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Abstract. We proposed a context segmentation method for medical
images via two deep networks, aiming at providing segmentation con-
texts and achieving better segmentation quality. The context in this work
means the object labels for segmentation. The key idea of our proposed
scheme is to develop mechanisms to elegantly transform object detec-
tion labels into the segmentation network structure, so that two deep
networks can collaboratively operate with loosely-coupled manner. For
achieving this, the scalable data transformation mechanisms between
two deep networks need to be invented, including representation of con-
texts obtained from the first deep network and context importion to the
second one. The experimental results reveal that the proposed scheme
indeed performs superior segmentation quality.

Keywords: Deep learning · Medical imaging segmentation ·
Computed tomography · Transpose convolution · Contextual
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1 Introduction

Due to the advance of image processing and computer techniques, the medical
imaging equipment become popular in hospitals for rapidly and precisely diag-
nosing various internal medicine symptoms. One frequently used medical image
form is the computed tomography (CT), where the computer system controls
the movement of the X-ray source to produce the image for further diagnosis.
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The medical imaging diagnosis technologies have been widely studied in past
decades [9], and provide symptom identifying assistance. Thus, medical imaging
industries are eager to add the intelligent diagnosis functions to medical systems
to increase doctors’ diagnosis performance [2].

Traditional medical imaging diagnosis applied image processing techniques
to identify symptoms based on their appearant characteristics. These methods
worked well for some symptoms, and are hard to be applied to other symp-
toms, unless the algorithms are modified according to the new symptoms. The
advance of artificial intelligence technologies greatly improves medical image pro-
cessing capacities. These works use convolutional neural network (CNN), fully-
connected neural network (FCN), artificial neural network (ANN) to accomplish
missions of object detection, classification, and segmentation. Recently, some
works [4,12] provide the medical image diagnosis with the deep learning tech-
nologies. Notably, the popular works in deep learning techniques [4] performs
detection or segmentation for images of general situations, while the medical
images have properties of low color differences between foreground and back-
ground, making computer systems hard to distinguish segmentation targets.
None of them provide solutions for improving quality of detection to medical
images. These existing methods might give inaccurate results so that doctors
may be with low confidence to the diagnosis support systems and still need com-
plete effort to diagnose symptoms by themselves. On the other hand literature
[1,2,5–8] shows that contextual information processing - especially with neural
networks - is very effective in increasing quality of classification of data vectors.

In this work, we proposed a contextual segmentation method for medical
images via two deep networks, aiming at providing segmentation semantics and
achieving better segmentation quality. The semantics in this paper means the
object labels for contextual blocks. Previous works achieve each of these sep-
arately. In this work, we solve the two issues in a uniform framework, where
the object detection deep network (ODDN) is used to extract semantics, and
the developed Semantic U-Net (SE-U-Net) is used to perform medical image
segmentation. The kernel idea of our proposed scheme is to develop two mech-
anisms to elegantly transform object detection labels with associated bounding
boxes into the deep segmentation network structure. The first is the scalable data
exchange interface between ODDNs and SE-U-Net need to be clearly defined,
where a context matrix is invented to connect two networks. The second is that
the U-Net structure needs to be modified to fit the additional semantic informa-
tion. We conduct experiments to validate our proposed scheme on the medical
images for identifying symptoms of the coronavirus disease 2019 (COVID-19).
The experimental results from the COVID-19 dataset reveal that the proposed
scheme indeed performs superior segmentation quality.
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2 Backgrounds

2.1 Object Detection Deep Networks

The object detection deep networks (ODDNs) have been studied in the last
decade, and many famous methods, e.g., YOLOv3 [10], are proposed and widely
recognized. Particularly, they are validated in crucial simulation tests and then
open-sourced, so that the area of ODDNs rapidly grows up and become one of
most important applications in deep network technologies. The main underlying
techniques of ODDNs is the CNNs and the FCNs, as the formal ones extract
object features automatically and the later ones map the generated features to
specified object classes. Many ODDNs are further developed for fitting different
application domains. Nowadays, the deep networks are well trained with data
sets via graphic processing unit (GPU) for efficiency.

2.2 Segmentation Deep Networks for Medical Images

Segmentation for medical images has a requirement: the processed images need
to preserve most properties of original ones. Thus, the deep networks used in
medical imaging industries need to bring portions of the original images to out-
puts for ensuring high similarity. The popular segmentation deep network for
medical images is U-Net [11]. The key design of the U-Net is that extracted
features are directly copied and moved to the generation stage, so that many
principle properties are incrementally added to the output to preserve the essen-
tial elements of original images. Many variants of the U-Net structure are also
proposed in recent year, such as ResUNet [3], and they all reserved the copy-
and-move components.

3 Proposed Contextual Segmentation Scheme

3.1 Overall Architecture

Figure 1 shows the architecture of our proposed contextual segmentation scheme,
which includes two deep networks and they are loosely coupled in the architec-
ture with merely data exchange. The first deep network is used to perform object
detection for providing contexts, and the second one is used to perform segmen-
tation over medical images. The advantage of the architecture is two-folded:
one is easy to watch the effect of each deep network, the other is avoid com-
plicated model creation procedure. The kernel idea of the scheme includes the
loose-coupled of two deep networks and the mechanisms of integrating them.
The technical details of the whole architecture, model creation, and network
integration will be presented in the following subsections.

