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10.1  Introduction

Ovarian cancer originates from the female organ 
responsible for producing eggs. This cancer most 
often remains undetected until it has spread 
locally within the pelvis. In the early stage, 
patient usually remains asymptomatic. Although 
in later stages, patients develop symptoms such 
as anorexia, loss of weight which are nonspecific, 
causing more confusion. Moreover, there is no 
better way to detect cancer at an early stage. Late 
detection is primarily the most important factor 
contributing to difficult-to-treat cases and 
increased fatality [1].

Ovarian cancer is the most lethal gynecologi-
cal cancer in women worldwide. According to 

World Ovarian Cancer Coalition, ovarian cancer 
is the fifth most common cause of death from 
cancer. Approximately 295,000 women are diag-
nosed with ovarian cancer every year worldwide 
and account for more than 184,000 deaths per 
year. The 5-year survival rate is approximately 
30% compared to 80% in case of breast cancer. 
By the year 2035, the diagnosis of new cases of 
ovarian cancer is expected to increase by 55% 
and the number of deaths would increase by 70% 
[2]. In the United States, out of 21,750 new cases 
estimated in 2020, 13,940 women will die with it 
within 5 years of diagnosis [3]. Despite substan-
tial improvement in technology, lack of early 
diagnosis remains a clinical problem and contrib-
utes to the highest mortality among female gyne-
cological cancers.

Ovary comprises of different cell types such 
as surface epithelial cells, germ cells, and sex 
cord-stromal cells. All these different cell types 
can give rise to different tumors. If we consider 
the 5-year survival rate of different stages of the 
disease, it has been observed that if it can be 
diagnosed at an early stage, it is highly curable. 
Moreover, if the disease is confined to the ovary, 
the survival rate is approximately 90% while it 
drops significantly as it proceeds further higher 
stages. Unfortunately, ovarian cancer patients 
frequently present with advanced disease and 
hence survival rate drops to about 40% after 
5 years of diagnosis [2].
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Ovarian cancer is a heterogeneous disease 
with variable clinicopathological and molecular 
mechanisms of carcinogenesis, progression, 
metastasis, response to oncotherapy, and mani-
fests as different histotypes when examined 
under microscope [4]. The most frequently pre-
sented subgroup is epithelial ovarian cancer 
which originates from the surface of the ovary 
and among this group there are different histo-
types described briefly as follows: Germ cell 
tumor is seen in younger age group and stromal 
cell tumors appear in midlife. Not every ovarian 
cancer is the same. Different subtypes have dif-
ferent prognoses. Median survival rate varies 
with the type of ovarian cancer [5]. Hence, it is 
pertinent to identify and stratify the tumor type/
subtype so as to administer appropriate treatment 
to the patient depending upon their differential 
response to the chemotherapy regimen.

Primary cytoreductive surgery combined with 
chemotherapy is initially effective treatment in 
the annihilation of bulk of tumor thus retaining 
the cells with stemness properties (self-renewal 
and quiescence) also termed as cancer stem cells 
(CSCs) which may get enriched leading to ther-
apy recalcitrance and disease relapse [6, 7]. 
Chemoresistance is a crucial hindrance to 
achieve success in ovarian cancer therapy and is 
a major factor for stage-wise (I, II, III) progres-
sion of tumorigenesis [8]. Histopathologically 
epithelial ovarian cancer is classified as high-
grade serous carcinoma, low-grade serous carci-
noma, endometrioid clear cell carcinoma, and 
mucinous carcinoma. Modulation and cross-talk 
of various signaling pathways (Wnt, Shh, 
Notch1, etc.) might be implicated in this CSC-
mediated therapeutic resistance [7, 8]. Recent 
report (utilizing genetically engineered mouse 
models and organoids) implicated both fallopian 
tube and ovarian surface epithelium (OSE) as the 
origin of high- grade serous ovarian carcinoma 
[9]. In addition, intratumoral heterogeneity of 
CSCs may be responsible for chemoresistance 
which could be probed to study at single-cell 
RNA transcriptome level with respect to tumor 
stage, patient-specific treatment regimen, and 
clinical outcome to establish corelation and thus 
effective therapies.

Tumor represents a complex ecosystem com-
prising of varied subclones differing in their 
genetic and epigenetic constitution (i.e., muta-
tional burden and promoter hypermethylation) 
[intrinsic factors] and those from its surrounding 
microenvironment [extrinsic factors] constituting 
the spatiotemporal variations within the stromal 
cells, extracellular matrix components, immune, 
and endothelial cells [10]. This heterogeneity is a 
by-product of either or both of the situations 
defined by the clonal selection and stochastic 
model of CSCs, respectively. CSCs represent het-
erogeneity/plasticity in terms of the spectrum 
provided by their variability from stemness 
towards differentiation pathway thus providing a 
hierarchy of cells within a single tumor. 
Oncogenic transformation of cells culminating 
into CSCs rendering them with self-renewal abil-
ity and hence tumor aggressiveness and therapy 
resistance represents their genetic/epigenetic and 
also functional plasticity [11, 12].

