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Preface

The role of microbiome in understanding human health is becoming increas-
ingly evident. Besides medicine, microbiome-based studies revealing new insights
are being conducted in various disciplines including dental research, agriculture,
forestry, and so on. New sequencing technologies are producing large amounts of
data leading to snapshots of microbial compositions in various scientific exper-
iments. It is a non-trivial task to decipher the key microbiome signatures and
reveal how they are influenced by various factors. Statisticians are playing an ever-
increasing role in this important mission as evident from the numerous scientific
publications and research presentations over the last decade. The current book
provides a sample of the major topics in this important area of statistical research.

The idea of producing such a cohesive volume came to us about one and half
years ago. After an initial discussion between the two of us, we approached Springer
editor Laura Briskman, who showed her enthusiastic support toward this project.
Subsequently, we approached a number of leading experts in this field and a great
majority of them agreed to contribute a chapter in our book. We are grateful
to all of them for providing us with high-quality material, and as a result, we
are confident that this edited volume will serve as an important reference in this
field. We ourselves, along with our doctoral students, have contributed a couple
of chapters on topics not covered by others. All chapters have been refereed by a
subject area expert and the two editors of this volume. We have attempted to make
this potpourri of research topics as cohesive as possible and maintained a unified
feel for the overall volume.

This volume should be useful for research statisticians looking to delve into a
new area of methods, as well as applied research. In particular, doctoral students
in statistics, biostatistics, and bioinformatics programs looking for dissertation
research topics might also find this volume an important starting point. Upon our
request, many of our contributors have provided scripts, R codes, and references to R
packages for implementation of the analysis techniques and methods covered in the
book. We hope this will make the book accessible and useful to many consulting bio-
statisticians working in academic and other settings dealing with microbiome data.
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viii Preface

The book contains 13 chapters divided into five parts. Chapters in the first
part discuss the sequencing technologies and bioinformatics pipelines leading to
the microbiome abundance data which can be used for downstream statistical
analysis. The opening chapter by Dorman et al. describes preprocessing techniques
for the 16S rRNA amplicon sequencing technology. It describes the underlying
statistical models behind each technique and concludes their chapter with a data
visualization example. The next chapter by Li and Zheng considers the relatively
newer shotgun sequencing and explains the underlying algorithms in detail for
the popular bioinformatics tool Kraken. It also introduces the concepts of de
Bruijn graph and the process of genome assembly. Overall, the chapter provides
an excellent overview of dealing with shotgun metagenomic data. The following
chapter by Anyaso-Samuel et al. takes a hands-on approach in illustrating various
bioinformatics pipelines for shotgun sequencing by illustrating a metagenomics
dataset using MetaPhlAn2, Kraken2, and Kaiju. In each case , it provides examples
of the processing scripts which certain groups of readers will find very valuable. The
latter part of that chapter illustrates the downstream analysis of building a statistical
classifier with the resulting processed metagenomics data and makes a case for using
an ensemble classifier rather than a single classifier.

The second part consists of two related chapters dealing with relative abundance
data and how to conduct some basic exploratory analysis of the microbial commu-
nities. The chapter by Song and Sun introduces a number of distance/dissimilarity
measures between a pair of microbiome samples. It then explains the technique for
comparing two microbial communities using a phylogenetic tree and also introduces
the concepts of the UniFrac distance and its variants. Overall, the chapter provides a
comprehensive account of various methods for microbial community comparisons.
Plantinga and Wu introduces the concepts of alpha and beta diversity measures and
demonstrate how the later can be used to associate the microbiome signatures with
a phenotype of interest. They describe visualization methods such as the principal
coordinate analysis and a number of ordination plots. They conclude their chapter
with a brief commentary to formal hypothesis testing in this context.

The four chapters of the third part present model-based techniques capable
of handling the high-dimensionality, sparsity, and compositionality inherent in
microbiome data. Martin, Uh, and Houwing-Duistermaat jointly model the rela-
tionships between repeated measurements on covariates and two sets of outcomes,
namely, a continuous variable and the microbiome counts. The approaches rely on
shared Gaussian random effects to model the correlation between the outcomes and
account for overdispersion using a conjugate distribution, while offering insights
into the complex longitudinal relationships of the data. Liu, Goren, Morris, Walker,
and Wang carry out feature identification motivated by three biologically relevant
questions: (1) which microbiome features are impacted by the treatments? (differ-
ential abundance analysis); (2) which features modify or influence the treatment
effect on the outcome of interest? (mediation analysis); and (3) after adjusting for
confounders, which features are potentially causally associated with outcome? The
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next chapter by Wang and Zhao reviews cutting-edge methodologies that tackle the
challenges of widely varying library sizes across microbiome samples drawn from a
fraction of the original ecosystem and sparse abundance counts for a large number of
taxa. The tree-structured phylogeny of the taxa is incorporated into empirical Bayes
estimation of relative abundances, regularization-based subcomposition selection,
and variable fusion in regression models with compositional predictors. The chapter
by Zhao and Satten covers strategies for accounting for the ubiquitous biases in the
relative abundances that are contributed by the various steps of the experimental
and analysis pipeline. The chapter presents a log-linear model for quantifying
bias in model community data and beyond. The model facilitates testing complex
hypotheses through permutation-based F-tests and accommodates designs where the
samples differ in the number of bacteria.

The fourth part has two chapters that focus on Bayesian approaches for micro-
biome data analysis. Koslovsky and Vannucci cover Bayesian models for integrative
analyses combining microbiome data with other available information to iden-
tify significant associations between taxa and a set of predictors. They describe
hierarchical Dirichlet-multinomial (DM) and Dirichlet-tree multinomial (DTM)
regression models with spike-and-slab priors for detecting significant associations.
Strategies for inclusion indicators using DM and incorporating the phylogenetic
structure using DTM models are discussed. The next chapter, by Guha and Datta,
proposes an approximate singular value decomposition of the abundance matrix
to restore, via the Bayesian paradigm, the duality between orthonormal vectors
associated with pairwise distances between the sample units (such as UniFrac)
and orthonormal vectors of the operational taxonomic units (OTUs). The approach
provides inferences beyond point estimates, such as standard errors and credible
intervals, and for arbitrary functionals of interest, such as the contributions of
individual OTUs.

The fifth part consists of special topic chapters. The chapter by Lu and Ishwaran
discusses methods for paired microbiome samples collected from two locations
of the same individual or from two individuals with family ties. Applying ideas
from classification tree splitting, it proposes a novel approach based on the
Gini split-statistic that disentangles different types of associations, such as host
genotype and environmental exposure effects. Following this, Ma, Yue, and Shojaie
review established techniques for inferring microbial interaction networks from
microbial abundance data. Based on both marginal and conditional associations,
the methods are robust to the spurious correlations resulting from compositionality
and seek to discover the true underlying network structure. The chapter presents a
comprehensive empirical evaluation using simulated data sets.

Once again, we are sincerely grateful to the exceptional researchers for their
invaluable contributions. We appreciate their inventiveness, enthusiasm, and hard
work, and their willingness to make the revisions that we suggested. Reading the
authors’ outstanding contributions has greatly enhanced our own understanding of
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microbiome data analysis, and we hope most, if not all, readers will similarly profit
from this book.

Gainesville, FL, USA Somnath Datta

Gainesville, FL, USA Subharup Guha
January 2021
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Part I
Preprocessing and Bioinformatics Pipelines



Denoising Methods for Inferring
Microbiome Community Content and
Abundance

Karin S. Dorman, Xiyu Peng, and Yudi Zhang

1 Introduction

High-throughput sequencing has revolutionized the study of microbial communities.
With up to millions of reads of short DNA sequence fragments per sample,
microbiologists are now able to investigate the composition and dynamics of
complex natural (uncultured) microbial communities to answer questions related to
human health [29, 51, 69, 80] and ecology [5, 13, 54, 82]. The analysis of microbial
communities usually begins with an identification of community members and
their abundance, but the task is challenging because natural community diversity
is obscured by the biases and errors of library preparation and subsequent sequenc-
ing [25, 32, 40]. Chapter 2 will discussed methods related to shotgun metagenomics.
This chapter focuses on methods for amplicon sequencing.

Amplicon, or biomarker, sequencing amplifies and sequences biomarker genes,
like the 16S rRNA gene or the fungal internal transcribed spacer (ITS), to identify
and quantify the organisms in a community. These biomarkers are highly conserved,
slowly evolving genes that persist widely across the tree of life, yet they also contain
hypervariable regions with nucleotide differences that can be used to identify most
genera, many species, and some strains [37, 53] (Fig. 1).

While seemingly an ideal fingerprinting device, the amplicon approach suffers
from several technical difficulties [14, 75]. Some artifacts affect all sequencing-
based metagenomics approaches. For example, there is demonstrated sensitivity
to sample storage or DNA extraction method [18, 50, 71] and a smaller effect of
DNA sequencing platform [59, 79]. However, amplification by polymerase chain
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(a) 16S rRNA secondary structure

V1 V2 V3 V4 V5 V6 V7 V8 V9

8F

27F

337F 533F 785F 928F 1100F

1492R336R 1100R907R805R518R

(b) 16S rRNA hypervariable regions V1–V9

Fig. 1 Escherichia coli 16S rRNA (a) secondary structure and (b) primary structure showing
variable regions V1–V9 and the location of some commonly used universal primers

reaction (PCR) is a major distorting force specific to biomarker sequencing. The
choice of primers strongly affects sample composition [30], missing some species
entirely [26] and distorting abundance estimates of the detectable species [79]. Even
a single nucleotide mismatch to the primers can affect abundance estimates [2],
but there are a myriad of other amplification biases, from polymerase choice,
number of PCR cycles, GC content to secondary structure [31, 77]. Years of
progress have lead to a growing consensus on best amplification practices that
can reduce [30, 52, 86] but not eliminate biases (see Chap. 9). Fortunately, despite
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the biases, biomarker sequencing can provide quantitative information useful for
assessing how communities change in response to experimental and environmental
perturbations [15, 83]. Furthermore, it is hard to beat the price of amplicon
sequencing, especially for complex communities [13].

To extract the necessary quantitative information from an amplicon sequencing
dataset, it is important to identify the true sequences among the errored sequences
produced by amplified PCR errors and the elevated error rates of high-throughput
sequencing. It is also important to reproducibly quantify the abundance of each
true sequence, albeit with biases introduced during library preparation prior to
sequencing. When modern amplicon sequencing first emerged, errors generated
during PCR and sequencing were removed by grouping reads into operational
taxonomic units (OTUs) [12, 74]. OTUs were constructed based on an empirical
sequence similarity threshold, usually 97% [44, 76]. Taxonomic labels could then
be assigned to OTUs and their consensus sequences and read counts passed to
downstream statistical and phylogenetic analyses.

OTU-based methods have fallen out of vogue since it has been recognized
that amplicon sequencing data from current Illumina platforms contain enough
information to support de novo single-nucleotide sequence resolution [9]. Instead of
setting an arbitrary similarity threshold for grouping reads, new methods consider
both sequence similarity and abundance to resolve reads into clusters representing
amplicon sequence variants (ASVs) [1, 9, 23, 27, 33, 61, 78]. These methods have
been called denoisers because they “remove” technical errors in the observed reads.
Their aim is to identify true biological sequences and their surrounding clusters
of errored reads, not the consensus or centroid sequences of arbitrary sequence
groupings. Denoising methods are now the recommended first step in biomarker
gene analysis because of their high resolution, low false positive rate, and cross-
sample consistency [8, 43].

In this chapter, we discuss methods for denoising microbiome amplicon data. We
briefly summarize algorithmic methods that do not formulate explicit probability
models in Sect. 2, but this chapter is primarily focused on probabilistic denoising
approaches for ASV discovery covered in Sect. 3. The algorithmic methods include
OTU-based methods that group reads by pairwise distances and the algorithmic
denoisers that also consider relative abundances. The algorithmic denoisers can be
thought of as approximations to probabilistic denoisers, with error parameters hard-
coded or chosen by the user. In Sect. 4, we address the problem of assessing method
performance, before ending with some brief conclusions in Sect. 5.

2 Common Algorithmic Denoising Strategies

We will start with OTU-based clustering methods, before examining the newer
denoising (ASV-based) methods for identifying real biological sequences. OTU-
based clustering methods can be roughly divided into two categories: reference-
based methods (including both closed and open references) and reference-free (de
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novo) methods. The most well-known OTU-based clustering methods have been
integrated into QIIME/QIIME2 [7, 11] and Mothur [74], two commonly used
software packages for microbiome data analysis.

Reference-based clustering methods cluster reads against a reference
database [57]. Reads sufficiently similar to a reference sequence in the database will
be clustered into the same OTU. If the same database is used, OTU assignments
from closed-reference clustering methods are consistent, thus comparable across
studies. However, they fail to correctly cluster reads if any of the biological source
sequences, or another very similar sequence, is not included in the reference
database, since reads that fail to match any reference sequence are discarded.
Unfortunately, reference databases are far from perfect. They are incomplete [68]
and contain many mislabeled sequences [24, 45]. In order to overcome the
incompleteness of databases, open-reference clustering methods perform de novo
clustering (see below) on sequences that do not map to the reference database [57].
Not surprisingly, all methods that rely on a reference database are sensitive to the
database they use and tend to generate more false positives than reference-free
methods [84].

Most de novo algorithms cluster reads into OTUs based on their pairwise
sequence similarities [57]. Hierarchical, more specifically agglomerative, clustering
is commonly used in de novo algorithms [74]. All hierarchical methods require
pairwise distances between the reads and a definition of inter-cluster distance, either
single-linkage, complete-linkage, or average-linkage clustering. Each linkage type
compares pairs of sequences, one from each cluster, to a user-specified threshold.
Complete-linkage clustering merges two clusters when all pairs of sequences are
closer, single-linkage clustering when there exists a pair of sequences closer, and
average-linkage clustering when average pairwise distances are closer than the
threshold [55]. All methods are greedy, merging the most similar reads or clusters
first.

The disadvantage of agglomerative clustering methods is the need to compute
all pairwise distances between reads. Thus, the computational cost increases
quadratically with the number of unique sequences. To reduce the computational
complexity for large-scale sequencing data, greedy heuristic algorithms are pro-
posed to approximate hierarchical clustering [21]. One popular greedy de novo
clustering strategy is UPARSE [22]. It considers, in order of decreasing abundance,
unique sequences observed among the reads as candidate cluster centroids. Either
the candidate is merged with an existing OTU if the sequence similarity is above the
threshold, or it is designated the centroid of a new OTU. The process continues until
all unique sequences above a minimal abundance threshold have been processed.

The two most popular algorithmic, non-probabilistic denoising methods are
UNOISE2 [23] and Deblur [1]. Normally, Deblur uses a reference database to both
pre-filter reads and post-filter discovered ASVs, but it can also run in reference-
free de novo mode. Both methods consider the relative abundance of sequences,
in addition to their similarity, when deciding to merge clusters. UNOISE2 is very
similar to UPARSE. After sorting all unique sequences, s1, s2, . . ., in order of
decreasing abundance, a1, a2, . . ., UNOISE2 considers what to do with the next
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most abundant sequence sj with abundance aj . Either sj will get assigned to the
closest cluster i with

aj

ai

≤ 1

2αudL(si ,sj )+1
, (1)

where dL(si , sj ) is the Levenshtein distance [56] between unique sequences si and
sj , and ai will be incremented by the count aj , or if there is no such cluster i,
then sequence sj will become the centroid of a new cluster. Formula (1), including
parameter αu, was learned from several mock and real Illumina datasets. Deblur
also considers unique sequences in abundance order but makes decisions based
on estimates of true abundance ait . After aligning all unique sequences si with
abundance ai > 1 using MAFFT [39] and initializing ait = ai , it then processes
all reads in abundance order. For the ith unique sequence, the true abundance
ait ≈ ait

1−αd
, increased by the fraction αd of misreads that contain at least one

error. Then, the abundance of all less abundant unique sequences with j > i is
reduced ajt = ajt−β

[
dH (si , sj )

]
ait by the expected number of misreads from true

sequence si . In these equations, dH (si , sj ) is the Hamming distance [56] between
sequences si and sj and β(d) is an empirically estimated probability that si is
misread as sj , when they have d differences. If ait < 0, si is presumed to be an
error sequence.

The key assumptions underlying the algorithmic denoising methods are that all
true sequences are multiply observed among the reads without errors and most
misreads are sourced from similar, but more abundant sequences in the dataset.
Thus, a unique sequence is more likely to be a true sequence if it is abundant
and distant from other abundant sequences. The two most popular methods also
learn several algorithmic run parameters from real Illumina datasets, so they assume
that these parameters are shared across platforms, labs, and samples. The statistical
methods we consider next build on the logic of the algorithmic denoisers but
incorporate more flexibility in their error models.

3 Model-Based Denoising

There is an error model underlying both popular algorithmic denoisers, UNOISE2
and Deblur, but neither fully formulates it before converting it into a well-tuned
algorithm. We now discuss methods that fully formulate a probabilistic error model.
The methods designed for the Illumina platform (DADA2 and AmpliCI) make use
of quality scores [28], which are discretized probabilities accompanying each read
nucleotide, roughly communicating the probability of a sequencing error at that
position. Because of the massive data and concomitant computational challenges,
each of these approaches ultimately utilizes approximations to estimate parameters
and conduct model selection for the number of true sequences. Even so, these
methods tend to be slower than the algorithmic approaches, especially UNOISE2,
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which is resoundingly memory and time efficient [61]. However, because the model-
based approaches explicitly reveal their assumptions, it is often easier to identify the
weaknesses and speculate on possible future improvements.

3.1 Hierarchical Divisive Clustering

DADA2 [9] proposes a divisive clustering algorithm with a Poisson model to
partition clusters. It first partitions the read data into unique sequences and then
assumes reads matching unique sequence si either are all error-free or all share the
same error(s). Like the algorithmic denoisers, DADA2 sorts all unique sequences,
s1, s2, . . ., by decreasing abundances a1, a2, . . . Initially, DADA2 assumes a single
cluster with true ASV h1 = s1, the most abundant unique sequence. It then
iteratively splits off a new cluster around unique sequence si if its abundance ai

is unusually high given its current cluster. Specifically, if sequence si �= hk is in
cluster k, DADA2 assumes that the number of misreads of hk with sequence si

follows a Poisson distribution,

pPois (a; nkλki) = e−nkλki (nkλki)
a

a! ,

where nk is the number of reads in cluster k and λki is the per-read rate at which
true sequence hk produces sequence si by misread. If errors are independent at sites
in the read, then λki is the product over the l aligned nucleotides,

λki =
l∏

j=1

Pr(sij ;hkj , qij ), (2)

where Pr(sij ;hkj , qij ) is the probability that original nucleotide hkj is read as
nucleotide sij with quality score qij at the aligned position j . The quality score qij

associated with position j of sequence si is an average of the observed quality scores
at position j of all reads matching sequence si . The validity of the null hypothesis
that all reads of sequence si are misreads of true sequence hk is evaluated with the
probability of observing ai or more reads of sequence si given that there was at least
one observation of si , i.e., the p-value,

Pr(a ≥ ai | ai > 0; λki, nk) = 1

1 − pPois(0; nkλki)

∞∑

a=ai

pPois(a; nkλki). (3)

If the p-value falls below a user-settable threshold, a new partition i is formed
with si as its center. DADA2 continues partitioning clusters until there are no more
unusually abundant unique sequences.
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In recent comparisons of the 16S rRNA amplicon denoising pipelines, DADA2
proved to have greater sensitivity, with slightly reduced precision, compared to
Deblur and UNOISE2 [58, 63]. A problem with the DADA2 approach is the
compression of reads into unique sequences, the failure to use original quality
score information, and the treatment of all sequence-matched reads as cohesive
groups. If multiple true sequences produce the same misread sequence, DADA2
may incorrectly detect the misread as unusually abundant since it assumes that
all these misreads arose from the same source sequence. Another problem is that
DADA2 fails to account for biological variants with true insertion or deletion (indel)
differences, so some true indel variants are likely to be missed [33]. Finally, the
Poisson model does not account for the overdispersion of read data, for example,
caused by PCR amplification [6], which results in a higher-than-expected variance
when generating errors [62]. Like UNOISE2 and Deblur, which openly discuss
the issue [1] (and see the Discussion section in [61]), DADA2 compensates for
unmodeled errors (PCR and contamination) by using a very conservative criterion
(10−40) on the p-values (3) when partitioning clusters. Of course, some true
sequences near other abundant true sequences are likely to remain undetected with
such conservative decisions.

3.2 Finite Mixture Model

AmpliconNoise [65] (or PyroNoise [64]) was the first finite mixture model proposed
for correcting sequencing errors. They modeled 454 pyrosequencing, a high-
throughput technology that detects nucleotides as they are incorporated during
complementary DNA strand synthesis from a sampled template strand. The 454
technology has since been discontinued, but we briefly discuss the statistical method
for its historical significance.

Pyrosequencing raw data are flowgrams, which for each cycle of T, A, C, and
G through the instrument, record the fluorescent intensity when complementary
nucleotides are incorporated in the DNA synthesis reaction (Fig. 2). The intensity
fluctuates around discrete intensity values, increasing from lower levels when no
nucleotides are incorporated, i.e., when the cycle nucleotide is not complementary
to the template nucleotide, to higher levels when one nucleotide is incorporated, to
even higher levels when the cycle nucleotide is complementary to a homopolymer
run. The model assumes that flowgrams are independently generated from a mixture
model with K components, and the likelihood of dataset F of n flowgrams is

L(θ | F) =
n∏

i=1

K∑

k=1

πkJ(f i;hk), (4)

where πk is the relative abundance of the kth component and J(f i;hk) is the
joint density of observed flowgram f i given true sequence hk . The flowgrams are
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Fig. 2 454 pyrosequencing flowgram

assumed to be generated as exponentially decaying functions of their distance to the
perfect noise-free flowgram uk of sequence hk ,

J(f i;hk) = exp(−d(f i ,uk)/σ )

σ
, (5)

where the distance

d(f i ,uk) = 1

M

M∑

j=1

{− log f
(
fij ; ukj

)}
, (6)

for f (fij ; ukj ), the density of signal fij from homopolymer ukj at cycle j of M

cycles (the number of homopolymers in sequence uk).
An expectation–maximization (EM) algorithm is developed to maximize (4) and

infer the true sequences, h1, h2, . . ., hK , and their relative frequencies, π1, π2,
. . ., πK . To initialize the EM algorithm, a complete-linkage hierarchical clustering
method with a given distance cutoff is performed to form an initial partition. The
results of AmpliconNoise may depend on the quality of its initialization [65], since
the EM algorithm finds a local optimum.

AmpliCI [61] formulates a finite mixture model for denoising Illumina amplicon
sequencing data. Instead of flowgrams, AmpliCI clusters reads with observed
quality scores. It assumes that reads are independently generated from a K-
component mixture distribution, where the kth component generates the reads and
misreads of true ASV sequence hk . Like DADA2, AmpliCI takes into account
quality scores, but unlike DADA2, it does not average them across reads with the
same sequence. The likelihood function of the read set R = {r1, r2, . . . , rn} is

L(θ | R) =
n∏

i=1

K∑

k=1

πk Pr(r i;hk, q i ), (7)
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where πk is the relative abundance of the kth true sequence and qi are the quality
scores for the ith read. Assuming errors are independent across sites, the conditional
probability of read r i given the true ASV hk is

Pr(r i;hk, q i ) = Pr(di;hk)

lk∏

j=1

Pr(rij ;hkj , qij ),

where Pr(di;hk) is the probability of di observed indel events in the ith read and
Pr(rij ;hkj , qij ) is the substitution probability for generating read nucleotide rij
from true nucleotide hkj at the j th aligned read nucleotide (1 if there is a deletion) to
the lk positions in the kth true ASV hk . Given indel errors are rare in Illumina data,
the model assumes that di is approximately modeled as a truncated Poisson with
mean lkδ, where δ is the (known) indel error rate. The substitution probabilities are
parameterized using LOESS regression, a model borrowed from DADA2, and they
are fit alternating with ASV selection until the estimates stabilize. Then, the fitted
error profile is used to restart the algorithm and select ASVs until no more qualified
candidates remain.

AmpliCI formalizes the approximations of Deblur to estimate the true abun-
dances into a novel greedy algorithm to rapidly select sequences and approximately
maximize the mixture model (7). To avoid false positives, the method insures that
the model fit has improved with every added sequence by computing an approximate
Bayesian information criterion (BIC). It screens for possible contaminants by
computing a diagnostic probability, similar to DADA2’s p-value. It overcomes
DADA2’s loss of quality score information, but like DADA2, it does not consider
the overdispersion of count data, makes conservative decisions to overcome error
model misspecification, and overestimates the error rates.

3.3 Denoising Long-Read Technology

The denoising methods we have described are designed for Illumina amplicon data
and will not work for long-read technologies [67]. The existing methods are not
applicable because indels are common and read lengths are highly variable in the
newer technology, both issues assumed to be negligible for Illumina read data.
In fact, sequencing error rates are very high in long-read technologies. Oxford
Nanopore Technology has a 5–25% error rate [85], and Pacific Bioscience has a 13%
error rate [3]. Current denoising methods for long reads [10, 46] are mainly designed
for circular consensus sequences (CCS), where a DNA molecule is circularized
and read multiple times before reporting a consensus sequence [34]. The CCS
approach can dramatically reduce error rates, making them comparable to those of
short-read technology [34] and producing ∼50% error-free full-length 16S reads
in Pacbio CCS data [10]. However, for longer targeted gene sequences, mean
error rates exceed 2% due to insufficient coverage, producing far less error-free
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reads [38]. With higher error rates, abundance-based denoising methods lose power
to detect low abundance variants. Recently, unique molecular identifiers [42] have
been applied to long reads [38], providing new opportunities to correct errors in
noncircular long reads. Since long reads increase the resolution of biomarker studies
and bypass the need for, and consequent bias of, PCR amplification, it is likely that
there will be continued development in denoising methods for long reads.

4 Model Assessment

When there are competing methods and models, it is important to be able to make
fair, accurate, and extensive comparison of the approaches. Comparing denoisers
has proven to be particularly difficult. Most denoisers are an integral part of a
complete amplicon processing pipeline that includes read filtering and trimming,
denoising, chimera detection, and other post-processing [63], so it is difficult to
isolate the effect of the denoiser [61]. Worse yet, simulation is not yet capable of
replicating the vagaries of real data [61], and though there has been heavy use of
mock datasets [9, 19, 30, 48, 58, 60, 77], the truth is not always clear for mock
communities, as we shall see below.

4.1 With Known Truth

Both simulated and mock datasets are used for benchmarking with a known
truth. Mock datasets are datasets generated from real samples of known microbial
communities, for which reference sequences are provided. Mock data reflect true
error properties of PCR and sequencing much better than simulated data. Since the
true classification of reads is not available for mock datasets, algorithms are often
only evaluated for their ability to recover true sequences in the reference set, but the
reference set may not be correct. Contamination is common in amplicon sequencing,
especially when amplifying from low template concentrations [41, 72, 87]. Further-
more, it is entirely plausible, especially at greater sequencing depths, that additional
sequence variants will be discovered that are missing from the reference list.

4.1.1 Accuracy in ASV Identification

The ability to accurately identify the number and identity of ASVs is key to the
taxonomic profiling of microbial communities. To assess the ability of methods
to recover ASVs, recall (proportion of recovered ASVs among true ASVs) and
precision (proportion of true ASVs among predicted ASVs) are commonly used for
evaluation. All denoising methods have user-controlled run parameters that affect
the precision–recall trade-off.
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(d) After relabeling

Fig. 3 Precision–recall (PR) curves for (a) a simulated dataset and (b)–(d) a mock community.
In (b), the p-value for DADA2 and the diagnostic probability for AmpliCI are varied. In (c) and
(d), the default output of DADA2 and AmpliCI is post-processed and thresholded on abundance.
In (d), one likely false positive observed more than 2500 times is relabeled as a true positive.
“Abundance” is the baseline method, where sequences are selected as ASVs in order of decreasing
abundance. Results under the default parameter settings for each method are shown in (a)–(d) as
“*”; The abundance method has no “*” since there is no universal recommendation for setting the
abundance threshold

Precision–recall (PR) curves built for simulated or mock communities can help
illustrate the effect of such run parameters. One naive and commonly used run
parameter is a threshold on ASV (cluster) abundance: the more times a sequence
is observed among the reads, the more likely it is a true ASV. Most algorithms
do not consider singletons as valid clusters, but many recommend much higher
thresholds. For example, UNOISE3 currently recommends a minimum abundance
of eight [20]. DADA2 and AmpliCI recommend setting a low abundance threshold
and instead imposing a threshold on the p-value (DADA2) and the diagnostic
probability (AmpliCI), generically probability, for screening new ASVs. We run
DADA2 v1.16.0 with different p-value thresholds, AmpliCI v1.0 with different
diagnostic probability thresholds, and UNOISE3 v11.0 with different abundance
thresholds on two datasets. We first examine an unbalanced simulated dataset of
3000 reads from 12 ASVs with two to five nucleotide differences and one 4-
nucleotide (nt) deletion. Regardless of threshold, DADA2 always misses the indel
ASV and UNOISE3 always misses two additional ASVs in the simulated dataset,
and both DADA2 and UNOISE3 miss additional ASVs at their default settings
(Fig. 3a). We also examine the PR curve for the Extreme mock dataset [9], which



14 K. S. Dorman et al.

is extremely unbalanced, with observed abundance (the number of error-free reads)
ranging from just 2 to 275,000. The PR curves show that the probabilistic models
can eke out higher recall with a cost in precision and that both DADA2 and AmpliCI
default parameter settings are not optimally tuned for these examples (Fig. 3b).

For these examples, thresholding on probability fails to resolve the upper left
portion of the PR curve for DADA2 and AmpliCI because these probabilities round
to 0 for the high abundance true positives revealed by this portion of the curve.
Figure 3c and d examines the PR curves when DADA2 and AmpliCI ASVs are post
hoc thresholded on observed sequence abundance. The curves are inferior in the
lower right, compared to thresholding on probabilities, but they now extend all the
way to perfect precision, where UNOISE3 continues to dominate the probabilistic
methods. One of the false positives is a high abundance sequence that is observed
2500 times among the reads. It involves a single A to G transition relative to one of
the reference sequences published with the Extreme mock dataset, and it is identical
to a sequence in the NCBI nucleotide database. If we relabel this ASV as a true
positive, the curves in Fig. 3d result, where AmpliCI dominates the other methods
throughout the upper left portion of the PR curve.

In summary, the probabilistic methods DADA2 and especially AmpliCI, tend to
do well in simulation [61], but the picture is far less clear when analyzing mock
datasets, where there remains uncertainty about which discovered sequences are
actual true positives. Confirmed by others for DADA2 [58, 63], the probabilistic
methods are able to eke out a bit more sensitivity in some areas of the PR curve,
which is exactly what they are designed to do. However, their use of misspecified
and poorly estimated error models [61] forces them to use overestimated error rates,
which while helping them avoid excess false positives severely limits their ability to
further improve the precision–recall trade-off. They are also limited by their failure
to acknowledge stochasticity or bias in PCR [6]. Error sequences that are randomly
or deterministically, by PCR bias, over-amplified will exceed a threshold placed on
the probability, while true sequences that are under-amplified will be eliminated by
the threshold. It is clear that further improvement will only come when the problem
of errors that leave no trace in the quality scores, i.e., PCR errors, PCR bias, and
contamination, is tackled.

4.1.2 Accuracy in Read Assignments

If true clustering labels are provided, for example, in simulated datasets, several
metrics for assessing clustering methods can be applied to assess the performance
of denoising algorithms on read assignments.

The adjusted Rand index (ARI) [35] is the adjusted-for-chance version of the
Rand index (RI) [66] for comparing the predicted clustering with the true clustering.
Let X = {Xi} be a partition (an exhaustive collection of nonoverlapping subsets)
induced by the solution of a clustering algorithm and Y = {Yj } the partition induced
by the true clustering labels of the same set of n objects. The size of the overlap
between set Xi and set Yj is nij = |Xi ∩ Yj |, and the ARI is defined as
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The ARI achieves a maximum score of 1 when the predicted clustering is perfectly
aligned with the true clustering, while a random clustering is expected to have an
ARI equal to 0.

The V-measure [70] is an entropy-based method for evaluating clustering
performance. It has two components, completeness c and homogeneity h, defined
as

c = 1 − H(X | Y )/H(X), (9)

h = 1 − H(Y | X)/H(Y ), (10)

where H(·) and H(· | ·) denote the entropy and conditional entropy functions.
Specifically, H(Y | X) and H(Y) are defined as

H(Y | X) = −
|X|∑

i=1

|Y |∑

j=1

nij

N
log

nij
∑|Y |

i=1 ni

,

H(Y ) = −
|Y |∑

j=1

∑|X|
i=1 nij

N
log

∑|X|
i=1 nij

N
.

Homogeneity achieves its maximum value if all clusters contain only observations
belonging to a single true class. Completeness achieves its maximum value if all the
observations of a given true class are assigned to the same cluster; assigning all data
points to one cluster is one way to achieve perfect completeness. The V-measure is
defined as the harmonic mean of homogeneity and completeness,

V = 2hc

h + c
, (11)

similar to the way precision and recall are combined into the F -score for the binary
classification problem. We illustrate the usage of the ARI and V-measure for method
comparison in Sect. 4.2.1.

4.2 With Unknown Truth

Assessing performance on real datasets is always challenging, since there are no
labels, but plenty of noise (chimeras and contaminants). In order to assess clustering
performance, some methods may create a “true” clustering solution based on super-
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vised classification, aligning reads to known reference databases [9, 23, 58, 61].
However, as discussed previously, the current 16S rRNA gene databases are far from
perfect, having been built from previous OTU-based analyses [24, 84]. The provided
“truth” will ignore any biological variants that are not already in the reference
databases, and previously deposited error sequences will validate the same errors
in the real dataset. Since Illumina sequencing errors do display patterns [73], it is
likely that reference-based truths will propagate existing errors without providing
good metrics for performance evaluations. Below we propose several strategies that
could be used for evaluation of denoisers when the truth is not known.

4.2.1 Assessment with UMIs

Some amplicon datasets provide technical “sequence” labels, which enable higher
resolution to detect rare variants. These labels are short random sequences, called
unique molecular identifiers (UMIs) [42] or primer IDs [36], attached to sample
sequences before PCR amplification. UMIs offer an opportunity to evaluate a pro-
posed clustering since reads with the same UMI should be in the same cluster except
when there is UMI reuse. Treating UMIs as true class labels, the completeness of
the V-measure is a useful criterion for evaluation, since it only penalizes splitting
of UMIs across clusters but does not penalize multiple UMIs in the same cluster,
which are expected for highly abundant ASVs. Ideally, if there are no errors in the
UMIs and no chimeras generated during PCR, the completeness should achieve the
value one.

We compare DADA2 and AmpliCI denoising methods on a dataset
(SRR2241783) of HIV env amplicon sequences with UMIs. UNOISE3 is not
compared, since final reads are not assigned under its denoising model. DADA2
identifies 88 clusters and AmpliCI identifies 45 clusters. The completeness of
DADA2 is 0.75, lower than 0.80, the completeness of AmpliCI. The overall
V-measure for DADA2 (0.49) is slightly higher than AmpliCI (0.48), since the
homogeneity for the DADA2 solution is higher (0.36 vs 0.34). DADA2 also has
slightly higher ARI (0.0334 vs 0.0326). AmpliCI may be underestimating the
number of clusters in this dataset, but DADA2 is more likely to split reads with the
same UMI into different clusters.

4.2.2 Clustering Stability

One gains confidence in a clustering solution if it is stable to minor perturbations of
the data. Very generally, stability can be measured by perturbing the data, with boot-
strap or added noise, clustering the perturbed data, computing the pairwise distance
between the original clusters and the new perturbed clusters, and normalizing the
distances to get a measure of stability. Normalization is most commonly an average
of the pairwise distances, but there are other methods [4, 16, 47].
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Recently, the authors in [49] proposed a tightness measure (valued between 0
and 1) to reflect the stability of each cluster and an average tightness for measuring
the overall stability of a partition. The key idea behind this stability measure is
to determine a covering point set (CPS) for each cluster. There is a “match”
relationship between cluster C

(1)
i and C

(2)
j from two partitions P(1) and P(2), if

roughly speaking, the two clusters are the same despite possibly distinct labels.
Suppose for a cluster Sk in the reference partition of the original data, there is a
set of matched clusters Si, i = 1, . . . , m, from partitions of perturbed datasets. The
CPS Sα of cluster Sk at a coverage level α is defined as the smallest set such that at
least 100(1 − α)% of the Si clusters are subsets of Sα . In other words, the goal is to
solve the optimization problem

Sα = arg min
S

|S|, s.t.
m∑

i=1

1(Si⊂S) ≥ m(1 − α).

The tightness of cluster Sk is defined as

Rt (k | Sα) =
∑m

i=1|Si |/|Sα|
M

,

where M is the total number of partitions and |·| denotes the cardinality of a set.
Higher tightness values indicate higher stability.

We illustrate stability and tightness of two clusters found by the denoising
algorithms DADA2 [9] (version 1.16.0) and AmpliCI [61] on the previously
mentioned HIV data using the R package OTclust [49]. We randomly select 5%
of the reads in the original data and mutate 5% of the sites with probability 1

3 to one
of the other nucleotides to generate five perturbed datasets. The average stability is
0.86 for DADA2 and 0.81 for AmpliCI. The lower stability of AmpliCI is caused
by some 0 tightness clusters. Among the 32 clusters centered on the same ASVs
recovered by both methods, about 60% of AmpliCI clusters have higher stability
than the corresponding DADA2 clusters. Figure 4 shows the 90% CPS plot of
two clusters from AmpliCI and DADA2 with matching ASVs and Fig. 5 shows the
membership heat map of the same two clusters. Clusters with high stability should
contain only and all high frequency points. The membership heat map and CPS
plot together help us visualize the stability and uncertainty of a predicted cluster.
Comparing cluster 1 for both methods, AmpliCI includes more distant members in
the CPS, but DADA2 sometimes excludes core members of this cluster and includes,
with high confidence by the membership heat map (Fig. 5), a small cluster, shown
at the bottom right and far away from the main cluster. Based on the membership
heat map of cluster 1, DADA2 is less stable than AmpliCI since some reads are
not consistently included in cluster 1. In contrast, for the small cluster (cluster 39
of DADA2 and 28 of AmpliCI), DADA2 is more stable. Interestingly, t-SNE [81],
which was used for the visualization, seems to suggest that cluster 1 includes some
nearby satellite clusters. These satellite clusters may be amplified PCR errors or
more troubling, true biological variants not included in the reference.
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Fig. 4 t-SNE [81] visualization of Covering Point Sets (CPS) for HIV data. The 90% CPS plot of
two clusters obtained from AmpliCI and DADA2 around identical ASVs. Red indicates a point,
representing a read, is inside the CPS of the cluster
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5 Conclusions

The processing of amplicon sequence data from microbiome communities has
greatly improved after a decade of progress. Technical improvements have reduced
the many sources of bias, while statistical and bioinformatics techniques have
improved the data processing. Modern denoising methods can now detect single-
nucleotide variants in a mixed sample without relying on a reference database.

However, there remain persistent challenges facing both the technical aspects
of data generation and the statistical data analysis. One challenge for denoisers
is their current inability to detect PCR errors and amplification bias as well as
other contamination products. These reads are high quality and look, in many ways,
just like natural biological variation. It is disconcerting that among the three main
denoising methods, DADA2, Deblur, and UNOISE3, and our own contribution
AmpliCI, there is extensive disagreement except on the cleanest datasets. This
disagreement strongly suggests that our understanding of noise in amplicon data
is incomplete. Tools have been developed to remove PCR errors through a second
round of sequence clustering [65] and contaminants via a post hoc statistical
test [17]. One difficulty in assessing the methods is the lack of realistic amplicon
read simulators or mock data without ambiguity. We believe that it will take clever
protocols and supplemental information, such as that provided by unique molecular
identifies (UMIs) or spike-in controls [87], to accurately compare the methods and
point to potential improvements.

It is possible that shotgun sequencing methods or unamplified long-read tech-
nology will completely supplant amplicon-based methods because they avoid
amplification bias, PCR errors, and amplification-induced contamination, but other
biases, contaminants, and sequencing errors will persist and new challenges will
emerge. There is much opportunity for development of methods in the emerging
technologies and still improvements needed for amplicon sequencing. Certainly, the
identification and quantification of microbiome communities will continue well into
the future.
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der, D., Krznarić, Ž., Verbanac, D.: Methodology challenges in studying human gut microbiota
– effects of collection, storage, DNA extraction and next generation sequencing technologies.
Scientific Reports 8(1), 5143 (2018). https://doi.org/10.1038/s41598-018-23296-4

60. Parada, A.E., Needham, D.M., Fuhrman, J.A.: Every base matters: assessing small subunit
rRNA primers for marine microbiomes with mock communities, time series and global field
samples. Environmental Microbiology 18(5), 1403–1414 (2016). https://doi.org/10.1111/
1462-2920.13023

61. Peng, X., Dorman, K.: AmpliCI: A high-resolution model-based approach for denoising Illu-
mina amplicon data. Bioinformatics (btaa648) (2020). https://doi.org/10.1093/bioinformatics/
btaa648

62. Posada-Cespedes, S., Seifert, D., Beerenwinkel, N.: Recent advances in inferring viral diversity
from high-throughput sequencing data. Virus Research 239, 17–32 (2017). https://doi.org/10.
1016/j.virusres.2016.09.016

63. Prodan, A., Tremaroli, V., Brolin, H., Zwinderman, A.H., Nieuwdorp, M., Levin, E.: Compar-
ing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLOS ONE 15(1),
e0227434 (2020). https://doi.org/10.1371/journal.pone.0227434

64. Quince, C., Lanzén, A., Curtis, T.P., Davenport, R.J., Hall, N., Head, I.M., Read, L.F., Sloan,
W.T.: Accurate determination of microbial diversity from 454 pyrosequencing data. Nature
Methods 6(9), 639–641 (2009). https://doi.org/10.1038/nmeth.1361

65. Quince, C., Lanzén, A., Davenport, R.J., Turnbaugh, P.J.: Removing noise from pyrosequenced
amplicons. BMC Bioinformatics 12(1), 38 (2011). https://doi.org/10.1186/1471-2105-12-38

66. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc.
66(336), 846–850 (1971). https://doi.org/10.1080/01621459.1971.10482356

67. Rhoads, A., Au, K.F.: PacBio sequencing and its applications. Genomics Proteomics
Bioinformatics 13(5), 278–289 (2015). https://doi.org/10.1016/j.gpb.2015.08.002

https://doi.org/10.1111/j.1574-6941.2011.01140.x
https://doi.org/10.1002/dmrr.2834
https://doi.org/10.3390/microorganisms8010131
https://doi.org/10.3390/microorganisms8010131
https://doi.org/10.1016/j.mimet.2006.05.009
https://doi.org/10.1016/j.mimet.2006.05.009
https://doi.org/10.1111/1574-6941.12198
https://doi.org/10.1093/comjnl/26.4.354
https://doi.org/10.1145/375360.375365
https://doi.org/10.1016/B978-0-12-407863-5.00019-8
https://doi.org/10.7717/peerj.5364
https://doi.org/10.1038/s41598-018-23296-4
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.1093/bioinformatics/btaa648
https://doi.org/10.1093/bioinformatics/btaa648
https://doi.org/10.1016/j.virusres.2016.09.016
https://doi.org/10.1016/j.virusres.2016.09.016
https://doi.org/10.1371/journal.pone.0227434
https://doi.org/10.1038/nmeth.1361
https://doi.org/10.1186/1471-2105-12-38
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1016/j.gpb.2015.08.002


24 K. S. Dorman et al.

68. Ritari, J., Salojärvi, J., Lahti, L., de Vos, W.M.: Improved taxonomic assignment of human
intestinal 16S rRNA sequences by a dedicated reference database. BMC Genomics 16(1),
1–10 (2015). https://doi.org/10.1186/s12864-015-2265-y

69. Rogers, G.B.: The human microbiome: opportunities and challenges for clinical care. Intern.
Med. J. 45(9), 889–898 (2015). https://doi.org/10.1111/imj.12650

70. Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external cluster
evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pp. 410–420. Association for Computational Linguistics, Prague, Czech Republic
(2007)

71. Salonen, A., Nikkilá, J., Jalanka-Tuovinen, J., Immonen, O., Rajiliç-Stojanoviç, M., Kekkonen,
R.A., Palva, A., de Vos, W.M.: Comparative analysis of fecal DNA extraction methods with
phylogenetic microarray: Effective recovery of bacterial and archaeal DNA using mechanical
cell lysis. J. Microbiol. Methods 81(2), 127–134 (2010). https://doi.org/10.1016/j.mimet.2010.
02.007

72. Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt, M.F., Turner, P.,
Parkhill, J., Loman, N.J., Walker, A.W.: Reagent and laboratory contamination can critically
impact sequence-based microbiome analyses. BMC Biology 12(1), 87 (2014). https://doi.org/
10.1186/s12915-014-0087-z

73. Schirmer, M., D’Amore, R., Ijaz, U.Z., Hall, N., Quince, C.: Illumina error profiles: resolving
fine-scale variation in metagenomic sequencing data. BMC Bioinformatics 17(1), 125 (2016).
https://doi.org/10.1186/s12859-016-0976-y

74. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski,
R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G.,
Van Horn, D.J., Weber, C.F.: Introducing Mothur: Open-source, platform-independent,
community-supported software for describing and comparing microbial communities. Appl.
Environ. Microbiol. 75(23), 7537–7541 (2009). https://doi.org/10.1128/AEM.01541-09

75. Sinha, R., Abu-Ali, G., Vogtmann, E., Fodor, A.A., Ren, B., Amir, A., Schwager, E., Crabtree,
J., Ma, S., Abnet, C.C., Knight, R., White, O., Huttenhower, C., The Microbiome Quality Con-
trol Project Consortium: Assessment of variation in microbial community amplicon sequencing
by the Microbiome Quality Control (MBQC) project consortium. Nature Biotechnology
35(11), 1077–1086 (2017). https://doi.org/10.1038/nbt.3981

76. Stackebrandt, E., Goebel, B.M.: Taxonomic note: A place for DNA-DNA reassociation and
16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst.
Evol. Microbiol. 44(4), 846–849 (1994). https://doi.org/10.1099/00207713-44-4-846

77. Sze, M.A., Schloss, P.D.: The impact of DNA polymerase and number of rounds of amplifica-
tion in PCR on 16S rRNA gene sequence data. mSphere 4(3), e00163–19 (2019). https://doi.
org/10.1128/mSphere.00163-19

78. Tikhonov, M., Leach, R.W., Wingreen, N.S.: Interpreting 16S metagenomic data without
clustering to achieve sub-OTU resolution. ISME J. 9(1), 68–80 (2015). https://doi.org/10.
1038/ismej.2014.117

79. Tremblay, J., Singh, K., Fern, A., Kirton, E.S., He, S., Woyke, T., Lee, J., Chen, F., Dangl, J.L.,
Tringe, S.G.: Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 6,
771 (2015). https://doi.org/10.3389/fmicb.2015.00771

80. Tremlett, H., Bauer, K.C., Appel-Cresswell, S., Finlay, B.B., Waubant, E.: The gut microbiome
in human neurological disease: A review. Ann. Neurol. 81(3), 369–382 (2017). https://doi.org/
10.1002/ana.24901

81. van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-SNE. J. Mach.
Learn. Res. 9(86), 2579–2605 (2008)

82. Vos, M., Wolf, A.B., Jennings, S.J., Kowalchuk, G.A.: Micro-scale determinants of bacterial
diversity in soil. FEMS Microbiol. Rev. 37(6), 936–954 (2013). https://doi.org/10.1111/1574-
6976.12023

https://doi.org/10.1186/s12864-015-2265-y
https://doi.org/10.1111/imj.12650
https://doi.org/10.1016/j.mimet.2010.02.007
https://doi.org/10.1016/j.mimet.2010.02.007
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1186/s12859-016-0976-y
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1038/nbt.3981
https://doi.org/10.1099/00207713-44-4-846
https://doi.org/10.1128/mSphere.00163-19
https://doi.org/10.1128/mSphere.00163-19
https://doi.org/10.1038/ismej.2014.117
https://doi.org/10.1038/ismej.2014.117
https://doi.org/10.3389/fmicb.2015.00771
https://doi.org/10.1002/ana.24901
https://doi.org/10.1002/ana.24901
https://doi.org/10.1111/1574-6976.12023
https://doi.org/10.1111/1574-6976.12023


Denoising Methods for Inferring Microbiome Community Content and Abundance 25

83. Wen, C., Wu, L., Qin, Y., Van Nostrand, J.D., Ning, D., Sun, B., Xue, K., Liu, F., Deng, Y.,
Liang, Y., Zhou, J.: Evaluation of the reproducibility of amplicon sequencing with Illumina
MiSeq platform. PLOS ONE 12(4), e0176716 (2017). https://doi.org/10.1371/journal.pone.
0176716

84. Westcott, S.L., Schloss, P.D.: De novo clustering methods outperform reference-based methods
for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ 3, e1487 (2015).
https://doi.org/10.7717/peerj.1487

85. Wick, R.R., Judd, L.M., Holt, K.E.: Deepbinner: Demultiplexing barcoded Oxford Nanopore
reads with deep convolutional neural networks. PLOS Comput. Biol. 14(11), 1–11 (2018).
https://doi.org/10.1371/journal.pcbi.1006583

86. Yang, B., Wang, Y., Qian, P.Y.: Sensitivity and correlation of hypervariable regions in 16S
rRNA genes in phylogenetic analysis. BMC Bioinformatics 17(1), 135 (2016). https://doi.org/
10.1186/s12859-016-0992-y

87. Zinter, M.S., Mayday, M.Y., Ryckman, K.K., Jelliffe-Pawlowski, L.L., DeRisi, J.L.: Towards
precision quantification of contamination in metagenomic sequencing experiments. Micro-
biome 7(1), 62 (2019). https://doi.org/10.1186/s40168-019-0678-6

https://doi.org/10.1371/journal.pone.0176716
https://doi.org/10.1371/journal.pone.0176716
https://doi.org/10.7717/peerj.1487
https://doi.org/10.1371/journal.pcbi.1006583
https://doi.org/10.1186/s12859-016-0992-y
https://doi.org/10.1186/s12859-016-0992-y
https://doi.org/10.1186/s40168-019-0678-6


Statistical and Computational Methods
for Analysis of Shotgun Metagenomics
Sequencing Data

Hongzhe Li and Haotian Zheng

1 Introduction

Microbiome consists of all the microorganisms in and on human body. These
microbes play important roles in human health and disease. High-throughput
shotgun metagenomic sequencing approaches enable genomic analyses of all
microbes in a sample, not just those that are amenable to cultivation. In a typical
metagenomic sequencing study, an average of 10 million reads are often obtained
for a given sample. Such shotgun sequencing reads can be used to profile taxonomic
composition and functional potential of microbial communities and to recover
whole-genome sequences. Due to complexity and large volume of the data, analysis
of shotgun sequencing reads data is more challenging than the marker-gene-based
sequencing such as 16S rRNA sequencing in microbiome studies (Quince et al.
[28]).

Metagenomic sequencing has wide applications in many areas of biomedical
research, including microbiome and disease association studies, diagnosis and
treatment of infection diseases, and studies of human host gene expressions and
antimicrobial resistance. Depending on the studies and goals, different important
microbial features can be derived from shotgun metagenomic data. For example, in
disease association studies, useful features can be species abundance, metagenome
single-nucleotide polymorphisms (SNPs), metagenome structural variants, and
bacterial growth rates. In studies that integrate microbiome and host metabolome,
useful features can be collection of all the biosynthetic gene clusters (BGCs).
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In infectious disease and antimicrobial resistance research, one is interested in
identifying new bacterial species or strains that lead to the infectious disease.

The main computational problems in analysis of such shotgun short read data
include: (1) binning problem that assigns taxonomic labels to these short DNA
reads using sequencing alignment or machine learning methods; (2) quantifying the
relative abundances of species, genes, or pathways; (3) metagenomic sequencing
assemblies to discover new species; (4) strain-level analysis; and (5) estimation
of metabolomic potentials. These computational problems are big data problems
that involve merging hundreds of millions of shot sequencing reads with close
to 282,580 complete genome sequences of prokaryotes (https://www.ncbi.nlm.nih.
gov/genome/browse#!/prokaryotes/). Breitwieser et al. [3] reviewed the methods
and databases for metagenomic classification and assembly. Most of the efficient
computational tools and software packages have been developed by computational
biologists and computer scientists. In this chapter, we summarize and review some
of the most commonly used algorithms in the field of microbiome and metagenomic
data analysis, focusing on the statistical and computational aspects of the methods,
and also point out possible improvements and areas that require further research.

2 Methods for Species Identification and Quantification of
Microorganisms

One basic feature of a microbial community is the relative abundance of different
species in the community. Given short reads data from shotgun metagenomic
sequencing, the first step of analysis is to identify and quantify the relative
abundances of all the species in the study samples. This can be achieved by aligning
the sequencing reads to the reference genomes. Many computational methods have
been developed for taxonomic classification and quantification, see Ye et al. [34] for
a benchmarking comparison of various methods in terms of accuracy and computing
resources needed. One challenge is how to assign the ambiguous reads that originate
from genomic locations shared among multiple groups of organisms.

There are two general approaches to tackle this challenge. The first approach
is the marker-gene-based methods where marker genes with sequences that are
unique to a clade are identified and reads are only aligned to these marker genes.
This method represents taxonomic clades uniquely by sequences that do not share
common regions with other clades of the same taxonomic rank. The marker genes
can be clade-specific as used in MetaPhlAn2 (Truong et al. [31]) or universal
marker genes as used in mOTU (Sunagawa et al. [30]). By aligning reads only
to these clade-specific marker genes, the problem of aligning ambiguous reads is
solved. MetaPhlAn2 pipeline has been used in the Human Microbiome Project and
the Integrative Human Microbiome Project and is very widely used. MetaPhlAn2
outputs the taxonomic relative abundance estimation at various taxonomic levels.

https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/
https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/
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The second approach is based on using the full set of reference sequences
available as a database and assigning ambiguous reads to their least common
ancestor (LCA) in a taxonomic tree. Kraken (Wood and Salzberg [33]), a k-mer-
based read binning method, is an example of such an approach. Kraken uses a
database comprising a hash table of k-mers (k is about 31 and should be large) and
their corresponding node in a given taxonomic tree. Then, it assigns reads based on
where the majority of its k-mers are located in the tree. Whenever no clear vote by
the k-mers of the read exists, Kraken assigns that read to its least common ancestor.
See Fig. 1 for an illustration of the steps of Kraken. Kraken is a very fast read binning
method, which is also often used for taxonomic profiling. After reads are assigned to
the taxonomic tree, further processing is needed to estimate the relative abundance
of the species in order to account for the uncertainty of the reads that are assigned to
the LCA nodes. Bracken (Lu et al. [20]) addresses this problem by probabilistically
re-assigning reads from intermediate taxonomic nodes to the species level or above.

The output from Kraken is read count at each node of the taxonomic tree, similar
to read placement for 16s rRNA sequencing reads. One can apply the methods that
take into account the taxonomic tree structure in microbiome data analysis. Wang,
Cai and Li [32] presented a method that is based on flow on the tree, which can be
extended for the data from Kraken.

It should be emphasized that shotgun metagenomic sequencing data only pro-
vides information on the relative abundance of the species in the community. Such
data are compositional and require special care in their analysis (see Li [19] for a
review of methods for analysis of microbiome compositional data).

3

6

1 4

0

1

R T L 1 : A B D s c o re = 1 0
R T L 2 : A B E s c o re = 1 3
R T L 3 : A C F s c o re = 4

Classify the sequence to E, the
leaf most leaf of RTL 2

A

B

D E

C

F

Genome Sequence

k-mers. . .

Fig. 1 Illustration of the Kraken algorithm for binning reads to taxon nodes on a taxonomic tree
based on k-mer matching (modified from Figure 1 of Wood and Salzberg [33]) The number in
each taxon node is the number of k-mers in the sequence that is associated with that taxon.
The associated k-mers with each taxon node are marked with the corresponding color. The read
sequence is assigned to the left-most leaf on the root-to-leaf (RTL) path with the greatest score,
which is defined as the sum of the numbers in the nodes of the RTL path. The resulting tree can be
used for taxonomic composition analysis and downstream statistical analysis
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3 Metagenome Assembly and Applications

Besides quantifying the relative abundance of known bacterial species, new compu-
tational methods have also been developed for metagenome assemblies. The first
step of metagenome assembly is to construct longer contiguous sequence based
on the overlap of reads, a contig. These contigs are then clustered into bins based
on their similarities. The algorithm outputs a large set of metagenome-assembled
genomes (MAGs) (see Fig. 2 for an illustration), which are subject to downstream
data analysis.

One important computational tool in genome assembly is to store the reads into
the de Bruijn graph and to find Eulerian walks in the graph. Due to the large
read counts for metagenomic data, metagenome assembly is time- and memory
consuming. de Bruijn graph and Eulerian walks are powerful tools in computational
genome sequence data analysis, but they are less known among statisticians. We
briefly review the key concept in this section and point to the statistical questions.

3.1 de Bruijn Assembly of a Single Genome

de Bruijn graph, which is used widely in genome assembly, is a concept originated
from graph theory. An n-dimensional de Bruijn graph of m symbols is basically
a directed graph representing overlaps between sequences of symbols. It has mn

vertices, consisting of all possible length-n sequences of the given symbols. If one
of the vertices can be expressed as another vertex by shifting all its symbols by
one place to the left and adding a new symbol at the end of this vertex, then the
latter has a directed edge to the former vertex. In genome assembly, it is explicit to
create an assembly graph to illustrate the connecting relationships between reads
or contigs. Oftentimes in an assembly graph, nodes represent DNA sequences
(unitigs/contigs), while edges represent overlaps between those sequences. An
assembly graph represents fundamental uncertainty in possible paths to go through
the sequences.

Sequencing Assembly Binning

Genomes Short reads Contigs Recovery

Fig. 2 Illustration of metagenome assembly to metagenome-assembled genomes (MAGs) that
include a set of contigs. MAGHIT and MetaBAT2 are two most commonly used packages for
assembly and for binning, respectively
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de Bruijn graph can be used to construct an assembly graph based on the data
of sequencing reads. The key point is to connect two substrings (represented by
vertices) in a de Bruijn graph only if there is a read showing one substring can
be transformed by shifting all its symbols by one place to the left and adding a new
symbol at the end of this substring to another through that read. For instance, if there
is a read whose sequence is GCCCA, as well as two substrings GCCC and CCCA,
we can add an edge from the vertex representing GCCC to the vertex of CCCA.
However, if there is not a read containing GCCCT as a part of it, even if there could
be a vertex representing the substring CCCT, we should not add an edge from GCCC
to CCCT in the de Bruijn graph. To make a de Bruijn graph consistent inside, we
will need reads of length L, and they should overlap by L-1 bases. However, in
most of the real cases, neither all reads overlap with each other perfectly, nor all
reads have the same length. To resolve those problems, all k-length subsequences of
the reads, i.e., the k-mers, are often used in genome assembly.

To construct a de Bruijn graph, we start from dividing each read into several
k-mers with a pre-specified k. We traverse all of the k-mers of a given read and
form the left k − 1-mer (a substring with length k − 1) and the right k − 1-mer of
each k-mer. We include all the possible k − 1-mers as vertex in the prospective de
Bruijn graph and draw a directed edge from each left k −1-mer to its corresponding
right k − 1-mer. If the left and right k − 1-mers are the same in a k-mer, we will
draw an edge to itself. In the illustrative example in Fig. 3, we have three reads,
CCCATGTAAG, CCATCTAAGC, and GCCCATCTA. We set k = 5 and find all of
the 5-mers of the reads. In the first read CCCATGTAAG, all the 5-mers are CCCAT,
CCATG, CATGT, ATGTA, TGTAA, and GTAAG. We then get the left and right
4-mers of each 5-mer and draw edges between them. There are edges from CCCA
to CCAT, CCAT to CATG, CATG to ATGT, ATGT to TGTA, TGTA to GTAA, and
GTAA to TAAG. We then construct a de Bruijn graph with all of the 4-mers of the
3 reads as vertices, which are shown in part (i) of Fig. 3, and draw an edge between
two 4-mers if they together form a 5-mer of the reads. The constructed de Bruijn
graph with the 3 reads above is shown in part (ii), where each vertex is a 4-mer, and
the number in the vertex shows how many times that 4-mer appeared in all of the
3 reads. The letter on each edge indicated how a left 4-mer is transformed into its
corresponding right 4-mer that is connected by that edge.

The next step in genome assembly is to find the origin genome sequence in the
de Bruijn graph by looking for an Eulerian walk. If we manage to find an Eulerian
walk in the de Bruijn graph, we then find the original genome sequence. After we
build the de Bruijn graph as in Fig. 3, we next find a walk through it as a contig. In
our example, one digit replacement, such as the C replaced by G in read 1, causes a
branch of length 4 in the de Bruijn graph. In our example, we cannot find an Eulerian
walk that visits each vertex exactly once, so we have to abandon a branch to get a
walk through the graph. Here, we abandon the branch with lower frequency, which
is defined as the sum of the numbers in the vertices on that branch, and choose the
walk or branch with the highest frequency, shown in part (iii) of Fig. 3.
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(i) Make k-mers
Read 1: CCCATGTAAG Read 2: CCATCTAAGC Read 3: GCCCATCTA
k-mers: CCCA CCAT GCCC

CCAT CATC CCCA
CATG ATCT CCAT
ATGT TCTA CATC
TGTA CTAA ATCT
GTAA TAAG TCTA
TAAG AAGC

(ii) Build a De Bruijn Graph

(iii) Walk through the graph and find contigs
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Fig. 3 An illustration of de Bruijn graph for genome assembly of three sequencing reads by using
4-mers, where nodes represent different k-mers and the numbers in the node indicate the number
of the corresponding k-mer observed in the data. The Eulerian walk in the de Bruijn graph recovers
the original genome sequence

3.2 Modification for Metagenome and Metagenome-Assembled
Genomes

Various modifications of the methods for single-genome assembly have been made
particularly for metagenome assembly to overcome the challenges of unknown
abundance and diversity of the microbial community and related species in the
metagenomes. Metagenome assembly graphs are frequently large, with millions of
nodes, and require 10s to 100s of gigabytes of RAM for storage. Ayling et al. [2]
present a review of various methods for metagenome assembly with short reads.
Among various methods, MEGAHIT (Li et al. [18]) is most widely used method for
contig construction. R package bgtools provides an interactive visualization tool for
metagenomic bins, which is very useful for statisticians to explore the data (Seah
and Gruber-Vodicka [29]).

MetaBAT2 (Kang et al. [15]) is most widely used computational package for
binning the contigs. It performs pairwise comparisons of contigs by calculating
probabilistic distances based on tetranucleotide frequency and then uses a k-medoid
clustering algorithm to bin contigs to genomes.

Alternative to MetaBAT2, CONCOCT (Alneberg et al. [1]) is a binning method
based on k-mer frequencies of the contigs. For metagenomics data, a co-assembly
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of reads from all samples is first performed to obtain the set of contigs, which can
be further filtered by length, and only contigs greater than a minimum size are used.
For samples j = 1, 2, . . . , M , and contigs i = 1, 2, . . . , N , a coverage number Yij

is defined as the average number of reads that are mapped to contig i per base from
sample j . For each contig, we get a vector of coverage Yi = (Yi,1, . . . , Yi,M) over
M samples. In addition, a composition number is defined as the frequency for each
k-mer and its reverse complement in that contig. For a fixed length k, the dimension
of composition would be V = f (k), which is the total number of possible k-mers,
where reverse complements are considered as one possible k-mer. So for each contig
i, we have its composition vector Zi = (Zi,1, . . . , Zi,V ), where Zi,v is the count of
k-mer v that appeared in contig i. After adding pseudo-counts to remove zero in the
input, together with normalization and logarithm transformation, a profile for contig
i of dimension E = M + V + 1 is formed, where 1 comes from the total coverage
for a contig in all the samples. CONCOCT performs a dimension reduction using
principal-component analysis (PCA) and then clusters the contigs into bins using a
Gaussian mixture model with a variational Bayesian approximation.

Using MEGAHIT and MetaBAT2, Pasolli et al. [27] leveraged 9,428
metagenomes to reconstruct 154,723 microbial genomes (45% of high quality)
spanning body sites, ages, countries, and lifestyles. They recapitulated 4,930
species-level genome bins (SGBs), 77% without genomes in public repositories
(unknown SGBs [uSGBs]). As microbial genomes are available at an ever-
increasing pace, as cultivation and sequencing become cheaper, obtaining
metagenome-assembled genomes (MAGs) becomes more effective. These unknown
SGBs are expected to explain additional variability of the phenotypes of interest.
Zhu et al. [35] showed that these reads from unknown organisms significantly
increase the prediction accuracy of the disease status.

3.3 Compacted de Bruijn Graph

Shotgun metagenomic data also provide information on strain-level variation or
metagenome structural variation. For strain-level analysis of metagenomes, com-
pacted de Bruijn graph provides an efficient way of describing the data, where long
simple paths of a de Bruijn graph are compacted into single vertices in order to
reduce computational burden of the vast amount of k-mers. Here, the simple path
to be compacted is also known as a unitig, which is defined as a path with all but
the first vertex having in-degree 1, and all but the last vertex having out-degree 1.
Here, the in-degree of a vertex is the number of edges pointing to that vertex in
the de Bruijn graph, and the out-degree of a vertex is the number of edges pointing
from that vertex. The graph after compaction is called a compact de Bruijn graph
(cDBG). In a cDBG, one vertex may represent more than one k-mer, in contrast with
one vertex representing one k-mer in a de Bruijn graph.

To illustrate the ideas, Fig. 4a shows a de Bruijn graph. In the path
GGCC→GCCC→CCCA, all vertices except for the first one, GGCC, have in-
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Fig. 4 Illustration of the compact de Bruijn graph (b) derived from the k-mer-based de Bruijn
graph (a). For the de Bruijn graph, the nodes are k-mers, and for the compact de Bruijn graph, the
nodes are contigs

degree equal to 1 (the in-degree of GGCC is 2), and all vertices except for the
last one, CCCA, have out-degree 1. Therefore, the path GGCC→GCCC→CCCA
is a “simple path” and can be compacted to GGCCCA. Similarly, in the paths
CCAG→CAGG→AGGC, CATC→ATCT→TCTA→CTAA, and CATG→ATGT
→TGTA→GTAA, all of their vertices have both in-degree and out-degree equal
to 1, so they are simple paths and can be compacted to CCAGGC, CATCTAA,
and CATGTAA, respectively. After we compacted all of the simple paths in the
de Bruijn graph, we obtain the compact de Bruijn graph that is shown in Figure
compact (b), where each vertex represents a unitig instead of one k-mer.

Chikhi et al. [6] developed an efficient algorithm BCALM2 to construct the
cDBG. There are three main steps to get a compact de Bruijn graph from a set of k-
mers its correspondingly formed de Bruijn graph operated from metagenome reads.
The first step is to distribute the k-mers into buckets based on their “minimizers”
(defined in Chikhi et al. [6]), with some k-mers being thrown into two buckets.
Next, each bucket is compacted separately. Finally, the k-mers that were thrown
into two buckets are glued back together so that duplicates are removed.

Using the compacted de Bruijn graph, Brown et al. [5] developed an efficient
graph algorithm for investigating graph neighborhoods of a very large metagenome
assembly de Bruijn graph. They developed and implemented a scalable graph query
framework for extracting unbinned sequence from metagenome assembly graphs
with millions of nodes by exploiting the structural sparsity of compact de Bruijn
assembly graphs. These unbinned sequences can be further analyzed to discover new
strains and new hidden sequence diversity. One application is to identify the genome
neighborhood for a known bacterial genome. The reads from this neighborhood can
be assembled and compared with the known genome to identify the strain variability
of the known bacterium.
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4 Estimation of Growth Rates for Metagenome-Assembled
Genomes (MAGs)

The previous section reviews methods for metagenome assembly. In order to make
the metagenomic data comparable across different samples, metagenome assembly
has to be performed jointly over the combined reads of all the samples. After we
obtain the contigs and bins, we usually align the metagenomic reads to each of
the contigs to obtain the read coverage for each of the contigs and each of the
samples. With appropriate normalization and correcting for possible GC bias, one
can quantify the bacterial abundance based on these read coverage data.

Besides the relative abundance information, the uneven read coverage data can
be used for estimating the bacterial growth dynamics or replication rates (Korem
et al. [16]; Brown et al. [4]; Gao and Li [12]). Such bacterial replication rates
provide important insights into the contribution of individual microbiome members
to community functions. In a microbiome community, dividing cells are expected
to contain, on average, more than one copy of their genome. Since the growing
bacterial cells are unsynchronized and contain genomes that are replicated to
different extents, we expect to observe a gradual reduction in the average genome
copy number from the origin to the terminus of replication (Korem et al. [16]; Brown
et al. [4]). This decrease in genome copy number can be detected by measuring
changes in DNA sequencing coverage across complete genomes. Figure 5 illustrates
this key idea. For the actively dividing bacteria, due to the bidirectional DNA
replication from the replication starting sites, the read coverage is expected to
decrease along the genome and the rate of decrease can be used to quantify the
bacterial replication rate. Korem et al. [16] define the peak-to-trough ratio to
quantify the bacterial replication rate for those bacteria with complete genome
sequences available.

For MAGs, since we do not know the order of the contigs along the true genome,
to estimate the replication rates, one has to first estimate the order of these contigs.
Motivated by a simple linear growth model of DNAs, Gao and Li [12] proposed to
apply PCA with contigs as observations to estimate the order, which has been shown
to be very effective. Consider the following permuted monotone matrix model:

Y = 	π + Z, (1)

Fig. 5 Illustration of bacterial replication rate estimation. Bacterial circular genome (a), bidirec-
tional replication (b), and peak-to-trough ratio of uneven read coverage (c)
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where the observed data Y ∈ Rn×p is the matrix of the preprocessed contig
coverage for a given bacterial species. Specifically, the entry Yij represents the
log-transformed averaged read counts of the j -th contig of the bacterial species
for the i-th sample after the pre-processing steps, including genome assemblies,
GC adjustment of read counts, and outlier filtering. In practice, the data set is
usually high-dimensional in the sense that the number of contigs p far exceeds the
sample size n. The signal matrix 	 ∈ Rn×p represents the true log-transformed
coverage matrix of n samples and p contigs, where each row is monotone due to
the bidirectional DNA replication mechanism. Under the permuted linear growth
model, we assume that model (1) holds over the restricted set

D0 =
{
(	, π) ∈ D× Sp :

θij = aiηj + bi, where ai, bi ∈ R for 1 ≤ i ≤ n,

ηj ≤ ηj+1 for 1 ≤ j ≤ p − 1 and
∑p

j=1 ηj = 0.

}
.

In other words, each row of 	 has a linear growth pattern with possibly different
intercepts and slopes. Under this model, the true coverage matrix is rank-1. We
consider the row-normalized observation matrix X = Y (Ip − 1

p
ee�) and its first

right singular vector, i.e.,

v̂ = (̂v1, . . . , v̂p)� = arg max
v∈Rp :‖v‖2=1

v�X�Xv.

