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Abstract. Change point detection is an important subset of anomaly
detection problems. Due to the ever-increasing volume of time-series
data, detecting change points has important significance, which can find
anomalies early and reduce losses, yet very challenging as it is affected
by periodicity, multi-input series, and long time series. The performance
of traditional methods typically scales poorly.

In this paper, we propose Trident, a novel prediction-based change
point detection approach via dual-level attention learning. As the name
implies, our model consists of three key modules which are the prediction,
detection, and selection module. The three modules are integrated in a
principled way of detecting change points more accurately and efficiently.
Simulations and experiments highlight the effectiveness and efficacy of
the Trident for change point detection in time series. Our approach out-
performs the state-of-the-art methods on two real-world datasets.

Keywords: Time series · Change point detection · Attention
mechanism

1 Introduction

With the explosive development of big data analysis, anomaly detection in time-
series is also increasingly important. Change point detection is an important
subset of anomaly detection problems. Due to the ever-increasing volume of
time-series data that must be efficiently analyzed, it is becoming a mainstream
study in a wide variety of applications, including finance, energy, meteorology,
medicine, aerospace, etc.

Change points are the moments when the state or property of the time series
changes abruptly [2]. Increasing the detecting accuracy is beneficial to opera-
tional efficiency in many aspects of society [20,21], such as power load detection,
online sales analysis, or weather forecasting. We could mine the potential muta-
tions and take corresponding preventative measures early to reduce financial and
time losses.

However, detecting change points in modern applications is particularly chal-
lenging, affected by the following complex factors: periodicity, multi-series, and
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long series. Traditional methods cannot adaptively select relevant series and
achieve feature extraction for multiple input series. And may lead to error accu-
mulation and inefficient computation on the long-term series. Moreover, the
real-world time-series data may contain a large number of change points and
outliers. There are fundamental differences between them [22]. Among them,
change points are the moments of the original series’ property or state change
abruptly. And outliers refer to the sudden single peak or decrease in the series
[6]. Distinguishing them has always been one of the difficulties in change point
detection.

The current methods of change point detection are mainly split up into prob-
ability and statistics-based, classification-based, and prediction-based. The tra-
ditional methods are ineffective in modeling complex non-linear time series data
[16,23]. The prediction-based method is one of the most commonly used meth-
ods [19]. Recently, the deep learning-based approaches have demonstrated strong
performance in time series modeling [4,10,17]. However, the existing methods
only focus on improving the ability to learn nonlinear features, while they ignore
the problem of feature and information loss.

To address these aforementioned issues, inspired by the multimodal features
fusion [5,8] and the hierarchical attention networks [14,15], which are the latest
progress of attention mechanisms [3,9], we proposed a prediction-based change
point detection approach via dual-level attention learning, which we call Trident.

In this paper, Trident consists of three key modules: prediction, detection,
selection. Accordingly, the key contributions can be summarized as follows.

– We propose Trident, a change point detection approach for time series employ-
ing dual-level attention learning. It could detect change points accurately and
timely in long periodic series with multiple relevant input series.

– In the input attention stage, we integrate the novel multi-series fusion mecha-
nism. To the best of our knowledge, this is the first time proposing the idea in
the change point detection task, ensuring we can adaptively extract features
from multivariate time series.

– In the temporal attention stage, in order to prevent error accumulation in
long-series detection, we use the Bi-LSTM decoder to better capture the
long-term temporal dependencies of the time series and improve accuracy.

– In the change point selection module, we propose a novel and simple algo-
rithm. By setting the number of consecutive abnormal points in the series,
we can identify change points and outliers, so that reduces the computation
complexity and improves interpretability.

To demonstrate the effectiveness of Trident, we conducted experiments on
two public datasets in different domains. Extensive experimental results show
that our approach outperforms current state-of-the-art models on the two real-
world datasets.

The remainder of the paper is organized as follows. We introduce the overview
and the details of Trident in Sect. 2. Then we present the evaluation results and
analyze the performance in Sect. 3. Lastly, we conclude our paper and sketch
directions for the possible future work in Sect. 4.
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2 Trident Design

The overall workflow of our approach is presented in Fig. 1. As we introduced in
Sect. 1, Trident consists of three major modules.