Oncogenic transformation of OSE cells have 
been reported and implicated in epithelial ovarian 
cancer however there exists a gap in the knowl-
edge about novel oncogenes and their molecular 
mechanisms [13]. Recently, Securin also known 
as pituitary transforming gene (PTTG) has been 
reported to be responsible for the transformation 
of normal cells to  cancer cells. PTTG1, first 
cloned from ovary and testis is basically involved 
as a regulator of sister chromatid separation dur-
ing cell cycle during normal physiology. It is a 
multi-domain proto-oncogene with pleiotropic 
functional significance due to its overexpression 
in different tumor types such as pituitary, thyroid, 
and breast besides ovarian cancer [14–16]. 
Recently PTTG1 was represented as a novel can-
didate which could demarcate the normal stem 
cells and ovarian CSC compartments (within the 
OSE layer and cortex region) in benign, border-
line, and high-grade human ovarian tumors and 
ascites derived CSCs in comparison to normal 
ovaries by its co-expression with CSC-specific 
markers. Silencing of PTTG1 by gene-specific 
siRNA, or adenovirus vector expressing PTTG1 
siRNA in ovarian cancer cells abrogated and 
enhanced the expression of PTTG1 leading to 
suppression of tumor progression and metastasis. 
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In addition, self-renewal, Wnt/B-Catenin, 
Notch1, and EMT pathway-specific markers 
were differentially regulated signifying a defini-
tive role of PTTG1 in CSC self-renewal and EMT 
[17]. Hence, some fundamental concepts are 
described below.

10.2  Normal Cell Versus 
Cancer Cell

NCCP guideline for ovarian cancer 2019
There are three characteristically different fea-

tures between normal and cancer cells.

 1. Unlike normal cells, cancer cells grow in an 
uncontrolled manner without contact inhibi-
tion resulting in the development of tumor.

 2. Cancer cell can invade other tissues which are 
known as invasion. Normal cells lack such 
property.

 3. Unlike normal cells, cancer cells can propa-
gate to a different part of the body by implant-
ing or seeding, or via blood or lymphatic 
vessels.

10.3  Stem Cells Versus Cancer 
Stem Cells

10.3.1  Stem Cell

It is a special type of cell that possesses the abil-
ity to renew itself through cell division and dif-
ferentiate into cells of multiple lineages. This cell 
may be of three types: adult stem cells, embry-
onic stem cell (ESC), and induced pluripotent 
stem cells (iPSCs).

 (a) Mesenchymal stem cells (MSCs) are non- 
hematopoietic, multipotent adult stem cells 
and possess a varying degree of propensity to 
differentiate into Mesodermal lineage. 
Moreover, it can transdifferentiate into ecto-
dermal and endodermal lineages. Later on, it 
was observed that these cells are present in 
almost all tissues such as adipose tissue, 
amniotic fluid and membrane, dental tissue, 

endometrium, limb bud, peripheral blood, 
placenta and fetal membrane, salivary gland, 
skin and foreskin, sub amniotic umbilical 
cord lining membrane, synovial fluid, 
Wharton’s jelly, and menstrual blood [18].

 (b) Embryonic stem cells (ESCs) are pluripotent 
in nature and have ability to differentiate into 
any type of somatic cells derived from an 
embryo. As a result of this, ESCs can be used 
as a promising biological tool for exploring 
the complex mechanism of development of 
multiple organ structures. First time, the 
embryonic stem cell line was derived suc-
cessfully from mouse embryo in 1981 [19, 
20]. Later on, Thompson and coworkers in 
1998 generated the first stable ESC line from 
human embryos produced by in vitro fertil-
ization [21].

 (c) Induced pluripotent stem cells (iPSCs): 
Despite the highest therapeutic potentiality 
of human ESC (hESC) in translational medi-
cine, their use was limited to be so popular 
because of its controversy related to ethical 
issue. In order to overcome this problem, sci-
entists have developed induced pluripotent 
stem cells (iPSCs) by introducing specific 
gene into already specialized mouse adult 
cells and thus overexpressing the transcrip-
tion factors such as Oct3/4 (octamer-binding 
transcription factor 3/4), Sox2 (sex- 
determining region Y)-box 2, Klf4 (Kruppel- 
like factor 4), and c-Myc (Avian 
Myelocytomatosis virus oncogene cellular 
homolog) [22].

10.3.2  Cancer Stem Cells (CSCs)

CSCs represent a specialized group of cells but a 
minuscule fraction (~0.1–0.8%, maximum of 
30%) within most of the tumors (solid and liquid) 
capable of initiation of tumor. These cells possess 
cellular and molecular heterogeneity and capable 
of self-renewal and reflect pluripotency. Recent 
experimental and clinical evidence both impli-
cate CSCs in cancer initiation, progression, 
metastasis, and recurrence, as well as radio- and 
chemotherapeutic resistance [23, 24]. Expression 
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of several surface/non-surface markers, tran-
scription factors related to stemness and self- 
renewal, other cellular properties such as 
autofluorescence [25] and dye-efflux mecha-
nisms for Side population cells [26, 27] exhibit-
ing stemness potential have been utilized to 
identify them (summarized in Table 10.1).

Although CSCs initially referred as tumor 
stem cells express distinct cell surface markers, 
their origin per se is still debatable. Lapidot and 
group first reported CD34+/CD38− subpopula-
tion in primary acute myeloid leukemia with 
tumorigenic potential upon transplantation in 
SCID mice. A recent review by Nimmakayala 
and group [54]  summarized the dynamics of 
CSCs from origin to metastasis whereby they 
explained cell fusion, horizontal gene transfer, 
and mutations driving cellular transformation 
and reprogramming into CSCs and metabolic 
shifts from glycolytic to oxidative phosphoryla-
tion or vice versa implicated in cancer stemness. 
Upon extensive reconciliation of the literature, it 
was interestingly proposed in this review that 
CSC populations with specific phenotypes, meta-
bolic profiles, and clonogenic potential may 
metastasize to specific organs.

