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1 Introduction

Samples for environmental microbiome analysis are collected from a variety of
surfaces and environments such as plants, soil, ocean, public transit systems,
public benches, stairwell handrails, elevators, and urban environments. Analysis
that focuses on human microbiome relies on samples from different body sites such
as skin, gut, tongue, buccal mucosa, stool, etc. Metagenomic experiments aim to
describe microbial communities from these samples using high-throughput DNA
sequencing, also known as next-generation sequencing (NGS) technologies. This
has further helped scientists around the world to peek into a plethora of diversity
of microbes in our environment. The data from these sequencing technologies
pose various statistical and computational problems. Also, the sheer magnitude and
special data characteristics make metagenomic data analysis a challenging task.

Metagenomic analysis has diverse applications and has led to foundational
knowledge on various aspects of human lives. The composition of the human
gut microbiome is associated with the physiological and psychological aspects
of human health [28, 33, 61, 66, 67]. Metagenomic analysis has a wide-scale
application in designing healthy urban environments [47] and discovering novel
anti-resistant microbial strains [58]. Metagenomic analysis of microbial commu-
nities also provides a significant source of information in forensic science. One of
the many questions in forensic studies that metagenomic analysis can answer is
predicting the source origin of the metagenomic sample [10, 11, 15]. In this chapter,
we discuss various classification methods that can be applied to achieve this goal.
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Human Microbiome Project (HMP) [65] and Earth Microbiome Project (EMP)
[26] are some of the large-scale initiatives that have offered a comprehensive
database for microbiome research. The MetaSUB Consortium comprised of an
international group of scientists is involved in the collection and sequencing of
samples from numerous cities in different countries to understand the microbial
signature across and within the public spaces of cities around the world. These
large-scale data are published by the Critical Assessment of Massive Data Analysis
(CAMDA) in the public domain to find innovative solutions to the pressing
questions in modern life sciences. We use the data from CAMDA 2020 Geolocation
Challenge and demonstrate a step-by-step approach for metagenomic data analysis.
The analysis is divided into two parts, namely, upstream and downstream analysis.
In the upstream analysis, we discuss the process of converting raw data of sequenced
reads into an n × p data matrix ready for statistical analysis. This process involves
quality control, taxonomic assignment, and estimation of taxonomic abundance of
the sequenced reads from different samples. In the downstream analysis, we apply
various classification methods and compare their performance for the prediction
of the geographical location of microbial samples. Several supervised learning
classifiers, such as Support Vector Machines (SVMs), Extreme Gradient Boosting
(XGB), Random Forest (RF), and neural networks, can be applied to predict the
geolocation of the metagenomic samples. Along with these classifiers, we describe
the construction and implementation of an optimal ensemble classification algo-
rithm proposed by Datta et al. [18], which combines several candidate classification
algorithms and adaptively produces results that are better or as good as the best
classifier included in the ensemble.

2 Bioinformatics Pipeline

2.1 Microbiome Data

Microbiome samples are sequenced using next-generation sequencing technologies.
The two most widely used sequencing techniques are metataxonomics that use
amplicon sequencing of the 16S rRNA marker genes and metagenomics that use
random shotgun sequencing of DNA or RNA [8, 45]. Until recently, most studies
sequenced the 16S ribosomal RNA gene that is present in bacterial species or
focused on characterizing the microbial communities at higher taxonomic levels.
Following the drop in the cost of sequencing, metagenomics studies have increas-
ingly used shotgun sequencing that surveys the whole genome of all the organisms
including viruses, bacteria, and fungi present in the sample [57].

Metagenomic samples in our case study were sequenced using Illumina HiSeq
next-generation shotgun sequencing technology, and the raw data for each sample
was obtained in the form of paired-end .fastq files with forward and reverse
reads. Fastq files contain both nucleotide sequences and their corresponding quality

http://metasub.org/
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Fig. 1 Schematic representation of the bioinformatics pipeline for metagenomic analysis

scores, known as Phred scores. These scores are used in the quality assessment
of these sequencing reads. For the upstream analysis, we started with assessing
the quality of the paired-end WGS (whole-genome sequencing) reads followed by
their taxonomic classification. Please note the taxonomic classification should not
be confused with the city-specific classification that we perform in the downstream
analysis. Taxonomic classification refers to mapping the raw sequenced reads of a
sample to an existing database of known genomic sequences to produce taxonomic
abundance profiles for each sample. Figure 1 shows the schematic representation of
the bioinformatics pipeline constructed for the analysis of the metagenomic data.
The components of this pipeline are described in detail in the following sections.
Table 1 provides information on the data set being analyzed in this chapter. The data
set comprised 1065 samples collected from 23 cities around the world.

2.2 Quality Control

Raw NGS reads contain different types of contamination such as low-quality reads,
adapter sequences, and host reads. It has been noticed that low-quality sequences
can result in misleading inference from the downstream analysis [14, 71]. Hence,
it is important to assess the quality of raw sequencing reads before moving ahead
with the downstream analysis. If the metagenomic samples are contaminated due to
the presence of host (human) sequences, it is necessary to identify and filter out the
host reads.

There are a variety of computational tools that can be used for quality control
for removing the contaminants and low-quality reads, such as FastQC [2], Cutadapt
[46], Trimmomatic [4], and BBTools. The quality of reads from a sample can
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Table 1 Frequency of samples from the 23 cities considered in this chapter. The samples were
sampled from two collections (CSD16 & CSD17) and obtained by the MetaSUB consortium. The
average number of reads was obtained after performing quality control and pre-processing

Location code Location Country # Samples Avg. # of reads

ARN Stockholm Sweden 50 1,621,983

BCN Barcelona Spain 38 2,763,249

BER Berlin Germany 41 6,095,554

DEN Denver USA 45 2,293,732

DOH Doha Qatar 65 2,400,540

FAI Fairbanks USA 48 6,860,242

HKG Hong Kong China 49 3,066,755

ICN Seoul South Korea 50 3,053,297

IEV Kiev Ukraine 49 2,179,260

ILR Ilorin Nigeria 97 10,660,493

KUL Kuala Lumpur Malaysia 30 2,310,143

LCY London England 37 2,477,320

LIS Lisbon Portugal 19 2,864,004

NYC New York City USA 99 3,170,947

OFF Offa Nigeria 26 22,772,079

SAO Sao Paulo Brazil 29 1,989,278

SCL Santiago Chile 26 10,399,795

SDJ Sendai Japan 32 1,571,323

SFO San Francisco USA 29 1,471,680

SGP Singapore Singapore 48 2,761,780

TPE Taipei China 50 2,755,260

TYO Tokyo Japan 75 1,996,146

ZRH Zurich Switzerland 33 2,827,183

be assessed by using the diagnostics report generated by FastQC [2], and these
quality assessment reports can be further aggregated into a single report using
MultiQC [21] for multiple samples. Figure 2 shows the quality score plots from
MultiQC for three arbitrarily selected cities from three continents in our study. The
x-axis shows the positions of the bases, and the y-axis represents the Phred score.
The Phred score (= −10 log10 P ) is an integer value representing the estimated
probability P of error for identifying the bases generated by DNA sequencing
technology. A Phred score of 40 of a base implies that the chance of this base
being called incorrectly is 1 in 10,000 [22]. We employed KneadData (version
0.7.4) [49] for quality control analysis. KneadData invokes Trimmomatic [4] for
quality trimming, filtering, and removal of adapter sequences. It further calls
Bowtie2 [38], which maps the sample reads to a reference human genome database.
We discard reads that map to the human genome database. The code snippets
below demonstrate how we assessed quality using FASTQC and performed quality
control using KneadData. In the pre-QC step, we analyze whether it is necessary
to improve the quality of reads. Notice that some of the reads in the second
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Fig. 2 Aggregated quality score plots from MultiQC for Stockholm, Tokyo, and New York City.
The top panel shows the plots for the raw WGS data (pre-QC), while the bottom panel shows the
plots for the pre-processed (post-QC) data

and third columns of Fig. 2 have poor-quality scores (below 30). Hence, we
choose to trim or drop poor-quality reads. Based on the pre-QC assessment,
one can define various rules to improve the quality of the reads to be used for
subsequent analysis. For example, in the quality control code, the parameter
ILLUMINACLIP:NexteraPE-PE.fa:2:30:10:8:keepBothReads
SLIDINGWINDOW:4:30 MINLEN:60 prompts Trimmomatic to remove
adapters, defines a sliding window that cuts a read once the mean quality in a
window of size 4 falls below a Phred score of 30, and retains sequences with a
minimum length of 60. This procedure results in sequencing reads with reasonably
good quality. We assessed the quality of the reads after quality control using
MultiQC and noticed an obvious improvement in the quality of the reads when
compared to the raw reads. The upper panel of Fig. 2 shows the reports from
pre-QC analysis, and the lower panel of Fig. 2 shows the plots from the post-QC
analysis. The code below can be used as a basic guideline for performing the
bioinformatic pre-processing of raw sequenced reads. We encourage readers to
make appropriate modifications to the parameters of the bioinformatics tools to suit
the goal of their analysis. These tools are also constantly undergoing development.
Consequently, it is recommended that the researcher works with the most recent
versions of software and databases used for sequence mapping.

