u in �

u = 0 on ∂�,
(3.1)
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where � ⊂ R
N with N ≥ 3 is a bounded smooth domain, q ≥ 1 and g is a C1(�)-

function. Now, let us recall the formula

ˆ
�

{
x · ∇g

q + 1
+

(
N

q + 1
− N − 2

2

)
g

}
|u|q+1dx = 1

2

ˆ
∂�

(x ·ν)|∇u|2dsx (3.2)

holds for any solution u ∈ C1(�). This is the Pohozaev identity for (3.1).

Theorem 3.1 Let λ ∈ R and g(x) = λ|x|β with β ≥ 0. Then if � is a strictly
star-shaped domain, (3.1) has no C1 solution if either one of the following holds;

(i) λ ≤ 0 and q ≤ (N + 2 + 2β)/(N − 2) or,
(ii) λ ≥ 0 and q ≥ (N + 2 + 2β)/(N − 2) or otherwise,
(iii) β = 0, λ ∈ R and q = (N + 2)/(N − 2).

Proof Let u ∈ C1(�) be a solution of (3.1). Then under the assumption in the
theorem, we get by (3.2) that

λ

ˆ
�

(
β + N

q + 1
− N − 2

2

)
|x|β |u|q+1dx = 1

2

ˆ
∂�

(x · ν)|∇u|2dsx.

Then if one of (i)–(iii) holds, the left hand side is nonpositive. It is easy to obtain the
conclusion if the left hand side is strictly negative, since u is zero outside the origin,
and hence also at the origin by continuity. On the other hand, if the left hand side
is zero, since x · ν>0 by our assumption, we have |∇u| ≡ 0 on ∂�. Then from the
principle of unique continuation we must have u ≡ 0 in �. This shows the proof.

��
Proof of Theorem 1.5 The proof is a direct consequence of Theorem 3.1. ��

Lastly let us show the proof of Theorem 1.11. To do this, we assume q ≥ 1 and
u = u(r) (r ∈ [0, 1]) is a solution of

⎧
⎨

⎩
−u′′ − (N − 1)

r
u′ = |u| 4

N−2 u + g|u|q−1u in (0, 1),

u′(0) = 0 = u(1).
(3.3)

with a C1 function g(r) on [0, 1]. In addition, we suppose ψ(r) (r ∈ [0, 1]) is a
smooth test function such that ψ(0) = 0. Then we have the following. (See [6] and
also [11].)
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Theorem 3.2 If u is a solution of (3.3), we get

ψ(1)|u′(1)|2 = 1

2

ˆ 1

0
u2rN−4

{
r3ψ ′′′ − (N − 1)(N − 3)rψ ′ + (N − 1)(N − 3)ψ

}
dr

+ 2(N − 1)

N

ˆ 1

0
|u|2∗

(rN−1ψ ′ − rN−2ψ)dr

+ 1

q + 1

ˆ 1

0
|u|q+1

{
(q + 3)grN−1ψ ′ − (q − 1)(N − 1)grN−2ψ + 2g′rN−1ψ

}
dr.

(3.4)

Proof Multiplying the equation in (3.3) by rN−1ψu′ gives

ψ(1)|u′(1)|2 −
ˆ 1

0
|u′|2

{
rN−1ψ ′ − (N − 1)rN−2ψ

}
dr

= N − 2

N

ˆ 1

0
|u|2∗ {

rN−1ψ ′ + (N − 1)rN−2ψ
}
dr

+ λ(q + 1)

2

ˆ 1

0
|u|q+1

{
g′rN−1ψ + rN−1gψ ′ + (N − 1)rN−2gψ

}
dr.

(3.5)

On the other hand, we multiply the equation in (3.3) by (rN−1ψ ′−(N−1)rN−2ψ)u

and compute

ˆ 1

0
|u′|2

{
rN−1ψ ′ − (N − 1)rN−2ψ

}
dr

− 1

2

ˆ 1

0
u2

{
rN−1ψ ′′′ + (N − 1)(N − 3)rN−4(ψ − rψ ′)

}
dr

=
ˆ 1

0
|u|2∗ {

rN−1ψ ′ − (N − 1)rN−2ψ
}
dr

+ λ

ˆ 1

0
g(r)|u|q+1

{
rN−1ψ ′ − (N − 1)rN−2ψ

}
dr.

(3.6)

Combining (3.5) and (3.6), we complete the proof. ��
Proof of Theorem 1.11 The first assertion follows from Theorem 3.1. Let us prove
the second assertion. To do this, assume λ > 0 and u = u(r) (r ∈ [0, 1]) is a
radially symmetric solution of (1.1). Then it satisfies

⎧
⎨

⎩
−u′′ − (N − 1)

r
u′ = (1 + g)|u| 4

N−2 u in (0, 1),

u′(0) = u(1) = 0,
(3.7)
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where we put g(r) = λrβ . Again choose a smooth test function ψ such that ψ(0) =
0. Then by Theorem 3.2, we have

1

2

ˆ 1

0
u2rN−4

{
r3ψ ′′′ − (N − 1)(N − 3)rψ ′ + (N − 1)(N − 3)ψ

}
dr

= ψ(1)|u′(1)|2

+ 1

N

ˆ 1

0
|u|2∗ {−(N − 2)g′rN−1ψ + 2(N − 1)(1 + g(r))(rN−2ψ − rN−1ψ ′)

}
dr.