Ma, Cai and Li [21] showed that the order statistics {̂v(1), . . . , v̂(p)} can be used to
optimally recover the permutation π , or the original column orders, by tracing back
the permutation map between the elements of v̂ and their order statistics.

As an example, Fig. 6a shows the read coverage for one MAG over its contigs
for three gut microbiome samples with Crohn’s disease from the study of Lewis et
al. [17]. We cannot see any patterns of the data. However, after sorting the contigs
based on the PCA, we observe a clear monotone pattern of the read coverage (see
Fig. 6b). Based on this sorted contig coverage, Gao and Li [12] developed DEMIC
to estimate the bacterial replication rates for the MAGs. Ma, Cai and Li [21] further
showed that the PCA-based estimate of the ordered contigs achieves the minimax
rate under certain conditions.

5 Methods for Identifying Biosynthetic Gene Clusters

The next phase of human microbiome research is moving from taxonomic and
gene content profiling to functional microbiome by identifying, characterizing, and
quantifying microbiome-derived small molecules that are responsible for a specific
phenotype. Thousands of functionally interesting small molecules coded by various
genes of microbiota have been discovered, including many antibiotics, toxins,
pigments, immunosuppressants (Donia and Fischbach [9]). These small molecules
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Fig. 6 Illustration of read coverage for an assembled genome for three gut samples of patients
with Crohn’s disease, where each dot represents a contig for the assembled genome. Y-axis: log
of normalized read coverages. PCA is used to order the contigs based on the coverage over the
samples. (a) Log read coverage for 3 children with Crohn’s disease before contig ordering. (b) Log
read coverage for 3 children with Crohn’s disease after contig ordering

represent a major source of important nature products. Due to the wide range of
bioactivities and pharmacological properties, identification of these natural products
from microorganisms is an important problem in microbiome research.

The small molecules produced by bacteria are coded by biosynthetic gene clus-
ters (BGCs) discovered along the bacterial genomes. These genes encode enzyme
complexes or proteins participating in a common pathway that are continuously
clustered in a chromosome region (see Fig. 7a). The BGCs are often collinearly
arranged according to their biochemical reaction order (Cimermancic et al. [7]).
The chemical and biological mechanisms of known BGCs such as non-ribosomal
peptide synthetase (NRPS) and polyketide synthase (PKS) indicate that these multi-
domain enzyme complexes are coordinated between the BGC genes. The end
products of BGC pathways are bioactive small chemicals or nature products that
are diverse in both structures and functions.

The Minimum Information about a Biosynthetic Gene Cluster (MIBiG) database
(https://mibig.secondarymetabolites.org) includes an updated list of verified BGCs
identified in various microorganisms and provides an important resource for BGC
research (Medema et al. [24]). As an example, Fig. 7a shows the structure of BGC
BGC0000007: aflatoxin biosynthetic gene cluster from Aspergillus flavus, which
includes genes and their functions. New GBCs and their biosynthetic classes have
been discovered and deposited into the database based on various experimental
methods.

https://mibig.secondarymetabolites.org
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Fig. 7 (a) Illustration of BGC BGC0000007: aflatoxin biosynthetic gene cluster from Aspergillus
flavus. https://mibig.secondarymetabolites.org/repository/BGC0000007/index.html#r1c1. (b) A
BGC presented as a sequence of protein family (Pfam) domains (modified based on (Hannigan
et al. [13]))

The BGCs listed under MIBiG are used in various computational methods for
identifying new BGCs and predicting their classes, among which ClusterFinder and
DeepBGC are the two state-of-the-art methods. Both ClusterFinder and DeepBGC
are developed for identifying the BGCs in the bacteria with known complete
genome sequences. ClusterFinder and DeepBGC use the Pfam domain sequential
order information in BGC and non-BGC sequences in making the predictions.
Specifically, raw genomic sequences are used for gene/ORF prediction using tools
like Prodigal (Hyatt et al. [14]), and the Pfam domains are assigned to each ORF
using hmmscan (Eddy [10]). Each BGC is then represented as a sequence of Pfam
domains (see Fig. 7b for an illustration).

5.1 A Hidden Markov Model-Based Approach

Cimermancic et al. [7] developed a HMM probabilistic model (ClusterFinder),
which provided a general solution for BGC identification for both well-studied
and novel BGC classes. Using known gene annotations and predicted open reading
frames (ORFs), ClusterFinder models the data at the protein family domain levels
(Pfam) (Fig. 7b) and implements a standard two-stage HMM for estimating the pos-
terior probability of being a BGC for each Pfam domain along the genome, where

https://mibig.secondarymetabolites.org/repository/BGC0000007/index.html#r1c1
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the emission probabilities are simply the probabilities of observing a particular Pfam
domain in BGCs and in non-BGC background. These probabilities are pre-estimated
using the training data. HMM then estimates the posterior probability of being in
BGC for each of the Pfam domain. The posterior probabilities are further processed
to identify the BGCs.

Using ClusterFinder, they performed a systematic screening of BGCs in over
1000 bacterial genomes throughout the prokaryotic tree of life and revealed a
striking finding of the predominance of Saccharides, a BGC class that has been
overlooked in previous research. Compared to the traditional lab-based methods for
BGC identification, their work shed light on the possibility of discovering unknown
BGCs using computational methods, even for the less studied BGC classes.

5.2 A Deep Learning Approach

Following a similar setting as ClusterFinder, DeepBGC is the first attempt to
employ nature language processing (NLP) and deep learning (DL) strategy for
improved BGC identification (Hannigan et al. [13]), where the Pfam sequences of
known BGCs and non-BGC are treated as labeled text data, with the Pfam names
serving as words of the texts. As commonly used in DL and NLP, Word2Vec is
used to learn word (Pfam domain names) embeddings with shallow two-layer neural
network and outputs a set of numerical vectors. Word2Vec groups the vectors of
similar Pfams together in vector space, where it detects similarities mathematically.
Word2Vec creates vectors that are numerical representations of word features such
as the context of individual Pfam. ClusterFinder then applies the bidirectional long
short-term memory (BiLSTM) deep learning model to build predictive model for
BGC vs. non-BGC. They showed DeepBGC outperformed ClusterFinder in both
AUC and precision recall in detecting the BGCs on the same validation set. Unlike
ClusterFinder, DeepBGC uses the Pfam domain sequential order information in
BGC and non-BGC sequences in making the predictions. Specifically, each Pfam
name is numerically coded using Pfam2vec trained using the Pfam names. The
BiLSTM outputs classification score for each domain, and the domain scores
are summarized across genes, which are selected accordingly as the BGCs. They
showed improved performance of DeepBGC over the ClusterFinder.

5.3 BGC Identification Based on Metagenomic Data

Since both ClusterFinder and DeepBGC have limited their predictions of the BGCs
in the bacteria with known complete genome sequences, with new metagenomic
data being generated in very large scale, a logical next step is to identify possible
new BGCs based on shotgun metagenomic data. Research in this direction is very
limited.
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One straightforward approach is to first perform metagenome assembly using
the methods introduced in Sect. 3.2 and then apply methods such as ClusterFinder
or DeepBGS to the genome assemblies. This approach was recently explored by
Cuadrat et al. [8] to recover BGCs using metagenomic data sampled from Lake
Stechlin. One limitation with this assembly-based method is that some BGCs
might be scattered through multiple contigs, which make the direct application of
DeepBGC or ClusterFinder infeasible, especially in the post-processing steps when
the Pfam-specific predictions are combined into BGCs. Since the contigs in shotgun
metagenomics are often short, the existing tools may fail to predict a large fraction
of long BGCs.

Meleshko et al. [25] developed biosyntheticSPAdes, a tool for predicting BGCs
in assembly graphs. This algorithm does not assume that each BGC is encoded
within a single contig in the genome assembly, a condition that is violated for
most sequenced microbial genomes where BGCs are often scattered through
several contigs, making it difficult to reconstruct them. biosyntheticSPAdes involves
identifying the Pfam domain edges in the assembly graph using HMMER (Eddy
[11]), extracting BGC subgraphs, and restoring collapsed domain in the assembly
graphs. This is another interesting application of the de Bruijn graph.

6 Future Directions

Shotgun metagenomics have an increasingly important part to play in diverse
biomedical applications. We have reviewed some statistical and computational
methods for analyzing the shotgun metagenomic data in microbiome studies,
focusing more on the computational tools. We feel that it is important to understand
how the raw sequencing reads data are processed to summarize the metagenomic
data into biologically relevant features in order to understand the uncertainty and
possible bias of such estimates. By using statistical inference ideas, we can improve
some existing methods. For example, DEMIC (Gao and Li [12]) improves iRep
(Brown et al. [4]) in estimating the bacterial replication rates by using the data across
all samples in order to determine the contig order along the genome. Ma, Cai and
Li [21] developed a permuted monotone matrix model and provided a theoretical
justification of using the first right singular vector in ordering the contigs. They
further showed that such a procedure is minimax rate optimal.

Although the methods we reviewed were largely developed by computational
biologists or computer scientists, we think that statisticians should be more involved
in these initial data processing steps as measurement determines downstream data
analysis. When processing the raw sequencing data, we should be aware of the
experimental bias, measurement errors, and possible batch effects. As an example,
McLaren, Willis and Callahan [23] observed that the measured relative abundances
within an experiment are biased by unknown but constant multiplicative factors.
When bias acts consistently in this manner, it can be accounted for through the use
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of bias-insensitive analyses such as ratio-based methods or corrected by a calibration
procedure.

We can also make larger impact to metagenomic data analysis by further
improving some of the methods based on either the intermediate or the final outputs
from these efficient computational methods. For example, after we have the read
placements on the taxonomic tree using Kraken, we may develop better statistical
methods for quantifying the species abundance or identifying the bacterial taxa that
are associated with outcomes. After we summarize the metagenomic data as k-mer
counts using algorithm such as JELLYFISH (Marcais and Kingsfors [22]), we can
develop methods to analyze such very large and potentially sparse count tables. Such
alignment-free methods have recently been explored by Zhu et al. [35], who showed
improvements in predicting diseases using the unaligned reads. Menegaux and Vert
[26] proposed to bin together k-mers that appear together in the sequencing reads
by learning a vector embedded for the vertices of a compacted de Bruijn graph,
allowing us to embed any DNA sequence in a low-dimensional vector space where
a machine learning system can be trained.

One challenge in analyzing metagenomic data is the volume of the data that
requires large storage and computing power. Although great efforts have been
devoted to improve the computation efficiency, for a typical metagenomic study
of hundreds of subjects, it takes days to process the data using either Kraken or
genome assembly. It is also very time-consuming to obtain the intermediate data
such as counts of all 31-mers in a metagenomic sample used in Kraken algorithm
or to construct the de Bruijn graph for shotgun data. Another challenge faced by
statisticians is how to effectively access and utilize the data in the public domains,
for example, all the BGCs and related information in the BGC repository (https://
mibig.secondarymetabolites.org/repository) and the complete genome sequences of
all the bacterial genomes.
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Bioinformatics Pre-Processing
of Microbiome Data with An Application
to Metagenomic Forensics

Samuel Anyaso-Samuel, Archie Sachdeva, Subharup Guha,
and Somnath Datta

1 Introduction

Samples for environmental microbiome analysis are collected from a variety of
surfaces and environments such as plants, soil, ocean, public transit systems,
public benches, stairwell handrails, elevators, and urban environments. Analysis
that focuses on human microbiome relies on samples from different body sites such
as skin, gut, tongue, buccal mucosa, stool, etc. Metagenomic experiments aim to
describe microbial communities from these samples using high-throughput DNA
sequencing, also known as next-generation sequencing (NGS) technologies. This
has further helped scientists around the world to peek into a plethora of diversity
of microbes in our environment. The data from these sequencing technologies
pose various statistical and computational problems. Also, the sheer magnitude and
special data characteristics make metagenomic data analysis a challenging task.

Metagenomic analysis has diverse applications and has led to foundational
knowledge on various aspects of human lives. The composition of the human
gut microbiome is associated with the physiological and psychological aspects
of human health [28, 33, 61, 66, 67]. Metagenomic analysis has a wide-scale
application in designing healthy urban environments [47] and discovering novel
anti-resistant microbial strains [58]. Metagenomic analysis of microbial commu-
nities also provides a significant source of information in forensic science. One of
the many questions in forensic studies that metagenomic analysis can answer is
predicting the source origin of the metagenomic sample [10, 11, 15]. In this chapter,
we discuss various classification methods that can be applied to achieve this goal.
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Human Microbiome Project (HMP) [65] and Earth Microbiome Project (EMP)
[26] are some of the large-scale initiatives that have offered a comprehensive
database for microbiome research. The MetaSUB Consortium comprised of an
international group of scientists is involved in the collection and sequencing of
samples from numerous cities in different countries to understand the microbial
signature across and within the public spaces of cities around the world. These
large-scale data are published by the Critical Assessment of Massive Data Analysis
(CAMDA) in the public domain to find innovative solutions to the pressing
questions in modern life sciences. We use the data from CAMDA 2020 Geolocation
Challenge and demonstrate a step-by-step approach for metagenomic data analysis.
The analysis is divided into two parts, namely, upstream and downstream analysis.
In the upstream analysis, we discuss the process of converting raw data of sequenced
reads into an n × p data matrix ready for statistical analysis. This process involves
quality control, taxonomic assignment, and estimation of taxonomic abundance of
the sequenced reads from different samples. In the downstream analysis, we apply
various classification methods and compare their performance for the prediction
of the geographical location of microbial samples. Several supervised learning
classifiers, such as Support Vector Machines (SVMs), Extreme Gradient Boosting
(XGB), Random Forest (RF), and neural networks, can be applied to predict the
geolocation of the metagenomic samples. Along with these classifiers, we describe
the construction and implementation of an optimal ensemble classification algo-
rithm proposed by Datta et al. [18], which combines several candidate classification
algorithms and adaptively produces results that are better or as good as the best
classifier included in the ensemble.

2 Bioinformatics Pipeline

2.1 Microbiome Data

Microbiome samples are sequenced using next-generation sequencing technologies.
The two most widely used sequencing techniques are metataxonomics that use
amplicon sequencing of the 16S rRNA marker genes and metagenomics that use
random shotgun sequencing of DNA or RNA [8, 45]. Until recently, most studies
sequenced the 16S ribosomal RNA gene that is present in bacterial species or
focused on characterizing the microbial communities at higher taxonomic levels.
Following the drop in the cost of sequencing, metagenomics studies have increas-
ingly used shotgun sequencing that surveys the whole genome of all the organisms
including viruses, bacteria, and fungi present in the sample [57].

Metagenomic samples in our case study were sequenced using Illumina HiSeq
next-generation shotgun sequencing technology, and the raw data for each sample
was obtained in the form of paired-end .fastq files with forward and reverse
reads. Fastq files contain both nucleotide sequences and their corresponding quality

http://metasub.org/
http://camda2020.bioinf.jku.at/doku.php/contest_dataset#metagenomic_geolocation_challenge
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Fig. 1 Schematic representation of the bioinformatics pipeline for metagenomic analysis

scores, known as Phred scores. These scores are used in the quality assessment
of these sequencing reads. For the upstream analysis, we started with assessing
the quality of the paired-end WGS (whole-genome sequencing) reads followed by
their taxonomic classification. Please note the taxonomic classification should not
be confused with the city-specific classification that we perform in the downstream
analysis. Taxonomic classification refers to mapping the raw sequenced reads of a
sample to an existing database of known genomic sequences to produce taxonomic
abundance profiles for each sample. Figure 1 shows the schematic representation of
the bioinformatics pipeline constructed for the analysis of the metagenomic data.
The components of this pipeline are described in detail in the following sections.
Table 1 provides information on the data set being analyzed in this chapter. The data
set comprised 1065 samples collected from 23 cities around the world.

2.2 Quality Control

Raw NGS reads contain different types of contamination such as low-quality reads,
adapter sequences, and host reads. It has been noticed that low-quality sequences
can result in misleading inference from the downstream analysis [14, 71]. Hence,
it is important to assess the quality of raw sequencing reads before moving ahead
with the downstream analysis. If the metagenomic samples are contaminated due to
the presence of host (human) sequences, it is necessary to identify and filter out the
host reads.

There are a variety of computational tools that can be used for quality control
for removing the contaminants and low-quality reads, such as FastQC [2], Cutadapt
[46], Trimmomatic [4], and BBTools. The quality of reads from a sample can
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Table 1 Frequency of samples from the 23 cities considered in this chapter. The samples were
sampled from two collections (CSD16 & CSD17) and obtained by the MetaSUB consortium. The
average number of reads was obtained after performing quality control and pre-processing

Location code Location Country # Samples Avg. # of reads

ARN Stockholm Sweden 50 1,621,983

BCN Barcelona Spain 38 2,763,249

BER Berlin Germany 41 6,095,554

DEN Denver USA 45 2,293,732

DOH Doha Qatar 65 2,400,540

FAI Fairbanks USA 48 6,860,242

HKG Hong Kong China 49 3,066,755

ICN Seoul South Korea 50 3,053,297

IEV Kiev Ukraine 49 2,179,260

ILR Ilorin Nigeria 97 10,660,493

KUL Kuala Lumpur Malaysia 30 2,310,143

LCY London England 37 2,477,320

LIS Lisbon Portugal 19 2,864,004

NYC New York City USA 99 3,170,947

OFF Offa Nigeria 26 22,772,079

SAO Sao Paulo Brazil 29 1,989,278

SCL Santiago Chile 26 10,399,795

SDJ Sendai Japan 32 1,571,323

SFO San Francisco USA 29 1,471,680

SGP Singapore Singapore 48 2,761,780

TPE Taipei China 50 2,755,260

TYO Tokyo Japan 75 1,996,146

ZRH Zurich Switzerland 33 2,827,183

be assessed by using the diagnostics report generated by FastQC [2], and these
quality assessment reports can be further aggregated into a single report using
MultiQC [21] for multiple samples. Figure 2 shows the quality score plots from
MultiQC for three arbitrarily selected cities from three continents in our study. The
x-axis shows the positions of the bases, and the y-axis represents the Phred score.
The Phred score (= −10 log10 P ) is an integer value representing the estimated
probability P of error for identifying the bases generated by DNA sequencing
technology. A Phred score of 40 of a base implies that the chance of this base
being called incorrectly is 1 in 10,000 [22]. We employed KneadData (version
0.7.4) [49] for quality control analysis. KneadData invokes Trimmomatic [4] for
quality trimming, filtering, and removal of adapter sequences. It further calls
Bowtie2 [38], which maps the sample reads to a reference human genome database.
We discard reads that map to the human genome database. The code snippets
below demonstrate how we assessed quality using FASTQC and performed quality
control using KneadData. In the pre-QC step, we analyze whether it is necessary
to improve the quality of reads. Notice that some of the reads in the second
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Fig. 2 Aggregated quality score plots from MultiQC for Stockholm, Tokyo, and New York City.
The top panel shows the plots for the raw WGS data (pre-QC), while the bottom panel shows the
plots for the pre-processed (post-QC) data

and third columns of Fig. 2 have poor-quality scores (below 30). Hence, we
choose to trim or drop poor-quality reads. Based on the pre-QC assessment,
one can define various rules to improve the quality of the reads to be used for
subsequent analysis. For example, in the quality control code, the parameter
ILLUMINACLIP:NexteraPE-PE.fa:2:30:10:8:keepBothReads
SLIDINGWINDOW:4:30 MINLEN:60 prompts Trimmomatic to remove
adapters, defines a sliding window that cuts a read once the mean quality in a
window of size 4 falls below a Phred score of 30, and retains sequences with a
minimum length of 60. This procedure results in sequencing reads with reasonably
good quality. We assessed the quality of the reads after quality control using
MultiQC and noticed an obvious improvement in the quality of the reads when
compared to the raw reads. The upper panel of Fig. 2 shows the reports from
pre-QC analysis, and the lower panel of Fig. 2 shows the plots from the post-QC
analysis. The code below can be used as a basic guideline for performing the
bioinformatic pre-processing of raw sequenced reads. We encourage readers to
make appropriate modifications to the parameters of the bioinformatics tools to suit
the goal of their analysis. These tools are also constantly undergoing development.
Consequently, it is recommended that the researcher works with the most recent
versions of software and databases used for sequence mapping.

Pre-QC analysis

# make a folder to store FastQC output
$ mkdir output_folder
# Peform quality control checks on the samples using FastQC
$ module load fastqc/0.11.7
$ fastqc -t 30 *.fastq.gz -o output_folder/

# Aggregate the results of fastqc quality control checks using MultiQC
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$ cd ~/output_folder
$ module load multiqc/1.7
$ multiqc *_fastqc.zip

Quality Control

$ module load kneaddata/0.7.4
$ module load bowtie2/2.3.5.1
$ mkdir KneadData_output_folder
##############################################################################
# Download Trimmomatic and adapter sequence files
$ curl -LO http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/
Trimmomatic-0.36.zip

$ unzip Trimmomatic-0.36.zip
##############################################################################
# Download the Homo_Sapiens database
$ mkdir DB_folder
$ cd ~/DB_folder
$ kneaddata_database --download human_genome bowtie2 ./
##############################################################################
# Use a loop for analysis of multiple gzipped paired-end reads using kneadData
$ for f in $(ls *.fastq.gz | sed -e ’s/_1.fastq.gz//’ -e ’s/_2.fastq.gz//’ | \

sort -u)
$ do
$ echo "Unzips ${f}"
$ gzip -d -f ${f}_1.fastq.gz > ${f}_1.fastq
$ gzip -d -f ${f}_2.fastq.gz > ${f}_2.fastq
$ echo "Preprocessing ${f}"
$ kneaddata -i ${f}_1.fastq -i ${f}_2.fastq -o KneadData_output_folder \

-db /path/to/DB_folder --trimmomatic /path/to/Trimmomatic-0.36 -t 30\
--trimmomatic-options "ILLUMINACLIP:/path/to/adapter/sequence/file
:2:30:10:8:keepBothReads SLIDINGWINDOW:4:30 MINLEN:60" \
--bowtie2-options "--very-sensitive --dovetail"

$ echo "Completed QC for ${f}"
$ done

Post-QC analysis

$ cd /path/to/KneadData_output_folder
$ mkdir fastqc_output_folder
$ module load fastqc/0.11.7
$ fastqc -t 30 *paired* -o fastqc_output_folder/
$ module load multiqc/1.7

# Aggregate the results of fastqc quality control checks
using MultiQC

$ cd /path/to/fastqc_output_folder
$ multiqc *_fastqc.zip



Bioinformatics Pre-Processing of Microbiome Data with An Application to. . . 51

2.3 Taxonomic Profiling

After quality control of the sequencing reads, the next step is to estimate the taxo-
nomic abundance of each sample. A taxonomic abundance table is an n × p matrix
of absolute or relative abundance of p identified taxa in n samples. Taxonomic
profiling of sequenced reads typically comprises two steps. First, the classification
or the alignment of sequence reads to a database of microbial genomes. The second
step involves the estimation of the abundance of each taxon (species, genus, etc.)
in the metagenomic sample, i.e., estimating the number or percentage of reads
belonging to each taxon. Various algorithms and tools have been developed to
efficiently classify sequencing reads to known taxa with improved speed [70]. A
variety of metagenomic profiling tools match sequences to known databases. These
databases created at different times may have different contents as they go through
regular updates with the addition of new sequences.

Taxonomic profiling tools use a variety of approaches such as alignment of
marker genes (MetaPhlAn2 [59], mOTU [63], GOTTCHA [23]), k-mer mapping
in WGS reads (Kraken [23], CLARK [53]), translating DNA into amino acid
sequences, and mapping to protein databases (Kaiju [50], DIAMOND [9]).

This chapter does not pursue the goal of reviewing all of these taxonomic
profiling tools. Several research papers provide discussion on the review and the
comparison of these taxonomic profiling tools [3, 8, 43, 48]. Performance is usually
compared on the basis of the proportion of mapped reads, run time, sensitivity, and
other performance metrics. Since the evaluation of these tools is a complex task, no
single metric is usually used to judge the performance; rather, multiple factors are
examined. Considering that some tools utilize a limited set of marker genes while
others use expansive databases, judging a profiling tool only by the proportion of
reads mapped may not be adequate [43]. Since the application of any taxonomic
profiling tool will potentially impact the results and conclusions of the metagenomic
study, the selection of the appropriate tool should be based on performance metrics
that suites the analyst’s scientific investigation. In this section, we describe and
also discuss the implementation of three commonly used taxonomic profiling tools,
namely MetaPhlAn2, Kraken2, and Kaiju.

2.3.1 MetaPhlAn2

We implement MetaPhlAn2 [59] for the quantitative taxonomic profiling of our
quality-controlled sequenced reads. MetaPhlAn2 is computationally fast as it relies
on the clade-specific marker genes approach for taxonomic profiling [59], and
this approach is not expected to map all reads. Taxonomic assignment is attained
by aligning the sequence reads to the marker set using Bowtie2 [38]. In the
application, we used the default settings of MetaPhlAn2 to extract species-level
relative abundances for each sample, and these values lie within [0, 1]. The relative
abundances for each sample were then merged into a large relative abundance table

23
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using a custom MetaPhlAn2 script. After termination of MetaPhlAn2 procedure,
we obtained a table of relative abundances of 1049 species for 1047 samples. In
this setup, we have chosen to obtain species-level relative abundance. However,
information for other taxonomic levels can be easily extracted from the output
generated by MetaPhlAn2.

Taxonomic Profiling with MetaPhlAn2

# Perform taxonomic profiling of multiple .fastq files using MetaPhlAn2
$ module load metaphlan2/2.96.1
$ for f in $(ls *.fastq | sed -e ’s/_1.fastq//’ -e ’s/_2.fastq//’ | \
sort -u)

$ do
$ metaphlan2.py --bowtie2db /path/to/metaphlan_databases \

${f}_1.fastq,${f}_2.fastq --bowtie2out ${f}.bt2out \
--nproc 30 --input_type fastq

$ metaphlan2.py --bowtie2db /path/to/metaphlan_database ${f}.bt2out \
--nproc 30 --input_type bowtie2out > ${f}_profile.txt

$ done

# Merge taxonomic profiles for each sample into a single .txt file
$ merge_metaphlan_tables.py *_profile.txt > merged_abundance_table.txt

2.3.2 Kraken2

Kraken2 [69] is a rapid and highly accurate metagenomic classification tool that uses
a k-mer approach. For assignment of sequence reads to taxonomic labels, it utilizes
the k-mer information within each read, and each k-mer is mapped to the lowest
common ancestor (LCA) of the genomes that contains the k-mer in a custom-built
database. Lu et al. [44] point out that the LCA approach employed by the Kraken
system means that the system is likely to underestimate the number of reads that are
directly classified as species.

To overcome the issue of underestimation of taxonomic abundance by the Kraken
system, Bracken [44] was developed. Bracken uses a Bayesian algorithm and the
results from the Kraken2 classification for estimation of the relative abundance
of a metagenomic sample at the user-specific taxonomic level. To illustrate the
difference between these tools, the developers of Bracken report an instance [44]
that we consider here. The genomes of Mycobacterium bovis and Mycobacterium
tuberculosis are 99.95% identical. Since these species are very similar, Kraken
classifies the vast majority of reads from either of them to their LCA, which in this
case is the genus Mycobacterium. On the other hand, Bracken uses information on
some reads from the species-specific portion of the genome along with the similarity
information between close species to move reads from the genus level to the species
level.
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To estimate the abundance for each sample using the Kraken2–Bracken system,
we employed a pre-computed standard database that consists of reference sequences
from archaea, bacteria, and the human genome. Further, to generate the Bracken
database file, the switch -t indicates the number of threads to use, and -l indicates
the read length of the data. Since most of our data were 150 base pair (bp)
reads, we set -l to be 150, and we use the default k-mer length of 35. Then,
for each paired-end sample, we generate reports from the Kraken2 taxonomic
assignment procedure, and these reports are then passed into the Bracken program
for abundance estimation. Estimation of the abundance was carried out at the species
level (-l S), with a default reads threshold of 10 (-t 10). Finally, we use a
custom script to combine the Bracken output for all samples into a large single
file. The column of interest in the Bracken output is the new_est_reads, which
gives the newly estimated reads. After obtaining the abundance table, normalization
was carried out using the cumulative sum scaling approach. This procedure was
implemented with the metagenomeSeq [55] R package.

Taxonomic Profiling with Kraken2–Bracken

# loads kraken2 & bracken
$ module load kraken/2.0.8b bracken/2.5
# Generates the bracken database file
$ bracken-build -d /path/to/kraken2/database -t 30 -k 35 -l 150 \

-x /path/to/kraken2/installation/directory
$ echo "Building bracken database file complete"
$ cd /path/to/pair-end/.fastq/files
# Run Kraken2 & Bracken for abundance estimation
$ for f in $(ls *.fastq.gz | sed -e ’s/_1.fastq.gz//’ -e | \

’s/_2.fastq.gz//’sort -u)
$ do
# Generate kraken2 report files
$ kraken2 --db /path/to/kraken2/database --threads 30 --report
${f}.kreport \

--fastq-input --gzip-compressed --paired ${f}_1.fastq.gz ${f}_2.
fastq.gz \ > ${f}.kraken

# Estimate abundance with Bracken
$ bracken -d /path/to/kraken2/database -i ${f}.kreport -o ${f}.bracken

-r 150 \ -l S -t 10
$ done
$ echo "Estimation of species abundance with kraken2-bracken complete"
# Combining bracken output files
$ cd /path/to/.bracken/files
$ combine_bracken_outputs.py --files *.bracken -o output_file

2.3.3 Kaiju

For the given DNA sequences, Kaiju [50] translates the reads into amino acid
sequences and compares these reads against a reference database of protein
sequences. It creates an efficient database structure by indexing the reference
protein database using the Burrows–Wheeler transform (BWT) and saves each
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sequence in an FM-index (Full-text index in Minute space) table. It then searches
for maximum exact matches between the reads and the reference database created.
Kaiju’s developers [50] emphasize that protein-level classifiers such as Kaiju are
more sensitive to novel or highly variable sequences because protein sequences are
more conserved than the underlying DNA. Moreover, protein sequences are more
tolerant to sequencing errors due to the lower mutation rate of amino acid sequences
as compared with nucleotide sequences [1, 70].

To execute the taxonomic classification of sequencing reads using Kaiju, we
used nr database as our reference database. Program kaiju-makedb downloads
the source database of interest and constructs Kaiju’s index using BWT and FM-
index. We observed that some tools used for quality control of the sequences may
create disorder in the read names in both .fastq files. If the read names are not
identical between the first and second files, program kaiju issues an error. We
used Repair function from bbmap to fix this issue before moving ahead with
the taxonomic classification of sequencing reads. For faster implementation, we
used kaiju with multiple parallel threads using option -z 25 in MEM mode
(-a mem). The output files obtained from program kaiju comprised 3 columns,
classification status C/U for each read, read names, and NCBI taxon identifier of
the assigned taxon. These output files were further summarized into a table using
kaiju2table script, which gives read count (or percentage) for all samples
and taxa in a long format. To process this data for the downstream analysis, we
converted it into a wide format with taxa as rows and samples as columns using
pivot_wider function from tidyverse package in R. Users may also choose
to run Kaiju in greedy mode that yields a higher sensitivity as compared to the MEM
mode, sometimes at the cost of increased run time.

Taxonomic Profiling with Kaiju

# load kaiju
$ module load kaiju/1.7.2
$ module load bbmap
# Create reference database index
$ kaiju-makedb -s nr
# Repair disordered paired-end files
$ mkdir bbmap_ordered
$ cd /path/to/fastq/files
$ for f in $(ls *.fastq.gz | sed -e ’s/_1.fastq.gz//’ -e ’s/_2.fastq.gz//’ | sort -u) do
$ repair.sh in1=${f}_1.fastq.gz in2=${f}_2.fastq.gz \

out1= bbmap_ordered/${f}ORDERED_1.fastq.gz out2= bbmap_ordered/${f}ORDERED_2.fastq.gz\
outs=bbmap_ordered/${f}ORDERED_singleton.fastq.gz repair

$ done
$ cd bbmap_ordered
$ rm *ORDERED_singleton.fastq.gz
# Run Kaiju to assign reads to taxa
$ mkdir TaxoClassn
# start - taxonomic classification
for f in $(ls *.fastq.gz | sed -e ’s/_1.fastq.gz//’ -e ’s/_2.fastq.gz//’ | sort -u)

do
$ kaiju -z 25 -t /path/to/kaijus/database/Directory/nodes.dmp \

-f /path/to/kaijus/database/Directory/kaiju_db_nr.fmi \
-i ${f}_1.fastq.gz -j ${f}_2.fastq.gz -o ${f}.out -a mem

$ mv ${f}.out TaxoClassn
$ done
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# Create summary table of the output files at a taxonomic rank
# Merge files from all samples to a single table
$ cd TaxoClassn
$ kaiju2table -t /path/to/kaijus/database/Directory/nodes.dmp \

-n /path/to/kaijus/database/Directory/names.dmp \
-r species -o Merged_files.tsv *.out \
-c 10 -l superkingdom,phylum,class,order,family,genus,species

As mentioned earlier, the choice of profiling tool may depend on multiple
factors such as classification speed, proportion of mapped reads, output format,
ease of use, and computational resources available. If the analyst has access to good
computational resources with high amounts of available memory (>100Gb), then
Kraken, Bracken, and Kaiju are useful options. If sufficient computational resources
are not available, then MetaPhlAn is a viable alternative with fast classification
speed. Kaiju, for instance, has a web server where one can upload the compressed
.fastq files and select different options for taxonomic assignment for an easier
implementation without running bash scripts via the command line. Simon et al.
[70] provide an interesting and informative assessment of the performance of several
metagenomic tools used for taxonomic profiling of real and simulated data sets.

2.4 Computing facilities

All bioinformatics procedures were performed using the University of Florida
HiPerGator2 supercomputer. HiPerGator2 has 30,000 cores in Intel E5-2698v3
processors with 4 GB of RAM per core, and a total storage size of 2 petabytes (PB).
Bash scripts and .fastq files were stored on the supercomputer’s parallel file system
that offers high performance for data analysis. For the computing jobs submitted
to the cluster, we typically requested an allocation of a single computing node, 20
cores per task, and 200 GB memory.

3 Methodology

In Sect. 2.3, we discussed several techniques for taxonomic profiling that comprised
taxonomic classification/assignment and estimation of abundance. At the termina-
tion of each profiling technique presented, we obtained a species abundance table.
Now, the rest of this chapter will focus on methods for classifying taxa abundances
to known class labels. That is, we pursue the goal of modeling taxa abundances of
metagenomic samples belonging to known class labels. Then, the model is used
to predict class labels for new metagenomic samples based on their estimated
abundances. For our analysis, the class labels are the source cities where samples
originated. The classification of sequence reads to taxonomic labels should not be

http://kaiju.binf.ku.dk/server
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mistaken for the classification of abundance profiles to source cities. We stress that
the term classification will refer to the latter described herein.

As we indicated in the previous paragraph, this section focuses on the supervised
learning analysis of the pre-processed metagenomics data. We highlight methods for
feature selection, present several classification algorithms that include the ensemble
classifier, discuss techniques to overcome the problem of class imbalance, and
finally discuss measures for evaluation of model performance.

3.1 Pre-Processing and Feature Selection

The species abundance matrix obtained after the taxonomic profiling contains a
large set of features, i.e., taxa. For instance, 6152 taxa were obtained after taxonomic
profiling with the Kraken2–Bracken system, while 1049 taxa and 32,146 taxa were
obtained after profiling was, respectively, performed with MetaPhlAn2 and Kaiju.

Similar to the cases presented here, the most abundance data obtained from
metagenomics samples are high-dimensional in nature, and it is usually desirable to
extract only important features from the data. Common feature reduction techniques
are based on the prevalence of the taxa in the abundance table. For instance, taxa
with less than a specified number of reads, say 10, can be dropped. In addition,
taxa that are present in less than, say, 1% of the samples may also be discarded.
If these approaches are employed, then the resulting abundance table should be re-
normalized.

Other advanced methods exist for feature selection, and in this section, we
describe a couple of these techniques. In practice, feature selection aims at obtaining
a reduced subset of relevant informative features that bolster the assignment of
samples of known class labels based on their abundance information. However,
from our experience and those of several research studies [54], feature selection
may not provide a substantial improvement in the predictive ability of the fitted
classification models due to the complex nature of microbiome data. Hence, even
though fitting classification models on the data with a reduced feature space may be
more computationally efficient, we recommend that analysts should also investigate
the performance of such models when trained on the data with a complete feature
space.

Among the other approaches to feature selection, first, features could be selected
based on the importance scores returned after a supervised training of the Random
Forest model on the data with a complete set of features. The features are ranked
according to their importance scores, and the top k features are chosen as the set
of informative features. The classification model of interest is then trained with
the k selected importance features. In this setup, k is usually chosen from a set
of a predetermined number of features via cross-validation, such that the number of
features from the predetermined set that maximizes classification accuracy is chosen
to be k. Pasolli et al. [54] utilized this method in their review study that assessed
machine learning approaches for metagenomics-based prediction tasks.
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In another heuristic approach, one may choose to use the Lasso [64] or ElasticNet
[73] with a multinomial model for feature selection. However, the standard versions
of penalized regression methods are not efficient for the analysis of relative
abundance data because of the compositional nature of the data [26]. Owing to this
fact, regression [31] and variable selection methods [41], which impose sum-to-zero
constraints for the Lasso, have been developed for compositional data.

The hierarchical feature engineering (HFE) [52] technique is a recently devel-
oped tool for performing feature selection. To obtain a smaller set of informative
microbial taxa, this tool uses information from the taxonomy table, the correlation
between taxonomic labels, and the abundance data to exploit the underlying
hierarchical structure of the feature space. At the termination of the algorithm
after analyzing a species abundance table, it returns an OTU table that contains
a combination of both species and other higher-level taxa. Fizzy [19] is another
modern tool for feature selection. It is a collection of functions for performing
widely implemented feature selection methods such as the Lasso, information-
theoretic methods, and the Neyman–Pearson feature selection approach. Developers
of the HFE used the predictive performance of several machine learning models to
compare the HFE with other standard feature selection tools that do not account
for the hierarchical structure of microbiome data. They reported that the HFE
outperformed the other methods.

3.2 Exploration of Candidate Classifiers

In this section, we present brief descriptions of some supervised learning models
commonly used for the classification of abundance values of metagenomics samples
to known class labels. Our survey of algorithms will largely focus on supervised
classifiers that are suitable for analyzing multiclass classification problems. These
classifiers can be broadly partitioned into linear and non-linear classifiers.

Linear methods for classification such as linear discriminant analysis, quadratic
discriminant analysis, regularized discriminant analysis, logistic regression, and
SVM (without kernels) achieve classification of objects based on the value of
a linear combination of features in the training data. These classifiers solve
classification problems by partitioning the feature space into a set of regions that are
defined by class membership of the objects in the training data. Also, the decision
boundaries of the partitioned regions are linear [32]. Generally, these classifiers also
take less time to train than non-linear classifiers. However, by using the so-called
kernel trick, some linear classifiers can be converted into non-linear classifiers that
operate on a different input scale.

In cases where the training data are not linearly separable (usually via a
hyperplane), a linear classifier cannot perfectly distinguish classes of such data.
For such cases, the non-linear classifiers will often provide better classification
performance than the linear classifiers. Examples of non-linear classifiers commonly



58 S. Anyaso-Samuel et al.

used for classification in metagenomics studies include the kernel SVM, Random
Forest (RF), and neural networks (multilayer perceptron):

• Recursive Partitioning (RPart)—A decision tree [7] is the fundamental element
of the RPart model. A decision tree is grown by repeatedly splitting the training
data set into subsets based on several dichotomous features. The recursive
splitting from the root node to the terminal node is based on a set of rules
determined by the features. The process is recursive in nature because each subset
can be split an indefinite number of times until the splitting process terminates
after a stopping criterion is reached. In the case where the target response is
a unique set of labels, the tree model is called a classification tree. For the
prediction of the class label of a new subject, the model runs the observation
from the root node to the terminal node that assigns the class membership.

• Random Forests (RF)—The idea of the RF classifier [6] is to grow a collection
of trees by randomizing over subjects and features. That is, each tree in the forest
is grown by using a bootstrap sample from the training data. Out-of-bag samples
comprise samples that are not included in the bootstrap sample. These samples
serve as a validation set. In contrast to bagging that uses all p predictors for
splitting at each node, RF uses only m < p randomly selected features to obtain
the best split. With the implementation of this step, the correlation between
the trees is reduced. Also, it improves the classification performance obtained
when a bagging procedure is implemented. Unlike decision trees, no pruning
is performed for Random Forests, i.e., each tree is fully grown. For predicting
the class of a new observation, each tree in the forest gives a class assignment,
and majority voting is used to obtain the final prediction. Advantages of the RF
include its robustness to correlated features, its applicability to high-dimensional
data and the ability to handle missing data internally in an effective manner, and
its use as a feature selection tool through its variable importance plot. Also, it
offers competitive classification accuracy for most problems with little parameter
tuning and user input.

• Adaptive Boosting (AdaBoost)—In the boosting [24] procedure, many weak
classifiers are sequentially combined to produce a strong learner. The procedure
achieves this by repeatedly training many weak learners on modified versions of
the data set, and then the strong learner is created by a weighted average of the
weak classifiers. Note that a weak classifier is a learner whose performance is
only slightly better than random guessing. Also, the weights used to fit each
of the weak classifiers are functions of the prediction accuracy using some
previous versions of the weak classifier. If we let Gm(x), m = 1, . . . , M denote
a sequence of weak classifiers trained with weighted versions of the training
data, the final output of the AdaBoost classifier is a weighted sum of Gm(x).
In this case, weights wi, i = 1, . . . , N , that are updated iteratively are applied
to the observations in the training set. At the first boosting iteration, m = 1, a
base classifier, i.e., wi = 1

n
, is trained. Then, for m = 2, . . . , M , observations

that were misclassified in the preceding iteration are given more influence than
observations that were correctly classified. In this sense, the boosting procedure
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is adaptive because each subsequent classifier in the sequence is thereby forced to
tweak its performance to favor observations that were misclassified by previous
classifiers.

• Extreme Gradient Boosting (XGBoost)—Gradient boosting [25], also referred
to as gradient boosting machines (GBM), is another boosting algorithm that
creates a strong learner from an ensemble of weak classifiers, typically deci-
sion trees. In the implementation, this machine combines a gradient descent
optimization procedure with the boosting algorithm. The machine is constructed
by fitting an additive model in a forward stage-wise manner. A weak learner
is sequentially introduced at each stage to improve the performance of existing
learners in classifying previously misclassified observations. These misclassified
observations are determined by gradients, which in turn guide the improvement
of the model. For XGBoost [13], trees are grown to have a varying number of
terminal nodes. Contrasting to GBM that employs gradient descent, XGBoost
employs Newton boosting that uses Newton–Raphson’s method to obtain the
solution to the optimization problem. With set parameters, the XGB algorithm
reduces the correlation among the trees grown, thus increasing classification
performance. Further, the algorithm utilizes parallel and distributed computing
that speeds up learning and enables quicker model exploration. Historically,
this classifier has been popular among winning teams participating in machine
learning competitions [13].

• Support Vector Machines (SVM)—To understand the concept of the SVM
[17], first, we consider a binary classification problem for which we intend to
assign a new data point to either of two classes. The data point is treated as
a p-dimensional vector, and the SVM algorithm aims at finding a (p − 1)-
dimensional hyperplane that represents the largest separation between the two
classes. Several hyperplanes may exist for partitioning the data. SVM selects the
decision boundary that maximizes the distance to the nearest data point on each
of its sides as the optimal hyperplane. SVMs are popular for solving classification
problems because in the case where no linear decision boundary exists, they can
allow for non-linear decision boundaries using the so-called “kernel trick.” Also,
SVM solves a multiclass classification problem by decomposing the problem
into multiple binary classification problems. In this sense, most SVM software
constructs binary classifiers that distinguish between one of the class labels and
the others (one-versus-all) or between every pair of classes (one-versus-one). In
the latter approach, k(k−1)

2 binary classifiers are constructed if the target variable
is comprised of k classes. For the prediction of a new observation in the one-
versus-all case, the binary classifier with the maximum output function decides
the class label, while a majority voting strategy is used to assign the class label
in the one-versus-one case.

• Multilayer Perceptron (MLP)—Under the deep learning framework, MLP [32]
is an interconnected network of neurons or nodes that have weights attached
to the edges of the network. MLP utilizes an adaptive mathematical model that
changes based on the information that is fed into the network. Using several
layers of units, the network maps the input data to an output vector with length
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equal to the number of classes in the target variable. First, the input data are
passed into an input layer. This layer emits a weighted output that is further
passed into another hidden layer of units (there can be more than one hidden
layer). In the final branch of the process, the output layer receives the weighted
output from the hidden layer and assigns the network’s prediction.

Several classifiers provide the option to scale the features so that they have
the same variance. This scaling procedure will destroy the compositional nature
of the data, and hence, we suggest that scaling should not be done. From the
documentation of most classification learning software, we can set the logical
scale or standardize parameters that indicate whether scaling should be
carried out. This parameter should be set to FALSE.

3.3 The Ensemble Classifier

In Sect. 3.2, we presented a variety of popular machine learning models that can be
used to predict the source origin of metagenomics samples. These classifiers have
been used to analyze data obtained from several experimental studies that aimed
to explore associations between microbial imbalance and disease or environmental
factors. The RF and SVM classifiers remain state-of-the-art for metagenomics-
based classification purposes. In contrast, classifiers such as the AdaBoost and
XGBoost that are based on boosting algorithms have not gained much traction in
the metagenomics data classification.

Research papers such as Knights et al. [35], Moitinho-Silva et al. [51], and
Zhou et al. [72] provide a review of a variety of supervised machine learning
models commonly used for feature selection and classification in microbiota studies.
The reviews on the classification of microbiota data often report microbiome–
phenotype associations and host-microbiome and disease associations. Among
other findings, several individual studies have utilized different pre-processing and
analysis methods that yielded discrepant conclusions and difficulty of classification
models to be generalized across research studies [20, 54, 72].

In the context of exploring the relationship between microbial samples and
environmental factors, CAMDA had organized the Metagenomics Geolocation
Challenge over the last three years. Participants who have worked on these chal-
lenges have used a combination of bioinformatics and machine learning techniques
to build microbiome fingerprints for the prediction of the source origins of microbial
samples. Neural networks, RF, and SVM are among commonly used machine
learning techniques for the construction of such fingerprints. In particular, no
single classifier has shown to give consistent optimal performance across these
metagenomics studies. When addressing results from a classification competition
based on proteomics data, Hand [29] points out this observation as well.

Several reasons may account for the inconsistencies and non-generalizability
of machine learning models across microbiome studies. Potential factors that can
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elicit inconsistencies in microbiome studies include the nature of the data being
studied, sample collection strategies, different sequencing techniques, and varying
bioinformatics procedures. Furthermore, the performance of machine learning
models is likely to depend on the techniques utilized during the pre-processing and
taxonomic profiling of the microbial samples. In practice, it is generally impossible
to know a priori which machine learning model will perform best for a given
classification problem and data.

To create a more robust classifier, Datta et al. [18] proposed an ensemble
classifier that combines a variety of classification algorithms in conjunction with
dimension reduction techniques (if necessary) for classification-based problems.
The ensemble classifier is constructed by bagging and weighted rank aggregation
[56], and it flexibly combines the standard classifiers to yield classification perfor-
mance that is at least as good as the best performing classifier in the set of candidate
classifiers that define the ensemble. For any data set under investigation, the
ensemble classifier excels in the sense that it adaptively adjusts its performance and
attains that of the best performing individual performance without prior knowledge
of such classifier(s). Hand [29] also states that the aggregation of results obtained
from many fitted models serves to smooth the ensemble model away from a single
model that is optimized on the training set, and therefore, the combination of models
serves a role similar to regularization.

The ensemble classifier is itself a classification algorithm, and here, we describe
the construction of this classifier. Consider the abundance matrix X = (x1, . . . , xp)

for n samples and p taxa, where each xj , j = 1, .., p, is normalized, and the target
labels, y = (y1, .., yn). The steps to build the ensemble classifier are as follows:

1. Choose M candidate classifiers and K performance metrics. Then, for b =
1, . . . , B:

(i) Draw a bootstrap sample Z∗
b = (X∗

b, y
∗
b) of size n for the training data.

Ensure samples from all classes are represented in Z∗
b. OOB samples

comprise all samples not included in Z∗
b.

(ii) Train each M classifier with the bootstrapped sample, Z∗
b.

(iii) Use each M classifier to predict the OOB samples.
(iv) Based on the true values of the OOB set, and the predicted class labels,

compute the K performance measures.
(v) Perform weighted rank aggregation: The performance measures used in

step (iv) rank the classifiers according to their performance under each
measure, thereby producing K ordered lists, L1, L2, . . . , LK , each of size
M . Using weighted rank aggregation, the ordered lists are aggregated to
determine the best single performing classifier denoted as Ab

(1).

The ensemble is a set of
{
A1

(1), . . . , A
b
(1), . . . , A

B
(1)

}
classifiers.

Notice that the algorithm evaluates the performance of each candidate classifier
based on their prediction of the OOB samples. This protects the ensemble classifier
from overfitting. Just like cross-validation, the classification performance based on
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the OOB samples is estimated using data that were not used when training the
classifier. The OOB errors are not the same as the cross-validation errors, but in
practical terms, they should be approximately close.

Given the abundance of a new sample, x1xp, the ensemble classifier gives
prediction for such sample using the following procedures:

1. Each classifier, A1
(1), . . . , A

B
(1), in the ensemble is used to predict the class label

of x1xp. Let ŷ1, . . . , ŷB denote the class predictions from the B models in the
ensemble.

2. The final prediction is obtained by majority voting, that is, the most frequent
class label among the B predicted classes.

3.4 Class Imbalance

More often than not, metagenomics data are imbalanced. That is, at least one of
the classes in the data is underrepresented. Data imbalance is likely to skew the
performance of the classification models such that the models will be biased toward
the majority classes. For instance, if there are disproportionately more samples from
class A than there is from class B, the classification model is prone to assign a
random label to class A than class B. Since classification algorithms aim to reduce
the overall misclassification rate, rather than the error rate in majority classes,
such models will not perform well for imbalanced data. Generally, classification
algorithms are poised to perform better with nearly equal representation of classes
in the training set.

The problem of class imbalance has received considerable attention in the
machine learning literature, and a variety of methods exist to mitigate this problem.
Some of these methods have also found application in the analysis of metagenomics
data. In this section, we briefly describe the underpinnings of such procedures along
with their pros and cons. The application of these methods does not improve the
overall fit of the classification model discussed. When implemented, they aim to
improve the prediction of samples in the minority classes. Roughly speaking, these
methods are partitioned into down-sampling, over-sampling, hybrid, and weighting
techniques:

(i) Down-sampling techniques: This involves randomly removing samples from
the majority classes until class frequencies are roughly balanced. One disad-
vantage of this technique is the loss of information in the majority classes since
a large part of the majority classes will not be used to train the classifier.

(ii) Over-sampling techniques: This involves the random replication of samples
in the minority classes to attain approximately the same sample sizes in the
majority classes. As noted by Chen et al. [12], more information is not added to
the data by over-sampling; however by replication, the weight of the minority
classes is increased. From our experience, down-sampling appears to be more
computationally efficient since the classifier is trained on smaller data sets.
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(iii) Hybrid techniques: This class of techniques combines both over-sampling and
down-sampling to artificially create a balance in the data set. For instance,
SMOTE (and its variants), AdaSyn, DSRBF, and ProWSyn methods generate
synthetic samples from the minority classes to balance class frequencies.
Kovács [36] studied the performance of a variety of minority over-sampling
techniques when applied to large imbalanced data sets. They report that
no over-sampling technique gives consistent optimal performance. Hence,
they suggest careful investigation when choosing the technique to use. The
smote-variants [37] package provides Python implementation for a
host of these hybrid techniques, while the UBL [5] package provides certain
implementations in R. In the context of the analysis of microbiome data, a
variety of user-specific hybrid over-sampling techniques have been employed.
For instance, Knights et al. [35] used an artificial data augmentation approach
to boost the representation of samples when analyzing microarray data. In
their approach, they generate noisy replicates by adding a small amount of
Gaussian noise to the OTU counts in each sample, with a threshold of zero to
avoid negative values. The authors found that the difference in predicted error
between their augmented and unaugmented model was at most 2% decrease
in error. Also, Harris et al. [31] report an increment in classification accuracy
from 83% to 91% after application of an optimized sub-sampling technique to
address the problem of data imbalance in their analysis of metagenomics data
aimed at predicting sample origins.

(iv) Weighting: A cost-sensitive approach to fitting classification models is to
train them using class weights. In this approach, the algorithms place heavier
weights on the minority classes and will penalize the classifier for misclassify-
ing the minority classes. The weighted Random Forest [12] is an example of a
classification model that implements class weighting.

To avoid overfitting the data, these techniques for addressing class imbalance
are generally applied only to the training set. Further, if a resampling technique
(bootstrap or cross-validation) is used for model evaluation during analysis, the
over-sampling procedure should be performed inside the resampling technique. This
approach is followed because if an over-sampling is done before, for instance, cross-
validation is performed, the model is likely to have glanced at some samples in the
hold-out set during model fitting; therefore, the hold-out set is not truly unknown to
the model. This implementation will result in overly optimistic estimates of model
performance.

3.5 Performance Measures

In this section, we focus on measures used for evaluating the performance of
classification algorithms on imbalanced data. In such scenarios, the overall clas-
sification accuracy is often not an appropriate measure of performance since rare
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classes have little impact on accuracy than majority classes [34]. Other performance
metrics such as recall (or sensitivity), precision (or positive predictive value,
PPV), F-measure, and G-mean are commonly used single-class metrics in binary
classification problems. These metrics can also be used to assess the prediction
of individual class labels in multiclass problems. These metrics are defined as the
following:

Recall = TP

TP + FN
,

Precision = TP

TP + FP
,

F − measure = 2 × Precision × Recall

Precision + Recall
.

For evaluating the overall performance of the classifiers for imbalanced learning,
multiclass extensions of the G-mean [62] and AUC [30], as well as Cohen’s Kappa
[16], are commonly used metrics.

G-mean =
(

K∏

i=1

Recalli

) 1
K

,

MAUC = 1

K(K − 1)

K∑

i=1

K∑

i �=j

AUC(i, j),

κ = P0 − PE

1 − PE

,

where K is the number of classes, Recalli is the recall for class i, P0 is the relative
observed agreement among classifiers (i.e., the overall accuracy of the model), and
PE is the probability that agreement is due to chance. G-mean is the geometric
mean of recall values for all classes, while MAUC is the average AUC for all pairs
of classes. Apparently, the G-mean will be equal to 0 if the recall for any class is 0.
These three performance measures were used in constructing the ensemble classifier
that will be implemented in our analysis.

3.6 Data Analysis

In this section, we lay out some analytical techniques for the pre-processed species
abundance table. These techniques focus on training supervised machine learning
models for the classification of the OTU abundance to known class labels. Here, our
analysis will be based on the species abundance tables obtained after bioinformatics
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pre-processing and taxonomic profiling of the WGS data gotten from the 2020
CAMDA Forensic Challenge, see Sect. 2.1. In Sect. 2.3, we used three different
taxonomic profiling tools to obtain the species abundance table, and the supervised
algorithms for classification will be applied to each data set. The primary objective
of the analysis lies in predicting the source origins of given metagenomics samples
from 23 cities across the globe.

First, we fitted ten candidate classifiers. The candidate classifiers consist of
all classifiers discussed in Sect. 3.2 together with certain modifications of these
classifiers. For instance, we considered the RF classifier with principal component
terms (denoted as PCA+RF) and partial least squares terms (PLS+RF). And we also
trained the AdaBoost, XGBoost, RPart classifiers each with PLS terms (PLS+ADA,
PLS+XGB, PLS+RPart). Furthermore, we trained the ensemble classifier for which
the ensemble constitutes the mentioned candidate classifiers. Candidate classifiers
with different parameter combinations can also be included in the ensemble;
however, we constructed the ensemble classifier such that no candidate classifier
is represented more than once in the candidate set. Also, hyperparameters of
the candidate classifiers can be tuned, but we have chosen to use mostly default
parameters of the candidate parameters. In the case where the default value of
a parameter is not used, the value was chosen based on our experience in the
analysis of metagenomic data. Nonetheless, since the default hyperparameters in
some machine learning libraries may not be optimized for the classification problem
at hand, we encourage analysts to consider tuning such parameters during analysis.

Furthermore, to evaluate the performance of the techniques discussed in
Sects. 3.1 and 3.4 for feature selection and to overcome class imbalance,
respectively, we will apply these methods to the species abundance table obtained
from the Kraken2–Bracken system. The construction of the ensemble classifier can
easily be modified to accommodate the implementation of these techniques.

4 Results

Here, we present results for the analysis described in Sect. 3.6. First, we describe
the results obtained from the analysis of the species abundance tables obtained
after taxonomic profiling was performed with MetaPhlAn2 (MP), Kraken2–Bracken
(KB), and Kaiju (KJ), respectively. For each abundance table, further downstream
pre-processing as discussed in Sect. 3.1 was carried out, and we obtained 1029,
4770, and 25,750 taxa for MP, KB, and KJ data, respectively. We performed a 10-
fold split of the abundance data into 80% training and 20% test sets. For each split,
we ensured each class was represented by at least three samples in both the training
and test sets. The classification analysis was conducted by training the classifiers
mentioned in Sect. 3.6 on the training set, while the test set was used to evaluate the
performance of the models.
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We used a consistent framework for the analysis of the respective abundance
tables, that is, a pre-specified set of candidate classifiers and classifier parameters,
performance measures, and resampling techniques were consistently employed
across the analysis for each abundance table. However, we excluded the RPart
classifier from the set of candidate classifiers when analyzing the KJ data; the
classifier could not handle the vast number of features in this particular training
set. Also, for the construction of the ensemble classifier, the number of bootstrap
samples to be drawn, B, was set to be 50, while Kappa, multiclass G-mean,
and MAUC were the performance measures used for performing weighted rank
aggregation.

For the analysis of the abundance tables obtained from the respective taxonomic
profiling tools, Table 2 shows the mean performance measures for each classification
algorithm. Based on the results from all performance measures, and across the
analysis for each profiling tool, the ensemble classifier yields classification results
that are as good as the best candidate classifier. Furthermore, the candidate
classifiers perform differently for each abundance data. For instance, based on
the Kappa statistics, the MLP, PLS+RF, RF, and XGB were the best performing
candidate classifiers for the analysis of the KB and KJ data, while the RF and XGB
gave the most promising results for the analysis of the MP data. These classifiers
proved to be the most competitive in the set of candidate classifiers; hence, the
ensemble of classifiers across the analysis for each data set was mostly dominated by
the MLP, PLS+RF, RF, and XGB classifiers. For each sub-table in Table 2, the last
column shows the number of times each candidate classifier was the best performing
local classifier in 500 instances (10 replications with 50 bootstrap iterations each).

Furthermore, the SVM with a radial basis kernel and the RPart classifiers yield
moderate classification performance. Classifiers trained with integrated PLS terms
performed better than classifiers with PCA terms; we observed that the PCA+RF
classifier yields the poorest classification results among all candidate classifiers.
Also, the PLS+RF classifier performed better than its RF counterpart for the analysis
of the KB data, and the two classifiers have closely related results for the analysis
of the KJ data, while the RF outperforms the PLS+RF classifier for the analysis of
the MP data. In general, the trained classifiers yielded better performance results for
the KB and KJ data than for the MP data.

For the second phase of our analysis, we sought to investigate the impact of
both dimension reduction and techniques for handling class imbalance on the
classification performance of the classifiers. In this regard, we have applied these
methods solely for the analysis of the KB data. For each application, we follow
a similar design of the analysis presented in the first paragraph of this section.
For the weighted classifiers, class weights were computed as wc = 1/nc, where
nc is the number of samples in class c. While for over-sampling, the Gauss
Noise (introduces Gaussian noise for the generation of synthetic samples) [39]
over-sampling procedure was implemented. The HFE described in Sect. 3.1 was
employed for dimension reduction. Table 3 shows the mean performance measures
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Fig. 3 Mean multiclass AUC measures for ten standard classifiers, and an ensemble classifier
comprising of the standard classifiers. These classifiers were trained with the species abundance
table obtained after taxonomic profiling was done with the Kraken2–Bracken system. The training
data with a set of complete features comprise 4770 taxa that were obtained after downstream pre-
processing, while the data with a reduced feature space comprise 796 taxa, on average

for the set of candidate classifiers and the ensemble classifier, and the classification
results for the data with a reduced feature space are shown in parentheses. First,
by contrasting the classification performance for the HFE and non-HFE data across
the three different techniques shown in the sub-tables of Table 3, notice that there
is little or no improvement in classification results for the feature-reduced data. For
most of the results reported, the classifiers performed slightly better on the non-HFE
data.

Also, for comparison of classification results across the methods used to address
the problem of class imbalance and the standard classifiers, we find that there is
no substantial improvement in classification performance. Figure 3 shows the mean
multiclass AUC scores for the standard classifiers as well as the classifiers trained
with class weights and oversampled data. The classifiers are trained on both the non-
HFE and HFE data. For each classifier, the multiclass AUCs reported for all three
approaches are very similar. This finding is consistent with the description that the
class weighting and over-sampling techniques do not improve the overall fit of the
models.

We further investigated the performance of the classifiers when predicting the
known class labels in the primary data. The classifiers had a varied performance
for prediction of the sample origins. Figure 4 shows a boxplot of the positive
predictive values (PPV) based on the classification results from the standard
ensemble classifier (i.e., class weighting and over-sampling procedure were not
applied) trained on a full feature space. The PPV results described here were
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Fig. 4 Boxplot showing the positive predictive value for all cities represented in the training data.
The results are based on predictions from a standard ensemble classifier that was trained on the
full feature space of the species abundance data obtained after taxonomic profiling was performed
with Kraken2–Bracken

obtained for the analysis of KB data discussed in the first paragraph of this section.
The classifier yields near perfect prediction for samples obtained from Barcelona,
Berlin, Denver, Doha, Kuala Lumpur, Offa, Santiago, Sendai, San Francisco, and
Tokyo. The average PPV for prediction of these sample origins was at least 95%. In
contrast, the ensemble classifier does not yield good classification performance for
the prediction of samples that originated from Kiev, Lisbon, Offa, and Singapore.
The average PPV for these cities ranges from 60% to 74%. The poor performance
of the classifier in predicting certain cities will negatively impact the overall
classification performance of the classifier. Thus, it is worthwhile to investigate the
reasons for the poor predictive ability of the classifier for these cities. For instance,
we observed that the classifier had trouble discriminating between Kiev and Zurich.
Certain factors could influence the sub-par ability of the classifier in discriminating
between cities. The proximity of source cities is an obvious factor. Naturally, we
can expect the classifiers to misclassify cities in close proximity to one another. For
instance, Offa and Ilorin are geographically close, and the classifier, in several cases,
misclassified Offa as the Ilorin.

The boxplots in Fig. 5 show some of the top microbial species that were
found to be differentially abundant across various cities. The left panel of Fig. 5
shows the feature importance plot of the top 20 species from RF classifier in the
ensemble. Variable importance plot consists of many species belonging to genus
Bradyrhizobium that is a soil bacteria and is also found in the roots and stems of
plants [27]. Pseudomonas.sp..CC6.YY.74 species belongs to genus Pseudomonas
that is a common genus of bacteria that resides on moist surfaces, soil, and water
[42].
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Fig. 5 Species importance for RF classifier in the ensemble (left). Boxplots of species abundances
for 4 among the top 10 important species (right)

5 Discussion

We have presented a practical workflow for the analysis of microbiome data
that are based on samples that are usually collected from the different body
and environmental sites. This workflow was partitioned into two sections—pre-
processing of raw WGS data and downstream analysis. For the raw WGS data
pre-processing of the microbiome data, we constructed a standard pipeline using
a variety of bioinformatics tools for quality control and taxonomic profiling.
The taxonomic profiling involves classifying sequence reads to taxonomic labels
and estimation of species abundance, and this was performed with three widely
used profiling tools, namely, MetaPhlAn2, Kraken2–Bracken, and Kaiju. At the
termination of the bioinformatics pipeline, we obtain species abundance tables from
each of the respective profiling tools, and these abundance tables were passed into
the downstream analysis.

The downstream analysis of the data comprised fitting supervised learning
models for the classification of the species abundance of the samples to known
class labels. We have evaluated several machine learning approaches to the
metagenomics-based classification of sample origins. For this purpose, we adopted
a robust ensemble classifier that uses species-level abundance as features, a user-
specific set of supervised learning models as candidate classifiers, and user-defined
performance metrics for model evaluation. The ensemble classifier is an adaptive
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classification algorithm that can perform well on different data structures. This
classifier utilizes performance on OOB samples to guard against overfitting. The
ensemble classifier gives classification performance better or as good as the best
performing candidate classifier in its ensemble.

Across many metagenomics studies, we noticed a great deal of variation in
classification results presented by different researchers working in this area. One
natural explanation for this variation in results stems from the bioinformatics and
data generation procedures employed in these studies. Since standard classification
models will perform differently when trained on different data structures, restricting
the classification problem to a single classifier may not be a practical approach. For a
given classification problem, the analyst is expected to try out a variety of classifiers,
judging each one according to a set of user-defined performance metrics. In this
sense, the analyst will likely begin their exploration with simple models before
trying out more complex models. With the application of the ensemble classifier
described here, the analyst can automate the process and achieve a near optimal
performance.

In this chapter, we have trained the ensemble classifier with only the classifiers
discussed in Sect. 3.2. However, the ensemble need not be restricted to these models
but could include any reasonable user-specified classifier. For instance, we notice
that the XGBoost classifier that is popular among competing teams solving data
science problems has been rarely used in the analysis of metagenomics data. Results
from classification performance presented in this chapter showed that the XGBoost
performs almost as well as the RF classifier. Therefore, in a future analysis of these
types of data, we may choose to include XGBoost in our ensemble.

The best classification results for the prediction of source cities were obtained
when the classifiers were trained on the full data set rather than on the feature-
reduced version. This explains the complex nature of metagenomics data where
a plethora of taxa are needed to characterize the variation among sample origins;
hence, building a model with only a subset of these taxa may not sufficiently explain
such variations.

In addition to fitting an ensemble of classifiers, we also highlight other techniques
that may improve the classification of metagenomics data. Since most machine
learning models tend to lean toward predicting the majority classes over the
minority classes, balancing the class frequencies of samples in the training data
is an ideal method to incorporate in the analytical pipeline. The application of an
optimal minority over-sampling scheme and class weighting in the training of the
classifiers only marginally impacted the performance of the classifiers presented
in this chapter. These techniques can easily be incorporated while constructing
the ensemble classifier. We notice that training the classifier with class weights is
computationally more efficient than utilizing an over-sampling scheme.

An obvious drawback of the ensemble classifier is that it is computationally
intensive. It would take more time to train an ensemble classifier than it would for a
stand-alone classifier. The computing times of the ensemble classifier are mainly
impacted by the number of bootstrap samples that the individual classifiers are
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trained on, the number and complexity of user-specified candidate classifiers, and
the performance measures that are used to compute the weighted rank aggregation.
However, the computing times can be appreciably reduced if the ensemble classifier
is trained using parallel computational approaches on a computing cluster. When we
selected 10 candidate classifiers (i.e., the candidate classifiers presented in Sect. 4),
three performance measures (namely, Cohen’s Kappa coefficient, multiclass G-
mean, and AUC) for computing weighted rank aggregation, and 50 bootstrap
samples for the construction of the ensemble classifier, the construction procedure
took an average time of 9.47 h (wall-clock time). This procedure was done on a
University computing cluster for which 12 CPU cores and 40GB of memory were
allocated to the job.

The downstream classification analysis presented here can be extended in two
different directions. Each of these extensions requires the knowledge of additional
information besides the microbiome data—such information are often present in
the form of geographic location of the training cities or the weather information in
both training and test cities and so on. In the former case, we can build a potentially
improved classifier that effectively utilizes a larger collection of features. In the later
situation, one may be able to predict the city of origin in a bigger list than what was
provided in the training data. These extensions may be pursued elsewhere.

6 Data Acknowledgement

All analyses presented in this chapter are based on the raw WGS metagenomics
data provided as part of the 2020 CAMDA Metagenomic Geolocation Challenge.
The primary data along with other supplementary data is publicly available on
the challenge’s website. We participated in this challenge and presented our
classification results at the 2020 Intelligent Systems for Molecular Biology (ISMB)
conference. An extensive report on the results from our analysis will be published
in the conference proceedings.

7 Code Availability

Bash scripts for each procedure performed in the bioinformatics pipeline and R
scripts for building an ensemble of standard classifiers are available at https://
github.com/samuelanyaso/metagenomic_data_analysis. The sample code below
shows a standard interface to analyze an abundance matrix. The code calls the
ensemble.R script for training an ensemble classifier, predicts test cases, and
evaluates the performance of the ensemble classifier along with other candidate
classifiers in the ensemble.

http://camda2020.bioinf.jku.at/doku.php/contest_dataset#metagenomic_geolocation_challenge
https://www.iscb.org/cms_addon/conferences/ismb2020/tracks/camdacosi
https://github.com/samuelanyaso/metagenomic_data_analysis
https://github.com/samuelanyaso/metagenomic_data_analysis
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WD <- "/path/to/data/and/source/scripts"
setwd(WD)
df <- read.delim("abundanceTable.txt", header = TRUE, sep = "\t",

dec = ".")
df$class <- factor(df$class) # class labels
## Begin training Models
num.class <- length(levels(df$class))
idx <- 1:nrow(df) # row indices
## loads the ensemble function
source("ensemble.R")

Result1 <- list()
Result2 <- list()
bestAlg <- list()
confMat <- list()
reps <- 10 # number of replications
set.seed(2021)
for(r in 1:reps){

repeat{
## repeat partitioning of the data into train and test set until
## all classes are present in both test and train set
inTraining <- createDataPartition(df$class,p = 0.9,list = FALSE)
shuf <- sample(inTraining[,1],replace = FALSE) # train set
shufT <- sample(idx[which(!idx %in% inTraining[,1])],

replace = FALSE) # test set
# partitions the dataset
dat.train <- df[shuf,]
dat.test <- df[shufT,]
if(all(table(dat.train$class) >= 1) & all(table(dat.test$class)

>= 1)){
break

}
}
## Train set
y <- dat.train$class
y <- as.factor(as.numeric(y)-1) # Factor levels should begin from 0
x <- data.matrix(dat.train[,!(names(dat.train) %in% c("class"))])
## Test set
yTest <- dat.test$class
yTest <- as.factor(as.numeric(yTest)-1) # Factor levels should

begin from 0
xTest <- data.matrix(dat.test[,!(names(dat.test) %in% c("class"))])
cat("Started Replication: ",r," of ",reps,"\n ")
ens <- ensembleClassifier(x, y, M=50, ncomp=30,

train = dat.train, test = dat.test,
algorithms=c("svm","rang","pls_rf",

"pca_rf","rpart", "pls_rpart",
"xgb","pls_xgb","mlp"),

levsChar =as.character(levels(dat.train$class)))
# the names of the best local classifiers
bestAlg[[r]] <- ens$bestAlg
## predict using the test data
pred <- predictEns(ens, xTest, yTest, test = dat.test,

dlEnsPath = "dl_ens_time.h5",
dlIndPath = "dl_ind_time.h5")

# Saves the results
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Result1[[r]] <- pred$ensemblePerf
Result2[[r]] <- pred$indPerf
## predicted class
yPred <- pred$yhat
## confusion matrix
confMat[[r]] <- caret::confusionMatrix(yPred,yTest)
# displays the truth and predictions for each of the "best" algorithms
dfPred <- data.frame(truth=yTest, ensemble=yPred, pred$pred)
dfPred <- as.list(dfPred)
# convert numeric factors to character factors
dfPred <- lapply(dfPred,function(x)

as.character(num2charFac(x,char.levs =
as.character(levels(dat.train$class)))))

names(dfPred) <- c("truth","ensemble",ens$bestAlg)
dfPred <- as.data.frame(dfPred)
cat("Predictions for the best individual
models for iteration: ",r," of ",reps,"\n ")
print(dfPred)
cat("Completed Replication: ",r," of ",reps,"\n ")

}
# save performance results
saveRDS(Result1,"ensClassifPerf.RDS")
saveRDS(Result2,"indClassifPerf.RDS")
saveRDS(bestAlg,"bestAlg.RDS")
saveRDS(confMat,"confMat.RDS")
warnings()
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Statistical Methods for Pairwise
Comparison of Metagenomic Samples

Kai Song and Fengzhu Sun

1 Introduction

Microbes are widely distributed in various environments on the earth’s surface and
different parts of the human body, such as human gut, skin, and oral cavity. The
number of microbial cells in different parts of human body is estimated to be 10
times more than the number of human cells. Traditional microbial research relies
heavily on laboratory culture. However, only a small number of microorganisms can
be successfully cultured in the laboratory making culture-based methods not widely
applicable in many environments. Metagenomic sequencing technologies provide a
powerful approach to study the microorganisms directly from the environment. Two
main types of approaches, namely marker gene such as 16S rRNA profiling and
whole metagenome shotgun sequencing, are widely used in the field to investigate
complex microbial communities.