We first predict the target series. Then, based on the deviation between the
actual value and the predicted value, we determine the threshold and detect
abnormal points. Lastly, we identify change points and outliers. The theories
and details of the three core modules will be introduced below.

Fig. 1. The overall workflow of Trident

2.1 Time Series Prediction Module

In this module, we propose a novel dual-level attention-based approach for time
series prediction. In the encoder, we employ a novel input attention mechanism
and propose a multi-series fusion mechanism, which can adaptively learn the
relevant input series and achieve feature extraction. In the decoder, a temporal
attention mechanism is used to automatically capture the long-term temporal
dependencies of the time series. The description of the proposed model is shown
in Fig. 2.

Fig. 2. The architecture of time series prediction module
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Encoder with Input Attention. In our model, the encoder part is an LSTM,
aiming to better capture the long-term dependencies of time series.

Given the input sequence X = (x1,x2, . . . ,xT ) with xt ∈ R
n, where n is

the number of input series, T is the length of window size or time steps. The
encoder can be applied to learn a mapping from xt to ht (at time step t) with:
ht = f1(ht−1;xt), where ht ∈ R

p is the hidden state of the encoder at time t,
p is the size of the hidden state, xt is the input of each time step, and f1 is
a non-linear activation function. Since we use an LSTM unit as f1, so we can
summarize the update as follows: ht = LSTM(ht−1;xt).

We propose an input attention mechanism that can adaptively extract fea-
tures from the relevant input series through multi-series fusion, which has prac-
tical meaning. Given the k-th input series xk = (xk

1 , x
k
2 , . . . , x

k
T )T ∈ R

T , we
construct the input attention mechanism by referring to the previously hidden
state ht−1 and the cell state st−1 in the encoder LSTM unit. So the input atten-
tion weight is computed as follow:

ekt = ωT
e tanh(We[ht−1; st−1] + Uexk + be) (1)

and

αk
t =

exp(ekt )∑n
i=1 exp(eit)

(2)

where We ∈ R
T×2p and Ue ∈ R

T×T are matrices, ωe ∈ R
T and be are vectors.

They are parameters to learn.
The attention weight measures the importance of the k-th input feature (driv-

ing series) at time t. A softmax function is applied to αk
t to ensure all the atten-

tion weights sum to 1.

Multi-series Fusion Mechanism. Based on the attention weights, we propose
a multi-series fusion mechanism that aims to fuse different input series, that is,
different periods of history, to better extract features.

Specifically, first, we divide the time series into multiple sub-series. Each sub-
series represents a complete period, and multiple relevant sub-series are used as
input to our model. Then at each future time step, with the attention weights
calculated by Eq. (2), we combine them by learning the relative importance of
each series. Therefore, we adaptively extract the most relevant input features,
achieve multi-series fusion, and get new input at time t.

x
′
t = (α1

tx
1
t , α

2
tx

2
t , . . . , α

n
t xn

t )T (3)

Then the hidden state at time t can be updated as:

ht = f1(ht−1;x
′
t) (4)

where f1 is an LSTM unit with xt replaced by the newly computed x
′
t.

With the proposed input attention mechanism and multi-series fusion mech-
anism, we can selectively focus on certain driving series rather than treating all
the input driving series equally.
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Decoder with Temporal Attention. Following the encoder with input atten-
tion, a temporal attention mechanism is used in the decoder to adaptively select
relevant encoder hidden states across all time steps. Specifically, the attention
weight of each encoder hidden state at time t is calculated based upon the pre-
vious decoder hidden state dt−1 ∈ R

p and the cell state of the LSTM unit
s

′
t−1 ∈ R

p with:

vi
t = ωT

v tanh(Wv[dt−1; s
′
t−1] + Uvhi + bv) (5)

and

βi
t =

exp(vi
t)

∑T
j=1 exp(ejt )

(6)

where Wv ∈ R
p×2q and Uv ∈ R

p×p are matrices, ωv ∈ R
p and bv are vectors.