Pre-QC analysis

# make a folder to store FastQC output
$ mkdir output_folder
# Peform quality control checks on the samples using FastQC
$ module load fastqc/0.11.7
$ fastqc -t 30 *.fastq.gz -o output_folder/

# Aggregate the results of fastqc quality control checks using MultiQC
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$ cd ~/output_folder
$ module load multiqc/1.7
$ multiqc *_fastqc.zip

Quality Control

$ module load kneaddata/0.7.4
$ module load bowtie2/2.3.5.1
$ mkdir KneadData_output_folder
##############################################################################
# Download Trimmomatic and adapter sequence files
$ curl -LO http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/
Trimmomatic-0.36.zip

$ unzip Trimmomatic-0.36.zip
##############################################################################
# Download the Homo_Sapiens database
$ mkdir DB_folder
$ cd ~/DB_folder
$ kneaddata_database --download human_genome bowtie2 ./
##############################################################################
# Use a loop for analysis of multiple gzipped paired-end reads using kneadData
$ for f in $(ls *.fastq.gz | sed -e ’s/_1.fastq.gz//’ -e ’s/_2.fastq.gz//’ | \

sort -u)
$ do
$ echo "Unzips ${f}"
$ gzip -d -f ${f}_1.fastq.gz > ${f}_1.fastq
$ gzip -d -f ${f}_2.fastq.gz > ${f}_2.fastq
$ echo "Preprocessing ${f}"
$ kneaddata -i ${f}_1.fastq -i ${f}_2.fastq -o KneadData_output_folder \

-db /path/to/DB_folder --trimmomatic /path/to/Trimmomatic-0.36 -t 30\
--trimmomatic-options "ILLUMINACLIP:/path/to/adapter/sequence/file
:2:30:10:8:keepBothReads SLIDINGWINDOW:4:30 MINLEN:60" \
--bowtie2-options "--very-sensitive --dovetail"

$ echo "Completed QC for ${f}"
$ done

Post-QC analysis

$ cd /path/to/KneadData_output_folder
$ mkdir fastqc_output_folder
$ module load fastqc/0.11.7
$ fastqc -t 30 *paired* -o fastqc_output_folder/
$ module load multiqc/1.7

# Aggregate the results of fastqc quality control checks
using MultiQC

$ cd /path/to/fastqc_output_folder
$ multiqc *_fastqc.zip
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2.3 Taxonomic Profiling

After quality control of the sequencing reads, the next step is to estimate the taxo-
nomic abundance of each sample. A taxonomic abundance table is an n × p matrix
of absolute or relative abundance of p identified taxa in n samples. Taxonomic
profiling of sequenced reads typically comprises two steps. First, the classification
or the alignment of sequence reads to a database of microbial genomes. The second
step involves the estimation of the abundance of each taxon (species, genus, etc.)
in the metagenomic sample, i.e., estimating the number or percentage of reads
belonging to each taxon. Various algorithms and tools have been developed to
efficiently classify sequencing reads to known taxa with improved speed [70]. A
variety of metagenomic profiling tools match sequences to known databases. These
databases created at different times may have different contents as they go through
regular updates with the addition of new sequences.

Taxonomic profiling tools use a variety of approaches such as alignment of
marker genes (MetaPhlAn2 [59], mOTU [63], GOTTCHA [23]), k-mer mapping
in WGS reads (Kraken [23], CLARK [53]), translating DNA into amino acid
sequences, and mapping to protein databases (Kaiju [50], DIAMOND [9]).

This chapter does not pursue the goal of reviewing all of these taxonomic
profiling tools. Several research papers provide discussion on the review and the
comparison of these taxonomic profiling tools [3, 8, 43, 48]. Performance is usually
compared on the basis of the proportion of mapped reads, run time, sensitivity, and
other performance metrics. Since the evaluation of these tools is a complex task, no
single metric is usually used to judge the performance; rather, multiple factors are
examined. Considering that some tools utilize a limited set of marker genes while
others use expansive databases, judging a profiling tool only by the proportion of
reads mapped may not be adequate [43]. Since the application of any taxonomic
profiling tool will potentially impact the results and conclusions of the metagenomic
study, the selection of the appropriate tool should be based on performance metrics
that suites the analyst’s scientific investigation. In this section, we describe and
also discuss the implementation of three commonly used taxonomic profiling tools,
namely MetaPhlAn2, Kraken2, and Kaiju.

2.3.1 MetaPhlAn2

We implement MetaPhlAn2 [59] for the quantitative taxonomic profiling of our
quality-controlled sequenced reads. MetaPhlAn2 is computationally fast as it relies
on the clade-specific marker genes approach for taxonomic profiling [59], and
this approach is not expected to map all reads. Taxonomic assignment is attained
by aligning the sequence reads to the marker set using Bowtie2 [38]. In the
application, we used the default settings of MetaPhlAn2 to extract species-level
relative abundances for each sample, and these values lie within [0, 1]. The relative
abundances for each sample were then merged into a large relative abundance table

23
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using a custom MetaPhlAn2 script. After termination of MetaPhlAn2 procedure,
we obtained a table of relative abundances of 1049 species for 1047 samples. In
this setup, we have chosen to obtain species-level relative abundance. However,
information for other taxonomic levels can be easily extracted from the output
generated by MetaPhlAn2.

Taxonomic Profiling with MetaPhlAn2

# Perform taxonomic profiling of multiple .fastq files using MetaPhlAn2
$ module load metaphlan2/2.96.1
$ for f in $(ls *.fastq | sed -e ’s/_1.fastq//’ -e ’s/_2.fastq//’ | \
sort -u)

$ do
$ metaphlan2.py --bowtie2db /path/to/metaphlan_databases \

${f}_1.fastq,${f}_2.fastq --bowtie2out ${f}.bt2out \
--nproc 30 --input_type fastq

$ metaphlan2.py --bowtie2db /path/to/metaphlan_database ${f}.bt2out \
--nproc 30 --input_type bowtie2out > ${f}_profile.txt

$ done

# Merge taxonomic profiles for each sample into a single .txt file
$ merge_metaphlan_tables.py *_profile.txt > merged_abundance_table.txt

2.3.2 Kraken2

Kraken2 [69] is a rapid and highly accurate metagenomic classification tool that uses
a k-mer approach. For assignment of sequence reads to taxonomic labels, it utilizes
the k-mer information within each read, and each k-mer is mapped to the lowest
common ancestor (LCA) of the genomes that contains the k-mer in a custom-built
database. Lu et al. [44] point out that the LCA approach employed by the Kraken
system means that the system is likely to underestimate the number of reads that are
directly classified as species.