(3.8)

We fix β ≥ N −2 and then select ψ(r) = arN−1 +br so that r3ψ ′′′ − (N −1)(N −
3)rψ ′ + (N − 1)(N − 3)ψ = 0 and ψ(0) = 0. This ODE has an explicit solution
ψ(r) = arN−1 + br + cr−(N−3) where a, b, c ∈ R are arbitrary constants. Since
we assume ψ(0) = 0, we must have c = 0, i.e., ψ(r) = arN−1 + br . Then we get

ψ(1)|u′(1)|2

+ 1

N

ˆ 1

0
|u|2∗ {−(N − 2)g′rN−1ψ + 2(N − 1)(1 + g(r))(rN−2ψ − rN−1ψ ′)

}
dr = 0.

(3.9)

Substituting ψ(r) = arN−1 + br into

h(r) := −(N − 2)k′rN−1ψ + 2(N − 1)(1 + k)(rN−2ψ − rN−1ψ ′),

we see

h(r) = r2N−3×
[
−λa(N − 2) {2(N − 1) + β} rβ − λbβ(N − 2)rβ−N+2 − 2a(N − 1)(N − 2)

]
.

Finally, we choose a < 0 and b = |a| > 0. In particular, we have ψ(1) = a+b = 0.
Then some elementary calculations show that if we set

λ∗ =
⎧
⎨

⎩

2(N−1)
N−2 if β = N − 2,

2(N−1)
N−2

(
2N−2+β
β−N+2

) β−N+2
N−2

if β > N − 2,

we assure that h �= 0 and h ≥ 0 for all λ ∈ [0, λ∗]. Therefore in view of (3.9), we
reach to a contradiction if λ ∈ [0, λ∗]. This finishes the proof. ��
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A Critical Case

In this appendix, we give a proof of Lemma 2.2 under the assumption in Corol-
lary 1.7 for the readers’ convenience. Especially we will use only the condition (g2)
which is weaker than (k2).

Lemma A.1 Assume (g1), (g2) and (un) ⊂ Hr(B) is a (PS)c sequence of

I (u) = 1

2
‖u‖2 − 1

2∗

ˆ
B

(1 + g)u2∗
+ dx.

Then if c < S
N
2 /N , (un) has a subsequence which strongly converges in Hr(B).

Proof From the definition we have

c + o(1) = I (un) − 1

2∗ 〈I ′(un), un〉 + o(1)‖un‖

≥ 1

N
‖un‖2 + o(1)‖un‖.

This implies (un) is bounded in Hr(B). Then we can assume that there exists a
nonnegative function u ∈ Hr(B) such that

{
un ⇀ u weakly in Hr(B),

un → u a.e. on B,

up to a subsequence. By the concentration compactness lemma, we can suppose that
there exist values μ0, ν0 ≥ 0 such that

⎧
⎪⎪⎨

⎪⎪⎩

|∇un|2 ⇀ dμ ≥ |∇u|2 + μ0δk,

un → u in Lp(B) for all p ∈ (1, 2N/(N − 2)),

(un)
2∗
+ ⇀ dν = u2∗

+ + ν0δ0,
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in the measure sense, where δ0 denotes the Dirac delta measure concentrated at the
origin with mass 1 as before. Furthermore, we have

Sν
2

2∗
0 ≤ μ0. (A.1)

We show ν0 = 0. To this end, we assume ν0 > 0 on the contrary. Then, for small
ε > 0, we define a smooth test function φ as in the proof of Lemma 2.2. Since
I ′(un) → 0 in H−1(B) and (un) is bounded, we have

0 = lim
n→∞〈I ′(un), unφ〉

= lim
n→∞

(ˆ
B

∇un · ∇(unφ)dx −
ˆ
B

(1 + g)(un)
2∗
+ φdx

)

= lim
n→∞

(ˆ
B

|∇un|2φdx −
ˆ
B

(1 + g)(un)
2∗
+ φdx +

ˆ
B

un∇un · ∇φdx

)

=
ˆ
B

φdμ −
ˆ
B

(1 + g)φdν + o(1)

where o(1) → 0 as ε → 0. Taking ε → 0 and noting g(0) = 0, we obtain

0 ≥ μ0 − ν0.

Then using (A.1), we get

ν0 ≥ S
N
2 .

Finally, noting this estimate, we see

c = lim
n→∞

(
I (un) − 1

2
〈I ′(un), un〉

)

= 1

N
lim

n→∞

ˆ
B

(1 + g)dν

≥ S
N
2

N

since g(0) = 0, which is a contradiction. It follows that

lim
n→∞

ˆ
B

(1 + g)(un)
2∗
+ dx =

ˆ
B

(1 + g)u2∗
+ dx.

Then a standard argument shows that un → u in Hr(B). This completes the proof.
��



290 D. Naimen and F. Takahashi

References

1. Ai, S.: Multipulse-like orbits for a singularly perturbed nearly integrable system. J. Differ. Equ.
179, 384–432 (2002)

2. Ai, A., Cowan, C.: Critical elliptic equations via a dynamical system approach. Nonlinear Anal.
182, 97–112 (2019)

3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and
applications. J. Funct. Anal. 14, 349–381 (1973)

4. Bahri, A.: Critical Points at Infinity in Some Variational Problems. Pitman Research Notes
in Mathematics Series, vol. 182, vi+I15+307 pp. Longman Scientific and Technical, Harlow;
co-published in the United States with Wiley, New York (1989)

5. Bahri, A., Coron, J.-M.: On a nonlinear elliptic equation involving the critical Sobolev
exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41(3), 253–294
(1988)

6. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical
Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

7. Clément, P., de Figueiredo, D.G., Mitidieri, E.: Quasilinear elliptic equations with critical
exponents. Topol. Methods Nonlinear Anal. 7, 133–170 (1996)

8. Coron, J.M.: Topologie et cas limite des injections de Sobolev, (French. English summary)
[Topology and limit case of Sobolev embeddings]. C. R. Acad. Sci. Paris Sér. I Math. 299(7),
209–212 (1984)

9. de Figueiredo, D.G., Gonçalves, J.V., Miyagaki, O.H.: On a class of quasilinear elliptic
problems involving critical exponents. Commun. Contemp. Math. 2, 47–59 (2000)

10. Ding, W.: Positive solutions of �u+u
(n+2)
(n−2) = 0 on contractible domains. J. Partial Differ. Equ.

2, 83–88 (1989)
11. Gladiali, F., Grossi, M.: Linear perturbations for the critical Hénon problem. Differ. Integr.