According to one theory, the tissue stem cells 
undergo mutation and behave as a cancer stem 
cell. Another theory is that the cancer cells 
acquire stemness following oncogenic hit [54–
56] (Fig. 10.1). This detailed hierarchy could not 
be defined in solid tumor since there are subpop-
ulations of cells residing within the same tumor 
such as “resident cancer stem cells” which can 
initiate the tumor and “migrating stem cells” 
which are responsible for propagation of tumor 
growth and metastasis [59]. Thus, the alternative 
model of carcinogenesis has been originated and 
states that tumor is composed of heterogeneous 
clones of cells resulting from different types of 
mutation and accounts for different phases of 
tumor development [60].

CSCs should be considered as one of the main 
targets of novel experimental and therapeutic 
strategy such as tissue repair in various clinical 
fields such as cardiac, orthopedic, plastic, and 
breast surgery [61–63]. CSC targeted therapies 
include drugs targeting cell surface, signaling 

pathways, chief components of tumor microenvi-
ronment, those aimed at reversing drug resis-
tance, those focussed upon differentiation of 
CSCs, and other miscellaneous cellular features 
of CSCs [64]. However, several therapeutic inter-
ventions targeting CSCs per se are still immature 
and clinical trial outcomes are yet in pipeline to 
conclude constructively.

Similar to CSCs targeting, the origin of CSCs 
is enigmatic because as per the Clonal or 
Stochastic model all the cells may possess tumor- 
initiating properties, whereas the Hierarchical or 
CSC model suggests the persistence of a small 
fraction of CSCs [65, 66]. A tumor as an entity as 
such may reflect complex hierarchy in terms of 
the CSC profile because the normal tissue resi-
dent stem cells may acquire mutations and exhibit 
transformed phenotype and subsequently altered 
key cellular properties; or the progenitor cells, a 
progeny of stem cells may acquire mutations or 
their terminally differentiated progeny, in turn, 
may exhibit mutated version of cancer/tumor 
cells thus implicating self-renewal, differentia-
tion, and proliferation as key mechanisms guid-
ing the putative origin of CSCs [67].

10.4  Genetics of Ovarian Cancer

Ovarian cancer contributes to nearly 3% of all 
cancers among women. In 2035, it will account 
for more than 200,000 deaths all over the world 
[2]. Considering the facts, it is of crucial impor-
tance to identify women who are at enhanced risk 
of developing ovarian cancer so that preventive 
measures can be ensured. Early onset of men-
arche, late menopause, and being nulliparous are 
considered as well-known risk factors for ovarian 
cancer [68, 69]. However, presence of family his-
tory of ovarian cancer especially in first-degree 
relative has been found to elevate the lifetime risk 
of developing ovarian cancer. Hereditary ovarian 
cancer contributes to 20% of all ovarian cancer 
and results from mutation in BRCA1 and BRCA2 
genes [70, 71]. This mutation varies with ethnic-
ity giving rise to the higher prevalence of ovarian 
cancer in certain ethnic populations such as 
Polish, French, Canadian, and Ashkenazi Jews 
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Table 10.1 Cancer stem cell markers in ovarian cancer

Marker Experimental design Outcome
Authors 
[References]

CD24 Transmembrane 
glycoprotein

Ovarian serous 
tumor from patients

Presence of CD24 in the 
cytoplasm independently 
predicts poor survival

Choi et al. 
[28]

CD24 Transmembrane 
glycoprotein

Human ovarian 
cancer cell line 
Caov3

CD 24 is responsible for 
metastasis and 
chemoresistance through 
the induction of epithelial 
to mesenchymal transition 
via Akt -ERK signaling 
mechanism

Nakamura 
et al. [29]

CD44+/CD24− CD44: Hyaluronate 
receptor

Ovarian cancer cell 
line (SKOV3 and 
OV90), Cancer cell 
isolated from 
ascites of ovarian 
cancer patients

These markers are predictor 
of chemoresistance, relapse, 
and poor prognosis

Meng et al. 
[30]

CD117/c-kit Receptor/Oncoprotein 
having tyrosine kinase 
activity

Paraffin-embedded 
specimens of 
human serous 
ovarian carcinoma

Indicative of 
chemoresistance

Raspollini 
et al. [31]

CD133 
(Prominin-1)

Transmembrane 
glycoprotein

Flow cytometric 
analysis of various 
Cancer cell lines 
and cells isolated 
from ascitic fluid of 
ovarian cancer 
patients

CD133 is an indicator of 
tumorigenicity and its 
expression is modulated by 
epigenetics

Baba et al. 
[32]

ALDH1A1 Intracellular enzyme, one 
of 17 isoforms of ALDH

Several cancer cell 
lines and primary 
xenograft developed 
from omental tissue 
of metastatic 
ovarian cancer 
patients

Predictor of tumor 
initiation, identification of 
chemoresistant cells

Landen 
et al. [33]

CD44+/CD117+ CD117: Stem cell factor 
receptor

Xenograft 
experiment

Indicative of greater 
tumorigenicity

Zhang et al. 
[34]

SP cells Having dye exclusion 
property

H2B-GFP 
transgenic mice 
models

Identification and 
characterization of ovarian 
cancer stem cells

Szotek et al. 
[26]

CD133 Transmembrane 
glycoprotein

Primary tumor and 
cells isolated from 
ascitic fluid of 
ovarian cancer

Contributes to angiogenesis 
for driving metastasis

Kusumbe 
and Bapat 
[35]

