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2.1  Ovarian Cancer, Treatment, 
and Recurrence

Epithelial ovarian cancer (EOC) accounts for 
approximately 238,000 new cases annually 
worldwide and is responsible for at least 150,000 
deaths every year [1]. More than 70% of patients 
present with advanced stages III or IV [2]. The 
estimated 5-year overall survival (OS) of stages 
III and IV are 35% and 22%, respectively [3]. 
The standard treatment of EOC is primary deb-
ulking, aiming at complete cytoreduction fol-
lowed by six cycles of combined carboplatin and 
paclitaxel and, eventually, bevacizumab [4, 5]. 
This treatment strategy is based on many studies 
showing a remarkable benefit for patients who 
receive a complete macroscopic resection 
through aggressive cytoreductive surgery [6–8]. 
Thus, patients with tumor residues <1  cm after 
primary debulking have relatively worse progno-
ses, while patients with tumor resides >1 cm have 
prognoses compared with those who do not 
undergo debulking [9, 10]. Carboplatin and pacli-

taxel significantly influence OS compared with 
other regimens [11–15]. Bevacizumab confers 
survival benefits upon patients with advanced 
EOC, particularly those with tumor residues after 
debulking surgery [16, 17].

Accumulating evidence shows that neoadju-
vant chemotherapy followed by interval debulk-
ing leads to increases in complete tumor resection 
rates, with OS rates comparable with those of 
primary debulking followed by adjuvant chemo-
therapy [18, 19]. Moreover, this regimen achieves 
lower morbidity, mortality, and better quality of 
life [20]. These findings led oncologists to con-
sider neoadjuvant chemotherapy followed by 
interval debulking as a possible therapeutic 
option in certain clinical situations, where pri-
mary debulking surgery is difficult to perform 
because of patients’ unfavorable general condi-
tions or a very advanced nonresectable tumor 
stage [4, 21]. Unfortunately, as many as 70% of 
patients with advanced EOC will experience 
recurrence after standard treatment [12, 15, 22]. 
Recurrences are so frequent in such patients that 
only 10–30% survive long term [23].

EOC recurrences are classified as “platinum- 
sensitive” and “platinum-resistant,” according to 
the response to initial platinum-based therapy 
(see below). This classification determines plati-
num resistance according to recurrence based on 
clinical symptoms, clinically detectable disease 
or radiological evidence of disease recurrence, or 
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both [24–26]. A patient is designated “platinum- 
sensitive” if she initially responds to platinum- 
based chemotherapy and does not experience a 
relapse for ≥6  months after initial treatment. 
Approximately 30–90% of these patients will 
respond to further platinum-based chemotherapy 
with a median survival of 2 years, although sur-
vival can range from a few months to more than a 
decade [27–29]. Many patients will receive mul-
tiple lines of treatment over time, but with few 
exceptions, will ultimately develop platinum- 
resistant disease. Patients who relapse within 
6  months of completing first-line therapy are 
classified as “platinum-resistant” and typically 
have response rates <15% to subsequent chemo-
therapy, progression-free survival of 3–4 months, 
and median survival <1 year [30].

2.2  Cytotoxic Effects of Platinum 
and Platinum Resistance

The cytotoxicity of platinum therapy is mainly 
caused by DNA damage [31]. Platinum-based 
drugs react with guanine nucleotides to form 
platinum–DNA mono-adducts, which often react 
with a second purine nucleotide to form inter-
strand and intrastrand crosslinks, leading to 
increased cytotoxicity. Carboplatin and cisplatin 
form the same platinum–DNA crosslinks in vivo 
because of their identical cis-diamine ligands 
[31]. The formation of intrastrand and interstrand 
crosslinks leads to cell death through apoptosis 
or necrosis. These processes are irreversible 
unless the crosslinks are repaired. Apoptosis is 
executed by a series of cysteine proteases termed 
caspases [32]. Caspase activation leads to mito-
chondrial dysfunction [33] and DNA fragmenta-
tion [34].

