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Abstract. An attitude and heading reference systems (AHRS) are widely used
in tracking the fleet of wheeled vehicles as well as power tools supporting trans-
port planning. Another functionality is post factum performance assessment for
operations performed cyclically or in a certain sequence. In the literature, you
can find a number of solutions of this type dedicated to wheeled transport, air-
planes, agriculture, robotics, sports, film industry. Most of them require access to
GPS and the question is how to localize in the underground condition where GPS
access is unavailable? Of course, this is not a new problem. Many scientific works
deal with inertial navigation dedicated to tunnels, underground mining excava-
tions, sewers, and other similar applications. Most of them concern gyro drift and
clearly underline the need to use the magnetometer signal to correct the estimated
motion path with a Kalman filter or a complementary filter etc. The authors made
many attempts to test the proposed solutions in the underground mine. Unfortu-
nately, many factors translated into magnetic field disturbances, which had poor
readings. The authors propose a low-cost solution based on the correction of the
vehicle motion path estimated by integrating the gyro signal based on a digital
map and the existing topology rules of the mine’s road infrastructure. The article
presents the methodology, along with the method of generalizing the digital map
as well as an application of procedures on industrial data.

Keywords: Mining vehicles - Automation - Inertial sensors - Underground
mining - Localization techniques

1 Introduction

In recent years an increasing interest in the monitoring of operational parameters of min-
ing machines, particularly in the monitoring of load haul dump (LHD) machines [1, 2].
The data about operational parameters may get additional context by adding data about
the positioning of the vehicles in the mine. The registration of machine positions allows
relating the current state of the machine (for example overheating or operational over-
loads) with the particular mining region and infrastructure or environmental conditions
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in this region. Also, accurate position monitoring of the vehicles significantly improves
the safety of operations and can be used for example in anti-collision systems [3] or
during the rescue operations in the mine in case of emergency [4]. Finally, position data
can be used for the effectiveness assessment of the machines or operators. Unfortunately,
the GPS signal, which is the most common method of tracking various objects is not
available in the underground mine. It forces researchers to search for alternatives, one
of which is inertial navigation. Inertial navigation systems for underground mining have
been considered since the mid-1990s [5, 6]. In most cases, such systems were developed
for autonomous navigation of LHD vehicles [7-9]. Also, some additional sensors, like
laser sensors [10] or RFID anchoring [11] are usually used, which makes the system
more expensive and harder to install. Advanced data analytics and the Internet of things
(IoT) technologies nowadays penetrate different areas of industry [12]. Underground
mining is not an exception. [oT technologies were used for example for ground monitor-
ing [13], safety applications, or personnel tracking. Although the last one is also based
on inertial sensors, the results cannot be transferred directly from personnel to mining
equipment, because the algorithms based on step count estimation are often used, which
means that dedicated algorithms for underground vehicles should be developed.

As it was shown in our previous article [13], the gyroscope drift can be a sufficient
obstacle. The trajectories estimated for a shorter time period, for example for a single
hauling cycle were in good agreement with the map and with themselves, but in a longer
time perspective, significant deviations are observed. In general, the impact of gyroscope
drift can be reduced by using the Kalman filter [14]. But usually for navigation problems
in this case signal from the magnetometer is used, which is not reliable in the case of
the underground mine.

In this article, we propose a method of correction of the trajectory, obtained using the
inertial sensors and onboard machine monitoring system by integrating this data with
the spatial map of the mine. We use the fact that the mining corridors in the majority
of modern underground mines have so-called “Manhattan” structures — the paths are
straight and mostly intersect at a 90° angle. Moreover, the machine can turn only on the
intersections, so when a turn is observed, the probability that the machine is at a given
intersection can be calculated and proper corrections into the machine trajectory can be
done.

The structure of the paper is as follows: in Sect. 2 the input data and the methods
of its collection are described, in Sect. 3 the preprocessing of data is discussed, then the
procedure of path calculation is presented, the path is next integrated with the map of
the mine, and finally main algorithm and the correcting one are presented.