The comparison of microbial communities is a highly important problem in
ecological research. Many measures generally referred as beta diversity for the
comparison of microbial communities have been developed. In this chapter, we
critically review beta diversity measures based on either marker gene profiling
data or metagenomic shotgun sequencing data. Beta diversity measures provide
quantitative measurements of differences between two microbial communities,
laying the foundation for quantitative comparison of multiple samples. The beta
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diversity values between all pairs of samples as a dissimilarity matrix can be used
to study group relationships of the microbial communities and to understand the
relationships between microbial communities and environmental gradients such as
temperature and geographical location.

The organization of this chapter is as follows. In Sect. 2, we provide classic
measures for comparing microbial communities based on the relative abundance
profiles of different operational taxonomic units (OTUs) including the Euclidean,
Bray–Curtis, and Jaccard distances. These measures can be applied to both marker
gene profiling and shotgun sequencing data. In Sect. 3, we review various relatively
newly developed beta diversity measures based on the phylogenetic relationships
of the different OTUs and possibly their abundance profiles including UniFrac,
weighted UniFrac, and variance adjusted weighted UniFrac. These measures have
been mostly used for the analyses of marker gene profiling data. In Sect. 4, we
review recently developed alignment-free methods for the comparison of microbial
communities based on word pattern (k-mer) occurrences including Composition
Vector Tree (CV T ree), dS

2 , and d∗
2 . In Sect. 5, we present some practical examples

using these measures to compare microbial communities. The chapter concludes
with a discussion of the advantages and disadvantages of the different measures and
future directions for research on the comparison of microbial communities.

2 Microbial Community Comparison Methods Based on
OTU Abundance Data

For 16S rRNA marker gene profiling data, the reads are either clustered into
different groups or mapped to existing 16S rRNA databases to obtain the absolute
abundance of different OTUs in each sample. To remove the potential confounding
effects of the number of reads on beta diversity, the absolute abundance is normal-
ized by the total number of reads in each sample to obtain the relative abundance
of each OTU in each sample. Suppose we have a matrix, A = (Aij )N×M , where i

represents the sample and j represents the OTU, and Aij is the relative abundance
of the j th OTU in the ith sample. N and M are the total number of samples and
OTUs, respectively. Both quantitative and qualitative measures have been used to
compare microbial communities based on the relative OTU abundance data. The
quantitative measures, such as the Bray–Curtis dissimilarity, Canberra dissimilarity,
and Euclidean distance, consider the abundance of each OTU in the community. The
qualitative measures, such as Jaccard index and Dice coefficient, consider only the
presence/absence of each OTU in the communities, regardless of their abundance.
The commonly used quantitative measures for the comparison of two samples a and
b are as follows.

The Bray–Curtis dissimilarity,
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Dab =
∑M

j=1 |Aaj − Abj |
2

. (1)

The Canberra dissimilarity,

Dab = 1

Numa∪b

∑

j∈a∪b

|Aaj − Abj |
Aaj + Abj

, (2)

where Numa∪b is the number of OTUs (columns) that are present in either sample
a or sample b, that is, with abundance greater than 0. The summation is over all the
OTUs that are present in at least one of the samples.

The Euclidean distance,

Dab =

√√√√
√

M∑

j=1

(Aaj − Abj )2. (3)

The Chord distance,

Dab =
√√√√
√

M∑

j=1

(
Aaj√∑M
j=1 A2

aj

− Abj√∑M
j=1 A2

bj

)2

. (4)

The Gower distance,

Dab =
M∑

j=1

|Aaj − Abj |
(maxiAij − miniAij )

, (5)

where the maximum and minimum are taken over all the samples.
The Hellinger distance,

Dab =

√√
√√√

M∑

j=1

(√
Aaj −√Abj

)2

. (6)

In addition, one minus the Pearson or Spearman correlation coefficient between
Aa and Ab can be used to measure the distance between microbial communities a

and b.
The qualitative measures for the comparison of two samples a and b consider

only the presence/absence of OTUs and do not take their abundance levels into
consideration. Let Numa be the number of OTUs present in a sample a and a ∩ b



84 K. Song and F. Sun

be the set of OTUs present in both samples a and b. The commonly used qualitative
measures include the following.

The Hamming dissimilarity,

Dab = Numa + Numb − 2Numa∩b. (7)

The Jaccard dissimilarity,

Dab = 1 − Numa∩b

Numa + Numb − Numa∩b

. (8)

The Dice coefficient,

Dab = 1 − 2Numa∩b

Numa + Numb

. (9)

The Ochiai coefficient,

Dab = 1 − Numa∩b√
Numa × Numb

. (10)

The Lennon dissimilarity,

Dab = 1 − Numa∩b

Numa∩b + min(Numa − Numa∩b,Numb − Numa∩b)
. (11)

More information about the OTU-based measures and their performances can be
found from [8]. In their study, the authors used two real datasets and simulated
16S rRNA samples to evaluate the performances of 51 different OTU-based
measures to reveal two different underlying relationships: environmental gradient
and sample clustering. The two real datasets include microbial communities from
different fingertips and keyboards and from soil with different pH values. One
of the simulated samples used the unimodal abundance curves to mimic species
relative abundance levels that were assumed to be affected by an environmental
gradient. Different gradient locations along the curves were chosen to represent the
abundance levels of the different species in these samples. The abundance levels for
the species at the same location were normalized and used to generate the datasets.
For the other simulated samples, the authors simulated clusters of metagenomic
samples linked by a tree. At each level of the tree, the abundance vectors were
randomized and renormalized to generate the abundance vector of each sample
in the clusters for generating the datasets. It was shown that the Gower and χ2

distances perform better than other measures in revealing the relationships among
the samples along an environmental gradient even under low sequencing depth and
the presence of noise in simulating abundance vectors. The Jaccard dissimilarity
measure was shown to perform well in revealing the cluster relationships when
such relationships were prominent, but not very well for subtle clusters. The χ2
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distance was shown to perform well in revealing environmental gradients, but only
moderately well in revealing underlying clusters.

The advantage of the OTU-based measures is that they can be used flexibly for
comparing different metagenomic samples from different individuals and environ-
ments. However, when the OTU composition of different microbial communities
is highly heterogeneous, the OTUs of different communities are very different,
which could affect the effectiveness of these measures. Many OTU-based measures
are available, and their performances are highly different [8]. Therefore, it is
important to choose an appropriate beta diversity measure for comparing microbial
communities. In addition, none of these OTU-based methods can eliminate the
arch effect (an arch configuration of samples shown in a two-dimensional plane
simulated under a single environmental gradient). The performances of these meth-
ods were only compared using simple simulated datasets with only one underlying
environmental gradient. However, multiple underlying environmental gradients may
affect the composition of microbial communities in nature. The performances of
these measures under complex environmental gradients need to be investigated in
the future. The performances of these measures also depend on the sequencing
depth of the microbial samples. Further research is needed to investigate the impacts
of sequencing depth on the performances of the different OTU-based measures to
uncover the relationships among microbial samples.

3 Microbial Community Comparison Measures Based on a
Phylogenetic Tree

3.1 The FST Statistic and Phylogenetic Test for Comparing
Communities

The OTU-based measures consider each OTU in microbial communities equally
and ignore the evolutionary relationships among these OTUs. The phylogenetic-
based measures are those taking evolutionary relationship among sequences into
consideration when comparing microbial communities. Martin [17] developed
the FST and the Phylogenetic (P) test statistics for comparing two microbial
communities. The FST statistic measures the difference between two communities
by comparing the sequence diversity of each community with the diversity of
communities combined. The FST statistic is defined as

FST = θT − θW

θW

, (12)

where θT is the sequence diversity of the combined community, and θW is the
sequence diversity within each community averaged over all the communities being
compared.
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Various statistics can be used for estimating the sequence diversity θ . The average
sequence divergence is the expected number of nucleotide differences between any
pair of sequences chosen from a population. It is calculated as

θ =
k∑

i=1

∑

j<i

pipjdij , (13)

where k is the number of distinct sequences, pi is the frequency of the ith sequence,
pj is the frequency of the j th sequence, and dij is the number of differences
between two sequences i and j . Then, the value of θ is divided by the length
of the sequences compared to obtain the average nucleotide diversity that reflects
the probability two randomly chosen sequences differ at a single base position.
The population differentiation statistic, FST , can be calculated using a variety of
different computer programs, such as Arlequin [4] and Variscan [24]. To evaluate
the statistical significance of the observed value of FST , the sequences are randomly
labeled in the microbial communities to generate the randomized FST distribution.
The p-value is approximated by the proportion of the randomized FST values that
are larger than the observed FST value. The FST statistic was first proposed in
population genetics and could also be used to compare microbial communities.
This statistic was used to compare the genetic diversity differences among the
human intestinal microbial communities. The calculation of diversity is based on the
alignment of these sequences, which makes this statistic unsuitable for comparing
some community samples with highly divergent sequences that cannot be aligned.

An alternative approach to compare microbial communities is the phylogenetic
(P ) test [17]. For this method, the phylogenetic tree is firstly constructed using the
sequences from all microbial communities, and then, the difference between each
pair of communities is measured using parsimony score (the minimum number of
branches that can be changed to form two separate subtrees with nonoverlapping
branches for the two communities). The lower the parsimony value is, the greater the
difference between the communities is. The significance of the observed parsimony
score is evaluated by randomization under the null hypothesis that the sequences in
different communities are randomly distributed across the phylogenetic tree. Two
randomization methods can be used for generating the distribution of parsimony
scores under the null hypothesis. One is to assume that the community identities of
individual sequences remain fixed and the evolutionary relationships among these
sequences are randomized. The other is to assume that the phylogenetic tree is fixed
and the community identities of individual sequences are randomized.

The phylogenetic (P ) test has been widely used in comparing microbial com-
munities considering the evolutionary relationships of these sequences. It has been
used in evaluating the relationships among human intestinal soil and marine viral
microbial communities. The limitation of this approach is that it does not consider
the branch length in the phylogenetic tree when estimating the parsimony score.
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3.2 UniFrac, W-UniFrac, VAW-UniFrac, and Generalized
UniFrac for Comparing Microbial Communities

Other widely used community comparison measures, namely UniFrac [12],
weighted UniFrac (W-UniFrac) [14], generalized UniFrac [3], and variance adjusted
weighted UniFrac (VAW-UniFrac) [2], are also based on phylogenetic trees. To
implement these measures, the phylogenetic tree (rooted and known branch lengths)
of the sequences in all communities is constructed, and each sequence is labeled
according to the community from which it arises. The comparison of each pair of
communities is performed based on the phylogenetic subtree by keeping the leaf
nodes that are only from these two communities. The UniFrac measures the distance
between two communities by the fraction of lengths of the tree branches that lead to
descendants from each single community, but not from both communities. UniFrac
can be calculated as

UniFrac =
∑n

i=1 bi |I (pA
i > 0) − I (pB

i > 0)|
∑n

i=1 bi

, (14)

where n is the number of branches in the tree, bi is the length of branch i, pA
i

and pB
i are the OTU fractions in branch i for community A and B, respectively,

and I (·) is the indicator function. The higher value of the statistic indicates that the
two communities are evolutionarily far apart, and thus the difference between the
two communities is high. If the two communities are identical, they do not have
independent evolutionary processes, and thus the UniFrac value is zero. If the two
communities are completely separated in the phylogenetic tree, that is, they follow
two independent evolutionary processes, the UniFrac value is one.

From the definition of UniFrac, it can be seen that it only considers whether an
OTU appears in a community, but not the abundance of the OTU. If the sets of OTUs
contained in the two communities are identical, then, regardless of whether the
abundance of each OTU is different or not between the communities, the UniFrac
value is zero. In some cases, the researchers are interested in the changes in OTU
abundances in the communities, such as studying the changes in the distribution
of human intestinal microbial communities under antibiotic treatment. In such
scenarios, UniFrac is not an appropriate measure for comparing the samples.

W-UniFrac, which is defined based on UniFrac, takes the abundance information
into consideration and weights each branch length by the difference of the fractions
of OTUs belonging to the branch for the two communities. W-UniFrac can be
calculated as

W-UniFrac =
∑n

i=1 bi × |pA
i − pB

i |
∑n

i=1 bi × (pA
i + pB

i

) , (15)
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with the same notations as in the definition of UniFrac. The denominator of W-
UniFrac is equal to or larger than the numerator and equality holds when either
pA

i = 0 or pB
i = 0 for all i, which means that the two communities are completely

separated. The numerators of both UniFrac and W-UniFrac can be written as

n∑

i=1

bi × ωi. (16)

In W-UniFrac, ωi = |pA
i − pB

i |, and in UniFrac, ωi = |Ai − Bi |, where Ai = 1,
if there are sequences from sample A in branch i, and Ai = 0, otherwise. The
definition of Bi is similar to that ofAi for sample B.

Many studies used UniFrac and W-UniFrac for analyzing the relationships
among microbial communities, such as investigating the relationships among
intestinal microbial communities from children, adult, and human from different
countries, the difference between the intestinal microbial communities from patients
with inflammatory bowel diseases (IBD) and healthy individuals, the variation of the
microbial communities from different human body sites, and the mammalian gut
microbial communities from carnivores, omnivores, and herbivores. UniFrac and
W-UniFrac can be implemented using online application [13] or the local software,
such as QIIME2 [1]. An improved version of UniFrac (Striped UniFrac) was also
developed for comparing microbial communities when the number of microbial
communities is large [18].

W-UniFrac is primarily influenced by abundance changes along branches with
large proportions and is less sensitive to the abundance changes on the branches
with small proportions. To attenuate the weight on branches with large proportions,
Chen et al. [3] proposed a new measure, generalized UniFrac, that uses the relative
difference |pA

i − pB
i |/(pA

i + pB
i ) in its formulation. Generalized UniFrac can be

calculated as

G-UniFrac =
∑n

i=1 bi(p
A
i + pB

i )α|pA
i −pB

i

pA
i +pB

i

|
∑n

i=1 bi(p
A
i + pB

i )α
, (17)

where α ∈ [0, 1] controls the contribution from different branches. W-UniFrac is
a special case of the generalized UniFrac when α = 1. The generalized UniFrac
measure is more powerful in detecting abundance changes in moderately abundant
lineages than UniFrac and W-UniFrac [3] with appropriately chosen α.

3.3 VAW-UniFrac for Comparing Communities

The definition of W-UniFrac does not consider the variance of the weight ωi =
|pA

i −pB
i | for the ith branch length. The true relationship between the communities
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may not be well characterized if the variance of ωi in W-UniFrac is ignored. Hence,
Chang et al. [2] proposed to adjust the weight ωi using its standard deviation. First, a
phylogenetic tree with all the AT + BT sequences in the two communities as leaves
is constructed, where AT and BT are the total numbers of reads in communities
A and B, respectively. Then, the variance of ωi for each branch is estimated based
on the null hypothesis that the community identity of each leaf is randomly labeled
across the two communities.

For the ith branch of the phylogenetic tree, let Ai and Bi be the numbers of
sequences in the ith branch from communities A and B, respectively, mi = Ai +Bi

be the total number of sequences for this branch, and m = AT + BT be the
total number of sequences belonging to the phylogenetic tree. Then, AT sequences
are randomly chosen from the total m sequences on the phylogenetic tree and
are labeled as being from community A. For other sequences, they are labeled as
being from community B. Then, the number of sequences in the ith branch that
belong to community A, Ai , can be modeled with a hypergeometric distribution
with parameters (mi,m,AT ). The probability distribution of Ai is

P(Ai = k) =
(

mi

k

)(
m−mi

AT −k

)

(
m
AT

) , k = max(0,mi + AT − m), · · · , min(mi, AT ).

(18)
Therefore,

E(Ai) = miAT

m
, V ar(Ai) = miAT (m − AT )(m − mi)

m2(m − 1)
. (19)

Let

ti = Ai

AT

− Bi

BT

= Ai

AT

− mi − Ai

BT

= Ai

( 1

AT

− 1

BT

)− mi

BT

. (20)

Under the null hypothesis that the AT sequences are randomly chosen from the m

sequences, the expectation and variance of ti can be calculated as

E(ti) = 0, V ar(ti) = mi(m − mi)

AT BT (m − 1)
. (21)

From the above formula, the variance adjusted weight (VAW) for the length of ith
branch of the tree is

ωi = |ti |√
V ar(ti)

∝ | Ai

AT
− Bi

BT
|√

mi(m − mi)
. (22)

VAW-UniFrac can be defined as
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VAW-UniFrac =
∑n

i=1 bi

| Ai
AT

− Bi
BT

|√
mi(m−mi)

∑n
i=1 bi

| Ai
AT

+ Bi
BT

|√
mi(m−mi)

. (23)

Both simulated and real data were used to evaluate the performances of UniFrac,
W-UniFrac, and VAW-UniFrac in revealing the relationships of microbial commu-
nities [2]. The real data included microbial communities from human skin, mouse
gut, and tropical forests. The results show that VAW-UniFrac has better performance
than UniFrac and W-UniFrac [2].

The OTU-based methods can compare different microbial communities if they
share a large fraction of OTUs. On the other hand, the phylogenetic tree-based
approaches are applicable when the OTU composition of different microbial
communities is highly heterogeneous. The phylogenetic tree-based methods also
consider the evolutionary relationships of the OTUs from different communities,
while the OTU-based methods ignore such relationships. With the increasing
sequencing depth, a large number of sequenced reads are produced for each sample.
It is challenging to construct the phylogenetic tree of sequences from all samples
before using the phylogenetic-based methods. In addition, sequencing errors and
sequencing length may also affect the accuracy of phylogenetic tree, which in turn
affect the performance of the phylogenetic-based methods.

4 Alignment-Free Methods for the Comparison of Microbial
Communities

With the rapid development of high-throughput sequencing technologies, whole
metagenome shotgun sequencing (WMGS) becomes a powerful approach to inves-
tigate complex microbial communities and the relationship between them. Metage-
nomic data provide more complete information than 16S rRNA gene profiling for
the microbial communities. However, the beta diversity measures for metagenomic
data from different microbial samples are significantly understudied. The general
approach to analyze metagenomic data is based on alignment or de novel assembly.
The alignment-based methods use alignment algorithms, such as the Smith–
Waterman algorithm and BLAST, to first map the sequencing reads to known
microbial genomes or pathways in existing nucleic acid databases and then compare
the abundance of different microbial organisms or functional categories between
each pair of samples. However, the known microbial genomes and genes in existing
databases are limited such that the aligned sequencing reads represent only a small
fraction in the samples and a large fraction of reads cannot be mapped to known
genomes or genes. Therefore, alignment-based analysis methods do not make full
use of the information from shotgun reads data resulting in significant loss of
information. Based on the current literature, the fraction of unaligned reads in
human gut metagenomic samples is about 40%, while, in ocean samples, the fraction
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is up to 50%. De novo assembly based methods are generally time-consuming and
computationally expensive. It is challenging to assemble the metagenomic reads
for the microbial genomes that share similar regions and the short reads are not
long enough to resolve the ambiguity. Alignment-free methods that do not rely
on reference genomes or de novo assembly are promising alternative approaches
for metagenomic sample comparison. Such methods include dS

2 and d∗
2 [21, 22],

CVTree [19], and others [28, 29]. The alignment-free methods can make use of all
the information from the metagenomic samples and, thus, are powerful approaches
to analyze metagenomic samples.

In shotgun sequencing, a read can come from the forward strand or the reverse
strand. Therefore, we consider all the reads in a sample and their complements
when we count the numbers of occurrences of k-mers (k-grams, words) in the
sample. For a given k-mer w, let Xw be the number of its occurrences and f X

w =
Xw/

∑
w∈Ak Xw be its relative frequency.

For some alignment-free dissimilarity measures, such as d∗
2 and dS

2 [21, 22],
and CVTree [19], the expected number of occurrences of word w = w1w2 · · · wk ,
E(Xw), can be estimated using an rth order Markov model [20]. The transition
probability matrix for the Markov model can be estimated based on the num-
bers of occurrences of r-mers and (r + 1)-mers, and the estimated probability
of observing nucleotide wr+1 given the preceding nucleotides w1w2 · · · wr is
PM(wr+1|w1w2 · · · wr) = Xw1w2···wr+1/Xw1w2···wr . Then, E(Xw) based on the rth
order Markov model can be calculated as

E(Xw) = Nf X
w1w2···wr

k−r∏

n=1

PM(wn+r |wnwn+1 · · · wn+r−1), (24)

where N is the total number of k-mers in a metagenomic sample. For the comparison
of metagenomes, the independent identically distributed (IID) model (r = 0) with k-
mer length between 6 and 9 bps works quite well [6]. The difference between the
number of occurrences of k-mer w and its expectation is defined as X̃w = Xw −
E(Xw).

The alignment-free dissimilarity measures, d2, d∗
2 , and dS

2 , can be defined as

d2 = 1

2

(
1 −

∑
w XwYw√∑

w X2
w

√∑
w Y 2

w

)
, (25)

d∗
2 = 1

2

(
1 −

∑
w

X̃w√
E(Xw)

Ỹw√
E(Yw)√

∑
w

X̃2
w

E(Xw)

√
∑

w
Ỹ 2

w

E(Yw)

)
, (26)

dS
2 = 1

2

(
1 −

∑
w

X̃wỸw√
X̃2

w+Ỹ 2
w√

∑
w

X̃2
w√

X̃2
w+Ỹ 2

w

√
∑

w
Ỹ 2

w√
X̃2

w+Ỹ 2
w

)
, (27)
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where X and Y represent the vectors consisting of the numbers of occurrences of all
the k-mers for the two metagenomic samples, respectively. The three dissimilarity
measures were originally developed for studying the relationships among individual
genomic sequences based on NGS short reads data [21]. They were later used to
compare metagenomic samples [6, 23]. When the metagenomic samples are highly
similar, the values of d2, d∗

2 , and dS
2 are close to 0. The performances of these dis-

similarity measures were evaluated using different types of metagenomic datasets,
including mammalian gut metagenomic samples and marine metagenomic samples
across the world [6]. The dissimilarity measure, dS

2 , can obtain superior performance
than other measures when comparing metagenomic samples by revealing the group
or environmental gradient relationships. In addition, the dS

2 was also used to analyze
the 16S rRNA datasets from the gut microbiota of abalone for revealing the effect of
temperature on their gut microbial composition [26]. The implementation of these
alignment-free dissimilarity measures and many other alignment-free sequence
comparison measures is available from the software, CAFE [16], with an excellent
user interface.

The number of parameters in a Markov chain model increases exponentially with
the order of the Markov chain r . With limited amount of data, the transition probabil-
ities cannot be estimated accurately, and thus, the expected numbers of occurrences
of k-mers cannot be estimated accurately either. To overcome such issues, Liao et
al. [10] developed a data-driven variable length Markov chain (VLMC) method to
estimate the expected numbers of occurrences of k-mers. The VLMC approach
for estimating the expected numbers of occurrences of k-mers based on high-
throughput metagenomic data is implemented with the following three steps: (1)
a full prefix tree is built based on k-mers of different lengths; however, such a tree
usually overfits the data. (2) The tree is subsequently pruned to remove redundant
branches based on the Kullback–Leibler divergence. (3) Transition probabilities
are calculated with respect to the Markov orders from the context tree. Finally,
the expected numbers of occurrences of k-mers can be calculated. Compared with
FOMC (fixed order Markov chain), the VLMC has a flexible number of parameters
avoiding estimating the large number of free parameters. The modified d∗

2 and dS
2

were applied to compare transcriptomic or metatranscriptomic datasets and have
been shown to perform better than the corresponding measures based on the FOMC
approach. However, when applied to metagenomic datasets, the modified d∗

2 and dS
2

did not show a clear advantage over the original ones.
In addition to using VLMC for estimating the expected numbers of k-mers

as above, Song et al. [23] proposed a reads binning approach to improve the
performance of alignment-free dissimilarity measures in metagenomic sample
comparison. The basic idea is to group the reads into different bins and then sum
over the d∗

2 and dS
2 across all the bins. For this approach, the first step is to group

the bacterial genomic sequences into different bins and construct a corresponding
Markov model for each bin using these bacterial genomic sequences. Secondly, the
log-likelihood of each NGS read under a Markov chain of order r can be calculated
as
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LL(Xw|Mr) =
N−r∑

i=1

log PMr (Xwi+r
|Xwiwi+1···wi+r−1), (28)

where N is the length of the read, Mr is an rth order Markov chain, and
PMr (Xwi+r

|Xwiwi+1···wi+r−1) can be estimated based on the numbers of occurrences
of r-mers and (r + 1)-mers, as above. So, the bin which a read belongs to can be
estimated as the one having the largest log-likelihood value for the read,

λ = argmaxc=1,··· ,CLL(X|Mc
r ), (29)

where C is the number of Markov models constructed for reads binning, and λ is the
predicted bin which the read belongs to. Finally, the k-mer count and its expectation
are calculated in each bin of the NGS reads. The centralized k-mer counts from
all the bins are combined and used for the extended definition of alignment-free
dissimilarity measures,

X̄w =
C∑

c=1

(Xc
w − nc

wpc
X,w), (30)

where c is the index of the cth bin.
Song et al. [23] evaluated the performances of d∗

2 and dS
2 with Markov model-

based binning approaches using both simulated and real metagenomic datasets.
One hundred randomly chosen bacterial genomic sequences were used to simulate
the NGS metagenomic data for two models, environmental gradient and group
relationship. In the simulation study, it was shown that d∗

2 and dS
2 with reads

binning outperform the corresponding measures without reads binning or other
binning approaches, such as COCACOLA [15], MetaBAT [7], Kraken [27], or
MBMC [25], in detecting the relationship among metagenomic samples. The newly
developed measures were used for analyzing three real metagenomic datasets,
including 107 fecal metagenomic samples from different countries, 60 metagenomic
samples from four human body sites, and 16 soil metagenomic samples from
different ecosystems. The d∗

2 and dS
2 with reads binning can successfully reveal

the underlying relationships among these metagenomic samples: (a) the human
gut metagenomic samples from different countries can be clustered according to
country; (b) the samples from different human body sites can be clustered according
to the body sites; and (c) metagenomic samples from different ecosystems can be
clustered according to the environment.

However, the d∗
2 and dS

2 dissimilarity measures with reads binning have several
limitations. Firstly, their performances depend on the choice of the number of bins.
Secondly, the optimal length of k-mers depends on the sequencing depth. Finally,
the order of Markov models used to estimate the expected numbers of k-mers
influences their performances.
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5 A Tutorial on the Use of UniFrac Type and Alignment-Free
Dissimilarity Measures for the Comparison of
Metagenomic Samples

5.1 Analysis Steps for UniFrac, W-UniFrac, Generalized
UniFrac, and VAW-UniFrac

In this section, we demonstrate the use of MEGA [9] to generate the tree linking
the 16S rRNA sequences and the R package “GUniFrac” to calculate the various
UniFrac measures including UniFrac, W-UniFrac, generalized UniFrac, and VAW-
UniFrac. Fifteen samples with 16S rRNA sequences from three human body sites
(oral, gastrointestinal, and skin) are used [5]. First, we use the option “Open A
File” in MEGA to open the file containing the 16S rRNA sequences. Then, we
use the option “Align” for multiple sequence alignment. The resulting multiple
sequence alignment is stored in a file with “.meg” format. Finally, we use the
option “Phylogeny” and select the method of “Neighbor Joining” to construct the
phylogenetic tree for these 16S rRNA sequences. The resulting phylogenetic tree is
stored in a file with “.tree” format.

With the rooted phylogenetic tree and the OTU count table for the 16S rRNA
sequences from different samples, we use the R package “GUniFrac” to compute the
UniFrac-type dissimilarity measures. The package can be installed in the R software
using the command:

install.packages(“GUniFrac”)

The following steps are used for the analysis of the 16S rRNA sequence data.

1. Calculate the UniFrac type dissimilarity measures by

unifracs = GUniFrac(otu.tab, throat.tree, alpha=c(0, 0.5, 1))$unifracs
# otu.tab is the OTU count table with n samples and q OTUs
# throat.tree is the rooted phylogenetic tree generated by MEGA
# alpha is the parameter controlling weight on the lineages

We can obtain the distance matrices of UniFrac-type measures using the follow-
ing commands:
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dw = unifracs[, , “d_1”] # Weighted UniFrac
du = unifracs[, , “d_UW”] # Unweighted UniFrac
dv = unifracs[, , “d_VAW”] # Variance adjusted weighted UniFrac
d0 = unifracs[, , “d_0”] # GUniFrac with alpha 0
d5 = unifracs[, , “d_0.5”] # GUniFrac with alpha 0.5

2. Visualization of the relationships among the samples using principal coordinates
analysis (PCoA), which is a multidimensional scaling (MDS) method that
converts a between-sample dissimilarity matrix into two-dimensional, or three-
dimensional, ordinates of samples and arranges the samples in the ordinate space.
We used the R package “MASS” for PCoA:

library(MASS)
d = as.dist(du)
d.mds = isoMDS(d,k=2)
x1 = d.mds$points[,1]
x2 = d.mds$points[,2]
plot(x1,x2,pch=15)

3. The relationships among these samples can be visualized using scatterplots as
shown in Fig. 1.

5.2 Analysis Steps for the Comparison of Microbial
Communities Based on Alignment-Free Methods

CAFE [16] was developed to calculate 28 alignment-free genome and metagenome
comparison measures and to visualize the relationships among the samples using
either a clustering tree or PCoA. It can be easily installed on PC, Mac, and Unix
machines. Here, we give an example of computing dissimilarity measures based on
high-throughput sequencing data of eight microbiome samples from four body sites:
buccal mucosa, supragingival plaque, tongue dorsum, and stool [11]. Since CAFE
can only input files in FASTA format, we use a Python script for format conversion.
The following commands are used for computing the values of d∗

2 and dS
2 :
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Fig. 1 The principal coordinate analysis (PCoA) plots of 15 samples from three body sites (oral,
gastrointestinal, and skin) based on UniFrac, W-UniFrac, VAW-UniFrac, and G-UniFrac with α =
0 and 0.5
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./cafe -D D2shepp, D2star -I fa_files.fa -K 10 -M 3
# -D is the dissimilarity measures
# -I is the input of fasta files
# -K is the length of k-mer
# -M is the order of Markov chain

We then use the d∗
2 and dS

2 values between each pair of samples to construct the
cluster tree as shown in Fig. 2.

6 Discussion

In this chapter, we reviewed a variety of different beta diversity measures for
comparing microbial communities using either 16S rRNA or NGS short reads data.
Many measures have been developed for the comparison of microbial communities
based on marker gene profiling data with UniFrac and Bray–Curtis dissimilarity
being the most widely used ones in the literature. Many ecological insights about the
relationships among microbial communities have been obtained through such anal-
yses. For the comparison of microbial communities based on shotgun metagenomic
short reads data, one common approach is to map the reads to known genomes,
genes, and pathways to obtain their relative abundance profiles and then apply com-
monly used dissimilarity measures such as Bray–Curtis, Manhattan, and Euclidean

Fig. 2 The clustering results of the eight metagenomic samples using d∗
2 (a) and dS

2 (b). Red
squares: Stool (ST); Green squares: Buccal mucosa (BM); Blue squares: Supragingival plaque
(SP); Purple squares: Tongue dorsum (TD)
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distances to the abundance profiles to compare the metagenomic samples. Since
a large fraction of short reads cannot be mapped to the known genomes or gene
databases, these unmapped reads were not used in such methods for metagenome
comparison resulting in potential loss of information. In the last decades, several
research groups developed alignment-free methods using the frequency of k-mers
for metagenome comparison including those based on the relative abundance
profiles of k-mers or background adjusted k-mer frequencies. Applications of these
statistics, in particular, the background adjusted frequency-based measures such
as CVTree, d∗

2 , and dS
2 , to both simulated and real metagenomes showed the

power of these newly developed measures for metagenome comparison. Despite the
advantages of alignment-free metagenome comparison methods, it is challenging
to decide the optimal k-mer length and the background model for describing the
microbial communities. It is also challenging to identify which microorganisms
drive the difference of the microbial communities. These are the topics for future
studies.
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Beta Diversity and Distance-Based
Analysis of Microbiome Data

Anna M. Plantinga and Michael C. Wu

1 Introduction

Ecological measures of beta diversity aim to capture global dissimilarity between
two ecological communities. In the context of microbiome data analysis, this
corresponds to between-subject dissimilarities in microbial composition. Distance-
based or “community-level” analysis then compares these pairwise dissimilarities
between subjects to pairwise dissimilarities with respect to some phenotype.
Scientifically, distance-based analysis identifies whether an association between
microbiome composition and the phenotype is present; the answer to this question
can justify further investigation into the form of that association. Scientists often
view beta-diversity analysis as an investigation of differences in global microbial
community structures rather than the role of individual community members.

Statistically, distance-based analysis has the potential for increased power, for
at least three reasons. First, the association between any individual taxon and the
phenotype may be of only modest strength, and looking at these associations in
aggregate can enable detection of modest, but concerted, shifts. Second, depending
on body site and taxonomic level of study, the microbiome may include hundreds
to thousands of taxa, and power may be improved by avoiding the need to adjust
for a large number of multiple comparisons. Third, taxa do not exist in isolation
but rather have known phylogenetic relationships; other structural features, such as
functional similarity, are under investigation and may be possible to incorporate
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in the future. Accounting for these relationships can allow the assumed form of
association to better match the underlying truth and therefore again result in higher
statistical power. Due to these scientific and statistical advantages, distance-based
analysis of beta diversity has become one of the core features of most microbiome
data analyses, along with within-sample diversity (alpha diversity) and investigation
of the contribution of individual taxa.

Importantly, we note that beta-diversity analysis using distances and dissimi-
larities is not the only form of “community-level analysis.” For example, alpha
diversity can also be viewed as a means of studying overall community com-
positions, and more recently, considerable work has been done on treating the
microbial profiles as correlated high-dimensional response variables. Consequently,
advanced multivariate modeling approaches such as those that can jointly model
the distribution of all taxa have been proposed [32]. These methods are often
based on generalized linear models, using random effects or latent variables to
account for the high dimensionality and correlation between taxa [22, 23]. Joint
modeling of abundance data can account for the mean–variance relationship and
overdispersion in microbiome data and therefore may provide better separation of
the locality and dispersion effects in ordination analysis; a fully specified model
also permits assumptions underlying the analysis to be formally evaluated [32]. On
the other hand, the trade-off is that they may make further assumptions and may be
limited in terms of their scope of application, for example, focusing primarily on
clustering or on hypothesis testing. However, although these methods represent an
increasingly important topic, they remain outside the scope of this chapter, which
focuses on the usual beta-diversity analysis approaches that remain the mainstay of
many applications.

In the following sections, we outline common distance and dissimilarity mea-
sures (Sect. 2), unconstrained ordination analysis and graphical displays of beta
diversity (Sect. 3), and approaches to hypothesis testing (Sect. 4). We conclude
with a discussion of strengths, limitations, and directions for future investigation
in distance-based microbiome analysis.

2 Quantifying Dissimilarity: Common Beta Diversity Metrics

Beta diversity, broadly speaking, refers to variation in species composition between
different ecological (sub)communities. The idea of partitioning overall “landscape”
species diversity, or gamma diversity, into the product of species complexity within
particular niches—alpha diversity—and the extent of differentiation between niche
communities—beta diversity—originated with R.H. Whittaker in 1960 [33, 34, 37].
In an ecological context, the “niche” often refers to a particular position along a
resource gradient; the classical examples are varying levels of sunlight at different
heights in a forest and nutrient density gradients in soil. In the context of human
microbiome studies, a niche commonly refers to a particular body site on an
individual, such as the intestinal or vaginal mucosa. Therefore, measures of beta
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diversity in this context quantify dissimilarity between different body sites or
individuals.

Before discussing specific measures of distance and dissimilarity, it is helpful to
consider the precise meaning of these terms. To be a true distance, or a metric, a
function d must satisfy the following three axioms:

1. Identity of indiscernibles (coincidence): d(a, b) = 0 ⇐⇒ a = b;
2. Symmetry: d(a, b) = d(b, a); and
3. Triangle inequality: d(a, c) ≤ d(a, b) + d(b, c).

While the first two properties hold for all indices we consider, the triangle inequality
fails for several commonly used dissimilarities. Additional properties that may be
useful in the evaluation of dissimilarities and distances are that the dissimilarity
between two samples should not depend on scale changes, species that are absent
from both samples, and the addition of new samples to an analysis (see [11] for
further discussion).

Many approaches to quantifying dissimilarity between two microbial communi-
ties exist, of which several are summarized in Table 1. The Bray–Curtis dissimilarity
is one of the most commonly used non-phylogenetic measures [6], though it does not
satisfy the triangle inequality and hence is not a true distance. Typically applied to
relative abundance data, the Bray–Curtis dissimilarity is the quantitative counterpart
to the Sørensen–Dice coefficient, a “qualitative” dissimilarity in that it considers
only presence or absence of species. The Sørensen–Dice coefficient is directly
related to the Jaccard distance, another commonly used metric applicable to generic
set comparisons, via S = 2J/(1 + J ), where S and J indicate the corresponding
similarity indices S = 1 − DS and J = 1 − DJ . The Jaccard distance satisfies all
three distance axioms. The canonical form of the Jaccard distance is qualitative, but
a quantitative version is also used in practice.

Some distances and dissimilarities have also been developed specifically in the
context of the microbiome, most notably the UniFrac family of distances and dis-
similarities. These include unweighted UniFrac distance (qualitative) [19], weighted
UniFrac (quantitative) [20], and generalized UniFrac (intermediate) [9], as well as a
variance-adjusted weighted UniFrac [7]. The main advantage of the UniFrac family
of dissimilarities is that phylogenetic information is directly incorporated, such that
communities containing taxa with close phylogenetic relationships are considered
more similar than those containing phylogenetically distant taxa.

Application of these distances and dissimilarities is affected by unique challenges
presented by microbiome data. Qualitative measures often assume that sample
“volume” is similar across the samples being compared, an assumption violated
by uneven sampling depth. Since the total read count for each sample is not
informative about the total bacterial concentration in a subject, rarefaction is often
used prior to calculating qualitative dissimilarities in order to avoid confounding by
sampling depth [15]. In addition, the compositionality of relative abundance data
renders direct application of Euclidean distances concerning. Instead, Euclidean
distances may be applied to centered log-ratio transformed abundances (the result
is referred to as the Aitchison distance [2]), and centered log-ratio transformations
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Table 1 Definitions and characteristics of commonly used distances and dissimilarities

Name Definition Data type Phylogeny

Bray–Curtis DBC
ii′ = 1

2

∑J
j=1|pij − pi′j | Quantitativea No

Sørensen–Dice DS
ii′ = 1 − 2

∑J
j=1 δij δi′j∑J

j=1 δij +∑J
j=1 δi′j

Qualitativeb No

Binary Jaccard DJB
ii′ = 1 −

∑J
j=1 δij δi′j∑J

j=1(δij +δi′j −δij δij ′ )
Qualitative No

Quantitative Jaccard D
JQ

ii′ = 1 −
∑J

j=1 min(pij ,pi′j )
∑J

j=1 max(pij ,pi′j )
Quantitative No

Unweighted UniFrac DU
ii′ =

∑J
j=1 bj |δij −δi′j |
∑J

j=1 bj

Qualitative Yesc

Weighted UniFrac DW
ii′ =

∑J
j=1 bj |pij −pi′j |

∑J
j=1 bj (pij +pi′j )

Quantitative Yes

Generalized UniFrac D
(α)

ii′ =
∑J

j=1 bj (pij +pi′j )α
∣∣∣∣
pij −p

i′j
pij +p

i′j

∣∣∣∣
∑J

j=1 bj (pij +pi′j )α
Intermediated Yes

a pij indicates the relative abundance of taxon j in subject i
b δij = I (pij > 0) indicates presence of taxon j in subject i
c bj indicates the length of the branch leading to taxon j on a rooted phylogenetic tree
d The parameter α controls how much weight is given to quantitative versus qualitative information

in the generalized UniFrac dissimilarity

are sometimes recommended prior to quantitative dissimilarities more generally,
though it is unclear whether this is necessary for valid distance-based inference
[31]. An isometric log-ratio (ILR) transformed variant of weighted UniFrac has been
developed to account for compositionality in UniFrac family distances [28].

As suggested in the preceding paragraphs, two important factors to consider
when choosing a dissimilarity for a particular analysis are (1) whether to use
a quantitative (abundance) measure or a qualitative (presence/absence) measure
and (2) whether to incorporate structural relationships between components of the
community (primarily phylogeny). The goal is to choose a dissimilarity that closely
matches the true form of association, to capture as much of the relevant structure
as possible. A “good” choice of dissimilarity will lead to better discrimination
on graphical displays and higher power in global hypothesis tests. Naturally, the
underlying form of association is rarely known in advance. Therefore, beta-diversity
analyses are often repeated with several different measures of dissimilarity, and
most distance-based hypothesis testing frameworks incorporate omnibus tests that
consider multiple dissimilarity measures in addition to tests that require choosing a
single dissimilarity.

We now compute the distances and dissimilarities described in Table 1 using
R. For all examples in the present chapter, we use the throat microbiome dataset
of Charlson et al. [8], which is readily available in the R package GUniFrac.
The OTU table includes abundance of 856 taxa in 60 individuals, of whom 32 are
nonsmokers and 28 are smokers. Additional covariates such as age and sex and a
phylogenetic tree relating the OTUs are also available.
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Computing Distances and Dissimilarities

library(GUniFrac) # for UniFrac family distances
library(vegan) # for all other distances

## Load Charlson data (in GUniFrac)
data(throat.otu.tab)
data(throat.tree)
data(throat.meta)

## Compute D matrices
# Creates array containing all requested alphas +

unweighted
unifracs <- GUniFrac(otu.tab = throat.otu.tab,

tree = throat.tree,
alpha = c(0.5, 1))$unifracs

unweighted <- unifracs[,,"d_UW"]
gen0.5 <- unifracs[,,"d_0.5"]
weighted <- unifracs[,,"d_1"]

# Sorensen--Dice is binary Bray--Curtis
braycurtis <- as.matrix(vegdist(x = throat.otu.tab,

method = "bray", binary = FALSE))
sorensen <- as.matrix(vegdist(x = throat.otu.tab,

method = "bray", binary = TRUE))

# Quantitative and binary Jaccard
jaccard.q <- as.matrix(vegdist(x = throat.otu.tab,

method = "jaccard", binary = FALSE))
jaccard.b <- as.matrix(vegdist(x = throat.otu.tab,

method = "jaccard", binary = TRUE))

A sample of the output for the first four subjects is shown below and demonstrates
that based on the weighted UniFrac measure of dissimilarity, the microbiomes of
subjects 1 and 3 differ more from each other (D1,3 = 0.30) than the microbiomes
of subjects 4 and 5 (D4,5 = 0.13). In fact, subject 1 is quite different from each
of 3, 4, and 5, whereas those three subjects have more similar microbiomes. The
metadata reveals that subject 1 is a nonsmoker, whereas subjects 3, 4, and 5 are all
smokers. As we move on to ordination and hypothesis testing, the goal will be to
more rigorously evaluate whether (as we saw in this small example) smokers and
nonsmokers tend to be more dissimilar than subjects in the same group.
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Weighted UniFrac Distances

> weighted[1:4,1:4]
Subj1 Subj3 Subj4 Subj5

Subj1 0.0000000 0.3038448 0.2708932 0.2875414
Subj3 0.3038448 0.0000000 0.1431624 0.1823744
Subj4 0.2708932 0.1431624 0.0000000 0.1282493
Subj5 0.2875414 0.1823744 0.1282493 0.0000000

3 Ordination and Dimension Reduction

Ordination analysis aims to summarize as much of the variability in the original
data as possible in a lower dimensional space [37]. Unconstrained ordination, in
which key explanatory or response variables are not taken into account during the
ordination analysis, is primarily an exploratory method; additional variables are
included only in post hoc analyses. In contrast, constrained ordination computes
the new axes conditional on the outcome or explanatory variables of interest with
the aim of discovering microbiome features that best distinguish different levels of
the constraining variable. In this section, we discuss several of the most common
unconstrained ordination and dimension reduction methods, including subsequent
graphical displays, for exploratory analysis of microbiome beta diversity.

3.1 Principal Coordinates Analysis

Principal coordinates analysis (PCoA), also called metric multidimensional scaling
(MDS), is a standard ordination method for generic distance or dissimilarity
measures. The standard PCoA analysis proceeds as follows:

1. Compute an n × n distance or a dissimilarity matrix D. This may be generated
using one of the distances or dissimilarities defined in Table 1 or any others
deemed suitable for a particular application.

2. Center D via

K = −1

2

(
I − 1n1′

n

n

)
D2
(
I − 1n1′

n

n

)
, (1)

where D2 is the elementwise square.
3. Compute the eigendecomposition of K.
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The eigenvectors corresponding to the largest m eigenvalues in the eigendecomposi-
tion of K may then be used for a lower dimensional representation of the data or for
graphical displays. In particular, the two leading eigenvectors (principal components
or PCs) are often used to plot the data.

Each distance and dissimilarity emphasizes a different aspect of the data and
community structure. Thus, the choice of distance or dissimilarity in Step 1 affects
the features of the data displayed in the PCoA plot. For instance, if the presence of
rare taxa varies between subjects with and without a disease, then a PCoA plot
based on a qualitative measure such as unweighted UniFrac (which focuses on
presence/absence) may show distinct separation between the two groups, whereas
a PCoA plot based on a quantitative measure such as weighted UniFrac (which
emphasizes relative abundance) would show little or no separation. Hence, as
mentioned in the previous section, presenting the results under multiple dissimilarity
metrics may be more robust to the true form of association and may even provide
some information about which microbiome features are driving the association.

Below, we apply PCoA to the Charlson data. The analysis below demonstrates
that the first two PCs in an ordinary PCoA analysis using the weighted UniFrac
distance explain 29.4% and 22.5% of the variability, respectively. The PCoA plot
is displayed in Fig. 1A, showing moderate visual separation between smokers and
nonsmokers.

PCoA

library(ape)
library(ggplot2)

# PCoA analysis
pcres <- pcoa(weighted)

# Relative eigenvalues: percent variance explained
pctvar <- round(100*pcres$values$Relative_eig, 1)

# Ordinary PCoA plot
plotdat = data.frame(Axis1 = pcres$vectors[,1],

Axis2 = pcres$vectors[,2],
Smoke = throat.meta$SmokingStatus)

ggplot(data = plotdat,
aes(x = Axis1, y = Axis2,

color = Smoke, shape = Smoke)) +
geom_point() +
xlab(paste("Axis 1 (", pctvar[1], "%)", sep = "")) +
ylab(paste("Axis 2 (", pctvar[2], "%)", sep = ""))
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Confounding covariates can make associations of interest difficult to display on
a PCoA plot. To adjust for mean shifts due to confounders, the centering matrix
I − (1n1′

n)/n in Eq. 1 may be replaced with a covariate adjusted centering matrix
(I − H), where H = X(X′X)−1X′ is the projection matrix in linear regression [27].
In the case of Euclidean distances, this simplifies to using the residuals from a linear
model to construct the distance matrix.

Adjusted PCoA is available through the R package aPCoA or the corresponding
R Shiny app. In the sample code below, we adjust the previous PCoA analysis
for age and sex. The first two PCs in the adjusted PCoA analysis explain 28.0%
and 23.3% of the variability, compared to 29.4% and 22.5% in the ordinary PCoA
analysis. The similarity between these values is consistent with graphical results;
Fig. 1b, the adjusted PCoA plot, does not display substantially clearer visual
separation between groups than Fig. 1a.

aPCoA

library(aPCoA)
throat.meta$Female = as.numeric(throat.meta$Sex ==

"Female")
apcres <- aPCoA(weighted ~ Age + Female,

data = throat.meta, maincov = SmokingStatus,
drawEllipse = FALSE, drawCenter = FALSE)

3.2 Double Principal Coordinate Analysis

Though similarly named, double principal coordinate analysis (DPCoA) takes a
different theoretical approach [24]. Whereas PCoA plots are based on dissimilarities
such as UniFrac distances between pairs of subjects, DPCoA defines the distance
between two microbial communities as a combination of the within-community
diversity (between species) and the between-community diversity. Mathematically,
the distance between community i and community i′ is Dii′ = Hii′ − (Hi +Hi′)/2,
where Hi is the average patristic distance between bacterial taxa in the same
community and Hii′ is the average distance between members of community i and
community i′. Functionally, DPCoA tends to behave similarly to PCoA based on
weighted UniFrac and can be generalized similarly to place more emphasis on rare
taxa or less emphasis on phylogenetic structure [12].

DPCoA is available in the ade4 R package or in the phyloseq package if the
data are stored in a phyloseq object. Output includes coordinates for both samples
and taxa, so either or both may be displayed on ordination plots. For comparison
with PCoA, we focus on ordination of samples in Fig. 1c. The first two PCs from a
DPCoA analysis of the Charlson data explain 31.2% and 18.8% of variation.
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DPCoA

library(ade4)
dpcoa.df = as.data.frame(throat.otu.tab)
patristicDist <- sqrt(as.dist(cophenetic.phylo(throat.

tree)))
dpcres = dpcoa(df = dpcoa.df, dis = patristicDist,

scannf = FALSE, nf = 2)
pctvar.dpc <- 100*dpcres$eig/sum(dpcres$eig)

dpcres$dls # Coordinates of taxa, first nf axes
dpcres$li # Coordinates of samples

3.3 Biplots

As we will see again in the hypothesis testing section, a persistent difficulty with
analyses based on distances and dissimilarities is identifying taxa that are key
players in the global dissimilarity. Biplots display samples as points on a scatterplot
but additionally plot the columns of a data matrix (here, bacterial taxa) as arrows on
the graph [13]. This allows the separation between sample groups to be attributed to
particular taxa and can therefore improve the interpretability of ordination plots.

Functionality for PCoA biplots is available via biplot.pcoa() in package
ape or envfit() in package vegan. The biplot for PCoA with weighted UniFrac
is displayed in Fig. 1d, displaying only the features that were most significant by
envfit()’s permutation analysis. The figure shows that there are sets of OTUs that
separate most smokers from most nonsmokers, and an additional group of OTUs
that distinguish the outlying subjects. For example, OTUs 2572, 4703, 1490, 2434,
and 3538 are more common in the cluster of smokers; OTUs 3954, 1549, 444, 3227,
and 4871 are more common to nonsmokers. In this example, the interpretability of
the ordination results is not greatly improved because no map is available to translate
the OTU identifiers in the Charlson data into taxonomic identifiers, but in general
these taxa could be further investigated to provide more specific information about
the differences in the microbiome between groups.

PCoA Biplot

## Automated approach
library(ape)
biplot.pcoa(pcres, Y = throat.otu.tab,

rn = c("N", "S")[throat.meta$SmokingStatus])

## Alternative approach, allows more control over PCoA
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Fig. 1 Demonstration of several types of ordination plots. (a) Ordinary PCoA with weighted
UniFrac distances. (b) aPCoA plot, adjusting for sex and age. (c) DPCoA ordination plot of
samples. (d) PCoA biplot using weighted UniFrac distances, displaying arrows for features with
permutation p-values < 0.0001

plot
# cmdscale() gives same PCoA results as pcoa()
library(vegan)
pcres2 <- cmdscale(weighted)
efit <- envfit(ord = pcres2, env = throat.otu.tab)
plot(pcres2[,2] ~ pcres2[,1],

xlab = "Axis 1", ylab = "Axis 2",
col = throat.meta$SmokingStatus)

plot(efit) # adds arrows to previous plot
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3.4 Accounting for Compositionality

The compositional nature of microbiome data affects the patterns visible on
ordination plots [14]. In particular, ordination based on quantitative distances and
dissimilarities may place too much weight on the most abundant taxa rather than
on those that best discriminate between samples, and those based on qualitative or
binary distances and dissimilarities depend strongly on which features are included
in the analysis (for example, preprocessing related to rare taxa or the sampling
depth chosen for rarefaction) [35]. Compositionality exacerbates this problem due
to negative correlation between features, which is further exacerbated by subsetting
and aggregation of features during data preprocessing. The use of the PhILR
transformation, which combines the ILR transformation for compositionality with
phylogenetic information [28], or the Aitchison distance, which is the Euclidean
distance applied to CLR-transformed data [2, 14], may better represent the structures
in the underlying count data for clustering and ordination.

The graphical display corresponding to the Aitchison distance is the variance-
based compositional principal component biplot [1], which tends to be less sensitive
to the effect of very rare features and therefore more stable when using data
subsets [35]. Similarly, PCA may be used to display Euclidean distances based
on the PhILR transformation, and the PhILR-based distances may provide better
clustering and classification behavior compared to phylogenetic approaches that
are not composition-aware [28]. Notably, due to the ILR transformation, features
identified on a biplot are transformed ratios of abundances (often called “balances”)
rather than abundances of individual OTUs.

Most compositional transformations, including ILR and CLR, involve log trans-
formations of relative abundances and therefore require first addressing zero counts.
Zero replacement methods include adding a small pseudocount, which does not
distinguish between true and sampling zeros, and more sophisticated multiplicative
approaches such as Bayesian-multiplicative (BM) replacement with a variety of
priors [21], used below.

Ordination and Plotting: Compositional Approaches

# Load packages
library(philr) # available on Bioconductor
library(compositions) # for CLR
library(zCompositions) # for cmultRepl

# Data preparation
# Bayesian multiplicative replacement (GBM) for zero replacement
# GBM requires observation in 2+ subj: exclude singletons
sampcount <- apply(throat.otu.tab, 2, FUN = function(x) sum(x != 0)
twoplus <- which(sampcount > 1)
throat.gt1 <- throat.otu.tab[, twoplus]
throat.gbm <- cmultRepl(X = throat.gt1, label = 0, method = "GBM")
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# Keep corresponding tree tips
tree.twoplus <- keep.tip(throat.tree, colnames(throat.gbm))

# PhILR transformation and corresponding distance
throat.philr <- philr(as.matrix(throat.gbm), tree = tree.twoplus)
D.philr <- as.matrix(dist(throat.philr, "euclidean"))

# Aitchison distance: CLR transformation -> Euclidean distance
throat.clr <- clr(x = throat.gbm)
D.aitch <- as.matrix(dist(throat.clr, "euclidean"))

# PCoA with Euclidean distance = PCA
pcres.philr <- pcoa(D = D.philr)
pcres.aitch <- pcoa(D = D.aitch)

Figure 2 displays the PCA biplots corresponding to PhILR-based distances
(panel A) and the Aitchison distance (panel B). The PCA biplot using the Aitchison
distance is largely similar to the PCoA biplot results using weighted UniFrac
(Fig. 1a), producing one clearly separated cluster and two mildly distinct clusters.
Each of the groups of taxa includes all or all except one of the taxa in the
corresponding groups on the PCoA biplot of Fig. 1d, though many more microbiome
features were highly significant using the compositional approaches (the p-value
threshold for arrows included in Fig. 2 was 0.00001, compared to 0.0001 for
Fig. 1d). The PhILR ordination differs most from the others, likely due to the
selection of a new basis in the ILR transformation.

Fig. 2 Demonstration of ordination biplots that account for compositionality. Arrows are shown
for features with permutation p-values < 0.00001. (a) Euclidean distances applied following
PhILR transformation. (b) Aitchison distance (Euclidean distances applied following CLR trans-
formation)
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3.5 Model-Based Ordination Using Latent Variables

The preceding ordination approaches are distance-based rather than model-based in
the sense that they require choice of a beta diversity measure, but not of a statistical
model for microbial abundances. An alternative model-based approach models the
abundance of each microbial taxon as a function of unmeasured latent variables
(for the purpose of ordination plots, usually two) using a generalized linear model
framework [29, 38]. Careful choice of model and distributional assumptions allows
this approach to account for dispersion effects, which are omnipresent due to the
zero-inflated nature of microbiome data and may be conflated with mean shifts
between groups in traditional ordination analyses. Similarly to PCA biplots, the
estimated values of the latent variables provide subject-level ordination, whereas
the factor loadings provide information about the contributions of individual taxa
[32].

4 Distance-Based Hypothesis Testing

Visualization is useful for finding large systematic effects, but the top principal
components often only explain a small portion of variability (second PC sometimes
< 5%), so a lack of discrimination visually does not mean that there are no
differences between groups. Also, because PCoA and similar approaches are
unsupervised, it is not clear that the identified PCs are capturing any variability
related to the phenotypes of interest. To more fully explore the association with a
particular phenotype, therefore, we need to use all of the data, not just the top few
axes of variation. We now turn our attention to global tests of association that do
exactly this.

In the context of distance-based analysis, the null hypothesis under investiga-
tion is that there is no association between [dis]similarity in microbiomes and
[dis]similarity in outcomes; that is, subjects with more similar microbiomes do not
tend to have more similar phenotypes. In the following sections, we outline several
approaches to formally testing variations on this hypothesis.

Some of these approaches were initially developed in the context of testing
associations for other types of omics data, such as genetic variants in GWAS.
The structure of the tests carried over well due to the shared characteristics of
high-dimensional data, rare features, and modest effect sizes. However, to be
appropriate for microbiome data, the tests needed to additionally accommodate
extrinsic structure (here encoded as more complex distances and dissimilarities,
some of which incorporate phylogenetic relationships among taxa) and generally
smaller sample sizes..

Notationally, suppose throughout the following sections that n samples have
been collected with information on the microbiome (Zn×J ), covariates or potential
confounders (Xn×q ), and the outcome variable y. D indicates an n × n matrix of
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pairwise dissimilarities and may be constructed using one of the common measures
described in Table 1 or an alternative. For the sake of simplicity (and because all
of the following tests allow continuous phenotypes), we will suppose that y is
continuous; the availability of each test for other outcome types is described in the
sections below.

As mentioned in Sect. 2, the optimal choice of distance or dissimilarity D
for distance-based analyses depends on the true form of association between the
microbiome and the outcome variable, including whether taxon presence or taxon
abundance matters most and whether phylogenetic relationships among taxa should
be considered. Distances that consider compositionality may be used as well. While
compositionality of the microbiome may play a role in the power of an analysis—
the impact of compositionality on the power of distance-based tests has not been
rigorously evaluated as of this writing—it does not affect the type I error of distance-
based tests. We therefore proceed to formal distance-based hypothesis testing, with
the understanding that compositionally aware distances may be substituted for any
distance matrices considered below as desired.

We begin by generating data that will be used throughout this section. To display
the behavior of different kernels under different true forms of association, two
outcome scenarios are considered: yclust is associated with a moderately common
phylogenetic cluster of OTUs (11.6% of all reads; includes 63 taxa, of which 53
have average abundance < 0.1%), and ycommon is associated with three of the ten
most common OTUs (11.3% of all reads). Based on the data generation strategy, a
member of the UniFrac family of distances would be expected to perform best for
yclust, since phylogeny is informative about the associated OTUs. Bray–Curtis or
quantitative Jaccard would be expected to provide higher power for ycommon, since
phylogeny does not matter but taxon abundance does.

Data Preparation

set.seed(1)
library(MiRKAT) # for D2K
Ds <- list(uw = unweighted, d5 = gen0.5, w = weighted,

bc = braycurtis, s = sorensen)
Ks <- lapply(Ds, D2K)

# Covariates
X <- cbind(throat.meta$Age, throat.meta$Female)

# Prepare phylogenetic clustering
library(dirmult) # dirmult
library(cluster) # pam
dd = dirmult(throat.otu.tab)
nClus = 20 # clusters on phylogenetic tree
tree.dist = cophenetic(throat.tree)
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obj <- pam(tree.dist, nClus) # partition around medoids
clust <- obj$clustering # cluster labels

# Associated OTUs: Phylogenetic cluster 9
assoc.clust <- throat.otu.tab[,names(which(clust == 9))]
total.clust <- scale(as.numeric(rowSums(assoc.clust)))

# Associated OTUs: 3 of the 10 most common taxa
tax.totals = apply(throat.otu.tab, 2, sum)
common10 = names(sort(tax.totals, decreasing = TRUE))
keep3 = common10[sample(1:10, 3)]
assoc.common <- throat.otu.tab[, keep3]
total.common <- scale(as.numeric(rowSums(assoc.common)))

# Generate outcome data
n.subj <- nrow(throat.meta)
b <- 1.0 # Moderately large effect size
y.base <- 0.5*(X[,1] + X[,2]) + rnorm(n.subj)
y.clust <- y.base + b*total.clust
y.common <- y.base + b*total.common

4.1 Permutation Tests

The first major approach to distance-based hypothesis testing is permutation-
based testing. Permutational multivariate analysis of variance (PERMANOVA) is
a semiparametric method that may be based on any chosen dissimilarity and tests
the null hypothesis that the centroids of each group (in the space of the chosen
dissimilarity) are equivalent [3, 37]. Formally, a pseudo-F statistic is calculated via

F = tr(HK)/(q − 1)

tr{(I − H)K}/(n − q)
, (2)

where I is the n × n identity matrix H is the projection (hat) matrix, H =
X(X′X)−1X′ for design matrix Xn×q and K is the centered dissimilarity matrix
defined in Eq. 1. P -values are calculated by permutation. If Euclidean distances
are used to define D, then this is equivalent to a classical multivariate ANOVA
with permutation P -values. As for all of the distance-based tests, the power for
PERMANOVA is highest when the distance used captures the most information
about the true association, for instance, focusing appropriately on rare or common
taxa or incorporating phylogenetic information.
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To account for confounders in PERMANOVA, X may be partitioned by columns
into m groups, X = (X1, . . . ,Xm), where each Xk indicates a variable or a set of
variables that should be tested jointly (e.g., indicators for a categorical variable).
The Gram–Schmidt process is used to orthonormalize X, which implies that P -
values may differ depending on the order in which variables are added to the model,
since each subsequent Xk is transformed to be orthonormal to (X1, . . . ,Xk−1).
To address this difficulty and permit ensemble testing with multiple distances or
dissimilarities, PERMANOVA-S [30] regresses the predictor of interest X on the
potential confounders to generate residuals and uses these residuals in all subsequent
testing. The PERMANOVA-S ensemble test again uses permutation to assess the
significance of the minimum P -value across multiple dissimilarity measures.

PERMANOVA assumes exchangeability under the null hypothesis and homo-
geneity of dispersion across groups, though the test is robust to violations of the
latter assumption in balanced designs and recent extensions permit heterogeneous
dispersion across groups [5]. Because the power of the test is highly sensitive to the
choice of distance D, careful choice based on prior scientific knowledge or use of the
PERMANOVA-S ensemble test is strongly recommended. In particular, power for
PERMANOVA (and, indeed, all distance-based tests) is highest when the distance
chosen best matches the true form of association.

PERMANOVA-S is implemented in C, but not in R, so the analysis below is
restricted to PERMANOVA with single dissimilarities. The variable of interest is
generally added to the model last, as shown below. The results displayed in Table 2
demonstrate the highest significance for yclust with unweighted UniFrac, though
the R-squared value is nearly identical between unweighted UniFrac and Bray–
Curtis. For ycommon, Bray–Curtis is the most statistically significant one, due to the
irrelevance of phylogenetic information and the importance of a few common taxa.

PERMANOVA

library(vegan)
perm.data <- data.frame(y.clust = y.clust,

y.common = y.common,
age = throat.meta$Age,
fem = throat.meta$Female)

# adonis and adonis2 perform PERMANOVA (single D)
# PERMANOVA-S is implemented in C but not R

adonis2(weighted ~ age + fem + y.clust,data = perm.data)

The analysis of similarities (ANOSIM) is an alternative permutation test based
on ranked dissimilarities [10], testing the null hypothesis that
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Table 2 PERMANOVA P -values using unweighted UniFrac, weighted UniFrac, and Bray–Curtis
dissimilarities

Outcome Kernel P -value R-squared

yclust Unweighted UniFrac 0.001 0.037

Weighted UniFrac 0.057 0.033

Bray–Curtis 0.012 0.038

ycommon Unweighted UniFrac 0.211 0.020

Weighted UniFrac 0.020 0.039

Bray–Curtis 0.001 0.043

the average of the ranks of within-group distances is greater than or equal to the average of
the ranks of between-group distances;

however, ANOSIM is highly sensitive to differences in dispersion across groups and
generally has lower power than PERMANOVA [4].

4.2 Kernel Machine Regression Tests

The second family of distance-based tests for microbiome data is the set of
microbiome regression-based kernel association tests (MiRKATs) [43], which are
based on approaches used in genetic association studies. Like PERMANOVA-S,
MiRKAT allows adjustment for confounders and choice of one or several distance
and dissimilarity measures. However, MiRKAT is computationally more efficient
due to the use of a variance component score test. In addition, for complex
study designs, though appropriate permutation strategies often exist, they are less
easily attainable for many applied scientists than the use of regression-based tests.
MiRKAT family tests allow binary, censored time-to-event, multivariate, structured
high-dimensional, and other data types for y [25, 41, 42]. However, for ease of
exposition, we assume a quantitative (continuous) y with the understanding that
the approach generalizes to more sophisticated outcomes.

For a quantitative outcome, MiRKAT uses a linear kernel machine regression
model,

yi = β0 + β ′Xi + f (Zi ) + εi, (3)

where f (·) is a function that fully describes the relationship between the micro-
biome and the outcome and εi is an error term with mean 0 and variance σ 2.
To test the association between the microbiome and the outcome, then, is to test
H0 : f (Z) = 0. We assume f (Zi ) ∈ Hk , a reproducing kernel Hilbert space
generated from a kernel function K(·, ·), such that f (Zi ) =∑n

i′=1 αi′K(Zi ,Zi′).
The kernel function is a measure of pairwise similarity between individuals and

is typically constructed by transforming a measure of distance or dissimilarity (refer
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to Table 1 for several common examples) into a similarity matrix using Eq. 1. Using
and Euclidean distance corresponds to a linear kernel K(Zi ,Zi′) = ∑J

j=1 ZijZi′j
and therefore assumes a linear form of association between the microbiome and the
outcome, f (Zi ) =∑J

j=1 Zijγj . Using more complex kernels allows more complex
forms of association.

A key relationship between kernel machine regression and linear mixed models
[18] is that the model in (3) is equivalent to the mixed model:

y = β0 + Xβ + f + ε, (4)

where f = f (Z) is a vector of subject-specific random effects with f ∼ (0, τK),
and hence the null hypothesis of no association can be more simply expressed as
H0 : τ = 0. This can be accomplished using a variance component score test with
test statistic

Q = 1

2σ̂ 2
0

(y − ŷ0)
′K(y − ŷ0), (5)

where ŷ0 is the predicted value of y under the null model and σ̂ 2
0 indicates the

estimated residual variance under the null model. Under H0, Q asymptotically
follows a mixture of chi-square distributions,

Q ∼
n∑

i=1

λiχ
2
1,i , (6)

where (λ1, . . . , λn) are the eigenvalues of P
1/2
0 KP

1/2
0 , where P0 = I−X(X′X)−1X′

is the standard projection (hat) matrix, and χ2
1,i are independent χ2

1 random vari-
ables. However, due to the nature of microbiome kernels, a key difference between
MiRKAT and kernel-based approaches for genetics data is that the kernels tend to be
much more complicated and the sample sizes much smaller. Consequently, a small
sample correction is used within MiRKAT, which is exact for quantitative y and
approximate for dichotomous y.

MiRKAT’s power is highest when the chosen kernel best represents the true form
of association. To allow simultaneous testing with multiple kernel matrices, Optimal
MiRKAT (OMiRKAT) uses as a test statistic Pmin = min(P1, . . . , Pk), where each
Pj is the corresponding P -value from a test for a single kernel as described above.
Residual permutation is used to evaluate the significance of Pmin. The optimal test
has power close to that of the “best” kernel choice. However, the choice of kernel
does not affect the type I error of MiRKAT family tests, since the score test only
requires fitting the model under the null hypothesis of no association.

As noted earlier, MiRKAT family of tests is based on kernel approaches designed
for genetic association analysis (with some important modifications). Thus, an
important aspect of these tests is that they can harness the rich, existing literature
on kernel approaches for genetic association analysis which facilitates analysis
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Table 3 MiRKAT P -values and R-squared values using unweighted (Ku), generalized (K0.5), and
weighted (Kw) UniFrac, Bray–Curtis (Kbc), and Sørensen–Dice kernels (Ks ), as well as optimal
MiRKAT

Outcome Value Ku K0.5 Kw Kbc Ks Optimal

yclust P <0.001 0.004 0.057 0.007 <0.001 0.002

R2 0.008 0.004 0.002 0.003 0.005 -

ycommon P 0.180 0.020 0.025 0.003 0.541 0.007

R2 0.005 0.004 0.001 0.003 0.003 -

of more complex end points, study designs, and analytic objectives. The reduced
computational expense also makes the approach attractive for the purposes of power
calculation via simulation and for screening large numbers of outcomes (where a
large number of permutations would be necessary).

MiRKAT family analyses are available in the R package MiRKAT. The results
from the MiRKAT analysis below are shown in Table 3.