To overcome the issue of underestimation of taxonomic abundance by the Kraken
system, Bracken [44] was developed. Bracken uses a Bayesian algorithm and the
results from the Kraken2 classification for estimation of the relative abundance
of a metagenomic sample at the user-specific taxonomic level. To illustrate the
difference between these tools, the developers of Bracken report an instance [44]
that we consider here. The genomes of Mycobacterium bovis and Mycobacterium
tuberculosis are 99.95% identical. Since these species are very similar, Kraken
classifies the vast majority of reads from either of them to their LCA, which in this
case is the genus Mycobacterium. On the other hand, Bracken uses information on
some reads from the species-specific portion of the genome along with the similarity
information between close species to move reads from the genus level to the species
level.
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To estimate the abundance for each sample using the Kraken2–Bracken system,
we employed a pre-computed standard database that consists of reference sequences
from archaea, bacteria, and the human genome. Further, to generate the Bracken
database file, the switch -t indicates the number of threads to use, and -l indicates
the read length of the data. Since most of our data were 150 base pair (bp)
reads, we set -l to be 150, and we use the default k-mer length of 35. Then,
for each paired-end sample, we generate reports from the Kraken2 taxonomic
assignment procedure, and these reports are then passed into the Bracken program
for abundance estimation. Estimation of the abundance was carried out at the species
level (-l S), with a default reads threshold of 10 (-t 10). Finally, we use a
custom script to combine the Bracken output for all samples into a large single
file. The column of interest in the Bracken output is the new_est_reads, which
gives the newly estimated reads. After obtaining the abundance table, normalization
was carried out using the cumulative sum scaling approach. This procedure was
implemented with the metagenomeSeq [55] R package.

Taxonomic Profiling with Kraken2–Bracken

# loads kraken2 & bracken
$ module load kraken/2.0.8b bracken/2.5
# Generates the bracken database file
$ bracken-build -d /path/to/kraken2/database -t 30 -k 35 -l 150 \

-x /path/to/kraken2/installation/directory
$ echo "Building bracken database file complete"
$ cd /path/to/pair-end/.fastq/files
# Run Kraken2 & Bracken for abundance estimation
$ for f in $(ls *.fastq.gz | sed -e ’s/_1.fastq.gz//’ -e | \

’s/_2.fastq.gz//’sort -u)
$ do
# Generate kraken2 report files
$ kraken2 --db /path/to/kraken2/database --threads 30 --report
${f}.kreport \

--fastq-input --gzip-compressed --paired ${f}_1.fastq.gz ${f}_2.
fastq.gz \ > ${f}.kraken

# Estimate abundance with Bracken
$ bracken -d /path/to/kraken2/database -i ${f}.kreport -o ${f}.bracken

-r 150 \ -l S -t 10
$ done
$ echo "Estimation of species abundance with kraken2-bracken complete"
# Combining bracken output files
$ cd /path/to/.bracken/files
$ combine_bracken_outputs.py --files *.bracken -o output_file

2.3.3 Kaiju

For the given DNA sequences, Kaiju [50] translates the reads into amino acid
sequences and compares these reads against a reference database of protein
sequences. It creates an efficient database structure by indexing the reference
protein database using the Burrows–Wheeler transform (BWT) and saves each
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sequence in an FM-index (Full-text index in Minute space) table. It then searches
for maximum exact matches between the reads and the reference database created.
Kaiju’s developers [50] emphasize that protein-level classifiers such as Kaiju are
more sensitive to novel or highly variable sequences because protein sequences are
more conserved than the underlying DNA. Moreover, protein sequences are more
tolerant to sequencing errors due to the lower mutation rate of amino acid sequences
as compared with nucleotide sequences [1, 70].

To execute the taxonomic classification of sequencing reads using Kaiju, we
used nr database as our reference database. Program kaiju-makedb downloads
the source database of interest and constructs Kaiju’s index using BWT and FM-
index. We observed that some tools used for quality control of the sequences may
create disorder in the read names in both .fastq files. If the read names are not
identical between the first and second files, program kaiju issues an error. We
used Repair function from bbmap to fix this issue before moving ahead with
the taxonomic classification of sequencing reads. For faster implementation, we
used kaiju with multiple parallel threads using option -z 25 in MEM mode
(-a mem). The output files obtained from program kaiju comprised 3 columns,
classification status C/U for each read, read names, and NCBI taxon identifier of
the assigned taxon. These output files were further summarized into a table using
kaiju2table script, which gives read count (or percentage) for all samples
and taxa in a long format. To process this data for the downstream analysis, we
converted it into a wide format with taxa as rows and samples as columns using
pivot_wider function from tidyverse package in R. Users may also choose
to run Kaiju in greedy mode that yields a higher sensitivity as compared to the MEM
mode, sometimes at the cost of increased run time.

Taxonomic Profiling with Kaiju

# load kaiju
$ module load kaiju/1.7.2
$ module load bbmap
# Create reference database index
$ kaiju-makedb -s nr
# Repair disordered paired-end files
$ mkdir bbmap_ordered
$ cd /path/to/fastq/files
$ for f in $(ls *.fastq.gz | sed -e ’s/_1.fastq.gz//’ -e ’s/_2.fastq.gz//’ | sort -u) do
$ repair.sh in1=${f}_1.fastq.gz in2=${f}_2.fastq.gz \

out1= bbmap_ordered/${f}ORDERED_1.fastq.gz out2= bbmap_ordered/${f}ORDERED_2.fastq.gz\
outs=bbmap_ordered/${f}ORDERED_singleton.fastq.gz repair

$ done
$ cd bbmap_ordered
$ rm *ORDERED_singleton.fastq.gz
# Run Kaiju to assign reads to taxa
$ mkdir TaxoClassn
# start - taxonomic classification
for f in $(ls *.fastq.gz | sed -e ’s/_1.fastq.gz//’ -e ’s/_2.fastq.gz//’ | sort -u)

do
$ kaiju -z 25 -t /path/to/kaijus/database/Directory/nodes.dmp \

-f /path/to/kaijus/database/Directory/kaiju_db_nr.fmi \
-i ${f}_1.fastq.gz -j ${f}_2.fastq.gz -o ${f}.out -a mem

$ mv ${f}.out TaxoClassn
$ done
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# Create summary table of the output files at a taxonomic rank
# Merge files from all samples to a single table
$ cd TaxoClassn
$ kaiju2table -t /path/to/kaijus/database/Directory/nodes.dmp \

-n /path/to/kaijus/database/Directory/names.dmp \
-r species -o Merged_files.tsv *.out \
-c 10 -l superkingdom,phylum,class,order,family,genus,species

As mentioned earlier, the choice of profiling tool may depend on multiple
factors such as classification speed, proportion of mapped reads, output format,
ease of use, and computational resources available. If the analyst has access to good
computational resources with high amounts of available memory (>100Gb), then
Kraken, Bracken, and Kaiju are useful options. If sufficient computational resources
are not available, then MetaPhlAn is a viable alternative with fast classification
speed. Kaiju, for instance, has a web server where one can upload the compressed
.fastq files and select different options for taxonomic assignment for an easier
implementation without running bash scripts via the command line. Simon et al.
[70] provide an interesting and informative assessment of the performance of several
metagenomic tools used for taxonomic profiling of real and simulated data sets.

2.4 Computing facilities

All bioinformatics procedures were performed using the University of Florida
HiPerGator2 supercomputer. HiPerGator2 has 30,000 cores in Intel E5-2698v3
processors with 4 GB of RAM per core, and a total storage size of 2 petabytes (PB).
Bash scripts and .fastq files were stored on the supercomputer’s parallel file system
that offers high performance for data analysis. For the computing jobs submitted
to the cluster, we typically requested an allocation of a single computing node, 20
cores per task, and 200 GB memory.

3 Methodology

In Sect. 2.3, we discussed several techniques for taxonomic profiling that comprised
taxonomic classification/assignment and estimation of abundance. At the termina-
tion of each profiling technique presented, we obtained a species abundance table.
Now, the rest of this chapter will focus on methods for classifying taxa abundances
to known class labels. That is, we pursue the goal of modeling taxa abundances of
metagenomic samples belonging to known class labels. Then, the model is used
to predict class labels for new metagenomic samples based on their estimated
abundances. For our analysis, the class labels are the source cities where samples
originated. The classification of sequence reads to taxonomic labels should not be

http://kaiju.binf.ku.dk/server
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mistaken for the classification of abundance profiles to source cities. We stress that
the term classification will refer to the latter described herein.

As we indicated in the previous paragraph, this section focuses on the supervised
learning analysis of the pre-processed metagenomics data. We highlight methods for
feature selection, present several classification algorithms that include the ensemble
classifier, discuss techniques to overcome the problem of class imbalance, and
finally discuss measures for evaluation of model performance.