2 Input Data Description and Pre-processing

The inertial navigation system uses signals from the IMU (Inertial Measurement Unit),
which, depending on the version, measures: acceleration, angular velocity (6 DoF
(Degrees of Freedom) IMU), and magnetic field (9 DoF IMU). These signals can be
used for example to determine Euler angles and then, in conjunction with the informa-
tion about machine speed or distance travelled, to determine the path that was travelled
by the machine. In this article, we everywhere use a reference frame with a vertical Z-axis
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(so that the X-Y plane corresponds to an even terrain surface). In order to calculate the
two-dimensional route, the yaw angle is used, which stands for rotation around Z-axis.
In the vast majority of applications, this angle is determined in two different ways: by
integrating the signal from the Z-axis of a gyroscope or using X and Y axes of the mag-
netometer. The yaw rotation angle determined from the gyroscope has greater accuracy
in a short term perspective, but it drastically decreases over time due to the gyroscope
drift phenomena. The yaw rotation angle determined by the means of a magnetometer
and accelerometer is characterized by lower accuracy at the start, however, it stays at
a relatively constant over time. Both of these methods are usually combined using a
sensor fusion algorithm such as a Complementary filter or Kalman filter. Additionally,
it is possible to attach to this fusion, measurements from other systems, such as GPS.
Thanks to this application it is possible to create a system characterized by a fairly high
level of accuracy (especially when using GPS).

Howeyver, the situation is different when we consider more difficult environments
such as underground mines. In this situation, the GPS signal cannot be used. The use
of a magnetometer is also very difficult due to the multiple sources of interference.
However, by using the gyroscope itself, we put the system at risk of a significant error
that after time will make subsequent measurements useless. To prevent this, readings
should be combined with other information sources such as mine maps, for example.

Data available from the machine includes readings from the IMU 9 DoF sensor
(NGIMU) and the SYNAPSA — the on-board measuring system that acquires the most
important operational parameters of the vehicle (driving speed, engine speed, fuel con-
sumption, etc.). In experiments, the IMU sensor was mounted on the articulated joint
of the machine, and to protect against environmental threats it was additionally sur-
rounded by a 1 cm thick stainless-steel housing. Although it prevents the sensor from
the mechanical impact, it damps the magnetic field significantly. However, it should be
highlighted that even without the housing, the magnetometer signal is useless in these
conditions. That is why only signals from accelerometers and gyroscopes can be used,
mainly we use a Z-axis gyroscope. Additionally, data about speed and currently selected
gear from the SYNAPSA system was used. As a source of additional information not
connected to the IMU or the machine itself, a mine map and additional key information
such as the machine chamber location were used. In addition RFID tags technology can
be used to support localization algorithms (some mines have already implemented such
infrastructure in the most crucial regions).

Data from the gyroscope (Z-axis) are sampled with 50 Hz. The IMU itself cali-
brates the sensors and additionally, they are processed before saving using the AHRS
fusion algorithms. Data from the SYNAPSA recorder include two variables: SPEED
and SELGEAR. The SPEED variable contains information about the current machine
speed stored as an integer. However, this variable is always positive, so it is impossible
to get information about the direction of this speed. This information can be obtained
using the SELGEAR variable describing how the machine’s active gear and direction
changed over time. If the SELGEAR variable is negative, then it means that the machine
is going backward, thus the SPEED value is reversed. Despite the fact that the recorded
SPEED variable is not burdened with larger errors, it is an integer and its decimal part
is irretrievably lost in the registration process, which can be a source of some errors.
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Data from the SYNAPSA recorder are sampled with a frequency of 1 Hz. Finally, the
data from the machine recorder and IMU should be merged. The data from the IMU in
described experiments is sampled with 50 Hz frequency, thus the data from SYNAPSA
is interpolated using the forward filling method. The fragment of each used signal is
shown on Fig. 1.
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Fig. 1. Variables used for localization with the use of IMU sensor.

An additional source of information is the current map of the mining department
where the experiments with the IMU sensor were carried out. The map has all possible
paths marked in the mine, ventilation ducts (and therefore roads that are currently in
use), and additional information, such as excavations or machine chambers. After being
loaded, the map of the underground mine department must be converted into grayscale
and then converted into a binary image using thresholding operation. Finally, some image
compression is applied in order to reduce the image size (Fig. 2).
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Fig. 2. The map of the mining department, where the experiments were performed.
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3 Path Calculation and Its Integration with the Map

To calculate the trajectory distance the vehicle has travelled, first one needs to calculate
the Yaw angle ¢ in any time 7 given. This angle describes (looking at the vehicle from
above) the turns of the machine (left, right). To calculate this value, the easiest way, it
can be calculated is to integrate the gyroscope signal over time, what can be described
by the following formula (1):

o(r) = ngawr, (1)

where wz describes signal from Z-axis of gyroscope. With yaw angle one can use
formulas below (2,3) to calculate path coordinates with the additional use of speed v.