Equ. 28, 733–752 (2015)
12. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit

case. Part 1. Rev. Mat. Iberoamericana 1, 145–201 (1985)
13. Ni, W.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math.

J. 31(6), 801–807 (1982)
14. Passaseo, D.: Multiplicity of positive solutions of nonlinear elliptic equations with critical

Sobolev exponent in some contractible domains. Manuscr. Math. 65, 147–165 (1989)
15. Pohozaev, S.I.: Eigenfunctions of the equation �u + λf (u) = 0. Sov. Math. Dokl. 6, 1408–

1411 (1965)
16. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pure Appl. 110, 353–372 (1976)
17. Wang, X.: Existence of positive solutions to nonlinear elliptic equations involving critical

Sobolev exponents. Acta Math. Sin. (N.S.) 8, 273–291 (1992). A Chinese summary appears
in Acta Math. Sin. 36(4), 574 (1993)



Remark on One Dimensional Semilinear
Damped Wave Equation in a Critical
Weighted L2-space

Motohiro Sobajima and Yuta Wakasugi

Abstract We study the Cauchy problem of the semilinear damped wave equation in
one space dimension. We show the existence of global solutions in the critical case
with small initial data in weighted L2-spaces. This problem in multidimensional
cases was dealt with in Sobajima (Differ Integr Equ 32:615–638, 2019) via the
weighted Hardy inequality which is false in one-dimension. The crucial idea of the
proof is the use of an incomplete version of Hardy inequality.

Keywords Semilinear damped wave equations · Critical case · Global
existence · One dimension

1 Introduction

In this paper we consider the Cauchy problem of the one-dimensional semilinear
damped wave equation

∂2
t u(x, t) − ∂2

xu(x, t) + ∂tu(x, t) = |u(x, t)|p−1u(x, t), (x, t) ∈ R × (0, T )

(1.1)

with 1 < p < ∞ and the initial data

(u0, u1) ∈ H 1(R) × L2(R) (1.2)
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satisfying the following condition

〈x〉λu0, 〈x〉λ∂xu0, 〈x〉λu1 ∈ L2(R) (1.3)

for some λ ∈ (0, 1/2), that is, we do not require u0, u1 ∈ L1(R). The motivation
for studying the linear problem

{
∂2
t u(x, t) − �u(x, t) + ∂tu(x, t) = 0, (x, t) ∈ R

N × (0,∞),

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ R
N

(1.4)

can be found in the literature (see Matsumura [7] and Nishihara [9]). It is well known
that the asymptotic behavior of the solution to (1.4) is similar to the one of the heat
equation

{
∂t v(x, t) − �v(x, t) = 0, (x, t) ∈ R

N × (0,∞),

v(x, 0) = u0(x) + u1(x), x ∈ R
N .

(1.5)

The following nonlinear problem related to (1.5) is also studied;

{
∂t v(x, t) − �v(x, t) = v(x, t)p, (x, t) ∈ R

N × (0,∞),

v(x, 0) = v0(x) ≥ 0, x ∈ R
N .

(1.6)

In the pioneering work by Fujita [2], it is proved that if 1 < p < 1 + 2
N

, then the
problem (1.6) does not have non-trivial global-in-time solutions and if 1+ 2

N
< p <

∞, then the problem (1.6) possesses global-in-time solutions. The constant 1 + 2
N

is called the Fujita exponent. Global existence for (1.6) with slowly decaying initial
data was discussed in Weissler [14]. In [14], it is shown that (1.6) possesses the
global-in-time solution when p ≥ 1 + 2r

N
and ‖v0‖Lr(RN) is sufficiently small (with

a restriction when p > 1 + 2r
N

for solvability). For the detail, see Quittner–Souplet
[10].

In the analysis of global existence of weak (H 1) solutions to the semilinear
problem (1.1) with (1.2) small enough (in a suitable sense), Nakao–Ono [8] found
global existence in the N-dimensional situation

⎧
⎨

⎩
∂2
t u(x, t) − �u(x, t) + ∂tu(x, t) = |u(x, t)|p−1u(x, t), (x, t) ∈ R

N × (0,∞),

u(x,0) = u0(x) ∈ H 1(RN), ∂tu(x,0) = u1(x) ∈ L2(RN)

(1.7)

when 1 + 4
N

≤ p < N+2
N−2 (N ≥ 3) and 1 + 4

N
≤ p < ∞ (N = 1, 2). After that, in

Todorova–Yordanov [13] it is proved via weighted energy estimates that, if the initial
data is compactly supported, smooth and sufficiently small, then p > 1+ 2

N
provides
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the existence of global-in-time solutions of (1.7). On the other hand, in the opposite
range of p (1 < p ≤ 1 + 2

N
) with the nonlinearity |u|p, the smallness does not give

global existence (see also Zhang [15]). So, the Fujita exponent 1 + 2
N

also divides
the situation between the existence and non-existence of global-in-time solutions
of (1.7). The problem (1.7) with slowly decaying (Lr ) initial data is considered
in Ikehata–Ohta [6]. They proved global existence with initial data belonging to
(H 1 ∩ Lr) × (L2 ∩ Lr) when p > 1 + 2r

N
and nonexistence for 1 < p < 1 + 2r

N
.