3.1 Pre-Processing and Feature Selection

The species abundance matrix obtained after the taxonomic profiling contains a
large set of features, i.e., taxa. For instance, 6152 taxa were obtained after taxonomic
profiling with the Kraken2–Bracken system, while 1049 taxa and 32,146 taxa were
obtained after profiling was, respectively, performed with MetaPhlAn2 and Kaiju.

Similar to the cases presented here, the most abundance data obtained from
metagenomics samples are high-dimensional in nature, and it is usually desirable to
extract only important features from the data. Common feature reduction techniques
are based on the prevalence of the taxa in the abundance table. For instance, taxa
with less than a specified number of reads, say 10, can be dropped. In addition,
taxa that are present in less than, say, 1% of the samples may also be discarded.
If these approaches are employed, then the resulting abundance table should be re-
normalized.

Other advanced methods exist for feature selection, and in this section, we
describe a couple of these techniques. In practice, feature selection aims at obtaining
a reduced subset of relevant informative features that bolster the assignment of
samples of known class labels based on their abundance information. However,
from our experience and those of several research studies [54], feature selection
may not provide a substantial improvement in the predictive ability of the fitted
classification models due to the complex nature of microbiome data. Hence, even
though fitting classification models on the data with a reduced feature space may be
more computationally efficient, we recommend that analysts should also investigate
the performance of such models when trained on the data with a complete feature
space.

Among the other approaches to feature selection, first, features could be selected
based on the importance scores returned after a supervised training of the Random
Forest model on the data with a complete set of features. The features are ranked
according to their importance scores, and the top k features are chosen as the set
of informative features. The classification model of interest is then trained with
the k selected importance features. In this setup, k is usually chosen from a set
of a predetermined number of features via cross-validation, such that the number of
features from the predetermined set that maximizes classification accuracy is chosen
to be k. Pasolli et al. [54] utilized this method in their review study that assessed
machine learning approaches for metagenomics-based prediction tasks.
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In another heuristic approach, one may choose to use the Lasso [64] or ElasticNet
[73] with a multinomial model for feature selection. However, the standard versions
of penalized regression methods are not efficient for the analysis of relative
abundance data because of the compositional nature of the data [26]. Owing to this
fact, regression [31] and variable selection methods [41], which impose sum-to-zero
constraints for the Lasso, have been developed for compositional data.

The hierarchical feature engineering (HFE) [52] technique is a recently devel-
oped tool for performing feature selection. To obtain a smaller set of informative
microbial taxa, this tool uses information from the taxonomy table, the correlation
between taxonomic labels, and the abundance data to exploit the underlying
hierarchical structure of the feature space. At the termination of the algorithm
after analyzing a species abundance table, it returns an OTU table that contains
a combination of both species and other higher-level taxa. Fizzy [19] is another
modern tool for feature selection. It is a collection of functions for performing
widely implemented feature selection methods such as the Lasso, information-
theoretic methods, and the Neyman–Pearson feature selection approach. Developers
of the HFE used the predictive performance of several machine learning models to
compare the HFE with other standard feature selection tools that do not account
for the hierarchical structure of microbiome data. They reported that the HFE
outperformed the other methods.

3.2 Exploration of Candidate Classifiers

In this section, we present brief descriptions of some supervised learning models
commonly used for the classification of abundance values of metagenomics samples
to known class labels. Our survey of algorithms will largely focus on supervised
classifiers that are suitable for analyzing multiclass classification problems. These
classifiers can be broadly partitioned into linear and non-linear classifiers.

Linear methods for classification such as linear discriminant analysis, quadratic
discriminant analysis, regularized discriminant analysis, logistic regression, and
SVM (without kernels) achieve classification of objects based on the value of
a linear combination of features in the training data. These classifiers solve
classification problems by partitioning the feature space into a set of regions that are
defined by class membership of the objects in the training data. Also, the decision
boundaries of the partitioned regions are linear [32]. Generally, these classifiers also
take less time to train than non-linear classifiers. However, by using the so-called
kernel trick, some linear classifiers can be converted into non-linear classifiers that
operate on a different input scale.

In cases where the training data are not linearly separable (usually via a
hyperplane), a linear classifier cannot perfectly distinguish classes of such data.
For such cases, the non-linear classifiers will often provide better classification
performance than the linear classifiers. Examples of non-linear classifiers commonly
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used for classification in metagenomics studies include the kernel SVM, Random
Forest (RF), and neural networks (multilayer perceptron):

• Recursive Partitioning (RPart)—Adecision tree [7] is the fundamental element
of the RPart model. A decision tree is grown by repeatedly splitting the training
data set into subsets based on several dichotomous features. The recursive
splitting from the root node to the terminal node is based on a set of rules
determined by the features. The process is recursive in nature because each subset
can be split an indefinite number of times until the splitting process terminates
after a stopping criterion is reached. In the case where the target response is
a unique set of labels, the tree model is called a classification tree. For the
prediction of the class label of a new subject, the model runs the observation
from the root node to the terminal node that assigns the class membership.

• Random Forests (RF)—The idea of the RF classifier [6] is to grow a collection
of trees by randomizing over subjects and features. That is, each tree in the forest
is grown by using a bootstrap sample from the training data. Out-of-bag samples
comprise samples that are not included in the bootstrap sample. These samples
serve as a validation set. In contrast to bagging that uses all p predictors for
splitting at each node, RF uses only m < p randomly selected features to obtain
the best split. With the implementation of this step, the correlation between
the trees is reduced. Also, it improves the classification performance obtained
when a bagging procedure is implemented. Unlike decision trees, no pruning
is performed for Random Forests, i.e., each tree is fully grown. For predicting
the class of a new observation, each tree in the forest gives a class assignment,
and majority voting is used to obtain the final prediction. Advantages of the RF
include its robustness to correlated features, its applicability to high-dimensional
data and the ability to handle missing data internally in an effective manner, and
its use as a feature selection tool through its variable importance plot. Also, it
offers competitive classification accuracy for most problems with little parameter
tuning and user input.

• Adaptive Boosting (AdaBoost)—In the boosting [24] procedure, many weak
classifiers are sequentially combined to produce a strong learner. The procedure
achieves this by repeatedly training many weak learners on modified versions of
the data set, and then the strong learner is created by a weighted average of the
weak classifiers. Note that a weak classifier is a learner whose performance is
only slightly better than random guessing. Also, the weights used to fit each
of the weak classifiers are functions of the prediction accuracy using some
previous versions of the weak classifier. If we let Gm(x), m = 1, . . . , M denote
a sequence of weak classifiers trained with weighted versions of the training
data, the final output of the AdaBoost classifier is a weighted sum of Gm(x).
In this case, weights wi, i = 1, . . . , N , that are updated iteratively are applied
to the observations in the training set. At the first boosting iteration, m = 1, a
base classifier, i.e., wi = 1

n
, is trained. Then, for m = 2, . . . , M , observations

that were misclassified in the preceding iteration are given more influence than
observations that were correctly classified. In this sense, the boosting procedure
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is adaptive because each subsequent classifier in the sequence is thereby forced to
tweak its performance to favor observations that were misclassified by previous
classifiers.

• Extreme Gradient Boosting (XGBoost)—Gradient boosting [25], also referred
to as gradient boosting machines (GBM), is another boosting algorithm that
creates a strong learner from an ensemble of weak classifiers, typically deci-
sion trees. In the implementation, this machine combines a gradient descent
optimization procedure with the boosting algorithm. The machine is constructed
by fitting an additive model in a forward stage-wise manner. A weak learner
is sequentially introduced at each stage to improve the performance of existing
learners in classifying previously misclassified observations. These misclassified
observations are determined by gradients, which in turn guide the improvement
of the model. For XGBoost [13], trees are grown to have a varying number of
terminal nodes. Contrasting to GBM that employs gradient descent, XGBoost
employs Newton boosting that uses Newton–Raphson’s method to obtain the
solution to the optimization problem. With set parameters, the XGB algorithm
reduces the correlation among the trees grown, thus increasing classification
performance. Further, the algorithm utilizes parallel and distributed computing
that speeds up learning and enables quicker model exploration. Historically,
this classifier has been popular among winning teams participating in machine
learning competitions [13].

