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Abstract. The usage of Unmanned Aerial Vehicles (UAVs) is gradually
gaining momentum for commercial applications. These however often
rely on a single UAV, which comes with constraints such as its range of
capacity or the number of sensors it can carry. Using several UAVs as
a swarm makes it possible to overcome these limitations. Many meta-
heuristics have been designed to optimise the behaviour of UAV swarms.
Manually designing such algorithms can however be very time-consuming
and error prone since swarming relies on an emergent behaviour which
can be hard to predict from local interactions. As a solution, this work
proposes to automate the design of UAV swarming behaviours thanks
to a Q-learning based hyper heuristic. Experimental results demonstrate
that it is possible to obtain efficient swarming heuristics independently
of the problem size, thus allowing a fast training on small instances.

Keywords: Hyper-heuristic · UAV swarming · Reinforcement learning

1 Introduction

In the past years the Unmanned Aerial Vehicles (UAVs) have found their way
into an increasing number of civilian applications, such as delivery, infrastruc-
ture inspection or urban traffic monitoring. However, most of these rely on a
single UAV, either remotely operated or autonomous, which comes with limi-
tations due to the battery and payload capacity. A promising way to overcome
these limitations while relying on current technology is to use multiple UAVs
simultaneously as a swarm.

This work specifically considers the problem of area coverage by a swarm
of UAVs. The latter finds applications in surveillance, search and rescue and
smart agriculture to name a few. More precisely we tackle the Coverage of a
Connected-UAV Swarm (CCUS) problem [8,9], which models the surveillance
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problem as a bi-objective one, where both the area coverage and the swarm
network connectivity [4] have to be maximised.

Many metaheuristics have been manually designed to address the problem of
area coverage by a swarm of UAVs, for instance using ant colony methods [1].
This process can however be error-prone and time-consuming since it consists in
predicting an emergent behaviour by designing local interaction.

Instead, this work proposes to automate the design of swarming behaviours,
which remains an open research problem [3]. This principle of searching into a
space of heuristics is also referred to as a hyper-heuristic. We here consider a Q-
learning based hyper-heuristic (QLHH) to generate efficient distributed heuristic
for the CCUS problem.

The remainder of this article is organised as follows. Section 2 first presents
the related work on hyper-heuristics and their usage for swarming applications.
Then, in Sect. 3 the proposed CCUS model is presented, followed by the designed
QLHH in Sect. 4. The empirical performance of QLHH is then provided in Sect. 5
using coverage and connectivity metrics from the literature. Finally Sect. 6 pro-
vides our conclusions and perspectives.

2 Related Work

Hyper-heuristics were first mentioned as “heuristics to choose heuristics” [7].
More generally, they refer to high-level algorithms performing a searching process
in a space of low-level heuristics. The purpose is thus to search a heuristic for
a given problem, unlike metaheuristics which aim at searching a solution for a
given instance.

Burke et al. made a classification of hyper-heuristics [5]. The latter is divided
in 2 parts: the nature of the search space, and the nature of the feedback for
the learning process. At the lowest level, the heuristics from the search space
can be constructive or perturbative. A constructive heuristic modifies a non-
feasible solution until it becomes feasible. At a higher level, two approaches
can be used by the algorithm performing the searching process: selective and
generative approaches. For the generative approach, the high-level algorithm is
given a set of predefined “building-blocks” containing information relative to the
problem. Its goal is thus to combine these blocks in order to make a new heuristic.
The idea is to extract a dynamic part common to several known heuristics and
to learn it. Finally, the last distinction is whether the feedback uses online or
offline learning. For an online learning feedback, the learning process occurs
while the model is executed on instances. This work proposes a hyper-heuristic
for generating constructive heuristics using an online learning feedback.