CD44+, 
MyD88+

MYD88: Innate immune 
signal transduction 
adaptor

Ascites sample 
from advanced 
ovarian cancer 
patients

Maintenance of cell 
survival and 
chemoresistance via 
TLR4-MyD88 and NF 
kappa B pathway

Alvero et al. 
[36]

CD34+ Transmembrane 
phosphoglycoprotein

Xenograft tumor Role in angiogenesis Alvero et al. 
[37]

(continued)
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Table 10.1 (continued)

Marker Experimental design Outcome
Authors 
[References]

CD105, CD44, 
CD106

CD105: Type I membrane 
glycoprotein; CD106: 
vascular cell adhesion 
molecule-1 (VCAM-1)

Human ovarian 
cancer cell line 
OVCAR3

Significant association with 
progression of disease, 
relapse, and 
chemoresistance

Zhang et al. 
2019 [38]

Epithelial cell 
adhesion 
molecule 
(EpCAM)

Type I transmembrane 
glycoprotein

In vitro study in 
human ovarian 
cancer cell line and 
in vivo study in 
C57BL/6 mice and 
finally clinical 
correlation

Role in chemoresistance 
and prognostication

Tayama 
et al. [39]

CD44-EpCAM Ovarian cancer cell 
line OVCAR8, 
SKOV3, OCC1, 
ES2, and HEK293

Effects on tumor growth Zheng et al. 
[40]

SOX2 (SRY-box 
transcription 
factor 2)

Transcription factor Human epithelial 
ovarian cancer line 
SKOV3 and 
HO8910

Required for maintenance 
of ovarian cancer stem cells

Wen et al. 
[41]

ROR1 (receptor- 
tyrosine- kinase- 
like orphan 
receptor 1)

Transmembrane protein 
from receptor tyrosine 
kinase family

ROR1 expression 
investigated in 
ovarian cancer 
patients

Independently 
prognosticated with 
disease-free survival

Zhang et al. 
[42]

NANOG Homeobox transcription 
factor

Expression checked 
in ovarian cancer 
cell line e.g., 
SKOV3 and ovarian 
cancer patients

Prognostic factor of ovarian 
cancer and chemoresistance

Lee et al. 
[44]

OCT4 Transcription factor Side population 
cells isolation from 
ovarian cancer cell 
lines (SKOV3 and 
A2780) by Hoechst 
dye exclusion 
method

Responsible for tumor 
progression via JAK/STAT 
pathway

Ruan et al. 
[45]

MYC Oncogenic transcription 
factor

Ovarian cancer cell 
line SKOV3 and 
OVCAR and tissues 
from ovarian cancer 
patients

Expression of c-Myc has 
significant association with 
disease progression

Ning et al. 
[46]

ABCG2 Member of the ATP- 
binding cassette (ABC) 
transporter

Ovarian cancer cell 
line A2780

Related to drug resistance Duo et al. 
[47]

PTTG1 
(Securin)

Oncogene Ovarian cancer cell 
line A2780 and 
CSCs isolated from 
ascitic fluid of 
ovarian cancer 
patients

Relation with disease 
progression via regulation 
of EMT

Parte et al. 
[17]

(continued)
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[72, 73]. Since ovarian cancer is strongly associ-
ated with BRCA1/2 mutation, it is quintessential 
to carry out genetic testing and counseling of all 
ovarian cancer cases irrespective of age at onset 
and presence or absence of family history. 
BRCA1/2 gene mutations are responsible for ear-

lier age of onset of ovarian cancer compared to 
women without mutation [70, 74]. It has been 
reported that BRCA1 gene mutation has a higher 
contribution nearly 48% compared to BRCA2 
gene (nearly 29%) in elevating the lifetime risk of 
ovarian cancer [75]. BRCA1/2 associated OC 

Table 10.1 (continued)

Marker Experimental design Outcome
Authors 
[References]

LGR5 (leucine- 
rich repeat- 
containing 
G-protein 
coupled 
receptors)

Transmembrane receptors Mice model Identification of stem cells/
progenitor cells

Schindler 
et al. [48]; 
Ng et al. 
[49]

VASA ATP-dependent RNA 
helicases

Ovarian cancer cell 
line and tissues 
from epithelial 
ovarian cancer 
patients

Impact in disease 
progression by abrogation 
of DNA damage-induced 
G2 checkpoint

Hashimoto 
et al. [50]

NANOG, SOX2, 
SSEA4 
(stage-specific 
embryonic 
antigen-4)

SSE4: glycosphingolipid Paraffin-embedded 
ovarian tissue from 
high-grade serous 
ovarian carcinoma

Involved with 
tumorigenesis

Virant-Klun 
et al. [51]

Note: Information were collected from Zuber et al. [7], Bapat [52], Padilla et al. [53]

Normal stem 
cells

Normal progenitor 
cells

Normal differentiated 
cells

dedifferentiationmutation

Cancer stem cell
Chemoresistance
Metastasis

Upregulation of drug transportersEnhanced DNA repair Acquisition of EMT Attenuation of apoptosis

mutation

Cell proliferation
Recurrence

Increased vascular 
permeability

VEGF & MMP2
Induction of
VEGF, TNF α, TGF β
release

Angiogenesis

Normal stem 
cells

Normal progenitor 
cells

Normal differentiated 
cells

dedifferentiationmutation

Cancer stem cell
Chemoresistance
Metastasis

Upregulation of drug transportersEnhanced DNA repair Acquisition of EMT Attenuation of apoptosis

mutation

Cell proliferation
Recurrence

Increased vascular 
permeability

VEGF & MMP2
nduction of

VEGF,FF TNF α, TGF β
release

Angiogenesis

Fig. 10.1 Potential mechanisms of generation of cancer stem cells and their functions in tumor initiation, progression, 
and metsatsis. (Adopted from [6, 56–58])
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primarily originates from surface epithelium. 
They belong to high-grade serous histotype and 
are invasive in nature [76]. However, a recent 
large pooled cohort analysis revealed that OC 
with BRCA mutation carriers showed a better 
prognosis in terms of 5-year survival rate com-
pared to that with noncarriers [77]. This could be 
explained by the better response of BRCA muta-
tion to treatment with conventional platinum- 
based chemotherapy [78, 79].