MiRKAT

library(MiRKAT)
MiRKAT(y = y.clust, X = X, Ks = Ks, out_type = "C")
MiRKAT(y = y.common, X = X, Ks = Ks, out_type = "C")

As in the PERMANOVA analysis, the individual kernel most significantly
associated with yclust is unweighted UniFrac and Bray–Curtis; weighted UniFrac
is the only nonsignificant kernel. However, in addition to individual kernel results,
OMiRKAT indicates the overall significance of the association between the micro-
biome and yclust considering all five kernels. An R2 statistic is also reported. For
continuous outcomes, the MiRKAT test statistic is proportional to the coefficient of
determination in similarity matrix regression [40], but for most outcome types, it
is recommended to use the MiRKAT R2 as a relative measure to compare different
kernels. In the Charlson data, MiRKAT R2 shows that unweighted UniFrac explains
more of the variability in yclust than any of the other distances, as may be expected
from the large number of phylogenetically clustered rare taxa associated with y
in that scenario. Moving to ycommon, again matching the PERMANOVA analysis,
the Bray–Curtis dissimilarity is most significantly associated with this outcome.
Although the unweighted UniFrac and Sørensen–Dice distances yield distinctively
nonsignificant results, OMiRKAT still demonstrates strong evidence for an overall
association.
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4.3 Sum of Powered Score Tests

A third approach to distance-based testing falls under the umbrella of sum of
powered score tests. The microbiome-based sum of powered score (MiSPU) tests
address the problem of a high proportion of unassociated taxa leading to noise
accumulation by adaptively weighting taxa based on importance, while still incorpo-
rating phylogenetic relationships [36]. We again assume a continuous outcome y for
simplicity; MiSPU tests are available for continuous and binary outcome variables
and are, like the previous tests, based on approaches developed for genetic studies.

Using the unweighted and weighted UniFrac distances as a starting point,
generalized taxon proportions are defined as

Qu
ij = bj I (pij > 0), Qw

ij = bjpij . (7)

Then, a linear model is fit using these generalized taxon proportions,

yi = β0 + β ′Xi +
J∑

j=1

αjQij + εi, (8)

where εi is an error term with mean 0 and variance σ 2. As with MiRKAT, the
null hypothesis of no association between the microbiome and the outcome may
be written as H0 : (α1, . . . , αJ ) = 0. To test this null hypothesis, a score vector
U = (U1, . . . , UJ ) is constructed via

Uj =
n∑

i=1

(yi − ŷi,0)Qij (9)

and used to construct the weighted score-based test statistic

TMiSPU(γ ) =
J∑

j=1

U
γ

j , (10)

where γ ≥ 1 is an integer that controls the weight placed on larger values of
U compared to smaller values. Using the weighted generalized taxon proportions
Qw

ij leads to weighted MiSPU; unweighted generalized taxon proportions Qu
ij

correspond to unweighted MiSPU. P -values are calculated by residual permutation
(see [36] for details).

The optimal choice of γ is primarily driven by the abundance and branch length
of the associated taxa, as well as whether individual taxon effects are in the same or
opposite directions. If associated taxa have short branch lengths bj or small relative
abundances pij , smaller values of γ will yield higher power by including these
taxa in the aggregate statistic; if associated taxa are common and have long branch
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Table 4 MiSPU and aMiSPU P -values. For unweighted and weighted MiSPU, the aSPU P -
value is reported, with the γ value that resulted in the lowest individual P -value in parentheses

Outcome Unweighted aSPU Weighted aSPU aMiSPU

yclust P = 0.003 (γ̂ = 2) P = 0.291 (γ̂ = 2) P = 0.005

ycommon P = 0.352 (γ̂ = 2) P = 0.106 (γ̂ = 3) P = 0.217

lengths, larger γ will result in higher power. Taking the limit as γ → ∞ results in a
test statistic that is proportional to max(|Uj |). When γ is even, taxa with effects in
opposite directions all contribute to a larger sum statistic, whereas odd values of γ

may allow taxa with positive and negative effects to cancel each other out and hence
will result in a loss of power when taxa have opposite directional effects.

To prevent potential power loss due to poor choice of γ or weighted vs.
unweighted tests, adaptive MiSPU (aMiSPU) uses as a test statistic the minimum
P -value for multiple candidate values of γ , such as γ = (2, 3, . . . , 8,∞), and
weighted and unweighted tests. Permutation is again used to assess the significance
of Pmin.

The score statistics Uj may also be used to assess relative taxon importance via
a contribution statistic Ck = |Uk|γ̂ /

∑J
j=1 |Uj |γ̂ , where γ̂ and weighted versus

unweighted Uk are chosen based on which resulted in the minimum P -value. These
importance scores may also be used to select the top several taxa for interpretation
and possibly further study.

Sample code for aMiSPU analysis is below, and results are shown in Table 4.
As expected due to the intrinsic dependence on phylogenetic differences, aMiSPU
provides strong evidence for an association between the microbiome and yclust, par-
ticularly due to the significance using the unweighted generalized taxon proportions.
The γ value resulting in the lowest P -value is small in these analyses (2 or 3),
consistent with placing similar weight on rare and common taxa (or taxa that are
located in shallow and deep parts of the phylogenetic tree). For ycommon, however,
since the associated taxa are not part of a phylogenetic cluster, aMiSPU does not
detect an association.

aMiSPU

library(MiSPU)
MiSPU(y = y.clust, X = throat.otu.tab, tree = throat.

tree, cov = X, model = "gaussian")
MiSPU(y = y.common, X = throat.otu.tab, tree = throat.

tree, cov = X, model = "gaussian")
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4.4 Adaptive Tests

Combining the kernel machine regression-based tests and the sum of powered
score tests leads to adaptive association tests such as the optimal microbiome-based
association test (OMiAT) [16] and optimal microbiome-based survival analysis
(OMiSA) [17]. Combining classes of tests ideally retains the strengths of both
classes, while balancing out weaknesses in each. Adaptive tests are available
for continuous, binary, and censored time-to-event outcome variables; as said
previously, we will focus on continuous outcomes and therefore on OMiAT. Though
the adaptive sum of powered score (aSPU) test used in OMiAT is similar in spirit to
aMiSPU, ordinary taxon proportions are used without weighting by branch length
for this test.

The test statistic for OMiAT is

MOMiAT = min(TaSPU,QOMiRKAT), (11)

where TaSPU is the minimum P -value statistic of the adaptive SPU test and
QOMiRKAT is the minimum P -value statistic of the optimal MiRKAT test. Then,
as in the previous two sections, the final P -value is computed by permutation, as
described in [16].

An OMiAT analysis is displayed below, with results presented in Table 5. Con-
sistent with previous results, OMiRKAT has a much lower P -value than aSPU for
ycommon, though since OMiAT performs a non-phylogenetic SPU rather than using
MiSPU, the severe reduction in power for non-phylogenetically based associations
is not seen in aSPU. OMiAT’s P -value is intermediate between OMiRKAT and
aSPU in this setting. For yclust, aSPU and OMiAT show slightly more significant
results than OMiRKAT.

OMiAT

## OMiAT is available on GitHub
#devtools::install_github("hk1785/OMiAT")
library(OMiAT)
library(ecodist) # OMiAT requires this
OMiAT(Y = y.clust, otu.tab = throat.otu.tab, tree =

throat.tree, cov = X, model = "gaussian")
OMiAT(Y = y.common, otu.tab = throat.otu.tab, tree =

throat.tree, cov = X, model = "gaussian")



Beta Diversity and Distance-Based Analysis of Microbiome Data 123

Table 5 OMiAT P -values, as well as OMiAT-calculated aSPU and OMiRKAT P -values.
OMiRKAT P -values are based on Bray–Curtis and unweighted, generalized (α = 0.5), and
weighted UniFrac kernels. aSPU is based on γ ∈ {1, 2, 3, 4,∞}
Outcome aSPU OMiRKAT OMiAT

yclust <0.001 0.001 <0.001

ycommon 0.041 0.007 0.015

4.5 Comparison of Distance-Based Tests

The options for distance-based association testing presented above have a variety
of strengths and weaknesses. In terms of modeling flexibility, the MiRKAT family
allows the widest range of outcome types, whereas the other methods only permit
continuous, binary, and perhaps survival outcomes. PERMANOVA, MiRKAT,
and the adaptive tests allow consideration of multiple measures of distance or
dissimilarity, which is vitally important given that using a dissimilarity that does
not capture the true form of association can lead to drastic reductions in power.
While aMiSPU allows the use of quantitative or qualitative data and, to some extent,
control over the amount of weight placed on different depths of phylogeny or taxon
abundance, the level of flexibility is lower.

In situations in which all four methods apply (i.e., continuous and binary
outcomes), simulation results demonstrate that OMiAT nearly matches the better
of OMiRKAT and aSPU in power across a range of association settings and, in
some circumstances, has higher power than either aSPU or OMiRKAT alone [16].
In particular, OMiAT performs well when the true association comprises a mix of
common and rare taxa that are not phylogenetically clustered. When a wide range
of kernels are considered for OMiRKAT, it often matches and sometimes exceeds
the power of OMiAT, with particularly high power when common taxa (regardless
of direction of effect) or phylogenetically clustered taxa with the same direction of
effect are associated with the outcome.

Comparing OMiRKAT and aMiSPU, the kernel machine regression tests have
higher power when modest shifts in a larger number of taxa are associated with
the outcome. The sum of powered score tests is stronger when many taxa are
unassociated and a few have strong effects, particularly if the associated taxa have
long branch lengths or high abundances.

In terms of computational efficiency, the exact computation of P -values in
MiRKAT is much faster than PERMANOVA, aMiSPU, or OMiAT, all of which
rely on permutation-based P -values. For small-to-moderate samples, this difference
is unlikely to be the determining factor in choice of test, but for larger sample
sizes, computational efficiency becomes increasingly important. This is also the
case for simulation-based statistical power analysis and for screening large numbers
of outcomes where very small P -values are needed due to the multiple testing
thresholds.
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Therefore, the choice of global test of association should be driven by the needs
of a particular study, taking into consideration the sample size and computational
resources available, the data type of the outcome of interest, and any prior
knowledge of the expected form of association in order to maximize power.

5 Strengths, Weaknesses, and Future Directions

Distance-based analysis of microbiome beta diversity is a powerful tool for assess-
ing global associations with the microbiome. Because the microbiome often
includes hundreds to thousands of taxa and effect sizes are modest, the use of
distance-based tests often results in higher power than testing associations with each
individual taxon. Factors contributing to higher power are the aggregation of modest
effect sizes, avoidance of correcting for multiple comparisons, and incorporation of
many possible forms of association through the choice of distance or dissimilarity
measures.

A key weakness of distance-based analysis is the lack of information about which
individual taxa play a role in the association. Because optimal tests incorporate
information from multiple distances that each emphasize different features of the
microbiome, which distance has the lowest P -value may provide some insight
into broad features of the association. For example, if unweighted UniFrac is
most significant in PERMANOVA or OMiRKAT, the presence of rare taxa is
likely driving the association with the outcome of interest. Conversely, if weighted
UniFrac is most significant, clusters of common taxa are more likely to be driving
the association. Similarly, in addition to the contribution statistic discussed above
for aMiSPU, high significance of unweighted aMiSPU may indicate that presence of
rare taxa is driving the association, whereas weighted MiSPU indicates that common
taxa are likely more important. A large γ in aMiSPU suggests that more common
taxa towards the bottom of the phylogenetic tree are important to the association.

To use OMiAT for association mapping, MiCAM (microbiome comprehensive
association mapping) tests groups of taxa at each taxonomic level (phylum, class,
etc.) for significance and applies multiple testing correction at each taxonomic
rank [16]. Patterns of association can reveal both what taxonomic level(s) are most
strongly associated with the outcome and which particular taxa at each level seem
to be important contributors.

The effect size estimation is another challenge for distance-based analysis. Both
PERMANOVA and MiRKAT provide R2 measures attempting to quantify the
relationship between the microbiome composition and variables of interest. Both
provide valid measures; however, it is noteworthy that the magnitudes of the R2

values vary dramatically. This reflects a general challenge in the field in which
the notion of correlation is complex when considering a multivariate quantity.
Accordingly, there are multiple types of correlation which are equally valid but
different in terms of scale and mathematical basis. In addition, the correlation
depends strongly on the choice of distance metric, and changing the distance can
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result in very different estimates. Thus, some caution is needed in interpreting the
provided R2 values. Also, due to the difficulty of quantifying effect sizes, there is
a risk of large sample sizes yielding statistical significance even though differences
are quite small and would not be considered scientifically meaningful.

There is substantial recent interest in model-based approaches to community-
level analysis of the microbiome, in which a fully specified joint model for all taxon
abundances is specified and related to covariates or phenotypes using a multivariate
generalized linear mixed model framework [22, 23]. Advantages of beta-diversity
analyses such as those discussed in this section include the minimal assumptions
necessary for valid inference the computational efficiency of many of these methods
and the broad utility of beta diversity measures across different analysis approaches.
In comparison, advantages of model-based approaches include explicit separation
of mean and dispersion effects, formal evaluation of model fit, and a clearer path
toward identification of individual taxon associations [32].

Development of association mapping and taxon selection tools within the context
of distance-based analysis of microbiome beta diversity is ongoing. In addition, new
distances are being proposed to accommodate additional features of microbiome
data and more complex study designs; for example, pldist was recently introduced
for longitudinal measures of dissimilarity and allows tests of whether changes in the
microbiome across time are associated with an outcome [26]. New models and test
statistics are also needed for complex study designs; continuing the example of lon-
gitudinal designs, a mixed model approach with variance component selection was
recently proposed for distance-based longitudinal microbiome association studies
[39]. Still more recent work has focused on another modern study design, namely,
multi-omics studies, either cross-sectional or longitudinal. Continued innovation
will be necessary for these and other complex modern designs for microbiome
studies.
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Part III
Statistical Models and Inference



Joint Models for Repeatedly Measured
Compositional and Normally Distributed
Outcomes

Ivonne Martin, Hae-Won Uh, and Jeanine Houwing-Duistermaat

1 Introduction

Biomedical studies often collect multiple outcomes from the same subject to reveal
complex underlying biological mechanisms. It might be of interest to model the
association between these outcomes and a set of covariates. A straightforward
method is to use a multiple univariate regression model for each outcome separately
with the other outcomes and covariates included as independent variables in the
model. However, the randomness of the outcome variables needs to be modelled
since ignoring this randomness may yield biased estimates of the parameters
modelling the association between the outcomes [22]. Moreover, one might be
interested in the association between a covariate and both outcomes simultaneously.
A joint regression model is an approach for this purpose and also increases the
statistical power to estimate the effects of covariates on outcomes by incorporating
the correlation between observations from the same subject via random effects.
However, this approach is challenging when the observations are from different
types, for instance, a mixture of continuous and discrete outcomes. The reason
is that a multivariate distribution of these outcomes cannot be formulated [6, 18].

I. Martin
Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, The Netherlands
e-mail: i.martin@amsterdamumc.nl

H.-W. Uh
Department of Biostatistics and Research Support, UMC Utrecht, Utrecht, The Netherlands
e-mail: h.w.uh@umcutrecht.nl

J. Houwing-Duistermaat (�)
Department of Statistics, Alan Turing Institute, University of Leeds, Leeds, United Kingdom

Department of Statistical Sciences, University of Bologna, Bologna, Italy
e-mail: j.duistermaat@leeds.ac.uk

© Springer Nature Switzerland AG 2021
S. Datta, S. Guha (eds.), Statistical Analysis of Microbiome Data,
Frontiers in Probability and the Statistical Sciences,
https://doi.org/10.1007/978-3-030-73351-3_6

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73351-3_6&domain=pdf
mailto:i.martin@amsterdamumc.nl
mailto:h.w.uh@umcutrecht.nl
mailto:j.duistermaat@leeds.ac.uk
https://doi.org/10.1007/978-3-030-73351-3_6


132 I. Martin et al.

Also, biomedical studies often have a cluster or a longitudinal design that induces
additional correlation between observations from the same unit. In this chapter, we
will focus on two outcomes, although the results could be generalized to more than
two outcomes.

The presented methods are motivated by the repeated measurements of the
gut microbial community and whole blood cytokine responses on subjects in the
helminth–endemic area in Indonesia [16]. The goal of the analysis is to unravel
the relationship between microbiome (MB) composition, immune response, and
helminth infection. Here, helminth infection is the independent variable, while the
MB composition and immune responses are the dependent variables or outcomes.
The gut microbiome compositions are obtained from 16S rRNA gene sequencing.
The processed data consists of counts of taxonomical data with a unit constraint
for all taxonomical abundances with additional heterogeneity in the data due to
measurement error or variability in the sampling of individuals. The observations
on whole blood cytokine responses are continuous data representing the response of
this cytokine to a specific antigen. Wammes et al. [25] have shown that helminth
infection has an effect on whole blood cytokine responses and that this effect
depends on treatment. Martin et al. [15] have shown a relationship between the
MB and cytokine responses and that this relationship depends on the infection
status. Here, a straightforward method was used where the cytokine responses
are the outcomes, and infection, treatment, and MB composition expressed as a
relative abundance for each bacteria taxon are the covariates. It was shown that
the proportion of Bacteroidetes has a significant association with the interleukin-
10 (IL-10) response to lipopolysaccharide (LPS) in uninfected subjects and that
when the subjects were helminth-infected, the association between Bacteroidetes
and IL-10 response to LPS is significantly different. This result suggests a role
of helminth in changing the association between MB composition and cytokine
responses; however, several limitations are noted. Firstly, the model assumes that
the MB compositions are fixed, and hence, it does not account for the randomness
due to measurement error. MB data obtained through 16S rRNA gene sequencing
is observed with errors [21], adding an extra variation in the resulting data [20].
Furthermore, the joint effect of infection status on both outcomes cannot be assessed
in this simple model. Thus, our objectives here are to characterize the association
between covariates of interest and two outcomes and quantify the correlation
between them.

Several works on the development of the joint model between continuous and
discrete type outcomes in the biomedical research have been published, namely,
between continuous and count data [10, 27], between continuous and time to event
(reviewed in [19]), and continuous type with binary data [3, 4, 9], but less on
multinomial type data. Here, we are dealing with the mixture of continuous and
multivariate discrete outcomes with a constraint of the fixed total count. A review
on formulating the joint model is given in [24].

When the objective is on modelling the association between covariates and
two outcomes and quantification of the correlation between the two outcomes,
shared random effects are used to account for the correlation between the multiple
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outcomes from the same subject [6]. When the dataset has a complex correlation
structure, several random effects are needed. In our motivating data, three types
of correlation structures need to be modelled: the correlation between multiple
categories at the same time, the correlation between the two outcomes simultane-
ously, and the correlations between multiple observations over time. A joint model
requires two steps: firstly, formulating each submodel for the random variables, and
secondly, modelling the relationship between these variables by introducing shared
random effects. For each outcome, we consider a mixed model. For the multivariate
counts, several distributions for a random effect modelling overdispersion have been
proposed in the literature [12]. We have developed a mixed model for multivariate
count data in which the overdispersion is modelled using the conjugate distribution
and the correlation between observations at different time points is modelled by
Gaussian random effects [17]. Here, we also propose to use a normally distributed
random effect to model overdispersion and compare it with the combined method
of conjugate and Gaussian distribution for the correlation between categories and
within samples. The maximum likelihood approach [7] is used for parameter
estimation and inference. Further, the marginal model is obtained by integrating
over the random effect distribution using Gauss–Hermite quadrature.

The rest of this chapter is organized as follows. In Sect. 2, we describe the
motivating dataset and the characteristics of samples. In Sect. 3, we present the
proposed joint method in modelling the association of binary covariate with mixture
types of outcomes. The code for the likelihood functions is provided. An evaluation
of the proposed method’s performance in comparison with the naive method via
simulations is described in Sect. 4. The results of applying the proposed method to
the motivating dataset are given in Sect. 5, and we conclude and discuss the proposed
method in Sect. 6. Section 7 presents all codes used in this chapter.

2 Motivating Data

The dataset considered here was measured in a subset of randomized controlled
trials in a helminth–endemic area in Indonesia to assess the influence of helminth
infection on whole blood cytokine responses as markers for human immune
responses [26]. Households were randomized for a 400 mg albendazole or placebo.
Treatments were administered once in every three months for one and a half years.
Yearly stool samples were collected voluntarily, to detect the presence of helminth
infections and obtain genomic material of the gut microbial community. Blood
samples were drawn for immunological examinations. For the analyses, we used the
observations at two different time points, namely, before treatment was commenced
(pre-treatment) and 21 months after the first treatment (post-treatment).

Three different helminth species were observed. Trichuris trichiura infection was
detected only by microscopy, while the DNA of hookworms (Ancylostoma duode-
nale and Necator americanus) and Ascaris lumbricoides was observed via multiplex
real-time PCR. A subject who was infected with at least one helminth species was
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Table 1 The characteristics of participants at pre-treatment

Characteristics Albendazole (N = 23) Placebo (N = 39)

Gender, female (n(%)) 12 (52.17) 22 (56.41)

Age (mean(SD)) 27.03 (15.80) 26.53 (15.86)

Helminth infections (N (%))

Any helminths 16 (69.57) 23 (58.97)

Abundance of bacterial phyla, mean % (SD)

Firmicutes 73.21 (10.76) 71.54 (12.94)

Actinobacteria 9.73 (5.84) 9.40 (7.75)

Bacteroidetes 6.70 (9.97) 7.27 (12.19)

Pooled 10.35 (7.29) 11.79 (8.10)

Cytokine responses (median, IQR)

LPS IL-10 250 (137.5, 400.5) 221 (137, 381.5)

regarded as helminth-infected. The pyrosequencing process of the 16S rRNA gene
to obtain the bacterial data has been described in [15]. Here, we focus on two specific
phyla, namely, Bacteroidetes and Firmicutes, and pool the remaining phyla into
the pooled category. The blood cultures were stimulated to assess the innate and
adaptive immune responses, characterized by cytokine. In [16], among all analyzed
cytokine responses, only the innate interleukin (IL)-10 response to lipopolysac-
charide (LPS) was significantly associated with Bacteroidetes proportion. In this
analysis, we aim to reanalyze these outcomes simultaneously concerning helminth
infections. Thus, we focus on the continuous type observation IL-10 response to
LPS. Our data consists of 62 subjects who have complete measurements on MB
composition and cytokine responses at pre- and post-treatment (Table 1).

3 Statistical Models

Let Y
(t)
i be a continuous random variable observed for subject i, i = 1, . . . , N at

time point t, t = 1, . . . , T , and let C(t)
i =

{
C

(t)
i1 , . . . , C

(t)
iJ

}
be a J -dimensional

vector of random variables of multivariate counts with a fixed total count C
(t)
i+

(compositional data). These counts are observed with an error that results in an
additional source of variation. Let X(t)

i be a vector of covariate values for subject

i at time point t , which may influence both outcome variables Y
(t)
i and C(t)

i . In

addition, we assume that Y
(t)
i and C(t)

i are both influenced by an unobserved latent
variable that results that these two variables are correlated. Our aim is to model the
variable Y and assess its relationship with the random variable C and the covariate
X while taking into account the presence of measurement error in the multivariate
counts and the effect of the covariate X on C.
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Martin et al. [16] used a simple linear mixed model to assess the relationship
between the continuous outcome Yi and the proportion of counts of category j ,
Cij

Ci+
= πij in the longitudinal setting. Specifically, the following model was used:

Y
(t)
i = X(t)

i ξ + γjπ
(t)
ij + ui + ε

(t)
i . (1)

Here, γj represents the association between the proportion of counts in category j

and variable Y . The random subject-specific effect ui represents the deviation of
the population mean for subject i. This model ignores the fact that the multivariate
count data are subject to measurement error, which may result in biased estimate
of the parameter representing the association between the two outcome variables
[22]. Further, the model only includes one category and hence does not assess the
association between the vectors Ci and Y . Including all categories in the model
is not straightforward due to the compositional nature of the data, which leads to
the collinearity of the categories. To address these issues, we propose using joint
models, i.e., the two submodels for Y and C are linked via shared random effects.
Conditional on these random effects and the covariable X, the two variables Y and
C are assumed to be independent.

We will first consider models for the counts and the covariates and then add
a shared effect to link the two submodels for the counts C and the outcome Y .
When modelling the association between a categorical count variable and a second
categorical variable Zk with K categories, the log-linear model is commonly used
[1, 23]. Specifically, we follow the formulation of a saturated log-linear model
in [17] where multivariate count outcome C is represented as variable E and
categorical variable Z as variable F ,

log
(
μ

(t)
jk

)
=
(
λ0 + λE

j

)
+
(
λF

k + λEF
jk

)

= ξ0j + ξ1jk[Z(t) = k], 1, . . . , J, k = 1, . . . , K. (2)

Here, μ
(t)
jk = E(C

(t)
jk ) and [·] as the indicator variable. Identifiability of the

parameters is obtained by imposing constraints. This model will be extended
to account for extra variation due to measurement error (overdispersion), the
correlation between observations at the various time points t , and the correlation
with Y . We will consider two approaches: the mixed-effect multinomial logistic
model [8], where all extra variations are modelled by normally distributed random
effects, and the mixed-effect Dirichlet-multinomial of Martin et al. [17], where
the overdispersion is modelled with the conjugate distribution and the other
random sources are modelled with normally distributed random effects (combined
likelihood). For the continuous variable Y , a linear mixed model with a random
intercept uY [11] will be used for both approaches. The goodness of fit of the two
proposed models will be assessed by comparing the observed correlation with the
modelled marginal correlations.
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3.1 The Multinomial Logistic Mixed Model (MLMM)

The multinomial logistic model achieves identifiability by assigning one category to
be the baseline. This is typically one of the most common categories. Without loss
of generality, we assume that the first category is the baseline category. Following
the generalized linear model framework, the association between the proportion of
counts in the j th category (j = 2, . . . , J ) and the covariates X is modelled as
follows:

logit

(
π

(t)
ij

π
(t)
i1

)

= ξ
(t)
0j + X(t)

ij ξ j . (3)

Now let the random effect uC
ij represent the shared effects among the time points

for category j of subject i. We assume that the measurement error does not change
over time and is also represented by uC

ij .
The corresponding regression model is defined as follows.

logit

(
π

(t)
ij

π
(t)
i1

)

= ξ
(t)
0j + X(t)

i ξC
j + uC

ij , j = 2, . . . , J, (4)

with the first category as a reference. The random effects uC
i = {

uC
i2, . . . , u

C
iJ

}
fol-

low a multivariate normal distribution with zero mean and the following symmetric
covariance matrix �C :

�C =

⎛

⎜⎜⎜⎜
⎝

σ 2
uC2

· · ·
ρσuC2

σuC3
σ 2

uC3
· ·

...
...

. . .
...

ρσuC2
σuCJ

ρσuC3
σuCJ

. . . σ 2
uCJ

⎞

⎟⎟⎟⎟
⎠

.

Finally, when modelling both outcomes simultaneously, we need to introduce
additional random effects to model the association between the two types of
outcomes, namely, the random shared effect U(S)

i . Thus, for three categories, the
joint model is as follows:

log

(
π

(t)
2i

π
(t)
1i

)

= ξ
(t)
02 + X(t)

i ξC
2 + uC

i2 + uS
i2

log

(
π

(t)
3i

π
(t)
1i

)

= ξ
(t)
03 + X(t)

i ξC
3 + uC

i3 + uS
i3

Y
(t)
i = ξ

(t)
0 + X(t)

i ξY + uS
i2 + uS

i3 + uy + ε
(t)
i . (5)
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Thus, a vector of random effects u∗
i can be defined as follows:

u∗
i =

⎛

⎝
uC

i2 + uS
i2

uC
i3 + uS

i3
uS

i2 + uS
i3 + uy

⎞

⎠ ∼ MVN (03, �M) ,

with

�M =
⎛

⎜
⎝

σ 2
uC2

+ σ 2
us2

ρσuC2
σuC3

σ 2
us2

ρσuC2
σuC3

σ 2
uC3

+ σ 2
us3

σ 2
us3

σ 2
us2

σ 2
us3

σ 2
us2

+ σ 2
us3

+ u2
y

⎞

⎟
⎠ . (6)

This model is the joint model with the multinomial logistics mixed model as a
submodel for the counts (MLMM).

Estimates of all parameters are obtained by maximizing the likelihood of the joint
distribution (7). The joint marginal distribution is

Pr (Ci ,Yi ) =
∫

Pr
(
Ci ,Yi |US

i

)
Pr
(
US

i

)
dUS

i . (7)

Since the likelihood does not have a closed-form formula, numerical approx-
imations, such as Gauss–Hermite quadrature, need to be utilized. To compute
the marginal distribution, we followed the integration of the multivariate Gauss–
Hermite quadrature described in Liu and Pierce [13]. For the code, we need the
following definitions. Let ff be the integrand of Pr

(
Ci ,Yi |US

i

)
Pr
(
US

i

)
given in

equation (7). Let Yt be the observation for one subject, FixEf be the function to
define the log(E(μj )) for each j , Des the design matrix, b the vector of parameters,
CNF the marginal distribution for multivariate count outcome, and z be the vector
of random-effect parameters. Now the code for the function ff is as follows.

R code: computing the marginal distribution for joint method with MLMM

eta1 <- FixEf(Yt[7], b[1:4], Des, method)
eta2 <- FixEf(Yt[8], b[1:4], Des, method)
eta1 <- exp(eta1 + z[1:2])
eta2 <- exp(eta2 + z[1:2])
Eta1 <- c(1,eta1)
Eta2 <- c(1,eta2)
ff <- function(z){CNF(Yt[1:3], Eta1, method) +

CNF(Yt[4:6], Eta2, method) +
dnorm(Yt[9],mean=c(1,Yt[7])%*%b[5:6] + z[3],sd=ev,log=TRUE)+
dnorm(Yt[10],mean=c(1,Yt[8])%*%b[5:6] + z[3],sd=ev,log=TRUE)+
dmvnorm(z, mean = rep(0,3), sigma = Sigma, log=TRUE)}
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The mode and variance for our integrand can be obtained by using the following
code:

opt <- try(optim(c(0.1,-0.2,0.1),ff,method="BFGS",
control=list(fnscale = -1,maxit=9000),hessian=TRUE)).

The output opt contains opt$par that is the mode of ff and -opt$hessian
that is the Fisher information matrix at this mode.

Now, the log-likelihood (7) can be approximated by multivariate Gauss–Hermite
quadrature. To approximate the integral of

∫ ∞

−∞
exp(−x2)h(x)dx ≈

nGQ∑

i=1

wih(xi),

where the integrand has mode 0 and variance 1, and R has a built-in function
gauss.hermite from the package ecoreg. This function returns a matrix
of 2 columns, consisting of points (xi) and weights (wi). However, the mode
and variance of our integrand are not around 0 and 1, respectively. Therefore,
these weights and points need to be transformed. In the code below, we calculate
a.star, which is a set of transformed points. Then, y,which is the vector of ff
values at these transformed points, can be computed. Using y and the transformed
weights wi exp

(
x2
i

)
, the likelihood L can be computed using the following code.

FIM <- nearPD(-opt$hessian)$mat
invDer <- solve(FIM)
CH <- chol(invDer)
a.star <- t(opt$par + (sqrt(2)*CH%*%t(x)))
y <- apply(a.star,1,ff)
L <- (2^(3/2))*sqrt(det(CH))*sum(exp(y)*w*exp(x^2))}

For more details about this formulation, see Liu and Pierce [13]. For the
complete code to compute the likelihood, see Sect. 7 under the function
integralComputation.

An alternative to using the normal distribution for the overdispersion is to use
the conjugate distribution. Combining this model with normally distributed effects
yields the Dirichlet-multinomial mixed model (see [5]), which will be described in
the next section.
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3.2 Dirichlet-Multinomial Mixed Model (DMMM)

Martin et al. [17] used the combined model where a random effect with the
conjugate distribution models the overdispersion and a normally distributed random
effect in the linear predictor models the correlation over t . This is the Dirichlet-
multinomial mixed model. For each subject i, the count vector Ci is measured at
time points t . A Gaussian random subject effect ui is introduced to account for the
correlation within a subject between time points. Specifically, the model is

{
C

(t)
i1

C
(t)
i+

, . . . ,
C

(t)
i1

C
(t)
i+

} ∣∣∣∣
{
η

(t)
i1 , . . . , η

(t)
ij

}
, ui ∼ Mult

(
π̃

(t)
i1 , . . . , π̃

(t)
iJ

)
,

{
π̃

(t)
i1 , . . . , π̃

(t)
iJ

}
∼ Dir

(
η

(t)
i1 , . . . , η

(t)
iJ

)
,

η
(t)
ij = θ−1μ

(t)
ij , (8)

with μ representing the regression model with the covariate. Here, the conjugate
distribution models the correlation among the categories for one subject at a specific
time point. The correlation between the same categories at different time points is
modelled by normally distributed random effects. Hence,

log
(
μ

(t)
ij

)
=
(
λ0 + λE

j

)
+
(
λF

k + λEF
jk

) [
X

(t)
i = k

]
+ uC

ij , (9)

with baseline constraints (i.e., λE
1 = λF

1 = λEF
1k = λEF

j1 = 0) and where the vector

of random effects uC
i = {uC

i1, u
C
i2, . . . , u

C
iJ

} ∼ MVN (0, �) with

� =

⎛

⎜⎜⎜⎜
⎝

σ 2
uC1

0 0 0

0 σ 2
uC2

0 0
...

...
. . .

...

0 0 0 σ 2
uCJ

.

⎞

⎟⎟⎟⎟
⎠

Identifiability is obtained by assuming θ−1 exp (λ0) = δ−1
0 . Parameters λEF

jk , j =
2, . . . , J and k = 1 have the same interpretation as ξC

j , j = 2, . . . , J in MLMM.
For the continuous outcome variable Y , we again use a linear mixed-effect model

with one subject-specific random effect uY [11]. For the joint model, we introduce
the additional random effects to model the association between the two types of
outcomes, namely the random shared effect U(S)

i . Thus, for three categories, the
joint model is as follows. In the case that multivariate bacterial counts were assumed
to follow the Dirichlet-multinomial mixed model (DMMM), the joint method is
formulated as follows:
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log
(
μ

(t)
i1

)
= λ0 + λF

2

[
X

(t)
i = k

]
+ uC

i1 + uS
i1,

log
(
μ

(t)
i2

)
=
(
λ0 + λE

2

)
+
(
λF

2 + λEF
22

) [
X

(t)
i = k

]
+ uC

i2 + uS
i2,

log
(
μ

(t)
i3

)
=
(
λ0 + λE

3

)
+
(
λF

2 + λEF
32

) [
X

(t)
i = k

]
+ uC

i3 + uS
i3,

Y
(t)
i = ξ

(t)
0 + X(t)

i ξY + uS
i1 + uS

i2 + uS
i3 + uy + ε

(t)
i . (10)

Now the random effect u∗
i is defined as follows:

u∗
i =

⎛

⎜⎜
⎝

uC
i1 + uS

i1
uC

i2 + uS
i2

uC
i3 + uS

i3
uS

i1 + uS
i2 + uS

i3 + uy

⎞

⎟⎟
⎠ ∼ MVN (04, �D) ,

�D =

⎛

⎜⎜⎜⎜
⎝

σ 2
uC1

+ σ 2
uS1

0 0 σ 2
uS1

0 σ 2
uC2

+ σ 2
uS2

0 σ 2
uS2

0 0 σ 2
uC3

+ σ 2
uS3

σ 2
uS3

σ 2
uS1

σ 2
uS2

σ 2
uS3

σ 2
uS1

+ σ 2
uS2

+ σ 2
uS3

+ σ 2
uY

.

⎞

⎟⎟⎟⎟
⎠

(11)

The marginal distribution for the joint model with DMMM can be formulated in
the same way as in equation (7).

R code: computing the marginal distribution of joint method with DMMM

Let ff be the integrand of (7) where the distribution of multivariate count is
DMMM. The procedure is very similar to the R code to compute the marginal
distribution of joint method with MLMM. Note that the dimension of the covariance
structure is 4 by 4 instead of 3 by 3, as is the case for MLMM.

eta1 <- FixEf(Yt[7], b[1:6], Des, method)
eta2 <- FixEf(Yt[8], b[1:6], Des, method)
eta1 <- (1/theta)*exp(eta1 + c(z[1:3]))
eta2 <- (1/theta)*exp(eta2 + c(z[1:3]))

ff <- function(z) { }CNF(Yt[1:3],eta1,method) +
CNF(Yt[4:6],eta2,method) +
dnorm(Yt[9],mean=c(1,Yt[7])%*%b[7:8] + z[4], sd =ev,log=TRUE)+
dnorm(Yt[10],mean=c(1,Yt[8])%*%b[7:8] + z[4], sd=ev, log=TRUE)+
dmvnorm(z, mean = rep(0,4), sigma = Sigma, log=TRUE)}

opt <- try(optim(c(0.1,0.1,-0.2,0.1),ff,method="BFGS",
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control=list(fnscale = -1,maxit=9000),hessian=TRUE))
FIM <- nearPD(-opt$hessian)$mat
invDer <- solve(FIM)
CH <- chol(invDer)
a.star <- t(opt$par + (sqrt(2)*CH%*%t(x)))
y <- apply(a.star,1,ff)
L <- (2^(4/2))*sqrt(det(CH))*sum(exp(y)*w*exp(x^2))

3.3 Goodness of Fit

The two models yield a different correlation structure among the categories and
the continuous outcome. To assess the fit of the models, the observed correlations
might be compared to the modelled correlations. The variances of the shared effects
uS represent the association between the two types of outcome and are often of
interest. However, these variances may be hard to interpret as correlations and are
not directly observed. Therefore, we propose to compute the marginal correlation of
the model and compare these with the observed correlations:

Corr
(
Ct

ij , Y
t
i

)
=

σCt
ij ,Y t

i√
σ 2

Ct
ij

σ 2
Y t

i

.

To compute the first and second moments of the marginal distributions for the
models, Monte Carlo sampling might be used.

4 Simulation Studies

A set of simulation studies were conducted with the following two objectives.
Firstly, we investigate the performances of the proposed joint methods compared
to the aforementioned naive method. Secondly, the performance of the two joint
methods in estimating the marginal covariance structure among the outcomes is
evaluated. For the first objective, we are especially interested in the model for the
continuous outcome, the estimator’s performance for the covariate effects, and the
standard deviations of the shared effects. For the second objective, we compared the
observed marginal correlation with the estimated marginal correlation.

With regard to the random-effect structure for the joint models, we consider a
category-dependent shared random effect for the joint model with DMMM and a
logit-dependent random effect for the joint model with MLMM, and we assume
different standard deviations for each category or logit. The simulation study was
performed in R statistical software. The computation of the Gauss–Hermite integral
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is given in Sect. 7 under the function of integralcomputation.Here, three
knots of Gauss–Hermite quadrature are used.

4.1 Simulation Setting

We generated counts for N = 50 subjects, and the total count for the multivariate
outcome was Ci+ = 2000. For the parameters modelling the relationship between
the fixed effects and the two outcome variables, we based the values on the estimates
obtained in the data analysis. These parameters were the same for the DMMM and
the MLMM, except that DMMM has one more parameter for the model of the
multivariate counts.

Specifically for the joint model with MLMM, the fixed-effect parameters were
as follows:

ξ =
{
ξC

02, ξ
C
12, ξ

C
03, ξ

C
13, ξ

Y
0 , ξY

1

}
= {−3.5, 0.8,−1.3,−0.15,−2.3, 0.1} .

These parameters represent the intercepts and covariate effects for continuous
outcome (ξY

0 , ξY
1 ) and for each category’s logits (ξC

02, ξ
C
12, ξ

C
03, ξ

C
13). The standard

deviations of the random effects were
{
σuC2

, σuC3
, σuY

, σε

}
= {1, 0.8, 0.9, 0.7},

and the correlation coefficient between the measurement errors was ρ = 0.1. For
the standard deviations of the shared random effects, we considered two sets of
values namely

{
σuS2

, σuS3

}
= {(0.5, 0.6) , (1, 0.9)}, which later on will be labelled

as low- and high-level variance, respectively.
We used the following procedure to generate datasets under this joint method

with MLMM:

1. Based on the standard deviations of the random effects, we generated a multivari-
ate normal random effect u∗

i with covariance matrix � as defined in equation (6).
2. Based on the fixed-effects parameters, and by using the parameterization of

the conditional mean given in (5), we generated the normally distributed and
multinomial count outcomes for a subject.

For the joint model with DMMM, the following parameters for fixed effects
were used: ξ = {λF

2 , λE
2 , λE

3 , λEF
22 , λEF

32 , ξY
0 , ξY

1

} = {0.5,−3.5,−1.3, 0.8,−0.15,

−2.3, 0.1}. The standard deviations of the random effects modelling the
covariance structure of the counts and the continuous outcomes were:{
σuC1

, σuC2
, σuC3

, σuY
, σε

}
= {1, 1, 0.9, 0.9, 0.7}, which will be labelled as

high- and low-level variance, respectively. An overdispersion parameter was set
to θ = 0.1.

We used the following procedure to generate datasets for the joint method with
DMMM:

1. Based on the standard deviations of the random effects, we generated a mul-
tivariate normal random effect u∗

i with covariance matrix � as defined in
equation (11).
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2. Based on the fixed-effects parameters and by using the parameterization of
the conditional mean given in (10), we generated the normally distributed and
multinomial count outcomes for a subject using equation (8).

Finally, for computing the marginal correlation, we generated 10,000 replicates,
each with a sample size of 500 following the above procedure from each joint
model. For each replicate, we compute the observed marginal correlation, taking
the average of all datasets, and compare it with the estimated marginal correlation
obtained from Monte-Carlo simulation.

4.2 Simulation Results

For both models, the Dirichlet-multinomial mixed model and the multinomial
logistic mixed model, the estimated fixed-effect parameters of interest ξY

1 were
unbiased and more efficient than when using the naive approach (Figs. 1 and 2).
This holds for ξY

1 = 0.1 and ξY
1 = 1. For the estimated fixed-effect parameters

of the second and third bacterial categories, both joint methods produced unbiased
estimates (Fig. 5a and b, Appendix).

Concerning the estimation of the standard deviations of the shared effects of the
second and third categories, the joint method with MLMM produced unbiased esti-
mates, while for the joint method with DMMM, these were slightly overestimated
(Figs. 3 and 4). For the standard deviations of the random effects in the model for
the continuous outcome, the joint method with MLMM gave unbiased estimates

high level variance low level variance

ξ
0 Y

=
0.1

ξ
0 Y

=
1

−1.0

−0.5

0.0

0.5

1.0

1.5

−0.5

0.0

0.5

1.0

1.5

2.0

Method JM Naive

Fig. 1 Simulation result: the point estimates of the covariate of interest from joint method with
Dirichlet-multinomial mixed model and naive approach



144 I. Martin et al.

high level variance low level variance
ξ

0 Y
=

0.1
ξ

0 Y
=

1

−1

0

1

0

1

2

Method JM Naive

Fig. 2 Simulation result: the point estimates of the covariate of interest from joint method with
multinomial logistics mixed model and naive approach

for log
(
σuY

)
(Fig. 6, Appendix), although some outliers were observed. The joint

model with DMMM appeared to underestimate log
(
σuY

)
(Fig. 6, Appendix).

Finally, we compared the performance of each joint method in estimating the
marginal correlation. For this purpose, we compared the observed and estimated
marginal correlations within each joint method’s replicates. For both joint methods,
the marginal correlation appeared to closely resemble the observed marginal
correlation from their corresponding joint method (Tables 8, 9, 10, 11).

5 Data Analysis

To assess the relationship between the IL-10 response and the MB composition,
we first applied the naive approach using all data in the longitudinal setting. The
estimated parameters are given in Table 2. The association between helminth
infections and IL-10 response is not significant, but the associations between
Bacteroidetes proportion and IL-10 to LPS are significantly different depending
on the infection status. When subjects were helminth-uninfected, the cytokine
responses and Bacteroidetes proportion are negatively associated, while this associ-
ation disappears when subjects were helminth-infected. These findings suggest that
MB composition is likely to correlate with cytokine response. The following code
is used to estimate the parameters from the naive model.
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Fig. 3 The estimated standard deviation for the shared effects of the second and third categories
obtained from joint methods with DMMM. The upper plots are for the variability of the shared
effect for the second category, and the lower plots are for the third category

R code for fitting the naive model

library(lme4)
fit <- lmer(y ~ inf + inf*p.Firmi + inf*p.Bactero
+ (1|ID), REML = FALSE, data = bact)
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Fig. 4 The estimated standard deviation for the second and third categories from the joint method
with MLMM. The upper plots are for the second logit, and the lower plots are for the third logit

The naive approach ignores the measurement error of the multivariate counts
and the fact that the covariate may affect both outcomes. The joint methods that are
proposed in this chapter might be more appropriate. However, the R code used in
the simulation study did not work well for the data application. Instead of R, the
SAS software with proc NLMIXED was used.

We considered the two approaches: the joint method with DMMM and with
MLMM. For the joint method with MLMM, we used model (5) with the infection
status as covariate and a random effect u∗

i = {uC2 + uS2, uC3 + uS3 , uS2 + uS3 + uY

}

following a multivariate normal distribution with a mean of zero and covariance
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Table 2 Data analysis: The estimates of the fixed-effect and random-effect parameters from the
naive approach

Fixed effects Random effects

Parameters Estimate (s.e) p-values Group name Variance

(Intercept) 2.33 (0.28) <0.001 Individual 0.03

tpoint −0.20 (0.06) <0.001 Residual 0.09

inf −0.09 (0.39) 0.82

p.Firmi 0.11 (0.37) 0.77

p.Bactero −1.95 (0.60) <0.001

inf:p.Firmi 0.06 (0.52) 0.90

inf:p.Bactero 2.03 (0.71) 0.01

Table 3 The estimated parameters from joint method with (A) MLMM and (B) DMMM. Both
models were fitted with Gauss–Hermite quadrature proc NLMIXED in SAS with 5 adaptive
quadrature points

(A) Joint model with MLMM

Fixed effects Random effects

Parameters Estimate (s.e) p-values Parameters Estimate (s.e) p-values

Multivariate σuC2
2 1.88 (0.35) <.0001

ξ02
C −3.46 (0.18) <.0001 σuS2

2 −0.02 (0.05) 0.75

ξ12
C 0.79 (0.03) <.0001 σuC3

2 0.31 (0.06) <.0001

ξ03
C −0.96 (0.07) <.0001 σuS3

2 −2.6E−04 (0.02) 0.99

ξ13
C −0.33 (0.02) <.0001 σuY

2 0.03 (0.06) 0.56

Continuous ρ 0.07 (0.13) 0.56

ξ0
Y 2.19 (0.05) <0.0001 σε

2 0.36 (0.03) <.0001

ξ1
Y 0.09 (0.07) 0.21

(B) Joint model with DMMM

Fixed effects Random effects

Parameters Estimate (s.e) p-values Parameters Estimate (s.e) p-values

Multivariate σuC1
2 1.81E−04 (0.02) 0.99

λF
2 −0.25 (0.21) 0.24 σuC2

2 0.01 (0.04) 0.78

λE
2 −2.67 (0.16) <.0001 σuC3

2 4.37E−08 (1.07E−04) 0.99

λE
3 −1.02 (0.09) <.0001 σuS1

2 4.16E−03 (0.02) 0.83

λEF
22 0.36 (0.21) 0.1 σuS2

2 −7.31E−03 (0.02) 0.74

λEF
32 −0.05 (0.13) 0.72 σuS3

2 −3.03E−08 (6.8E−05) 0.99

Continuous σuY
2 0.02 (0.04) 0.59

ξY
0 2.19 (0.05) <.0001 σε

2 0.13 (0.02) <.0001

ξY
1 0.09 (0.07) 0.19 θ 0.15 (0.02) <.0001

Note: SAS might give negative variances

matrix �, where � is defined in equation (6). The estimated parameters of the
fixed-effects and random-effects parameters are tabulated in Table 3A. Infection has
no significant association with the cytokine response. However, it is significantly
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associated with the change of ratio of Bacteroidetes: Firmicutes ( ˆξC
12 = 0.79 with

s.e. of 0.03, p-value of < .0001) and pooled: Firmicutes ( ˆξC
13 = −0.33 with s.e. of

0.02, p-value of < 0.0001). We observed that the two outcomes are not correlated,
i.e., the estimates of the variances of the random shared effects uS2 and uS3 are
almost zero (σuS2

2 = 0.002 with a s.e. of 0.010, p-value of 0.796; σuS3
2 = 0.006

with s.e. of 0.015, p-value of 0.628).
A similar conclusion was obtained from fitting the joint model with the Dirichlet-

multinomial mixed model. The estimated parameters are presented in Table 3B.
The estimated effect of infection is the same as in the joint method with the
multinomial logistics mixed model. The parameter λEF

22 represents the log odds ratio
of Bacteroidetes to Firmicutes when subjects were infected compared to uninfected.
Based on this model, the infection status is not significantly associated with the log
odds ratio of Bacteroidetes to Firmicutes.

To further investigate the relationship between the MB composition and the
cytokines, we estimated the variance of shared effect in subjects who remained
uninfected. A total of 16 subjects were helminth-uninfected at pre-treatment and
remained uninfected at 21 months after the first treatment. The estimated parameters
are listed in Table 7. We observed that the estimated variance of the shared effect was
larger in this subset than in the total sample. When using the Dirichlet-multinomial
mixed model for these 16 subjects, the likelihood failed to converge.

The two approaches differ in how the measurement error for the multivariate
count outcome is modelled. For the whole dataset and the MLMM, we notice
that the variances of random effect σ 2

uC2
and σ 2

uC3
are significant. These random

effects represent the measurement error as well as the correlation over time. For
the DMMM, the measurement error is captured by the overdispersion parameter θ ,
which is also significant.

The marginal correlations for both observed and those estimated from the joint
methods are given in Table 4A–C. In general, the marginal correlation among the
categories obtained from the joint method with MLMM is closer to the observed
marginal correlation than the correlations obtained from DMMM. The estimated
marginal correlation between the categorical and continuous outcomes is different
from the observed correlations for both models.

6 Discussion

We proposed two joint models to assess the relationship between a continuous
marker and the MB composition while taking into account a set of covariates and
measurement error. The methodology was illustrated by a study on the association
between helminth infection status, MB composition, and cytokine responses in a
longitudinal study in Indonesia. For the MB data, we considered the multinomial
logistic mixed model approach [8] and the Dirichlet-multinomial mixed model. To
model extra variation due to measurement error or unobserved heterogeneity in the
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Table 4 The observed (A) and estimated marginal correlations (B) from the joint method with
MLMM and (C) from the joint method with DMMM

(A) The observed marginal correlation from the dataset

C
(1)
1 C

(1)
2 C

(1)
3 Y1 C

(2)
1 C

(2)
2 C

(2)
3 Y2

C
(1)
1 1

C
(1)
2 −0.545 1

C
(1)
3 −0.53 −0.422 1

Y1 0.075 −0.089 0.009 1

C
(2)
1 0.262 −0.067 −0.216 0.133 1

C
(2)
2 −0.072 −0.07 0.148 −0.029 −0.55 1

C
(2)
3 −0.228 0.141 0.104 −0.123 −0.605 −0.331 1

Y2 −0.224 0.174 0.067 0.235 0.072 −0.123 0.036 1

(B) The estimated marginal correlation from joint method with MLMM

C
(1)
1 C

(1)
2 C

(1)
3 Y1 C

(2)
1 C

(2)
2 C

(2)
3 Y2

C
(1)
1 1

C
(1)
2 −0.58 1

C
(1)
3 −0.59 −0.32 1

Y1 0.01 −0.02 0.01 1

C
(2)
1 0.96 −0.53 −0.60 0.01 1

C
(2)
2 −0.56 0.91 −0.26 −0.02 −0.54 1

C
(2)
3 −0.57 −0.24 0.91 0.01 −0.63 −0.31 1

Y2 0.01 −0.02 0.01 0.12 0.01 −0.02 0.01 1

(C) The estimated marginal correlation from joint method with DMMM

C
(1)
1 C

(1)
2 C

(1)
3 Y1 C

(2)
1 C

(2)
2 C

(2)
3 Y2

C
(1)
1 1

C
(1)
2 −0.39 1

C
(1)
3 −0.85 −0.15 1

Y1 0.02 −0.02 −0.01 1

C
(2)
1 0.01 −0.00 −0.01 0.02 1

C
(2)
2 −0.00 0.01 0.00 −0.02 −0.38 1

C
(2)
3 −0.01 0.00 0.01 −0.01 −0.86 −0.15 1

Y2 0.02 −0.02 −0.01 0.14 0.02 −0.02 −0.01 1

multinomial type data, either the conjugate (DMMM) or the normal distribution
(MLMM) was used.

We compared our models with a naive approach, which includes bacterial
proportions as a covariate in a linear mixed model ignoring the measurement
error in the MB data. Our simulation study showed that the estimator of the
parameter modelling the effect of the covariate on the continuous outcome in the
naive approach was unbiased but less efficient. In our data application, we found
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a significant association between the MB and the cytokine response in uninfected
subjects using the naive approach. However, this was not confirmed in the joint
model approach. Unfortunately, we do not have sufficient information to conclude
about this relationship. Our study is underpowered with only 16 subjects who were
uninfected and remained uninfected.

The application of the joint model to all subjects showed a significant association
between helminth infection on MB composition but not on the cytokine response.
Concerning the estimated correlation between the categorical and continuous out-
comes, we observed small correlations for both models. For MLMM, the estimated
variance of shared effect was σ 2

uS2
−0.02 (s.e of 0.05) and σuS3

2 of −0.00026
(s.e. of 0.02). The measurement errors were relatively large and significant for both
the bacterial count outcomes in both approaches. The joint approach with MLMM
appeared to represent the marginal Pearson correlations among the categorical
counts better. However, the Pearson correlation between the two outcomes was not
well represented by both models. The reasons might be that the random effects are
not normally distributed or that the used correlation structure is too simple.

To assess model fit, we calculated Pearson’s correlation coefficients from the
observed data and compared these with the marginal correlations given by the
model. For the data example, the MLMM model appeared to represent the observed
correlations among the categorical counts better, and therefore, we may conclude
that the MLMM fits the data better than the DMMM. The development of formal
goodness-of-fit tests to decide among the various models is a topic of future
research. Finally, such a test might be based on non-parametric measures for the
correlation since the counts are non-normal.

We proposed here the joint model between the multivariate count of three
categories and continuous outcome. It appeared to be challenging to fit these models.
For instance, the optimization under the approximation of Gauss–Hermite (the so-
called adaptive Gauss–Hermite) in R did not always converge; especially when
the variance of random effect is small. To overcome this, we opted to use SAS,
which has a built-in procedure called proc NLMIXED, designed for mixed-effect
models for the data analysis. Some of the estimates for the variances appeared to
be negative, which suggests that the convergence problems in R might be caused by
restrictions on the parameter space. A limitation of our model is the small number
of categories which it can handle. It would be attractive to extend the model to more
than three categories. However, the computational burden will increase further. With
an increasing number of categories (high-dimensional), a penalty function might be
needed to deal with a large number of variance components [2]. These are topics for
future research.

In this chapter, the focus is on modelling of the relationships between two
outcome variables and a set of covariates. When the interest is only on testing for
associations, fitting these models might be too time-consuming. A score test needs
to be derived for testing the null hypothesis of no association between the com-
positional and continuous outcomes. Another approach is to use the compositional
parameter as a covariate in the model and test for association using a Wald test.
However, the power might be small in the presence of a large measurement error.
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More research is needed to derive test statistics and to study their performance under
a range of scenarios.

Joint models better reflect the underlying biological mechanisms since they
enable the formulation of unmeasured mechanisms by introducing random (latent)
factors for modelling the relationship between variables. The next step is to embed
these models in a causal inference framework. In such a framework, the paths among
all variables can be drawn, and confounding factors like BMI or diet can be included.
The study presented in this chapter is a subset of a larger randomized clinical trial.
Subjects were randomized to receive anthelminthic treatment or placebo. Under
some conditions, this randomization might be used to perform causal inference
about the relationship among the infection status, the MB composition, and the
cytokine response in the subset of this chapter [14, Chapter 6].

To conclude, although the joint models are challenging to fit when the outcomes
are from different types, they might give more insight into three-way relationships
between a covariate and two outcomes.

7 Software

Two statistical software was used in this chapter: R in the simulation study and
SAS for model fitting. SAS has a built-in function proc NLMIXED to compute
a likelihood containing integration of random effect, especially with complex
covariance structure as in our proposed methods. Hence, computational time in SAS
is faster than that in R. R codes and the dataset used in this chapter can be found in
https://github.com/IvonneMartin/JMoverCat.

R code to generate datasets

The code for generating dataset here is applied to a dataset with one binary
covariate and the multivariate count outcome consisting of three categories with
total count per sample is 2000. The dataset used in the computation assumes a wide
format as given in Table 5.
Here, the superscripts represent the time point where the observation takes place.

Table 5 An example data of wide format for computation in R

ID C
(1)
1 C

(1)
2 C

(1)
3 C

(2)
1 C

(2)
2 C

(2)
3 X(1) X(2) Y (1) Y (2)

1 1538 36 426 1364 36 600 1 1 2.53 2.23

2 1306 13 681 1098 584 318 1 1 2.25 2.59
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

N 1408 52 540 1193 41 766 1 1 2.58 1.38

https://github.com/IvonneMartin/JMoverCat
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The function DataGenerate (lines 30–127) is the core function to generate
the dataset, which will call the subroutine FixEf (line 6–19) to define the linear
model. The procedure is described at the end of this section.

1 ## FixEf returns a multiplication between a design
matrix

2 ## (Des) with a vector of regression coefficients (b).
3 ## x.vec : the value of binary covariate.
4 ## method : "dirmult" or "multl".
5

6 FixEf <- function(x.vec,b,Des,method ){
7 gt <- c(Des %*% b)
8

9 if (method == "dirmult"){
10 if (x.vec == 0) {
11 g = gt[seq(1,nrow(Des),by=2)]
12 } else {
13 g = gt[seq(2,nrow(Des),by=2)]}}
14 if(method == "multl") {
15 if (x.vec == 0) {
16 g = gt[seq(1,nrow(Des),by=2)]
17 } else {
18 g = gt[seq(2,nrow(Des),by=2)]}}
19 return(g)}
20

21

22 ## DataGenerate is the core function to generate
datasets.

23 ## N : the number of subjects
24 ## method : the model for the multivariate count

outcome
25 ## ("dirmult" or "multl")
26 ## var.level : variance level ("high" or "low", as

defined in
27 ## the simulation setting).
28

29

30 DataGenerate <- function(N,method,var.level){
31 require(HMP)
32 require(mvtnorm)
33 require(Matrix)
34

35 Q <- 3 # number of categories
36 S <- 2000 # total count
37 uY <- 0.9 # std. dev. for continuous outcome
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38 eps <- 0.7 # std. dev. for residuals in
39 # continuous outcome
40

41 if (method == "dirmult") {
42 th <- 0.1
43 uC <- c(1,1,0.9)
44 if(var.level == "high") {
45 uS <- c(1,1,0.9) }
46 if (var.level =="low") {
47 uS <- c(1,0.5,0.6)}
48

49 Sigma1 <- matrix(0,nrow = 4,ncol = 4)
50 diag(Sigma1) <- c(uC^2 + uS^2, sum(uS^2) + uY^2)
51 Sigma1[4,1] <- uS[1]^2
52 Sigma1[4,2] <- uS[2]^2
53 Sigma1[4,3] <- uS[3]^2
54 Sigma <- as.matrix(Matrix::forceSymmetric(Sigma1,
55 uplo = "L"))
56

57 Des <- as.matrix(cbind(rep(1,6),rep(0:1,3),c
(0,0,1,1,0,0),

58 c(rep(0,4),rep(1,2)),c(0,0,0,1,0,0),c(rep(0,5),1)))
59 beta <- c(0,0.5,-3.5,-1.3,0.8,-0.15,-2,1)
60 Umc <- rmvnorm(N,mean=rep(0,4),sigma=Sigma)
61 Eps <- rnorm(2*N, mean = 0, sd = eps)
62 X <- cbind(rbinom(N,size=1,prob = 0.5),rbinom(N,

size = 1,prob = 0.5))
63

64 XB1 <- t(sapply(X[,1],FixEf,b = beta[1:6],Des,
method))

65 XB.tilde1 <- (1/th)*exp(cbind(XB1+Umc[,1:3]))
66 C1 <- t(apply(XB.tilde1,1,Dirichlet.multinomial,Nrs

= S))
67 Y1 <- cbind(1,X[,1])%*%beta[7:8] + Umc[,4] + Eps[1:

N]
68

69

70 XB2 <- t(sapply(X[,2],FixEf,b = beta[1:6],Des,
method))

71 XB.tilde2 <- (1/th)*exp(cbind(XB2+Umc[,1:3]))
72 C2 <- t(apply(XB.tilde2,1,Dirichlet.multinomial,Nrs

= S))
73 Y2 <- cbind(1,X[,2])%*%beta[7:8] + Umc[,4] + Eps[(N

+1):(2*N)]
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74

75 data1 <- cbind(C1,C2,X,Y1,Y2)
76 }
77

78 if(method == "multl"){
79

80 rho <- 0.1
81 uC <- c(1,0.8)
82 if(var.level == "high") {
83 uS <- c(1,0.9)
84 }
85 if (var.level == "low") {
86 uS <- c(0.5,0.6)
87 }
88

89 Sigma1 <- matrix(0,nrow = 3,ncol = 3)
90 diag(Sigma1) <- c(uC^2 + uS^2, sum(uS^2) + uY^2)
91 Sigma1[2,1] <- rho*uC[1]*uC[2]
92 Sigma1[3,1] <- uS[1]^2
93 Sigma1[3,2] <- uS[2]^2
94 Sigma <- as.matrix(Matrix::forceSymmetric(Sigma1,

uplo = "L"))
95

96 Des <- cbind(c(rep(1,2),rep(0,2)),c(rep(0,2),rep
(1,2)),

97 c(0,1,0,0),c(0,0,0,1))
98 beta <- c(-3.5,-1.3,0.8,-0.15,-2,0.1)
99

100 Umc <- rmvnorm(N,mean = rep(0,3),sigma = Sigma)
101 Eps <- rnorm(2*N,mean = 0,sd = eps)
102

103 eta1 <- t(sapply(X[,1],FixEf,b = beta[1:4],Des,
method))

104 eta2 <- t(sapply(X[,2],FixEf,b = beta[1:4],Des,
method))

105

106 Eta1 <- cbind(1, exp(eta1 + Umc[,c(1,2)]))
107 SumEta1 <- apply(Eta1,1,sum)
108 Eta1 <- Eta1/SumEta1
109

110 Eta2 <- cbind(1, exp(eta2 + Umc[,c(1:2)]))
111 SumEta2 <- apply(Eta2,1,sum)
112 Eta2 <- Eta2/SumEta2
113
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114 # Generate the outcomes
115 C1 <- t(apply(Eta1,1,rmultinom,n=1,size = S))
116 C2 <- t(apply(Eta2,1,rmultinom,n=1,size = S))
117

118 Y1 <- cbind(1,X[,1])%*%beta[5:6] + Umc[,3] + Eps[1:
N]

119 Y2 <- cbind(1,X[,2])%*%beta[5:6] + Umc[,3] +
120 Eps[(N+1):(2*N)]
121

122 data1 <- cbind(C1,C2,X[,1],X[,2],Y1,Y2)
123 }
124 colnames(data1) <- c("C11","C21","C31","C12","C22","

C32",
125 "X1","X2","Y1","Y2")
126 return(data1)
127 }
128

129 # examples
130 #DataGenerate(N = 50,method = "dirmult",var.level = "

high")

For each method for the multivariate count outcome (dirmult or multl), we
first specify standard deviations for random effects to formulate the covariance
matrix Sigma (lines 42–55 for dirmult and lines 80–94 for multl). The design
matrix for the covariate Des is to obtain the linear regressor for all logits. beta
is the vector consisting of all fixed-effect parameters as defined in the simulation
setting. After generating random effects (Umc) following the covariance structure,
we generate a model matrix for a multivariate outcome (Eta1 and Eta2, for the
first and second time points, respectively).

R code for the computation of the likelihood of joint model

The function loglik (lines 253–321) is the core function to compute the log-
likelihood of the joint method both with Dirichlet-multinomial mixed model or
multinomial logistics mixed model. The function requires four subroutines, namely
the function CNF to compute the log-likelihood of the multivariate count outcome,
the function F to compute the total likelihood, integralComputation
to compute the Gauss–Hermite approximation to the log-likelihood, and
mgauss.hermite function to call for the nodes and weights of Gauss–Hermite
polynomial. The procedure is described briefly at the end of this section.

131 ## CNF returns the marginal log-likelihood for the
multivariate
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132 ## count outcome.
133 ## Ct : the count vector
134 ## g : the output from FixEf function
135

136 CNF <- function(Ct,g,method){
137 gs <- sum(g)
138 ys <- sum(Ct)
139

140 if (method == "dirmult") {
141 val <- lgamma(ys+1) + lgamma(gs) - lgamma(ys+gs) +
142 sum(lgamma(Ct+g) - lgamma(g) - lgamma(Ct+1))
143 }
144

145 if (method == "multl"){
146 prob <- g/gs
147 val <- lgamma(ys + 1) + sum(Ct * log(prob) -
148 lgamma(Ct + 1))
149 }
150 return(val)}
151

152

153 ## F returns the log-likelihood value for a subject for
a given

154 ## Gauss-Hermite node z.
155 ## b the fixed effect parameter values
156 ## theta : the overdispersion parameter for dirmult.
157 ## Sigma : the covariance matrix for the random effect.
158 ## ev : the standard deviation for residuals in

continuous
159 ## outcome.
160 ## data : the observations for a subject.
161

162

163 F <- function(z,b,theta,Sigma,ev,data,method){
164 Yt <- data
165

166 if (method == "dirmult"){
167 eta1 <- FixEf(Yt[7], b[1:6],Des,method)
168 eta2 <- FixEf(Yt[8], b[1:6],Des,method)
169 eta1 <- (1/theta)*exp(eta1 + c(z[1:3]))
170 eta2 <- (1/theta)*exp(eta2 + c(z[1:3]))
171 val <- CNF(Yt[1:3],eta1,method) + CNF(Yt[4:6],

eta2,method) +
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172 dnorm(Yt[9],mean=c(1,Yt[7])%*%b[7:8] + z[4],sd
= ev,log=TRUE)+

173 dnorm(Yt[10],mean=c(1,Yt[8])%*%b[7:8] + z[4],sd
= ev,log=TRUE)+

174 dmvnorm(z, mean = rep(0,4), sigma = Sigma, log=
TRUE)

175 return(val)
176 }
177

178 if (method == "multl"){
179 eta1 <- FixEf(Yt[7], b[1:4],Des,method)
180 eta2 <- FixEf(Yt[8], b[1:4],Des,method)
181 eta1 <- exp(eta1 + z[1:2])
182 eta2 <- exp(eta2 + z[1:2])
183 Eta1 <- c(1,eta1)
184 Eta2 <- c(1,eta2)
185 val <- CNF(Yt[1:3],Eta1,method) + CNF(Yt[4:6],

Eta2,method) +
186 dnorm(Yt[9],mean=c(1,Yt[7])%*%b[5:6] + z[3],sd

= ev,log=TRUE)+
187 dnorm(Yt[10],mean=c(1,Yt[8])%*%b[5:6] + z[3],sd

= ev,log=TRUE)+
188 dmvnorm(z, mean = rep(0,3), sigma = Sigma, log=

TRUE)
189 }
190 return(val)
191 }
192

193

194 ## integralComputation returns the likelihood
approximation

195 ## for subject i based on adaptive
196 ## Gauss-Hermite quadratures.
197 ## b : fixed effect parameters
198 ## theta : overdispersion parameter for dirmult
199 ## ev : standard deviation for residuals in
200 ## continuous outcome.
201 ## x, w : nodes and weights from multivariate
202 ## Gauss-Hermite quadrature.
203

204 integralComputation<-function(i,b,theta,Sigma,ev,
dataset,

205 x,w,f,method){
206 data <- dataset[i,]
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207 ff <- function(z) f(z,b,theta,Sigma,ev,data,method)
208

209 if (method == "dirmult"){
210 opt <- try(optim(c(0.1,0.1,-0.2,0.1),ff,method="BFGS

",
211 control=list(fnscale = -1,maxit=9000),hessian=TRUE))
212 FIM <- nearPD(-opt$hessian)$mat
213 invDer <- solve(FIM)
214 CH <- chol(invDer)
215 a.star <- t(opt$par + (sqrt(2)*CH%*%t(x)))
216 y <- apply(a.star,1,ff)
217 L <- (2^(4/2))*sqrt(det(CH))*sum(exp(y)*w*exp(x^2))}
218

219 if (method == "multl"){
220 opt <- try(optim(c(0.1,-0.2,0.1),ff,method="BFGS",
221 control=list(fnscale = -1,maxit=9000),hessian=TRUE)

)
222 FIM <- nearPD(-opt$hessian)$mat
223 invDer <- solve(FIM)
224 CH <- chol(invDer)
225 a.star <- t(opt$par + (sqrt(2)*CH%*%t(x)))
226 y <- apply(a.star,1,ff)
227 L <- (2^(3/2))*sqrt(det(CH))*sum(exp(y)*w*exp(x^2))

}
228 return(L)
229 }
230

231

232 ## mgauss.hermite returns a set of nodes and weights
from

233 ## multivariate Gauss - Hermite quadrature.
234 ## n : the number of quadratures
235 ## mu : mean vector
236 ## Sigma : covariance matrix
237

238 mgauss.hermite <- function(n, mu, sigma) {
239 if(!all(dim(sigma) == length(mu)))
240 stop("mu and sigma have nonconformable dimensions")
241

242 dm <- length(mu)
243 gh <- gauss.hermite(n)
244 idx <- as.matrix(expand.grid(rep(list(1:n),dm)))
245 pts <- matrix(gh[idx,1],nrow(idx),dm)
246 wts <- apply(matrix(gh[idx,2],nrow(idx),dm), 1, prod)
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247

248 return(list(points=pts, weights=wts))
249 }
250

251

252 ## loglik is the core function to calculates the total
likelihood

253 ## given the dataset.
254 ## params should be in the following format:
255 ## params = {betas_C, betas_Y,uC’s, uS’s,theta or rho,

uY,ev}
256

257 loglik <- function(params,method,data){
258 require(ecoreg)
259 require(mvtnorm)
260 require(Matrix)
261

262 var.Y <- exp(params[(length(params)-1):length(params)
])

263 uY <- var.Y[1]
264 ev <- var.Y[2]
265 if (method == "dirmult"){
266 var.Sigma <- exp(params[(length(params) - 8):
267 (length(params) - 2)])
268 uC <- var.Sigma[1:3]
269 uS <- var.Sigma[4:6]
270 theta <- var.Sigma[7]
271 beta <- c(0,params[1:(length(params) - 9)])
272

273 Sigma1 <- matrix(0,nrow=4,ncol=4)
274 diag(Sigma1) <- c(uC^2 + uS^2,sum(uS^2) + uY^2)
275 Sigma1[4,1] <- uS[1]^2
276 Sigma1[4,2] <- uS[2]^2
277 Sigma1[4,3] <- uS[3]^2
278 Sigma <- as.matrix(Matrix::forceSymmetric(

Sigma1,
279 uplo = "L"))
280

281 pts <- mgauss.hermite(3, mu=rep(0,3), sigma=
Sigma)

282 xGH <- pts$points
283 wGH <- pts$weights
284

285 index<-seq(1,nrow(data),by=1)
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286 w <- wGH
287 x <- as.matrix(xGH )
288 f <- match.fun(F)
289 e1 <- sapply(index,integralComputation,b = beta

,
290 theta = theta, Sigma = Sigma,ev,dataset = data

,x = x,
291 w = w,f = f,method = method)
292

293 res <- sum(log(e1))
294 return(res)
295 }
296

297 if (method == "multl"){
298 rho <- cos(params[length(params) - 2])
299 var.Sigma <- exp(params[(length(params) - 6):
300 (length(params) - 3)])
301 uC <- var.Sigma[1:2]
302 uS <- var.Sigma[3:4]
303 beta <- params[1:(length(params) - 7)]
304

305 Sigma1 <- matrix(0,nrow=3,ncol=3)
306 diag(Sigma1) <- c(uC^2 + uS^2,sum(uS^2) + uY^2)
307 Sigma1[2,1] <- rho*uC[1]*uC[2]
308 Sigma1[3,1] <- uS[1]^2
309 Sigma1[3,2] <- uS[2]^2
310 Sigma <- as.matrix(Matrix::forceSymmetric(Sigma1,
311 uplo = "L"))
312

313 pts <- mgauss.hermite(3, mu=rep(0,3), sigma=Sigma
)

314

315 xGH <- pts$points
316 wGH <- pts$weights
317

318 index<-seq(1,nrow(data),by=1)
319 w <- wGH
320 x <- as.matrix(xGH )
321 f <- match.fun(F)
322 e1 <- sapply(index,integralComputation,b = beta,
323 theta = 1, Sigma = Sigma,ev,dataset = dat1,
324 x = x,w = w,f = f,method = method)
325

326 res <- sum(log(e1))
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327 }
328 return(res)}

The function loglik requires an input of initial values of parameters, both the
fixed effect and standard deviations of the covariance structure (params), a method
for the multivariate count outcome (method, either dirmult or multl), and a
dataset in the wide format as defined in Table 5.