Most generative hyper-heuristics use offline-learning, and more specifically
genetic programming (GP). For instance Lin et al. evolve a task sequence for
the multi-skill resource constrained project scheduling problem (MS-RCPSP)
[13]. In [10], Duflo et al. evaluate the unvisited nodes at each iteration in the
travelling salesman problem (TSP). Finally, Kieffer et al. sort the bundles in the
bi-level cloud pricing optimisation problem (BCPOP) in [12].
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When it comes to online learning, reinforcement learning (RL) is the most
widely used technique for hyper-heuristics. It is however mainly used for selective
approaches, while few generative ones have considered RL. For instance, Khalil
et al. design in [11] a template of RL-based hyper-heuristic for several combina-
torial optimisation problems.

Hyper-heuristics have also been used in the context of swarming. However,
since the automation of swarming behaviours is a recent and still open research
area, as mentioned in [3], the selective approach is prominently used in the
literature. For instance Babic et al. design in [2] a hyper-heuristic where robots
can choose at each iteration the best heuristic among a pool of predefined low-
level heuristics to perform a certain number of predefined actions. To date, only
Duflo et al. use a generative approach based on RL for defining the movement
of UAVs in a swarm [8].

In the context of a swarm of UAV/robot, multiple agents are interacting. RL
has then been applied on more general Multi-Agent Systems (MAS). Tuyls and
Stone [14] provide a classification of paradigms, including “Online RL towards
social welfare”. In this paradigm, every agent of the MAS share the same policy,
which is the context of this work.

Finally the CCUS problem is a bi-objective one, which implies that the
generated heuristics must tackle bi-objective problems. However, for online
approaches, Multi-Objective Reinforcement Learning (MORL) remains an open
area [6]. One popular approach is to transform a multiple policy RL into a single
one using a scalarisation function [15].

The work proposed in this article thus goes beyond the state-of-the-art as
it proposes a generative hyper-heuristic, and more precisely a Q-learning hyper-
heuristic (QLHH) to generate efficient UAV swarming behaviours. This QLHH
is applied to tackle a problem introduced hereinafter for optimising the Coverage
of a Connected UAV Swarm, so called CCUS. Since CCUS is a multi-objective
optimisation problem (as described in the following section), one of the challenges
with this work is to apply MORL techniques to the context of hyper-heuristics.

3 CCUS Model

This section provides a formal definition of the CCUS model. It considers the
usage of a swarm of UAVs equipped with wireless communication interfaces,
also referred to as flying ad hoc network (FANET), for covering an area. In that
scenario, each UAV starts from a given point, executes its tour and returns to
its starting point, which can be referred to as its base. CCUS aims at optimising
both the coverage speed and the connectivity of the swarm.

3.1 Formal Expression

The CCUS model contains two main components: an environment graph Ge =
(V,Ee) and a communication graph Gc = (U,Ec). Both are represented in Fig. 1.
Ge is composed of a set V of vertices on which the UAVs can move. This graph
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Environment graph

Communication graph

Solution

Fig. 1. CCUS solution at a certain time step

is weighted, non-directed and must be strongly connected so that every UAV can
move to any other vertex. Otherwise, another constraint stating that there should
be at least one UAV per connected component should be required. The weight
corresponds here to the distance between two adjacent vertices. The function
dist : V 2 → R then returns the length of the shortest path between any two
given nodes. Gc is composed of a set U of UAVs, which are linked if they are
close enough for communicating (in a fixed communication range Dcom which
is specific to the FANET setup). This graph is not necessarily connected and
especially dynamic since positions of UAVs evolve during the coverage. The
function pos : U → V returns the current position of a given UAV.

An instance I = (Ge, Gc) is then defined by an environment graph and
a communication graph giving the initial positions of UAVs. Different initial
positions would make a different instance. Finally, a solution for CCUS is a set
of |U | paths in Ge (one path per UAV). Each path must start from the initial
vertex of the corresponding UAV (i.e., its base). Such a solution is feasible if and
only if these paths are cycles and their union covers the Ge, so that the whole
environment is covered and the UAVs have returned to their base.