Other contributing genes include BARD1, 
BRIP1, C14EK2, MRE11, MSH6, NBN, PALB2, 
RAD50, RAD51c, and TP53. RAD51C and 
RAD51D (paralog of RAD51) originate from the 
same ancestral gene of RAD51 and intrinsic 
component of homologous recombination- 
mediated double-strand break repair pathway. As 
opposed to BRCA1/2 linked OC, the average age 
at onset is older in RAD51C carrier [80–82]. 
Ovarian cancer related to RAD51C and RAD51D 
are found to originate from surface epithelial 
cells. Given the fact of their predisposition to 
develop OC, the role of RAD51 needs to be vali-
dated in mutation positive larger cohorts in order 
to determine whether germline mutation has any 
clinical implications as well as to establish 
screening and therapeutic strategies [82, 83].

Recent advanced gene testing technologies 
would help us in understanding the pathogenesis 
of ovarian cancer in a better way and thus would 
help in identifying women who are at risk of 
developing OC before the development of the 
disease and in turn help in implementing preven-
tive strategies in time.

10.5  Identification 
of Ovarian CSCs

CSCs are identified by their tissue-specific 
expression of proteins known as biomarkers [84]. 
The stemness and tumorigenicity of isolated 
CSCs are validated by spheroid forming assay 
and limiting dilution assay, respectively on 
experimental models [85–87]. Ovarian CSC 
(OCSC) was detected first time from ascites of an 
ovarian cancer having the capacity of tumorige-
nicity in mice for several generations [88]. 

Ovarian CSCs express two types of markers: cell 
surface and nonsurface markers which are used 
either alone or in combination to identify and iso-
late the CSCs from the primary tumor and metas-
tasized colony. The cell surface marker which 
was identified first time on ovarian CSC was 
CD117, a tyrosine kinase receptor [89–91] while 
more commonly documented ovarian CSC sur-
face marker is CD133, transmembrane glycopro-
tein [32, 92–94]. Other reported surface markers 
are CD44, epithelial cell adhesion molecule 
(EpCAM), ROR1, and CD24 [28, 29, 95, 96]. 
These surface markers are significantly associ-
ated with tumor initiation, cancer propagation, 
prognosis, drug resistance, and recurrence of the 
disease [28, 32, 89, 90]. The nonsurface marker 
detected in ovarian CSC is aldehyde dehydroge-
nase family 1A2 (ALDH1A2). In an animal 
model, attenuation of ALDH1 improved the sen-
sitivity of the cells to therapy [33]. Several stud-
ies have documented the association of the 
enzyme with the promotion of cell proliferation, 
facilitation of propagation, chemoresistance, 
unfavorable prognosis, and survival [97–99]. 
Some transcription factors, such as NANOG, 
OCT4, and SOX2, which are crucial for main-
taining the stemness of embryonic stem cells 
[100], are also identified in ovarian CSCs [41]. 
Ovarian CSC biomarkers and their significance 
in various preclinical and clinical experiments 
have been presented in Table 10.1.

A special type of CSCs present in ovary hav-
ing capacity to efflux the DNA binding dye are 
known as SP “side population” cells [101]. These 
cells are heterogeneous in nature because of dif-
ferential expression of surface markers such as 
higher expression of Oct4, CD117, and CD44 
compared to others. This heterogeneity in one 
tumor as well as difference between individual 
patients makes some ovarian cancer more che-
moresistant and difficult to treat by universal 
treatment [102]. Hence, the concept of personal-
ized therapy should be adopted to obtain effective 
outcome. Functional significance of variability 
and heterogeneity in expression of various CSC 
markers have been reported for example ALDH+/
CD133+ possess higher tumorigenic potential 
than ALDH+/CD133− population, whereas 
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CD133+ CSCs induced CD133− cells to undergo 
EMT and metastatic potential via CCL5 and 
NFKB signaling. Similarly, ALDH1 and CD44 
coexpressing cells may elicit a chemotherapeutic 
response and poor clinical outcome in patients 
rather than ALDH1+ only populations [23]. 
Despite encouraging results, clinical trials reveal 
only limited success attributed to intra- and inter- 
tumor heterogeneity among CSC and non-CSC 
compartments. In another study, Parte et al. [103, 
104] extensively studied the expression of CSC 
surface markers in Benign, Borderline, and High- 
Grade ovarian tumors compared to normal ova-
ries which co-expressed with germline stem 
cell-specific markers initially implicated in ovar-
ian stem cells. Similarly, they also explored and 
characterized actively dividing cell marker Ki67 
with CSC populations distributed across the OSE 
and cortex regions of the tumorous ovaries. Novel 
insights about the tumor stage- and cellular 
compartment- specific distribution of ovarian 
CSCs co-expressing germline stem cell and pro-
liferation markers were first demonstrated in 
these studies. Knowledge about the marker 
expression of tumor-initiating populations cou-
pled with molecular mechanisms could improve 
their effective targeting in future and prevention 
of metastatic dissemination into peritoneum. 
Against this background several researchers and 
oncologists are striving hard to achieve success 
by addressing the bottlenecks and much remains 
to be researched. Recently Udoh et al. [105] and 
Carter et  al. [106] during independent studies 
explored the potential of a fungal metabolite 
from Myrothecium verrucaria known as 
Verrucarin J (VJ) to target lung and ovarian CSCs 
via inhibition of the Wnt/β-Catenin and Notch1 
stemness related signaling pathways. Similarly, 
Kakar and his group in the last couple of years 
have pronounced the effect of a herbal supple-
ment Withaferin A (WFA) from Withania som-
nifera aka Ashwagandha plant extract and 
delineated its significant role in inhibiting ovar-
ian ALDH1+ CSC populations while combining 
with standard chemotherapeutic drug Cisplatin 
[107]. ALDH1+ CSCs are differentially distrib-
uted within Benign, Borderline, and High-Grade 
ovarian tumors compared to normal ovaries 