The function first specifies the parameters params into fixed-effect parameters
and standard deviations of random effects. Depending on the method for the
multivariate count outcome, the function specifies the covariance structure for the
random effect Sigma.

Using the covariance matrix Sigma,the subroutine mgauss.hermite is
used to call the nodes and weights from the standard Gauss–Hermite polynomial.
The subroutine integralComputation is used to compute the likelihood
contribution for each subject.

SAS code: joint method with multinomial logistics mixed model

For computation in SAS, the dataset is in the long format as given in Table 6.
Often, the likelihood computation gives a singular Hessian matrix. In this case,

the following Cholesky factorization of the covariance matrix is used:

�3 =
⎛

⎝
τ1 0 0
τ12 τ2 0
τ13 τ23 τ3

⎞

⎠

⎛

⎝
τ1 τ12 τ13

0 τ2 τ23

0 0 τ3

⎞

⎠ . (12)

For each SAS code, the llY and llC are the log-likelihood for continuous and
multivariate outcomes, respectively. Note that there is a variable yt in the dataset
consisting of 1’s for all samples. This is a dummy outcome variable.

proc nlmixed data = bact2time qpoints=5;

/*fixed effect parameters, th’s are for the intercepts

and b_if’s for the infection effect*/

Table 6 The dataset in the
long format for computation
in SAS

id t1 t2 t3 inf tpoint respY yt

1 1538 36 426 1 0 2.53 1

1 1364 36 600 1 1 2.23 1

2 1306 13 681 1 0 2.25 1

2 1098 584 318 1 1 2.59 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

N 1408 52 540 1 0 2.58 1

N 1193 41 766 1 1 1.38 1
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parms thC2 = 1 b_ifC2 = 0.3

thC3 = 2 b_ifC3 = -0.2

thY = 0.5 b_ifY = 1

logse = -0.9

/* The parameters for Cholesky factorization of Sigma*/

tau1 = -1.5 tau12 = -0.4 tau2 = 0.5 tau13 = -2

tau23 = -1.5

tau3 = 1.5;

/* eta’s are the linear model each category. */

eta1 = 0;

eta2 = thC2 + b_ifC2*inf + b1;

eta3 = thC3 + b_ifC3*inf + b2;

array exp_eta{3};

exp_eta1 = 1;

exp_eta2 = exp(eta2);

exp_eta3 = exp(eta3);

bot = exp_eta1+exp_eta2+exp_eta3;

/*the linear model for the continuous outcome*/

mY = thY + b_ifY*inf + b3;

se = exp(logse);

llY = -0.5*log(2*3.1415) - log(se) -

0.5*((respY - mY)**2)/se**2;

llC = t1*log(exp_eta1/bot) + t2*log(exp_eta2/bot) +

t3*log(exp_eta3/bot);

model yt ~ GENERAL(llC + llY);

s11 = tau1*tau1;

s21 = tau1*tau12;

s22 = tau12*tau12 + tau2*tau2;

s31 = tau1*tau13;

s32 = tau12*tau13 + tau2*tau23;

s33 = tau13*tau13 + tau23*tau23 + tau3*tau3;

random b1 b2 b3 ~ NORMAL([0,0,0],[s11,s21,s22,s31,s32,s33])

subject=id;

estimate ’variance of u2’ tau1*tau1 - tau1*tau13;

estimate ’variance of us2’ tau1*tau13;

estimate ’variance of u3’ tau12*tau12 + tau2*tau2 -

tau12*tau13 + tau2*tau23);

estimate ’variance of us3’ tau12*tau13 + tau2*tau23;

estimate ’variance of uy’ tau13*tau13 + tau23*tau23 +

tau3*tau3 - tau1*tau13 - tau12*tau13 - tau2*tau23;

estimate ’rho’ (tau1*tau12)/sqrt(tau1*tau1 - tau1*tau13)*sqrt(
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tau12*tau12 + tau2*tau2 - (tau12*tau13 + tau2*tau23));

run;

SAS code for joint model with Dirichlet-multinomial regression

proc nlmixed data = bact2time qpoints= 5;
/*fixed effect parameters. Here b_2B, b_2A,...,b_32AB
are lambdas in the simulation setting.*/

parms b2B = -0.10 b2A = -2 b3A= -1.2 b22AB = 0.3 b32AB= -0.2
thY = 0.5 b_ifY = 1
logse = -0.9
logth = -2.46924285
tau11 = 0.5 tau21= -0.5 tau22= 1.2 tau31=-1.2 tau32=3.2
tau33=2.1 tau41=-2.3 tau42=2.1 tau43=1.2 tau44=-1.5;

theta = exp(logth); /*overdispersion parameter */
se = exp(logse);

if (inf = 0) then
do;

eta1 = (1/theta)*exp(0 + b1);
eta2 = (1/theta)*exp(0 + b2A + b2);
eta3 = (1/theta)*exp(0 + b3A + b3);

end;
else

do;
eta1 = (1/theta)*exp(0 + b2B + b1);
eta2 = (1/theta)*exp(0 + b2B + b2A + b22AB + b2);
eta3 = (1/theta)*exp(0 + b2B + b3A + b32AB + b3);

end;

gs = eta1 + eta2 + eta3;
ys = 2000;

llC = lgamma(ys+1) + lgamma(gs) - lgamma(ys+gs) +
(lgamma(t1+eta1) + lgamma (t2+eta2) + lgamma(t3+eta3) -
lgamma(eta1) - lgamma(eta2) - lgamma(eta3) -

lgamma(t1+1) - lgamma(t2+1) - lgamma(t3+1));

mY = thY + b_ifY*inf + b4;
llY = -0.5*log(2*3.1415) - log(se)
- 0.5*((respY - mY)**2)/se**2;
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model yt ~ GENERAL(llC + llY);
s11 = tau11*tau11;
s21 = tau11*tau21;
s22 = tau21*tau21 + tau22*tau22;
s31 = tau11*tau31;
s32 = tau21*tau31 + tau22*tau32;
s33 = tau31*tau31 + tau32*tau32 + tau33*tau33;
s41 = tau11*tau41;
s42 = tau21*tau41 + tau22*tau42;
s43 = tau31*tau41 + tau32*tau42+tau33*tau43;
s44 = tau41*tau41 + tau42*tau42 + tau43*tau43

+ tau44*tau44;
random b1 b2 b3 b4 ~ NORMAL([0,0,0,0],[s11,s21,s22,s31,s32,

s33,s41,s42,s43,s44]) subject=id;

estimate ’var(uS1)’ tau11*tau41;
estimate ’var(uS2)’ tau21*tau41 + tau22*tau42;
estimate ’var(uS3)’ tau31*tau41 + tau32*tau42 + tau33*tau43;
estimate ’var(uC1)’ tau11*tau11 - tau11*tau41;
estimate ’var(uC2)’ tau21*tau21 +
tau22*tau22 - (tau21*tau41 + tau22*tau42);
estimate ’var(uC3)’ tau31*tau31 + tau32*tau32 + tau33*tau33 -
(tau31*tau41 + tau32*tau42 + tau33*tau43);
estimate ’var(uY)’ tau41*tau41 + tau42*tau42 + tau43*tau43 +
tau44*tau44 - (tau11*tau41) - (tau21*tau41 + tau22*tau42) -
(tau31*tau41+tau32*tau42+tau33*tau43);
estimate ’theta’ exp(logth);
run;
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Appendix

See Figs. 5, 6 and Tables 7, 8, 9, 10, 11.
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Fig. 5 Simulation results: the estimated covariates of the bacterial categories from joint method
with DMMM (Panel a) and joint method with MLMM (Panel b). The red dashed lines represent
the true parameter
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Table 7 Data analysis: the joint model in the longitudinal setting in subjects who were helminth-
uninfected at pre-treatment and remained uninfected at 21 months after the first treatment (N =
16). The model fitting used SAS with 10 quadrature points

Fixed effects Estimate (95%CI) p-value

Intercepts

ξY
1 2.12 (1.93, 2.31) < .0001

ξC
02 −3.02 (−3.65, −2.38) < .0001

ξC
03 −1.01 (−1.26, −0.77) < .0001

Random effects Estimate (s.e) p-value

σuC2
2 1.499 (0.544) 0.016

σuC3
2 0.204 (0.082) 0.028

σuS2
2 −0.140 (0.107) 0.216

σuS3
2 −0.0004 (0.039) 0.992

σuY
2 0.156 (0.143) 0.294

σε
2 0.208 (0.052) 0.002

ρ 0.314 (0.207) 0.207
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Statistical Methods for Feature
Identification in Microbiome Studies

Peng Liu, Emily Goren, Paul Morris, David Walker, and Chong Wang

1 Introduction

A microbiome refers to a community of microorganisms residing in a specific
host or location [19]. In recent years, microbiome studies have been facilitated by
advancements in next-generation sequencing (NGS) technologies and promoted by
funding agencies such as the National Institutes of Health (NIH) [25]. As a result,
numerous microbiome studies have been carried out.

Several methods have been applied to survey diverse microbes from a given
sample. Whole-metagenome shotgun (WMS) sequencing and amplicon sequencing
target DNA, whereas metatranscriptomics targets RNA [18]. In the case of amplicon
sequencing, sequence reads can be clustered into operational taxonomic units
(OTUs) at a fixed level of base pair similarity (e.g., 97%) [41] or enumerating unique
denoised (e.g., error-corrected) sequences called exact amplicon sequence variants
(ASVs) [5]. Both the OTU and ASV approaches produce a high-dimensional vector
of nonnegative integer counts for each sample, which can be classified to known
taxa [30]. For an experiment with multiple samples, these features form a matrix of
counts representing abundances within a given sample. Table 1 shows an example
consisting of m (features) by n (sample) matrix of ASV counts. WMS sequencing
and metatranscriptomics also result in such data matrices that relate abundance of
features (taxa or genes) to samples. In this chapter, the methods that we discuss do
not depend on the approach used to obtain microbiome features, and hence, we refer
to each variable (OTU, ASV, taxon, or gene) as a feature.
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Table 1 A microbiome data
matrix. A total of m

microbiome features are
measured for each of the n

samples. Each count
measures the abundance of
the corresponding feature in a
given sample

Feature
Sample 1 2 3

1 5 3 10 . . . 7
2 5 23 4 . . . 2
3 43 41 36 . . . 25
...

...
...

...
...

...
4 4 2 . . . 1

Treatment
High N or Low N

Microbiome
Rhizosphere OTUs

Outcome
Plant Phenotypic Traits

Fig. 1 An illustration of a hypothetical microbiome study, where complex interactions can exist
between the treatment, the microbiome, and the outcome of interest

Microbiome studies try to understand how the microbiome functions and
microbes influence the other parts of the biological system, such as metabolites.
Take a microbiome study in agriculture as an example (Fig. 1). Plants grown
under different environments (such as high- or low-nitrogen treatment) are
sampled. Multiple variables are measured for each plant, including rhizosphere
microbiome and other plant phenotypic traits or outcomes, to study the interaction
between environment, microbiome, and plants. Scientists often aim to identify
interesting microbial features for follow-up studies. Which features are considered
“interesting” depends on the specific scientific questions being investigated. In this
chapter, we focus on three target questions that define “interesting” features.

The first target question is which microbiome features are impacted by treatments
or environmental conditions. For example, which rhizosphere microbes are affected
by nitrogen levels in soil? Such analysis aims to identify features whose abundances
change across treatments or conditions and has been called differential abundance
analysis, analogous to differential expression analysis in gene expression studies.

The second target question is which microbiome features mediate treatment
effects on an outcome. In the interplay of biological systems, it has been hypoth-
esized that some microbes are affected by treatments and that the resulting changes
in these microbes can influence the outcome. In Fig. 1, this corresponds to the path:
Treatment –> Microbiome –> Outcome. For example, the abundances of nitrogen-
fixing bacteria may be affected by nitrogen levels in the soil, and these bacteria help
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utilize nitrogen and consequently affect the biomass of the plant. If this hypothesis is
true, then identification of microbiome features that carry mediation effects will help
develop targeted interventions that maximize the favorable treatment effect on the
outcome. Statistical analysis that can identify mediation effects is called mediation
analysis. Mediation analysis in microbiome studies is challenging because of the
high dimensionality and sparsity of microbiome data.

The third target question is which microbiome features have an effect on an
outcome, adjusting for confounders. In some microbiome studies, there are no
particular treatments of interest, and the studies aim to identify microbiome features
with an effect on an outcome. However, such studies often involve complex
confounding arising from relationships between microbes, host, and environment
[43]. There could exist confounding variables that affect both the outcome and
at least some microbiome features. Selecting microbiome features with a relevant
effect on the outcome requires statistical methodology that adjusts for the effects of
such confounding variables. Unfortunately, the characteristics of microbiome data
make it statistically challenging to adjust for confounding effects.

The next three sections present feature identification methods to answer each
of the target questions described above. We also list the available R packages and
provide example R code for the described methods. We conclude with a brief
summary and discussion. For Bayesian feature/variable selection methods with
microbiome data, readers are directed to chapter “Dirichlet-Multinomial Regression
Models with Bayesian Variable Selection for Microbiome Data”.

2 Differential Abundance Analysis

Differential abundance analysis aims to identify which microbiome features are
associated with variation in environmental, biological, or clinical conditions (Fig. 2).
Hence, the null hypothesis of a differential abundance test is that treatments do

Treatment/Conditions

Feature 1

Feature 2
Differential
Abundance
Analysis

...

Feature

Outcome

Fig. 2 Differential abundance analysis (solid lines) selects microbiome features whose abundance
levels change across treatments or conditions. It only examines the relationship between treat-
ments/conditions and microbiome features, but not the relationships involving other outcomes
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not affect the mean abundance level. Approaches to differential abundance analysis
treat microbiome feature counts either directly or by transformation, such as the
compositional approach. The two conceptualizations are motivated by different
aspects of the data. In the next two subsections, we consider several methods from
both the compositional and count-based conceptualizations of the data. We explain
the attributes of the data that motivate each concept and direct the reader to freely
available R packages that implement the methods.

2.1 Compositional Methods

Due to the technical capacity of the sequencing technology, the total sum of feature
counts in each sample is arbitrarily constrained, similar to classic compositional
data [36].

Compositional approaches to differential abundance analysis use methods meant
for compositional data, pioneered by Aitchison [1]. Aitchison’s methods use one of
the three log-ratio transformations to map compositions to Euclidean space. Let

Xij , i = 1, . . . , n, j = 1, . . . , m (1)

represent the count for feature j within sample i. Dividing by the total sum for each
sample transforms counts to proportions:

pij = Xij∑m
j=1 Xij

. (2)

The centered log-ratio (clr) transformation applies to the vector of sample propor-
tions:

clr(pi) =
[

log

(
pi1

g(pi)

)
, . . . , log

(
pim

g(pi)

)]T

, (3)

where pi = (pi1, . . . , pim)T and g(pi) denotes the geometric mean of the vector
pi. Note that the covariance matrix of the transformed data will be singular. The
additive log-ratio (alr) transformation is similar to the clr transformation, replacing
g(pi) with one of the components of pi in the denominator:

alr(pi) =
[

log

(
pi1

piD

)
, . . . , log

(
pi(m−1)

piD

)]T

. (4)

The alr transform maps the vector of proportions to Rm−1, with the choice of piD

being arbitary. The isometric log-ratio (ilr) transformation also maps compositional
vectors to Euclidean space; it has the desirable property of isometry, but its
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development is slightly more complicated. We refer the reader to [8] for a thorough
development of the ilr transform.

Note that the log-ratio of 0 is undefined; since microbiome feature count tables
contain many zeros, compositional approaches systematically remove or replace
zero counts before transforming the data [36, 37].

Fernandes et al. [9] use a Monte Carlo sampling method to convert feature
counts into proportions and simultaneously replace zeros with a small positive
value. They then apply a clr transformation to the proportions. Aitchison shows
standard multivariate hypothesis testing methods can be used on compositional data
after applying the clr transformation [2]. Fernandes et al. [9] use both an unequal
variances t-test and a Wilcoxon rank test for differential abundance of each feature
between only two groups, with a Benjamini–Hochberg correction for multiple
testing. Their method is implemented in the ALDEx2 R package [10]. Although the
paper only discusses two treatment comparisons, the R package includes functions
for differential abundance analysis with more than two treatment groups.

Mandal et al. [22] replace zero counts with a small positive constant before
converting counts into proportions and then apply an alr transformation to the
proportions. Much like [9] above, Mandal et al. [22] use standard multivariate
methods after transforming the data. They analyze the log-ratios using an ANOVA
model and apply t- or F -tests for differences in abundance between treatment
conditions. When the distributional assumptions are violated, Mandal et al. [22]
substitute the Wilcoxon test or Kruskal–Wallis test in place of t- or F -tests. Note
that for each feature j within each sample, the alr transformation generates m − 1
variables, using all other features D �= j in turn as the reference in the denominator
(i.e., in the place of piD in Eq. (4)). Taking each pairwise comparison once over
all m features, there are a total of

(
m
2

)
data sets generated by the alr transformation.

Each is used to test equality of means across treatment conditions. Mandal et al.
[22] use either the Benjamini–Hochberg procedure to adjust all

(
m
2

)
p-values or a

multiple-comparison adjustment of their own devising. They then declare feature j

is differentially abundant if Wj , the number of rejected null hypotheses involving
feature j , is bigger than a threshold. The threshold can be m − 1 or m − 2, or a
threshold determined by the empirical distribution of Wj .

Kaul et al. [17] extend the work of [22] to model classes of zeros in the data that
originate by different mechanisms. After log-ratio transformation, they model the
transformed data as a mixture of normal distributions. The method is implemented
in the R package ANCOM II. This implementation includes functions for handling
additional covariates and mixed-effects models.

Methods that transform feature counts into proportions treat the data as relative
rather than absolute. These methods might not be categorized as compositional if
they do not follow the analytical steps developed by Aitchison. In Table 2, we
label this approach “proportional.” Peng et al. [27] represent the proportions with a
zero-inflated beta regression model. To test differential abundance between groups,
they apply a likelihood-ratio test to the regression coefficients. Their method is
implemented in the package ZIBseq. Chen and Li [7] also use a zero-inflated beta
regression model (implemented in ZIBR), with additional components to handle

https://www.bioconductor.org/packages/release/bioc/html/ALDEx2.html
https://github.com/FrederickHuangLin/ANCOM
https://cran.r-project.org/web/packages/ZIBseq/index.html
https://github.com/chvlyl/ZIBR
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Table 2 The list of differential abundance analysis methods described in Sect. 2

Feature type R Packagea Model Citation

Compositional ALDEx2 ANOVA [9]

ANCOM II ANOVA [17]

miLineage ZIGDMb [34]

Proportional ZIBseq Zero-inflated beta [27]

ZIBR Zero-inflated beta [7]

Count DESeq Negative binomial [3]

edgeR Negative binomial [29]

metagenomeSeq Zero-inflated Gaussian [26]

BhGLM Zero-inflated negative
binomial

[47]

a Hyperlinks to the R packages are included
b ZIGDM stands for zero-inflated generalized Dirichlet-multinomial

repeated measures. Tang and Chen [34] do not transform the data to proportions and
instead model the counts using a zero-inflated generalized Dirichlet-multinomial
(ZIGDM) model. The structure of this model represents the compositionality of the
data, and score tests on transformations of the model parameters can test differential
abundance. Functions to apply the method are available in the miLineage package.

2.2 Count-Based Methods

Although microbiome data has some of the attributes of compositional data, it is
not perfectly compositional. Classic compositional data vectors represent portions
of a whole. The total sum of the components is not meaningful, and only the
relative difference between components matters [36]. For truly compositional data,
the vectors (2, 1) and (2000, 1000) represent the same information: only that the
first and second components are present in the ratio 2 : 1. For microbiome data,
the size of the counts also contains information about the reliability of the ratio.
Larger counts are more likely to closely match the true ratio in the sample [44].

Count-based methods address important attributes of microbiome feature counts:
overdispersion and zero inflation. Using a negative binomial model can account for
overdispersion. Zero-inflated and zero-hurdle models have been used to handle the
zero inflation.

Gene expression data produced by RNA-sequencing (RNA-seq) technologies
and microbiome count data have many similarities. Some of the first popular
statistical methods and software packages used for differential abundance analysis
were originally developed to identify differentially expressed genes in RNA-seq
data. These methods can be applied directly to microbiome data, by treating
microbiome feature counts as gene expression counts. McMurdie and Holmes [24]
advocated the adoption of these methods in microbiome studies. DESeq [3] and

https://www.bioconductor.org/packages/release/bioc/html/ALDEx2.html
https://github.com/FrederickHuangLin/ANCOM
https://cran.r-project.org/web/packages/miLineage/
https://cran.r-project.org/web/packages/ZIBseq/index.html
https://github.com/chvlyl/ZIBR
https://www.bioconductor.org/packages/release/bioc/html/DESeq.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://www.bioconductor.org/packages/release/bioc/html/metagenomeSeq.html
https://github.com/nyiuab/BhGLM/tree/master/R
https://cran.r-project.org/web/packages/miLineage/
https://www.bioconductor.org/packages/release/bioc/html/DESeq.html
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edgeR [29] are two examples of methods developed for RNA-seq data that have
since been applied to microbiome data. Both use a negative binomial model for
feature counts. They include several hypothesis testing procedures for both two-
group and multiple-group comparisons.

Methods adapted from gene expression studies do not model the zero inflation
that is typical of microbiome feature counts. Paulson et al. [26] use a zero-inflated
normal model to represent the log of microbiome feature counts. This model
is a mixture of a point mass at zero and a normal distribution. The method is
implemented in metagenomeSeq. Zhang et al. [47] explore a zero-inflated negative
binomial model for differential abundance testing, in the context of a generalized
linear model. They develop an expectation–maximization (EM) algorithm to find
the maximum likelihood estimator (MLE) of their model parameters and use
these estimates and the asymptotic normality of the MLE to test for differential
abundance. The method is implemented in the R package BhGLM. Jonsson et al.
[16] use a zero-inflated overdispersed Poisson distribution to model feature counts in
a Bayesian framework. They demonstrate that correctly modeling the zero inflation
of microbiome data increases the power of differential abundance methods.

2.3 Additional Notes

In Table 2, we list the differential abundance analysis methods discussed in this
section, including hyperlinks to corresponding R packages. Xia and Sun [43] review
some methods for differential abundance analysis. Weiss et al. [40] also compare
several differential abundance analysis methods using both real and simulated
datasets; they find that no single method outperforms the others across a variety
of settings.

Count-based and compositional approaches usually include preparatory steps
before fitting the model or testing for differential abundance. Filtering out features
with low counts across a large fraction of samples is commonplace. Count-based
approaches usually normalize across samples; many normalization methods have
been developed. Weiss et al. [40] also compare the performance of normalization
methods, again returning nuanced answers: more than one approach has merit. They
find evidence that rarefaction is useful and appropriate under some conditions; see
also [24] and [23].

There are several packages that are not purpose-built for differential abundance
analysis but may be helpful. The R package compositions has tools for analysis of
compositional data; phyloseq has many tools for working with microbiome data;
pscl implements several zero-inflated and zero-hurdle models—[44] offer a tutorial
in fitting these models to microbiome data using the package. DAtest provides tools
to side-by-side test the performance of many differential abundance methods with
user-provided data.

https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://www.bioconductor.org/packages/release/bioc/html/metagenomeSeq.html
https://github.com/nyiuab/BhGLM/tree/master/R
https://cran.r-project.org/web/packages/compositions/index.html
https://bioconductor.org/packages/release/bioc/html/phyloseq.html
https://cran.r-project.org/web/packages/pscl/index.html
https://github.com/Russel88/DAtest
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3 Mediation Analysis

While the literature on differential abundance analysis is well developed, many
treatment–microbiome–outcome relationships fall outside of its scope. One such
relationship is when treatment (exposure) affects the outcome indirectly through
microbiome features. Mediation analysis allows for the examination of these
indirect effects, which are distinct from the direct effect of treatment on the outcome
that is not transmitted through the microbiome. In order for a feature to have a
mediation effect, treatment must affect the feature and the change in the feature
must result in an effect on the outcome. Figure 3 visualizes such pathways of
feature-wise indirect effects: Treatment -> Feature -> Outcome. As an example,
the diabetes treatment metformin contributes to changes in the gut microbiome, and
these changes enhance the effects of the treatment above and beyond its direct effect
[20, 42].

Mediation analyses have been implemented across a wide range of non-
microbiome fields since [4] proposed a procedure to test for a single mediator
in the context of psychology. Unfortunately, the methods that are appropriate
for use with microbiome data are limited because of challenges inherent to the
structure of the data. As described in previous sections, microbiome data are often
high-dimensional, sparse, and formatted as either integer counts or compositions.
Most existing methods deal with a small number of mediating features [15, 38].
While [46] and [14] propose methods for analyzing high-dimensional mediators,
they both assume that the mediators are continuous, making the methods unsuitable
for handling sparse count or compositional microbiome data.

The literature on mediation analysis for microbiome features is still in its infancy.
The number of methods that have been developed is quite small, and there is not yet
consensus on which methods are likely to perform well. Thus, rather than review
any methods in detail, we provide a brief overview of each method and note when
its use is appropriate. We structure the section around several broad categories of
methods. Global methods test for the presence of a mediation effect but do not

Treatment

Feature 1

Feature 2

...

Feature

Mediation Analysis
Outcome

Direct Treatment Effect

Fig. 3 Mediation analysis examines the indirect effects of treatment on the outcome through the
microbiome. To determine whether a feature has a mediation effect, a method must consider both
the effect of the treatment on the feature and the effect of the feature on the outcome
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allow for identification of specific features that contribute to that effect. Targeted
methods allow inference to be made for a single feature of interest while controlling
for the other features. However, they do not provide any information on nontargeted
features. Lastly, feature identification methods, the main focus of this section, can
identify individual mediators through inference at the feature level. It is worth noting
that these categories are not mutually exclusive. For example, several of the feature
identification methods also test for the presence of a mediation effect at the global
level. Table 3 groups methods by category and assumed feature type, as well as
highlights when R packages or code are available to implement each method.

Global methods have been developed for use with count and compositional
features. Zhang et al. [48] propose a nonparametric omnibus test for the presence
of a mediation effect that utilizes phylogenetic and non-phylogenetic distance
metrics simultaneously. The use of multiple distance metrics allows it to detect
mediation effects of different forms. Hamidi et al. [12] also develop a method that
tests for the presence of a mediation effect using a distance-based approach. The
method relies on the calculation of pairwise distance matrices for the potentially
multivariate exposures, mediators, and outcomes, where the distance measures are
chosen according to the structure of the data and the problem at hand. Unlike
the method proposed by [48], the method does not pool across multiple distance
measures, making the choice of distance metric a key part of the analysis. Both
methods are flexible in terms of the feature type.

Zhang et al. [49] present a targeted method for use with compositional features.
They acknowledge the difficulties inherent to analyzing compositional data, specifi-
cally that any selection of m − 1 features may contain information on all m features
because of the unit-sum constraint. To overcome this issue, they transform the m-
dimensional microbiome data using the isometric log-ratio technique, which brings
the data into Euclidean space of dimension m − 1. The targeted feature must be
placed in the first column of the composition when performing the transformation,
as the transformation is position-dependent. Parameters are estimated using ordinary
least squares and the de-biased LASSO, and they develop what they denote a joint
significance test for the mediation effect of the targeted feature that incorporates
both the treatment–feature and feature–outcome relationships while controlling for
the other features.

Table 3 The list of mediation analysis methods described in Sect. 3

Approach Feature type R Packagea Citation

Global Countb MedTest [48]

Countb MODIMA [12]

Targeted Compositional THIMA [49]

Feature selection Compositional ccmm [32]

Compositional SparseMCMM [39]

Count [6]
a Hyperlinks to the R packages are included
b Other feature types can be used

https://github.com/jchen1981/MedTest
https://github.com/alekseyenko/MODIMA
https://github.com/joyfulstones/THIMA
https://cran.r-project.org/web/packages/ccmm/
https://github.com/chanw0/SparseMCMM
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The first feature identification method we detail was proposed by [32]. They
develop a compositional mediation model (CMM) for estimating the direct
effect of treatment on the outcome and the component-wise indirect effects of
high-dimensional compositional mediators, assuming a continuous outcome. The
approach relies on compositional algebra to jointly estimate the effect of treatment
on the features and linear log-contrast regression to estimate the effects of treatment
and the microbiome features on the outcome. CMM tests global null hypotheses of
no total mediation effect and no component-wise mediation effect for any feature
using either a parametric or bootstrap approach. Confidence intervals for individual
features can be calculated when using the bootstrap approach. The R package ccmm
implements CMM.

Wang et al. [39] propose their Sparse Microbial Causal Mediation Model
(SparseMCMM) to estimate the direct effect of treatment on the outcome and indi-
rect effects at both the overall and feature levels for high-dimensional compositional
mediators. Assuming a binary treatment and a continuous outcome, they use Dirich-
let regression to estimate the effect of the treatment on the microbiome and linear
log-contrast regression to estimate the effects of the treatment, the microbiome,
and the treatment–microbiome interactions on the outcome. To account for the
high dimensionality of microbiome data, they utilize regularization techniques to
simultaneously estimate parameters and identify the features that serve as mediators.
The method also tests global null hypotheses of no overall mediation effect and
no component-wise mediation effects, using permutation to estimate significance.
The authors provide the R package SparseMCMM as a means to implement their
method.

Carter et al. [6] present a method named Nonparametric Entropy Mediation
(NPEM) that can recognize nonlinear or non-additive relationships and does not
assume specific data types for the multivariate exposures or the response variable.
NPEM utilizes concepts from information theory to quantify the relevant associa-
tions and performs estimation through kernel density. They propose two approaches
for testing to overcome issues that arise with kernel density estimation with sparse
data. The first approach treats the features as counts, while the second decomposes
the microbiome data into presence–absence and non-zero counts. Each approach
tests for a mediation effect at the individual feature level, where a mediation effect
means significant relationships between at least one of the exposures and the feature
as well as the feature and the outcome.

In conclusion, the identification of individual microbiome features that mediate a
treatment effect is particularly valuable, as it can allow for a more robust understand-
ing of treatment–microbiome–outcome relationships. However, the development
of feature identification methods is especially challenging. As more research is
conducted, we hope to see additional methods proposed and a consensus on
performance start to form.

https://cran.r-project.org/web/packages/ccmm/
https://github.com/chanw0/SparseMCMM
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4 Feature Identification Adjusting for Confounding

In this section, we consider identifying microbiome features with an effect on an
outcome when there is no interest in the role of a treatment or other non-microbiome
factors. As a motivating example, we consider identifying rhizosphere microbiome
features that have an effect on plant biomass (Fig. 4). However, the study design may
include a confounding variable, nitrogen fertilizer, that affects both the outcome and
at least some microbiome features. In the context of studies aimed at identifying
the role of the microbiome, a confounding variable or confounder is a variable
correlated (either positively or negatively) with both the microbiome and an
outcome of interest. Due to this relationship, studying the effect of the microbiome
on the outcome while ignoring the confounder may not reflect the actual role of the
microbiome. Experimental design techniques that control for confounding include
randomization, restriction, and matching. We refer the reader to [13] for complete
coverage of these methods. However, it is impractical or even impossible to use these
methods in microbiome studies. Instead, statistical methods to adjust for potentially
confounding variables may be used when the goal of analysis is to identify relevant
microbiome features. The two most common options for confounding adjustment
are through covariate adjustment and standardization.

4.1 Covariate Adjustment

Regression analysis, potentially with penalization for variable selection, has been
used to analyze an outcome of interest modeled as a function of microbiome features
[21, 28, 31, 45]. Certain confounding relationships can be appropriately handled

Confounder
High N or Low N

Rhizosphere Microbiome
Feature 1

Feature 2

...

Confounder Effect
on Microbiome

Microbiome Effect
on Outcome

Feature

Outcome
Plant Biomass

Confounder Effect on Outcome

Fig. 4 When a confounder impacts both the microbiome and an outcome, accurately selecting
relevant microbiome features requires accounting for the confounding effect. Section 4 mentions
an agricultural microbiome project that aims to identify rhizosphere microbiome features that have
an effect on plant biomass with nitrogen (N) level (high or low) as a confounder in this study
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through inclusion as an additional covariate in a regression model. Let li be the value
of the confounder. For example, suppose li = 0 when nitrogen level is high and
li = 1 when nitrogen level is low. Let Yi denote the outcome (such as biomass) for
observation i, i = 1, 2, . . . , n, xij be the observed (possibly transformed) value for
microbiome feature j in sample i, and xi = (xi1, . . . , xim)T for the m-dimensional
microbiome data vector of sample i. Including the confounder as an additional
predictor in a generalized linear regression model is represented by

g {E (Yi |xi , li )} = β0 +
m∑

j=1

βjxij + β�li , (5)

where g {E (Yi)} is the link function for the generalized linear model and β� is the
parameter capturing the effect of the confounder. When a count-based approach
for microbiome data is used, xij represents the normalized level of feature j for
observation i. Compositional approaches may replace the normalized counts with
a clr or log transformation and impose constraints on the microbiome regression
coefficients. A detailed introduction to variable selection methods for microbiome
compositional regression is provided by [33]. When using a penalized estimation
approach such as LASSO [35] for the microbiome feature effects β1, β2, . . . , βm,
the confounder effect β� can be left unpenalized to ensure full adjustment. The set
of selected microbiome features that are relevant with the outcome are those with
βj �= 0.

A covariate adjustment approach through regression of the form in Eq. (5)
offers flexibility in the values of the confounder: it can be discrete or continuous.
Additional terms can be used for multiple confounders or multiple levels of a
discrete confounder through dummy variables. However, such an approach cannot
account for interaction effects between the microbiome and the confounder(s).
With microbiome features often of high dimensionality (m >> n), including
an interaction term between the confounder and each feature is generally not
feasible. Further, when a confounder affects many microbiome features, there will
be confounder-induced marginal correlation between them, as illustrated in the next
example (Fig. 5), which hinders the performance of variable selection methods. To
overcome these challenges, the next section covers model-based standardization for
a categorical confounder.

No single R package performs the analysis we discussed in this subsection
directly. Hence, we provide R code to illustrate how to perform the covariate
adjustment with the LASSO. Below is an example with n = 200 observations, half
of which have the presence of a binary confounder li = 1, and m = 50 OTUs. We
use the packages HDeconometrics to implement the LASSO penalty and GGally for
correlation visualization.

First, a LASSO penalty is applied to the normalized and scaled OTUs, but not the
confounder. Using BIC to select the penalty parameter, no microbiome features are
selected. Figure 5 generated by the code below shows Spearman’s rank correlation

https://rdrr.io/github/gabrielrvsc/HDeconometrics/
https://cran.r-project.org/web/packages/GGally/


Statistical Methods for Feature Identification in Microbiome Studies 187
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Fig. 5 Spearman’s rank correlation between the (pairwise) OTUs and the confounder for the data
in the R code example in Sect. 4.1

between the (pairwise) OTUs and the confounder. It shows that almost a third of the
50 OTUs are highly correlated with the confounder.

> # Number of observations
> n <- nrow(X)
> n
[1] 200
>
> # Number of observations per level of confounder
> table(confounder)
confounder

0 1
100 100
>
> # Number of microbiome features
> m <- ncol(X)
> m
[1] 50
>
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> # Summary of outcome
> summary(Y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.5368 0.3753 2.7631 2.7127 5.0967 5.8172
>
> # Fit LASSO model with penalty not applied to confounder
> design_matrix <- cbind(scale(X), confounder)
> library(HDeconometrics)
> fit <- ic.glmnet(
+ x = design_matrix, y = Y,
+ crit = "bic", #choose penality parameter using BIC
+ standardize = FALSE, #already scaled OTUs
+ penalty.factor = c(rep(1, m), 0)
+ # no variable selection for confounder
+ )
> names(which(fit$coefficients != 0))
[1] "(Intercept)" "confounder"
> # The above results indiciate no features were selected,

just the confounder
>
> # the correlation between many features and confounder is high
> library(GGally)
> ggcorr(design_matrix, method = c("everything", "spearman"))

4.2 Model-Based Standardization

Model-based standardization estimates a population-averaged effect by performing
estimation stratified by a categorical confounder and then standardizing the resulting
estimate to the distribution in the population of interest. It requires the confounder li
to be categorical with a finite number of levels, each represented sufficiently in the
study of n observations. Denote the set of confounder values byL. The observations
are split into strata within which the confounder is equal. As a result, the value of
the confounder does not vary within the group, and conditional on the confounder,
the relationship between the microbiome and the outcome is unconfounded.

For each stratum l ∈ L, the observations with that level of the confounder are
used to estimate stratum-specific effects β l = (βl

1, β
l
2, . . . , β

l
m)T in the generalized

linear model, as shown below.

g {E (Yi |xi , li = l)} = β0 +
m∑

j=1

βl
j xij . (6)

This produces a set of estimates, β̂
l
, for each level of the confounder that can

be standardized to a population of interest according to the distribution of the
confounder. This standardized estimate is population averaged and computed by
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β̂ =
∑

l∈L
β̂

l
Pr(L = l), (7)

where Pr(L = l) is the probability that the confounder takes the value l in the
population of interest. Further details of this approach are presented in [11].

Below we revisit the example shown in Sect. 4.1 but perform a standardization
approach by fitting a regression model with a LASSO penalty separately to each
level of the confounder. A total of nine OTUs are selected.

> # Fit LASSO model to each confounder stratum
> coefs <- sapply(unique(confounder), function(l) {
+ ic.glmnet(
+ x = X[confounder == l, ], y = Y[confounder ==l],
+ crit = "bic")$coefficients
+ })
> # Use row means to standardize since the confounder
> # is equally split over the groups
> standardized_coefficients <- rowMeans(coefs)
> names(which(standardized_coefficients != 0))
"(Intercept)" "OTU1" "OTU2" "OTU3"
"OTU6" "OTU16" "OTU17" "OTU18"
"OTU20" "OTU28"

>

5 Summary

Feature identification or variable selection is a common problem in the analysis of
high-dimensional omics data, including microbiome data. All omics data exhibit the
so-called large m (dimension of variables), small n (sample size) problem that poses
challenges. Some methods evaluate one feature at a time and then control multiple
testing errors such as the differential abundance analysis discussed in Sect. 2.
However, when treating omics data as covariates as involved in Sects. 3 and 4,
variable screening and/or variable selection methods are in need. For microbiome
data, an additional challenge is the sparsity and compositionality. We discussed
issues related to compositional data analysis to some extent, and other chapters in
this book also mentioned this challenge.

In this chapter, we cover statistical methods for microbiome feature identification
that address three target questions. These questions arise in relatively simple settings
common in microbiome studies that involve treatments (or environmental conditions
or exposures), microbiome, and some outcomes of interest. Methods for these types
of analyses are actively being developed as seen in the recent literature.

With advancements in technology, it is easier than ever to collect large amounts
of data of different types, such as phenome, metabolome, transcriptome, and micro-
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biome data, from a single study. In such studies, different parts of the biological
systems are being measured. Hence, the three-way relationships in Fig. 1 can be
expanded to multi-way relationships taking other omics data into consideration.
Integrating multiple omics data can provide a holistic view of the biological
systems under study. However, the computational methods are not yet able to
efficiently utilize all available data sources to dissect complex biological processes
and predict outcomes of interest with high precision. Integrating different omics
data and identifying features that play important roles in the biological systems
are challenging. Going forward, we expect the development of more system-level
analysis that will likely involve machine learning and feature selection methods.
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Statistical Methods for Analyzing
Tree-Structured Microbiome Data

Tao Wang and Hongyu Zhao

1 Introduction

Advances in DNA sequencing technologies and data analysis tools have improved
our ability to understand the taxonomic composition and biological function of
complex and dynamic microbial ecosystems [42]. These experimental and com-
putational methods have vastly increased the number of microbiome surveys being
performed and generated massive amounts of data to be analyzed. For example, after
careful design and sample collection, 16S ribosomal RNA (rRNA) gene sequencing
uses primers that target highly variable regions of the 16S rRNA gene in order
to provide a low-resolution view of microbial communities by quantifying relative
abundances of microbial taxa and determining the phylogenetic placement of these
taxa [22].

After quality control and data preprocessing, a typical microbiome dataset
consists of a matrix that relates abundances of operational taxonomic units (OTUs,
clustered sequences that represent bacteria types) to samples, a phylogenetic tree
(constructed for a chosen gene, for example, the 16S rRNA gene) that reflects the
evolutionary relationship of these OTUs, and metadata that provides information
about the samples [8]. Considerable effort is then devoted to interrogating micro-
biome data to dissect relationships between hosts, microbes, and environmental
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factors [21]. Despite rapid progress in this field, analyzing microbiome data is
complicated by several challenges [26, 65].

First, library sizes depend on the sequencing platform used and the number
of samples that are multiplexed per run, and often vary over several ranges of
magnitude across samples. Second, microbiome data are high dimensional and
sparse, with OTU matrices containing a large number of columns (OTUs) and a high
proportion of zeros. Third, the specimen is a fraction of the microbial ecosystem,
and so the abundance data in a sample are compositional carrying only relative
information. Finally, OTUs are phylogenetically related, and the phylogeny can and
should be leveraged [35, 64].

Analyses of microbiome data can be performed either at overall community
level or at individual taxon level. For example, one of the first analysis steps is the
calculation of a measure of dissimilarity between samples, known as beta diversity.
An ordination technique, such as principal coordinate analysis, is then applied to
dissimilarity matrices to visualize differences and similarities between microbial
populations. Distance metrics that capture the phylogenetic information or account
for the compositional nature have been developed [30, 47]. Differential abundance
testing, on the other hand, refers to a diverse set of methods for detecting microbial
taxa that are significantly differentially abundant between groups of interest (e.g.,
healthy versus diseased or control versus treatment) [32, 39].

Taxon abundances in microbiome data analysis can be characterized as either
input or output variables, and learning problems either supervised or unsupervised.
For example, in the supervised learning domain, we may wish to fit a model
that relates a phenotype of interest to microbial abundances in order to accurately
predict the phenotype or better understand the relationship between the phenotype
and the microbial taxa [20]. Alternatively, we may be interested in dissecting how
environmental factors and host genetics jointly shape human gut microbiome [44].
Unsupervised learning, on the other hand, describes the situation in which there is
no particular phenotype to predict, and one seeks to understand the relationships
between the microbes or between the observations [16].

This chapter reviews statistical models for multivariate microbial counts, empir-
ical Bayes estimation of microbial relative abundances, and regularization methods
for subcomposition selection and dimension reduction in regression with composi-
tional predictors, with an emphasis on how to address some of the aforementioned
challenges, in particular the incorporation of the phylogeny into analyses.

2 Modeling Multivariate Count Data

Let X = (X1, . . . , XK)� denote the random vector of counts on K bacterial taxa
or OTUs and M = ∑K

k=1 Xk the total number of counts. One natural distribution
for describing X is the multinomial (MN) distribution, with size m (that is, by
conditioning on M = m) and vector of probabilities p = (p1, . . . , pK)�, pk >

0,
∑K

k=1 pk = 1. The probability mass function is
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fMN(x;p,m) = �(m + 1)
∏K

k=1 �(xk + 1)

K∏

k=1

p
xk

k , (1)

where x = (x1, . . . , xK)� is a realization of X, m = ∑K
k=1 xk , and �(·) is the

gamma function.

2.1 Dirichlet-Multinomial Model

One problem with MN is its difficulty in modeling over-dispersion, which is a
well-known characteristic of count data in microbiome studies. To account for over-
dispersion, the standard convention is to assume that p is random with some prior
distribution. Let

S
K−1 =

{

π = (π1, . . . , πK)� : πk > 0,

K∑

k=1

πk = 1

}

denote the (K − 1)-dimensional simplex. Then, SK−1 is the support of p. The most
common and convenient prior for p is the Dirichlet distribution. This distribution is
indexed by a K-vector of positive scalars, α = (α1, . . . , αK)�, αk > 0, and has a
probability density function

fD(p;α) = �(
∑K

k=1 αk)
∏K

k=1 �(αk)

K∏

k=1

p
αk−1
k . (2)

The Dirichlet-multinomial (DM) distribution, also known as the Dirichlet com-
pound MN distribution, results from calculating the joint distribution for X and p

and then integrating out p:

fDM(x;α,m) =
∫

S
K−1

fMN(x;p,m) × fD(p;α) dp

= �(m + 1)�(α+)

�(m + α+)

K∏

k=1

�(xk + αk)

�(xk + 1)�(αk)
, (3)

where α+ =∑K
k=1 αk .

To incorporate covariates into the model, [9] related the parameters αk to
a q-dimensional vector of covariates z = (z1, z2, . . . , zq)� via a log-linear
transformation
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log(αk) =
q∑

j=1

βkj zj ,

for k = 1, . . . , K , where βkj measures the effect of the j th covariate on the kth
taxon. When q is small, maximum likelihood estimation and inference for this DM
regression can be applied. When q is large, regularization is useful for reducing
the variance of estimator and/or improving its interpretability. Chen and Li [9]
developed a penalized likelihood method for parameter estimation and variable
selection.

Let πk = αk/α+, φ = 1/(1 + α+), and π = (π1, . . . , πK)�. One can re-
parameterize DM as

fDM(x;π , φ,m) = �(m + 1)
∏K

k=1 �(xk + 1)

∏K
k=1
∏xk

l=1{πk(1 − φ) + (l − 1)φ}
∏m

j=1{1 − φ + (j − 1)φ} . (4)

Since π ∈ SK−1, DM is MN augmented with one additional parameter φ. We call
φ the over-dispersion parameter. When φ = 0, DM reduces to MN. Using this re-
parameterization, [24] developed multivariate methods for hypothesis testing and
power calculations for comparing multiple groups of microbiome samples, and [50]
proposed an adaptive likelihood-ratio test of independence between the microbial
community composition and a many-valued or continuous phenotype.

It is known that the dependence structure permitted by MN and DM is limited: the
components are constrained to be negatively correlated. This negative correlation
is induced by the constant sum constraint (m for the multinomial distribution and
1 for the Dirichlet distribution). Due to similar habitats or symbiotic interactions,
microbes may display positive associations. In the presence of both negative and
positive correlations, MN and DM are not adequate for characterizing microbiome
data. Furthermore, they ignore the fact that microbial taxa are related evolutionarily
on a phylogenetic tree. To address these limitations, [60] proposed an extension of
DM called the Dirichlet-tree multinomial (DTM) distribution. Rather than placing
a single DM on all taxa, DTM consists of a collection of independent DMs, each
corresponding to an internal node of the phylogenetic tree, as shown below.

2.2 Dirichlet-Tree Multinomial Model

Suppose that the evolutionary relationships among OTUs are encoded by a rooted
tree T = (L,I), where terminal nodes, or leaves, in L correspond to OTUs,
and internal nodes in I represent bacterial taxa at different taxonomic levels. For
simplicity, we assume that L = {1, . . . , K}. Figure 1 shows two binary trees, each
with K = 4 leaves.
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For each internal node v ∈ I, let Cv be the set of child nodes of v. For each v and
c ∈ Cv , define δvc(l) to be 1, if there is a path from v to c to l ∈ L, and 0, otherwise.
Denote by Xvc = ∑

l∈L δvc(l)Xl the count in the subtree indexed by c ∈ Cv .
Similarly, pvc = ∑

l∈L δvc(l)pl . One attractive property of the MN distribution
is that it can be factorized over T. Specifically, let bvc = pvc/

∑
c∈Cv

pvc, bv =
(bvc, c ∈ Cv), Xv = (Xvc, c ∈ Cv), and Mv =∑c∈Cv

Xvc. Then,

fMN(x;p,m) =
∏

v∈I
fMN(xv; bv,mv) =

∏

v∈I

�(mv + 1)
∏

c∈Cv
�(xvc + 1)

∏

c∈Cv

bxvc
vc .

The appropriate prior for this re-parameterization is no longer a single global
Dirichlet density, but rather a product of local Dirichlet densities, one at each
internal node of the tree:

∏

v∈I
fD(bv;αv) =

∏

v∈I

�(
∑

c∈Cv
αvc)

∏
c∈Cv

�(αvc)

∏

c∈Cv

bαvc−1
vc ,

where αv = (αvc > 0, c ∈ Cv) is a vector of positive scalars.
The DTM distribution is then defined as the product of DM distributions that

factorize over the tree

fDTM(x;αv, v ∈ I,m) =
∏

v∈I

∫

S
Kv−1

fMN(xv; bv,mv) × fD(bv;αv) dbv

=
∏

v∈I

�(mv + 1)�(αv+)

�(mv + αv+)

∏

c∈Cv

�(xvc + αvc)

�(xvc + 1)�(αvc)
. (5)

Here, Kv is the number of children of v, and αv+ = ∑
c∈Cv

αvc. A special case
of DTM, known as the generalized Dirichlet-multinomial (GDM) distribution, was
developed by [10], when the tree structure is restricted to a binary cascade (right
panel of Fig. 1).
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Fig. 1 Two binary trees, each with four leaves and three internal nodes
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In the DTM regression model, the parameters {αv, v ∈ I} are related to the
covariates z = (z1, z2, . . . , zq)� by the log link function

log(αvc) =
q∑

j=1

βvcj zj ,

for v ∈ I and c ∈ Cv , where βvcj are regression coefficients. Wang and Zhao [60]
introduced this model to study the effect of nutrient intake on gut microbiome and
proposed a regularized likelihood approach for selecting relevant dietary nutrients
and their associated taxa. Taking advantage of the correlated signals on the tree, [53]
developed a phylogenetic scan test using the DTM model for investigating cross-
group differences in microbiome compositions and applied it to identify bacterial
taxa associated with diet habits.

2.3 Implementation and Illustration

We illustrate the use of the aforementioned methods by applying them to the
COMBO dataset from a cross-sectional study on relating dietary habits to gut
microbiome composition [66]. 98 healthy individuals were enrolled in this study,
and their stool samples were collected. DNA samples were analyzed by the
454/Roche pyrosequencing of 16S rRNA gene segments of the V1–V2 region,
and pyrosequences were processed by the QIIME pipeline [8]. More than 17,000
species-level OTUs (including the singletons) and a phylogenetic tree were pro-
duced. Clinical measurements, such as body mass index (BMI), were also collected.

We created a nontrivial set of OTUs by agglomerating closely related OTUs:
all leaf nodes of the tree separated by a cophenetic distance (which is computed
between pairs of tips from a phylogenetic tree using its branch lengths) smaller
than 0.5 were agglomerated into one OTU [36]. For each merged group of OTUs,
we chose the OTU with the highest abundance to represent it. After the processing
steps, we were left with 98 individuals and 62 OTUs. We will be working with the
phyloseq object. Note that program code for the analyses in this chapter can be
found under https://github.com/liudoubletian/phyloMDA.

Load example data

# phyloseq: A tool to import, store, analyze,
# and display phylogenetic sequencing data
library(phyloseq); packageVersion("phyloseq")

# phyloMDA: An R package for phylogeny-aware
# microbiome data analysis

https://github.com/liudoubletian/phyloMDA
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# install_github("liudoubletian/phyloMDA")
library(phyloMDA); packageVersion("phyloMDA")
(phyloseq.obj <- combo.phyloseq.obj)

# Plot the phylogenetic tree
plot_tree(phyloseq.obj, "treeonly",

nodeplotblank, label.tips="taxa_names")
tree <- phy_tree(phyloseq.obj)

# Heatmap of microbial counts
plot_heatmap(phyloseq.obj,

taxa.order=taxa_names(phyloseq.obj))
otu_tab <- t(phyloseq.obj@otu_table@.Data)

# Metadata
metadata <- sample_data(phyloseq.obj)

The parameters of the DM distribution can be estimated using the method of
moments or maximum likelihood [24]. Since the distributions placed on different
internal nodes are independent, estimation of the parameters of the DTM distri-
bution can be carried out separately and in parallel. Zhang et al. [68] proposed
an iteratively reweighted Poisson regression method for maximum likelihood
estimation for a class of regression models including the DM model. They also
investigated testing and regularized estimation for these models.

Multinomial-logit regression

# MGLM: A package for multivariate response GLMs
library(MGLM); packageVersion("MGLM")

fit_mn <- MGLMfit(data=otu_tab, dist="MN")
fit_mn@logL # MN loglikelihood

sodium <- metadata$sodium
reg_mn <- MGLMreg(otu_tab~1+sodium, dist="MN")
reg_mn@logL # simple MN regression loglikelihood
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Dirichlet-multinomial regression

fit_dm <- MGLMfit(data=otu_tab, dist="DM")
fit_dm@logL # DM loglikelihood

reg_dm <- MGLMreg(otu_tab~1+sodium, dist="DM")
reg_dm@logL # simple DM regression loglikelihood

# MGLMsparsereg and MGLMtune fit sparse regression
Nutrs <- metadata[, 18:37] # first 20 nutrients
Nutrs <- as.matrix(data.frame(Nutrs))
idx <- c(F, rep(T, dim(Nutrs)[2]))

sreg_dm <- MGLMsparsereg(otu_tab~1+Nutrs, dist="DM",
lambda=Inf, penalty="sweep", penidx=idx)

sreg_dm@logL

sreg_dm_tune <- MGLMtune(otu_tab~1+Nutrs, dist="DM",
penalty="sweep", penidx=idx)

sreg_dm_tune@select@logL

Dirichlet-tree multinomial regression

# library(phyloMDA); packageVersion("phyloMDA")

fit_dtm <- MGLMdtmFit(otu_tab, tree)
Extract_logL(fit_dtm) # DTM loglikelihood

reg_dtm <- MGLMdtmReg(otu_tab, sodium, tree)
Extract_logL(reg_dtm) # DTM regression loglikelihood

sreg_dtm <- MGLMdtmSparseReg(otu_tab, Nutrs, tree,
lambda=Inf, penalty="sweep")

Extract_logL(sreg_dtm)

sreg_dtm_tune <- MGLMdtmTune(otu_tab, Nutrs, tree,
penalty="sweep")

Extract_logL(sreg_dtm_tune)
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3 Estimating Microbial Compositions

Although microbial community sequencing has expanded our knowledge of the
role of microbes in human health and disease, the interpretation of microbiome
data is complicated by two challenges [65]. First, library sizes depend on the
sequencing platform used and the number of samples that are multiplexed per
run, and often vary over several ranges of magnitude across samples. The large
variability in sequence depth reflects deficiency of the sequencing process rather
than true biological variation. Second, a specimen is just a fraction of the original
ecosystem; hence, the total number of reads obtained for a sample is not itself
informative, and the observed read counts in the sample provide only information
about the relative abundances of OTUs in the specimen.

To deal with these challenges, microbiome data are often normalized by either a
statistical or computational process prior to downstream analysis [37]. Two widely
used normalization approaches are rarefying, which subsamples the data without
replacement to uniform sequence depth, and total sum scaling (TSS), which divides
read counts by the total count in each sample. Although rarefying is a primary
method of choice in the researcher’s toolkit, it throws away some data and thus is
inadmissible. On the other hand, due to limited sequencing depth, undersampling,
and DNA dropouts, most microbes are absent in the majority of samples, and
hence, the OTU count matrix is sparse containing a high proportion of zeros [65].
Consequently, the relative abundances from TSS have excessive zeros, which can
have an undesirable effect on downstream data analyses such as diversity estimation
and log-like transformation (see Sect. 4).

3.1 Empirical Bayes Normalization

Consider a microbiome dataset with n samples and K OTUs. For the ith sample, let
xi = (xi1, . . . , xiK)� be the vector of read counts of K OTUs and mi = ∑K

k=1 xik

the total number of reads. There is a simple explanation for TSS. Suppose that Xi is
a random draw from MN, with size mi and probabilities pik , and xi is an instance
of Xi . Then, the method of maximum likelihood yields the TSS normalization

p̃ik = xik

mi

. (6)

In other words, TSS is a model-based method. In the rest of this section, we show
that DM is useful for data normalization from an empirical Bayes perspective [28].

As mentioned, one potential drawback of MN is that the estimated relative
abundances p̃ik = 0 for OTUs with zero counts. One way to overcome this
problem, presented below, is to use a Bayesian approach by specifying a prior for
the probability vector pi = (pi1, . . . , piK)�, calculating the posterior distribution
of pi given xi , and then computing the posterior mean. Among all distributions on
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the simplex SK−1, the Dirichlet distribution is popular mainly because, as a prior, it
is conjugate to the MN.

Multiplying the MN distribution fMN(pi;mi) with the Dirichlet prior fD(α), we
obtain the posterior distribution

f (pi; xi ,α) ∝
K∏

k=1

p
xik+αk−1
k .

We see that the posterior distribution again takes the form of a Dirichlet distribution,
indexed by xi + α, confirming that the Dirichlet is indeed a conjugate prior for the
MN. The posterior mean is given by

E(pik | xi ,α) = xik + αk
∑K

l=1(xil + αl)
. (7)

Since αk > 0, the estimated relative abundances are nonzero for all OTUs. Indeed,
it is easy to check that the posterior mean is a weighted average of the TSS solution
and the mean of the prior distribution:

E(pik | xi ,α) = mi

mi + α+
p̃ik + α+

mi + α+
πk,

where again α+ = ∑K
k=1 αk and πk = αk/α+. Put another way, we shrink the TSS

estimates toward our knowledge about pi before we see the data.
In practice, the hyper-parameters αk are unknown, and so the posterior mean

cannot be used directly. Uniform priors, which assume that α1 = · · · = αK , are used
in the literature [14, 34]. The mean vector of a uniform prior, (1/K, . . . , 1/K)�, is
the center or neural element of SK−1 with the Aitchison metric [40]. Nevertheless,
we do not have to take this composition as the preferred shrinking point.

In the above derivation, the Bayesian approach is applied to single data points,
but the observations may have much in common, and these similarities can be used
to learn from the experience of others. In Sect. 2.1, we showed that the marginal
distribution of Xi is DM, with the same set of parameters α as the Dirichlet prior.
We can estimate these parameters from OTU counts across samples by maximum
likelihood, then plug-in the estimates into the prior distribution, and normalize
the data using the posterior mean [28]. Let α̂ = (̂α1, . . . , α̂K)� be the maximum
likelihood estimate under the DM model. Substituting it into (7) gives the empirical
Bayes solution for normalization

p̂ik = xik + α̂k
∑K

l=1(xil + α̂l)
. (8)
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3.2 Phylogeny-Aware Normalization

We can further incorporate phylogeny into the normalization process [28]. First, the
same technique applies to each internal node, giving a posterior distribution in the
Dirichlet form

f (bv; xv,αv) ∝
∏

c∈Cv

bxvc+αvc−1
vc ,

using the same notation as in Sect. 2.2. Here, for ease of notation, we omit the
subscript i. Second, the posterior density function of p given x can be computed by
a change of variables [11]. In particular, the posterior mean is

E(pk | x,αv, v ∈ I) =
∏

v∈I

∏

c∈Cv

{
xvc + αvc∑

c∈Cv
(xvc + αvc)

}δvc(l)

. (9)

Finally, the Bayes estimator is itself being empirically estimated from the data by
maximizing the marginal likelihood of the data, which are distributed as DTM. Let
α̂v = (̂αvc, c ∈ Cv) be the maximum likelihood estimate. Substituting it into (9)
leads to the phylogeny-aware normalization

p̂k =
∏

v∈I

∏

c∈Cv

{
xvc + α̂vc∑

c∈Cv
(xvc + α̂vc)

}δvc(l)

. (10)

3.3 Statistical Analysis of Compositional Data

The relative abundances are compositional, since they sum up to one and are non-
negative. More generally, a compositional data point, or composition for short, is a
vector with strictly positive components whose sum is constant [1]. For simplicity,
in this chapter, we restrict our discussion to compositions with a unit sum.

Microbiome data are compositional and should be treated as compositions.
However, since compositions are constrained by the simplex, the analysis of
compositional data using traditional tools can be misleading [17]. One way to
address this issue is to use ratio transformations and then take the logarithm of
these ratios, known as log-ratios. This is a reasonable strategy since compositional
data quantitatively describe the parts of whole and contain only relative information
between their components. The log-ratios are real numbers free of the unit-sum
constraint, and they allow the application of standard methods that have been
developed for real-valued data.

Often, the additive log-ratio (alr) and centered log-ratio (clr) transformations are
used. Given a composition p = (p1, . . . , pK)� ∈ SK−1, the alr transformation is



204 T. Wang and H. Zhao

defined as the logarithm of the ratios of components over a given one, mapping p to
a vector in RK−1:

alr(p) =
(

log
p1

pK

, . . . , log
pK−1

pK

)�
.

Here, the last component is chosen by convention as the reference. The clr
transformation is defined to be the log-ratios of p over the geometric mean of p:

clr(p) =
⎛

⎝log
p1

K

√∏K
k=1 pk

, . . . , log
pK

K

√∏K
k=1 pk

⎞

⎠

�
.

Important properties of these transformations include scale invariance and subcom-
positional consistency [12].

3.4 Implementation and Illustration

We illustrate the usefulness of the empirical Bayes method by applying it to the
COMBO dataset. We are interested in identifying the taxa that are associated with
BMI. We categorized BMI as normal weight, overweight, and obese and focused on
the normal weight and obese individuals (in the next section, we discuss regression
problems with compositional predictors and a continuous response).

Empirical Bayes normalization

# library(phyloMDA); packageVersion("phyloMDA")

eBay.comps <- eBay_comps(otu_tab, prior="Dirichlet")

eBay.tree.comps <- eBay_comps(otu_tab,
prior="Dirichlet-tree", tree=tree)

Log-ratio transformations

# library(phyloMDA); packageVersion("phyloMDA")

eBay.comps.alr <- alr_trans(eBay.comps)
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eBay.comps.clr <- clr_trans(eBay.comps)

We used the empirical Bayes method to estimate relative abundances from the
OTU count matrix. We then performed differential abundance testing between
normal weight and obese subjects. For comparison, we present the corresponding
results of applying other normalization and detection methods. From Fig. 2, we see
that the empirical Bayes method detected more differentially abundant OTUs than
others. At the phylum level, these OTUs belonged to Bacteroidetes and Firmicutes
(see Table 1). It has been experimentally shown that in humans on weight-reduction
diets, the decrease in Bacteroidetes was accompanied by an increase in Firmicutes
[25].
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Fig. 2 Visualization of set intersections among differential abundance testing methods. ‘t’ stands
for Welch’s t-test applied to data un-normalized (none) or normalized by rarefying, total sum
scaling (tss), the empirical Bayes (eBay), or phylogeny-aware empirical Bayes (eBay-tree) method.
Included in the figure are metagenomeSeq [39], ANCOM [32], and DESeq2 [29], all of which
are the state-of-the-art methods for detecting differentially abundant OTUs. rarefying-t and
metagenomeSeq failed to detect any OTUs, and eBay-t and eBay-tree-t identified the same set
of four OTUs, of which two were unique, one was also found by tss-t, and one by none-t, tss-t, and
DESeq2
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Table 1 Taxonomic membership of four differentially abundant OTUs detected by Welch’s t-test
on empirical Bayes normalized data

OTU Phylum Class Order Family Genus

25 Bacteroidetes Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides

16,898 Firmicutes Clostridia Clostridiales Ruminococcaceae NA

13,906 Firmicutes Clostridia Clostridiales Lachnospiraceae NA

9409 NA NA NA NA NA

4 Regression with Compositional Predictors

In the previous sections, we discussed methods for analyzing multivariate abun-
dance data. In some machine learning applications, microbiome data are used as
predictors or inputs that have some influence on one or more responses or outputs
[20]. For ease of exposition, this section is concerned with regression problems
where the predictors are compositional data and the response is univariate. The
compositional nature of relative abundances renders many standard regression
methods inappropriate.

To remove the unit-sum constraint, [2] proposed a linear log-contrast model.
Suppose that, in addition to pi = (pi1, . . . , piK)� ∈ SK−1 the vector of relative
abundances, a response yi is also observed on the ith sample. The model has the
form

yi =
K−1∑

j=1

βj log

(
pij

piK

)
+ εi, (11)

for i = 1, . . . , n, where β1, . . . , βK−1 are the regression coefficients, and the errors
εi are uncorrelated and have mean zero and constant variance. Note that, on the log
scale, log(pij /piK) = log(pij )−log(piK) is a linear contrast, hence the name linear
log-contrast model. When K is small relative to n, we can simply fit this model by
least squares.

4.1 Constrained Lasso and Log-Ratio Lasso

In metagenomic applications, however, the number of taxa, K , can be comparable
to or larger than the number of observations, n, resulting in high-dimensional
compositional data. In such settings, statistical learning is challenging for two
reasons. The first is prediction accuracy: the traditional fitting procedures such as
least squares and maximum likelihood often have low bias but large variance and
hence suffer in prediction accuracy. The second reason is interpretability. With
a large number of predictors, we would often like to determine a smaller subset
that exhibits the strongest effects. As a result, regularized approaches that produce
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sparse models often become the methods of choice. By shrinking the values of the
regression coefficients to zero, these methods introduce some bias but reduce the
variance of the predicted values and hence potentially lead to better generalization
while at the same time allowing for easier interpretation of the coefficients. A
popular example is the penalization of the squared loss in the classical linear model
by the sum of absolute values of the coefficients, known as the lasso [56].

Clearly, the choice of the last component as baseline predictor in (11) is arbitrary.
Let βK =∑K−1

j=1 βj . We can rewrite (11) in a reference-free way as

yi =
K∑

j=1

βj log(pij ) + εi,

K∑

j=1

βj = 0. (12)

[27] proposed a lasso-based regularization method for fitting this model in high
dimensions. They considered optimizing the constrained convex criterion

minimize
β1,...,βK ,

∑K
j=1 βj =0

⎡

⎢
⎣

n∑

i=1

⎧
⎨

⎩
yi −

K∑

j=1

βj log(pij )

⎫
⎬

⎭

2

+ λ

K∑

j=1

|βj |
⎤

⎥
⎦ ,

(13)
where λ is a tuning parameter. To solve this problem, they used the augmented
Lagrangian method to develop a coordinate descent algorithm. For large enough
values of λ, most coefficients will be zero.

The linear log-contrast model differs from the standard linear model in that it can
be represented as a collection of log-contrasts, that is, log-ratios of two components,
rather than just a vector of log-transformed components. As such, while the standard
lasso is highly interpretable, a sparse solution from the constrained lasso does not
necessarily correspond to an equally sparse collection of log-contrasts [4]. To see
this, consider a toy example, in which K = 8 and the mean function has the form

E(Y | p) = 2 log

(
p1

p3

)
+ log

(
p2

p4

)
.

Then, it is easy to see that

E(Y | p) = (2 − c) log

(
p1

p3

)
+ c log

(
p1

p4

)
+ c log

(
p2

p3

)
+ (1 − c) log

(
p2

p4

)
,

for any constant c. Although the constrained lasso can identify the set {1, 2, 3, 4}, it
cannot tell correctly which log-contrasts should be included in the model. In other
words, the constrained lasso is not enough to enforce the desired sparsity in log-
contrasts, and so it is quite different from the standard lasso (see Sect. 4.2 for another
viewpoint).

To select a sparse collection of log-contrasts, [4] introduced the all-pairs log-ratio
model
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yi =
K∑

1≤j<k≤K

θjk log

(
pij

pik

)
+ εi, (14)

where each of the θjk is a coefficient multiplying its associated log-ratio
log(pij /pik). This is an overparameterized version of the linear log-contrast model.
Under the sparsity assumption that most of the coefficients θjk are zero, they
proposed log-ratio lasso by minimizing

n∑

i=1

⎧
⎨

⎩
yi −

K∑

1≤j<k≤K

θjk log

(
pij

pik

)
⎫
⎬

⎭

2

+ λ

K∑

1≤j<k≤K

|θjk| (15)

with respect to {θjk, 1 ≤ j < k ≤ K}. Clearly, the notion of sparsity in log-ratio
lasso is different from that in the constrained lasso.

The optimization problem is challenging because it is an optimization in O(K2)

variables and requires explicit construction of the matrix of all-pairs log-ratios.
Bates and Tibshirani [4] proposed a two-step procedure for finding a highly sparse
solution. In the first screening step, the constrained lasso is fitted, and components
with nonzero coefficients are identified. In the second pruning step, the selected
components are used to enumerate all log-ratios, and a sparse regression such as
forward stepwise regression is run. Screening makes sense, since the constrained
lasso and log-ratio lasso are equivalent in terms of the fitted values. Pruning
removes some ambiguity in log-contrast selection resulting from the solution to the
constrained lasso.

Constrained lasso and log-ratio lasso

library(logratiolasso)
packageVersion("logratiolasso")

y <- metadata$bmi
x <- log(eBay.comps) # log of estimated compositions
centered_y <- y - mean(y)
centered_x <- scale(x, center=T, scale=F)

# constrained lasso
classo <- glmnet.constr(centered_x, centered_y)
set.seed(10)
cv_constr_lasso <- cv.glmnet.constr(classo,

centered_x, centered_y)

# two-stage log-ratio lasso
set.seed(10)
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cv_ts_lasso <- cv_two_stage(centered_x,
centered_y, k_max = 7)

4.2 Subcomposition Selection

Since a composition carries only relative information, subcompositions, which pre-
serve ratio relationships, are fundamental objects of investigation in compositional
data analysis. Indeed, subcompositional analysis has a long history, for example, in
geology, and is a major theme of [1]. As such, in the regression setting, a natural
counterpart of component selection should be subcomposition selection.

In order to describe this concept more precisely, we require some more notations.
For a nonempty subset S ⊆ {1, . . . , K}, define pSj = pj/

∑
k∈S pk, j ∈ S and

L(S) = ∑
j∈S βj log(pSj ). We call {pSj , j ∈ S}, or S for short, a subcomposition

formed from the full composition {1, . . . , K}. If
∑

j∈S βj = 0, we call L(S) a
linear log-contrast of S.