3.2 Representation of Solutions

A solution S can be defined as a set of paths {Su}u∈U , where Su =(
v1, v2, · · · , v|Su|

)
with vi ∈ V . S̄ then refers to the unvisited vertices from Ge.

S̄ = {v ∈ V |�u ∈ U, v ∈ Su}

If the coverage is paused at any moment, a solution will be obtained (not
necessarily a feasible solution). Since CCUS is bi-objective, any solution S can be
represented as a 2-dimensional vector O(S) = (Ocov(S), Ocon(S))�, containing
both objective values defined ealier. The two components Ocov(S) and Ocon(S)
respectively correspond to the biggest path at the current time step (see Sect. 3.3)
and the average number of connected components in the communication graph
until the current time step (see Sect. 3.4).
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3.3 Coverage Objective

In the CCUS model, UAVs are considered to fly at a constant speed. The speed
is hence equivalent to the distance. Minimising the coverage speed then corre-
sponds to minimising the longest path (cycle) of the (feasible) solution. This also
prevents some UAVs to do short tours leaving more cells to cover for the others.
This means that every cycle will have approximately the same length.

Let Lu be the length of the cycle of the UAV u, then the coverage objective
for CCUS is defined as:

Minimise
{ |V |

|V | − |S̄| · max
u∈U

Lu

}

This objective value is slightly different from the one presented in [9]. The
factor |V |/(|V |−|S̄|) has indeed been added. Since (|V |−|S̄|)/|V | corresponds to
the rate of visited vertices, the length of the longest path is divided by this rate
in order to penalise a non-feasible solution with vertices visited several times.
This factor does not affect a feasible solution since it equals 1 in that case.

3.4 Connectivity Objective

Two UAVs can communicate if they are in a certain communication range Dcom.
They can exchange their local information. It is therefore possible for a UAV to
access the local information of every UAV in its connected component in Gc.
Maximising the connectivity then consists in minimising the global number of
connected components in Gc over time.

Let Ct be the number of connected components in Gc at the time step t,
then the connectivity objective for CCUS is defined as:

Minimise

{
∑

t∈T

Ct

}

4 QLHH Algorithm

This section describes in detail QLHH, a Q-learning based algorithm for gener-
ating heuristics for the CCUS problem.

4.1 Structure

As a low-level heuristic, each UAV will asynchronously move to a new vertex
until the whole environment graph is covered. Algorithm 1 gives an overview of
the process. The choice of a new vertex is done thanks to a fitness function f
which evaluates each possible destination. The UAVs then move to the vertex
maximising f (line 4). The fitness function f is specific to the heuristic. Algo-
rithm 1 then provides a template of low-level heuristics, where f is the dynamic
part. The goal of the high-level algorithm, here Q-learning, is thus to find the
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best possible definition for f . Such a low-level heuristic runs in a quadratic time.
Each UAV visits O(|V |) vertices during its tour. At each step, every unvisited
vertice is evaluated, so there are O(|V |) operations. This gives a final time com-
plexity of O (|V |2) per UAV. Since the heuristic is distributed, the number of
UAVs is not added to the complexity.

QL

S
v

v

Θ

rΘ

High-level

Low-level

UAV
1: Evaluation

2: Reward3: Update

Fig. 2. Overview of the proposed QLHH algorithm

Algorithm 1: Low-level-heuristic template
input : Instance I = (Ge, Gc)
output : Solution S =

⋃

u∈U

Su

1 foreach UAV u ∈ U do // asynchronously
2 Su ← (pos(u))

3 while S̄ �= ∅ do
4 next ← argmax

v∈V
f (v)

5 // u flies to next
6 Su ← Su + shortest path(pos(u), next)

7 end
8 // u flies back to its initial vertex
9 Su ← Su + shortest path(pos(u), Su(0))