They are parameters to learn.
Since each encoder hidden state hi is mapped to a temporal component of

the input, the attention mechanism computes the context vector ct as a weighted
sum of all the encoder hidden states h1,h2, . . . ,hT :

ct =
T∑

i=1

βi
thi (7)

After getting the weighted summed context vectors, we can combine them
with the target series:

ỹt = ω̃T [yt; ct] + b̃ (8)

The newly computed ỹt can be used for the update of the decoder hidden state
at time t.

In our approach, a bi-directional LSTM (Bi-LSTM) is used as the decoder
backbone. Because the traditional unidirectional LSTM will ignore the dynamic
future information, which could have a strong influence on the time series forecast
in practice. Therefore, the Bi-LSTM decoder aims to prevent error accumulation
and improve accuracy for long-horizon forecasting.

It is composed of two LSTMs that allow both backward (past) and forward
(future) dynamic inputs to be observed at each future time step. Then the hid-
den states of Bi-LSTM are fed into a fully-connected layer to produce final
predictions. Formally, we define the formulations as follows:

dt = BiLSTM(ỹt;dt−1,dt+1) (9)

After updating the hidden state of the decoder, our model produces the final
prediction result, denoted as ŷt.

Moreover, in the training procedure, we use the minibatch stochastic gradi-
ent descent (SGD) together with the adaptive moment estimation (Adam) opti-
mizer to optimize parameters. We implemented our approach in the TensorFlow
framework.
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2.2 Anomaly Detection Module

After the final prediction result ŷt is produced by the time series prediction
module, the predicted values of the target series are delivered to the anomaly
detection module. We calculate the deviation between the actual and the pre-
dicted value as lt = yt − ŷt, where yt is the actual value, and ŷt is the predicted
value.

The absolute value of lt is used as the anomaly score, denoted as et. The
larger the anomaly score, the more significant the anomaly at the given time
step. Therefore, we need to define a threshold based on the target series for
anomaly classification.

In our approach, we adopt the Gaussian distribution-based method to deter-
mine the threshold. Extensive results in [13] show that anomaly scores fit the
Gaussian distribution very well in a range of datasets. This is due to the fact
that the most general distribution for fitting values derived from Gaussian or
non-Gaussian variables is the Gaussian distribution according to the central
limit theorem. Motivated by this, we define the following parameters based on
Gaussian distribution:

(e1, e2, . . . , en) ∼ N(μ;σ2) (10)

μ =
1
n

n∑

t=1

et;σ =

√
√
√
√ 1

n

n∑

t=1

(et − μ)2 (11)

Based on the Pauta criterion, we determine the range of the threshold accord-
ing to the proportion of normal points in the dataset. Then we determine e as
the threshold when the performance is optimal.

2.3 Change Points Selection Module

After the anomaly detection module classifies the data in the target series, this
module will select the change points from the anomaly points. We propose a
novel and simple approach to distinguish change points and outliers.

We have discussed the discrepancy between change points and outliers and
the current research status in Sect. 1. In our approach, we use a simple strategy.
We use the series containing the abnormal mark as input to this module. Once
an abnormal point occurs, we declare it as an outlier. If a certain number of
outliers are continuously found, the first point of this outlier series is declared
as a change point. Thus, this method could reduce the computation complexity
and improve interpretability. We define the parameter N (we set N = 3, which
can achieve the best performance), which represents the minimum number of
consecutive outliers.

3 Experiment and Evaluation

Based on the above approach, we designed the following experiment scheme.
In this section, we conducted experiments on the three modules of the proposed
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method. Extensive results on two large real-world datasets show the effectiveness
and superiority of Trident.

3.1 Experimental Environments

All the experiments were executed on a single computer with the following spec-
ifications: 3.1 GHz Intel Core i5 CPU, 16 GB 2133 MHz LPDDR3.

The software details are shown below: Model implementation: TensorFlow
1.13.2, Keras 2.1.0; Operating System: macOS Catalina 10.15.3.