Under the linear log-contrast model (12), a subcomposition S is said to be
inactive if the expected response E(Y | p) depends only on the subcomposition
Sc, the complement of S; S is said to be active if the expected response E(Y | p)
depends on S through L(S). Note that when the cardinality of S, denoted by |S|, is
1, {pSj , j ∈ S} reduces to {1} and L(S) = 0; hence, S is inactive.

Let A = {j : βj �= 0}. Then, under model (12),
∑

j∈A βj = 0 and

E(Y | p) = ∑
j∈A βj log(pAj ). By definition, A is active as long as |A| > 1.

In other words, what the constrained lasso (or component selection in general)
actually targets is a single subcomposition composed of selected components. This
further sheds light on the difference between the linear log-contrast model and the
standard linear model. Now consider the all-pairs log-ratio model (14). Since each
log-ratio or log-contrast is a subcomposition of size 2, the log-ratio lasso performs
subcomposition selection restricted to the set of simplest subcompositions.

In microbiome studies, an important objective is to identify groups of bacterial
species present in an ecosystem that are predictive of a phenotype [20]. The
constrained lasso provides only a rough solution, that is, a single group, for this
purpose, a practical disadvantage. The log-ratio lasso, on the other hand, is overly
restrictive at the other end of the spectrum. Furthermore, it has an identifiability
issue. To illustrate this, consider another toy example, in which K = 8 and the
mean function has the form

E(Y | p) = log

(
p1

p3

)
+ log

(
p2

p4

)
.

Then, the set consisting of {5, 6, 7, 8} is inactive, the set consisting of {1, 2, 3, 4} is
active, and the latter can be partitioned into two active subcompositions in two ways:
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(i) {1, 3} and {2, 4} and (ii) {1, 4} and {2, 3}. There seems to be little to distinguish
between (i) and (ii) in terms of goodness-of-fit.

Formally, assume that there is a partition of the full composition {1, . . . , K} into
G + 1 ≥ 2 nonoverlapping subcompositions Sg, |Sg| > 1, g = 1, . . . ,G + 1 so
that

E(Y | p) =
G∑

g=1

∑

j∈Sg

βgj log(p
Sg

j ),
∑

j∈Sg

βgj = 0, g = 1, . . . , G. (16)

That is, the subcomposition SG+1 is inactive, and the expected response depends on
G subcompositions formed from a nonoverlapping partition of Sc

G+1. To identify
subcompositions that are predictive of the response, we need to infer G, the number
of linear contrasts, and the corresponding coefficients within subcompositions.

The problem of subcomposition selection is challenging for two reasons. The first
reason, as the toy example shows, is identifiability. The second is computation. The
total number of all possible partitions of the full composition into subcompositions,
which is the Kth Bell number [43], is much larger than that of all possible subsets
of components, and hence, it is computationally infeasible, even for a moderate
K , to enumerate over all possible least squares regressions for identifying the best
partition.

To address these challenges, [59] proposed a multiscale subcomposition selection
method. Rather than searching through all possible solutions, they considered a
setting where the relationships between the components can be represented as a tree,
and proposed a tree-structured regularization method to select subcompositions at
subtree levels. The motivation for their method is that microbial community changes
can occur at different levels of granularity, and hence, finding microbial signatures
at multiple granularities can both provide much insight into the underlying biology
and improve prediction accuracy. We elaborate on this in the next section.

4.3 Phylogeny-Aware Subcomposition Selection

To avoid imposing the zero-sum constraint explicitly on the coefficients, define the
centered log-ratio transformation Wj = log(pj )−∑K

k=1 log(pk)/K, j = 1, . . . , K ,
and consider the following model:

Y =
K∑

j=1

βjWj + ε. (17)

Define WSj = log(pSj ) −∑k∈S log(pSk )/|S|, j ∈ S. Assume that
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E(Y | W ) =
K∑

j=1

βjWj =
G∑

g=1

∑

j∈Sg

βgjW
Sg

j , (18)

where W = (W1, . . . ,WK)�. Note that for each g ∈ {1, . . . ,G}, the coefficients
βgj in (18) are identifiable up to a common additive constant, due to the fact that
∑

j∈Sg
W
Sg

j = 0. It is thus the relative, rather than absolute, value of βgj that
matters. This in turn implies that linear contrasts of βgj , j = 1, . . . , |Sg|, such as
β∗

gj = βgj −∑k∈Sg
βgk/|Sg|, j = 1, . . . , |Sg|, are estimable.

Let β∗
j = βj −∑K

k=1 βk/K, j = 1, . . . , K . Then,

E(Y | W ) =
K∑

j=1

β∗
j log(pj ) =

G∑

g=1

∑

j∈Sg

β∗
gjW

Sg

j .

Therefore, model (12) with (16) and model (17) with (18) are equivalent.
Let v0 denote the root node of T. For each internal node v ∈ I, let Tv denote

the subtree rooted at v. Clearly, for an internal node v near the bottom of T,
the components that correspond to the leaf nodes of Tv are highly homogeneous,
whereas for v near v0, the components associated with Tv are relatively more
heterogeneous. Consider now an arbitrary subcomposition. Because balanced trees
are extremely rare, it is very likely that the components of this subcomposition are
heterogeneous. To encourage the selection of homogeneous subcompositions, [59]
proposed a tree-structured penalty function or regularizer.

Let ej be the K-dimensional vector whose j th element is 1 and other elements
are 0, for j = 1, . . . , K . For each v ∈ I∪L, denote by Lv ⊆ {1, . . . , K} the index
set of the leaves of Tv , and define hv = ∑j∈Lv

ej . Note that hv represents a node-

based group of components. Let β∗ = (β∗
1 , . . . , β∗

K)�. The tree-guided penalty term
is defined as

J ∗(β∗, λ1, λ2) = λ1

∑

v∈L
|h�

v β∗| + λ2

∑

v∈I
|h�

v β∗|

= λ1

K∑

j=1

|β∗
j | + λ2

∑

v∈I\{v0}
|h�

v β∗|, (19)

where λ1 and λ2 are regularization parameters. If h�
v β∗ = 0 for some leaf node

v ∈ L, then the corresponding component is removed from the model. On the other
hand, if h�

v β∗ = 0 for an internal node v ∈ I, then a partition occurs at v. As
one moves from leaves to the root, the first time h�

v β∗ = 0 happens at an internal
node v, and this defines a subcomposition. Consequently, the first term in (19) is for
component selection or elimination, while the second term is for subcomposition
selection that induces homogeneity at the subtree level.
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To select subcompositions and estimate parameters simultaneously, [59] consid-
ered the convex optimization problem:

minimizeβ

⎡

⎢
⎣

n∑

i=1

⎛

⎝yi −
K∑

j=1

βjwij

⎞

⎠

2

+ λ1

K∑

j=1

|β∗
j | + λ2

∑

v∈I\{v0}
|h�

v β∗|
⎤

⎥
⎦ ,

(20)
where β = (β1, . . . , βK)�. They called this method Tree-guided Automatic
Subcomposition Selection Operator (TASSO). When λ2 = 0, TASSO reduces to
the constrained lasso.

Let e∗
j and h∗

v denote the centered versions of ej and hv , respectively. Then,

J ∗(β∗, λ1, λ2) = J (β, λ1, λ2) = λ1

K∑

j=1

|e∗�
j β| + λ2

∑

v∈I\{v0}
|h∗�

v β|.

The criterion can then be written equivalently as

minimizeβ

⎡

⎢
⎣

n∑

i=1

⎛

⎝yi −
K∑

j=1

βjwij

⎞

⎠

2

+ λ1

K∑

j=1

|e∗�
j β| + λ2

∑

v∈I\{v0}
|h∗�

v β|
⎤

⎥
⎦ .

This is a generalized lasso problem and can be solved efficiently [57].

TASSO

# library(phyloMDA); packageVersion("phyloMDA")

fit_tasso <- TASSO(y, eBay.comps, tree)
fit_tasso

fit_classo <- TASSO(y, eBay.comps,
tree = NULL) # constrained lasso

fit_classo

4.4 Linear Regression and Variable Fusion

So far compositions are assumed to lie in a strictly positive simplex. The main
reason is that we cannot take the logarithm of zero in log-contrasts or log-ratios.
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In the absence of a one-to-one monotonic transformation between the real line and
its non-negative subset, the problem of zeros might not be satisfactorily resolved,
and solutions generally depend on the frequency and nature of the zeros.

There are three types of zeros: rounded zeros, sampling zeros, and structural
zeros [33]. In the previous sections, we assume implicitly that all microbes are
present in the microbial ecosystem and the zeros are the result of undersampling.
However, in the presence of hundreds or thousands of bacterial species, these zeros
can also represent components that are truly absent from the community, especially
when the specimens are drawn from different environments [39]. This requires the
treatment of compositions with zero components. Clearly, the strategy of replacing
the structural zero by a small value and re-normalizing the data to have a unit sum
is not appropriate.

We now consider the regression problem where the observed predictors are
compositional and possibly with some zeros, that is, pik ≥ 0,

∑K
k=1 pik = 1.

Unfortunately, the presence of zeros causes log-ratio-based methods to fail in
this case. To take into account the compositional nature, high dimensionality, and
phylogeny of microbiome data, [61] introduced the concept of variable fusion and
proposed a multiscale dimension reduction method. Instead of using the linear log-
contrast model, they used the linear model

Y = β0 +
K∑

j=1

βjpj + ε. (21)

This model has a similar flavor to model (17) in that the predictors are constrained
to have a constant sum,

∑K
k=1 pk = 1. It formally resembles standard analysis of

variance, in which the dummy variables that code a multi-level categorical predictor
sum up to one. It is thus easy to see that the coefficients βj are identifiable only up
to a common additive constant.

One can impose a constraint on the parameters to make them identifiable. Note
that, for each k ∈ {1, . . . , K},

E(Y ) = β0(k) +
K∑

j=1

βj (k)pj ,

where β0(k) = β0 + βk , and βj (k) = βj − βk reflects the difference between βj

and βk . The constraint is then βk(k) = 0.
The concept of variable fusion is motivated by an assumption that phyloge-

netically close taxa have similar associations with a host phenotype. Under this
assumption, a good way to handle the dimensionality problem is to shrink some
βj1 − βj2 to zero. Since βj1(k) − βj2(k) = βj1 − βj2 , one can solve the pairwise
fused lasso [45] problem
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minimizeβ(k)

⎡

⎢
⎣

n∑

i=1

⎧
⎨

⎩
yi −

K∑

j=1

βj (k)pij

⎫
⎬

⎭

2

+ λ
∑

1≤j1<j2≤K

|βj1(k) − βj2(k)|
⎤

⎥
⎦ ,

(22)
where β(k) = {β1(k), . . . , βK(k)}, and we assume that the data have been
mean centered, so that we can omit the intercept. The pairwise fused lasso is a
generalization of the ordinary fused lasso [58], intended for situations in which
variables have an ordering along which smoothness is expected. Since any ordering
of OTUs is arbitrary, the ordinary fused lasso may be misleading.

The pairwise fused lasso treats all pairs of OTUs equally and thus fails to exploit
the phylogeny of the OTUs. One can use a weighted penalty that smoothes the
coefficients of two OTUs j1 and j2 based on their closeness dj1j2 on the tree:

λ
∑

1≤j1<j2≤K

ωj1j2 |βj1(k) − βj2(k)|,

where ωj1j2 = d
γ

j1j2
for some γ ≤ 0.

Variable fusion is crucial in high dimensions for improved predictive perfor-
mance. It is immune to zeros and is operationally adapted to the compositional
nature of the data. For increased interpretability, [61] proposed tree-guided variable
fusion to harness a predictive microbial signature made of a set of multi-level taxa.
They constructed two weighted fused lasso penalties that encode the tree topology.

For simplicity, assume that the phylogenetic tree T = (L,I) is binary. For each
internal node v ∈ I, let cv1 and cv2 be the two child nodes of v. The first penalty is
defined by

λ
∑

v∈I
ωcv1cv2 |s�

v β(s)|, (23)

where sv ∈ RK is an indicator vector with j th entry 1/|Lcv1 | if j ∈ Lcv1 , −1/|Lcv2 |
if j ∈ Lcv2 , and 0 otherwise. In other words, the two child nodes cv1 and cv2 each
take a proportion of the weight ωcv1cv2 of the parent node v ∈ I, relative to the sizes
of their subtrees.

The second penalty is defined in a bottom-up recursive manner by first computing
the penalty terms for all internal nodes with size 2 subtrees, then all with size 3
subtrees if any exist, and so on. Specifically, define A to be the level set such that,
for each l ∈ A, there is v ∈ I such that l = |Lv|. Let lh denote the hth smallest
element of A. For each v ∈ L = {1, . . . , K}, let ev be the K-dimensional vector
whose vth element is 1 and other elements are 0, and for each v ∈ I, initialize ev to
be the K-vector of zeros. For h = 1, . . . , |A|, recursively set tv = ecv1 − ecv2 and
update ev = (ecv1 + ecv2)/2, for all v ∈ I such that |Lv| = lh. The second penalty
is defined by
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λ
∑

v∈I
ωcv1cv2 |t�

v β(k)|. (24)

Consider then the tree-guided fused lasso problem

minimizeβ(k)

⎡

⎢
⎣

n∑

i=1

⎧
⎨

⎩
yi −

K∑

j=1

βj (k)pij

⎫
⎬

⎭

2

+ λ
∑

1≤j1<j2≤K

ωcv1cv2 |c�
v β(k)|

⎤

⎥
⎦ ,

(25)
where cv = sv or cv = tv . Note that, for each v ∈ I, c�

v β(k) = c�
v β is a linear

contrast of the coefficients βj , hence the name tree-guided fused lasso. Again, the
optimization problem (25) has a generalized lasso formulation.

Since each internal node represents the abundance of a taxonomic lineage, by
incorporating the tree information node by node, the estimated microbial signature
from the tree-guided fused lasso tends to be composed of a few taxonomic units at
different depths. Formally, the variables indexed byLu for u ∈ I are fused together,
defining a new variable indexed by u, if c�

v β = 0 for all the internal nodes v of the
subtree rooted at u.

Tree-guided fused lasso

# library(phyloMDA); packageVersion("phyloMDA")

fit_tflasso1 <- TreeFusedlasso(y, eBay.comps, tree)
fit_tflasso1

fit_tflasso2 <- TreeFusedlasso(y, eBay.comps, tree,
type = 2)

fit_tflasso2

5 Additional References

In addition to the Dirichlet prior, useful distributions for the MN probabilities
include the Dirichlet mixture prior [18] and Aitchison’s logistic normal (ALN)
distribution [6]. In particular, the compound distribution combining ALN with MN
accommodates a much richer dependence structure among bacterial counts than
the DM distribution [63, 67]. Note that the MN distribution and its extensions
condition on the total count in a sample. An alternative strategy is to analyze the
multivariate counts unconditionally using, for example, Poisson graphical models
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[5, 62], the multivariate Poisson-lognormal distribution [3], latent variable models
[48], or copula models [49]; see [19] for a good review.

Generally speaking, normalization is a process that transforms the data from
different samples to enable meaningful comparison. The effect of microbiome data
normalization can be quantified using results from downstream analyses, such as
ordination analysis and differential abundance testing [37, 55, 65]. Besides rarefying
and TSS, there are a number of other normalization methods, including scaling
normalization from the RNA-seq field [23, 39] and log-ratio transformation that
accounts for the compositional nature of sequencing data [17, 32]. TSS is a naive
scaling method, and when log-ratio transformed, raw proportions from TSS are
operationally equivalent to the raw counts. Microbiome data are compositional
and should be treated as compositions. In this sense, scaling normalization is
unnecessary. However, zeros cannot be log-transformed, and when the normalized
data from scaling have zeros, they will lead to difficulties in downstream analyses.
The (empirical) Bayesian formulation in Sect. 3 addresses this issue. Using a
Poisson-multinomial model for read counts, [7] proposed a regularized maximum
likelihood approach to estimate the composition matrix.

For increased interpretability and the inclusion of taxonomic information, [46]
extended constrained lasso to include multiple linear constraints. Lu et al. [31]
further developed generalized linear models with linear constraints for microbiome
compositional data. To improve prediction accuracy, [38, 52] proposed phylogenetic
approaches to microbial community classification, and [15] introduced phylogenetic
convolutional neural networks in metagenomics.

6 Discussion

Microbiome count data contain a high proportion of zeros. In Sects. 2 and 3, we
assumed implicitly that all microbes are present in the samples and the zeros are
the result of undersampling. However, not all zeros are the same, and sequence
count data can exhibit zero inflation, especially when specimens are drawn from
different environments. How to model multivariate count data that accounts for
over-dispersion, zero inflation, and the phylogeny is an important research topic.
The zero-inflated generalized Dirichlet-multinomial model [54] provides a possible
solution to this problem.

Due to contamination, extraction, amplification, sequencing, and other technical
biases, the interpretation of microbiome data is challenging, since the comparison
of taxon relative abundances in the specimen is not equivalent to the comparison
of taxon true abundances in the ecosystem from which the specimen was obtained.
As in Sect. 3, it is reasonable to estimate the relative abundance of a taxon in the
ecosystem using its relative abundance in the specimen. Whether or not we can use
the specimen-level abundance data to draw inferences about taxon abundances at
the ecosystem level is interesting but is less developed in the literature [13, 32].



Statistical Methods for Analyzing Tree-Structured Microbiome Data 217

In this chapter, we assumed that the phylogenetic tree is known a priori. In
practice, the phylogeny is inferred from molecular sequences [41, 51], and so it
is important to incorporate uncertainty in phylogenetic inference into downstream
analyses. Another problem with tree is rooting. The phylogeny can be rooted using
the outgroup or midpoint rooting method. However, since rooting is not part of tree
inference, rooting error is in addition to tree-estimation error. Robust methods for
integrating unrooted phylogenies in data analysis are highly demanding.
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A Log-Linear Model for Inference on
Bias in Microbiome Studies

Ni Zhao and Glen A. Satten

1 Introduction

Microbiome studies are known to be biased, and almost all steps in the experimental,
sequencing, and bioinformatic analysis pipeline are potential culprits. For example,
DNA extraction protocols differ in their ability to lyse certain bacterial cells (e.g.,
Gram-positive cells) and therefore may preferentially obtain DNA from some taxa
over others [4, 10]. PCR bias can be introduced by differences in the GC content
of the microbiome sequences. Different bacterial sequences may bind differentially
to primers, preferentially amplifying some taxa compared to others [5, 6, 11, 14].
Commonly used sequencing platforms (e.g., MiSeq and HiSeq) also differ in their
ability to correctly read DNA when GC content is high [12]. Every step in the bioin-
formatic processing pipeline, including read filtering, trimming, deduplication, read
mapping, choice of amplicon clustering method, and choice of reference database,
can also produce bias [13]. Differences in gene copy numbers also contribute to
bias [7]. Because these biases are protocol- and taxon-dependent, microbiome data
generated from different protocols are quantitatively incomparable, and analyses
that do not account for bias may lead to spurious conclusions. However, modeling
every possible source of bias factors is a daunting process.
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Recently, McLaren, Willis and Callahan (MWC) [9] proposed a simple model for
the bias generation process in microbiome sequencing studies. MWC demonstrated
that their model fits mock (or model) community data where true taxa relative
abundances are known. In their model, the observed relative abundance of each
taxon (e.g., operational taxonomic unit (OTU) or amplicon sequence variant (ASV))
is a product of the true taxon prevalence and a taxon-specific bias factor, normalized
over all taxa observed in the sample. Each bias factor represents the accumulation
of multiplicative biases over all the steps in the experimental pipeline, so that the
bias can be described by a single factor for each taxon. In particular, there is no
need to consider taxon–taxon interactions, i.e., the effect that one taxon in a sample
might have on the bias factor of a second taxon. However, the bias of any taxon
at the relative abundance level can still be impacted by other taxa when converting
observed counts into relative abundances, as the normalization factor depends on
true prevalence and bias factors of all taxa in the sample.

The MWC model is important for at least two reasons. First, the MWC model
assertion of no taxon–taxon interaction, if true, provides a simple way to discuss
biases one taxon at a time, rather than at the community or sample level, making
calibration of bias easier in studies involving large microbiome communities. One
goal of this chapter is to develop methods to test this hypothesis. Second, the MWC
model, via its multiplicative structure of bias factors, gives a simple way to describe
the relationship between protocol and sample bias in a microbiome experiment,
acknowledging that the bias factors are not properties of the microbes alone but
depend heavily on experimental details such as the extraction protocol and PCR
parameters [4–6, 10, 11, 14]. Thus, a taxon may have a low bias factor using one
DNA extraction protocol but may have a high bias factor using a different extraction
protocol.

Because the MWC model relates observed and true prevalences, it is necessary
to know the true prevalence of a taxon before its bias factor can be calculated. As a
result, calculation of bias factors is presumably restricted to model communities in
which the true prevalences are known by construction. This simplifies the analysis
in many ways. We know which taxa are present in each sample, so the zeros
in the count table corresponding to bacteria that were not included in a model
communities sample correspond to “structural missingness.” However, complex
patterns of structurally missing data can also lead to complications in parameter
estimation and statistical inference on bias factors. For example, permutation or
bootstrap-based inference is more difficult because residuals of two samples with
different composition are not exchangeable.

The first goal of this chapter is to develop a statistical model that generalizes the
MWC model to allow inference on complex questions about bias factors. MWC
focuses primarily on graphical demonstration of their model and offers limited
capacity for statistical inference. In particular, MWC does not propose a statistical
model for model communities data, relying instead on geometric arguments to
estimate bias parameters in only the simplest situations. In addition, MWC does not
consider covariates that could affect bias factors (such as plate effects or variations
in extraction protocol). Here, we generalize the MWC model to include such
covariates, and show the resulting model is a log-linear compositional model. We
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develop a novel estimation procedure for bias factors and propose permutation-
based inference for complex hypotheses involving bias factors across taxa and
protocols.

The second goal of this chapter is to use the framework we develop to test the
fundamental assumption in the MWC model that the presence of one bacteria does
not affect the bias factors of any other bacteria in the sample. It should be clear
that this hypothesis requires samples that have a variable number of bacteria in
each sample. Published mock community data of Brooks et al. [2] have this unusual
feature. The structural missingness implied by this requirement motivates much of
our methods’ development. The Brooks data also features three types of samples
(cells, DNA, and PCR products); further, each type of sample was run on two
plates. Thus, we also use these data to address simpler questions like whether there
is evidence of differential bias across sample types or across plates.

The rest of this chapter is organized as follows. In Sect. 2.1, we set the stage
by describing the Brooks data and the scientific questions it raises. In Sects. 2.2
and 2.3, we describe our methods of analysis. Section 3 presents the performance of
our model over a variety of realistic simulation scenarios. We describe the results of
our analysis of the Brooks data in Sect. 4.2. Some technical details are relegated to
an Appendix. A final section gives concluding remarks.

2 Methods

2.1 The Brooks Data

Brooks et al. [2] conducted a fairly large-scale model communities study using
seven bacteria commonly found in vaginal samples, viz., L. crispatus, L. iners, G.
vaginalis, A. vaginae, P. bivia, S. amnii, and group B streptococcus (GBS). Each
mock sample consists of an even mixture of one to seven bacterial taxa; in total,
there were 58 unique combinations of bacteria. Of the 240 total samples, 27 samples
have only a single bacterium present, 75 have two bacteria, 129 have three bacteria,
4 have three bacteria, and 6 have all seven bacteria. Here, we ignore the samples
having only one bacterium as they are uninformative in both the MWC model and
our approach. In addition, three versions of every sample were created: one from an
even mixture of cells, one from an even mixture of extracted DNA, and one from an
even mixture of PCR products. The samples were processed on six distinct plates
with two plates for the cell samples, two for the DNA samples, and two for the PCR
product samples. Here, a plate refers to a set of samples that were processed and
sequenced together. Because of the fundamental difference in sample types across
plates, it is of interest to ask if the biases differ both within and between plates.
The study was well-balanced across plates with respect to the numbers of taxa per
sample (p = 0.974), and since the smallest nonzero taxon relative abundance is 1/7,
the nominally significant differences in library size across plates (p = 0002) have
little effect. Table 1 provides a description of the samples in this dataset.
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Table 1 Descriptive statistics for the Brooks data

Sample types Cell DNA PCR p-values

Plates 1 2 3 4 5 6

# of samples 40 40 40 40 40 40

Library size (mean) 16.2K 17.2K 12.8K 14.4K 15.3K 15.2 K 0.002

Number of taxa present (%) 0.974

1 3 (7.5) 6 (15.0) 3 (7.5) 6 (15.0) 3 (7.5) 6 (15.0)

2 15 (37.5) 10 (25.0) 15 (37.5) 10 (25.0) 15 (37.5) 10 (25.0)

3 20 (50.0) 23 (57.5) 20 (50.0) 23 (57.5) 20 (50.0) 23 (57.5)

4 1 (2.5) 0 (0.0) 1 (2.5) 0 (0.0) 1 (2.5) 0 (0.0)

7 1 (2.5) 1 (2.5) 1 (2.5) 1 (2.5) 1 (2.5) 1 (2.5)

Although the pattern of structural missingness makes inference more difficult,
this design allows us to address the fundamental assumption of the MWC model,
by asking whether the presence of one bacterium (say, L. iners) affects the bias
factors of the other bacteria, and whether this interaction effect is consistent across
sample types and plates. In this chapter, we generally denote the potential effect of
one taxon on the bias factor of other taxa as the “interaction” effect, as compared
to the “main” effect that describes the impact of external factors such as sequencing
protocols, sample type, and plate effect.

2.2 Setup and Estimation

We assume that the experimental data can be summarized in a count table (i.e.,
OTU or ASV table) where the N rows correspond to samples and the J columns to
taxa (i.e., OTUs or ASVs) that occur in at least one sample. Let p̃ij denote the
observed relative abundance (or prevalence) of the j th taxon in the ith sample,
calculated as the observed counts of the j th taxon divided by the library size of
the sample, i ∈ (1, . . . , N), j ∈ (1, . . . , J ). We let pij denote the true relative
abundance of the j th taxon in the ith sample, assumed known. We further let
�ij = 1 if the j th taxon is known to be present in the ith sample, and take �ij = 0
otherwise. Since we are considering model communities data, we restrict the
analysis to include all taxa known to be present in a sample, so that we are assured
that

∑J
j=1 p̃ij�ij = ∑J

j=1 pij�ij = 1 for each sample. Here, we assume that
p̃ij > 0 whenever �ij > 0. This is a reasonable assumption in mock community
data with reasonable sequencing depth, in which the number of taxa is small, and
all taxa have at least moderate relative abundances. In the unlikely case that p̃ij = 0
while �ij > 0, the taxon can be taken to be absent from that sample and the pij s
adjusted accordingly.

The MWC model (equation 4 in [9]) asserts that
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E
(
p̃ij

) = pij exp(βj )
∑J

j ′=1 pij ′ exp(βj ′)
, (1)

where exp(βj ) is the bias factor for taxon j . This model is equivalent to the
following:

ln E(p̃ij ) = ln pij + βj + αi, for �ij > 0 ,

in which αi is a sample-specific normalization. Equation (1) could be used as the
mean structure for a cell count model, assuming an underlying distribution for the
counts for each taxon (such as the Dirichlet-multinomial mixture model). However,
these models can be hard to fit, and the parametric assumptions underlying them are
unattractive. MWC also proposes a model (equation 10 in [9]) with nearly the same
mean structure

ln p̃ij = ln pij + βj + αi + εij , for �ij > 0 , (2)

in which εij is an error term. MWC did not fully differentiate between these two
models, which are, strictly, not consistent with each other. Nevertheless, when the
sequencing depth is modest or high and the abundance p̃ij is not too low, as is
the case in mock communities samples, the mean structure of (2) gives a close
approximation to the mean structure in (1). Although we did not implement this
in most of our analyses, a Haldane-like correction (corresponding to adding 1
count to both the numerator and denominator when calculating the observed relative
abundance) can be applied so that E(ln p̃ij ) better approximates ln E(p̃ij ) if small
read counts are expected. In our simulation studies in Sect. 3, we deliberately
simulated data using a Dirichlet-multinomial mixture model having the MWC mean
structure (1) instead of log-linear model data generated using (2), to demonstrate
that our proposed model works well for either of these underlying data generation
processes.

Model (2) has the advantage that it allows us to use the simple machinery of least
squares for parameter estimation and inference. No parametric assumption on the
distribution of εij is needed except that E(εij ) = 0 and the existence of the second
moment. To allow for sample-level covariates, let X be a N ×M design matrix with
ith row corresponding to covariates for the ith sample. Examples of covariates in
X include the experimental procedures in the sequencing pipeline such as the DNA
extraction method, the primers used and the sequencing machine, or more generally,
plates (batches) in which the samples were processed. M is the total number of
covariates we want to investigate. We adopt notation in which Qk· (Q·k) is the row
(column) vector corresponding to the kth row (column) of matrix Q. Through X, we
can investigate important biological questions such as the effect of DNA extraction
method on the bias factors and the taxon–taxon interactions. Let β be a M × J

matrix of parameters. With this, we generalize the MWC model to
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ln p̃ij = ln pij + Xi· β·j + αi + εij , for �ij > 0, (3)

so that the j th column of β contains the regression parameters for the bias factor of
the j th taxon. We can either choose each αi by minimizing

∑J
j=1(ln p̃ij − ln pij −

Xi· β·j − αi)
2 or else simply note that right-multiplying the row vector ln p̃i· as

given in (3) by the compositional projection operator Pi = Diag(�i·) − 1
ni

�T
i·�i·

(where ni is the number of taxa present in sample i) eliminates any term that is
constant in i. By either approach, we obtain

Yi· = Xi·βPi + ei· , for �ij > 0 , (4)

where Yi· = (ln p̃i· − ln pi·) Pi and ei· = εi·Pi . We take �ij ln pij = 0 if both �ij

and pij are equal to zero so that Yij = 0 if �ij = 0.
We propose to use least squares to estimate the parameters β in (4). We note

however that there are more bias factor parameters (β) in (4) than we can estimate,
corresponding to the fact that we can replace each βj with βj + β0 in (1) with no
change in any observable quantity. Equivalently, this can be seen as a consequence
of the compositional constraint that the Yij values, summed over j , equal zero for
each observation i. One way to account for this overparameterization would be to
reparameterize in terms of a set of bias factor parameters β that are all identifiable.
For example, in the simple model of Eq. (2), we could select one taxon (say, taxon
J ) to have βJ = 0, in which case the remaining βj s would be interpreted as the
difference between the log-bias factor for the j th taxon and the reference (J th)
taxon. Another approach is to continue with the model with all of the βj parameters
but restrict inference to combinations of parameters that are identified. We choose
this second, non-full-rank model because, in complex settings, it can be difficult
to test complex hypotheses when parameters have been redefined. The cost in this
choice is that we must exercise caution when performing inference to ensure that
we only consider estimable combinations of parameters. A third approach in which
constraints are added to the estimation procedure (i.e.,

∑J
j=1 βj = 0 for the simple

model in (2)) is equivalent to our approach, as the least-squares estimators we use
will automatically impose these constraints.

In order to obtain least-squares estimators, we vectorize the data from the ith
sample using the vec trick to write

vec(Yi·) = Pi ⊗ Xi· vec(β) + vec(ei·) ,

where vec(Q) is the column vector obtained by stacking the successive columns of
Q, and ⊗ denotes the Kronecker product. This gives a useful description of the data
from the ith sample. If we further stack data from the 1st, 2nd, . . . , nth samples, we
find
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⎛

⎜
⎜⎜
⎝

vec(Y1·)
vec(Y2·)

...

vec(YN ·)

⎞

⎟
⎟⎟
⎠

≡ vec(Y T ) =

⎛

⎜
⎜⎜
⎝

P1 ⊗ X1·
P2 ⊗ X2·

...

PN ⊗ XN ·

⎞

⎟
⎟⎟
⎠

vec(β)+vec(eT ) ≡ Xvec(β)+vec(eT ).

(5)
In this form, we see immediately that

vec(β̂) = X−vec(Y T ), (6)

where Q− denotes the Moore–Penrose generalized inverse of matrix Q. For later
use, we note that we can use the transpose property (A ⊗ B)T = AT ⊗ BT and the
mixed-product property (A ⊗ B)(C ⊗ D) = AC ⊗ BD to write

X
T
X =

∑

i

{
Pi ⊗ XT

i·
}

{Pi ⊗ Xi·} =
∑

i

Pi ⊗
(
XT

i·Xi·
)

.

We further note that, for large sample sizes, it is easier to solve

X
T
Xvec(β̂) = XT vec(Y T )

to obtain vec(β̂) = (XT
X)−XT vec(Y T ), which is equivalent to Eq. (6).

2.3 Inference

The general form of a null hypothesis of interest is

C vec(β) = 0, (7)

where C is a D × MJ matrix. We generally assume the contrasts that comprise
the D rows of C are linearly independent that D is the degrees of freedom of the
hypothesis. For example, in an experiment in which all samples have the same three
taxa and no additional covariates, we have β = (β11, β12, β13), and hence, vec(β) =
βT , so we could test if the three bias factors were equal using the matrix

C =
(−1 1 0

−1 0 1

)
.

In many contexts, hypotheses in Eq. (7) correspond to a matrix format that CβQ =
0, and in such cases, C ≡ (QT ⊗C). In this setup, Q is a fixed matrix that accounts
for non-identifiability in β if the non-full-rank approach is used (as presented in this
chapter). For example, choosing Q to be the MJ × (MJ − 1)-dimensional matrix
with columns I·j − I·j ′, j �= j ′ when writing βQ (where I is the identity matrix)
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has the effect of subtracting β·j ′ from every column of β and then removing the j ′th
column of the resulting matrix. This has the effect of choosing j ′ to be a reference
taxon. In the example just considered, if we further choose C to be the 1 × 1 matrix
with C = 1, then C is the matrix given above, with j ′ = 1. As we generally use an
overparameterized model, it is important to note that not every linear combination
of vec(β) is testable; we discuss this in Sect. 2.4.

We propose to use an F-statistic to evaluate statistical significance. To accom-
plish this, it is necessary to estimate β under the null hypothesis, i.e., subject to
constraints in Eq. (7). This estimate, which we denote by β̂0, is easily obtained by
solving a constrained least-squares problem; we use the R package lsei [17]. As
the null model is nested within the full model, we have

F = RSS0 − RSS

RSS
=
∑

i

∑
j (r

2
0,ij − r2

ij )
∑

i

∑
j r2

ij

, (8)

where RSS0 and RSS are the residual sums of squares under the null and full
models, and where the full model residuals are given by

ri· = Yi· − Xi·β̂Pi, (9)

and the null model residuals are given by r0,i· = Yi· − Xi·β̂0Pi . Note that both
rij and r0,ij are zero if �ij is zero. Asymptotic inference is challenging because
the number of parameters in β (M × J ) is often fairly large while the number of
samples in many mock community studies is frequently small. Thus, we propose a
permutation approach to assess significance (for which reason we have excluded the
degrees of freedom usually found in an F-statistic).

Any Monte Carlo hypothesis test must account for the correlation between
residuals of taxa in the same sample, which are always present if only because
of the compositional constraint. Simply permuting the entire vector of residuals
from each sample is not possible when some taxa are missing from some samples,
and fails completely for the simplest case of Eq. (2), as each permutation replicate
is identical to the original dataset. Thus, for each sample, we propose to first
decorrelate the residuals under the null model, permute the decorrelated residuals,
recorrelate them, and add them back to the predicted values calculated under the
null. The decorrelation process also scales the residuals to have a common variance,
up to the constraint imposed by compositionality. In this way, we re-generate data
that share the same structure as the original data but are known to follow the null
hypothesis.

Because of the compositional constraint, the residuals for each sample sum to
zero. If � is the (unknown) variance–covariance matrix of a set of residuals in the
absence of the compositional constraint, then the variance–covariance matrix for
the constrained residuals for the ith of these samples is �i ≡ Pi�Pi . For this
reason, the “decorrelated” residuals will have variance–covariance matrix Pi rather
than the usual identity matrix. We discuss this further in the Appendix, where we
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also present a novel estimator �̂ for the variance–covariance matrix � for use in
calculating �i that accounts for both the compositional constraint and the complex
missingness structure of these data. Since the correlation structure Pi corresponds
to exchangeable residuals, we can still permute the “decorrelated” residuals within
each sample, thereby accounting for the pattern of missingness in each sample, even
though the variance of residuals across samples with different numbers of taxa will
vary since the diagonal elements of Pi are given by 1 − 1/ni . After permutation, we
recorrelate the permuted residuals to restore their variance–covariance to �i . The
explicit operations of this permutation are detailed in the following algorithm.

Algorithm: Permutation procedure for statistical inference

Data: p̃, p, X, �, C.
Result: A p-value for statistical inference.

1. Fit the full model and estimate β̂. Obtain residuals ri· for all samples.
2. Fit the constrained model and estimate β̂0. Obtain residuals r0,i· for all

samples.
3. Calculate the F -statistic.
4. Calculate the variance–covariance matrix of null model residuals �̂0 and

hence obtain �̂0,i = Pi�̂0Pi .

5. For each i, calculate the decorrelated residuals r
(de)
0,i· = r0,i·�̂

− 1
2

0,i .

6. For each i, randomly permute the r
(de)
i· values that correspond to �i,j = 1 to

obtain the permuted decorrelated residuals r
(de,p)

0,i·
7. For each i, recorrelate the permuted residuals to obtain r

(p)

0,i· = r
(de,p)

0,i· �̂
1
2
0,i .

8. Generate a permutation null replicate dataset using vec(Yi·) = Xi·β̂ + r
(p)

0,i·.
9. Calculate the test statistic F (p) using the permutation null replicate dataset.

10. Repeat the previous steps 6 to 9 B times, obtaining the F -statistic F
(p)
b

from the bth replicate.
11. Calculate p = 1

B

∑B
b=1[I (F < F

(p)
b ) + 1

2I (F = F
(p)
b )].

2.4 Testability of the Hypothesis

Models (1), (3), and (4) are overparameterized, so that arbitrary linear combinations
of the elements of β are not estimable. Although we can always achieve a full-rank
model by applying an appropriate set of constraints, in complex situations, it may
not be easy to ascertain these constraints. Instead, we check the testability of any
contrast we wish to test by confirming that it has no component that lies outside
the space spanned by the rows of X. By writing the singular value decomposition
(SVD) of X = LDRT , where we choose the form of SVD in which D has only the
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nonzero singular values, we can easily see that a linear combination of parameters
Ci·vec(β) is only estimable if Ci·(I− RRT ) = 0. Thus, the general requirement for
testability of a hypothesis of the form in Eq. (7) is

||C(I− RRT )||2F = 0 , (10)

where || · ||2F denotes the Frobenius norm of a matrix.

2.4.1 Example: Testable Hypotheses for Main Effects

The simplest model beyond (1) and (2) is a situation with a single binary covariate
Z, such as an experiment run on two different plates. Here, we may be interested in
testing whether the bias factors differ across plates. We can code the design matrix
X in many ways, e.g., choosing Xi· = (I [Zi = 1], I [Zi = 2]) or Xi· = (1, I [Zi =
2]). In both cases, β has two rows; in the first coding, the first row of β are the
log-bias factors for plate 1 and the second row of β are the log-bias factors for plate
2, while for the second coding, the first row of β are the mean log-bias factors and
the second row comprises the differences between log-bias factors across the two
plates. In the first coding, we would test the hypothesis that β1j −β1j ′ = β2j −β2j ′
for j �= j ′, while in the second coding, we test β2j = β2j ′ for j �= j ′. These tests
are equivalent since the β2j values in the second coding are differences between
bias factors across the two plates.

For Z having more than 2 levels, we would require β to have a row for each level
of Z. For example, the samples in the Brooks data were run on six plates, so that a
test of any plate effect would require β to have six rows. The resulting design matrix
is a N × 6 matrix with each column indicating the plate membership. In principle,
Z may also be continuous, in which case the corresponding rows of β would have
the interpretation of the change in log-bias factor per unit change in the continuous
covariate.

Panel A in Table 2 lists the testable hypotheses for main effects that we use in our
simulations and in our analyses of the Brooks dataset. Using the example of plate
effects, H1 tests for the existence of any bias on any plate. H2–H4 focus on a single
plate k and compare its log-bias factors to: the average log-bias factors in all other
plates (H2), a constant value (H3), and the log-bias factors of another plate k′ (H4),
respectively. H5 switches gears and tests the differences in the bias factors of two
taxa across all plates.

2.4.2 Example: Testable Hypotheses for Interaction Effects

In general, interactions between covariates Z can be treated as if they were “main
effects” handled using the approach described in Sect. 2.4.1. In this section, we
consider possible interactions between taxa. This is the central question in the
Brooks data, where we wish to test the hypothesis that bias factors do not depend on
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Table 2 Testable hypotheses used in simulations and in analyses of the Brooks data

Hypotheses about main effect Simulations

A Research question Nulla Conditions that
satisfy the nullb

H1 Is there any bias across all plates and
all taxa?

βkj −βkj ′ = βk′j −βk′j ′
∀j �= j ′, k �= k′

b1 = b2 = 0

H2(k) Is the bias in plate k different from
the average bias of all other plates,
across all taxa?

βkj − βkj ′ =
1
5

∑
k′ �=k(βk′j −

βk′j ′ ),∀j �= j ′

b1 = b2

H3(k) Is there any bias in plate k? βkj − βkj ′ = 0,∀j �= j ′ b1 = b2

H4(k, k′) Is there any difference in the bias on
plates k and k′, across all taxa?

βkj − βk′j =
βkj ′ − βk′j ′ ,∀j �= j ′

b1 = b2 = 0

H5(j,j′) Is the relative bias between taxa j

and j ′ the same across all plates?
βkj − βkj ′ =
βk′j − βk′j ′ ,∀k �= k′

b1 = b2 = 0

Hypotheses about interaction effects Simulations

B Research question Nullc Conditions that
satisfy the null

H6(j,j′) Do taxa j and j ′ have the same
interaction effect on the bias of the
other taxa?

βjk − βj ′k = βjk′ −
βj ′k′ for (k, k′) �∈ (j, j ′)

c1 = c2

H7(j) Does taxon j impact the bias of
other taxa?

βjk − βjk′ = 0 for all
k, k′thatk �= k′ �= j

c1 = c2 = 0

H8 Is there any interaction effect among
the taxa?

βjk − βjk′ = 0
∀j �= k �= k′

c1 = c2 = 0

a k, k′ ∈ (1, . . . , 6), the number of plates, j, j ′ ∈ (1, . . . , 7) the number of taxa
b b1, b2, c1, and c2 are defined in Sect. 3
c k, k′, j, j ′ ∈ (1, . . . , 7) the number of taxa

the sample composition, i.e., that having taxon j in the sample has no effect on the
(relative) bias of taxon k. To test this hypothesis, we take the vector of covariates
to be Xi· = (1,�i1,�i2, . . . ,�iJ ), where we recall �ij = 1 if sample i contains
OTU j and �ij = 0 otherwise. The β matrix has the form

β =

⎛

⎜⎜⎜⎜⎜
⎝

β1 β2 · · · βJ

0 β12 · · · β1J

β21 0 · · · β2J

...
...

. . .
...

βJ1 βJ2 · · · 0

⎞

⎟⎟⎟⎟⎟
⎠

, (11)

where each parameter βj in the first row of Eq. (11) governs the intrinsic bias factor
of taxon j , while each parameter βjk gives the effect on the bias factor of taxon k

due to the presence of taxon j in the sample. There is no reason to expect β to be
symmetric.

Because some elements of β in Eq. (11) are set to zero by design, fitting this
model would require extra machinery; for example, we could use constrained least
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squares with J constraints to ensure β(j+1)j = 0, j = 1, . . . , J . However, it is easy
to see that Eq. (11) with Xi· as given above is equivalent to a model in which the
vector of covariates is Xi· = (�i1,�i2, . . . ,�iJ ) and

β =

⎛

⎜⎜⎜
⎝

β1 β12 · · · β1J

β21 β2 · · · β2J

...
...

. . .
...

βJ1 βJ2 · · · βJ

⎞

⎟⎟⎟
⎠

, (12)

where the parameters βj now appear on the diagonal elements. This is possible
because the intrinsic bias parameter βj only applies to a sample containing OTU j ,
so the intercept in Xi· in the original formulation is not necessary. To add sample-
level covariates such as plate effects to this model, we would add extra rows to the
bottom of either (11) or (12) of the form described in Sect. 2.4.1.

The constraint that taxon j does not affect the bias factors of the other taxa
present in the sample is that βjk = βjk′ for j �= k, j �= k′, k �= k′. This corresponds
to H7(j) in Table 2. For the Brooks data with J = 7 taxa, this condition can be
expressed using a constraint matrix C having 5 rows; an easy way to write the
rows is to pick some reference taxon k �= j and then let each row correspond to
testing one constraint βjk′ − βjk = 0 for k′ �= k �= j . Across all taxa, there are
J × (J − 2) = 7 × 5 = 35 contrasts corresponding to the interaction parameters.
Testing them all corresponds to H8 in Table 2. There are in total J 2 = 49
parameters in (11) and (12). The null (column) space of X is spanned by the 7
linear combinations of the J = 7 rows of (12) with coefficients equal to one and a
linear combination of the diagonal elements of (12) with coefficients equal to one.
The interaction effect corresponds to J × (J − 2) = 35 constraints. The remaining
J −1 contrasts test βk +∑J

j �=k βjk = βk′ +∑J
j �=k′ βjk′ , corresponding to testing that

the total bias in OTU k equals the total bias in OTU k′ in a sample with all OTUs
present. It is not hard to show that if the interaction constraints are in force, these
final contrasts correspond to testing the equality of the intrinsic bias parameters βj .
Finally, H6 in Table 2 tests whether two taxa have the same interaction effect, i.e.,
if they produce the same effect on the bias factors of the other taxa.

Another type of interaction (not considered further here) tests if the relative
abundance of one taxon affects the bias factors of the other taxa. We would then
code β as in Eq. (11) and replace �i· by pi· when constructing Xi· for this analysis.

3 Simulations

We conducted simulations to assess the performance of our model under multiple
realistic scenarios. Data were simulated to test both main effects as discussed in
Sect. 2.4.1 and interactions as discussed in Sect. 2.4.2. All simulations followed the
same true relative abundances and presence–absence pattern of taxa as in the Brooks
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dataset, to which we added bias using the log-linear model. Specifically, let p and
p∗ be, respectively, the N × J matrices of true and biased relative abundances (i.e.,
p∗ = E(p̃)). For each sample i, we simulated data using the following algorithm.
First, we calculated a preliminary value for p∗

ij via

ln(p∗
ij ) = ln(pij ) + Xijβ , for �ij �= 0, (13)

while choosing p∗
ij = 0 if �ij = 0. We then normalized the preliminary p∗

i· values
to sum to one. We then introduced random variation by generating read counts
using a Dirichlet-multinomial distribution with expected proportion p∗

i·, a dispersion
parameter of 0.02, and a total read count of 5000. The dispersion parameter of 0.02
was selected to be similar to the estimated dispersion from a real microbiome dataset
[3]. The observed data are the normalized read counts, denoted by p̃.

Note that p∗
i is not observed; further, p∗ satisfies p∗ = E(p̃) not ln p∗ =

E(ln p̃), so the data generation mechanism has the mean structure of model (1),
not model (3). Thus, the simulation design provides an impartial assessment of
our model even when the model assumptions do not hold. We considered multiple
sample sizes (N = 120, 240, and 500). For N = 240, we simulated data that
mimicked the data structure of the whole Brooks dataset. For N < 240 or N >

240, we first randomly downsampled or upsampled values of �i· and pi· with
replacement from the Brooks data to a sample size N and then followed the same
protocol for simulation. 5000 simulations were used to evaluate type I error, and
2000 simulations were used to evaluate the statistical power.

3.1 Main Effect Simulation

We conducted simulation studies to confirm the validity of our inference on main
effects. In the Brooks data, samples were processed through six plates. In this
simulation, we coded the (N × 6-dimensional) design matrix X using six indicators
for plate membership as described in Sect. 2.4.1. Then, β is a 6 × 7 matrix of
coefficients, in which the kth row contains the log-bias factors for the kth plate.
We used the following β matrix for simulation:

β =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

b1 b1 b1 b1 b1 b2 b2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 b2 b2 b2 0 0 0
0 b2 b2 b2 0 0 0
0 b2 b2 b2 0 0 0

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

. (14)

There are only two free parameters in this matrix. In this simulation, the taxa
relative abundances in plates 2 and 3 are unbiased. Depending on the values of b1
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and b2, some or all taxa on plates 1, 4, 5, and 6 may be biased compared to the true
relative abundances. When b1 = b2, there is no bias in plate 1 even when b1 and
b2 are not zero, because adding a constant to a row of β does not change E(p̃ij ).
Plates 4, 5, and 6 have the same true bias structure. For this simulation setup, the
ratio of bias factors for taxa 6–7 to taxa 1–5 is exp (b2 − b1) (e.g., when b2 = 0.3
and b1 = 0.1 as in one of our simulations, exp (b2 − b1) = 1.22), and the ratio of
bias factors for any pair of taxa among taxa 1–5 (or between taxa 6 and 7) is one in
plate 1. The ratios of bias factors can be computed in a similar way for other plates
and between other pairs of taxa.

For the main effect simulation, we evaluated four different hypotheses, viz. H1,
H2(1), H3(1), H4(1,6), H5(1,2) in Table 2. The value in parentheses gives the
specific plates (k or k′) or taxa (j or j ′) that are tested. These hypotheses represent
a diverse range of research questions that are of scientific importance, including
tests of different experimental procedures and tests against different taxa. The last
column of Table 2 gives the sufficient conditions under which the null hypotheses
are satisfied in our simulation setup.

3.2 Interaction Effect Simulation Based on the Brooks Data

We conducted additional simulations to confirm the validity of our inference on
interaction effects in the presence of main effects. These simulations follow the same
procedure as in the main effects simulations, but with a different design matrix. We
used X as a N ×12 matrix, in which the first seven columns indicated the presence–
absence of each taxon in each sample, and the last five columns of X indicated if the
sample was processed on plate k, k = 2, . . . , 6. With this choice of X, β is a 12 × 7
matrix for which the first seven rows represent the interaction effect (and intrinsic
bias of plate 1) as coded in Eq. (12), and the last five rows represent the main plate
effects. In this simulation, the first seven rows of β take the following values:

⎛

⎜
⎜⎜
⎝

β1 β12 · · · β17

β21 β2 · · · β2J

...
...

. . .
...

β71 β72 · · · β7

⎞

⎟
⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

c1 c1 c1 c1 c1 c2 c2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 c2 c2 c2 c2 0
0 0 c2 c2 c2 c2 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

The last five rows of β are the same as the first five rows of Eq. (14) with b1 = 0.1
and b2 = 0.3. Note that the interpretations of the main effects in this simulation are
slightly different from those in Sect. 3.1, as the last 5 rows of β represent differences
between plate k and plate 1, for k = 2, . . . , 6.
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In this simulation, taxa 2–5 do not interact with any other taxa. Depending on the
values of c1 and c2, taxa 1, 6, and 7 may interact with of some or all of the other
taxa. As in the main effect simulation, if c1 = c2, taxon 1 does not interact with
other taxa even if c1 and c2 are not zero. If c1 �= c2 �= 0, then the presence of taxon
1 affects the bias factors of taxa 2–7. When c2 �= 0, the presence of taxon 6 affects
the bias factors of taxa 3–5 and the presence of taxon 7 affects the bias of taxa 3–6.
Note that even though the 6th and 7th rows of β are the same, their interpretations
are slightly different because β66 = c2 specifies the intrinsic bias of taxon 6 rather
than an interaction, as discussed in Sect. 2.4.2. We evaluated three hypotheses in our
simulation of interaction effect (H6(1,2), H7(1), H8 in Table 2).

4 Results

4.1 Simulation Results

Table 3 summarizes the type I errors for all our simulations. Our proposed
permutation approach controls the type I errors for all simulations. When the sample
size is small, some tests also show slightly conservative type I error, particularly
H7 and H8 for sample sizes N = 120 or 240. This may occur for a variety of
reasons. First, the number of identifiable parameters in these simulations is large:
35 in the main effects simulations and 71 in the interaction simulations. Second, our
permutation approach requires de-correlating the residual errors in each sample.
This step requires a good estimator of the residual covariance matrix, which in
turn requires a reasonable sample size. Finally, we also note that our data was

Table 3 Type I error simulation results

A: Main effect models B: Interaction models

N b1 b2 H1 H2(1) H3(1) H4(1,6) H5(1,2) c1 c2 H6(1,2) H7(1) H8

120 0 0 0.048 0.045 0.045 0.051 0.042 0.0 0.0 0.042 0.035 0.034

120 0.1 0.1 – – 0.051 – – 0.1 0.1 0.046 – –

120 0.3 0.3 – – 0.052 – – 0.3 0.3 0.048 – –

240 0.0 0.0 0.048 0.040 0.045 0.041 0.044 0.0 0.0 0.057 0.039 0.031

240 0.1 0.1 – – 0.048 – – 0.1 0.1 0.056 – –

240 0.3 0.3 – – 0.038 – – 0.3 0.3 0.058 – –

500 0.0 0.0 0.046 0.042 0.037 0.048 0.044 0.0 0.0 0.052 0.045 0.044

500 0.1 0.1 – – 0.043 – – 0.1 0.1 0.053 – –

500 0.3 0.3 – – 0.042 – – 0.3 0.3 0.053 – –

1000 0.0 0.0 0.042 0.046 0.046 0.050 0.060 0.0 0.0 0.048 0.047 0.046

1000 0.1 0.1 – – 0.040 – – 0.1 0.1 0.049 – –

1000 0.3 0.3 – – 0.048 – – 0.3 0.3 0.054 – –

“–” indicates that the simulation setting does not belong to the null hypothesis
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simulated based on a Dirichlet-multinomial distribution, rather than the log-linear
model we assume in the analysis. It is not clear how important this last issue is; if it
were a major contributor, we would expect the Haldane-like correction described
after Eq. (2) to improve the performance of these tests. In limited simulations
(results not shown), we found no improvement in test size when this correction
was implemented.

Figure 1 shows the power achieved by our method in our simulations. For
all hypotheses and methods, power increases when the sample size or effect size
increases. The power values are not directly comparable across hypotheses because
of the differences in the underlying (composite) null models. However, it is worth
noticing some trends. For all the main effect hypotheses, H3 appears to be the
least powerful because it only compares one plate with the truth, while the other
hypotheses compare multiple plates and use more data. In the interaction tests, H8
is the most powerful because H8 tests “any” interaction, while the other hypotheses

1.00

0.75

0.50

0.00

1.00

0.75

0.50

0.25

0.00

120 240 500 120 240 500

120 240 500 120 240 500
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H3
H4
H5

H6
H7
H8

Fig. 1 Power result for simulation. Upper panel: main effect models. Lower panel: interaction
effect models. x-axis: different sample sizes; y-axis: estimated power; color of the bar: different
hypotheses
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test only a subset of the possible interaction effects. It is possible to simulate data in
which the selected signal would make one or another hypothesis more powerful. But
in the current simulation in which the assumed interactions are distributed across
taxa and plates, the superior power of the “omnibus” hypothesis H8 is as expected.

4.2 Do Interactions Between Taxa Affect Bias in the Brooks
Data?

We applied our proposed methods to analyze the Brooks data. We adopted a
backward elimination strategy, starting with a full model with both plate effects and
taxon–taxon interactions. We then tested whether the interactions can be removed
from the model. If the interaction effects are non-significant or much smaller
compared to the main plate effects, we remove them from the model and proceed to
assess the plate effects in more detail.

We first tested for evidence of taxon–taxon interactions on bias factors in the
full data. We investigated whether each taxon individually impacts other taxa
(hypotheses H7(1)–H7(7)) and whether there is any taxon–taxon interaction effect
(H8). The design matrix X and coefficient matrix β were coded as described in
Sect. 3.2. Table 4 shows the results for these analyses. In the full dataset, we found
no evidence of interaction, with an overall interaction p-value of 0.793 (Panel A,
Table 4).

Because of the substantial difference in sample types of samples, we also
conducted separate analyses using data from plates 1 & 2 (cells), plates 3 & 4
(DNA), and plates 5 & 6 (PCR products). We tested the same hypotheses in each
analysis as in the pooled analysis and found that there is a significant overall
interaction effect in plates 1 & 2; three taxa also showed a significant interaction
at the α = 0.05 level (L. crispatus, A. vaginae and GBS). For the DNA samples, one
taxon was significant at the α = 0.05 level (L. iners), while one was marginal (L.
crispatus), but the overall test H8 was not significant for either the DNA samples or
the PCR products (Panel B, Table 4).

If we adjust to the 3 × 7 = 21 taxon-specific interaction tests to account for
multiple testing, none of the interactions remain significant (Bonferroni p-value
cutoff = 0.0016). However, the cell samples (plates 1 and 2) are inherently different
from the other types of samples, as bacterial cells compete in the cell lysis and
DNA extraction process, and therefore are more subject to taxon–taxon interaction.
For this reason, we may wish to consider only applying the multiple comparison
correction to the tests of interaction in plates 1 and 2; in this case, one taxon–taxon
interaction (GBS) remains significant (Bonferroni p-value cutoff = 0.006). Given
this discrepancy, it would be helpful to assess the relative importance of taxon–
taxon interaction compared to the main effects of bias factors in plates 1 and 2.

In Panel C of Table 4, we show the estimated parameters in β for our analysis
of plates 1 and 2. The first line gives the average main effect (intrinsic bias) for
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these two plates; the second line gives the difference in values of the main effect
(differences in intrinsic bias) across the two plates. The remaining lines give the
interaction terms, with rows corresponding to the taxon, the presence of which
causes the bias, and columns corresponding to the taxon for which the bias is being
altered. Recall that the bias factors remain the same if we add a constant to each
row or to the diagonal elements of the matrix β. Therefore, it is the variability in
the values of β, rather than their magnitude, that determines the effect size of the
bias they represent. For this reason, in the final column of Panel C, we compare the
variance of the values of β corresponding to the main effect (1.704), the variance of
the values of β corresponding to the difference in main effects across the two plates
(0.009), and the variance of the values of β corresponding to interaction effects
(0.052). Note that the variance of the main (average) effects is nearly 33 times the
variance of the interaction bias effects, indicating that even when the interaction
effect is significant, its magnitude is much smaller than the main effect. Finally,
note that this measure of effect size for the magnitude of the difference in main
effects across the two plates is negligible; this is discussed further in Sect. 4.3.

It is also important to note that the results here are limited to the specific protocols
used by Brooks et al. and may not hold for different protocols. In particular, since
the interaction effect is limited to the cell samples, the interaction effect we observe
is presumably a result of the extraction protocol used to lyse the cells to extract their
DNA.

4.3 Plate and Sample Type Effects in the Brooks Data

Given that the interaction effect is much smaller than the main effect, we conducted
further analyses investigating the main effects of sample type and plate, removing
interactions from the model. We coded the design matrix X as described in Sect. 3.1
with an indicator for each plate. For hypothesis testing, we tested hypotheses H1–H4
in Table 2 for all plates.

Table 5 gives the estimated β matrix, with each row showing the log-bias factors
(chosen to sum to zero) for each plate. The β estimates for plates corresponding to
the same sample type (1 & 2, 3 & 4, 5 & 6) are very similar, also indicating the plate
effects within sample types are small. Using hypotheses H1–H3, we found very
strong evidence of bias with all p-values < 10−4. For H4, we conducted pairwise
comparison for all plates: all comparisons are significantly different with p-values
< 10−4 except for the following pairs (plate 1 vs. 2, p = 0.287; plate 3 vs. 4,
p = 0.002, and plate 5 vs. 6, p = 0.217). Figure 2 shows a two-dimensional
ordination of the six plates based on their bias factors. The relative magnitudes of
the effect of sample type and plate (within sample type) are easily visualized in this
figure.
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Table 5 Main effect model β estimates for the Brooks data

L. crispatus L. iners G. vaginalis A. vaginae P. bivia S. amnii GBS

Plate 1 0.843 1.557 −1.832 −1.295 0.654 1.482 −1.409

Plate 2 0.807 1.535 −1.829 −1.212 0.489 1.565 −1.355

Plate 3 −0.738 0.858 −0.948 0.091 −0.964 1.023 0.679

Plate 4 −0.520 0.828 −0.877 0.021 −0.903 0.743 0.709

Plate 5 −0.089 0.242 −0.165 0.062 −0.167 0.269 −0.152

Plate 6 −0.102 0.121 −0.260 −0.014 0.028 0.258 −0.030

Fig. 2 Main effect model β estimates for the Brooks data

5 Discussion

Bias is ubiquitous in all microbiome sequencing studies. Depending on the exper-
imental and analysis protocols, the measured relative abundance can differ by an
order of magnitude or more, even when the true relative abundances are the same
[4, 9]. For example, in the Brooks data, the ratio of bias factors for L. crispatus to
GBS is approximately 9.1 in cell samples (calculated by exponentiating the average
log-bias ratio between the two taxa in the top panel of Fig. 2) but is approximately
1.0 in PCR product samples. These biases pose a threat to the reliability and
reproducibility of microbiome studies.

The extent to which biases in relative abundances, if unaccounted for, affect
the conclusion of an analysis may depend on the question being asked. Statistical
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inferences that directly rely on an “effect estimate,” such as differential abundance
analysis, regression models, and mediation analysis may be completely invalidated
by bias if it is not accounted for. MWC supports this claim by demonstrating that
even when all samples have the same bias factors (e.g., when they were processed
by the same lab using the same protocol), the biases do not cancel out (Figure 2
in [9]). Until bias in data from microbiome studies can be properly accounted for,
any conclusions on individual taxa relative abundances that cannot be validated by
other means (such as animal models) will be suspect. For classification or cluster
analysis, the impact of bias may be milder if similar samples are affected by bias in
a similar way; the effect of bias for these types of analyses should be investigated.
When all samples have exactly the same bias factors, the compositional distance
between samples, defined by Aitchison et al. [1], remains the same; however, use
of the compositional distance is difficult when some taxa have zero counts in
some samples, as is typical in microbiome studies. Other commonly used distance
measures, such as the Bray–Curtis or weighted UniFrac distances, are not unaffected
by bias factors and so may be a threat to the validity of distance-based analyses even
when bias factors do not vary across samples.

Modeling bias is challenging because the sources of bias are widespread
through the entire experimental/analysis pipeline and are both protocol- and taxon-
dependent. It is almost impossible to individually account for all verified sources
of bias. The MWC model [9] offers a great simplification in studying the bias
generation process and provides a language for how bias can be described. By
demonstrating that sources of bias act in a multiplicative fashion, MWC model
allows us to focus on bias factors for individual taxa, and how these bias factors
depend on experimental protocols. Here, we have extended the MWC model
by writing it as a log-linear model for taxon relative abundances and including
covariates to explicitly model the bias introduced by sample-specific characteristics.
These methods allow us to answer complex questions about mock community
data, in which the true relative abundance is known. In our analysis of the Brooks
dataset, we found some evidence for taxon–taxon interactions in plates 1 and 2
(cell samples), showing the capacity of our model to extend the MWC model.
However, we also showed that the effect size for interaction was much smaller
than the main effect, explaining why their original model performed very well in
predicting the true taxon relative abundances. Further, as these results only apply to
the cell samples, they presumably depend on the particular DNA extraction method
used and may not generalize to other extraction methods. This suggests another use
for our approach, comparing extraction protocols to minimize or eliminate taxon–
taxon interaction. Finally, the results presented here require knowledge of the true
relative abundances of each taxon; for a limited extension to a situation where true
taxa relative abundances are not known, see Tyx et al. [15].

Our permutation framework is very flexible. It can be used when all taxa
are present in all samples, as well as when samples have different missing data
structures. It performed well for all the hypotheses that we evaluated. Our approach
requires a reasonable estimator of the residual variance–covariance matrix (�̂i).
The number of elements in this matrix increases as the square of the number of
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taxa, which can make estimation of �̂i difficult when the sample size is small. To
investigate this, we also simulated larger microbiome mock communities with 14
and 21 OTUs (data not shown) and demonstrated that our permutation approach
performed reasonably well with valid type I error. For situations with a larger
number of taxa, it may be worth considering a shrinkage estimator of �̂i , described
briefly in the Appendix.

In the Brooks data, the library sizes differ significantly across plates (Table 1);
however, the differences are small, and all samples have large library sizes. As
the relative abundances of all taxa present in any sample in these data are large,
the observed library sizes permit a reasonably precise measurement of the relative
abundances, so the differences in library sizes should have little impact on the
performance of our log-linear model. This is the case in simple mock community
experiments (such as in the Brooks data) when the total number of taxa is small. In
situations when library sizes differ dramatically, or in mock communities with many
taxa, some of which are rare, additional heteroscedasticity may be introduced. Even
in such a context, the methods proposed here for estimation and inference are still
valid. The library sizes impact the precision of the observed relative abundances,
whose effect manifests through the variance of the residuals. Our least-squares
estimators are agnostic to the residual covariances. Further, differences in library
size are attenuated by working on the log relative abundance scale. Our inference
remains valid because of our permutation framework: we permute the residuals
corresponding different taxa within samples, which are not impacted by the library
sizes. For the same reason, our inference is valid with unbalanced number of taxa
across samples. Further methodology research that explicitly takes into account
the library sizes, possibly via some inverse-precision weighting framework, can
potentially improve the power of our model.

Mock community samples will typically comprise no more than 20 taxa for
technical reasons (Scott Jackson, National Institute of Standards and Technology,
personal communication). Thus, it is of interest to ask whether bias factors can be
estimated for, say, 50 taxa using three model communities (say A, B, and C) each
having 20 taxa, in which A and C have no taxa in common but B has 5 taxa in
common with both A and C. This question is important if we wish to develop a large
library of (relative) bias factors. Using the methods we have developed, we find that
it is not necessary for each possible pairing of taxa to be observed in some sample,
as the relative bias of taxa 1 and 2 can be combined with the relative bias of taxa 2
and 3 to infer the relative bias of taxa 1 and 3. A related question is what types of
samples are required to learn about interactions between taxa. As we have discussed,
it is necessary to have samples with a different number of taxa; empirically, we find
that even if we only see samples having either m1 taxa or m2 taxa, we can still
identify all the interaction parameters as long as we see “full sets” (i.e., all possible
combinations of m1 taxa and all possible combinations of m2 taxa). In fact, we were
surprised to find that even choosing m1 = 2 and m2 = 3 allowed identification of
the interaction effects. For these “experiments,” we only considered “full sets”; it
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may be possible to develop designs that identify all interactions but use a smaller
set of combinations of taxa.

A persistent problem in microbiome studies is the lack of an accepted way
to normalize or standardize microbiome data. There appear to be three possible
approaches to handle bias. The first is to improve the laboratory and bioinformatic
methods so that the relative abundance data they produce is unbiased. The second
is to develop statistical methods that give unbiased results even in the presence of
experimental bias. For example, all relative abundance measures could be reported
as a fraction of the relative abundance found in a “standard” sample. A small
modification of our version of the MWC model can provide a third approach to
this problem. If a set of taxon-level covariates could be found that would describe
the variability of bias factors throughout the microbiome, then we could fit this
model and use the results to divide each observed taxon read count by an estimate
of its bias factor. Examples of such covariates might include Gram status, cell wall
composition, measures of primer mismatch, and GC content. To fit a model such as
this, we would need mock community data with known relative abundances, as well
as a vector of L taxon-specific covariates. If we let Z(j) be the M × L-dimensional
matrix corresponding to the covariates for the bias factors of taxon j , we could then
relate the log-bias factors β·j to taxon-level covariates using the model

β·j = Z(j)γ , (15)

where Z is a design matrix for the taxon-level model in which the j th row contains
the covariates that describe the j th taxon. Recalling the definition of the vec
operator, Eq. (15) implies vec(β) = Zγ , where

Z =
⎛

⎜
⎝

Z(1)

...

Z(J )

⎞

⎟
⎠ ,

so we can rewrite Eq. (5) in Sect. 2.2 as

vec(Y T ) = XZγ + vec(eT ),

where, in a slight abuse of notation, we have used the same notation for the
error term. The least-squares estimators of γ are then easily found to be γ̂ =
(XZ)−vec(Y T ) . One could imagine a procedure in which this model was fit
to an appropriate mock community dataset run on each plate to give a plate-
specific bias factor. Note that several assumptions would be required for this method
to be workable. Most importantly, either the covariates in Z would have to be
easily available for every microbe in a sample or else a reasonably simple way
to impute these covariates when they are not available would be required. One
possible imputation model may be to assume that covariates segregate as traits in
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a phylogenetic tree. We believe progress implementing this program could be an
important step in making microbiome studies reproducible and reliable.
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Appendix

From Eq. (9) and the definition of Yi· after Eq. (4), we see that the form of the
variance–covariance matrix of the residuals for sample i is �i = Pi�Pi . If the
compositional mean is known, denoted by μ, a simple estimator for �i is to first
estimate � by solving the estimating equation

V̂ :=
N∑

i=1

(rT
i· − Piμ)(ri· − μT Pi) =

∑

i

Pi�Pi. (16)

For each i in the sum, we use the vec trick and then solve the resulting equation for
� to obtain

vec(�̂) =
(
∑

i

Pi ⊗ Pi

)−
vec(V̂ ). (17)

If there is a reason to believe that there is substantial variation in the precision of
the data across samples (which may occur if the variation in library sizes across
samples is large enough), we may wish to weight the terms in the sums of Eq. (16)
by weights ωi that are proportional to the precision of the data from the ith sample.
We have not considered this as the large library sizes in the Brooks data would seem
to make this unnecessary.

In general, the centering vector μ is unknown and needs to be estimated. μ̂ can
be obtained by solving the estimating equation

∑

i

rT
i· =

∑

i

Piμ , (18)

which has solution

μ̂ =
(
∑

i

Pi

)− (∑

i

rT
i·

)

.
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As with the estimator of �, we may wish to weight the sums in Eq. (18) if there is
a substantial difference in precision across samples.

Estimation of the compositional mean μ̂ and variance �̂ was considered by van
den Boogart and Tolosana-Delgado [16]. Here, we use the same estimator μ̂ as [16],
but use the novel estimator for �̂ shown here because the estimator derived in [16]
is more complex and slower to compute. We typically find μ̂ = 0, except in cases
where the null model does not allow for a separate intercept for each feature (taxon).

If the number of taxa is large, a shrinkage estimator of V̂ can be used. This
will in turn imply a shrinkage estimator of �̂ via Eq. (17). One possible shrinkage
approach is the empirical Bayes shrinkage proposed by Ledoit and Wolf [8], which
was implemented in R package “CovTools” [18]. In this approach, � is estimated
using δ�̂ + (1 − δ)T , where �̂ is the estimated variance–covariance matrix (e.g.,
as estimated as in Eq. (17)) and T is a pre-defined target matrix. In situations
when the residuals are full rank, the target matrix is usually taken as the identity
matrix or a diagonal matrix with positive diagonal elements. In the current context,
a reasonable target matrix can be σ̂ 2∑

i Pi/n , in which 1
n

∑
i Pi is the average of

the compositional projection operators, and σ̂ 2 is the usual variance estimated from
|rT

i· − Piμ̂|.
Finally, we note that since the decorrelated residuals are given by �̂

− 1
2

i rT
i ,

their variance–covariance matrix is (Pi�̂Pi)
− 1

2 (Pi�̂Pi)(Pi�̂Pi)
− 1

2 (under the
assumption that � is well estimated). Using the SVD to express Pi�̂Pi , it is easy
to see this variance–covariance matrix is just the projection operator into the range
(column or row space) of Pi�̂Pi . By assumption, we take the range of �̂ to contain
the range of Pi ; thus, this projection operator is in fact Pi itself.
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Part IV
Bayesian Methods



Dirichlet-Multinomial Regression Models
with Bayesian Variable Selection for
Microbiome Data

Matthew D. Koslovsky and Marina Vannucci

1 Introduction

Human microbiome research aims to understand how microbiome communities
interact with their host, respond to their environment, and influence disease [32].
High-throughput sequencing technologies have enabled researchers to characterize
the composition of the microbiome by quantifying richness, diversity, and abun-
dances. See [14] for a detailed review. However, complex environmental interactions
with the microbiome challenge our understanding of community function and its
impact on health [23]. Knowledge of the relations between microbial composition
and other covariates may help researchers design tailored interventions to help
maintain a healthy microbiome community [10, 33].