10 end
11 return S

For that purpose, it is needed to adapt Q-learning components, i.e. actions,
states and policy, to the CCUS model. A state is a solution S at the time when
the UAVs choose a new vertex. The latter corresponds to the action of UAVs. An
action is thus represented by a vertex v ∈ V on which the UAVs can move. The
policy finally returns the node which maximises the fitness function f . Figure 2
shows an overview of the whole process. At each step, each UAV moves to a
vertex v thanks to an evaluation function depending on the current solution S
and a set of variables Θ. The latter defines a heuristic based on the template of
low-level heuristics. It means that Θ is a parameter of the evaluation function.
When every UAV has finished its tour, i.e. has returned to its initial node, a
reward is given for each evaluation which has been made. This set of rewards
is used to modify the value of Θ, and therefore to update the current low-level
heuristic.
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4.2 Detailed Steps

This section will detail the three steps shown in Fig. 2: firstly, the evaluation
of vertices done by UAVs in order to choose their next destination; secondly,
the reward given for such a choice made by a UAV; thirdly, the update of Θ
according to the set of obtained rewards.

Evaluation. This section refers to point 1 in Fig. 2. In Q-learning, the Q func-
tion evaluates the choice of an action from a certain state. In this context, a Qu

function is thus defined for the UAV u to evaluate its choice of going to a vertex
v from a solution S.

Qu(S, v;Θ) = scal (Qcov
u (S, v;Θ), Qcon

u (S, v;Θ))

Qu is a function of Qcov
u and Qcon

u evaluating an action according to the
coverage and the connectivity objectives respectively. Θ is also divided into
Θcov and Θcon, which are both a collection of eight parameters Θo = {θo

j }8j=1,
∀o ∈ {cov, con}. Since both evaluations are not of the same order of magnitude,
they are normalised in order to have a balance between both objectives. We here
considered two possible scalarisation functions scal, i.e. linear and Chebyshev
as introduced in [15].

With the linear function, Qu is a linear combination of Qcov
u and Qcon

u .

Qu(S, v;Θ) =
∑

o∈{cov,con}
Qo

u(S, v;Θo)

A UAV u at the solution S(t) will thus move to the vertex v(t+1) which
maximises Qu.

v(t+1) = arg max
v∈V

{
Qu

(
S(t), v;Θ

)}

With the Chebyshev function, Qu is the distance from an utopian point z
according to the L∞ metric (also called Chebyshev metric). zcov and zcon are
constantly adjusted during the learning process to represent the best evaluations
for the coverage and the connectivity respectively.

Qu(S, v;Θ) = max
o∈{cov,con}

|Qo
u(S, v;Θ) − zo|

A UAV u at the solution S(t) will thus move to the vertex v(t+1) which minimises
Qu, i.e. the distance from the best point z found so far.

v(t+1) = arg min
v∈V

{
Qu

(
S(t), v;Θ

)}

For each objective o, the evaluation Qo
u(S, v;Θ) is a matrix computation.

The state S and the action v are represented in the formula by p-dimensional
vectors, respectively μ and μv. Their computation is detailed in the paragraph
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Embedding structure below. The definition of Qo
u(S, v;Θ) and the embedding

structure differ from [9]. This new definition has shown that it is more stable.

Qo
u (S, v;Θo) = θo

2
�relu ([θo

3μ, θo
4μv] + θo

5δ
o
uv)

where θo
2, θ

o
5 ∈ R

2p, θo
3, θ

o
4 ∈ R

p×p, [·, ·] is the concatenation operator and relu is
the rectified linear unit, i.e. for any vector X = (xi)i, relu(X) = (max (0, xi))i.
The term δo

uv is useful for making each UAV u have a different evaluation of a
vertex v. It is different according to the objective o. δcov

uv is the distance between
the evaluating vertex and the UAV evaluating it, while δcon

uv is the sum of dis-
tances between the evaluated vertex and the other UAVs.