• Support Vector Machines (SVM)—To understand the concept of the SVM
[17], first, we consider a binary classification problem for which we intend to
assign a new data point to either of two classes. The data point is treated as
a p-dimensional vector, and the SVM algorithm aims at finding a (p − 1)-
dimensional hyperplane that represents the largest separation between the two
classes. Several hyperplanes may exist for partitioning the data. SVM selects the
decision boundary that maximizes the distance to the nearest data point on each
of its sides as the optimal hyperplane. SVMs are popular for solving classification
problems because in the case where no linear decision boundary exists, they can
allow for non-linear decision boundaries using the so-called “kernel trick.” Also,
SVM solves a multiclass classification problem by decomposing the problem
into multiple binary classification problems. In this sense, most SVM software
constructs binary classifiers that distinguish between one of the class labels and
the others (one-versus-all) or between every pair of classes (one-versus-one). In
the latter approach, k(k−1)

2 binary classifiers are constructed if the target variable
is comprised of k classes. For the prediction of a new observation in the one-
versus-all case, the binary classifier with the maximum output function decides
the class label, while a majority voting strategy is used to assign the class label
in the one-versus-one case.

• Multilayer Perceptron (MLP)—Under the deep learning framework, MLP [32]
is an interconnected network of neurons or nodes that have weights attached
to the edges of the network. MLP utilizes an adaptive mathematical model that
changes based on the information that is fed into the network. Using several
layers of units, the network maps the input data to an output vector with length
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equal to the number of classes in the target variable. First, the input data are
passed into an input layer. This layer emits a weighted output that is further
passed into another hidden layer of units (there can be more than one hidden
layer). In the final branch of the process, the output layer receives the weighted
output from the hidden layer and assigns the network’s prediction.

Several classifiers provide the option to scale the features so that they have
the same variance. This scaling procedure will destroy the compositional nature
of the data, and hence, we suggest that scaling should not be done. From the
documentation of most classification learning software, we can set the logical
scale or standardize parameters that indicate whether scaling should be
carried out. This parameter should be set to FALSE.

3.3 The Ensemble Classifier

In Sect. 3.2, we presented a variety of popular machine learning models that can be
used to predict the source origin of metagenomics samples. These classifiers have
been used to analyze data obtained from several experimental studies that aimed
to explore associations between microbial imbalance and disease or environmental
factors. The RF and SVM classifiers remain state-of-the-art for metagenomics-
based classification purposes. In contrast, classifiers such as the AdaBoost and
XGBoost that are based on boosting algorithms have not gained much traction in
the metagenomics data classification.

Research papers such as Knights et al. [35], Moitinho-Silva et al. [51], and
Zhou et al. [72] provide a review of a variety of supervised machine learning
models commonly used for feature selection and classification in microbiota studies.
The reviews on the classification of microbiota data often report microbiome–
phenotype associations and host-microbiome and disease associations. Among
other findings, several individual studies have utilized different pre-processing and
analysis methods that yielded discrepant conclusions and difficulty of classification
models to be generalized across research studies [20, 54, 72].

In the context of exploring the relationship between microbial samples and
environmental factors, CAMDA had organized the Metagenomics Geolocation
Challenge over the last three years. Participants who have worked on these chal-
lenges have used a combination of bioinformatics and machine learning techniques
to build microbiome fingerprints for the prediction of the source origins of microbial
samples. Neural networks, RF, and SVM are among commonly used machine
learning techniques for the construction of such fingerprints. In particular, no
single classifier has shown to give consistent optimal performance across these
metagenomics studies. When addressing results from a classification competition
based on proteomics data, Hand [29] points out this observation as well.

Several reasons may account for the inconsistencies and non-generalizability
of machine learning models across microbiome studies. Potential factors that can
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elicit inconsistencies in microbiome studies include the nature of the data being
studied, sample collection strategies, different sequencing techniques, and varying
bioinformatics procedures. Furthermore, the performance of machine learning
models is likely to depend on the techniques utilized during the pre-processing and
taxonomic profiling of the microbial samples. In practice, it is generally impossible
to know a priori which machine learning model will perform best for a given
classification problem and data.

To create a more robust classifier, Datta et al. [18] proposed an ensemble
classifier that combines a variety of classification algorithms in conjunction with
dimension reduction techniques (if necessary) for classification-based problems.
The ensemble classifier is constructed by bagging and weighted rank aggregation
[56], and it flexibly combines the standard classifiers to yield classification perfor-
mance that is at least as good as the best performing classifier in the set of candidate
classifiers that define the ensemble. For any data set under investigation, the
ensemble classifier excels in the sense that it adaptively adjusts its performance and
attains that of the best performing individual performance without prior knowledge
of such classifier(s). Hand [29] also states that the aggregation of results obtained
from many fitted models serves to smooth the ensemble model away from a single
model that is optimized on the training set, and therefore, the combination of models
serves a role similar to regularization.

The ensemble classifier is itself a classification algorithm, and here, we describe
the construction of this classifier. Consider the abundance matrix X = (x1, . . . , xp)

for n samples and p taxa, where each xj , j = 1, .., p, is normalized, and the target
labels, y = (y1, .., yn). The steps to build the ensemble classifier are as follows:

1. Choose M candidate classifiers and K performance metrics. Then, for b =
1, . . . , B:

(i) Draw a bootstrap sample Z∗
b = (X∗

b, y
∗
b) of size n for the training data.

Ensure samples from all classes are represented in Z∗
b. OOB samples

comprise all samples not included in Z∗
b.

(ii) Train each M classifier with the bootstrapped sample, Z∗
b.

(iii) Use each M classifier to predict the OOB samples.
(iv) Based on the true values of the OOB set, and the predicted class labels,

compute the K performance measures.
(v) Perform weighted rank aggregation: The performance measures used in

step (iv) rank the classifiers according to their performance under each
measure, thereby producing K ordered lists, L1, L2, . . . , LK , each of size
M . Using weighted rank aggregation, the ordered lists are aggregated to
determine the best single performing classifier denoted as Ab

(1).

The ensemble is a set of
{
A1

(1), . . . , A
b
(1), . . . , A

B
(1)

}
classifiers.

Notice that the algorithm evaluates the performance of each candidate classifier
based on their prediction of the OOB samples. This protects the ensemble classifier
from overfitting. Just like cross-validation, the classification performance based on
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the OOB samples is estimated using data that were not used when training the
classifier. The OOB errors are not the same as the cross-validation errors, but in
practical terms, they should be approximately close.

Given the abundance of a new sample, x1xp, the ensemble classifier gives
prediction for such sample using the following procedures:

1. Each classifier, A1
(1), . . . , A

B
(1), in the ensemble is used to predict the class label

of x1xp. Let ŷ1, . . . , ŷB denote the class predictions from the B models in the
ensemble.

2. The final prediction is obtained by majority voting, that is, the most frequent
class label among the B predicted classes.

3.4 Class Imbalance

More often than not, metagenomics data are imbalanced. That is, at least one of
the classes in the data is underrepresented. Data imbalance is likely to skew the
performance of the classification models such that the models will be biased toward
the majority classes. For instance, if there are disproportionately more samples from
class A than there is from class B, the classification model is prone to assign a
random label to class A than class B. Since classification algorithms aim to reduce
the overall misclassification rate, rather than the error rate in majority classes,
such models will not perform well for imbalanced data. Generally, classification
algorithms are poised to perform better with nearly equal representation of classes
in the training set.

The problem of class imbalance has received considerable attention in the
machine learning literature, and a variety of methods exist to mitigate this problem.
Some of these methods have also found application in the analysis of metagenomics
data. In this section, we briefly describe the underpinnings of such procedures along
with their pros and cons. The application of these methods does not improve the
overall fit of the classification model discussed. When implemented, they aim to
improve the prediction of samples in the minority classes. Roughly speaking, these
methods are partitioned into down-sampling, over-sampling, hybrid, and weighting
techniques:

(i) Down-sampling techniques: This involves randomly removing samples from
the majority classes until class frequencies are roughly balanced. One disad-
vantage of this technique is the loss of information in the majority classes since
a large part of the majority classes will not be used to train the classifier.