A popular approach for modeling the relation between microbial data and covari-
ates is the Dirichlet-multinomial (DM) regression model, since it appropriately
handles the compositional structure of microbiome data and accommodates overdis-
persion induced by sample heterogeneity and varying proportions among samples
[3, 11–13, 28, 34]. To identify potential covariates, penalized likelihood methods
have been developed to simultaneously estimate regression coefficients and perform
selection [3, 30]. These models typically have relatively short computation times
and demonstrate good predictive accuracy. However, it is challenging to incorporate
known relations between covariates into these models due to the requirement of
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complex optimization routines [30]. Additionally, they do not accommodate model
selection uncertainty while carrying out selection.

Alternatively, Bayesian variable selection methods are able to accommodate the
complex high-dimensional data structures found in microbiome studies and fully
account for model uncertainty over covariate selection. Commonly, spike-and-slab
priors for regression coefficients are embedded into hierarchical Bayesian models
to perform variable selection [8]. In this model formulation, regression coefficients’
priors depend on latent inclusion indicators which determine a covariate’s exclusion
or inclusion in the model. Bayesian DM regression models with spike-and-slab
priors were originally investigated by Wadsworth et al. [28] to identify KEGG
orthology pathways associated with microbiome data. Through simulations, they
demonstrate improved performance of their method on selecting covariates when
compared to alternative methods, including the penalized likelihood approach of
[3]. Recently, the work of Wadsworth et al. [28] was extended to accommodate
phylogenetic structure between taxa and known and unknown graphical relations
between covariates [11]. Additionally, researchers have leveraged data augmen-
tation techniques to efficiently embed DM regression models into joint modeling
frameworks, in order to investigate how the microbiome may mediate the relation
between dietary factors and phenotypic responses, such as body mass index [12].

In an effort to make advanced Bayesian methods available to researchers
studying the microbiome, we demonstrate how to apply the methods contained
in MicroBVS, a comprehensive R package for identifying covariates associated
with compositional data [11]. At the core of MicroBVS is a suite of Markov
chain Monte Carlo (MCMC) algorithms that generate posterior samples of model
parameters for inference. The MCMC algorithms are written in C++ to increase
performance time and accessed through R wrapper functions using Rcpp and
RcppArmadillo [5, 6]. The package includes various Bayesian variable selec-
tion methods for compositional data including Dirichlet-multinomial regression,
Dirichlet-tree multinomial regression, and the joint modeling approach proposed
in [12]. The package has built-in functionality to simulate data in user-specified
research scenarios to assess selection performance and conduct sensitivity analyses.
Additionally, various auxiliary R functions are incorporated to help researchers
assess convergence, draw inference from the MCMC samples, and plot results. The
package includes a vignette with worked examples using simulated data and access
to open-source data used in our analyses.

In Sect. 2, we describe Dirichlet-multinomial (DM) and Dirichlet-tree multino-
mial (DTM) regression models with spike-and-slab priors and discuss alternative
priors for inclusion indicators that accommodate known and unknown graphical
structures between covariates. In Sect. 3, we perform a sensitivity and simulation
study for Bayesian DM and DTM regression models and compare them to penal-
ization approaches. Section 4 illustrates the application of the MicroBVS package
to microbiome data collected in the Multi-omics Microbiome Study—Pregnancy
Initiative and a benchmark dataset to investigate the relations between gut microbial
taxa and dietary covariates. Section 5 provides concluding remarks.
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2 Methods

2.1 Dirichlet-Multinomial Regression Models for
Compositional Data

In this section, we introduce how to model compositional abundance data via a
Dirichlet-multinomial (DM) regression framework and then demonstrate how to
embed spike-and-slab priors for variable selection, similar to [28]. We first assume
that taxa counts yi = (yi,1, . . . , yi,K) follow a multinomial distribution

yi ∼ Multinomial(ẏi |pi), (1)

with ẏi =∑K
k=1 yi,k , and pi defined on the K-dimensional simplex

SK−1 =
{

(pi,1, . . . , pi,K) : pi,k ≥ 0,∀k,

K∑

k=1

pi,k = 1

}

.

To account for overdispersion, we specify a conjugate prior on the taxa probabilities,

pi ∼ Dirichlet(γi), (2)

with the K-dimensional vector γi = (γi,k > 0,∀k ∈ K), similar to [13] and [28].
Typically, the pi are integrated out of the model for computational convenience,
and the yi are modeled with a Dirichlet-multinomial(γi) [28]. To incorporate
covariate effects into the model, we use a log-linear regression framework for the
concentration parameters γi . Specifically, we set λi,k = log(γi,k) and assume

λi,k = αk + x′
iϕk, (3)

where ϕk = (ϕk1, . . . , ϕkP )′ represents the covariates’ potential relation with the
kth compositional taxon, and αk is a taxon-specific intercept term. Additionally, xi

represents a P -dimensional vector of observed covariates for individual i, e.g., age,
sex, medication use, and dietary factors. By exponentiating (3), we ensure positive
hyperparameters for the Dirichlet distribution.

2.2 Variable Selection Priors

For DM regression models, the number of potential models to choose from
when performing variable selection, 2PK , grows quickly even for small covariate
spaces. To induce sparsity in the model, we embed multivariate spike-and-slab
priors for variable selection that identify covariates that are associated with each
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compositional taxon [20, 24], as opposed to spike-and-slab constructions that select
variables as relevant to either all or none of the responses [2]. We assume that the
covariates’ inclusion in the model is represented by a latent K × P -dimensional
inclusion matrix ζ . As such, ζkp = 1 indicates that covariate p is associated with
compositional taxon k and 0 otherwise. The prior for ϕkp given ζkp follows a mixture
of a normal distribution and a Dirac-delta function at zero, δ0, and is commonly
referred to as the spike-and-slab prior. Specifically,

ϕkp|ζkp, r2
k ∼ ζkp · N(0, r2

k ) + (1 − ζkp) · δ0(ϕkp), (4)

where r2
k is set large to impose a diffuse prior for the regression coefficients included

in the model.
The DM model can incorporate different sparsity levels and can accommodate

various structural relations between covariates through the specification of the
prior probability of inclusion for each covariate, wkp. Commonly, a beta-binomial
distribution is assumed. With this prior, we let each ζkp follow a Bernoulli
distribution

p(ζkp|wkp) = w
ζkp

kp (1 − wkp)1−ζkp

and further assume wkp ∼ Beta(a, b). By integrating out wkp, we obtain

p(ζkp) = Beta(ζkp + a, 1 − ζkp + b)

Beta(a, b)
,

where the hyperparameters a and b can be set to impose different levels of sparsity
in the model. In practice, the authors in [28] suggest using a weakly informative
prior probability of inclusion by setting a + b = 2, where the prior expected mean
value m = a/(a + b). Thus, setting a = 0.1 and b = 1.9 reflects a prior belief that
5% of the covariates will be selected. A non-informative prior is assumed by setting
a = b = 1 (i.e., m = 0.50). See [28] for a detailed sensitivity analysis regarding
hyperparameter specification for DM regression models. To complete the model’s
specification, we assume that the intercept terms αk follow a N(0, σ 2

k ), where σ 2
k

are set large to impose diffuse priors.

2.3 Network Priors

Under the beta-binomial prior, inclusion indicators are assumed independent. In
other settings, researchers may be interested in incorporating prior information for
the probability of inclusion of a covariate based on known relations with other
covariates. For example, when covariates are chosen as gene expression levels, a
network of covariate interactions may be known based on biological information
[15, 25]. This graphical structure can be incorporated into the model via Markov
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random field (MRF) priors, which are parameterized to increase a covariate’s
inclusion probability if neighboring covariates in the graph are included. MRFs
are undirected graphical models for random variables whose distribution follows
Markovian properties.

To use this information to help guide variable selection, the prior probability of
inclusion for each covariate is set according to the given relations between covariates
x. Specifically, we assume an MRF prior on ζk that increases the probability of
inclusion for a covariate if covariates in its neighborhood in the graph are also
included. Given the graph G, an adjacency matrix that represents the relations
between covariates, the prior probability of inclusion for indicators ζk follows

p(ζk|G) ∝ exp(aG1′ζk + bGζ ′
kGζk),

where 1 is a P -dimensional vector of 1s and aG and bG control the global probability
of inclusion and the influence of neighbors’ inclusion on a covariate’s inclusion,
respectively. Previous studies have demonstrated how small increments in bG can
drastically increase the number of covariates included in the model [15, 25]. Li and
Zhang [15] provide a detailed description of how to select a value for bG. Note
that if there is no structure between covariates, the prior probabilities of inclusion
simplify to independent Bernoulli(exp(aG)/(1 + exp(aG))).

2.3.1 Unknown G

When less is known about the relations between covariates, the network structure,
G, can be inferred. Efficient sampling algorithms for learning the structure of high-
dimensional data with Gaussian graphical models [29] have allowed researchers to
embed them into Bayesian variable selection models that simultaneously perform
variable selection while learning the relations between covariates [19].

Let X ∼ MV N(0,�), where � = �−1 is a P × P precision matrix. Following
[29], we assume a hierarchical prior that models conditional dependence between
covariates through edge detection in an undirected graph. Let graph G contain P

nodes, corresponding to the set of potential covariates in the model. Let gst ∈ {0, 1}
represent a latent inclusion indicator for an edge between nodes s and t , for s < t .
The inclusion of edge gst corresponds to ωst �= 0, where ωst , 1 ≤ s < t ≤ P ,
are the off-diagonal elements of �. The prior distribution for � is the product of
P exponential distributions for diagonal components and P(P − 1)/2 mixtures of
normals for off-diagonal components of the precision matrix. Specifically,

p(�|G, v0, v1, θ)={C(G, v0, v1, θ)}−1
∏

s<t

N(ωst |0, v2
st )
∏

s

Exp (ωss |θ/2) I{�∈M+},

where Exp(·|θ/2) represents an exponential distribution with mean 2/θ ,
C(G, v0, v1, θ) is a normalizing constant, and I{�∈M+} is an indicator function
that constrains � to be a symmetric positive definite matrix. Here, v2

st = v1 if the
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edge inclusion indicator gst = 1, and v2
st = v0 if gst = 0. In practice, v0 > 0 is set

small to concentrate ωst around zero for excluded edges, and v1 > 0 is set large so
that ωst is freely estimated via a diffuse prior for included edges. The prior for the
edge inclusion indicator gst follows

p(G, v0, v1, θ, π) = {C(v0, v1, θ, π)}−1C(G, v0, v1, θ)
∏

s<t

{
πgst (1 − π)1−gst

}
,

where C(v0, v1, θ, π) is a normalizing constant and π represents the prior prob-
ability of inclusion for an edge. Following the recommendations of [29], the
specification of π should reflect prior belief in the sparsity of the graph, and θ is
typically set to one. The latter implies a relatively vague prior for ωss , since the data
are usually standardized prior to analysis. See [29] for more details regarding prior
specification.

2.4 Dirichlet-Tree Multinomial Models

In this section, we describe Bayesian variable selection for Dirichlet-tree multi-
nomial regression models, similar to [11]. The DM model described in Sect. 2.1
assumes that counts are negatively correlated. Alternatively, the Dirichlet-tree
multinomial model (DTM) inherits the DM’s ability to handle overdispersed
data, can model general correlation structures between counts, and can naturally
incorporate structural information [4, 17]. In microbiome research, this allows us
to model evolutionary relations among taxa represented by a phylogenetic tree
[11, 26, 27, 30].

To accommodate a tree-like structure among counts, the multinomial distribution
is deconstructed into the product of multinomial distributions for each of the sub-
trees in the tree, and the conjugate Dirichlet-tree prior is assumed [4]. Specifically,
let tree T have K leaf nodes and V internal nodes. Let Cv represent the set of child
nodes for each individual node v ∈ V . For each subject, the branch probability
between parent node v and child node c is represented as pi,vc, where

∑|Cv |
c=1 pi,vc =

1 and |Cv| is the number of child nodes of v. Under this parameterization, we
assume that yi,v = (yi,v1, . . . , yi,vC)′ follows a Multinomial(ẏi,v, pi,v), where
pi,v = {pi,vc, c ∈ Cv}. We assume a Dirichlet(γi,v) prior for each pi,v , where
γi,v = (γi,vc > 0,∀c ∈ Cv). Integrating the pi,v out, we model ẏi,v with a Dirichlet-
multinomial(γi,v) and take the product of the v Dirichlet-multinomial models for
each sub-tree, to obtain the Dirichlet-tree multinomial (DTM) distribution as

p(yi |γi, v ∈ V ) =
∏

v∈V

�(
∑

c∈Cv
yi,vc + 1)�(

∑
c∈Cv

γi,vc)

�(
∑

c∈Cv
yi,vc +∑c∈Cv

γi,vc)
×
∏

c∈Cv

�(yi,vc + γi,vc)

�(yi,vc + 1)�(γi,vc)
,

where � represents the gamma function. The generalized DM model and the
DM model are special cases of the DTM class of models [30]. Specifically, the
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generalized DM model can be represented as a DTM with a binary cascading tree
(i.e., at each level of the tree, the rightmost branch splits into two), and the DM can
be represented with a tree containing only one root node and K leaf nodes.

Similar to Eq. (3), covariate effects can be incorporated into the model using a
log-linear regression framework. Specifically, we set λi,vc = log(γi,vc) and assume

λi,vc = αvc + x′
iϕvcp,

where xi = (xi,1, . . . , xi,P )′ represents a set of measurements on P covariates
and ϕvc = (ϕvc1, . . . , ϕvcP )′. We assume that the intercept terms αvc follow a
N(0, σ 2

vc), where σ 2
vc are set large to impose vague priors on αvc. Similar prior

specifications for variable selection presented in Sect. 2.2 can be applied to each of
the DM components of this model.

2.5 Posterior Inference

In Bayesian inference, the posterior distribution is proportional to the product
of the likelihood of the data and the prior distributions for the parameters. For
both DTM and DM models, researchers have implemented Metropolis–Hastings
algorithms within a Gibbs sampler for inference [11, 28]. Since the DTM model is
a generalization of the DM model, we present a general MCMC algorithm in the
context of DTM models. Assuming a beta-binomial prior probability of inclusion,
the parameter space is described as � = {α,ϕ, ζ }, and the posterior distribution is

p(�|Y , x) ∝ f (Y |α,ϕ, ζ , x)p(α)p(ϕ|ζ )p(ζ ).

We use a two-step update approach to sample regression coefficients and inclusion
indicators for covariates, following [21].

A generic iteration of the MCMC algorithm is described as follows:

• Update each αvc—Metropolis step with random walk proposal from α′
vc ∼

N(αvc, 0.50). Accept proposal with probability

min

{
f (Y |α′,ϕ, ζ , x)p(α′

vc)

f (Y |α,ϕ, ζ , x)p(αvc)
, 1

}
.

• Jointly update a ζvcp and ϕvcp

– Between-Model Step: Randomly select a ζvcp term.

Add: If the covariate is currently excluded (ζvcp = 0), change it to ζ ′
vcp =

1. Then, sample a ϕ′
vcp ∼ N(ϕvcp, 0.50). Accept proposal with probability
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min

{
f (Y |α,ϕ′, ζ ′, x)p(ϕ′

vcp|ζ ′
vcp)p(ζ ′

vc)

f (Y |α,ϕ, ζ , x)p(ζvc)
, 1

}

.

Delete: If the covariate is currently included (ζvcp = 1), change it to ζ ′
vcp =

0 and set ϕ′
vcp = 0. Accept proposal with probability

min

{
f (Y |α,ϕ′, ζ ′, x)p(ζ ′

vc)

f (Y |α,ϕ, ζ , x)p(ϕvcp|ζvcp)p(ζvc)
, 1

}
.

– Within-Model Step: Propose a ϕ′
jp ∼ N(ϕjp, 0.50) for each covariate

currently selected in the model (ζvcp = 1). Accept each proposal with
probability

min

{
p(Y |α,ϕ′, ζ , x)p(ϕ′

vcp|ζvcp)

p(Y |α,ϕ, ζ , x)p(ϕvcp|ζvcp)
, 1

}

.

To include a known graphical structure and impose an MRF prior for selection,
the algorithm simply replaces p(ζ ) with p(ζ |G). If the relational structure between
the covariates is unknown, the posterior distribution of the model is redefined as

p(�|Y ,X) ∝ f (Y |α,ϕ, ζ ,X)f (X|�)p(α)p(�|G)p(ϕ|ζ )p(ζ |G)p(G),

where � = {α,ϕ, ζ ,�,G}. Note that this parameterization treats the covariates X

as random and not fixed. For implementation, the MCMC algorithm requires two
additional steps to simultaneously learn the graphical relations. We update � and G

following the approach outlined in [29].
For implementation, the algorithms are initiated at a set of arbitrary parameter

values and then used to generate samples of the posterior distribution. After burn-in,
the remaining samples are used for inference. To determine inclusion in the model,
the marginal posterior probability of inclusion (MPPI) for each of the covariates is
determined by taking the average of their respective inclusion indicator’s MCMC
samples. Note that a covariate has a unique inclusion indicator for each of the
taxon. Commonly, variables are included in the model if their MPPI ≥ 0.50 [1].
Alternatively, the authors in [18] propose using a threshold based on a Bayesian
false discovery rate (BFDR) to control for multiplicity.

3 Simulated Data

In this section, we demonstrate the selection performance for the DM and DTM
models using simulated data. For the DM models, we compared the performances
using different variable selection priors, i.e., a beta-binomial prior, an MRF prior
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with fixed graphical structure (i.e., G set to the truth and G learned a priori), and an
MRF prior with unknown graphical structure.

For variable selection, all models were assessed on the basis of sensitivity (1—
false negative rate), specificity (1—false positive rate), and Matthew’s correlation
coefficient (MCC) (a measure of overall selection accuracy). These are defined as

Sensitivity = TP

FN + TP

Specificity = TN

FP + TN

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TN, TP, FN, and FP represent the true negatives, true positives, false
negatives, and false positives, respectively. Covariates were determined to be
associated with the compositional and response data, respectively, if their MPPI
≥ 0.50 [1]. Results we report below were obtained by averaging over 30 replicated
datasets.

3.1 Simulation Study for DM Regression Models

Similar to simulation schemes adopted by [3, 12, 28], we simulated N = 100
subjects with P = 30 covariates and K = 75 compositional taxa. Covariates x

were simulated from a NP (0, �), where � was set to a block diagonal matrix with
one along the diagonal and three 5 × 5 exchangeable covariance structures (for the
first 15 covariates) with σij = 0.7, 0.5, and 0.3, respectively. In each of the replicate
datasets, we randomly selected 25 of the 2250 covariate–taxon combinations to
be associated with the compositional data. Corresponding regression coefficients
ϕ were randomly sampled from ±[0.75, 1.25]. Intercept terms α were simulated
from a Uniform[−2.3, 2.3]. The compositional data Y were sampled from a
Multinomial(ẏi , p

∗
i ), where ẏi ∼ Uniform[5,000, 10,000] and p∗

i ∼ Dirichlet(γ ∗
i ),

where γ ∗
i = (γ ∗

i,1, γ
∗
i,2, . . . , γ

∗
i,K). We let γ ∗

i,k = γi,k∑K
k=1 γi,k

1−d
d

, k = 1, . . . , K , where

γi,k was determined using Eq. (3), and d serves as an overdispersion parameter
which was set at 0.01. As a result, the data-generating model differs from our model
assumptions.

When running the MCMC algorithm, we set hyperparameters a = 1 and b = 9
for the beta-binomial prior and aG = log(0.1/0.9) for the MRF prior, representing a
prior expectation of 10% of the total number of covariates included in both models.
For the MRF prior with known graphical structure, we set bG = 0.2 and the graph
G equal to a P ×P -dimensional block diagonal matrix, with 3, 5×5 blocks of 1s for
the first 15 elements. Additionally, we set G equal to the graphical structure learned
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Table 1 Simulation results for the DM regression model with various inclusion indicator prior
assumptions. # Selected—the number of selected covariates and MCC—Matthew’s correlation
coefficient. Results are presented as mean (SD) over 30 replicate datasets

Prior # Selected Sensitivity Specificity MCC

beta-binomial 24.3 (3.2) 0.904 (0.092) 0.999 (0.001) 0.917 (0.062)

MRF fixed G-true 56.6 (13.8) 0.987 (0.028) 0.986 (0.006) 0.665 (0.083)

MRF fixed G-learned 43.8 (12.4) 0.975 (0.032) 0.991 (0.006) 0.748 (0.086)

MRF unknown G 42.6 (8.5) 0.979 (0.029) 0.992 (0.003) 0.766 (0.073)

using [29]. For the MRF prior with unknown graphical structure, we set bG = 0.2,
v0 = 0.01, v1 = 10, λ = 1, and π = 2/(P − 1), similar to [29]. Simulations were
run for 10,000 iterations and thinned to every 10th iteration. This resulted in 1,000
iterations, of which the first 500 iterations were treated as burn-in and the remaining
500 used for inference. Each run was initiated with ζpk = 0 and αk sampled from a
standard normal distribution.

Results are found in Table 1. Overall, the DM model with MRF prior and fixed
graphical structure among covariates had the highest number of selected covariates
on average. These results were expected since the baseline prior probability of
inclusion using the MRF (aG) was set to impose a 10% prior probability of
inclusion, similar to the beta-binomial model, and any graphical structure (known or
unknown) would only increase the probability of inclusion in the model. As a result,
the MRF with G fixed to the truth had the highest sensitivity overall. However,
since it typically overselected, it achieved the lowest specificity and MCC as well.
Overall, the DM with a beta-binomial prior had the highest MCC (∼92%). Lastly,
we observed a marginal improvement in selection performance when learning the
graphical structure simultaneously in the model versus a priori. It is important to
note that the MRF model with unknown graphical structure had similar performance
to the MRF with known graphical structure while additionally providing inference
on the relations among covariates.

3.2 DM Sensitivity Analysis

To assess the model’s sensitivity to hyperparameter settings, we set each of the
hyperparameters to default values and then evaluated the effect of manipulating
each term on selection performance. We investigated the model’s sensitivity to
specification of the beta-binomial prior hyperparameters a and b, MRF prior
hyperparameters aG and bG, and hyperparameters associated with the Gaussian
graphical models, v0, v1, and π . For the default parameterization, we set the
hyperparameters for the beta-binomial prior inclusion indicators to a = 1 and
b = 9. For the MRF priors, we set the hyperparameters aG = log(0.1/0.9) and
bG = 0.2. The default values for the Gaussian graphical model hyperparameters
were v0 = 0.01, v1 = 10, and π = 2/(P − 1). We ran our MCMC algorithm on
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Table 2 Sensitivity results
for the beta-binomial and
MRF prior probability of
inclusion parameters b and
bG, respectively, the
exclusion variance for
graphical edge selection v0,
and the prior probability of
edge inclusion π . #
Selected—the number of
selected covariates
MCC—Matthew’s
correlation coefficient.
Results are presented as mean
(SD) over 30 replicate
datasets

Prior b = 1 b = 99

beta-binomial # Selected 37.0 (9.4) 21.5 (2.5)

Sensitivity 0.97 (0.04) 0.83 (0.12)

Specificity 0.99 (0.00) 1.00 (0.00)

MCC 0.81 (0.09) 0.89 (0.08)

bG = 0.05 bG = 0.5

MRF fixed G # Selected 41.2 (10.9) 893.6 (72.4)

Sensitivity 0.97 (0.04) 1.00 (0.00)

Specificity 0.99 (0.00) 0.61 (0.03)

MCC 0.77 (0.09) 0.13 (0.01)

v0 = 0.001 v0 = 0.1

MRF unknown G # Selected 43.9 (10.7) 41.9 (9.8)

Sensitivity 0.98 (0.03) 0.97 (0.03)

Specificity 0.99 (0.00) 0.99 (0.00)

MCC 0.75 (0.09) 0.76 (0.08)

π = 0.02 π = 0.5

MRF unknown G # Selected 42.5 (11.6) 47.1 (12.3)

Sensitivity 0.98 (0.04) 0.98 (0.03)

Specificity 0.99 (0.01) 0.99 (0.01)

MCC 0.76 (0.09) 0.72 (0.08)

the 30 replicated datasets generated in the simulation study, using 10,000 iterations,
treating the first 5,000 iterations as burn-in, and thinning to every 10th iteration.

The results of the sensitivity analysis are presented in Table 2. As expected, we
found that increasing (decreasing) b in the beta-binomial prior reduced (increased)
the number of covariates selected in the model. Here, we observed a positive
relation between sensitivity and the prior probability of inclusion. However, since
the model overselected covariates with smaller b values, the specificity diminished
as a result. Using an MRF prior with a fixed underlying graphical structure, we
found that as bG increased, so did the number of selected covariates on average.
In our analysis, the models seemed to experience a phase transition, in which the
number of covariates selected in the model dramatically increased, for bG = 0.5.
See [15] for recommendations on selecting the appropriate bG in practice. With
unknown graphical structure, we found marginal differences in results relative to
changes in v0 and π .

3.3 Simulation Study for DTM Regression Models

For the DTM model, we compared selection performances to the penalized DTM
approach of [30]. We simulated N = 100 subjects with P = 75 covariates and
K = 30 compositional taxa. Covariates x were simulated from a NP (0, �), where
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σij = ω|i−j | and ω = 0.3. In each of the replicate datasets, we randomly selected
15 of the 4,350 covariate–branch combinations to be associated with the composi-
tional data. Corresponding regression coefficients ϕ were randomly sampled from
±[0.75, 1.50]. Intercept terms α were simulated from a Uniform[−1.3, 1.3]. The
multivariate count data Y were sampled from a DTM regression model with total
counts for each individual uniformly distributed between 7,500 and 10,000. For each
dataset, we simulated a random tree using sequential binary separation [7], in which
the parent node and subsequent internal nodes are split into two branches until the
total number of leaf nodes K is obtained.

We chose a beta-binomial inclusion prior and set a = 1 while varying b as b =
1, 9, and 99, to investigate the model’s sensitivity to hyperparameter specification.
The MCMC algorithms were run for 40,000 iterations, treating the first 20,000 as
burn-in and thinning to every 10th iteration. For the penalized approach of [30],
it is necessary to choose tuning parameters γ and λ, which control the sparsity of
the model. When γ = 0 and γ = 1, the model generates the lasso and group
lasso estimate, respectively. Following the recommendations of [30], we set γ =
{0.0, 0.25, 0.5, 1.0} and fit the model over a grid of λ values. The best model for
each γ was then chosen by minimizing the Bayesian information criterion [22].

Similar to the DM model, we found that the DTM was sensitive to the prior
probability of inclusion (Table 3). Specifically, as b increased (decreased), the
number of covariate–branch association decreased (increased), as expected. We
found that the model with b = 9 had the best selection performance overall
(MCC = 0.544), and the non-informative model (i.e., a = b = 1) showed the
worst performance overall (MCC = 0.219). All prior specifications achieved a
relatively high specificity (>0.97). Similar specificity results were found with the
penalized approach (Table 4). However, the penalized approach, regardless of tuning
parameter γ , had extremely low sensitivity, resulting in low MCC values as well.
When γ = 1, the penalized model did not select any covariate–branch terms (results
not shown).

Table 3 Simulation results for the Bayesian variable selection method for DTM regression models
at various prior probabilities of inclusion

Prior # Selected Sensitivity Specificity MCC

a = 1 and b = 1 135.0 (42.1) 0.642 (0.184) 0.971 (0.010) 0.219 (0.085)

a = 1 and b = 9 15.5 (5.2) 0.564 (0.239) 0.998 (0.001) 0.544 (0.202)

a = 1 and b = 99 5.2 (2.6) 0.293 (0.145) 1.00 (0.00) 0.491 (0.156)

Table 4 Simulation results for the penalized DTM regression approach of [30]. For each γ , the
optimal model is chosen over a grid of λ values using the Bayesian information criterion

γ # Selected Sensitivity Specificity MCC

0.0 47.5 (36.3) 0.122 (0.172) 0.989 (0.008) 0.071 (0.098)

0.25 28.3 (25.1) 0.107 (0.173) 0.994 (0.006) 0.090 (0.142)

0.50 17.3 (21.7) 0.071 (0.139) 0.996 (0.005) 0.076 (0.118)
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Table 5 Sensitivity results for high and low count associations with the Bayesian beta-binomial
(a = 1 and b = 9) and Penalized DTM regression models. # Selected— the number of selected
covariates and MCC—Matthew’s correlation coefficient. Results are presented as mean (SD) over
30 replicate datasets

Branch count Model # Selected Sensitivity Specificity MCC

High Bayesian 19.2 (3.5) 0.507 (0.106) 0.998 (0.001) 0.575 (0.097)

Penalized 49.6 (35.8) 0.800 (0.089) 0.993 (0.008) 0.629 (0.135)

Low Bayesian 17.7 (5.4) 0.466 (0.165) 0.999 (0.001) 0.546 (0.131)

Penalized 255.1 (320.1) 0.542 (0.220) 0.944 ( 0.074) 0.270 (0.189)

3.4 DTM Sensitivity Analysis

In this sensitivity analysis, we investigate how selection performance is affected by
branch count. Specifically, we simulated data similar to Sect. 3.3, with the exception
that we targeted high (upper quartile) and low (lower 50th percentile) branch count
regions in the tree when setting the associated terms. In the first (second) setting,
we activated 25 terms across 5 high (low) count branches. We applied the Bayesian
and penalized approaches used in the simulation study in this analysis and present
results for the best performing parameterizations. For the Bayesian approach, we
assumed a beta-binomial prior for inclusion indicators, (a = 1 and b = 9), and for
the penalized approach, we set γ = 0.50.

The results of our sensitivity analysis are presented in Table 5. Here, we found
that the Bayesian model was quite robust to branch counts. In both the high and
the low settings, it generated selection performance results similar to the simulation
study (MCC ∼ 0.55 ). The penalized method showed the best performance overall
when the covariates were associated with high branch counts (MCC = 0.63).
However, in the low branch count setting, it over-selected, which greatly reduced
its overall performance. Thus, in practice, the Bayesian method may be preferred
in more sparse settings, whereas the penalized approach may be better suited for
studies with higher numbers of taxa reads.

4 Applications

In this section, we apply the DM and DTM Bayesian variable selection methods to
data collected in two microbiome studies, in order to demonstrate how to implement
the MCMC algorithms provided in MicroBVS and how to draw inference on the
results. First, we apply the DM regression model with beta-binomial and MRF
priors for inclusion indicators to open-source data collected in the Multi-omics
Microbiome Study—Pregnancy Initiative (MOMS-PI) [9]. This study was funded
by the NIH Roadmap Human Microbiome Project with the aim of understanding
the relations between the microbiome and pregnancy-related health outcomes. Then,
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we demonstrate the functionality of the DTM regression model by applying it to a
benchmark dataset collected to study the relation between the dietary intake and the
human gut microbiome [31]. The data used in this analysis consist of 28 genera-
level OTU counts obtained from 16S rRNA sequencing and a corresponding set of
97 dietary intake covariates derived from diet information collected using a food
frequency questionnaire on 98 subjects.

4.1 Multi-omics Microbiome Study—Pregnancy Initiative
(MOMS-PI)

To demonstrate the application of the DM regression models with various inclu-
sion indicator priors, we use the open-source data collected in the Multi-omics
Microbiome Study—Pregnancy Initiative (MOMS-PI). Data were obtained from
the HMP2Data package in R, which contains observations on 596 subjects.
Women enrolled in the study provided microbiome samples from the mouth, skin,
vagina, and rectum longitudinally. We investigated relations between the vaginal
microbiome and cytokine abundances, which help regulate the composition of the
vaginal microbiome. For this analysis, we used baseline measures on 225 subjects
with accompanying cytokine abundances. The dataset is available as part of the
MicroBVS R package [11]. To install the package, follow the instructions in the
README found at http://github.com/mkoslovsky/MicroBVS. Once installed, load
the package, as well as the abundance, cytokine, and taxonomic data, into the R
environment by running:

329 library(MicroBVS)
330 data("momspi16S")
331 data("momspiCyto")
332 data("momspi16S_tax")

We further limited analyses to only those taxa identified in at least 10% of
participants (i.e., 123 taxa), to reduce the number of spurious relationships detected.
We also standardized the cytokine values before analysis. When running the model
with an MRF prior with an unknown graphical structure, cytokine abundances were
log transformed and centered. Prior to transformation, cytokine values ≤ 0 were
replaced with relatively small pseudovalues.

To fit the DM regression model with a non-informative beta-binomial prior for
inclusion indicators, simply run

333 model1 <- DMbvs_R(iterations = 50000, thin = 10,
334 z = momspi16S, x = momspiCyto,
335 prior = "BB", a = 1, b = 1, seed = 1)

For the results given below, we ran the model for 50,000 iterations, thinning to every
10th and setting the initial seed at 1 for reproducibility. To extract the results from
the DMbvs_R object, use the selected_DM() function as follows:

http://github.com/mkoslovsky/MicroBVS


Microbiome Variable Selection 263

336 out <- selected_DM( model1, threshold = 0.5, burnin =
2500)

The out object contains a # Selected covariates × 2-dimensional matrix of
associations, where the first (second) column represents the row (column) of the
corresponding momspiCyto term selected using a burn-in of 2500 iterations and a
marginal posterior probability of inclusion threshold of ≥0.5, following the median
model approach [1]. Additionally, the out object contains the MPPIs for all of the
corresponding cytokine–taxon associations. Figure 1 presents a plot of the MPPIs
for each covariate–taxon pair, and Fig. 2 is a heatmap of identified associations’
regression coefficients. For this analysis, the model selected 43 covariate–taxon
associations.

Next, we ran the DM regression model with an MRF prior with an unknown
graphical structure as

337 model2 <- DMbvs_R(iterations = 50000, thin = 10,
338 z = momspi16S, x = momspiCyto,
339 prior = "MRF_unknown",
340 a_G = 0, b_G = 0.2, v0 = 0.01, v1 = 10,
341 pie = 2/(ncol(momspiCyto)-1), lambda = 1)

We assumed the baseline prior probability of inclusion, aG, equal to zero (analogous
to the non-informative beta-binomial prior), and the rest of the hyperparameters
were set similarly to our simulation study. Results from model2 can be extracted
using the selected_DM function as above. To extract the learned graphical
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Fig. 1 MOMS-PI study: resulting marginal posterior probability of inclusion from DM regression
model with beta-binomial priors for inclusion indicators. MPPI threshold of 0.50 indicated with
dotted line
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Fig. 2 MOMS-PI study: heatmap of cytokine-taxon associations identified with DM regression
model with beta-binomial priors. Taxa are indexed by genus and species

structure in the cytokine data, additionally set the argument G = T. This generates
an additional estimated_G element for the selected_DM object, which is
a # cytokines × # cytokines-dimensional adjacency matrix. A network plot of
the learned structure is presented in Fig. 3. With the MRF prior, the number
of included covariate–taxon associations increased to 64, as expected from the
simulation study. A plot of the MMPIs for model2 is presented in Fig. 4, and
the corresponding heatmap of identified association is presented in Fig. 5. To fit
the DM regression model with fixed graphical structure between covariates, set
the DMbvs_R function argument prior = "MRF_fixed" and G equal to an
adjacency matrix representing the assumed graphical structure. Additional examples
on simulated data can be found in the vignette provided with the MicroBVS
package.

4.2 Gut Microbiome Study

In this section, we demonstrate how to apply the DTM Bayesian variable selection
method to a benchmark dataset collected to study the relation between the dietary
intake and the human gut microbiome [31]. Previously, Wang and Zhao [30]
proposed a penalized DTM regression model to identify dietary intake covariates
associated with genus-level operational taxonomic units (OTUs) on a subset of
these data. We illustrate the Bayesian DTM model on the same subset. To load
the necessary R packages and data into the R environment, run

342 library(MicroBVS)
343 library(phyloseq)
344 data("Gut_micro")
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Fig. 3 MOMS-PI study: learned graphical structure of cytokine data

345 data("Gut_dietary")
346 data("tree")

The phylogenetic tree used in this example is presented in Fig. 6. We assumed
a non-informative beta-binomial prior for inclusion indicators (a = b = 1). The
MCMC algorithm was run for 150,000 iterations thinning to every 100th sample.
After a burn-in of 750 samples, inference was drawn from the remaining 750.

347 model_gut <- DTMbvs_R( iterations = 150000, thin =
100, tree = tree, Y = Gut_micro, X = Gut_dietary,

348 prior = "BB", seed = 1)

In this example, we used a Bayesian false discovery rate of 0.01 to determine a
covariate’s inclusion in the model. To identify the corresponding MPPI threshold for
inclusion, run the selected_DTM function to obtain the matrix of MPPIs. Then,
run the bfdr function at the prespecified error level, i.e., 0.01 in this application.
Next, run the selected_DTM function with the BFDR threshold, MPPI ≥ 0.89
in this example. To label the covariates, we supplied the column names for the
Gut_dietary matrix. While not shown here, the function also has an argument
for edge labels (edge_lab) to help with inference. See the vignette for more
details.
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Fig. 4 MOMS-PI study: resulting marginal posterior probability of inclusion for results from DM
regression model with MRF prior for inclusion indicators. MPPI threshold of 0.50 indicated with
dotted line

Fig. 5 MOMS-PI study: heatmap of cytokine-taxon associations identified with DM regression
model with MRF priors. Taxa are indexed by genus and species
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Fig. 6 Gut microbiome study: phylogenetic tree for identifying dietary intake covariates associ-
ated with genus-level OTUs in a Dirichlet-tree multinomial model regression

349 MPPI <- selected_DTM( model_gut, burnin = 750)$mppi_
zeta

350 bfdr_fit <- bfdr( MPPI, threshold = 0.01 )
351 out <- selected_DTM( model_gut, burnin = 750,
352 threshold = bfdr_fit$threshold,
353 cov_lab = colnames(Gut_dietary) )

For inference, we are interested in the dietary covariates associated with branches
along the path from a particular taxon to the root node. For demonstration, we
focus on two genera researchers that have previously targeted in these data [11, 30],
Bacteroides and Prevotella. To find the unique covariates associated with the
branches corresponding to Bacteroides, run the branch_covariates function
as below:

354 bact_cov <- branch_covariates( tree = tree, dtm_obj =
355 model_gut, covariate_name = colnames( Gut_dietary ),
356 branch_name = "Bacteroides", threshold = bfdr_fit\$

threshold )

This function generates a vector of the unique covariates associated with a given
taxon. Note that the branch_name provided must match an element in the
covariate_name vector. In Table 6, we present the dietary intake covariates
selected by the Bayesian DTM regression model for Bacteroides and Prevotella.
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Table 6 Gut microbiome study: dietary factors identified as associated with Bacteroides and
Prevotella using the DTM model with Bayesian variable selection

Bacteroides Prevotella

Protein Saturated fat

Saturated fat Palmitic fatty acid

Palmitic fatty acid Stearic fatty acid

Stearic fatty acid Natural food folate

Natural food folate Retinol equivalents of vitamin A

Vitamin E, food fortification Vitamin E, food fortification

Maltose Palmitelaidic trans fatty acid

Total trans c9,t11 conjug diene isomer 18:2 Linoleic

Isoleucine Total trans

Lysine Isoleucine

Phenylalanine Arginine

Histidine Serine

Serine Delphinidin, anthocyanidin

Naringenin, flavanone Petunidin, anthocyanidin

Delphinidin, anthocyanidin Proanthocyanidin, trimers

Petunidin, anthocyanidin

Proanthocyanidin, trimers

Proanthocyanidin, polymers

5 Conclusion

In this chapter, we have detailed the use of Dirichlet-multinomial-based approaches
with Bayesian variable selection for microbiome studies. We have explored various
priors for inclusion indicators using the DM regression model and additionally
demonstrated how to incorporate phylogenetic structure into the analysis using
DTM models. While we have only shown beta-binomial inclusion indicator priors
for the DTM model, the MicroBVS package can support MRF priors for DTM
models as well. Additionally, the MicroBVS package includes functionality to
implement the joint model proposed in [12] and additional code to simulate data
for each of these models. Step-by-step worked examples using simulated data are
provided in the vignette. Frequentist variable selection methods for microbiome data
are covered in Chap. 8.

The computational burden of the models described in this chapter is largely
dependent on the dimension of the data, tree complexity, prior specification, and the
sparsity of the model. For reference, the DTM model run in the gut microbiome
analysis took around 9 h to run 150,000 iterations (0.23 seconds/iteration) on a
2.5 GHz dual-core Intel Core i5 processor with 8 GB RAM. To maintain reasonable
computation times and selection performance, the authors in [11] recommend
applying DTM models to small-to-medium sized microbiome datasets, that is, with
less than 100 compositional components and moderate-to-large tree structures when
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B × P >> n. Larger datasets might be analyzed by employing the DM models,
which do not incorporate the phylogenetic tree. For comparison, the application
of the DM model with beta-binomial priors for inclusion indicators took 24 min
(0.14 s/iteration) to run with roughly four times as many taxa (123 versus 28). Using
the MRF prior with unknown graphical structure also increases the computation
time with larger covariate spaces. For our analysis of the MOMS-PI data, the
addition of the Gaussian graphical model increased the computation time to 36 min
(0.22 s/iteration). As an avenue for future work, variational inference approaches to
DM models have shown promising variable selection results [16].
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A Bayesian Approach to Restoring the
Duality Between Principal Components
of a Distance Matrix and Operational
Taxonomic Units in Microbiome Analyses

Subharup Guha and Somnath Datta

1 Introduction

Recent advances in sequencing technologies along with rapidly declining costs have
revolutionized studies of the microbiome. Sequencing the 16S rRNA gene allows
scientists to analyze the bacterial compositions of even low-prevalence samples,
irrespective of whether they can be easily grown in culture. Using a bioinformatic
pipeline such as QIIME [1] or Mothur [8], the large number of sequences is grouped
based on similarity into operational taxonomic units (OTUs), with the number of
OTUs, p, typically far exceeding the number of samples, n. Since quantitative
methods for microbiome data are frequently confronted with the challenges of high
dimensionality, there is a critical need for novel analytical techniques for detecting
complex structured interactions between the OTUs and samples.

1.1 Motivating Datasets

The authors in [9] have analyzed the bacteria found in n = 45 samples obtained
from three different kinds of smokeless tobacco products: dry, moist, and brown
toombak. Using data from the V4 region of the 16S rRNA gene consisting of more
than 3 million observed sequences, the QIIME pipeline was utilized to group the
sequences into 5345 OTUs. A thresholding criterion was then applied to select
p = 271 OTUs while retaining nearly 95% of the observed sequences. The main
challenge is to find a lower dimensional representation of the data capable of
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successfully differentiating the tobacco types, while also determining which OTUs
are the most influential.

The MetaSUB International Consortium and the Scientific Programme Commit-
tee of the conference on Critical Assessment of Massive Data Analysis (CAMDA
2018) collaborated on a study on forensic metagenomics involving multiple cities.
The subway dataset covers several international cities, with tens of samples per city.
After quality control, we focused on three cities with the largest number of samples.
This yielded a dataset consisting of 60, 34, and 30 samples from Porto Santo
Island (Portugal), Sacramento, and New York City, respectively. For these n = 124
samples, the aggregated species counts for p = 898 OTUs were normalized to give
a matrix of relative abundances. A key challenge question with this dataset was that
of identification of the city source of a microbiome sample, even though a complete
analysis was also desired.

In general, the raw OTU counts representing the abundances of a taxonomic rank
can be arranged in a matrix whose n rows correspond to observations or sample units
and whose p columns correspond to species or OTUs, with n � p. In microbiome
analysis, it is a common practice to transform the matrix of OTU counts in a variety
of different ways, such as (1) the raw OTU counts are scaled so that the row sums
are equal, say, 100; (2) the rows are centered so that their averages equal 0; and (3)
the columns are centered so that the column averages are all equal to 0. Applying
one or more of such transformations gives an n × p modified abundance matrix
denoted by X.

1.2 Nonlinear or Stochastic Distances

In several ecological studies, the species abundance data are also used to calculate
an n × n dissimilarity or distance matrix � whose (i, k)th element represents the
dissimilarity between the ith and kth observations. We refer to these dissimilarities
as “distances” without insisting that they satisfy the triangle inequality. Matrix �

may be a highly nonlinear function of the species abundance data and may rely on
complementary information such as phylogeny of the microbial communities. The
relationship could be even more complicated, as in UniFrac distances, which are
stochastic functions of the abundance data and phylogenetic trees.

The distance measures commonly used in ecology (e.g., see [5]) offer effective
descriptions of the observations. Specifically, the first few principal components
(PCs) of matrix � partition the observations into interpretable groups across which
the OTUs systematically vary. These partitions often represent interpretable groups.
For example, the authors in [9] found that UniFrac distances are quite successful at
differentiating the three tobacco types in the motivating dataset, while also allowing
replicates of the same product to be closely clustered. Gower distances are also able
to discriminate between clusters [4]. However, it is difficult to identify the species or
OTUs that significantly contributed to the distances between the observations. We
cannot make a biplot that uses the UniFrac or Gower PCs to indicate which OTUs
are the most successful in predicting tobacco type.
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1.3 Limitations of SVD-Based Approaches

Important linear combinations of the features or OTUs are represented by the
PCs of XT X representing the covariance matrix of the OTUs for the modified
abundance matrix. As is well known, these PCs are also available from a singular
value decomposition (SVD) of X. The latter procedure yields a set of singular
vectors for the observations and a different set of singular vectors for OTUs. This
“duality” of the two sets of singular vectors in SVD has useful advantages. For
example, the factor loadings, i.e., coefficients of the singular vectors in feature
space, are available for each component in observation space and may be used
to ascertain which OTUs have the largest contributions. The singular vectors in
observation space may be used as model predictors because they are available
for future observations. However, since the latter set of singular vectors are the
eigenvectors of XXT , a potential disadvantage is that we are implicitly using XXT

as a measure of similarity between the observations even though alternative distance
measures such as Gower may be more appropriate in microbiome analyses.

The goal of this chapter is to develop a Bayesian approach that restores, through
an approximate SVD-type decomposition of the modified abundance matrix X,
the duality between the set of singular vectors of an arbitrary distance matrix �

and a set of singular vectors in feature space. The authors in [7] have proposed
several optimization-based approximate decompositions that link the PCs of �

with linear combinations of OTU frequencies. However, although the numerical
algorithms recommended by [7] are found to rapidly converge to a solution,
there is no guarantee that the solution represents the global rather than local
minimum of the high-dimensional objective function. This is problematic because
high-dimensional objective functions typically possess large numbers of modes.
Furthermore, uncertainty estimates are not available by these approaches.

Motivated by this, we have adopted a Bayesian approach where the assumption
of a squared error loss function results in the posterior mean being the optimal
estimate of the unknown parameters. This offers a key advantage because compared
to optimization-based approaches that may get stuck in local modes, a fast-mixing
MCMC chain provides relatively robust inferences about the posterior means of the
parameters. This approach also readily provides uncertainty estimates for the model
parameters and their functionals, such as standard errors and credible intervals.

The rest of the chapter is organized as follows. A Bayesian model for the
modified abundance matrix X is constructed in Sect. 2. In Sect. 3, we discuss
how the special structure of the model can be exploited to partition the model sum
of squares, construct a scree plot depicting the individual OTU contributions, and
make biplots for arbitrary distances. Since the posterior distribution is analytically
intractable for estimation purposes, Sect. 4.1 develops a Markov chain Monte Carlo
(MCMC) technique for generating posterior samples of the model parameters.

Although accurate, the fully Bayesian method can be computationally intensive
for even moderately large microbiome datasets. Section 4.2 develops an efficient
version called the Skinny Bayesian technique which, although approximate, is
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designed to mimic the inferences of the fully Bayesian method at a fraction of the
computational cost. This makes the Skinny Bayesian technique an attractive option
for microbiome analyses. Section 5 demonstrates the effectiveness of the proposed
methodologies by a simulation study. In Sect. 6, we analyze the two microbiome
datasets, where the proposed Bayesian methodology has the important advantage
of not only providing point estimates for data with highly multimodal posterior
densities but also facilitating interval and posterior density estimation of all the
model parameters. We find that alternative distance matrices, such as Gower and
UniFrac, that the technique facilitates have lower classification test error rates than
the covariances assumed by default by traditional PC analyses.

2 A Bayesian Formulation

The data consist of not only the transformed OTU frequencies of modified abun-
dance matrix X but also distance matrix �; that is, D = (X,�) represents the
outcomes on which posterior inferences will be based. Let the rank of distance
matrix � be q, so that q ≤ n; the rank of X could, of course, be different. Since
matrix � is symmetric and real, it may be expressed as � = BEBT , where B is
an n × q matrix with orthonormal columns and E is a q × q diagonal matrix with
nonzero diagonal elements.

The relation between modified abundance matrix X and distance matrix � is
driven by the specifics of the application and may be complicated. At one extreme,
when the distance matrix is the correlation matrix, as in SVD-based approaches, � is
completely determined by X. At the other extreme, such as ecological investigations
involving UniFrac distances, � is a complicated function of X, external inputs, and
independent stochastic variables.

All Bayesian inferences on model parameters and their functionals are based
on the posterior. However, unlike most Bayesian applications, we will not specify
a hierarchical model and so arrive at the posterior distribution as the normalized
product of a likelihood and prior. This is mainly because, as previously noted, the
specification of a likelihood function for the data D is typically not straightforward
in microbiome analyses involving alternative distances. Instead, our approach is
loosely related to recent work by [6] that replaces the log-likelihood in Bayesian
probabilistic clustering by a loss function.

As a first step, if q∗ denotes the rank of X, we note that the SVD decomposition
of abundance matrix X is AGCT , where A is an n × q∗ matrix with orthonormal
columns, G is a q∗ × q∗ diagonal matrix with positive diagonal entries, and E is a
q∗ × p matrix with orthonormal columns. The Frobenius norm of X − AGCT is
thus zero.

To accommodate the general situation where the distance � is not the covariance
or a deterministic function of X, we utilize information extracted from matrix � to
devise an approximate SVD-type representation of X. Specifically, using the known
eigenmatrix B of distance matrix �, we construct a posterior whose mode matches
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the global minimum of the Frobenius norm:

F(V ,D) = ‖X − BDV T ‖2
F , (1)

for an arbitrary p × q orthonormal matrix V and q × q diagonal matrix D

with arbitrary nonnegative elements. Information about distance matrix � is thus
incorporated into the posterior via the eigenmatrix B. The motivation for the global
minimum requirement is that, unlike the SVD decomposition, an exact zero of
objective function (1) is not generally possible for any choice of orthonormal
matrix V and diagonal matrix D. As described in detail in Sect. 3, the approximate
decomposition of modified abundance matrix X given by (1) may then be used
to select important OTUs and partition the variability in X into contributions
corresponding to the PCs of an arbitrary distance matrix � between observations.
Section 4.3 describes how the model parameters are estimated by their posterior
means which, in turn, are estimated using an MCMC sample.

2.1 Posterior Density

Given a “precision” parameter τ 2 > 0, consider the function

g(V ,D, τ 2) = τnp exp
(− τ 2F(V ,D)/2

)
, (2)

for V ∈ Sq,p,D ∈ D+
q , and τ 2 > 0,

where Sq,p represents the Stiefel manifold, that is, the set of p × q matrices
with orthonormal columns, and D+

q is the set of q × q diagonal matrices with
nonnegative elements. The posterior density is defined as the normalized version
of the aforementioned function:

π
(
V ,D, τ 2 | D) = c(D) · g(V ,D, τ 2), (3)

for V ∈ Sq,p,D ∈ D+
q , and τ 2 > 0,

where c(D) is the normalizing constant.
Now, consider the conditional posterior

π
(
V ,D | τ 2,D

) = g(V ,D, τ 2)
/∫

D+
q

∫

Sq,p

g(V ,D, τ 2)dV dD.

For every fixed value of τ 2, it can be easily verified that the mode of conditional
posterior π

(
V ,D | τ 2,D

)
is the minimizer of objective function F(V ,D). This

implies that the minimizer of F(V ,D) coincides with the (V ,D) component of the
full posterior’s mode in equation (3).
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3 Model Sum of Squares and Biplots

Due to the form of posterior density (3), whose mode minimizes Frobenius norm (1),
we define as the model sum of squares the part of the modified abundance matrix X

that can be explained by the model parameters:

M
(
V ,D

) = ‖BDV T ‖2
F .

Furthermore, we define

Percent variation in X explained by the model = {M(V ,D
)/‖X‖2

F } × 100%.

(4)
An estimate of the marginal posterior density of M

(
V ,D

)
is available from the

Bayesian analysis. Under squared error loss, the marginal posterior mean provides
an optimal estimate, M̂

(
V ,D

)
, of the model sum of squares, and the posterior

standard deviation provides an uncertainty estimate.
Since matrices V and B are orthonormal, the model sum of squares can be

conveniently partitioned for the purposes of constructing scree plots and biplots.
For example, it can be decomposed into the parts explained by each OTU:

M
(
V ,D

) =
p∑

j=1

w2
j , where (5)

w2
j =

q∑

t=1

v2
j t d

2
t ,

so that data from the j th OTU contributes w2
j to the model sum of squares.

Alternatively, the model sum of squares may be partitioned into parts explained
by the q PCs of distance matrix �:

M
(
V ,D

) =
q∑

t=1

d2
t . (6)

Since they are functions of the model parameters, these partitions can be
estimated along with their posterior credible intervals.

A two-dimensional biplot for distance matrix � can be plotted as follows. From
equation (6), we observe that the first two PCs of distance matrix � are the columns
of orthonormal matrix V that correspond to the largest and second largest diagonal
elements of matrix D. For each PC, the scores of the n observations are obtained
by projecting the n rows of matrix X onto the direction represented by the PC.
Figure 5 displays the biplot for the subway dataset with the scores plotted in blue;
the symbols represent the three cities from which the samples were drawn.
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Additionally, to display the effects of the top m OTUs, we first apply Eq. (5) to
identify the m OTUs with the greatest contributions and then plot the values of the
matching elements of the two PCs along perpendicular axes of the biplot. Figure 5
displays the top m = 5 OTUs for the subway dataset.

4 Posterior Inference

Since the posterior is analytically intractable, we explore the posterior distribution
using MCMC techniques.

4.1 Gibbs Sampler

It is possible to iteratively sample from the full conditional distributions of the model
parameters, i.e., matrices V and D, and scalar τ 2, resulting in a Gibbs sampler
whose post-burn-in draws are distributed as posterior (3). The Gibbs sampler relies
on this simple but important result whose proof is given in the Appendix.

Lemma 1 Let B0 be an n × (n − q) matrix with orthonormal columns belonging
to the null space of the columns of matrix B. Objective function F(V ,D) defined in
Eq. (1) has the equivalent expression

F(V ,D) =
q∑

j=1

d2
j − 2tr

(
DQT V

)
+ tr(QT Q) + ‖BT

0 X‖2
F , (7)

where the p × q matrix, Q = XT B.

Applying Lemma 1, the model parameters are iteratively generated as follows:

1. Full conditional of matrix V :

[V | D, τ 2,D] ∝ exp tr
(
τ 2DQT V

)
,

which is the von Mises–Fisher matrix distribution [2] with parameter τ 2QD.
Refer to [3] for a fast-mixing Gibbs sampler when p > q, as in this application.
The Hoff algorithm relies on the availability of a Monte Carlo sampler for vector
von Mises–Fisher distributions, e.g., via command rvmf implemented in the
Directional R package.

2. Full conditional of matrix D: Let R = QT V with diagonal elements r11, r22,

. . . , rqq . Then, the diagonal elements of matrix D are independent with truncated
normal distributions:



278 S. Guha and S. Datta

dj | V , τ 2,D
indep∼ N(rjj , τ

−2) · I(dj ≥ 0), j = 1, . . . , q. (8)

3. Full conditional of precision parameter τ 2: We obtain

τ 2 | D,V ,D ∼ gamma (np/2 + 1,F(V ,D)/2) , (9)

which is parameterized with mean equal to (np + 2)/F(V ,D).

4.2 Dimension Reduction: Skinny Bayesian Technique

Posterior inferences by the aforementioned method can be computationally inten-
sive. The computationally intensive step is the Gibbs sampler for the von Mises–
Fisher matrix full conditional of matrix V ; the costs of generating the remaining
parameters are trivial. For example, in the motivating Tobacco dataset, we have
p = 271 OTUs and n = 45 samples, and the rank of dissimilarity matrix � is
q = 45. Even this moderate-sized dataset imposes a heavy computational burden
on the Gibbs sampler.

We wish to develop a computationally efficient methodology that, even if it is
not exact, closely matches the inferences of posterior density (3). Suppose that the
columns of modified abundance matrix X are partitioned into two submatrices, n

by p1 matrix X1 and n by (p − p1) matrix X2, where n < p1 < p. The key idea
is to select a submatrix X1 having far fewer columns than matrix X (i.e., p1 � p),
but which still captures most of the column variability of matrix X. The reduced
dimension matrix, X1, could then be used for approximate posterior inferences at a
fraction of the computational cost. We refer to this technique as the Skinny Bayesian
technique to distinguish it from the fully Bayesian technique of Sect. 4.1. The details
are given below.

4.2.1 Subsetted Data Matrix

In order to select a subset of the columns of modified abundance matrix X that
captures most of the variability, we want

‖X1‖2
F

/
‖X‖2

F = r2
0 , (10)

with r2
0 chosen as close as possible to 1 given the computing resources. To achieve

this aim, we first rank the individual columns with respect to their Frobenius norm:

‖x(1)‖2
F ≥ ‖x(2)‖2

F . . . ≥ ‖x(p)‖2
F
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and evaluate

p1 = max

[
n + 1, argminj=1,...,p

{
j :

j∑

t=1

(
‖x(t)‖2

F

/
‖X‖2

F

)
≥ r2

0

}]
, (11)

so that q ≤ n < p1. The reduced data matrix is then defined as

X1 = [x(1), . . . , x(p1)

]
.

Typically, p1 � p. The remaining (p − p1) columns of matrix X are collectively
denoted by X2.

4.2.2 Lower Dimensional Parameters and Induced Posterior

We match the dimensions of the reduced data to define the matrix V 1 be a p1 × q

orthonormal matrix with fewer rows than p × q orthonormal matrix V ; that is,
V 1 takes values in the lower dimensional Stiefel manifold Sq,p1 . The diagonal
matrix D with nonnegative elements is as defined before. We assume the following
relationship between the two orthonormal matrices:

V =
[
V 1

0

]
, (12)

where 0 denotes a matrix of p − p1 rows and q columns with all zero entries. Since
matrix V 1 consists of q orthonormal columns, this guarantees that matrix V is also
orthonormal.

Instead of minimizing objective function (1), the estimation of matrices V 1
and D is motivated by minimizing the following objective function involving the
reduced data:

f
(1)
d (V 1,D) = ‖X1 − BDV T

1 ‖2
F . (13)

An analogous result to Lemma 1 immediately follows

f
(1)
d (V 1,D) =

q∑

j=1

d2
j − 2tr

(
DQT

1 V 1

)
+ tr(QT

1 Q1) + ‖BT
0 X1‖2

F , (14)

where the p1 × q matrix, Q1 = XT
1 B. For any parameters satisfying Eq. (12), we

then obtain

F(V ,D) = f
(1)
d (V 1,D) + ‖X2‖2

F , (15)
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so that

{
F(V ,D) − f

(1)
d (V 1,D)

}/‖X‖2
F = 1 − r2

0 .

The special structure imposed by equation (12) implies that the corresponding
minimum of function F(V ,D) is smaller when matrix V is allowed to assume
unrestricted values on the higher dimensional Stiefel manifold Sq,p, as in Sect. 2.
However, since by design matrix X1 that accounts for most of the variation in matrix
X, we expect the difference between the two minima to be small.

The posterior induced by restriction (12) on the set of lower dimensional
parameters is

π1
(
V 1,D, τ 2 | D) ∝ g1(V 1,D, τ 2), where

g1(V 1,D, τ 2) = τnp exp
(− τ 2F(V ,D)

/
2),

= τnp exp
(− τ 2f

(1)
d (V 1,D)

/
2
)

exp
(− τ 2‖X2‖2

F

/
2
)
, V 1 ∈ Sq,p1 , (16)

by Eq. (15).

4.2.3 Faster Inference Procedure

Since q ≤ n < p1, the induced lower dimensional posterior (16) has a similar
structure as unrestricted posterior (3), and it is straightforward to iteratively sample
from the full conditional distributions of the parameters (V 1,D, τ 2). The important
advantage associated with analyzing restricted posterior (16) is the drastically
reduced computational cost.

1. Full conditional of matrix V 1: Upon applying Eq. (14), posterior (16) gives

[V 1 | D, τ 2,D] ∝ exp
(− τ 2f

(1)
d (V 1,D)

/
2
)

∝ exp tr
(
τ 2DQT

1 V 1

)
,

which is the von Mises–Fisher matrix distribution with parameter τ 2Q1D.
Since p1 > q, the Gibbs sampler of [3], previously mentioned in Sect. 4.1,

could be applied to generate MCMC draws. However, unlike Sect. 2, matrix V 1
consists of only p1 rows instead of p (� p1) rows for matrix V . This results in
drastically reduced computational costs.

2. Full conditional of matrix D: Analogously to Sect. 4.1, relation (12) gives
R = QT V = QT

1 V 1. The diagonal elements of matrix D are then updated
as specified in expression (8).

3. Full conditional of parameter τ 2: This is updated as in expression (9) with the
quantity F(V ,D) computed using Eq. (15).
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4.3 Model Parameter Estimates

The MCMC sample is post-processed to compute empirical average estimates of
the posterior means of the model parameters. The exception is orthonormal matrix
V , which is defined on Stiefel manifold Sq,p. There is no guarantee that the
posterior mean, E[V |D], belongs to the same space. Consequently, we estimate
V as argminV ∈Sq,p

‖V − E[V |D]‖2
F representing the point on the Stiefel manifold

closest in Frobenius norm to the posterior mean. To obtain this estimate, the MCMC
sample first gives an empirical average estimate of E[V |D], denoted by Ṽ . The
MCMC sample is then processed a second time to compute argminV ∈Sq,p

‖V −Ṽ ‖2
F .

5 Simulation Study

To evaluate the fully Bayesian technique’s ability to accurately infer the underlying
model parameters, we analyzed 50 artificial datasets.

5.1 Generation Strategy

For n = 45 samples and p = 150 OTUs, we independently generated 50 datasets
by the following sequence of steps:

1. Rank q of distance matrix �: Set the rank q equal to either 38 or 39 with
probability 0.5.

2. Matrix B: Generate q orthonormal vectors of length n, denoted by b1, . . . , bq .
Let the n × q matrix, B = [b1, . . . , bq ].

3. Diagonal elements of true matrix D0: For j = 1, . . . , q, generate dj0 = |Zj |,
where Zj

iid∼ N(0, 102). Then, D0 = diag{d10, . . . , dq0}.
4. True orthonormal matrix V 0: Generate the n × q matrix, U = ((Uij )), where

the random variables Uij are iid standard normal. Orthonormal matrix V 0 is
obtained by the Gram–Schmidt orthogonalization of the q columns of matrix U .

5. Data matrix X: Let X = BD0V
T
0 + ϒ, where ϒ is an n × p matrix of iid

normal errors with mean 0 and variance τ−2
0 , where true precision τ0 = 5.

Notice that the data generation strategy relies on distance matrix � only through
its rank q and matrix of eigenvalues B; it is not necessary to generate � itself.
For each dataset, we implemented the inferential technique described in Sect. 2
to generate a post-burn-in MCMC sample. The parameters were estimated by
empirical average estimates computed from the MCMC sample.

R code implementing the simulation procedure is available in the folder
“BDVt.zip” available at https://github.com/sguha-lab/Microbiome-SVD. To
generate the data, analyze the data using the aforementioned MCMC procedure,

https://github.com/sguha-lab/Microbiome-SVD
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Fig. 1 For simulated dataset 34, plots of actual versus estimated model parameters and observa-
tions. A 45◦ line has been added for reference

Table 1 For the 50 artificial datasets, five-number summary of the correlations between the true
and estimated matrix elements

Minimum First quantile Median Third quantile Maximum

V = ((vjt )) 0.803 0.847 0.872 0.890 0.918

D = diag((dj )) 0.998 0.999 0.999 0.999 1.000

and obtain the posterior inferences described herein, simply extract the files from
the zip folder, open the project “BDVt.Rproj” from RStudio, and type

source("main.R")

in the RStudio console window.
For a randomly selected simulated dataset, namely dataset 34, Fig. 1 displays the

actual versus estimated elements of parameter matrices V and D. The plots reveal
the high degree of inferential accuracy for dataset 34. More generally, summarizing
over the 50 datasets, the correlations between the true and estimated matrix elements
are presented in Table 1. The correlations were found to be high in all the datasets,
although they were relatively low for the high-dimensional matrix V consisting
of pq ≥ 150(38) = 5, 700 elements; unlike some other model parameters, the
estimation of V is not guaranteed to be consistent as the number of samples and the
number of OTUs grow. Consequently, posterior inferences of the matrix V elements
may be imprecise even for large datasets.

The left panel of Fig. 2 plots the histogram of estimates, τ̂ , which are equal to the
estimated posterior means in each of the 50 datasets. The marginal posterior density
of τ for dataset 34 has been plotted in the right panel of Fig. 2, with the shaded region
representing the equal-tailed 95% Bayesian credible interval. For all 50 datasets,
histograms of the lower and upper limits of the 95% Bayesian credible intervals for
τ are displayed in Fig. 3. Obviously, an indication of inferential accuracy is that a
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Fig. 2 Posterior inference of τ . Histogram of τ̂ for the 50 datasets in the simulation study is
displayed on the left. The estimated marginal posterior density of τ in simulated dataset 34 is
displayed on the right. The dashed vertical line represents the common true value of τ0 = 5 in
both plots. The shaded region in the right panel is a 95% Bayesian credible interval with posterior
probability of 0.025 in each tail

Fig. 3 For the 50 artificial datasets, histograms of the lower and upper limits of 95% Bayesian
credible intervals for τ are displayed in the left and right panels, respectively. The dashed vertical
lines represent the common true value of τ0 = 5

large proportion of the 50 lower (upper) limits is less (greater) than the true value of
τ0 = 5, which is shown by the dashed vertical line in each plot. Summarizing over
the 50 datasets, the percentage of 95% credible intervals containing the true value
of τ0 = 5 was 46/50 or 92%.

For dataset 34, Table 2 displays the true values of the diagonal matrix elements,
d1, . . . , d38, along with the lower and upper limits of their inferred 95% Bayesian
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Table 2 For simulated
dataset 34, a comparison of
the true values and 95%
Bayesian credible intervals
for the nonzero elements of
the 38 × 38 diagonal matrix,
D. The true parameter values
are displayed in the middle
column of numbers. The end
points of the credible
intervals are given in the first
and third columns. Marked in
bold are the four parameters
whose true values lie outside
the credible intervals

Parameter 2.5th percentile Truth 97.5th percentile

d1 23.30 23.39 24.12

d2 20.48 20.93 21.34

d3 20.32 20.71 21.12

d4 17.46 17.62 18.20

d5 16.01 16.43 16.74

d6 14.61 15.21 15.40

d7 14.55 14.96 15.28

d8 13.92 14.68 14.71

d9 12.52 13.06 13.44

d10 12.41 13.00 13.30

d11 9.43 10.25 10.24
d12 9.81 10.18 10.59

d13 9.14 9.58 9.97

d14 8.11 8.52 8.85

d15 7.95 8.28 8.69

d16 7.51 8.27 8.26
d17 7.16 7.87 7.95

d18 6.87 7.27 7.74

d19 7.42 7.22 8.22
d20 6.87 7.17 7.66

d21 6.28 6.62 7.06

d22 6.12 6.61 6.82

d23 6.16 6.52 6.97

d24 6.18 6.37 7.00

d25 5.54 5.88 6.30

d26 5.18 5.75 6.00

d27 4.78 5.47 5.56

d28 5.11 5.27 5.94

d29 5.08 5.02 5.87
d30 4.32 4.76 5.09

d31 3.63 4.08 4.49

d32 3.33 3.75 4.15

d33 2.15 2.70 3.11

d34 1.90 2.19 2.91

d35 1.31 1.87 2.37

d36 0.08 1.69 1.91

d37 0.40 1.66 1.82

d38 0.03 0.87 1.02
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credible intervals. Marked in bold are the 4 elements for which the true values
did not belong to the credible intervals. This corresponds to an interval estimation
accuracy of 1 − 4/38, or 89.5%, for dataset 34. For the 50 datasets, the average
interval estimation accuracy was 93.9% and the standard deviation was 4.2%. For
the pq = 150(38) = 5, 700 elements of matrix V , the interval estimation accuracy
was 95.4% for dataset 34. For the 50 datasets, the interval estimation accuracy for
the matrix V elements averaged 95.0% with a standard deviation of 0.4%.

These results demonstrate the reliability of the fully Bayesian procedure for the
artificially generated datasets.

6 Data Analysis

We return to the two microbiome datasets to analyze them using the proposed
Bayesian methodology.

6.1 Tobacco Data

We analyzed the Tobacco dataset of [9] using the fully Bayesian and Skinny
Bayesian techniques described, respectively, in Sects. 4.1 and 4.2. The rows of
the abundance matrix were first converted to percent abundances to eliminate
differences in scale and then centered the rows and columns to sum to zero. To
study the effects of each OTU in a biplot, the matrix columns were standardized to
unit variance. With r2

0 = 0.99 in Eq. (10), we obtained a reduced data matrix X1
by the Skinny Bayesian method. The reduced data matrix accounted for 99% of the
column variability in data matrix X and consisted of p1 = 116 OTUs in Eq. (11).
This resulted in a 86.9% reduction in the computational costs relative to the fully
Bayesian method.

To compare the ability of the two Bayesian methods to explain the modified
abundance matrix X, we evaluated the percent variation in X, defined in (4). They
were estimated to be 90.6% and 90.1%, respectively, for the Fully Bayesian and
Skinny Bayesian methods. The methods display excellent, and almost identical,
performance with respect to both sets of measures. Additionally, the posterior
standard deviations of the model sums of squares provide uncertainty estimates for
the estimated percent variation, which were 0.06% and 0.1%, respectively.