δcov
uv = dist(pos(u), v) δcon

uv =
∑

u′∈U\{u}
dist(pos(u′), v)

Embedding Structure. Each node v ∈ V is represented by a p-dimensional fea-
ture μv. The latter is recursively computed according to the structure of the
environment graph. ∀v ∈ V

μv = relu (θo
1 · xo

v)

where θo
1 ∈ R

p. The state variable xv is different between the coverage and the
connectivity. xcov

v is a binary variable determining whether v has been visited or
not, while xcon

v corresponds to the number of UAVs currently on v.

xcov
v =

{
1 if ∃u ∈ U, v ∈ Su

0 otherwise xcon
v = |{u ∈ U | pos(u) = v}|

Regarding the Q-learning aspect, any action is therefore represented as a p-
dimensional vector μv. Similarly, any state is written as a p-dimensional vector
μ =

∑
v∈V μv, by summing the embedding structure of every vertex in the

environment graph. Thanks to this embedding structure, it is then possible to
evaluate any action from any state of any instance.

Reward. This section details point 2 in Fig. 2. The asynchronous process per-
formed by each UAV is shown in Algorithm 2. When a UAV u moves to a vertex
v(t+1) from the solution S(t), the latter is added to the list Su and a new solution
S(t+1) is obtained. A reward r must then be given in order to value this choice
according to the coverage and the connectivity objectives.

r
(
S(t), v(t+1)

)
= O

(
S(t)

)
− O

(
S(t+1)

)

The reward corresponds to the difference between the objective values of the
solutions before and after the movement. Since these values must be minimised,
the lower is the new one compared to the old one, the better is the action, and
thus the greater must be the reward.
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With such a reward, the objective value of a solution S(t) is equivalent to
the cumulative reward R0,t since O(S(0)) = (0, 0)�. The cumulative reward Ri,j

defines the sum of every reward obtained by a UAV from the solution S(i) to
reach the solution S(j).

Ri,j =
j−1∑

t=i

r
(
S(t), v(t+1)

)
= O

(
S(i)

)
− O

(
S(j)

)

When every UAV has finished its tour, a reward is given for each sliding
window of τ movements made during the coverage. The action made by a UAV
at time step t will be rewarded by the cumulative reward Rt,t+τ .

Update. This section corresponds to point 3 in Fig. 2. The reward is therefore
used for improving the future choices of action (which vertex to go). For that
purpose, Θcov and Θcon are updated when an instance has been processed, by
performing a stochastic gradient descent (SGD) step to minimise the squared
loss for every UAV u.

(
y − Qo

u

(
S(t), v(t+1);Θo

))2

with y = γ max
v

{
Qo

u

(
S(t+τ), v;Θo

)}
+ Rt,t+τ .

γ is the discount factor. Its value is between 0 and 1 and represents the
importance of the future reward depicted by maxv

{
Qo

u

(
S(t+τ), v;Θo

)}
. Rt,t+τ

is the cumulative reward obtained during the frame of τ movements. For each
evaluation which has been made, a y is associated and can be assimilated to the
rectified evaluation.

4.3 General Pseudo-code

Algorithm 2 describes the whole process of the proposed QLHH. The opera-
tion that each UAV executes until it comes back to its starting point appears
between lines 7 and 25. If there are still unvisited vertices in Ge, every node
is evaluated with Qu according to the current solution S and Θ (line 13). The
vertex maximising this evaluation is chosen. If every vertex has been visited, the
UAVs will return to their initial position (line 15). The shortest path between
the current position and destination of a UAV is then added to its path (line
18). The reward for such a movement is computed (line 19) and S(t+1) is the
new current solution (line 20). Finally, the solution τ iterations ago, the current
solution and the cumulative reward between both is registered in the memory
M (line 23). This memory is then used to process the SGD step to modify Θ
when every UAV has finished its tour (line 27).