(ii) Over-sampling techniques: This involves the random replication of samples
in the minority classes to attain approximately the same sample sizes in the
majority classes. As noted by Chen et al. [12], more information is not added to
the data by over-sampling; however by replication, the weight of the minority
classes is increased. From our experience, down-sampling appears to be more
computationally efficient since the classifier is trained on smaller data sets.
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(iii) Hybrid techniques: This class of techniques combines both over-sampling and
down-sampling to artificially create a balance in the data set. For instance,
SMOTE (and its variants), AdaSyn, DSRBF, and ProWSyn methods generate
synthetic samples from the minority classes to balance class frequencies.
Kovács [36] studied the performance of a variety of minority over-sampling
techniques when applied to large imbalanced data sets. They report that
no over-sampling technique gives consistent optimal performance. Hence,
they suggest careful investigation when choosing the technique to use. The
smote-variants [37] package provides Python implementation for a
host of these hybrid techniques, while the UBL [5] package provides certain
implementations in R. In the context of the analysis of microbiome data, a
variety of user-specific hybrid over-sampling techniques have been employed.
For instance, Knights et al. [35] used an artificial data augmentation approach
to boost the representation of samples when analyzing microarray data. In
their approach, they generate noisy replicates by adding a small amount of
Gaussian noise to the OTU counts in each sample, with a threshold of zero to
avoid negative values. The authors found that the difference in predicted error
between their augmented and unaugmented model was at most 2% decrease
in error. Also, Harris et al. [31] report an increment in classification accuracy
from 83% to 91% after application of an optimized sub-sampling technique to
address the problem of data imbalance in their analysis of metagenomics data
aimed at predicting sample origins.

(iv) Weighting: A cost-sensitive approach to fitting classification models is to
train them using class weights. In this approach, the algorithms place heavier
weights on the minority classes and will penalize the classifier for misclassify-
ing the minority classes. The weighted Random Forest [12] is an example of a
classification model that implements class weighting.

To avoid overfitting the data, these techniques for addressing class imbalance
are generally applied only to the training set. Further, if a resampling technique
(bootstrap or cross-validation) is used for model evaluation during analysis, the
over-sampling procedure should be performed inside the resampling technique. This
approach is followed because if an over-sampling is done before, for instance, cross-
validation is performed, the model is likely to have glanced at some samples in the
hold-out set during model fitting; therefore, the hold-out set is not truly unknown to
the model. This implementation will result in overly optimistic estimates of model
performance.

3.5 Performance Measures

In this section, we focus on measures used for evaluating the performance of
classification algorithms on imbalanced data. In such scenarios, the overall clas-
sification accuracy is often not an appropriate measure of performance since rare
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classes have little impact on accuracy than majority classes [34]. Other performance
metrics such as recall (or sensitivity), precision (or positive predictive value,
PPV), F-measure, and G-mean are commonly used single-class metrics in binary
classification problems. These metrics can also be used to assess the prediction
of individual class labels in multiclass problems. These metrics are defined as the
following:

Recall = TP

TP + FN
,

Precision = TP

TP + FP
,

F − measure = 2 × Precision × Recall

Precision + Recall
.

For evaluating the overall performance of the classifiers for imbalanced learning,
multiclass extensions of the G-mean [62] and AUC [30], as well as Cohen’s Kappa
[16], are commonly used metrics.

G-mean =
(

K∏
i=1

Recalli

) 1
K

,

MAUC = 1

K(K − 1)

K∑
i=1

K∑
i �=j

AUC(i, j),

κ = P0 − PE

1 − PE

,

where K is the number of classes, Recalli is the recall for class i, P0 is the relative
observed agreement among classifiers (i.e., the overall accuracy of the model), and
PE is the probability that agreement is due to chance. G-mean is the geometric
mean of recall values for all classes, while MAUC is the average AUC for all pairs
of classes. Apparently, the G-mean will be equal to 0 if the recall for any class is 0.
These three performance measures were used in constructing the ensemble classifier
that will be implemented in our analysis.

3.6 Data Analysis

In this section, we lay out some analytical techniques for the pre-processed species
abundance table. These techniques focus on training supervised machine learning
models for the classification of the OTU abundance to known class labels. Here, our
analysis will be based on the species abundance tables obtained after bioinformatics
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pre-processing and taxonomic profiling of the WGS data gotten from the 2020
CAMDA Forensic Challenge, see Sect. 2.1. In Sect. 2.3, we used three different
taxonomic profiling tools to obtain the species abundance table, and the supervised
algorithms for classification will be applied to each data set. The primary objective
of the analysis lies in predicting the source origins of given metagenomics samples
from 23 cities across the globe.

First, we fitted ten candidate classifiers. The candidate classifiers consist of
all classifiers discussed in Sect. 3.2 together with certain modifications of these
classifiers. For instance, we considered the RF classifier with principal component
terms (denoted as PCA+RF) and partial least squares terms (PLS+RF). And we also
trained the AdaBoost, XGBoost, RPart classifiers each with PLS terms (PLS+ADA,
PLS+XGB, PLS+RPart). Furthermore, we trained the ensemble classifier for which
the ensemble constitutes the mentioned candidate classifiers. Candidate classifiers
with different parameter combinations can also be included in the ensemble;
however, we constructed the ensemble classifier such that no candidate classifier
is represented more than once in the candidate set. Also, hyperparameters of
the candidate classifiers can be tuned, but we have chosen to use mostly default
parameters of the candidate parameters. In the case where the default value of
a parameter is not used, the value was chosen based on our experience in the
analysis of metagenomic data. Nonetheless, since the default hyperparameters in
some machine learning libraries may not be optimized for the classification problem
at hand, we encourage analysts to consider tuning such parameters during analysis.

Furthermore, to evaluate the performance of the techniques discussed in
Sects. 3.1 and 3.4 for feature selection and to overcome class imbalance,
respectively, we will apply these methods to the species abundance table obtained
from the Kraken2–Bracken system. The construction of the ensemble classifier can
easily be modified to accommodate the implementation of these techniques.

4 Results

Here, we present results for the analysis described in Sect. 3.6. First, we describe
the results obtained from the analysis of the species abundance tables obtained
after taxonomic profiling was performed withMetaPhlAn2 (MP), Kraken2–Bracken
(KB), and Kaiju (KJ), respectively. For each abundance table, further downstream
pre-processing as discussed in Sect. 3.1 was carried out, and we obtained 1029,
4770, and 25,750 taxa for MP, KB, and KJ data, respectively. We performed a 10-
fold split of the abundance data into 80% training and 20% test sets. For each split,
we ensured each class was represented by at least three samples in both the training
and test sets. The classification analysis was conducted by training the classifiers
mentioned in Sect. 3.6 on the training set, while the test set was used to evaluate the
performance of the models.
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We used a consistent framework for the analysis of the respective abundance
tables, that is, a pre-specified set of candidate classifiers and classifier parameters,
performance measures, and resampling techniques were consistently employed
across the analysis for each abundance table. However, we excluded the RPart
classifier from the set of candidate classifiers when analyzing the KJ data; the
classifier could not handle the vast number of features in this particular training
set. Also, for the construction of the ensemble classifier, the number of bootstrap
samples to be drawn, B, was set to be 50, while Kappa, multiclass G-mean,
and MAUC were the performance measures used for performing weighted rank
aggregation.

For the analysis of the abundance tables obtained from the respective taxonomic
profiling tools, Table 2 shows the mean performance measures for each classification
algorithm. Based on the results from all performance measures, and across the
analysis for each profiling tool, the ensemble classifier yields classification results
that are as good as the best candidate classifier. Furthermore, the candidate
classifiers perform differently for each abundance data. For instance, based on
the Kappa statistics, the MLP, PLS+RF, RF, and XGB were the best performing
candidate classifiers for the analysis of the KB and KJ data, while the RF and XGB
gave the most promising results for the analysis of the MP data. These classifiers
proved to be the most competitive in the set of candidate classifiers; hence, the
ensemble of classifiers across the analysis for each data set was mostly dominated by
the MLP, PLS+RF, RF, and XGB classifiers. For each sub-table in Table 2, the last
column shows the number of times each candidate classifier was the best performing
local classifier in 500 instances (10 replications with 50 bootstrap iterations each).

Furthermore, the SVM with a radial basis kernel and the RPart classifiers yield
moderate classification performance. Classifiers trained with integrated PLS terms
performed better than classifiers with PCA terms; we observed that the PCA+RF
classifier yields the poorest classification results among all candidate classifiers.
Also, the PLS+RF classifier performed better than its RF counterpart for the analysis
of the KB data, and the two classifiers have closely related results for the analysis
of the KJ data, while the RF outperforms the PLS+RF classifier for the analysis of
the MP data. In general, the trained classifiers yielded better performance results for
the KB and KJ data than for the MP data.