Carboplatin and cisplatin share similar in vitro 
chemoresistance spectra and clinical indications, 
although cisplatin is possibly more effective for 
certain cancers [31]. Factors associated with 
resistance to platinum include those that limit the 
formation of cytotoxic platinum–DNA adducts 
and those that prevent cell death after platinum- 
adduct formation [35]. The former may result 
from reduced uptake of cisplatin into cells, 

increased efflux via alterations to transport pro-
teins, or through inactivation of intracellular cis-
platin by its conversion to cisplatin-thiol 
conjugates. The latter form of resistance may 
occur through increased DNA repair after adduct 
formation. The five major DNA repair mecha-
nisms are as follows: nucleotide excision repair, 
mismatch repair, homologous recombination, 
base-excision repair, and translesion synthesis 
[35].

The cancer stem cell (CSC) model and the 
environment-mediated drug resistance model 
(EMDR) were proposed to explain the origin of 
drug-resistant cells [36]. The CSC model pro-
poses that genetic or epigenetic alterations, or 
both, which occur in multipotent, tissue-specific 
adult stem cells, may induce malignant transfor-
mation to generate CSCs. CSCs possess stem 
cell-like properties, including self-renewal and 
cell division to form tumors that acquire further 
genetic or epigenetic alterations. Such alterations 
may contribute to the development of invasive 
properties that allow the tumor to metastasize to 
distant sites [30, 37, 38]. CSCs may be intrinsi-
cally resistant to chemotherapy through different 
mechanisms and may represent a major source of 
chemoresistant cells within tumors [39, 40].

In the EMDR model, resistance emerges as 
the cancer cells interact with their surrounding 
microenvironment and enter a quiescent state 
caused by the complex interplay between the 
tumor and its microenvironment. Tumors that 
develop a prominent desmoplastic reaction are 
associated with poor prognosis as well as with 
platinum resistance [30, 40].

2.3  CSCs

Stem cells are defined as cells that perpetuate 
through self-renewal and differentiation to 
mature cells of a particular tissue [41]. Stem cells 
must therefore be prospectively identified and 
carefully purified to study their properties. 
Unfortunately, isolation of tissue-specific stem 
cells could not be universally achieved, as 
somatic stem cells identification and isolation 
have been achieved only in a few instances. For 
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example, human hematopoietic stem cells [42] 
generate and reconstitute the hematopoietic and 
immune (hematolymphoid) systems [41, 42]. 
Although CSCs were originally described in 
hematological cancers, they have been isolated 
from solid tumors [43, 44].

An important issue in stem cell biology is 
understanding the mechanisms that regulate self- 
renewal. Self-renewal, which is crucial to stem 
cell function, is a property of diverse stem cells 
required for their lifelong persistence. Moreover, 
whereas stem cells from different organs may 
vary in their developmental potential, all stem 
cells must self-renew and regulate the relative 
balance between self-renewal and differentiation. 
Understanding the regulation of the self-renewal 
of normal stem cells is fundamental to the under-
standing of the regulation of cancer cell prolifera-
tion because cancer can be considered a disease 
of unregulated self-renewal.

Another fundamental attribute of stem cells is 
their transient or long-term quiescence (also 
termed dormancy) [45], which is a component of 
the mechanism of regulated self-renewal. 
Accordingly, stem cells are often identified by 
their propensity to retain labeled DNA much lon-
ger than their rapidly proliferating offspring. 
Moreover, dormancy may serve as a crucial 
mechanism for the resistance of CSCs to chemo-
therapy. The dormancy of CSCs may explain the 
appearance of local recurrence or distant metas-
tasis after long delays [45]. Figure 2.1 shows a 
hypothetical model of the CSC concept and its 
evolution.

2.4  Identification of CSCs

Many markers define CSC populations, and the 
most commonly reported for solid tumors are 
CD24, CD44, and CD133. CSC populations are 
commonly defined by the presence or absence of 
various combinations of cell surface proteins. 
Reacting the cells with antibodies against these 
markers readily identifies cell populations of 
interest, which are isolated using fluorescence- 
activated cell sorting [43]. Figure 2.2 shows the 

currently available markers used to identify dif-
ferent subsets of CSCs in different tumors.