3.2 Datasets Introduction

To demonstrate the effectiveness of Trident, we conducted experiments on two
public datasets in different domains: The load Forecasting dataset and the Air-
Quality dataset.

– Load Forecasting Dataset:1

The dataset is hourly load data collected from utilities in 20 zones of the
United States. The time period is from 2004 to 2008. It contains 33,000
instances with 29 attributes. This dataset was used in the Global Energy
Forecasting Competition held in 2012 (GEFCom 2012) [7].
We chose 4 areas of similar magnitude to conduct experiments. We took the
power load in 2007 as the target series and the power load in 2004–2006 as
the three relevant input series.

– Air-Quality Dataset:2

The second dataset is the Air-Quality dataset, which can be found in the UCI
Machine Learning Repository. It includes hourly data of 6 main air pollutants
and 6 relevant meteorological variables at 12 air-quality monitoring sites in
Beijing. This dataset covers the period from March 1st, 2013 to February
28th, 2017, and contains 420,768 instances with 18 attributes.
We chose the ambient temperature as the prediction object. We used the 2016
data as the target series and the 2013–2015 data as the three relevant input
series.
The data in the dataset contains negative numbers and zeros, where zero will
cause the metric MAPE to be unable to calculate. Therefore, we converted
the representation of temperature in the dataset from degree Celsius to ther-
modynamic temperature: T (K) = t(◦C)+273.15, where T is thermodynamic
temperature, and t is degree Celsius.

3.3 Results 1: Prediction Performance

In this section, we demonstrated the predicting performance of the time series
prediction module of Trident, and proved that our approach can solve the three
challenges we proposed well.
1 https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-

forecasting/data.
2 http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data.

https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting/data
https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting/data
http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
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Competing Methods and Evaluation Metrics. To demonstrate the effec-
tiveness of Trident in predicting performance, we compared it against four base-
line methods: Bi-LSTM [18], attention mechanism (Attn) [3], BiLSTM-Attn (the
setting of Trident that does not employ the input attention mechanism), and
DA-RNN (a dual-stage attention-based recurrent neural network) [15].

Moreover, to measure the effectiveness of the time series prediction module,
we considered the three evaluation metrics: root mean squared error (RMSE),
mean absolute error (MAE), and mean absolute percentage error (MAPE).

Results and Analysis. Firstly, we used the Load Forecasting dataset to verify
the effectiveness of our approach for the proposed challenges.

For each experiment about the challenge, we set an experimental group and
control groups. The experimental group uses 4 zones of data for 4 years (contains
3 input series and 1 target series). For the periodicity experiment, the control
group C1 has no periodicity, predicting the data of 1 zone through the data
of 3 zones. Similarly, for the long series experiment, the 3 control groups are
denoted as C21–C23. Each sub-dataset use one-zone, two-zone, and three-zone
data, respectively (with different length of the series in the sub-dataset). And
for multi-series experiments, the control groups are denoted as C31 and C32,
using two-year (1 input series) and three-year (2 input series) data, respectively.
Other parameter settings are the same. The experimental results are shown in
Fig. 3.

(a) Periodicity (b) Multi-series (c) Long series

Fig. 3. The comparative experiment results for the three proposed challenges.

Figure 3 shows that, with the increase of series length and the number of
input series, or the improvement of data’s periodicity, the three metrics have
improved significantly. Trident shows good performance in solving each proposed
challenge. Therefore, our approach has obvious advantages for the problems of
long, periodic, and multiple input series.

Next, to measure the predicting performance of Trident, we conducted exten-
sive experiments on Trident and all baseline methods on two real-world datasets.
Table 1 summarizes the results.
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Table 1. The predicting performance of Trident and all baseline methods.

Models Load forecasting dataset Air-quality dataset

RMSE MAE MAPE (%) RMSE MAE MAPE (%)

Bi-LSTM 23.894 18.853 9.100 8.663 7.904 2.877

Attn 16.678 13.290 6.333 8.394 7.672 2.791

BiLSTM-Attn 14.432 10.806 5.336 8.286 7.561 2.746

DA-RNN 11.007 8.712 4.188 4.092 3.411 1.241

Ours 6.665 5.196 2.547 3.239 2.615 0.950

Table 1 shows that our approach outperforms the other baseline models
markedly on the two datasets. The RMSE, MAE, and MAPE values improved by
40% and 22% on average on the two datasets, respectively. These experimental
results demonstrated the superiority of Trident compared with the state-of-the-
art methods.