For the second phase of our analysis, we sought to investigate the impact of
both dimension reduction and techniques for handling class imbalance on the
classification performance of the classifiers. In this regard, we have applied these
methods solely for the analysis of the KB data. For each application, we follow
a similar design of the analysis presented in the first paragraph of this section.
For the weighted classifiers, class weights were computed as wc = 1/nc, where
nc is the number of samples in class c. While for over-sampling, the Gauss
Noise (introduces Gaussian noise for the generation of synthetic samples) [39]
over-sampling procedure was implemented. The HFE described in Sect. 3.1 was
employed for dimension reduction. Table 3 shows the mean performance measures
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Fig. 3 Mean multiclass AUC measures for ten standard classifiers, and an ensemble classifier
comprising of the standard classifiers. These classifiers were trained with the species abundance
table obtained after taxonomic profiling was done with the Kraken2–Bracken system. The training
data with a set of complete features comprise 4770 taxa that were obtained after downstream pre-
processing, while the data with a reduced feature space comprise 796 taxa, on average

for the set of candidate classifiers and the ensemble classifier, and the classification
results for the data with a reduced feature space are shown in parentheses. First,
by contrasting the classification performance for the HFE and non-HFE data across
the three different techniques shown in the sub-tables of Table 3, notice that there
is little or no improvement in classification results for the feature-reduced data. For
most of the results reported, the classifiers performed slightly better on the non-HFE
data.

Also, for comparison of classification results across the methods used to address
the problem of class imbalance and the standard classifiers, we find that there is
no substantial improvement in classification performance. Figure 3 shows the mean
multiclass AUC scores for the standard classifiers as well as the classifiers trained
with class weights and oversampled data. The classifiers are trained on both the non-
HFE and HFE data. For each classifier, the multiclass AUCs reported for all three
approaches are very similar. This finding is consistent with the description that the
class weighting and over-sampling techniques do not improve the overall fit of the
models.

We further investigated the performance of the classifiers when predicting the
known class labels in the primary data. The classifiers had a varied performance
for prediction of the sample origins. Figure 4 shows a boxplot of the positive
predictive values (PPV) based on the classification results from the standard
ensemble classifier (i.e., class weighting and over-sampling procedure were not
applied) trained on a full feature space. The PPV results described here were
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Fig. 4 Boxplot showing the positive predictive value for all cities represented in the training data.
The results are based on predictions from a standard ensemble classifier that was trained on the
full feature space of the species abundance data obtained after taxonomic profiling was performed
with Kraken2–Bracken

obtained for the analysis of KB data discussed in the first paragraph of this section.
The classifier yields near perfect prediction for samples obtained from Barcelona,
Berlin, Denver, Doha, Kuala Lumpur, Offa, Santiago, Sendai, San Francisco, and
Tokyo. The average PPV for prediction of these sample origins was at least 95%. In
contrast, the ensemble classifier does not yield good classification performance for
the prediction of samples that originated from Kiev, Lisbon, Offa, and Singapore.
The average PPV for these cities ranges from 60% to 74%. The poor performance
of the classifier in predicting certain cities will negatively impact the overall
classification performance of the classifier. Thus, it is worthwhile to investigate the
reasons for the poor predictive ability of the classifier for these cities. For instance,
we observed that the classifier had trouble discriminating between Kiev and Zurich.
Certain factors could influence the sub-par ability of the classifier in discriminating
between cities. The proximity of source cities is an obvious factor. Naturally, we
can expect the classifiers to misclassify cities in close proximity to one another. For
instance,Offa and Ilorin are geographically close, and the classifier, in several cases,
misclassified Offa as the Ilorin.

The boxplots in Fig. 5 show some of the top microbial species that were
found to be differentially abundant across various cities. The left panel of Fig. 5
shows the feature importance plot of the top 20 species from RF classifier in the
ensemble. Variable importance plot consists of many species belonging to genus
Bradyrhizobium that is a soil bacteria and is also found in the roots and stems of
plants [27]. Pseudomonas.sp..CC6.YY.74 species belongs to genus Pseudomonas
that is a common genus of bacteria that resides on moist surfaces, soil, and water
[42].



Bioinformatics Pre-Processing of Microbiome Data with An Application to. . . 71

Pseudomonas.xanthomarina

Hymenobacter.swuensis

Bradyrhizobium.sp..WSM471

Pseudomonas.sp..LTJR.52

Acinetobacter.sp..ACNIH1

Leclercia.sp..LSNIH3

Methylorubrum.extorquens

Acinetobacter.sp..NCu2D.2

Bacillus.gobiensis

Bradyrhizobium.guangxiense

Deinococcus.soli.Cha.et.al..2016

Acidithiobacillus.ferrivorans

Cupriavidus.basilensis

Deinococcus.metallilatus

Bradyrhizobium.erythrophlei

Pseudomonas.sp..SGAir0191

Rhodococcus.sp..B7740

Pseudomonas.sp..CC6.YY.74

Rhodococcus.hoagii

Bradyrhizobium.sp..ORS.285

0.000 0.002 0.004 0.006 0.008
MeanDecreaseAccuracy

S
pe

ci
es

0

3

6

9

12

A
R
N

B
C
N

B
E
R

D
E
N

D
O
H

FA
I

H
K
G

IC
N

IE
V

IL
R

K
U
L

LC
Y

LI
S

N
Y
C

O
F
F

S
A
O

S
C
L

S
D
J

S
F
O

S
G
P

T
P
E

T
Y
O

Z
R
H

City

B
ra
dy

rh
iz
ob

iu
m
.s
p.
.O

R
S
.2
85

0

2

4

6

A
R
N

B
C
N

B
E
R

D
E
N

D
O
H

FA
I

H
K
G

IC
N

IE
V

IL
R

K
U
L

LC
Y

LI
S

N
Y
C

O
F
F

S
A
O

S
C
L

S
D
J

S
F
O

S
G
P

T
P
E

T
Y
O

Z
R
H

City

R
ho

do
co

cc
us

.h
oa

gi
i

0.0

2.5

5.0

7.5

10.0

12.5

A
R
N

B
C
N

B
E
R

D
E
N

D
O
H

FA
I

H
K
G

IC
N

IE
V

IL
R

K
U
L

LC
Y

LI
S

N
Y
C

O
F
F

S
A
O

S
C
L

S
D
J

S
F
O

S
G
P

T
P
E

T
Y
O

Z
R
H

City

P
se

ud
om

on
as

.s
p.
.C
C
6.
Y
Y.
74

0.0

2.5

5.0

7.5

A
R
N

B
C
N

B
E
R

D
E
N

D
O
H

FA
I

H
K
G

IC
N

IE
V

IL
R

K
U
L

LC
Y

LI
S

N
Y
C

O
F
F

S
A
O

S
C
L

S
D
J

S
F
O

S
G
P

T
P
E

T
Y
O

Z
R
H

City

C
up

ria
vi
du

s.
ba

si
le
ns

is

Fig. 5 Species importance for RF classifier in the ensemble (left). Boxplots of species abundances
for 4 among the top 10 important species (right)

5 Discussion

We have presented a practical workflow for the analysis of microbiome data
that are based on samples that are usually collected from the different body
and environmental sites. This workflow was partitioned into two sections—pre-
processing of raw WGS data and downstream analysis. For the raw WGS data
pre-processing of the microbiome data, we constructed a standard pipeline using
a variety of bioinformatics tools for quality control and taxonomic profiling.
The taxonomic profiling involves classifying sequence reads to taxonomic labels
and estimation of species abundance, and this was performed with three widely
used profiling tools, namely, MetaPhlAn2, Kraken2–Bracken, and Kaiju. At the
termination of the bioinformatics pipeline, we obtain species abundance tables from
each of the respective profiling tools, and these abundance tables were passed into
the downstream analysis.