T 10 T
X(t) = /(; (V(‘L’) 36 ~c0s(<p(t) . ﬁ)) drt, 2)

’ 10 bid
Y(r) = /0 (v(r) ‘36 sm(<p(t) . ﬁ))dt' 3)

Due to the discrete character of collected data, in this paper, the above integrals were
calculated numerically using trapezoidal approximation.

Unfortunately, the gyroscope readings are affected by drift. Drift is a constantly
changing error resulting from integrating two components: a low-frequency variable
called bias (offset) and a high frequency one called random walk (integrated noise).
This phenomenon can be seen on the road fragments shown in Fig. 3. In these sections,
the machine traveled along a constant route from the excavation face to the grid, so the
signal should be a straight line between two points with small exceptions for maneuvers
and the machine should come back to the starting point, but some deviations from such
behaviour are observed. That is why some correction of the trajectory should be applied.
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Fig. 3. The pass of the haul truck from the mining face to the damping point and back. The
deviations of the trajectory caused by gyroscope drift are visible.

Such correction may be based on the fact, that underground mines have a structure of
a network of connected tunnels. The machines can only move in the tunnels and cannot
leave the road like a car. There is also the issue of closed or collapsed tunnels as well
as a continuous change of excavations and thus also used roads. Finally, due to hard
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Fig. 4. A crossroad object example.

conditions in the underground mine, the machines use only ventilated tunnels, thus their
possible routes are limited.

In order to connect the path signal with the map, we propose to look at the map as a
series of connected points, where each point is one crossroad. This way one can define
each of the intersections as an object from one class. This object proposed parameters
are: name, position x, position y, and list with other objects connected to the current
one. Such a situation is shown in Fig. 4. In this way knowing the initial starting point
of the signal, all of the directions of motion will be reduced to only a few directions
that are described by points connected to the analysed object. In most cases, modelling
connection map will require manual creation of objects and can be hindered because
many of the maps are stored on paper or in other forms unsuitable for that kind of needs.
Nevertheless, such an effort is most likely one time. After the first creation, in case of any
change in the mine road network, the change will most likely include only a few objects.
New points can be added in a simple way by creating new instances of a class and adding
that instance name to the connected object list parameter of connected intersections. Old
points can be removed by doing a similar action.

Additionally around each crossroads, two decision boundaries were established.
These boundaries define districts named Proposed and Visited. While the vehicle
approaches specific crossroad, two situations shown in Fig. 5 may arise. Depending
on the situation, that occurs, one of two algorithms of path estimation described in the
next section will be used.

Situation 2

visited

Fig. 5. Crossroad with decision boundaries.
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Path signal requires additional processing in order to match the coordinates from the
map. Depending on the map scale most likely there will be a need to scale path signal
along both axes. Path signal calculated in the way proposed above will also always start
around point (0,0), so in order to match the map, the signal needs to be moved to the
starting coordinates on the map. To automate this process, machine chamber information
can be used. The machine will always start work in the machine chamber, whose name
and position are known, and then it will move to the excavation area.

4 Path Correction

As it was mentioned before, two algorithms for machine path correction were developed.
First of all, switching between the algorithms should be considered. For computational
reasons, the best method would be to operate a less complicated main algorithm, and if
necessary, switch to a more advanced auxiliary algorithm. When the information about
the current position of the vehicle is obtained, the auxiliary algorithm can be turned off
and the whole process can again be based on the main algorithm.

When the vehicle leaves the starting point, the distances from the vehicle to all
connected crossroads are being tracked. The distance is calculated from the coordinates
of the machine, obtained by the use of Euclidean distance. Based on this distance we
can tell if the machine crosses some of the decision borders, described in Fig. 5. If
the machine first crosses the proposed border, and crosses the visited border, then the
corresponding point is set as the current location of the vehicle, and the algorithm starts
from the beginning.