2.5  Ovarian CSCs

CSCs isolated from ovarian cancer are associated 
with worse prognosis and recurrence [48]. The 
use of markers of ovarian CSCs, such as CD44, 
CD24, and CD133, is proposed by recent 
studies.

2.5.1  CD44

CD44 is a glycoprotein that is widely presented 
on the outer surface of many mammalian cells 
such as endothelial cells, epithelial cells, fibro-
blasts, and leukocytes [46]. CD44 is a surface 
marker of CSCs in many tissues such as breast, 
pancreas, gastric, prostate, head, neck, ovarian, 
and colon [47, 49]. CD44 is associated with dis-
eases such as cancer, arthritis, interstitial lung 
disease, vascular disease as well as in wound 
healing and infections. Several studies focus on 
CD44–HA signaling and its implications in 
malignancies of solid organs such as breast and 
ovarian cancer [47, 49, 50].

A single gene encodes CD44, which is located 
on chromosome 11 in humans and chromosome 
2 in mice. There are approximately 20 CD44 iso-
forms ranging from 80 to 200 kDa. The heteroge-
neity of this group is generated by 
post-transcriptional regulation, including alterna-
tive splicing and protein modifications. All iso-
forms are encoded by exons 1–5 and 16–18, 
whereas exons 6–15 and 19–20 are present in 
isoforms generated by alternative splicing [50, 
51]. Specific to the tissue and isoform, CD44 
plays roles in adhesion, motility, proliferation, 
and cell survival [52]. CD44 contains four major 
domains, including the conserved extracellular 
hyaluronan-binding domain and variably spliced 
regions, the transmembrane sequence, and the 
intracellular cytoskeletal/signaling domain. 
Figure 2.3 shows the structure and genomic orga-
nization of CD44 [51].
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Fig. 2.1 A theoretical synthesis of the clonal Cancer 
stem cell evolution and CSC concepts. Top to bottom: 
clonal evolution drives tumor progression [46]. (1) The 
first oncogenic mutation (lightning arrow) occurs in a 
stem cell (or, alternatively, benign Stem cell in a pro-
genitor or even a differentiated cell) of lesion (progenitor 
or a healthy epithelium), resulting in the growth of a 
genetically homogeneous benign lesion. (2) The second 
hit targets one of the cells in the benign lesion, which 
leads to the growth of a more malignant and invasive 

clone within the primary tumor. (3) A third hit in a cell 
within the malignant sub clone causes further transfor-
mation, visualized as entry into a blood vessel for distant 
metastasis. Genetically independent sub clones can 
coexist within the tumor. (4) Final mutational hit leads to 
tumor being entirely taken over by cells that behave as 
malignant cancer stem cells. Shown, left to right: at each 
tumor stage of this clonal evolution process, tumors and 
sub clones within tumors contain some cells that behave 
as CSCs
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Interactions between CD44 and the extracel-
lular matrix glycosaminoglycan hyaluronan 
(HA) are currently under investigation. HA is 
enriched in the stem cell niche and likely plays an 
integral role in the function of CD44  in CSCs 
[53, 54]. CD44 guides the epithelial stromal reac-
tion with the extracellular microenvironment 
(ECM) to direct intracellular signaling and modi-
fies the ECM. The extracellular domain of CD44 
binds ECM components such as collagen, lam-
inin, fibronectin, and HA [55]. CD44 contains 
binding sites for glycosaminoglycans other than 
HA, for example, osteopontin [56]. HA is the 
best-characterized CD44 ligand and possesses an 
immense repertoire of biological functions. HA, 
which is a cell-surface-associated glycosamino-
glycan that is ubiquitous in extracellular and peri-
cellular matrices, is synthesized and 
simultaneously secreted by transmembrane HA 
synthases as a 106–107 kDa polymer [56, 57].