By using Fourier analysis, in Hayashi–Kaikina–Naumkin [3], the existence of
global-in-time (Hα) solutions to (1.7) with p > 1 + 2

N
in the class of initial data

(Hα,0 ∩ H 0,δ) × (Hα−1,0 ∩ H 0,δ) is shown when

δ >
N

2
&

{
[α] ≤ p, α ≥ N

2 − 1
p−1 if N ≥ 2,

1
2 − 1

2(p−1) ≤ α < 1 if N = 1,

where 〈x〉 = (1 + |x|2) 1
2 and

H�,m = {u ∈ L2(RN) ; ‖〈x〉m〈i∇〉�u‖L2 < ∞}.

It should be emphasized that H 0,δ ⊂ L1(RN) if δ > N
2 . Their argument has been

generalized to the case of slowly decaying initial data in Ikeda–Inui–Wakasugi [5].
More precisely, in [5], global existence is proved for p > 1 + 2r

N
in the class of

initial data (Hα,0 ∩ H 0,δ) × (Hα−1,0 ∩ H 0,δ) with δ > N
2 ( 1

r
− 1

2 ); note that this
restriction gives H 0,δ ⊂ Lr(RN).

Recently in Sobajima [11], by using weighted energy estimates involving
confluent Hypergeometric functions, global existence for (1.7) (in exterior domain)
with

{
1 + 2

1+λ
≤ p < ∞ if N = 2,

1 + 4
N+2λ ≤ p ≤ N

N−2 if N ≥ 3

and λ ∈ [0, N/2) is shown under the smallness of the size of the following factors:

〈x〉λu0, 〈x〉λ∇u0, 〈x〉λu1 ∈ L2(RN)
(
(u0, u1) ∈ H 1,λ × H 0,λ

)
. (1.8)

Although the assumption on ∇u0 is stronger than [5], the critical case p = 1+ 4
N+2λ

can be dealt with. On the contrary, if 1 < p < 1 + 4
N+2λ then (1.7)–(1.8) with

u0(x) + u1(x) ≥ c0|x|−N
2 −λ, |x| ! 1

and c0 > 0 does not have global-in-time solutions (see [5] for the case of whole
space and [11] for the case of exterior domains). It is also shown in [11] that if
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N = 1 and 1 + 4
1+2λ < p < ∞, the problem (1.1)–(1.3) possesses global-in-time

solutions. Therefore the case of N = 1 and p = 1+ 4
1+2λ remains open whether the

problem (1.1)–(1.3) possesses global-in-time solutions or not. The difficulty comes
from the lack of validity of the weighted Hardy inequality

ˆ
RN

〈x〉2λ−2|w|2 dx ≤ C

ˆ
RN

〈x〉2λ|∇w|2 dx, 2 − N

2
< λ < ∞, w ∈ H 1,λ,

which is quite important in the N-dimensional case for controlling the nonlinear
effect by the linear profile.

The purpose of the present paper is to discuss the one-dimensional critical case
p = 1+ 4

1+2λ . To state the result, we first introduce the precise definition of solutions
to (1.1) in the present paper.

Definition 1.1 (Weak Solutions) The function u : R × [0, T ) → R is called a
weak solution of (1.1) in (0, T ) if u belongs to the class

ST = {u ∈ C([0, T );H 1(R)) ∩ C1([0, T );L2(R)) ; |u|p−1u ∈ C([0, T );L2(R))}

and U = (u(t), ∂tu(t)) satisfies the following integral equation in H = H 1(R) ×
L2(R):

U(t) = e−tAU0 +
ˆ t

0
e−(t−s)A[N (U(s))] ds, t ∈ [0, T ),

where U0 = (u0, u1), A =
(

0 −1
−∂2

x 1

)
with a domain D(A) = H 2(R) × H 1(R),

N (u, v) = (0, |u|p−1u) and {e−tA} is the C0-semigroup on H generated by −A.

The following proposition is about the existence of local-in-time solutions. It is
well-known but quite important to discuss the global existence.

Proposition 1.1 Assume (1.2) and 1 < p < ∞. Then there exists a positive
constant T > 0 depending only on p, ‖u0‖H 1 , ‖u1‖L2 such that there exists a
unique weak solution u of (1.1) in (0, T ).

We are now in a position to state the main result of the present paper.

Theorem 1.2 Let λ ∈ (0, 1/2). Assume that p = 1 + 4
1+2λ and (1.3) is satisfied.

Then there exists a positive constant ε0 > 0 such that if

‖〈x〉λu0‖2
L2(R)

+ ‖〈x〉λ∂xu0‖2
L2(R)

+ ‖〈x〉λu1‖2
L2(R)

≤ ε

for some ε ∈ (0, ε0], then the problem (1.1)–(1.2) admits a unique global-in-time
weak solution

u ∈ S∞ = C([0,∞);H 1(R)) ∩ C1([0,∞);L2(R))
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satisfying the following estimates:

(1 + t)

ˆ
R

(
|∂xu(x, t)|2 + |∂tu(x, t)|2

)
(1 + t + |x|2)λ dx

+
ˆ
R

|u(x, t)|2(1 + t + |x|2)λ dx ≤ Cε, (1.9)

ˆ t

0

ˆ
R

(
|∂xu(x, s)|2 + (1 + s)|∂tu(x, s)|2

)
(1 + s + |x|2)λ dx ds ≤ Cε, (1.10)

where the positive constant C is independent of ε. In particular, one has

∥∥∥u(x, t)(1 + t + |x|2)λ/2
∥∥∥
L∞(R)

≤ C′√ε(1 + t)−
1
4 , (1.11)

where the positive constant C′ is also independent of ε.