The downstream analysis of the data comprised fitting supervised learning
models for the classification of the species abundance of the samples to known
class labels. We have evaluated several machine learning approaches to the
metagenomics-based classification of sample origins. For this purpose, we adopted
a robust ensemble classifier that uses species-level abundance as features, a user-
specific set of supervised learning models as candidate classifiers, and user-defined
performance metrics for model evaluation. The ensemble classifier is an adaptive
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classification algorithm that can perform well on different data structures. This
classifier utilizes performance on OOB samples to guard against overfitting. The
ensemble classifier gives classification performance better or as good as the best
performing candidate classifier in its ensemble.

Across many metagenomics studies, we noticed a great deal of variation in
classification results presented by different researchers working in this area. One
natural explanation for this variation in results stems from the bioinformatics and
data generation procedures employed in these studies. Since standard classification
models will perform differently when trained on different data structures, restricting
the classification problem to a single classifier may not be a practical approach. For a
given classification problem, the analyst is expected to try out a variety of classifiers,
judging each one according to a set of user-defined performance metrics. In this
sense, the analyst will likely begin their exploration with simple models before
trying out more complex models. With the application of the ensemble classifier
described here, the analyst can automate the process and achieve a near optimal
performance.

In this chapter, we have trained the ensemble classifier with only the classifiers
discussed in Sect. 3.2. However, the ensemble need not be restricted to these models
but could include any reasonable user-specified classifier. For instance, we notice
that the XGBoost classifier that is popular among competing teams solving data
science problems has been rarely used in the analysis of metagenomics data. Results
from classification performance presented in this chapter showed that the XGBoost
performs almost as well as the RF classifier. Therefore, in a future analysis of these
types of data, we may choose to include XGBoost in our ensemble.

The best classification results for the prediction of source cities were obtained
when the classifiers were trained on the full data set rather than on the feature-
reduced version. This explains the complex nature of metagenomics data where
a plethora of taxa are needed to characterize the variation among sample origins;
hence, building a model with only a subset of these taxa may not sufficiently explain
such variations.

In addition to fitting an ensemble of classifiers, we also highlight other techniques
that may improve the classification of metagenomics data. Since most machine
learning models tend to lean toward predicting the majority classes over the
minority classes, balancing the class frequencies of samples in the training data
is an ideal method to incorporate in the analytical pipeline. The application of an
optimal minority over-sampling scheme and class weighting in the training of the
classifiers only marginally impacted the performance of the classifiers presented
in this chapter. These techniques can easily be incorporated while constructing
the ensemble classifier. We notice that training the classifier with class weights is
computationally more efficient than utilizing an over-sampling scheme.

An obvious drawback of the ensemble classifier is that it is computationally
intensive. It would take more time to train an ensemble classifier than it would for a
stand-alone classifier. The computing times of the ensemble classifier are mainly
impacted by the number of bootstrap samples that the individual classifiers are
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trained on, the number and complexity of user-specified candidate classifiers, and
the performance measures that are used to compute the weighted rank aggregation.
However, the computing times can be appreciably reduced if the ensemble classifier
is trained using parallel computational approaches on a computing cluster. When we
selected 10 candidate classifiers (i.e., the candidate classifiers presented in Sect. 4),
three performance measures (namely, Cohen’s Kappa coefficient, multiclass G-
mean, and AUC) for computing weighted rank aggregation, and 50 bootstrap
samples for the construction of the ensemble classifier, the construction procedure
took an average time of 9.47 h (wall-clock time). This procedure was done on a
University computing cluster for which 12 CPU cores and 40GB of memory were
allocated to the job.

The downstream classification analysis presented here can be extended in two
different directions. Each of these extensions requires the knowledge of additional
information besides the microbiome data—such information are often present in
the form of geographic location of the training cities or the weather information in
both training and test cities and so on. In the former case, we can build a potentially
improved classifier that effectively utilizes a larger collection of features. In the later
situation, one may be able to predict the city of origin in a bigger list than what was
provided in the training data. These extensions may be pursued elsewhere.

6 Data Acknowledgement

All analyses presented in this chapter are based on the raw WGS metagenomics
data provided as part of the 2020 CAMDA Metagenomic Geolocation Challenge.
The primary data along with other supplementary data is publicly available on
the challenge’s website. We participated in this challenge and presented our
classification results at the 2020 Intelligent Systems for Molecular Biology (ISMB)
conference. An extensive report on the results from our analysis will be published
in the conference proceedings.

7 Code Availability

Bash scripts for each procedure performed in the bioinformatics pipeline and R
scripts for building an ensemble of standard classifiers are available at https://
github.com/samuelanyaso/metagenomic_data_analysis. The sample code below
shows a standard interface to analyze an abundance matrix. The code calls the
ensemble.R script for training an ensemble classifier, predicts test cases, and
evaluates the performance of the ensemble classifier along with other candidate
classifiers in the ensemble.

http://camda2020.bioinf.jku.at/doku.php/contest_dataset#metagenomic_geolocation_challenge
https://www.iscb.org/cms_addon/conferences/ismb2020/tracks/camdacosi
https://github.com/samuelanyaso/metagenomic_data_analysis
https://github.com/samuelanyaso/metagenomic_data_analysis
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WD <- "/path/to/data/and/source/scripts"
setwd(WD)
df <- read.delim("abundanceTable.txt", header = TRUE, sep = "\t",

dec = ".")
df$class <- factor(df$class) # class labels
## Begin training Models
num.class <- length(levels(df$class))
idx <- 1:nrow(df) # row indices
## loads the ensemble function
source("ensemble.R")

Result1 <- list()
Result2 <- list()
bestAlg <- list()
confMat <- list()
reps <- 10 # number of replications
set.seed(2021)
for(r in 1:reps){

repeat{
## repeat partitioning of the data into train and test set until
## all classes are present in both test and train set
inTraining <- createDataPartition(df$class,p = 0.9,list = FALSE)
shuf <- sample(inTraining[,1],replace = FALSE) # train set
shufT <- sample(idx[which(!idx %in% inTraining[,1])],

replace = FALSE) # test set
# partitions the dataset
dat.train <- df[shuf,]
dat.test <- df[shufT,]
if(all(table(dat.train$class) >= 1) & all(table(dat.test$class)

>= 1)){
break

}
}
## Train set
y <- dat.train$class
y <- as.factor(as.numeric(y)-1) # Factor levels should begin from 0
x <- data.matrix(dat.train[,!(names(dat.train) %in% c("class"))])
## Test set
yTest <- dat.test$class
yTest <- as.factor(as.numeric(yTest)-1) # Factor levels should

begin from 0
xTest <- data.matrix(dat.test[,!(names(dat.test) %in% c("class"))])
cat("Started Replication: ",r," of ",reps,"\n ")
ens <- ensembleClassifier(x, y, M=50, ncomp=30,

train = dat.train, test = dat.test,
algorithms=c("svm","rang","pls_rf",

"pca_rf","rpart", "pls_rpart",
"xgb","pls_xgb","mlp"),

levsChar =as.character(levels(dat.train$class)))
# the names of the best local classifiers
bestAlg[[r]] <- ens$bestAlg
## predict using the test data
pred <- predictEns(ens, xTest, yTest, test = dat.test,

dlEnsPath = "dl_ens_time.h5",
dlIndPath = "dl_ind_time.h5")

# Saves the results
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Result1[[r]] <- pred$ensemblePerf
Result2[[r]] <- pred$indPerf
## predicted class
yPred <- pred$yhat
## confusion matrix
confMat[[r]] <- caret::confusionMatrix(yPred,yTest)
# displays the truth and predictions for each of the "best" algorithms
dfPred <- data.frame(truth=yTest, ensemble=yPred, pred$pred)
dfPred <- as.list(dfPred)
# convert numeric factors to character factors
dfPred <- lapply(dfPred,function(x)

as.character(num2charFac(x,char.levs =
as.character(levels(dat.train$class)))))

names(dfPred) <- c("truth","ensemble",ens$bestAlg)
dfPred <- as.data.frame(dfPred)
cat("Predictions for the best individual
models for iteration: ",r," of ",reps,"\n ")
print(dfPred)
cat("Completed Replication: ",r," of ",reps,"\n ")

}
# save performance results
saveRDS(Result1,"ensClassifPerf.RDS")
saveRDS(Result2,"indClassifPerf.RDS")
saveRDS(bestAlg,"bestAlg.RDS")
saveRDS(confMat,"confMat.RDS")
warnings()
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