CD44 modulates many signaling activities 
through interactions with its cytoplasmic tail. 
Treatment with soluble low or high molecular 
weight HA induces cell invasion and migration 
through CD44-mediated activation of Rho family 
GTPases. Hyaluronan–CD44 interactions initiate 

recruitment of signaling molecules such as 
Tiam1, p115, Rac1, Rho Gefs, Rho-associated 
protein kinase, and cSrc. Interactions with signal-
ing molecules lead to activation of the PI3K sig-
naling pathway and a number of cellular functions 
such as survival and invasion [57]. Figure  2.4 
illustrates CD44-mediated signal transduction 
[57] and Fig. 2.5 shows an example of immuno-
histochemical detection of CD44.

2.5.2  CD24

Mouse CD24 was first identified as a heat-stable 
antigen 30  years ago, and the CD24 gene was 
molecularly cloned and found to encode a small 
protein whose mature form comprises 27 amino 
acid residues [58, 59]. Human CD24 is located 
on chromosome 6q21, as determined by in situ 
hybridization [60]. The CD24 isoforms isolated 
from different tissues or cell types have different 
molecular masses, ranging from 20 to 70  kDa, 
depending on cell or tissue type, demonstrating 
that the glycosylation of CD24 is highly variable 
and cell-type dependent [61]. CD24 is expressed 
by hematopoietic cells such as B cells and T cells 

Fig. 2.2 Currently identified surface markers for CSC [47]
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as well as by nonhematopoietic cells such as neu-
rons, epithelial cells, and epithelial stem cells 
[61–63].

The main role of CD24 in most cell types is 
unclear; however, certain immune regulatory 
functions of CD24 are known [64]. CD24 is 
broadly overexpressed by many types of tumor 
tissues, particularly those of the breast [65] and 
ovary [66]. For example, in breast cancer, cell 
surface and cytoplasmic expression of CD24 is 
associated with poor prognosis, histological 
grades, tumor size, and lymph node positivity 
[65, 67]. CD24 is expressed in epithelial ovarian 
cancer. Although most published work demon-
strates an association of CD24 expression with 
advanced disease stage and poor prognosis, the 
association is controversial. CD24+ cells exhibit 
increased tumor-forming and tumor-initiating 
capacities. Interestingly, CD24+ or CD24− cells 
can initiate a tumor. This may be explained by 

in vitro and in vivo lineage tracking experiments 
showing the conversion of CD24− to CD24+ cells. 
Therefore, CD24+ may act as a transition phase 
between cancer stem cells and tumorigenesis 
[68].

2.5.3  CD133

CD133 is a surface marker that was identified in 
epithelial ovarian cancer [69], endometrial can-
cer, neuronal cancer, and colon cancer [70]. The 
role of CD133  in tumor progression is unclear. 
CD133 may serve as a prognostic marker of low- 
risk endometrial cancer [71]. The expression of 
CD133 may be associated with enhanced tumori-
genesis in animal models of human melanoma 
and colon cancer [72, 73]. The role of CD133 in 
disease progression and resistance to chemother-
apy is unclear.

1 2

CD44s CD44sV
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

exons

Gene structure

Protein structure

3 4 5 6 7 8 9

Extracellular

SS

SS

SS

P

P

Standard region
Link domain
Ligand binding

Variable region
OPN binding

ankyrin
ERM/Merlin

10 11 12 13 14 15 16 17 18 19 20

TM
Cytoplasmic

A

B

Fig. 2.3 Genetic encoding of CD44 (a) and its basic structure (b) [52]

A. A. Soliman et al.



27

2.6  Resistance to Chemotherapy 
and CSCs

It is often suggested that CSCs are resistant to 
therapy in the same way that normal stem cells 
are protected against insult. These protections 
include the aforementioned quiescence as well as 
expression of drug pumps, high expression of 
antiapoptotic proteins, and resistance to DNA 
damage [74]. Some groups have started to deter-
mine if CSCs are more resistant to therapy than 
their progeny. For example, CD133-expressing 

glioma cells are more resistant to ionizing radia-
tion compared with CD133negative tumor cells [75]. 
CD44high/CD24low breast cancer CSCs appear 
intrinsically resistant to conventional chemother-
apy and ionizing radiation [76], and chronic 
myeloid leukemia is sustained by leukemic stem 
cells that are relatively resistant to imatinib [77].