Remark 1.1 The previous works [3, 6] and [5] exclude the critical case p = 1 +
4

1+2λ . Global existence for the (one-dimensional) critical case is now established.
The class of solutions to (1.1) in Theorem 1.2 is slightly different from those of
[3, 5, 6]. Global existence for the low regularity solutions treated in [3] and [5] is
still open when p = 1 + 4

1+2λ .

Remark 1.2 The same strategy also works for another nonlinearity |u|p or
−|u|p−1u. In the latter case, the detailed profile of global solutions such as
an asymptotic behavior has been studied in Hayashi–Kaikina–Naumkin [4] for
p = 1 + 2

N
(N = 1, 2, 3).

The conclusion is, as a result, the same as the N-dimensional situation. In
particular, in the one-dimensional case, the Sobolev space H 1(R) is embedded into
Cb(R), that is, the set of all bounded continuous functions. The last estimate (1.11)
is a consequence of this embedding.

From a viewpoint of an asymptotic profile of linear equations, it is expected
that the global-in-time solution of (1.1) behaves like that of the heat equation with
suitable initial value.

The next theorem asserts that under some condition which is slightly stronger
than that of Theorem 1.2, the global-in-time solution u is bounded by an explicit
function depending on λ.

Theorem 1.3 Let u be a global-in-time solution of (1.1) in Theorem 1.2. Assume
further that

‖〈x〉λ+1∂xu0‖2
L2(R)

+ ‖〈x〉λ+1u1‖2
L2(R)

≤ ε.
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Then u satisfies

ˆ
R

(
|∂xu(x, t)|2 + |∂tu(x, t)|2

)
(1 + t + |x|2)λ+1 dx ≤ C′′ε, (1.12)

ˆ t

0

ˆ
R

|∂tu(x, s)|2(1 + s + |x|2)λ+1 dx ds ≤ C′′ε, (1.13)

∥∥∥u(x, t)(1 + t + |x|2) 1+2λ
4

∥∥∥
L∞(R)

≤ C′′√ε, (1.14)

where the positive constant C′′ is independent of ε.

Remark 1.3 Actually, the function (1 + t + |x|2)− 1+2λ
4 = (1 + t + |x|2)− 1

p−1 is
bounded below and above by the particular self-similar solution � 1

p−1
of the heat

equation:

c
(

1 + t + |x|2
)− 1+2λ

4 ≤ � 1
p−1

(x, t; 1) ≤ C
(

1 + t + |x|2
)− 1+2λ

4
,

where �β is defined in Sect. 2.1. Here β is the parameter describing scaling structure
of the heat equation. The parameter β = 1

p−1 appears naturally in the analysis of
semilinear heat equations with power nonlinearity.

The crucial idea of the proof of Theorem 1.2 is to use an incomplete version of
Hardy inequality

ˆ
R

〈x〉2λ−1|w|2 dx ≤ C

(ˆ
R

〈x〉2λ|∂xw|2 dx

) 1
2
(ˆ

R

〈x〉2λ|w|2 dx

) 1
2

, λ > 0, w ∈ H 1,λ

(see Lemma 2.5 below) in the weighted energy estimate with confluent hyperge-
ometric functions for the semilinear problem (1.1). This enables us to control the
nonlinearity |u|p−1u.

This paper is organized as follows. In Sect. 2, we give the definition of self-
similar solutions involving Kummer’s confluent hypergeometric functions and state
some basic properties of them. We also prove some important functional inequalities
such as incomplete version of Hardy inequality mentioned above. Section 3 is
devoted to the proof of global existence (Theorem 1.2), and Sect. 4 is to find an
upper bound of solutions under a slightly stronger assumption.
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2 Preliminaries

2.1 Weight Functions for Energy Functionals

For t0 ≥ 1 and β ≥ 0, define

�β(x, t : t0) = (t0 + t)−βe
− |x|2

4(t0+t) M

(
1

2
− β,

1

2
; x2

4(t0 + t)

)
, (x, t) ∈ R × [0,∞),

�(x, t : t0) = t0 + t + x2

4
, (x, t) ∈ R × [0,∞),

where M(a, c; z) is Kummer’s confluent hypergeometric function defined as

M(a, c; z) =
∞∑

n=0

(a)n

(c)n

zn

n!

with the Pochhammer symbol (d)0 = 1 and (d)n = ∏n
k=1(d+k−1). For the details

of Kummer’s hypergeometric functions, see e.g., Beals–Wong [1]. These functions
are given by Sobajima–Wakasugi [12] as a family of self-similar solutions of the
linear heat equation ∂t� − ∂2

x� = 0. Then we have the following lemma.

Lemma 2.1 ([12]) Let t0 be a positive constant. Then the family {�β(·, · : t0)}β≥0
has the following properties.

(i) for every β ≥ 0, ∂t�β(x, t : t0) = ∂2
x�β(x, t : t0) for (x, t) ∈ R × [0,∞),

(ii) for every β ≥ 0, ∂t�β(x, t : t0) = −β�β+1(x, t : t0) for (x, t) ∈ R× [0,∞),
(iii) for every β ≥ 0, there exists a positive constant Cβ such that

|�β(x, t : t0)| ≤ Cβ�(x, t : t0)−β,

(iv) for every 0 ≤ β < 1
2 , there exists a positive constant cβ such that

�β(x, t : t0) ≥ cβ�(x, t : t0)−β .

In the N-dimensional situation, the function �−1+2δ
β (for some small δ) can be

used as the weight function in the energy functional. This fact can be seen in [11].
The following definition is valid also for the one-dimensional case.