But the second situation, described in Fig. 5, may occur: the machine can cross
the proposed border, but then instead of crossing the visited border, it goes out of the
proposed region. In this case, the auxiliary algorithm is used.

The operation of the auxiliary algorithm is based on a simple method of analysing
the connection diagram and calculating the distance. The auxiliary algorithm analyses
the connection grid and labels each of the points. The basic (starting) point is the Last
Visited point. Each point connected to it (i.e. those points that were the objectives of the
main algorithm) becomes a Parent. Then, from each Parent, a list of points, which is
connected to it and have no assigned label yet, get the Child label. Then the algorithm
from the position of Children tracks the signal, and the Parent whose Child approaches
the signal the most is selected for the Last Visited. Then the algorithm returns to the
point where it started and switches the process back to the main algorithm. This process
is shown in Fig. 6. By approaching and moving away from Parent 2, the signal enabled
the auxiliary algorithm. The algorithm sorted the point according to labels and began to
measure the distance between Children and path signal. If to choose at this point Parent
2 would be the last visited point because one of his Children (Child 2—1) has the shortest
distance to the road signal.

Assistance algorithm implementations can be further developed for probability cal-
culation. For example, after triggering the algorithm, it analyses the connections of the
nearest points and on their basis creates all possible paths (branches) that the signal could
take. Then, based on the signal readings, the probability of taking is calculated for each
of the possible branches, and points are selected on its basis.
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Fig. 6. Demonstration of the auxiliary algorithm.

5 Signal Correction

All the algorithms above describe a way to correct the trajectory of the machine, but not
the gyroscope readings. Without it, even the best algorithms will have difficulty with
detecting the path correctly when the gyroscope drift reaches a significant level. That is
why based on this data, one can estimate the degree of gyroscope error at each visited
point, which should reduce the drift enough for the correct path detection.

There are several ways to approach the problem of road correction. Simple curve
snapping is one of them. When visiting a point, the road signal is analysed and its
sample that is closest to the point just visited is selected. This sample serves as the signal
intersection. The part that has already been analysed (from the beginning of the signal
to the selected sample) remains unchanged. The non-analysed part, however, is snapped
to the position of the point. More precisely, the entire signal is subjected to the same
transformation that is created so that the first sample of the new signal moves to the
position of the visited point.

Re-estimation of the Yaw angle is a completely different approach. Knowing the
previously visited intersections as well as the initial location, it is possible to create a
road from the beginning of the signal to the currently analysed point. From this, it is
also possible to determine the angle of Yaw, which will not have bias and random walk
errors. This angle can be used to repair the angle resulting from gyro integration. At each
turn of the machine. Yaw angle expresses the sum of the angles by which the machine
has rotated over time, this means that, for example, when the machine turns twice to
the right, the Yaw angle will be 180 at the end. In order to repair the real signal, at the
moment of turning, its angle Yaw should be reduced to that obtained by determining
from the visited points. The path must then be recalculated using the integration method
from the last visited point. The final result of the algorithm is presented in Fig. 7.

Correction of the road signal completes the whole algorithm. For clarity, it was also
decided to present it in the form of a block diagram visible in Fig. 8. For the sake of
simplicity, the presented diagram does not include the mapping of the road based on the
passed intersections (which is shown in Fig. 7).
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Fig. 7. Adequate road plotted on the basis of detected intersections.
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Fig. 8. Algorithm for localization of mining vehicles with the use of inertial sensors.

6 Summary

Tracking mining assets during the mining process is crucial for a number of reasons:
machine location, material handling process assessment, and diagnosis, production opti-
mization, anti-collision systems, as well as the development of inspection robots and
autonomous vehicles. From the point of view of the underground mine, the available
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localization methods are difficult to implement, taking into account the local specific
mine conditions, the problem of gyro drift, and the interference of the magnetometer
signal. In this article, the authors proposed a simple method based mainly on the gyro
signal and the topology of the road infrastructure in a mine with a room-and-pillar
mining system. The article describes in detail the assumptions of the algorithm and all
partial procedures. Finally, an example of the use of the algorithm on real data has been
presented.
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