within the OSE and cortex compartments [108, 
109]. Further WFA while acting in synergy with 
Doxil exhibited a phenomenal inhibition of 
tumorigenic potential of ovarian CSCs thus atten-
uating the side effects of higher dose of Doxil and 
thus revealing potential against curbing recur-
rence by destroying the CSC population. Even in 
in vitro (A2780 cells) and in vivo models (mice 
treated with Cisplatin and WFA either alone or in 
combination), revealed significant reduction of 
CSC markers and thus proving the efficacy of 
WFA with conventional chemotherapy.

10.6  Tumor Microenvironment 
and OCSCs

One of the crucial contributing factors for cancer 
progression is interaction between ovarian cancer 
stem cells and tumor microenvironment 
(TME) which involves the following:

 (a) Extracellular matrix which includes cyto-
kines, chemokines, matrix metalloprotein-
ases (MMP), and integrins [110].

 (b) Cancer-associated fibroblasts derived from 
mesenchymal cells or as a result of trans- 
differentiation of pericytes and epithelial 
cells following exposure to various growth 
factors such as vascular endothelial growth 
factor (VEGF) [111]. They promote tumor 
growth via increased expression of CXCL14, 
IL-6, STAT3, and promote dissemination via 
neovascularisation, and immune suppression 
through intrusion of regulatory T lympho-
cytes. They modulate chemosensitivity and 
induce recurrence through higher expression 
of fibroblast activation protein alpha. They 
can remain in a quiescent state as well as in 
the active state. Cancer cells through the 
release of cytokines can activate CAFs which 
in turn can control the activity of immune 
cells [112]. This interaction between CSCs 
and other components of TME through vari-
ous signaling pathways (TGF-β, Hedgehog, 
JAK) promotes tumorigenesis. Hence, target-
ing CAF might be promising therapeutic 
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approach for the prevention of disease pro-
gression [113].

 (c) Endothelial cells comprise of the blood ves-
sels and are primarily linked to 
 neo- angiogenesis which are activated by 
VEGF, TGF-β, TNF-α, prostaglandin E2 and 
inhibited by angiopoietin, thrombospondin1 
[114]. In presence of hypoxia, VEGF acts 
through its receptors present on endothelial 
cells and co-receptors neuropilins while 
angiopoietin attenuated signal transduction 
via modulation of tyrosine phosphorylation 
[115].

 (d) Immune cells comprise of macrophages, den-
dritic cells, myeloid-derived suppressor cells 
(MDSC), and lymphocytes. Macrophages 
present within the tumor microenvironment 
known as tumor-associated macrophages 
(TAM). In the presence of interferon gamma 
and lipopolysaccharide, these macrophages 
suppress tumor growth through its cytotoxic 
effect by the release of IL-1, IL-12, and TNF- 
α. However, in presence of IL-4 and IL-10, 
TAM can promote tumorigenesis via immune 
suppression through inhibition of T cell mul-
tiplication [116]. MDSCs are GR1 and 
CD11b expressing myeloid cells, that facili-
tate tumorigenesis through exhaustion of 
nutrients required for the survival of T lym-
phocytes such as l-arginine and l-cysteine 
and induction of T cell apoptosis [117]. 
MDSCs further promote neo-angiogenesis in 
the presence of ischemia through the release 
of VEGF and EGF2 as well as activation of 
STAT3. They can also promote dissemina-
tion via the release of MMP 9. Therefore, 
targeting the molecular pathways involved in 
the activation of various components of TME 
might be promising for inhibition of tumori-
genesis, invasion, metastasis, and recurrence 
of ovarian cancer [118].

 (e) Extracellular vesicles released from ovarian 
cancer stem cells form a part of “premeta-
static niche” and helps in communication 
with other components of the microenviron-
ment for example stromal cells and extracel-
lular matrix via its biological content such as 
lipids, proteins, ds-DNA, mRNA, and micro 

RNA [119]. This exosome model explains 
the metastatic role of ovarian cancer stem 
cells in transportation of biological material 
including CD44 along the bloodstream to 
recipient cells of distant organs. Exosomes 
act as vehicles for transferring the miR222-
 3p to the macrophages giving rise to Tumor- 
associated macrophages (TAM). Moreover, 
exosomes containing miR-21, miR-103, 
miR-205, miR-200 are linked to adverse out-
comes in OC patients. Having its immense 
diagnostic and therapeutic potential, an 
extracellular vesicle is considered as one of 
the recently investigated target for the treat-
ment of refractory ovarian cancers [119].