Definition 2.1 For t0 ≥ 1 and β ≥ 0, we define �̃β as

�̃β(x, t : t0) =
(

2 − 1

t0 + t

)
�β(x, t : t0), (x, t) ∈ R × [0,∞).
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The properties of �̃, which are used later, are listed in the following lemma. The
assertions directly follow from Lemma 2.1.

Lemma 2.2 Let t0 ≥ 1 be fixed. Then the family {�̃β(·, · : t0)}0<β< 1
2
satisfies the

following properties.

(i) for every 0 < β < 1
2 ,

∂t �̃β(x, t : t0) ≥ ∂2
x �̃β(x, t : t0) + 1

2
(t0 + t)−2�̃β(x, t : t0),

(ii) for every 0 < β < 1
2 ,

|∂t �̃β(x, t : t0)| ≤ C̃′
β

t0 + t
�̃β(x, t : t0),

(iii) for every 0 < β < 1
2 ,

cβ�(x, t : t0)−β ≤ �̃β(x, t : t0) ≤ Cβ�(x, t : t0)−β.

2.2 Functional Inequalities

Here we state some functional inequalities for the weighted energy estimate.
The first inequality is crucial to obtain the weighted energy estimate for the linear

damped wave equation.

Lemma 2.3 ([11, Lemma 2.5]) Assume that� ∈ C2(R) is positive and δ ∈ (0, 1
2 ).

Then for every u ∈ H 2(R) having a compact support,

ˆ
R

u(∂2
xu)�

−1+2δ dx ≤ − δ

1 − δ

ˆ
R

|∂xu|2�−1+2δ dx + 1 − 2δ

2

ˆ
R

u2(∂2
x�)�−2+2δ dx.

Next we use a weighted version of Gagliardo–Nirenberg inequality in the
following lemma to control the nonlinearity.

Lemma 2.4 Let λ ∈ (0, 1
2 ) and 2 < q ≤ 2 + 1

λ
. For every function w satisfying

〈x〉λw, 〈x〉λ∂xw ∈ L2(R),

ˆ
R

|w|q�λ dx ≤
[
2( 2

λ
)λ
]q−2

(ˆ
R

|∂xw|2�λ dx

)(q−2) 1+2λ
4

(ˆ
R

|w|2�λ dx

) q
2 −(q−2) 1+2λ

4

,

where � = �(x, t; t0).
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To prove Lemma 2.4, we need the following inequality which is a kind of
incomplete Hardy inequality.

Lemma 2.5 Let λ ∈ (0, 1
2 ). For every w ∈ C1

c (R),

ˆ
R

|w|2�λ− 1
2 dx ≤ 2

λ

(ˆ
R

|∂xw|2�λ dx

) 1
2
(ˆ

R

|w|2�λ dx

) 1
2

. (2.1)

Proof Observe that

∂x

(x
2
�λ− 1

2

)
= 1

2
�λ− 1

2 −
(

1

2
− λ

) |x|2
4

�λ− 3
2 ≥ λ�λ− 1

2 .

Therefore by integration by parts we have

λ

ˆ
R

|w|2�λ− 1
2 dx ≤

ˆ
R

|w|2∂x
(x

2
�λ− 1

2

)
dx ≤ −2

ˆ
R

w(∂xw)
(x

2
�λ− 1

2

)
dx

≤ 2
ˆ
R

|w| |∂xw|�λ dx

≤ 2

(ˆ
R

|∂xw|2�λ dx

) 1
2
(ˆ

R

|w|2�λ dx

) 1
2

.

This yields the desired inequality. ��
By using Lemma 2.5, we deduce the weighted L∞-estimate.

Lemma 2.6 Let λ ∈ (0, 1
2 ). For every w ∈ C1

c (R),

∥∥w�
λ
2
∥∥
L∞(R)

≤ 2

(ˆ
R

|∂xw|2�λ dx

) 1
4
(ˆ

R

|w|2�λ dx

) 1
4

.

Proof Noting that

∂x
(
w2�λ

) = 2w∂xw�λ + λw2 x

2
�λ−1,

we see from the compactness of the support of w that

|w(x, t)|2�(x, t)λ =
ˆ x

−∞
∂y

(
w(y, t)2�(y, t)λ

)
dy

≤ 2
ˆ
R

|w| |∂xw|�λ dx + λ

ˆ
R

|w|2�λ− 1
2 dx.

Applying Lemma 2.5, we deduce the desired inequality. ��
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Then we prove a (space-time) weighted version of Gagliardo–Nirenberg inequal-
ity by employing the weighted L∞ estimate in Lemma 2.6.

Proof of Lemma 2.4 By Hölder inequality, we have

ˆ
R

|w|q�λ dx ≤ ∥∥w�
λ
2
∥∥q−2
L∞(R)

ˆ
R

|w|2�λ− q−2
2 λ dx

≤ ∥∥w�
λ
2
∥∥q−2
L∞(R)

(ˆ
R

|w|2�λ− 1
2 dx

)(q−2)λ (ˆ
R

|w|2�λ dx

)1−(q−2)λ

.

Then using Lemmas 2.5 and 2.6, we obtain the desired inequality. ��

3 Proof of Theorem 1.2

To prove global existence, the following proposition (so-called the blowup–
alternative) is essential.

Proposition 3.1 Assume 1 < p < ∞. Let u be the weak solution of (1.1) in (0, T∗)
with the corresponding lifespan T∗. If T∗ < ∞, then one has

lim
t↑T∗

(‖u‖H 1(R) + ‖u‖L2(R)) = ∞.

From the viewpoint of the class of initial data, we will use the following energy
functional in the proof of Theorem 1.2.