Applying Eq. (5), scree plots for the model variance explained by each OTU
are displayed in Fig. 4. For each method, the relative contributions of the top 20
OTUs with the largest contributions have been plotted along with 95% posterior
credible intervals. The almost negligible differences between the estimates provided
by the two methods demonstrate the effectiveness of the Skinny Bayesian technique.
Specifically, the top OTUs identified by the two Bayes methods are identical.
Table 4 displays the Greengenes identification number, family, genus, and species
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Fig. 4 Scree plots for variance explained by each OTU. For the Fully Bayesian approach (left
panel) and Skinny Bayesian approach (right panel), the contributions of the top 20 (out of 271)
OTUs having the largest contributions are plotted along with 95% posterior credible intervals for
the OTU contributions

of the top 10 of these OTUs. The top two OTUs, 2336242 and 4397708, have
significantly greater contributions than the remaining OTUs. Since they belong to
the families Bacillaceae and Lactobacillaceae, respectively, they are biologically
distant. However, they are more closely related to several other OTUs in Fig. 4 and
Table 4.

A comparison of the standard errors for the percent variation in X and credible
interval widths in Fig. 4 reveals the greater uncertainty (i.e., lower precision)
associated with the Skinny Bayesian method. Although this is a common feature
of many dimension reduction procedures, which are associated with loss of infor-
mation, the precisions in this case are only slightly lower than those of the fully
Bayesian method and are more than compensated by the substantial reductions in
the computational costs.

Next, we compared the success of the first two PCs of covariance, UniFrac,
and Gower distances in classifying the three types of smokeless tobacco products
(dry, moist, and brown toombak). For distances different from the covariance
matrix, the procedure for obtaining the PCs is described in Sect. 3. The n = 45
samples were split into training and test cases in a 9:1 ratio. A K-nearest neighbor
classifier, with the optimal K chosen by cross-validation, was utilized to train the
classifier and predict the test sample labels. The error rate was estimated on the
basis of 500 independent random splits. The test error rates along with uncertainty
estimates are presented in Table 3. We find that the greatest accuracy (i.e., lowest
test error rate) is achieved by Gower distances followed by UniFrac distances. The
results demonstrate the practical advantages of using alternative distance matrices
(Table 4).
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Table 3 For the Tobacco dataset, test error rates for classifying the types of smokeless tobacco
products using the first two PCs under different distance matrices. See the text in Sect. 6 for further
explanation.

Test error rate

Distance � Estimate Standard error

Covariance 35.76% 0.86%

UniFrac 31.76% 0.75%

Gower 29.84% 0.78%

Table 4 Greengenes identification number, family, genus, and species of the top 10 OTUs with
the largest contributions identified in Fig. 4

OTU Family Genus Species

2336242 Bacillaceae Unknown Unknown

4397708 Lactobacillaceae Unknown Unknown

173209 Bacillaceae Unknown Unknown

146935 Lactobacillaceae Lactobacillus Unknown

780788 Xanthomonadaceae Unknown Unknown

69980 Aerococcaceae Unknown Unknown

4423201 Sphingobacteriaceae Sphingobacterium Multivorum

155345 Bacillaceae Unknown Unknown

4379247 Lactobacillaceae Lactobacillus Unknown

1138448 Bacillaceae Virgibacillus Unknown

6.2 Subway Data

We returned to the subway dataset with n = 124 samples from Porto Santo Island
(Portugal), Sacramento, and New York City, and p = 898 OTUs aggregated
for microbiome species. A key aspect of the challenge is the construction of a
microbiome fingerprint that allows the identification of the geographical origin of
a sample. For this reason, we relied on the Gower distance because of its accuracy
in sample clustering applications, e.g., see the results in Table 3. Due to the large
number of OTUs, the Skinny Bayesian approach was applied to significantly reduce
the computational burden of the MCMC procedure.

Figure 5 displays the biplot for the top m = 5 OTUs. The cities are marked
with symbols. Symbol “+” represents New York City, “/” represents Porto Santo
Island, and “$” represents Sacramento. The ordination of the data using the scores
of the first two PCs appears to be successful at separating the cities. The arrows
in the biplot correspond to the top m = 5 OTUs. The arrow labels are the
abbreviated names for the species Mycobacterium vacca, Staphylococcus equorum,
Corynebacterium pilosum, Azospirillum spp, and Prevotella nanceiensis.

The n = 124 samples were split into training and test cases in a 9:1 ratio. Based
on 500 independent random splits, and using a similar classification strategy as
for the Tobacco dataset, the test error rate for Gower distances was estimated to
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Fig. 5 Biplot for the subway dataset. The arrows represent the top 5 OTUs. Symbol “plus” repre-
sents New York City, “slash” represents Porto Santo Island, and “dollar” represents Sacramento

be 10.26% with a standard error of 0.37%. In contrast, covariance distances had a
significantly greater test error rate of 13.37% with a standard error of 0.42%. Similar
to the Tobacco dataset, these results demonstrate the advantages of alternative
distance matrices.

7 Data Acknowledgement

The analyses presented in Sect. 6.2 are based on a subset of the raw metagenomics
data provided by the MetaSUB International Consortium and the Scientific Pro-
gramme Committee of the conference on Critical Assessment of Massive Data
Analysis (CAMDA 2018). The primary data along with other supplementary data
were publicly available on the challenge’s website as part of a forensic metage-
nomics challenge involving multiple international cities. A more recent extraction
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of the CAMDA data has been analyzed in the chapter by Anyaso-Samuel et al. using
supervised learning techniques.

8 Discussion

This chapter implements an approximate decomposition of abundance matrix X to
restore, via the Bayesian paradigm, the duality between the orthonormal vectors
associated with an arbitrary distance matrix � between the sample units and
the orthonormal vectors of the OTUs. Although other researchers have proposed
different types of optimization-based decomposition, there is no guarantee that the
discovered decompositions converge to the global rather than a local minimum of
the objective functions. In contrast, the Bayesian approach provides robust inference
that relies on the posterior mean as the optimal estimate of unknown parameters and
provides point estimates, standard errors, and credible intervals.

The effectiveness of the proposed Bayesian methodologies has been demon-
strated via simulation studies. For the motivating Tobacco dataset, scree plots
were utilized to identify the top 20 OTUs having the largest contributions to the
variability of abundance matrix X. In this regard, the results of the two proposed
Bayesian methods were qualitatively identical. The top two OTUs were found to be
biologically distant but more closely related to the remaining OTUs in the set.

For the subway dataset, a biplot revealed that the ordination of the data using
Gower distances was successful at separating the three cities from which the
samples were taken. A quantitative analysis demonstrated that Gower distances
outperform covariances with respect to classification of the geographical origin of a
sample from the microbiome fingerprint based on the first two PCs. A similar result
was observed for the Tobacco data, where Gower distances outperformed UniFrac
distances and covariance matrices.

As future research, the approach is amenable to generalizations such as the
incorporation of covariates. For an arbitrary distance matrix, this extended analytical
framework may be used to make inferences about group differences in the approxi-
mate decomposition of the abundance matrix. These generalizations will be pursued
elsewhere.

Supplementary Materials

R code implementing our procedure is available at https://github.com/sguha-lab/
Microbiome-SVD.
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Appendix

Proof of Lemma 1

The n × n matrix, B̃ = [B : B0], is orthonormal and of full rank. Consequently,

F(V , D) = ‖X − BDV T ‖2
F

= ‖B̃T
X − B̃

T
BDV T ‖2

F

=
∥
∥
∥
∥

[
BT X

BT
0 X

]

−
[

BT B

B0
T B

]

DV T

∥
∥
∥
∥

2

F

since B̃ is full-rank orthonormal

=
∥
∥
∥∥

[
BT X

BT
0 X

]

−
[
Iq

0

]

DV T

∥
∥
∥∥

2

F

where Iq is the q-dimensional identity matrix

= ‖BT X − DV T ‖2
F + ‖BT

0 X‖2
F .

Furthermore,

‖BT X − DV T ‖2
F = ‖V D − XT B‖2

F

= ‖V D − Q‖2
F

= tr
[
(DV T − QT )(V D − Q)

]

= tr
(
DV T V D − QT V D − DV T Q + QT Q

)

= tr(D2) − 2tr(QT V D) + tr(QT Q), since matrix V is orthonormal

=
q∑

j=1

d2
j − 2tr(DQT V ) + tr(QT Q).
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Tree Variable Selection for Paired
Case–Control Studies with Application
to Microbiome Data

Min Lu and Hemant Ishwaran

1 Introduction

Paired samples occur in microbiome studies when they are collected from different
locations of the same individual or from paired individuals with familial ties.
Human microbiome can be shared among family members with variations in
each individual’s microbial community [16, 18]. Suppose an identifiable “core
microbiome” exists at the microbial gene level and deviations from this core are
associated with different physiologic states. It is of interest to study how family
ties play a role in these deviations. For example, if deviations from a core gut
microbiome are associated with body mass index (BMI), we can define “individual”
and “family” outcomes with labels obese/lean, where for example obese family
means the individual comes from a family containing at least one member who is
obese, and lean family means the individual comes from a family whose members
are all lean. By analyzing such outcomes, we can examine how each array of
microbial genes is associated with obesity both at the family and individual levels.

There are methods available for paired case–control studies, but they have
limitations for analyzing the type of data considered here. For example, McNe-
mar’s test [11] is a statistical test used for paired data. However, it is primarily
intended only for dichotomous features. Multilevel models with binary-dependent
variables [1, 5] are another class of methods used. However, microbiome data is
often high-dimensional, which makes it challenging to implement these approaches.
Another challenge is that these models assume linearity but the association between
obesity and microbiome features is likely to be nonlinear.
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To illustrate our proposed methodology, we will use data from a cross-sectional
study focusing on obesity in twins [9, 16, 17]. Data was collected from human stools
of adult female monozygotic or dyzygotic twins or their mothers. We utilize 142
of these samples with 54 pairs where pair is defined as family members including
mother and daughters. The bacterial lineages present in the fecal microbiota of
these individuals were characterized by 16S rRNA sequencing, targeting the full-
length gene with an ABI 3730xl capillary sequencer. Sequences were identified
by assignment to taxonomic groups using operational taxonomic units (OTUs).
Specific details of how data was processed can be found in [16].

The original analysis found that obesity is associated with phylum-level changes
in the microbiota and reduced bacterial diversity using linear approaches, such
as PCA (principal components analysis). Here, we will focus on detecting which
taxonomic groups are the most informative for obesity risk at both the family and
individual levels using a novel approach that draws upon tree-based concepts.

2 Gini Index

Consider Y a categorical (factor) outcome such that Y ∈ {1, . . . , J } for J ≥ 2.
Given a p-dimensional feature X, the goal is to classify X into one of the J classes.
We call this J -class problem and {1, . . . , J } the J -class labels for Y . Gini index is
widely used for constructing classification trees that are nonparametric estimators
used for the J -class problem. Given an input feature, classification trees work by
identifying the unique leaf (terminal node) of the tree that X resides within. Each
leaf of the tree is labeled with a class among {1, . . . , J } or a probability distribution
over the classes, signifying that the leaf has been classified into either a specific
class or a particular probability distribution, and this information is used for making
decisions about X.

A classification tree is built by splitting the data, constituting the root node of
the tree, into subsets that constitute the successor children. The splitting is applied
to features and is based on a pre-chosen splitting rule, which in addition to the
Gini index includes splitting methods utilizing AUC (area under the ROC curve)
and entropy metrics [3, 12]. This process is repeated on each derived subset in a
recursive manner. The recursion is stopped when the subset at a node has all the
same values of the outcome, or when a prespecified criterion is reached (such as
minimal size of a node). The final nodes of the tree are referred to as the leaves.
Classification trees can be combined to form ensemble estimators. An example is
random forests [2], a popular tree-based learning method capable of handling a large
number of predictors. In order to handle big data, rather than using a classification
tree as just described, random forests is constructed by using random trees where
each tree is constructed from subsampled data and where tree splitting employs
random feature selection [2].

Classification tree splitting based on the Gini index splitting rule can be formally
described as follows. If p = (p1, . . . , pJ ) are the data class proportions of Y for
classes 1 through J , respectively, the Gini index of impurity is defined as
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φ(p) =
J∑

j=1

pj (1 − pj ) = 1 −
J∑

j=1

p2
j .

As mentioned, classification trees are grown using the Gini index by splitting
features recursively into left and right daughter nodes. In particular, tree splits are
obtained by minimizing tree impurity. The Gini index split statistic for a split s on a
continuous feature xm at a given tree node is

θ(Y, xm, s) = nl

n
φ(pl ) + nr

n
φ(pr ),

where the subscripts l = {xm ≤ s} and r = {xm > s} denote the left and right
daughter nodes formed by the split on xm at s (nl and nr are the sample sizes of the
two daughter nodes where n = nl + nr is the parent sample size). To reduce tree
impurity, the goal is to find xm and s to minimize

θ(Y, xm, s) = nl

n

⎛

⎝1 −
J∑

j=1

n2
j,l

n2
l

⎞

⎠+ nr

n

⎛

⎝1 −
J∑

j=1

n2
j,r

n2
r

⎞

⎠ ,

where nj,l and nj,r are the number of cases of class j in the left and right daughters,
respectively, and nj = nj,l + nj,r are the number of cases of class j and n =
∑J

j=1 nj . With some algebra, it can be shown this is equivalent to maximizing the
split statistic

g(Y, xm, s) = 1

n

J∑

j=1

n2
j,l

nl

+ 1

n

J∑

j=1

(nj − nj,l)
2

n − nl

.

Although the Gini index is primarily used as a splitting rule, we observe that it
can be used as a fast preliminary variable ranking method. This is because variables
that are used to split a tree are often those variables that have highest variable
importance as measured by prediction error, especially if these splits occur high
up in the tree, i.e., near the root node that comprised all the data [8]. Thus, it is
reasonable to rank variables in terms of size of their Gini index values calculated
using the full data as this will generally rank variables by predictive power. For each
of the p predictors x1, . . . , xp, define

G(Y, xm) = g(Y, xm, smax),

where

smax = arg max
s

g(Y, xm, s)

and g(Y, xm, s) is the split statistic calculated from the root node data (i.e., using
the full data; thus, n is the sample size). Variables are ranked in order of importance
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by size of G(Y, xm). This variable selection procedure is fully nonparametric and
can be computed quickly even in big data settings. The following section provides
a demonstration of how this approach works for our problem.

2.1 Simulation Analysis

Consider a binary class setting and denote the outcome as Y I ∈ {0, 1}, where Y I =
0 represents a lean individual and Y I = 1 an obese individual. Family outcome is
denoted as YF ∈ {0, 1}, where YF = 0 signifies an individual from a family with all
lean members and YF = 1 indicates an individual from a family where at least one
member is obese. Association with Y I = 1 reflects how host adiposity influences the
gut microbiome, whereas association with YF = 1 reflects environmental exposure
influences. How the host genotype affects the gut microbiome under environmental
exposure is reflected by an association with both Y I = 1 and YF = 1.

We use the following simulation where YF is specified according to

P{YF = 1|X = x} = logistic
(− 2 + x1 + x2 + x3 + 2 × 1{x1<0.5}

)
(1)

and Y I is specified by

P{Y I = 1|YF = 1,X = x} = logistic
(− 2 + x4 + x5 + x6 + 2 × 1{x4<0.5}

)
, (2)

where logistic(α) = 1/(1 + e−α). In this scenario, x1, x2, and x3 are associated
with environmental exposures that cause the presence of obesity, while x4, x5, and
x6 are associated with host adiposity, given that the host is under these types of
environmental exposures.

The feature space dimension was set to p = 10. Features were independently
drawn from a uniform distribution U(0, 1). Variables unrelated to outcome, rep-
resenting noise variables, were also added to the design matrix. For YF , noise
variables were x4, . . . , x10. For Y I , noise variables were x1, x2, x3 and x7, . . . , x10.
Split statistics, g(Y, xm, s), are plotted in Fig. 1 for features x1, x4, and x10 and for
both outcomes Y = YF and Y = Y I . Red color represents the family-level outcome
YF , and blue is used for the individual-level outcome Y I . Variable x1 in (a) predicts
obesity at the family level and is associated with YF , and the true optimal split point
occurs at 0.5. We can see that the split statistic of x1 is high for both YF and Y I and
both peak at around 0.5. Variable x4 in (b) is associated with P{Y I = 1|YF = 1},
therefore is associated with Y I , and has a true optimal split point of 0.5. We can
see that the split statistic g(Y I , x4, s) is high for Y I and reaches its peak near 0.5
(although not exactly at the true value—we will come back to this point later). In
contrast, the split statistic g(YF , x4, s) for YF does not at all have an optimized
value near 0.5 and its peak value occurs near its edge. This edge effect is typical of
noisy variables and is a property of the Gini splitting rule called end-cut preference,
ECP [6]. Variable x10 in (c) is a noise variable, and its split statistic is low for
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Fig. 1 Univariate split statistics for x1, x4, and x10 from simulation (1)–(2). Values g(Y, xm, s)

are shown across different split values s. Red and blue display family-level outcome YF and
individual-level outcome Y I , respectively. Vertical lines mark the optimal split statistic G(Y, xm).
Variable x1 is associated with YF with true optimal split point of 0.5. Variable x4 is associated with
P{Y I = 1|YF = 1} with true optimal split point of 0.5. Variable x10 is a noise variable

both YF and Y I . Observe that its optimal split points are close to the edge for both
outcomes, which as stated is typical behavior of a noisy variable.

Comparing the results across Fig. 1, it is clear that G(Y, xm), which is the highest
point of g(Y, xm, s), is useful for variable ranking. However, focusing only on
family-level outcomes (red color) will ignore features like x4 that are related to the
individual-level outcome (blue color). Checking both split statistics clearly helps
better understand the underlying associations.

3 Multivariate Gini Index

Tang and Ishwaran [13] defined a multivariate Gini index split statistic obtained by
averaging univariate Gini split statistics. For the bivariate outcome problem, this can
be described as

gu(Y
F , Y I , xm, s) = 1

2

[
g(YF , xm, s) + g(Y I , xm, s)

]
.

The subscript “u” is used to emphasize that the split statistic is unweighted. We can
define

Gu(Y
F , Y I , xm) = gu(Y

F , Y I , xm, sumax)

for ranking variables, where

sumax = arg max
s

gu(Y
F , Y I , xm, s).
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Larger values of Gu(Y
F , Y I , xm) identify informative variables and smaller values

indicate noise variables.

3.1 Conditional Gini Index

The problem with the split statistic gu(Y
F , Y I , xm, s) is that by averaging across

the outcomes it ignores the correlation between YF and Y I . To resolve this issue,
we introduce the following conditional Gini split statistic.

Let πc = P{Y I = 1|YF = 1} be the population proportion of obese cases among
individuals with at least one obese family member. The subscript “c” is used to
emphasize this is a conditional probability. Because there are only two classes, we
have pc = (pc, 1 −pc) and φ(pc) = 2pc(1 −pc), where pc is the sample estimator
of πc. For a split s on variable xm, the conditional Gini split statistic is defined as

θc(Y
F , Y I , xm, s) = ñl

ñ
φ(pc) + ñr

ñ
φ(pc),

where as before subscripts l and r denote the left and right daughter nodes formed
by the split. The numbers of cases YF = 1 in the daughters are ñl and ñr , where
ñ = ñl + ñr . The numbers of these cases where Y I = 1 in the left and right
daughters are denoted by ñ1,l and ñ1,r respectively. It can be shown that minimizing
θc(Y

F , Y I , xm, s) is equivalent to maximizing

gc(Y
F , Y I , xm, s) = ñ2

1,l

ññl

+ ñ2
1,r

ññr

.

We can define

Gc(Y
F , Y I , xm) = gc(Y

F , Y I , xm, scmax)

for ranking variables, where scmax = arg maxs gc.
Now because gc(Y

F , Y I , xm, s) conditions on YF = 1, it is not designed to
identify signal affecting YF . To resolve this, define the conditional weighted split
statistic

gcw(YF , Y I , xm, s) = 1

wF + wI

[
wF · g(YF , xm, s) + wI · gc(Y

F , Y I , xm, s)
]

for detecting features that affect both YF and Y I . Observe that when wF =
wI = 1, this becomes an unweighted split statistic and will be denoted by
gcu(Y

F , Y I , xm, s).
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Weighted indices can be calculated as wF =∑n
i 1{YF

i =1} and wI =∑n
i 1{Y I

i =1},
which adjust for the fact that there are always more obese cases for YF than Y I . The
maximum value for the conditional weighted split statistic is

Gcw(YF , Y I , xm) = gcw(YF , Y I , xm, scwmax),

where scwmax = arg maxs gcw. In a likewise fashion, define the maximum condi-
tional unweighted split statistic Gcu(Y

F , Y I , xm).
Figure 2 displays: (a) gc(Y

F , Y I , xm, s), (b) gu(Y
F , Y I , xm, s), (c) gcu(Y

F , Y I ,

xm, s), and (d) gcw(YF , Y I , xm, s) for variables x1, x4, and x10 from the simula-
tion (1)–(2). Variable x4 affects the conditional probability P(Y I = 1|YF = 1),
which is plotted in purple color. Returning to the point made earlier regarding
Fig. 1b, when comparing Fig. 2a to Fig. 1b, we find gc(Y

F , Y I , x4, s) characterizes
x4 better than g(Y I , x4, s) as the maximum value is closer to the true splitting
point 0.5. Another point to observe is that the goal of gu(Y

F , Y I , xm, s) and
gcu(Y

F , Y I , xm, s) is to detect features associated with YF and/or Y I . How-
ever, gu(Y

F , Y I , xm, c) in (b) is less effective than gcu(Y
F , Y I , xm, s) in (c)

because it ranks x4 similarly to noise variable x10 (shown in orange). In contrast,
gcu(Y

F , Y I , xm, s) in (c) and the weighted gcw(YF , Y I , xm, s) in (d) properly rank
x4 as more informative than x10. In fact, the weighted split statistic tends to do an
even better job.

Figure 3 displays maximum Gini split statistics for all p = 10 variables averaged
over 100 independent replications. For convenient calibration, the averaged split
statistic for the noise variable x7 is used as a selection cutoff. When comparing
subfigures (c) with (b), we see that Gc(Y

F , Y I , xm) performs better in terms
of selecting the true signals, x4, x5, and x6, than G(Y I , xm). When comparing
subfigures (f) with (d), we observe that the weighted Gini split statistic utilizing
the conditional Gini index, Gcw(YF , Y I , xm), outperforms the simple averaged
Gini split statistic, Gu(Y

F , Y I , xm), in selecting the true signal variables x1, . . . , x6
(in (d) the informative variable x6 is not selected, whereas the noise variable
x10 is selected). The performances of Gcu(Y

F , Y I , xm) and Gcw(YF , Y I , xm) are
roughly similar except that noise variable x10 is less likely to be chosen using
Gcw(YF , Y I , xm). Thus as before, the weighted split statistic tends to do a better job.
Finally, when comparing subpanel (f) to (a) notice that Gcw(YF , Y I , xm) is as good
as G(YF , xm) in identifying variables x1, x2, x3 related to YF . However, this does
not mean G(YF , xm) is not useful, since when combined with Gcw(YF , Y I , xm) it
allows one to detangle variable relationships with the two outcomes.

4 Variable Importance

Another effective tool for variable selection is variable importance (VIMP). The
permutation VIMP for a variable xm is the prediction error for the model sub-
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Fig. 2 Multivariate split statistics for x1, x4, and x10 from simulation (1)–(2). Curves dis-
played are: (a) gc(Y

F , Y I , xm, s), (b) gu(Y
F , Y I , xm, s), (c) gcu(Y

F , Y I , xm, s), and (d)
gcw(YF , Y I , xm, s) with maximum statistic marked by a square point

tracted from the prediction error for the model using data that randomly permutes
xm [7]. This procedure can be implemented over independent bootstrap samples
and the value averaged to obtain a more stable estimator [7]. More formally, let
P̂E(Y ) be the averaged out-of-sample (called out-of-bag and abbreviated as OOB)
misclassification error for the original model. Let P̂E(Y, x∗

m) be the averaged OOB
misclassification error when xm is randomly permuted. The VIMP for xm is

I (Y, xm) = P̂E(Y, x∗
m) − P̂E(Y ).

To determine if variables affect the conditional probability P(Y I = 1|YF = 1),
we define a conditional VIMP analogous to the conditional Gini index. Conditional
VIMP is calculated by restricting the data to those cases where YF = 1. The
conditional VIMP index for xm is
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Fig. 3 Variable ranking from maximum split statistics for simulation (1)–(2) repeated 100 times
independently. Dashed line is the averaged value of maximum Gini split statistic for noise variable
x7 that represents a convenient cut-off value

Ic(Y
I , xm) = P̂Ec(Y

I , x∗
m) − P̂Ec(Y

I ).

Figure 4 displays VIMP for all p features for our simulation. Values have been
averaged over 100 independent replications. Unconditional VIMP, I (YF , xm), for
YF displayed in subpanel (a) successfully ranks the true signal variables x1, x2
and x3 as the most informative. When comparing subpanel (c) to (b), we see that
conditional VIMP, Ic(Y

I , xm), is better at selecting true signal variables x4, x5, and
x6 than unconditional VIMP, I (Y I , xm). In subfigure (b), VIMP for x1 is very large
and would lead to incorrect selection compared with (c).
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Fig. 4 Variable importance from simulation (1)–(2) averaged over 100 independent replications

5 Analysis of Obesity Using Microbiome Data

Now we return to the microbiome obesity data described earlier (n = 142 and
p = 174). Outcomes were coded as before: Y I = 0 represents a lean individual,
Y I = 1 an obese individual, YF = 0 signifies an individual from a family with
all lean members, and YF = 1 indicates an individual from a family where at least
one member is obese. Table 1 of the Appendix provides convenient abbreviated
names for features. The features were originally coded using names of kingdom,
phylum, class, order, family, genus, and species separated with a dash line and
capital letter [9]. In order to make the name shorter for the figures, we use Table 1 to
shorten the name for some classification labels. However to avoid duplication, we
did not shorten all names. Therefore, some x-labels in Fig. 5 use full classification
names.

Figure 5 displays split statistics for 6 representative features, chosen to illustrate
how host and environmental factors affect the gut microbiome. Univariate split
statistics g(YF , xm, s) for the family outcome YF are shown using red lines,
and conditional split statistics gc(Y

F , Y I , xm, s) are displayed using orange lines.
Bivariate split statistics, gcu(Y

F , Y I , xm, s) and gcw(YF , Y I , xm, s), lie between
these two lines. Recall when optimal split points appear toward the edge of feature’s
range that this is a sign of a noisy feature (referred to as the ECP property [6]).

Subfigures (a), (b), (c) represent features informative for the environmental
outcome YF . In all three figures, g(YF , xm, s) takes large values across the range
of feature values. However, these three features are not informative for P{Y I =
1|YF = 1} as gc(Y

F , Y I , xm, s) is near zero in all instances. Thus, they do
not reflect how host adiposity influences the gut microbiome under environmental
exposure.
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Fig. 5 Split statistics for microbiome obesity data. Shown are 6 representative variables illustrat-
ing how taxonomic groups predict obesity risk at the family level (shown using the univariate Gini
split statistic on YF , g(YF , xm, c), plotted in red) and at the individual level (shown using the
univariate conditional Gini split statistic gc(Y

F , Y I , xm, c), plotted in orange). Variable names are
abbreviated according to Table 1
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Subfigures (d) and (e) represent features that are informative for both YF =
1 and P{Y I = 1|YF = 1} as both g(YF , xm, s) and gc(Y

F , Y I , xm, s) assume
relatively large values. These features identify influences from both environmental
exposure and host adiposity. For (d), the two maximum split statistics are nearly the
same, which suggests that effect of environmental exposure and host adiposity is
roughly the same for this feature. For (e), gc(Y

F , Y I , xm, s) attains a much larger
maximum statistic than g(YF , xm, s) at a higher feature value. This suggest the
effect of environmental exposure and host adiposity depends on the feature value,
for example, whether the feature value is larger than 500 or 1000.

Subfigure (f) is a feature that mainly reflects the influence from host adiposity,
rather than environmental exposure. This is because values of g(YF , xm, s) are
overall small and its optimal split point is close to the edge of its range, signaling
that it is likely a noisy variable for YF .

The values of G(YF , xm) and Gc(Y
F , Y I , xm) are given in Fig. 6. The sizes

of circles are scaled proportional to Gcw(YF , Y I , xm). Phylum groups are used to
color circles. It is interesting to note that features informative for YF = 1 and
P{Y I = 1|YF = 1} belong primarily to the Fusobacteria phylum. Generally, the
values of Gc(Y

F , Y I , xm) are smaller than G(YF , xm). However, when they are
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weighted to obtain Gcw(YF , Y I , xm), we can see that there is a nice balancing of
values.

Finally, Fig. 7 displays unconditional VIMP, I (YF , xm), and conditional VIMP,
Ic(Y

I , xm), for all p variables. Many variables have small or negative values, thus
showing that VIMP can be used as an effective means to dimension. Note that due
to invariance of trees under monotonic transformations of features, split statistics
and VIMP are invariant to the magnitude of the feature values. For split statistics,
it is the quantile of the split that makes a difference. Thus, we did not normalize
independent variables, which were OTU count values [9].

Our results are consistent with previous studies. Turnbaugh et al. [15, 16] found
that obesity is associated with phylum-level changes in the microbiota. We found
the same as displayed in Fig. 6. Moreover, our findings (see Fig. 5) have shown that
changes occur differently at the family and individual levels. A similar finding was
observed in a study of high-fat diet-induced obesity and diabetes in mice [4]. This
study found a high-fat diet-altered proportion of Bacteroides-related bacteria and
reduced Bifidobacteria (Gram-positive, phylum Actinobacteria).

We carefully note that our analysis can only establish an association between
microbiome and obesity [14] and not causation. Casual inference is far more
demanding, and further studies would be needed to be able to move beyond
associative analyses [10].

6 Discussion

Fast nonparametric selection of features that accounts for correlation in paired data
is a valuable tool for microbiome data analysis. Variable selection procedures can
choose features that reflect influences from external effects (between pairs) and
internal effects (within pairs), but without taking into account the paired structure of
the data, they will be inefficient in separating the two types of effects. Our proposed
conditional Gini split statistic, when used alone or averaged with univariate Gini
split statistics, serves two purposes. First, the maximum value of the split statistic
can be used for variable ranking and variable selection. Conditional Gini is able
to select variables reflecting how the microbiome is affected by host adiposity
given the same environmental exposures. Second, how the value of the split statistic
varies within a feature provides useful insight into the magnitude of the external
and/or internal effects. The optimal split point for conditional Gini represents
the threshold that a feature can separate lean and obese individuals given the
same environmental exposure. We demonstrated these two aspects in a systematic
comparative simulation and through a real data application. We found that the paired
structure of the data played a very strong role in performance of our methods.
Without controlling for family level of obesity, features that only affect individual
level of obesity are often noticeably masked.
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There are other variable selection procedures designed for multivariate outcomes.
However, in big data settings, computational speed plays a key role. Practically
speaking, the best method is not always optimal for the researcher because com-
putational times can be too long. Our Gini split statistics can be rapidly computed
for a large number of features in big data settings, and because the calculations are
univariate, the procedure could be parallelized to further reduce runtimes. Users
can simulate a noise feature to determine the cutoff for screening noise variables.
Potentially, our Gini indices can be used as tree splitting rules so that all the features
can be taken into consideration together. Moreover, our approach could leverage
powerful machine learning methods such as random forests and boosting to provide
a direct approach to analyze paired data. Another potential improvement to our work
would be to use additional data to study the effect of number of individuals on YF . In
the analysis we used, all families have 2 or 3 individuals, which made it impossible
for us to study the effect of number of individuals.

Acknowledgments This work was supported by the National Institutes of Health (grant numbers
R01 CA200987 and R01 HL141892 to H.I.).

Appendix

See Table 1 and Fig. 7.

Table 1 Abbreviated feature names for microbiome obesity data

Abbrev. Full form Abbrev. Full form

kB k-Bacteria oBi ..o-Bifidobacteriales

pF ..p-Firmicutes oE ..o-Erysipelotrichales

pA ..p-Actinobacteria oL ..o-Lactobacillales

pB ..p-Bacteroidetes fB ..f-Bifidobacteriaceae

pC ..p-Cyanobacteria fBa ..f-Bacteroidaceae

pF ..p-Fusobacteria fC ..f-Coriobacteriaceae

pP ..p-Proteobacteria fL ..f-Lactobacillaceae

pS ..p-Synergistetes fLach ..f-Lachnospiraceae

cA ..c-Actinobacteria fM ..f-Micrococcaceae

cB ..c-Bacteroidia fP ..f-Porphyromonadaceae

cBci ..c-Bacilli fPe ..f-Peptostreptococcaceae

cC ..c-Clostridia fPr ..f-Prevotellaceae

cCor ..c-Coriobacteriia fR ..f-Ruminococcaceae

cE ..c-Erysipelotrichi fRi ..f-Rikenellaceae

oA ..o-Actinomycetales fS ..f-Streptococcaceae

oC ..o-Clostridiales fV ..f-Veillonellaceae

oCor ..o-Coriobacteriales gB ..g-Bifidobacterium

oB ..o-Bacteroidales gC ..g-Corynebacterium
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kBpFcCoC..f−Peptococcaceae..g ...
kBpFcCoC..f−Christensenellaceae..g ...
kBpBcBoB..f−.Barnesiellaceae. ...
kBpAcCoroCorfC..g−Collinsella..s ...
kBpFcCoC..f−Clostridiaceae..g ...
kBpFcCoCfV..g−Megasphaera ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcCoCfR
kBpFcCoCfLach..g−Lachnospira ...
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Fig. 7 Variable ranking using VIMP for microbiome data of obesity. Variables with higher value
on the left reflect how the gut microbiome is influenced by environmental factors. Variables with
higher values in the right reflect how gut microbiome is affected by host adiposity given the
environmental exposures
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Networks for Compositional Data

Jing Ma, Kun Yue, and Ali Shojaie

1 Introduction

Networks and network models are ubiquitously used in biomolecular research and
systems biology to capture the interactions among components of biological systems
[3]. By capturing interactions among genes, proteins, and metabolites, networks
have led to invaluable insight into complex mechanisms governing cellular functions
and biological phenotypes [4], as well as aberrations in these mechanisms in various
complex diseases [79].

Microbes are known to interact with each other as members of microbial
communities. These complex interactions, including mutualism, commensalism,
parasitism, amensalism, and competition [54], can be compactly captured through
microbial interaction networks. Thus, with the advent of high-throughput tech-
nologies, particularly 16s rRNA and metagenomics sequencing, the microbiome
research community is increasingly interested in modeling, inferring, and analyzing
microbial interaction networks.

The analysis of microbial interaction networks presents unique challenges. On
the one hand, the existing knowledge of microbial interactions is incomplete,
covering a small subset of possible interactions among hundreds of thousands of
microbes identified in humans [24]. On the other hand, microbial communities and
interactions are inherently dynamic [18], varying in different biological/physiolog-
ical conditions and in different organisms/environments. Thus, to understand how
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microbes interact with each other and how changes in these interactions may lead to
various diseases/phenotypes, efficient and accurate methods for inferring microbial
interaction networks from microbial abundance data are necessary.

Network inference is a fundamental but challenging problem in computational
biology [62]. At its core, this problem is related to identifying associations among
random variables. As such, the plethora of existing network inference procedures
can be broadly categorized based on the types of association they consider. The
simplest and most widely used approach is to infer biological interactions based on
the (Pearson) correlation coefficient between each pair of variables [94]. Despite
its simplicity, this approach has two key limitations: (1) correlation coefficient only
captures linear associations between a pair of variables and is thus not appropriate
for capturing complex nonlinear associations commonly observed in biology and (2)
correlation coefficient may not distinguish between direct and indirect associations
among variables. For instance, abundances of two microbes that are in mutualism
relationships with a third microbe would likely be significantly correlated, even if
the two microbes do not have a direct ecological relationship.

The first limitation of Pearson correlation can be (partially) mitigated by using
rank-based correlation measures, such as Spearman correlation and Kendal’s tau. As
a more flexible alternative, semi- and non-parametric measures of associations, such
as mutual information [59] and kernel-based tests of association [86], can be used to
capture more complex interaction mechanisms; however, these flexible approaches
require larger sample sizes and additional computation. The second limitation of
Pearson correlation can also be addressed by considering conditional measures
of association that aim to capture the dependence among each pair of variables
conditioned on other variables. Estimating conditional associations is generally
more challenging than estimating marginal associations. However, developments
in regularized estimation [21] and graphical modeling [57] have led to significant
advances in this area over the past decade [20].

The two classes of approaches described above, namely those based on marginal
and conditional associations, have also been used to infer microbial interaction
networks from high-throughput abundance data. However, due to challenges in
normalization and sample preparation, microbial activities are often measured via
relative abundances [49], wherein microbial measurements across each sample
add to one. This compositional nature of microbiome data [34] leads to spurious
(negative) correlations among taxa that render existing network inference proce-
dures inaccurate. A number of recent procedures aim to overcome this challenge
by developing tailor-made network estimation procedures for high-dimensional
compositional data.

Recently proposed methods for inferring microbial networks utilize different
strategies and focus on different aspects of the problem. Choosing the appropriate
method requires a systematic comparison of their performances in different settings
(e.g. with different sample sizes and a different number of microbes). Such compar-
isons are particularly important given the paucity of gold standards for microbial
interactions and the challenges of experimentally validating inferred microbial
interactions [15]. However, generating realistic microbiome data—i.e. relative
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abundances corresponding to complex interaction mechanisms—is challenging.
This challenge is compounded with the general difficulty of evaluating network
inference procedures due to the variety of performance measures that can be used to
compare two networks [74]. As such, systematic comparisons of existing methods
are currently lacking.

In this chapter, we review commonly used procedures for inferring microbial
interaction networks. This includes methods based on both marginal and conditional
associations. We also present a comprehensive evaluation of these methods using
two classes of simulated data sets: first, we evaluate whether each procedure
can correctly identify a null model with no interactions. Second, we evaluate
the performance of each method in detecting edges in simulated networks using
data from two parametric models for compositional microbiome data. Together,
these evaluations provide informative guidelines for practitioners on the appropriate
choice of methods for inferring microbial networks.

The rest of this chapter is organized as follows. Section 2 reviews the methods
for inferring microbial interaction networks, including well-known methods based
on marginal and conditional associations among microbes. In Sect. 3, we present
our data generation and simulation framework, including both null models, as well
as in silico compositional data from simulated networks. Results of our simulation
studies for comparing the existing procedures are presented in Sect. 4. We end with
a discussion of future research directions in Sect. 5.

2 Methods

Table 1 provides an overview of the methods considered in this chapter for inferring
microbial networks. ReBoot, SparCC, CCLasso, and COAT estimate the marginal
association network via correlations, whereas SPIEC-EASI, gCoda, and SPRING
estimate the conditional association network defined by partial correlations. Of
all methods, only ReBoot and SparCC quantify the uncertainty of the inferred
associations. All methods are implemented in R.

Table 1 Microbial network estimation methods considered in this chapter. CCLasso, COAT, and
gCoda are available as R functions available at the authors’ GitHub pages

Method Output Error calls R implementation Reference

ReBoot Correlation Inference ccrepe 1.20.0 [25]

SparCC Correlation Inference SpiecEasi 1.1.0 [31]

CCLasso Correlation Estimation huayingfang/CCLasso [22]

COAT Correlation Estimation yuanpeicao/COAT [9]

SPIEC-EASI Partial correlation Estimation SpiecEasi 1.1.0 [46]

gCoda Partial correlation Estimation huayingfang/gCoda [23]

SPRING Partial correlation Estimation SPRING 1.0.3 [89]
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2.1 Learning Networks from Marginal Associations

Let W i = (Wi,1, . . . ,Wi,p)ᵀ be the unobserved counts of p taxa in one environ-
mental sample, where the superscript ᵀ denotes the transpose of a vector. Of key
interest is the covariance �0 = Var(log W i ) = (σ 0

j,k)p×p, which provides valuable
insights into the ecological interactions among microbial taxa [15]. If the absolute
abundances W i are available, then marginal association measures such as Pearson
and Spearman correlations offer a convenient approach for defining microbial
correlation networks. Despite efforts into quantifying the total microbial load
from environmental samples [77, 78], absolute abundances are typically unknown.
Instead, the observed counts Y i = (Yi,1, . . . , Yi,p)ᵀ are related to the latent absolute
counts via the normalization

Yi,j

mi

= Xi,j = Wi,j∑p

k=1 Wi,k

, j = 1, . . . , p, (1)

where mi = ∑p

k=1 Yi,k is the subject-specific total read count and Xi,j reflects the
proportion of the j th taxon in the ith sample. Importantly, the total number of reads
mi is an artifact of sample processing and carries no information about the total
microbial load in the sample. In other words, microbiome data are compositional,
and spurious correlations may arise simply due to the compositionality constraint
[65].

As a toy example, we generated 100 independent replicates of latent counts W i

from a community with 3 bacterial taxa. The absolute abundance of each taxon
is sampled independently from a negative binomial distribution with a mean of
150 and dispersion parameter of 0.25. Although the taxa are independent, naive
application of Pearson correlations on the relative abundances Xi would suggest
significant negative associations between some taxa, as shown in Fig. 1.

Several recent methods address this challenge of spurious correlations by cor-
recting the associations induced from the compositional effects. Below we describe
in details four such methods.

2.1.1 ReBoot

One of the most commonly used methods for microbial network inference is
ReBoot [25]. This method combines permutation–renormalization and bootstrap to
assess the significance of pairwise associations for compositional data. For a user-
specified (dis)similarity measure (e.g. Pearson/Spearman correlation, Bray–Curtis
and Kullback–Leibler dissimilarities), ReBoot uses permutation–renormalization to
construct a null distribution of expected association due solely to compositionality.
Specifically, for each pair of taxa, ReBoot permutes the relative abundance of
one taxon, renormalizes the abundance of each sample by its total, and computes
the (dis)similarity between the two taxa. ReBoot uses bootstrap to construct the
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Fig. 1 Illustration of spurious correlations between log-transformed relative abundances of 3
independent taxa. The marginal distribution of each taxon is shown along the diagonal. The upper
panels show the Pearson correlation between each pair of taxa, where stars indicate that the p-value
of the correlation test is less than 0.01 (∗∗) or 0.001 (∗∗∗). The lower panels show the scatter plots
of log-transformed relative abundances. A pseudocount of 1 was added to all counts to prevent
from taking logarithm of zeros

alternative distribution, which reflects the confidence interval around observed
association. To assess the significance of each pairwise association, ReBoot tests
whether the two distributions have the same mean using a z-test with pooled
variance. The method requires specifying the association measure and the number of
bootstrap subsamples. It is also possible to build a consensus network using multiple
association measures [25, 81].

ReBoot is implemented in the Bioconductor package ccrepe [71]. This
function takes as input proportion data, which can be obtained by the total sum
normalization. By default, ReBoot uses the Spearman correlation as the similarity
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measure among taxa and 1000 bootstrap subsamples to evaluate the significance for
each entry of the correlation network.

2.1.2 SparCC

SparCC [31] aims to estimate the latent correlation ρ0 = (ρ0
j,k)p×p = Cor(log W i )

by exploiting the connection between ρ0
j,k and the Aitchison variation [1]

Tj,k = Var

(
log

Xi,j

Xi,k

)
.

By scale invariance,

Tj,k = σ 0
j,j + σ 0

k,k − 2ρ0
j,k

√
σ 0

j,j σ
0
k,k. (2)

Exact solution to (2) is infeasible without additional assumptions because the latent
variances are unknown. The SparCC algorithm provides an approximate solution by
assuming that the average correlation between each taxon and other taxa is small.
This assumption allows one to solve for the approximated variance σ 0

j,j using p

equations

p∑

k=1

Tj,k ≈ (p − 1)σ 0
j,j +

∑

k:k �=j

σ 0
k,k, j = 1, . . . , p. (3)

Given estimates of σ 0
j,j for j = 1, . . . , p, the correlation ρ0

j,k follows immediately
from Eq. (2).

When calculating the Aitchison variation Tj,k , SparCC takes advantage of the
observed counts Y i to obtain robust estimates of taxa correlations. Assuming that
the counts Y i are generated by multinomial sampling of the proportions Xi and a
uniform prior, SparCC obtains the posterior distribution of Xi given observed Y i .
The algorithm then repeatedly draws proportions from this posterior distribution
and estimates the taxa correlations, generating a distribution of each pairwise cor-
relation. SparCC takes the median value of each correlation distribution as the final
estimate. To handle scenarios where the assumption of small average correlation is
violated, Friedman et al. [31] also introduced the iterative SparCC algorithm, which
uses an iterative procedure to remove pairs of taxa whose correlation exceeds a given
threshold. Finally, SparCC evaluates the significance of the inferred correlations
using a bootstrap procedure.
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2.1.3 CCLasso

Because SparCC only provides an approximate solution to (2), its correlation
estimate is not guaranteed to be positive definite. To address this limitation, Fang
et al. [22] proposed CCLasso to estimate all entries in the latent covariance �0

simultaneously. For a compositional vector Xi with Xi,j > 0, let

Zi =
(

log
Xi,1

g(Xi )
, . . . , log

Xi,p

g(Xi )

)ᵀ

denote its centered log-ratio (clr) transformation, where g(X) stands for the
geometric mean of X. Let F = Ip−1p1

ᵀ
p/p, where Ip is the p-dimensional identity

matrix and 1p is a p-dimensional vector of ones. Let �X = Var(log Xi ) denote the
population covariance of log Xi and �̂X be its sample version. By scale invariance,
Zi = F log Xi = F log W i . It follows immediately that

F�XF = F�0F, (4)

because F is symmetric. Assuming that �0 is sparse, CCLasso leverages Eq. (4)
and proposes the �1 penalized estimator

arg min
��0

⎡

⎣1

2
tr
{
F(� − �̂X)FV F(� − �̂X)F

}
+ λ

∑

j �=k

|σj,k|
⎤

⎦ . (5)

Here, tr(·) denotes the matrix trace operator, V = {diag(F �̂XF)}−1, λ > 0 is a
regularization parameter that promotes sparsity in the solution, and � � 0 indicates
that � is positive definite. The optimization in (5) can be solved by the alternating
direction method of multipliers (ADMM) algorithm [7]; the tuning parameter λ can
be selected via cross-validation.

The sparsity assumption underlying CCLasso is stronger than that used in
SparCC, which assumes small average correlation between each taxon and its
neighbors. Nevertheless, the solution from CCLasso is guaranteed to be a well-
defined correlation matrix. Another key difference between SparCC and CCLasso
is that the latter takes as input positive proportion data. Positive taxa proportions can
be obtained by adding a pseudocount of 1 to all count values and applying total sum
normalization.

2.1.4 COAT

COAT [9] is another method that learns the latent covariance �0 assuming that it
meets certain sparsity assumptions. Unlike CCLasso, COAT leverages the fact that
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the covariance of the clr-transformed vector �0 = Var(Zi ) is related to �0 via the
relationship

�0 = F�0Fᵀ. (6)

It is then shown that the maximum entrywise difference between �0 and �0 is
asymptotically negligible for large and sparse covariance matrices. Therefore, for
large p, sparse �0 can be approximately identified by �0.

This observation motivates the COAT estimator [9] defined as follows. Let
�̂ = (γ̂j,k) denote the sample covariance of the clr-transformed matrix Zi . Compute
the variance estimate θ̂j,k = n−1∑n

i=1(Zi,j,k − γ̂j,k), where Zi,j,k = (Zi,j −
Z̄j )(Zi,k − Z̄k) and Z̄j denotes the sample mean of the j th taxon. Let Sλ(·) be
a general thresholding function that satisfies (a) Sλ(z) = 0 for |z| ≤ λ and (b)
|Sλ(z)−z| ≤ λ for all z ∈ R. The COAT estimator of the target covariance matrix is

then σ̂j,k = Sλj,k
(γ̂j,k) with λj,k = δ

√
θ̂j,k . The tuning parameter δ > 0 is selected

via cross-validation.

2.2 Learning Networks from Conditional Associations

A major limitation of marginal association measures is that they cannot distinguish
direct interactions from indirect ones [17, 73]. Two taxa that are indirectly connected
in the network may still be correlated. Conditional associations, such as partial
correlations [2], measure the direct interactions between two taxa after removing
the indirect effects from other taxa in the community. As a result, while networks
estimated based on marginal association measures are used in practice, they may
include false positive edges. A simple remedy is to use the correlation estimates
obtained from methods based on marginal association to infer conditional associ-
ations, using, for example, the graphical lasso algorithm [32]. However, as noted
earlier, not all methods yield a valid correlation estimate. In this section, we describe
three methods that directly estimate conditional associations from compositional
microbiome data.

2.2.1 SPIEC-EASI

A popular approach of modeling the unknown absolute counts W i is to use a
log-normal distribution. This continuous approximation to the latent count data
works well in a variety of settings [58, 64]. Under the log-normal model, the
inverse covariance matrix �0 = (ω0

j,k)p×p = (�0)−1 defines a conditional
association graph among the taxa; that is, there is an edge between taxa j and
k if and only if ω0

j,k �= 0. Therefore, SPIEC-EASI [46] aims to estimate a
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partial correlation network defined by the inverse covariance �0. Because the
absolute abundances are unknown, SPIEC-EASI exploits the relationship in (6)
and estimates �0 approximately by (�0)−1 from the clr-transformed data Zi . In
high-dimensional settings, where the number of variables exceeds the sample size,
the sample covariance �̂ is not invertible. To address this challenge, SPIEC-EASI
solves for a sparse �0 using neighborhood selection [61] or the penalized maximum
likelihood estimation [32, 69]. Both approaches can asymptotically recover the
partial correlation network structure provided that the true network in �0 satisfies
certain assumptions [20]. We use the latter approach by solving the following
optimization problem:

�̂ = arg min
��0

⎧
⎨

⎩
tr(��̂) − log det(�) + λ

∑

j �=k

|ωj,k|
⎫
⎬

⎭
, (7)

where λ > 0 is a regularization parameter that controls the sparsity in �. We choose
the tuning parameter λ based on stability selection [52, 96].

It is worth noting that the performance of SPIEC-EASI (and COAT) depends
on how well �0 can be approximated by �0. However, Eq. (6) implies that
the approximation error tr(�0 − �0) is determined by the spectral properties
of the covariance �0. When taxa are highly correlated and/or when there is
heteroscedasticity among the latent abundances [43], �0 can have a large condition
number, in which case SPIEC-EASI (and COAT) may perform poorly [23].

2.2.2 gCoda

Unlike SPIEC-EASI that only approximately estimates the inverse covariance
matrix, gCoda estimates �0 directly from the relative abundances [23]. Denote
by Mi = ∑p

j=1 Wi,j the unknown total absolute abundance. By definition,
log Xi,j = log Wi,j − log Mi for j = 1, . . . , p. Assuming that the unknown
absolute abundances log W i follow a log-normal distribution with mean μ and
inverse covariance �0, the joint distribution function of (Xi , log Mi) is

f (Xi , log Mi) = (2π)−
p
2 |�0| 1

2 exp

{
−1

2
(log W i − μ)ᵀ�0(log W i − μ)

}
,

where log W i = log Xi + 1p log Mi . It is straightforward to derive the conditional
distribution of log Mi given Xi because log Mi = (1ᵀp�01p)−11ᵀp�0(log W i −
log Xi ). Therefore, we have the marginal likelihood function of Xi as

f (Xi ) = (2π)−
p−1

2

( |�0|
1ᵀp�01p

) 1
2

exp

{
−1

2
(log Xi − μ)ᵀQ(log Xi − μ)

}
,

(8)
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where

Q = �0 − �01p1
ᵀ
p�0

1ᵀp�01p

.

The covariance term (log Xi − μ)(log Xi − μ)ᵀ in (8) depends on the unknown
mean parameter μ and is estimated by the sample covariance �̂ of log Xi . For a
tuning parameter λ > 0, gCoda solves for a sparse �0 by minimizing the penalized
negative log-likelihood of observed relative abundances:

arg min
��0

⎧
⎨

⎩
tr
(
�̂Q

)
− log det(�) + log(1ᵀp�1p) + λ

∑

j �=k

|ωj,k|
⎫
⎬

⎭
. (9)

Compared to (7), the optimization problem in (9) has an extra term log(1ᵀp�1p)

and is solved by an efficient Majorization–Minimization algorithm [39]. The tuning
parameter λ is selected via the extended Bayesian information criterion [10].

2.2.3 SPRING

Both SPIEC-EASI and gCoda assume that the unknown absolute abundances are
well approximated by a log-normal distribution. In practice, microbial count data
are often sparse with an excess of zeros, skewed, and sometimes have multiple
modes [81]. Zeros are commonly dealt with by adding a small pseudocount to
all count values [9, 22, 23, 31, 46], which may unfairly bias rare taxa [81]. To
deal with high sparsity and non-normality, SPRING [89] uses a modified clr
transformation of zero-inflated count data. Without loss of generality, let Xi =
(Xi,1, . . . , Xi,qi

, 0, . . . , 0)ᵀ denote the observed relative abundances in the ith
sample, where only the first qi ≤ p entries are strictly positive. The modified clr
transformation is defined as follows:

mclrε(Xi ) =
(

log
Xi,1

g(Xi,1:qi
)

+ ε, . . . , log
Xi,qi

g(Xi,1:qi
)

+ ε, 0, . . . , 0

)ᵀ
,

with the adjustment

ε =
∣∣
∣∣ min
i,j :Xi,j >0

log
Xi,j

g(Xi,1:qi
)

∣∣
∣∣+ c,

for a small constant c > 0. The idea is to apply the clr transformation only to positive
proportions and shift all transformed values to be strictly positive. By doing so, mclr
preserves the original ordering of entries in the composition Xi while avoiding the
use of arbitrary pseudocounts.

The mclr-transformed abundances are zero-inflated and hence can be modeled
via the truncated Gaussian copula model. The correlation of this copula model
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serves as a surrogate for the desired correlation �0. SPRING uses a rank-based
estimator for �0 [90] and estimates the partial correlation network using the
graphical lasso in (7). As done in SPIEC-EASI, the tuning parameter is chosen via
stability selection [52, 96].

3 Data-Generating Models

To reflect the complexity of microbial abundance data, we generated benchmark
data sets from the American Gut Project [60] and synthetic data sets from parametric
distributions. These data sets cover a wide range of settings with various sample
sizes and numbers of taxa.

3.1 Null Models

We use two null models to assess how various methods handle spurious (partial)
correlations induced by the compositional constraint.

In the first model, we generated benchmark data sets using the American Gut
Project data available in the R package SpiecEasi. This data set consists of the
count abundances of 127 taxa from 289 observations. The total number of reads per
observation ranges from 12,007 to 42,331, and the percentage of zeros is about
31%. We first processed this data set to ensure even depth across observations.
To this end, we rarefied this data set such that the total number of reads is 1000
for all observations, using the “rarefy_even_depth” function in the phyloseq R
package. Rarefaction also increased the percentage of zeros in the data to be about
60%, which allows evaluation of all methods under high sparsity scenarios. For
each taxon, we fit a zero-inflated negative binomial (ZINB) model to its rarefied
counts and generated new counts under the fitted model for various sample sizes.
The ZINB model is justified because it adequately describes the over-dispersion
of observed taxa counts [46]. Importantly, we sampled the abundance of each taxon
independently so as to create a null setting with no correlations. The abundance table
generated in this fashion has roughly equal number of reads across observations.
To reflect the large variation in sequencing depth often seen in practice [78], in
the last step, we multiplied each observation by an integer uniformly sampled
between 1 and 10. The final abundance table is of size p × n, where p = 127
and n ∈ {100, 200, 300, 500}.

In the second model, the abundance table was generated from the Dirichlet-
multinomial (DM) distribution, which is commonly used to model microbial
count data [11, 37]. The Dirichlet distribution imposes compositional constraint on
observed counts but still defines a null model because it is equivalent to normalized
independent Gamma processes. For p = 200 and n ∈ {100, 200, 300, 500}, we first



322 J. Ma et al.

sampled absolute abundances Wi,j from a log-normal distribution with mean μj and
standard deviation 1.5, where μj ∼ Unif[0, 4]. We then computed the compositions

φi,j = exp(Wi,j )∑p

k=1 exp(Wi,k)

and generated count data from the DM distribution DM(mi, αφi,1, . . . , αφi,p).
Here, α = 100, and the depth mi was sampled uniformly between m0 and 10m0,
where m0 = 12,007 is the minimum sequencing depth in the American Gut Project
data set.

3.2 Copula Models

The copula model [46] allows one to generate taxa counts with a pre-specified
correlation matrix and marginal distributions. We used this model to assess the
sensitivity and specificity of various network estimation methods. To this end, we
first constructed a p × p precision matrix �0, whose structure was generated as
an Erdős-Rényi random graph with 3p edges. Off-diagonal entries of �0 were
uniformly sampled from [−3,−2] ∪ [2, 3]. The positive definiteness of �0 was
guaranteed by setting the diagonal entries to be

|�min(�
0 + Ip)| + c, (10)

where �min(A) denotes the smallest eigenvalue of the matrix A and the constant c

determines the condition number of �0. The correlation matrix �0 is then given by

�0
j,k = (�0)−1

j,k√
(�0)−1

j,j (�
0)−1

k,k

.

Given the correlation, we used the rarefied taxa counts and the ZINB model
described in Sect. 3.1 to generate the marginal counts for each taxon. We generated
p = 127 taxa with varying sample size n ∈ {100, 200, 300, 500}. To reflect the
variation in sequencing depth, we also scaled the counts in each observation as
described in Sect. 3.1.

Note in practice we do not know the (partial) correlations among taxa, nor
do we know how well conditioned the (inverse) covariance matrix is. When the
number of features p is large, the empirical covariance matrix is known to be poorly
conditioned [82]. For example, the empirical covariance of the American Gut data
after clr transformation has a condition number 1018, because its smallest eigenvalue
is very close to zero. To avoid generating poorly conditioned �0, we set the constant
c in (10) such that the resulting �0 has a condition number 1000, which is similar
to the ratio between the largest and the second smallest eigenvalues of the empirical
covariance.
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3.3 Logistic-Normal Model

In addition to the copula model, we also generated continuous relative abundance
data from the logistic-normal distribution for a pre-specified partial correlation
matrix. For p = 200 and n ∈ {100, 200, 300, 500}, we sampled the absolute
abundances W i from a log-normal distribution with mean vector μ and covariance
matrix �0. The mean parameter is μj ∼ Uniform(0, 4), j = 1, . . . , p, and the
covariance matrix �0 was generated following the procedure described in Sect. 3.2.
The observed relative abundances Xi are defined as

Xi,j = exp(Wi,j )∑p

k=1 exp(Wi,k)
, j = 1, . . . , p,

for all i = 1, . . . , n.

4 Results

Under the null models, all taxa are independent in both marginal and conditional
associations. Because most methods only provide estimates of (partial) correlations,
we evaluated whether they detect any spurious (partial) correlations by calculating
the false positive rate

FP

p(p − 1)/2
, (11)

where FP stands for the number of false positives. For CCLasso and COAT, FP is
calculated by the number of pairs (j, k) for which |�̂j,k| > 0. For SPIEC-EASI,
gCoda, and SPRING, we determined FP by counting the number of pairs for which
|�̂j,k| > 0. ReBoot and SparCC conduct inference and return the p-values for
testing the null H0 : �0

j,k = 0 for all 1 ≤ j < k ≤ p. Thus, FP is determined by the
total number of p-values that are less than 0.05.

Under the alternative models, we compared the performance of all methods
except ReBoot in estimating the partial correlation network. While acknowledging
the fact that SparCC, CCLasso, and COAT are not optimized to estimate partial
correlations, to provide a fair comparison, we evaluate all methods based on the
same target. To this end, we augmented SparCC, CCLasso, and COAT with an
additional step to estimate a partial correlation network. Specifically, given an
optimal correlation estimate �̂, the partial correlation network can be solved by
the graphical lasso in (7). ReBoot was excluded because it is inference-based and
does not provide an estimate of the correlation or partial correlation matrix. We
used the receiver operating characteristic (ROC) curve [30] to assess each method’s
sensitivity and specificity in estimating the true network. The ROC curve is a plot of
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the false positive rate (FPR) against the true positive rate (TPR). Let FPR and TPR
be defined, respectively, as

FPR = FP

FP + TN
, TPR = TP

TP + FN
,

where FP, TP, FN, and TN refer to the number of false positives, true positives,
false negatives, and true negatives, respectively. Given the true network �0 and an
estimate �̂, we declare a true positive between taxa j and k if |�̂j,k| > 0 and
|�0

j,k| > 0.

4.1 Spurious (Partial) Correlations

Figure 2 shows the average false positive rates of various methods from 100
replications under the two null models. The false positive rates of estimation-
based methods (COAT, CCLasso, SPIEC-EASI, gCoda, and SPRING) are in
general smaller than inference-based methods (ReBoot and SparCC), which can be
attributed to the small threshold used in calling a positive discovery. Still, SPRING
and gCoda occasionally yield larger false positive rates than COAT, CCLasso, and
SPIEC-EASI. Between inference-based methods, SparCC yields slightly larger false

Fig. 2 Proportion of spurious (partial) correlations for various methods under null model 1 (a)
and null model 2 (b). The x-axis shows the sample size and y-axis indicates the false positive rate,
which defines the proportion of spurious (partial) correlations
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positive rates than ReBoot, but both control the false positive rate at the nominal
significance level.

4.2 Performance in Network Discovery

Figure 3 shows the ROC curves for different methods under the copula model. All
methods except CCLasso perform well in recovering the true partial correlation
network. Importantly, SPRING shows superior performance, especially when the
sample size is large, because it explicitly accounts for the high sparsity in the
data, which is around 60%. Depending on the taxonomic level of the analysis,
microbiome data can have as many as 90% zeros [64]. We anticipate that methods
such as SPRING work well with very sparse data sets, both by accounting for the
large number of zeros and by relaxing the parametric model assumptions. SparCC
works reasonably well, because most entries in the correlation network are small.
In addition, SparCC samples taxa proportions from its posterior distribution given
observed counts, which improves robustness against sparsity in data. This is in
contrast to most methods, including CCLasso, COAT, SPIEC-EASI and gCoda,
which apply total sum normalization or clr transformation to the observed counts

Fig. 3 Average ROC curves for various methods over 20 replications under the copula model.
All methods except CCLasso show comparable performance in recovering the partial correlation
network. When the sample size is small (n = 100, 200), CCLasso performs poorly. SPRING yields
the best overall performance



326 J. Ma et al.

without accounting for the random sampling of taxa counts. Among all methods,
CCLasso performs the worst because the correlation matrix is not exactly sparse.
Both COAT and SPIEC-EASI estimate the empirical correlation matrix from the
clr-transformed data before passing it to the graphical lasso step in (7). However, the
soft thresholding step in COAT, although desirable when estimating the correlations,
may have negatively impacted its performance in estimating the partial correlation
network.

Figure 4 shows the ROC curves for different methods under the logistic-normal
model, where the data are positive proportions. With proportion data, SPIEC-EASI,
gCoda, and SPRING generally work well, whereas SparCC, COAT, and CCLasso
perform poorly. The performance of SparCC is not surprising, because it was
originally proposed to estimate correlations from count data. As is the case in
the copula model, the true correlation network is not sparse, which violates the
model assumption underlying CCLasso. So, CCLasso performs the worst among
all methods. The soft thresholding step used in COAT in estimating the empirical
correlations again has negatively impacted its performance in recovering the partial
correlation network. But the performance of COAT improved substantially with the
larger sample size, n = 500.

Fig. 4 Average ROC curves for different methods over 20 replications under the logistic-normal
model. SPIEC-EASI, gCoda, and SPRING perform well under all sample sizes. SparCC performs
poorly when the sample size is small (n = 100), whereas CCLasso did poorly across all sample
sizes. When the sample size is large (n = 500), the performance of COAT improves substantially
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4.3 Case Studies in R

In this section, we illustrate analysis of the American Gut Project data set using the
aforementioned methods.

ReBoot, SPIEC-EASI, and SPRING are available as R/Bioconductor packages,
whereas SparCC is implemented in the R package SpiecEasi. The other methods
are only available in the form of R functions, which can be downloaded from
the authors’ GitHub pages (see Table 1). We begin by importing the necessary
R/Bioconductor packages and functions.

357 library(ccrepe) # for ReBoot
358 # library(devtools)
359 # install_github("zdk123/SpiecEasi")
360 library(SpiecEasi)
361 library(pulsar)
362 # install_github("GraceYoon/SPRING")
363 library(SPRING)
364 source("cclasso.R")
365 source("coat.R")
366 source("gcoda.R")

We will use the reference data set available in the R package SpiecEasi, which
consists of counts of 127 taxa over 289 subjects. Not all methods take as input
the observed count data. We thus derive the proportion data by applying total sum
normalization to count data, both before and after adding the pseudocount.

367 data("amgut1.filt")
368 reference <- amgut1.filt
369

370 ## apply total sum normalization to observed counts
371 proportions <- sweep(reference,1,STATS = rowSums(reference),FUN="

/")
372

373 ## apply total sum normalization to zero corrected counts
374 if(any(reference==0)){
375 reference.adj = reference + 1
376 }
377 proportions.adj <- sweep(reference.adj,1,STATS = rowSums(

reference.adj),FUN="/")

We are now ready to apply the aforementioned methods to estimate the correla-
tion and partial correlation network from the reference data set. The following code
shows how to infer the correlation network:

378 ## --- ReBoot ---
379 reboot.res <- ccrepe(x = proportions)
380 reboot.qval.matrix <- reboot.res$q.values
381 diag(reboot.qval.matrix) <- 1
382 reboot.network <- adj2igraph((reboot.qval.matrix<0.01)) #

construct network by thresholding the q values
383

384 ## --- SparCC ---
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385 sparcc.res = SpiecEasi::sparccboot(data = reference, R=1000,
sparcc.params = list(iter = 20, inner_iter = 10, th = 0.1)) #
This takes a long time!!!

386 sparcc.pval.matrix <- diag(1, ncol(reference))
387 sparcc.pval.matrix[upper.tri(sparcc.pval.matrix)] <- pval.

sparccboot(sparcc.res)$pvals
388 sparcc.pval.matrix <- sparcc.pval.matrix + t(sparcc.pval.matrix)
389 sparcc.network <- adj2igraph((sparcc.pval.matrix<0.05)))
390

391 ## --- CCLasso ---
392 cclasso.res <- cclasso(x = reference, counts = T, pseudo = 1, k_

cv = 3, lam_int = c(1e-4, 3), k_max = 20, n_boot = 1000) #
both k_cv and k_max are arguments necessary for tuning
parameter selection

393 cclasso.network = cclasso.res$cor_w # extract the correlation
network

394

395 ## --- COAT ---
396 coat.res = coat(proportions.adj, soft=1)
397 coat.network = coat.res$corr

After obtaining the network, one can use the igraph package to visualize the
network (see Fig. 5). Alternatively, Fig. 6 shows a visualization of the correlations
using the GGally package.

Similarly, we can construct the partial correlation network with SPIEC-EASI,
gCoda, and SPRING as follows. SPIEC-EASI and gCoda require a count data
matrix as input and performs internal pseudocount correction if needed. Both
SPIEC-EASI and SPRING perform stability selection to select partial correlations
that are the most frequently selected over many subsamples. It is recommended
to experiment with different parameter settings so as to yield interpretable results.
Figure 7 shows a visualization of the partial correlation network estimated by
SPIEC-EASI.

398 ## --- SPIEC-EASI ---
399 spieceasi.res <- spiec.easi(reference, method="glasso", pulsar.

select = T, pulsar.params = list(thresh=0.05, subsample.ratio
=0.8, rep.num = 20), lambda.min.ratio=0.01, nlambda=50) #
pulsar parameters can be customized

400 spieceasi.network <- adj2igraph(getOptNet(spieceasi.res))
401

402 ## --- gCoda ---
403 gcoda.res <- gcoda(reference, counts = T, pseudo = 1, lambda.min.

ratio=1e-3, nlambda=50) # specify pseudocount value if the
input is count data

404 gcoda.network <- gcoda.res$opt.icov
405

406 ## --- SPRING ---
407 spring.res <- SPRING(proportions, quantitative = F, subsample.

ratio = 0.8, rep.num = 20) # if input is compositional, set
quantitative to be FALSE

408 opt.K <- spring.res$output$stars$opt.index



Networks for Compositional Data 329

Fig. 5 The correlation network inferred by ReBoot. Each node represents a taxon, and each edge
represents a significant correlation after controlling the false discovery rate at 1%

409 sp.network.binary = as.matrix(spring.res$fit$est$path[[opt.K]]) #
a binary network indicating presence/absence of edges

410 sp.network.weighted <- as.matrix(SpiecEasi::symBeta(spring.res$
output$est$beta[[opt.K]], mode = "maxabs")) # a weighted
network matrix

From a computation perspective, COAT, CCLasso, and gCoda take less than 10 s
to analyze the American Gut data set available in the R package SpiecEasi.
The computation time for ReBoot, SPIEC-EASI, and SPRING ranges from 2
to 5 min. SparCC is the slowest, requiring about an hour to finish the 1000
bootstrap subsampling. SpiecEasi and SPRING would also require significantly
more computational time if their tuning parameters were chosen via stability
selection.
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Fig. 6 The correlations estimated by COAT

5 Future Directions

Networks are increasingly used to glean insight into interaction mechanisms among
microbes [24, 26, 67]. Due to their dynamic nature and our limited knowledge
of microbial interactions, this is often achieved by learning microbial interaction
networks from (relative) abundance data. The methods reviewed in this chapter
aim to address the challenges of inferring microbial interaction networks and
provide reliable estimates of network structures. These methods impose different
assumptions on data distribution. As our numerical analysis indicates, they perform
reasonably well when these assumptions are satisfied and may fail otherwise. An
important area of future research is to develop more flexible estimation frameworks
for microbial interaction networks similar to those developed for other types of
omics data [50, 87, 91] as well as semi- and non-parametric methods for inferring
graphical models [19, 28, 48, 51, 53, 80, 85].

Measures of uncertainty for network estimates, such as confidence intervals and
p-values, are critical for reproducible and generalizable scientific discovery. This
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Fig. 7 The partial correlation network estimated by SPIEC-EASI. Each node represents a taxon.
Edges represent those that pass the stability selection threshold

is especially important since network estimates have high level of uncertainty [72].
Fortunately, significant progress has been made over the past couple of years in
inference for graphical models [41, 42, 68, 83, 92]. Although inference procedures
for marginal associations among microbes have been developed [25, 31], this
remains a fruitful area of future research.

Despite its importance and considerable recent attention, network estimation is
often the first step in analysis pipelines that aim to discover underlying disease
mechanisms. A powerful tool for achieving this goal is to identify differences
among networks from different conditions, e.g. microbial networks of patients
compared to healthy individuals. This approach, which is known as differential
network analysis [40, 73], has been the focus of considerable research in graphical
modeling [5, 16, 35, 45, 55, 66, 70, 84, 93, 95, 97–99], including approaches for
microbial interaction networks [8, 36]; see [73] for a more comprehensive review.
Given the potential challenges of inferring changes in network structures based on
quantitative measures [98], a fruitful area of future research is investigating methods
for identifying changes in microbiome networks based on qualitative hypothesis
tests [38]. Future work may also focus on interactions among microbes and other
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omics measures [12, 14, 27, 43, 88], as well as network-based pathway enrichment
analysis [56]. Discovering causal effects of microbes on each other is also critical
for developing effective treatments [29, 47]. However, despite significant progress in
causal discovery from observational data [13, 20, 33, 44, 63, 75], further progress in
this area requires effective validation experiments [6, 76], which remain challenging
in microbiome settings [54].
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