10.7  Epithelial to Mesenchymal 
Transition (EMT)

Following downregulation of factors responsible 
for intercellular adhesion such as E-cadherin, 
Epcam, occludin, claudin and upregulation of 
vimentin, fibronectin, and MMPs, epithelial cells 
reversibly convert to mesenchymal cells having 
spindle shape. This process is known as EMT 
which passes through a more aggressive interme-
diate dynamic stage having both the properties of 
epithelial and mesenchymal cells [120]. EMT is a 
characteristic feature for embryogenesis, wound 
healing, and tumor progression. This process 
makes the cancer cell mobile and acts as a driving 
force for maintaining the stemness of the cancer 
cells thus resulting in the migration, invasion, and 
resistance to chemotherapy and immunotherapy. 
The controlling transcription factors involved in 
EMT include zinc-finger E-box-binding homeo-
box factors Zeb1 and Zeb2, Snail (SNAI1), Slug 
(SNAI2), Twist1, and Twist2 [121]. Various 
experimental studies documented that chemore-
sistant cancer cells acquire the features of mesen-
chymal cells, indicating the implication of EMT 
in refractoriness to therapy [122]. EMT could 
induce chemoresistance by altered expression of 
class III beta tubulin, increase in drug efflux via 
overexpression of ATP-binding cassette trans-
porters [123], accentuating DNA repair mecha-
nism by Sirtuin6-mediated activation of poly 
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ADP ribose polymerase (PARP) enzyme [124] 
attenuation of p-53 regulated apoptosis and mod-
ulation of the expression of various microRNA 
(miR200b represses [125] and miR20a induces 
EMT [126]). EMT causes immune-resistance 
through upregulation of programmed cell death- 
ligand 1(PD-L1) [127]. Hence, EMT could be a 
potential target to regain the sensitivity to chemo 
and immunotherapy. Atezolizumab and 
Bevacizumab (anti-PDL1 and Anti-VEGF) ther-
apy might improve sensitivity symbiotically to 
cisplatin targeting EMT via attenuation of STAT3 
phosphorylation [128]. Recent studies on admin-
istration of TWIST-targeted siRNA and miR15a 
and miR-16  in the form of nanoparticles could 
alleviate the drug resistance in an experimental 
animal model [129].

Since it is challenging to target the effector 
molecules of EMT, inhibitors targeting various 
metabolic pathways involved in EMT would be 
promising. Hence, recently various clinical trials 
are on-going to repurpose various metabolic 
inhibitors such as phosphodiesterase 4 (PDE4) 
inhibitor—Rolipram, 3-hydroxy-3- 
methylglutaryl-coenzyme A (HMG-CoA) reduc-
tase inhibitor—Simvastatin, 
Heparinase-inhibitor—Suramin for prevention of 
cancer progression in combination with already 
established standard therapy [130].

10.8  Targeted Therapy for OCSC

Even after satisfactory response to traditional 
chemotherapy, almost 70% of ovarian cancer 
patients return within 5 years with features sug-
gestive of recurrence and chemoresistance. 
Hence, in order to improve the survival rate of 
advanced ovarian cancers, there is a critical need 
to find out novel therapeutic approaches to target 
specific molecular pathways and their complex 
interplay responsible for carcinogenesis. This is 
known as targeted therapy having lesser toxic 
effects compared to conventional chemotherapy 
which can also affect normal dividing cells 
because of its DNA damaging effects. Potential 
therapeutic targets have been depicted in 
Fig. 10.2. Very recent preclinical study including 

patient-derived xenograft model documented the 
significant role of Axitinib, tyrosine kinase inhib-
itor, in inhibition of tumor growth via modulation 
of VEGFR signaling pathway indicating the cru-
cial role of angiogenesis along with overexpres-
sion of VEGF in ovarian cancer progression 
[133]. Hence, targeting angiogenesis could be 
one effective mode of therapy for the prevention 
of disease recurrence.

 (a) Angiogenesis Inhibitor
Four double-blind, placebo-controlled 

phase III trials were conducted on chemo-
therapy with or without monoclonal VEGF 
antibody, Bevacizumab. In (GOG-0218) 
[134] and International Standard Randomised 
Controlled Trial, (ISRCTN91273375) [135] 
treatment was given to newly diagnosed 
advanced ovarian cancer patients, while in 
OCEANS [136] and AURELIA [137], treat-
ment was given to platinum-sensitive and 
resistant recurrent epithelial ovarian cancer 
cases, respectively. Another, VEGF-
independent angiogenesis pathway targeted, 
double-blind phase III trial (TRINOVA-1) 
conducted on trebananib which inhibits bind-
ing of angiopoietin to its receptor Tie2 for 
recurrent ovarian cancer reported a signifi-
cant improvement in progression- free sur-
vival [138]. Various phase II/III clinical trials 
on multiple tyrosine kinase inhibitors such as 
Pazopanib, Nintedanib (BIBF 1120), 
Cediranib, Sunitinib targeting VEGF recep-
tors, PDGF receptors, C-Tyrosine kinase, 
and FMS-like tyrosine kinase-3 (c-KIT) in 
combination showed promising results [139].