Definition 3.1 Let λ ∈ (0, 1
2 ) and let u be the weak solution of (1.1) in (0, T∗).

Define for t0 ≥ 1 and t ∈ [0, T∗),

mλ(t : t0) := (t0 + t)

ˆ
R

(
|∂xu(x, t)|2 + |∂tu(x, t)|2

)
�(x, t : t0)λ dx

+
ˆ
R

|u(x, t)|2�(x, t : t0)λ dx, (3.1)

Yλ(t : t0) :=
ˆ t

0

ˆ
R

|∂xu(x, s)|2�(x, s : t0)λ dx ds, (3.2)

Zλ(t : t0) :=
ˆ t

0
(t0 + s)

ˆ
R

|∂tu(x, s)|2�(x, s : t0)λ dx ds. (3.3)



Remark on One Dimensional Semilinear Damped Wave Equation in a Critical. . . 301

Proposition 3.2 There exist positive constants t∗0 ≥ 1 and η∗ > 0 such that

η∗ (mλ(t : t∗0 ) + Yλ(t : t∗0 ) + Zλ(t : t∗0 )
)

≤ mλ(0 : t∗0 ) +
ˆ
R

|u0|p+1�∗(0)λ dx

+ (t∗0 + t)

ˆ
R

|u(t)|p+1�∗(t)λ dx +
ˆ t

0

ˆ
R

|u(s)|p+1�∗(s)λ dx ds,

where �∗(t) = �(·, t : t∗0 ).
Sketch of the Proof of Proposition 3.2 Set the following two (weighted) energy
functionals:

Eλ(t : t0) := (t0 + t)

ˆ
R

(
|∂xu(x, t)|2 + |∂tu(x, t)|2

)
�(x, t : t0)λ dx, t ∈ [0, T∗),

(3.4)

Ẽλ(t : t0) :=
ˆ
R

(
2u(x, t)∂tu(x, t) + |u(x, t)|2

)
�̃β(x, t : t0)−1+2δ dx, t ∈ [0, T∗),

(3.5)

where β = 2λ
1+2λ ∈ (0, 1

2 ) and δ = 1−2λ
4 ∈ (0, 1

4 ). The parameter t0 will be fixed
later (we often use Eλ, Ẽλ if there is no confusion). Differentiating Eλ and using

integration by parts, we see from |∂x�| ≤ �
1
2 and t0 + t ≤ � that

d

dt
Eλ ≤ 2(t0 + t)

ˆ
R

∂tu(t)
(
∂2
t u(t) − ∂2

xu(t)
)
�(t)λ dx + (t0 + t)

ˆ
R

|∂tu|2�(t)λ dx

+ (λ2 + λ + 1)
ˆ
R

(
|∂xu(t)|2 + |∂tu(t)|2

)
�(t)λ dx.

Using the equation in (1.1), we have

d

dt
Eλ ≤ 2

p + 1

d

dt

[
(t0 + t)

ˆ
R

|u|p+1�(t)λ dx

]
− (t0 + t)

ˆ
R

|∂tu(t)|2�(t)λ dx

+ (λ2 + λ + 1)
ˆ
R

(
|∂xu(t)|2 + |∂tu(t)|2

)
�(t)λ dx.

On the one hand, differentiating Ẽλ and using the equation in (1.1), we deduce

d

dt
Ẽλ = 2

ˆ
R

|∂tu(t)|2�̃β(t)
−1+2δ dx + 2

ˆ
R

u(t)
(
∂2
xu(t) + |u(t)|p−1u(t)

)
�̃β(t)

−1+2δ dx,

− (1 − 2δ)
ˆ
R

(
2u(t)∂tu(t) + u(t)2)�̃β(t)

−2+2δ∂t �̃β(t) dx.
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Applying Lemma 2.3 and Lemma 2.2 (i) and (ii), we have

d

dt
Ẽλ ≤ 2

ˆ
R

|∂tu(t)|2�̃β(t)
−1+2δ dx − 2δ

1 − δ

ˆ
R

|∂xu(t)|2�̃β(t)
−1+2δ dx

− (1 − 2δ)

2(t0 + t)2

ˆ
R

|u(t)|2�̃β(t)
−1+2δ dx + 2

ˆ
R

|u(t)|p+1�̃β(t)
−1+2δ dx

+ 2C̃′
β(1 − 2δ)

t0 + t

ˆ
R

|u(t)| |∂tu(t)|�̃β(t)
−1+2δ dx.

The Schwarz inequality and Lemma 2.2 with δ1 = 2δ
1−δ

provide

d

dt
Ẽλ ≤ K1

ˆ
R

|∂tu(t)|2�(t)λ dx − δ1

ˆ
R

|∂xu(t)|2�(t)λ dx + K2

ˆ
R

|u(t)|p+1�(t)λ dx

for some positive constants K1,K2 > 0. Taking ν = λ2+λ+2
δ1

, we find

d

dt

[
Eλ + νẼλ

]
≤ 2

p + 1

d

dt

[
(t0 + t)

ˆ
R

|u|p+1�(t)λ dx

]
−
ˆ
R

|∂xu(t)|2�(t)λ dx

− (t0 − K3 + t)

ˆ
R

|∂tu|2�(t)λ dx + K2ν

ˆ
R

|u(t)|p+1�(t)λ dx,

(3.6)

where K3 = λ2 + λ + 1 + K1ν. Noting that

∣∣∣∣Ẽλ − 1

2

ˆ
R

|u(t)|2�̃β(t)
−1+2δ dx

∣∣∣∣ ≤ 2c−1+2δ
β

ˆ
R

|∂tu(t)|2�(t)λ dx,

by choosing t∗0 = max{K3, 2νc−1+2δ
β }+1 and integrating (3.6) over [0, t], we obtain

the desired inequality. ��
Here we prove Theorem 1.2.