5 Experiments

This section presents the experimental results of QLHH on the CCUS prob-
lem which have been conducted on the High Performance Computing (HPC)
platform of the University of Luxembourg [17].
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5.1 Comparison Heuristic

In order to evaluate the performance of the heuristic generated by QLHH, the
results have been compared to those obtained with the manually-designed heuris-
tic described in this section. This heuristic, so called Weighted Objective heuris-
tic (WO), belongs to the space of low-level heuristic of QLHH. It means that it
respects the template defined in Algorithm 1. At each step, every UAV evaluate
every vertex in order to choose the next destination. In this case, this evaluation
of the UAV u will be the sum of 2 values, ecov(u, v) and econ(u, v) evaluating
the vertex v according to the coverage and the connectivity respectively.

ecov(u, v) =
{

W − W · dist(pos(u), v) if xv = 0
0 otherwise

econ(u, v) =
{

W if D(u, v) ≤ Dcom

2W − W
Dcom

D(u, v) otherwise

where W is a given weight, representing the maximal value for both objectives,
and D(u, v) = min

u′∈U\{u}
dist(pos(u′), v).

Algorithm 2: Algorithm of the proposed QLHH
input : Distribution D of instances
output : Updated Θ

1 Randomly generate Θ
2 I ← collection of instances i ↪→ D

3 M ← ∅ // initialisation of the memory
4 foreach epoch e do
5 foreach instance i ∈ I do
6 S ← ∅ // initialisation of the solution
7 foreach UAV u ∈ U do // asynchronously
8 t ← 0

9 S(0) ← S
10 Su ← (pos(u))
11 repeat
12 if S̄ �= ∅ then

13 v(t+1) ← argmax
v∈V

Qu (S, v;Θ)

14 else // every vertex has been covered

15 v(t+1) ← Su(0)
16 end

17 // u flies to v(t+1)

18 Su ← Su + shortest path
(

pos(u), v(t+1)
)

19 Compute r
(

S(t), v(t+1)
)

20 S(t+1) ← S
21 t ← t + 1
22 if t ≥ τ then

23 M ← M ∪
{(

S(t−τ), Rt−τ,t, S(t)
)}

24 end

25 until v(t+1) = Su(0)

26 end
27 Update Θ with a SGD step for M
28 end

29 end
30 return Θ
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5.2 Performance Metrics

QLHH Metrics. Two state-of-the-art metrics [4] have been used for assess-
ing the performance of the heuristics generated with QLHH: one coverage met-
ric (coverage speed) and one connectivity metric (number of connected compo-
nents). Coverage speed expresses how fast the UAVs cover a certain rate r of
vertices of the grid. It corresponds to the lowest time step t for which the rate of
visited vertices exceeds r. For the experiments, r = 0.95, i.e. the coverage speed
represents the time needed by the UAVs to cover 95% of the grid. The number
of connected components gives the average number of connected components of
the connectivity graph (represented in Fig. 1) at each time t ∈ T .

Table 1. Parameters used for the training executions

Parameter Notation Value

Problem-specific parameters

Embedding dimension p 8

Experience duration τ 10

Maximum communication distance Dcom 4

Q-learning parameters

Learning rate α 0.01

Discount factor γ 0.9

MO Metrics. Three metrics have been used to compare Pareto fronts in a
bi-objective space, defined by both objective metrics explained earlier: Hyper-
Volume (HV), Spread (Δ) and Inverted Generational Distance (IGD). HV rep-
resents the volume in the objective space covered by non-dominated solutions
[18]. Δ defines how well the non-dominated solutions are spread in the front. It
is the average of gaps between the distance between two adjacent solutions in
the front and the mean of these distances. Finally IGD measures the average
distance between the approximated front and the optimal one [16].