For further comparison, we showed the prediction results of Trident on the
two datasets in Fig. 4. The blue, orange, and green line represents actual value,
training part, and test part respectively. We can observe that our approach
performs well in prediction performance.

(a) Load forecasting dataset (b) Air-quality dataset

Fig. 4. The final prediction results of Trident over the two datasets.

This is because Trident integrated the dual-level attention mechanism and
multi-series fusion mechanism, which can adaptively select relevant input series
and extract features. Meanwhile, it employs a Bi-LSTM decoder to solve the
problem of error accumulation in long-term series, thereby greatly improves the
predicting accuracy.

Overall, extensive experiments show the effectiveness and superiority of Tri-
dent. It can comprehensively solve the three proposed challenges and shows good
predictive performance.
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3.4 Results 2: Change Point Detection Performance

In this section, we proved the effectiveness of the anomaly detection module and
the change points selection module. We demonstrated the superiority of Trident
by comparing it with the other three state-of-the-art approaches.

Competing Methods and Evaluation Metrics. We compared Trident
against three baseline methods: CNN-LSTM (classification-based method) [12],
Bayesian online change point detection (BOCPD) (probability method) [1], and
KLIEP (an online density-ratio estimation algorithm) [11].

Moreover, we evaluated the efficiency of the change point detection module
based on the following metrics: Precision, Recall, and F1 Score.

Results and Analysis. To measure the change point detecting performance
of Trident, we conducted extensive experiments on Trident and other baseline
methods on the two real-world datasets. Table 2 and Fig. 5 summarize the results.

Table 2. The change point detecting performance of Trident and all baseline methods.

Models Load forecasting dataset Air-quality dataset

Precision Recall F1 Precision Recall F1

KLIEP 0.963 0.887 0.924 0.975 0.816 0.888

BOCPD 0.967 0.934 0.950 0.976 0.854 0.911

CNN-LSTM 0.964 0.955 0.959 0.977 0.903 0.938

Ours 0.989 0.985 0.987 0.973 0.977 0.975

Table 2 shows that on the two real-world datasets, our approach outperforms
the other baseline methods in performance. And as depicted in Fig. 5, we showed
the change points detection results of Trident over the two datasets. We selected
some periods of the target series that contain anomalies as examples. We can
easily observe that performance of Trident in detecting change points is well.
Trident can detect change points accurately and timely on the two datasets, and
can identify change points and outliers.

In conclusion, Trident is a prediction-based change point detection approach.
It employs the dual-level attention learning for time series prediction. And we
used the Gaussian distribution-based method for the anomaly detection tasks,
and combine the change point selection module. For the periodic long-term series
and multiple relevant input series, our approach can detect change points accu-
rately, and identify change points and outliers. Extensive experimental results
prove the superiority of Trident compared with the state-of-the-art methods.
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(a) Load forecasting dataset (b) Air-quality dataset

Fig. 5. The change point detection results of Trident on real-world datasets.

4 Conclusion

In this paper, we propose Trident, a novel change point detection approach in
time series via dual-level attention learning. It consists of three key modules: time
series prediction module, anomaly detection module, and change point selec-
tion module. In the time series prediction module, we use a dual-level attention
learning model and integrate the multi-series fusion mechanism. It can adap-
tively extract features of input series. In the anomaly detection and change
point selection module, we determine the threshold employing the Gaussian
distribution-based method and identify change points and outliers. We veri-
fied the effectiveness of Trident on two public real-world datasets. Extensive
experimental results show that our approach outperforms the state-of-the-art
methods. In future work, we will further extend our approach to handle multi-
variate time series from different data sources. Due to the heterogeneity of data
sources together with limited information about their interactions, exploring how
to learn the complex dynamic correlations deserves our in-depth study.
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