In EOC, platinum resistance is a very impor-
tant issue because of the high recurrence rate of 
the disease. Several studies attempted to explain 
the development of platinum resistance in EOC, 
but there is no consensus regarding its 

Fig. 2.4 Signal transduction of CD44 [58]
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 development. Patients with primary “platinum 
refractory” disease are intrinsically drug resistant 
and do not respond or progress very early follow-
ing treatment. Primary platinum-refractory ovar-
ian cancers are uncommon and usually occur 
with nonserous ovarian cancers such as clear cell 
carcinoma or mucinous carcinoma vs. the more 
common high-grade serous carcinoma. It is likely 
that the mechanisms of resistance among these 
various histotypes are very different.

Patients who experience an initial response to 
platinum chemotherapy may have tumors com-
prising populations of intrinsically platinum- 
resistant and platinum-sensitive cells. The 
sensitive cells undergo apoptosis following che-
motherapy (tumor response), but the resistant 
subpopulation persists and expands, leading to 
early recurrence in platinum-resistant disease. 
Platinum-sensitive patients may respond repeat-
edly to platinum, because of the regrowth of the 
sensitive population. Ultimately however the sen-
sitive cells may alter, rendering them resistant, or 
the resistant cell population will outgrow the sen-
sitive population [30].

Another important characteristic of EOC is its 
heterogeneity. Heterogeneity exists spatially 
within the primary tumor and between the pri-
mary tumor and its metastases that are transient, 
as indicated by biopsies performed at different 

times [78, 79]. This heterogeneity significantly 
adds to the complexity of assessing or interpret-
ing the response to treatment and patients’ out-
comes. This property is supported by anecdotal 
clinical observations of patients with differential 
responses to treatment, with progression at one 
site and responses at other sites. The mechanisms 
that explain how frequently this occurs are 
unknown, and there is no guidance or consensus 
on the appropriate management of these patients. 
In future studies, particularly of targeted thera-
pies, repeat biopsies upon recurrence and after 
further treatment will be essential to gain a better 
understanding of the mechanisms of resistance. 
The CSC theory can explain this heterogeneity, 
where different subsets of CSCs proliferate in the 
same tumor and during the development of dif-
ferent metastasis, leading to different phenotypes 
of the same tumor.

Treatment of EOC recurrence is a dilemma, 
particularly for platinum-resistant patients. 
Chemotherapeutic agents such as doxorubicin, 
gemcitabine, topotecan, trabectedin, and pacli-
taxel as well as targeted therapies such as bevaci-
zumab, olaparib, and niraparib were evaluated in 
clinical trials designed to develop a strategy to 
achieve an adequate response. Until recently, 
phase III trials did not reveal any significant 
improvement in the progression-free interval 

Fig. 2.5 Peculiar 
pattern of CD44 staining 
restricted to scattered 
tumor glands showing 
moderately intense 
staining. (Courtesy of 
Prof Dr Bassma 
El-Sabaa)
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(PFI) or OS. Two studies of chemotherapy plus 
an antiangiogenic agent achieved improved PFI, 
but not OS, in the platinum-resistant subset. The 
AURELIA study (involving chemotherapy com-
bined with bevacizumab) achieved an approxi-
mate doubling of the PFI (3.4 vs. 6.7 months, HR 
0.48, p < 0.001) vs. without bevacizumab, but no 
improvement in OS [80]. The TRINOVA 1 study 
(paclitaxel combined with the angiopoietin 1/2 
inhibitor trebananib) achieved an improved PFI 
(5.4 vs. 7.2 months, p < 0.001) [81].

Poly ADP-ribose inhibitors achieved promis-
ing results in reducing the recurrence of 
EOC. Patients with platinum-sensitive recurrence 
with or without a BRCA mutation experience a 
slightly better response to olaparib and niraparib 
[82, 83]. An unanswered question is if the same 
effect will appear in the platinum-resistant subset 
of patients.

Recurrent EOC remains a significant treat-
ment dilemma, mainly because of our limited 
understanding of the development of the resis-
tance to chemotherapy. CSCs may contribute to 
recurrent EOC, and this will remain a hypotheti-
cal possibility until experimentally and clinically 
verified.
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