 (b) Poly-adenosine-diphosphate-r ibose-
polymerase (PARP) Inhibitor

PARP inhibitors convert single-strand 
DNA damage to double-strand break in ovar-
ian cancer patients with a mutation in BRCA 
1/2 tumor suppressor protein which contrib-
utes to double-strand DNA repair and thus 
produces synthetic lethality to the cells. 
Various phase III clinical trials as mainte-
nance therapy of PARP inhibitors either 
alone or in combination such as SOLO1 
(Olaparib), PRIMA (Niraparib), PAOLA 
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(Olaparib  +  bevacizumab) for newly diag-
nosed advanced ovarian cancer [140] and 
SOLO2/ENGOT-Ov21 on Olaparib as main-
tenance therapy for BRCA mutant relapsed 
ovarian cancer patients showed significant 
improvement in progression-free survival 
(PFS) [141].

 (c) Targeting Underlying Signaling Mechanisms 
for OCSC

Cumulating evidence suggested that vari-
ous signaling pathways such as Wnt/β, 
Hedgehog, Notch, JAK-STAT play an impor-
tant role in the proliferation of ovarian CSCs 
and initiation of metastasis. Hence, various 
clinical studies on signaling pathway block-
ers are in process to validate their clinical 
implications in the elimination of the OCSCs 
and in turn prevention of recurrence.

A phase I, dose-escalation trial 
(NCT01608867) on Ipafricept a recombinant 
fusion protein targeting Wnt signaling path-
way, was found to have better tolerance in 
combination with conventional chemother-
apy for advanced ovarian cancer patients 
[142]. The interplay between Notch and 
Wnt-β catenin signaling pathways is attrib-
uted to tumor growth through the survival of 
CSCs. Enoticumab (REGN421), a Delta-like 
Ligand 4 (Dll4) monoclonal antibody was 
documented to be a safe drug in phase I, 
human study (NCT00871559) conducted on 
advanced ovarian cancer patients [143]. 
Various phase II clinical trials on mTOR 
inhibitor Temsirolimus either alone or in 
combination with Bevacizumab were found 
to be reasonably tolerated in advanced ovar-
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ian cancer cases (https://clinicaltrials.gov/
ct2/home).

 (d) Immune Checkpoint Inhibitors for OCSC
Considering the sensible role of immune 

checkpoint pathways in maintaining stem 
related features of ovarian CSCs, various 
phase I/II clinical trials were conducted on 
immune checkpoint inhibitors such as anti- 
PDL1 [Avelumab (NCT01772004) and 
Atezolizumab (NCT01375842)], anti-PD-1 
Pembrolizumab (NCT02674061) for recur-
rent, advanced ovarian cancer cases. 
However, preliminary results obtained were 
far from being satisfactory. In order to 
improve the outcome, various phase III clini-
cal trials (NCT03598270, NCT02891824, 
NCT02659384) are on-going as a combina-
tion of immune checkpoint inhibitor and 
PARP inhibitor and/or anti-VEGF drugs 
[144]. Preliminary results are awaited.

 (e) Epigenetic Therapy for Annihilation of OCSCs
Dysregulation of epigenesis contributes to the 

survival and gain in plasticity resulting in the 
development of metastatic features of ovarian 
CSCs. Guadecitabine (SGI-110) effectively 
helps in the differentiation of ALDH+ OCSCs 
and thus regained the chemosensitivity in 
ovarian cancer cell lines [145]. Moreover, 
Histone deacetylase inhibitors could restore 
the differentiation of epithelial cells via atten-
uation of gene expression of HIF-1α, Notch-1, 
and STAT3 [146]. Similarly, Bromodomain 
and Extra-terminal inhibitor JQ1 could inhibit 
tumorigenesis by suppression of ALDH activ-
ity [147]. These preclinical studies emphasize 
the role of epigenetic reprogramming in 
OCSC aggressiveness and implicate as 
OCSCs differentiation strategy.

Gening et al. [148] documented that circulating 
long noncoding RNA (LncRNA), MALAT 
and HOTAIR, were significantly associated 
with recurrence-free periods in ovarian cancer 
patients indicating their role in the prognosis 
of the disease. Silencing of LncRNA, 
LINC00152, could regress tumor growth via 
modulation of miR-125b-mediated mitochon-
drial apoptosis [149] as well as regain the sen-
sitivity towards Cisplatin in ovarian cancer 

cell line. Moreover, LncRNA HotairM1 attri-
butes to a critical role in maintaining the stem-
ness properties of CSCs through downstream 
effector HOXA1-Nanog [150]. These studies 
provide the evidence of a cross-talk between 
epigenetic regulation via LncRNA and ovar-
ian cancer progression indicating the role of 
LncRNA as a potential therapeutic target 
along with conventional therapy to prevent 
recurrence in ovarian cancer through the elim-
ination of CSCs.

10.9  Concluding Remarks/
Foresights

It is surmised hence that a comprehensive under-
standing of various cellular events, types, and 
dynamics of cellular functions and activities of 
the tumor bulk cells as well as CSCs within a 
tumor in context of patient tumor grade, onco-
therapy administrated to the patient, and the 
interaction of cancer cells and CSCs with each 
other, and that of a tumor as an entity with its 
surrounding microenvironmental components 
are very pertinent aspects that require to be 
understood in greater details to further develop 
effective therapies targeting CSCs. Collectively, 
the most recent developments of clinical trials 
(vividly covered in this chapter) reflect remark-
able improvements on this front. Nevertheless 
worth noting are the dismal setbacks which 
rather serve as newer milestones/targets to be 
achieved by cancer researchers and oncologists 
alike, to improvise on the translational front thus 
providing greater hopes for better clinical man-
agement of patients which remains the ultimate 
goal.
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