5.3 Experimental Setup

For the experiments, grid graphs have been used as environment graphs. More-
over, instances have been split into classes defined by their grid dimension
and their number of UAVs. Within a class, instances thus differ in terms of
the initial position of UAVs. A class is then written in the following format:
(dim grid/nb uavs). QLHH has been trained only on the smallest instance class
(smallest number of vertices and UAVs). This not only permits to reduce the
training time which can be considerably long on large instances, but it will also
permit to demonstrate that the generated heuristics also perform well on larger
problem instances. After training QLHH on the class (5 × 5/3), the obtained
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heuristic will be executed 30 times on each instance class. Table 1 presents the
parameterisation used for training QLHH. The first set of parameters depends
on the problem, i.e. they are used in the context of CCUS. The second set of
parameters is problem independent and is only used in the Q-learning process.

5.4 Experimental Results

After executing the generated heuristic (GH) and WO heuristic on 30 instances
of each class, both Pareto fronts are compared according to the three MO metrics
defined in Sect. 5.2. Results are presented in Table 2. For each class, bold values
correspond to the best ones and relative differences are relative to highest values.
The IGD metric shows that the Pareto front obtained with GH features a better
convergence on all instances. On the contrary, the spread of solutions in the

Table 2. Comparison between WO heuristic and the heuristic generated with QLHH

Metrics Instances Heuristics Relative

# Vertices # UAVs QLHH WO Differences

HV 5 × 5 3 9.385e+1 9.495e+1 1.15%

10 × 10 3 4.189e+2 4.484e+2 6.57%

5 5.814e+2 6.345e+2 8.37%

10 1.112e+3 1.128e+3 1.44%

15 1.591e+3 1.624e+3 2.00%

15 × 15 3 6.982e+2 1.006e+3 30.58%

5 1.493e+3 1.342e+03 10.09%

10 2.581e+3 2.386e+03 7.56%

Δ 5 × 5 3 0.000e+0 0.000e+0 /

10 × 10 3 4.203e–1 5.616e–1 25.17%

5 1.866e–1 1.199e–1 35.77%

10 1.037e–1 0.000e+0 100.00%

15 7.211e–1 4.147e–3 99.42%

15 × 15 3 8.510e–1 7.240e–2 91.49%

5 2.032e–1 7.759e–2 61.82%

10 1.281e–1 2.421e–1 47.07%

IGD 5 × 5 3 1.757e–1 5.331e–1 67.04%

10 × 10 3 5.185e–1 5.991e–1 13.45%

5 3.056e–1 8.276e–1 63.07%

10 5.205e–1 8.720e–1 40.31%

15 2.129e–1 6.932e–1 69.29%

15 × 15 3 8.114e–1 9.454e–1 14.18%

5 3.191e–1 7.634e–1 58.20%

10 1.234e–1 5.452e–1 77.37%
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front (Δ) is worse for GH except for the two smallest and the largest instance
classes ((5 × 5/3), (10 × 10/3) and (15 × 15/10)). Finally the HV metric, shows
the good performance of GH with results comparable to WO almost every class,
while GH performs better on the two largest instances.

Experimental results thus demonstrate that QLHH is able to generate com-
petitive swarming heuristics for any of the instance classes. Moreover, they per-
mit to outline that QLHH is able to generate scalable heuristics, since this good
global performance is obtained while the model was trained on the smallest
instances only (5 × 5/3). This is a strong asset since the training process would
be very long for large instances. With that model, the training can be much
faster while keeping good performances.

6 Conclusion

This work has presented a model for optimising the coverage of a connected
swarm, so called Coverage of a Connected-UAV Swarm (CCUS). In order to gen-
erate efficient UAV swarming behaviours, a Q-Learning based Hyper-Heuristic
(QLHH) has been designed for generating distributed CCUS heuristics. The
experiments have shown a good stability of the model. It means that it is possi-
ble to fast train the model on small instances and maintain the good properties
resulting on bigger instances. Future work will consist in conducting experiments
on additional larger classes of instances. Another extension will consider extend-
ing QLHH with Pareto-based approaches, instead of the scalarisation currently
used to balance both objectives.
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