Proof of Theorem 1.2 Applying Lemma 2.4 with q = p+1(= 2+ 4
1+2λ < 2+ 1

λ
),

ˆ
R

|u(t)|p+1�∗(t)λ dx ≤ C

ˆ
R

|∂xu(t)|2�(t)λ dx

(ˆ
R

|u(t)|2�(t)λ dx

)p−1
2

.

This gives the following two estimates

(t∗0 + t)

ˆ
R

|u(t)|p+1�∗(t)λ dx ≤ C
(
mλ(t : t∗0 )

) p+1
2 ,

ˆ t

0

ˆ
R

|u(s)|p+1�∗(s)λ dx ds ≤ CYλ(t)

(
sup

0≤s≤t

(
mλ(s : t∗0 )

)
) p−1

2

.
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Therefore setting

M̃λ(t) = sup
0≤s≤t

(
mλ(s : t∗0 )

) + Yλ(t),

we see from Proposition 3.2 that

η∗M̃λ(t) ≤ mλ(0 : t∗0 ) + 1

p + 1

ˆ
R

|u0|p+1�∗(0)λ dx + 2C
(
M̃λ(t)

) p+1
2 .

There exists ε0 > 0 such that if

mλ(0 : t∗0 ) + 1

p + 1

ˆ
R

|u0|p+1�∗(0)λ dx ≤ ε

for some ε ∈ (0, ε0], then by continuity of M̃λ(·), we obtain the desired boundness

sup
0<t<T∗

M̃λ(·) ≤ Cε.

In view of Proposition 3.1 (blowup alternative), we obtain global existence with
(1.9) and (1.10); note that the weighted L∞-estimate (1.11) follows from the use of
Lemma 2.6 with (1.9) and (1.10). ��

4 On Initial Data with a Slightly Stronger Assumption

Proof of Theorem 1.3 Let u be a global-in-solution of (1.1) in Theorem 1.2. Then
we already have

ˆ
R

|∂xu(x, t)|2�(x, t : t∗0 )λ dx +
ˆ t

0

ˆ
R

|∂xu(x, s)|2�(x, s : t∗0 )λ dx ds ≤ Cε.

Therefore using integration by parts, we see from (1.1) and |∂x�∗| ≤ �
1
2∗ that

d

dt

ˆ
R

(
|∂tu|2 + |∂xu|2 − 2

p + 1
|u|p+1

)
�λ+1∗ dx

≤ −1
ˆ
R

|∂tu|2�λ+1∗ dx + (λ + 1)
ˆ
R

|∂tu|2�λ∗ dx + (λ + 1)(λ + 2)
ˆ
R

|∂xu|2�λ∗ dx.
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Recalling that t∗0 ≥ λ + 1, we deduce

d

dt

ˆ
R

(
|∂tu|2 + |∂xu|2 − 2

p + 1
|u|p+1

)
�λ+1∗ dx

≤ −
ˆ
R

|∂tu|2�λ+1∗ dx + (λ + 1)(λ + 2)
ˆ
R

|∂xu|2�λ∗ dx.

Combining the last inequality with (1.10) yields

ˆ
R

(
|∂tu|2 + |∂xu|2

)
�λ+1∗ dx ≤ 2

p + 1

ˆ
R

|u|p+1�λ+1∗ dx

+
ˆ
R

(
|u1|2 + |∂xu0|2

)
�λ+1∗ (0) dx + Cε

≤ 2

p + 1

ˆ
R

|u|p+1�λ+1∗ dx + ((t∗0 )λ+1 + C)ε.

(4.1)

To control the term
´
R

|u|p+1�λ+1∗ dx, we use the inequality

1

2

ˆ
R

|w|2�λ∗ dx ≤
ˆ
R

|∂xw|2�λ+1∗ dx (4.2)

(see [11, Lemma 2.2]). We see from ∂x(u
2�

μ∗ ) = 2u∂xu�
μ∗ + μx

2u
2�

μ−1∗ that

‖u2�
λ+ 1

2∗ ‖L∞(R) ≤ 2
ˆ
R

|u| |∂xu|�λ+ 1
2∗ dx +

(
λ + 1

2

) ˆ
R

|u|2
( |x|

2
�

λ− 1
2∗
)
dx

≤ 2

(ˆ
R

|∂xu|2�λ∗+1 dx

) 1
2
(ˆ

R

|u|2�λ∗ dx

) 1
2

+
(
λ + 1

2

) ˆ
R

|u|2�λ∗ dx

≤
(

2
√

2 + 1 + 2λ
)ˆ

R

|∂xu|2�λ+1∗ dx. (4.3)

Therefore using (4.2) again, we have

ˆ
R

|u|p+1�λ+1∗ dx ≤ ‖u2�
λ+ 1

2∗ ‖
p−1

2
L∞(R)

ˆ
R

|u|2�λ+1−(p−1) 1+2λ
4∗ dx

≤ ‖u2�
λ+ 1

2∗ ‖
p−1

2
L∞(R)

ˆ
R

|u|2�λ∗ dx

≤ Cε
(

2
√

2 + 1 + 2λ
) p−1

2
(ˆ

R

|∂xu|2�λ+1∗ dx

)p+1
2

.
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The above inequality and (4.1) imply the boundness
´
R

|∂xu|2�λ+1∗ dx ≤ Cε via a

continuity argument. Then by (4.3) we obtain ‖u2�
λ+ 1

2∗ ‖L∞(R) ≤ C
√
ε. The proof

is complete. ��
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