Assume a medical image, denoted X[i], retrieved from the medical image
database via the DICOM (Digital Imaging and Communications in Medicine)
protocol has w × h pixels with ch channels (shortly, it denotes w × h × ch).
For example, the medical images used in this study are of 416 × 416 × 3. The
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Fig. 1. The proposed contextual segmentation architecture for medical image process-
ing.

output image of the SE-U-Net denotes Y[i], whose dimension is the same to
the input image, i.e., dim(X[i]) = dim(Y[i]), implying the image size remains
after our developed deep network proceeds it. The first network shown in the
left-hand side of the figure is an object-detection deep network (ODDN), which
generates object detection results in a bounding-box set, denoted BBS, with the
format {b̂[i]

j = (x̂[i]
j , ŷ
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j , ŵ
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j , ĥ
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in X[i]. Since the output format is clearly defined in the architecture, developing
deep-network components is flexible and many existing works, such as YOLO,
Fast-RCNN, SSD, etc. are considerable candidates. For example, YOLO is used
in the experimental study. Without loss of generality, we present the model
operation of the ODDN that identifying k̂[i] objects (represented in the form of
BBS) for the input X[i] as

MODDN (X[i]|θOD) = {b̂[i]
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where θOD is the hyperparameters of the ODDN. For finding out θOD, the loss
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ĵ

1noobj(b[i], b̂
[i]

ĵ
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where 1obj(b[i]
j , b̂[i]

ĵ
) returns 1 if BBoxes of two parameters predict the same

object, 0 otherwise; 1noobj(b1,b2) returns 1 if the object in b2 is not inside b1,
0 otherwise.

The second deep segmentation network, shown in the right-hand side of the
figure, is called Semantic U-Net (denoted SE-U-Net), which is a variant of the
U-Net structure [11]. Figure 2 illustrates the core SE-U-Net structure, consist-
ing of the constructing block for constructing features of medical images, the
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Fig. 2. Illustration of the Core SE-U-Net structure of four levels (v = 4) for extracting
context from CT images (the feature eF(0) contains generated symptom regions.)

bottlenecking block for transforming features between different feature spaces,
and the expensive block for expansive features to medical images. The expensive
block will also accommodate the context obtain from the ODDN, which will be
formally presented in Sect. 3.3. The key design of the SE-U-Net is that each layer
of the constructing block and the expansive block are of the same size and the
feature of the former block are directly copy and move to the later block, so
that features in the construction block are incrementally added to the output to
preserve the essential elements of original images.

The constructing block has v levels and each level performs two convolu-
tion operations for feature extraction with one maximum pooling operation for
dimension reduction to extracted features. Thus, a feature cF[i](i) of X[i] gener-
ated from level i-th of the constructing block can be expressed as

cF[i](i) = MaxPool(Conv(Conv(cF[i](i−1)))), where i = 1, . . . , v. (3)

where MaxPool(.) and Conv(.) are the maximum pooling operation and the
convolution operation, respectively, and cF[i](0) is the inputted image Xi. The
bottleneck block performs two convolution operations, and a feature bF

[i] gen-
erated in the constructing block for X[i] can be expressed as

bF
[i]

= Conv(Conv(cF[i](v))) (4)

Note that the constructing block and the bottleneck block play as an encoder
to extract key features by downsampling procedures via a couple of convolu-
tion and max pooling operations. The expansive block has the same number
of levels to the constructing block (i.e., v levels) and each level performs two
convolution operations and one transposed convolution operation for expanding
features obtained from the previous level. A feature eF(i) generated from level
i-th of the constructing block is determined by using the feature eF(i+1) and
the context provided by the ODDN. Comparing to the previous two blocks, the
expansion block plays as a decoder to generate an image from a feature by upsam-
pling procedures. The technical details of eF(i) will be discussed in Sect. 3.3. The
specification of the SE-U-Net used in this work are shown in Table 1. The loss
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function LSEU is defined based on the idea of Dice coefficient for measuring
similarity between pixel sets from a CT image and the labeling image, which
can represented as the following equation:

LSEU =
N∑

k=1

1 − 2 × (Σw
i=1Σ
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i,j × ŶSEU(k)

i,j )

(Σw
i=1Σ

h
j=1Y

(k)
i,j × Y(k)

i,j ) + (Σw
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h
j=1Ŷ

SEU(k)
i,j × ŶSEU(k)

i,j )
(5)

After obtaining the output eF[i](1) of X[i] from the SE-U-Net, the label-
overlaying module would overlay the refined context on the original medical
images, and it can be represented in the following equation:

Y[i]
j,k,l =

{
X[i]

j,k,l + eF[i](1)
j,k,l , c ∈ channel red

X[i]
j,k,l, otherwise

(6)

For ease of study, all contexts are highlighted in the red channel, and the overlay
function can be modified according to different application needs.

Table 1. The layer specification of SE-U-Net studied in this paper, where the input
size is 416 × 416 × 3 and the output size is 512 × 512 × 1.

Contacting
block

Kernel size Depth Strides Padding

Convolution 3 × 3 64 [1, 1] SAME
Convolution 3 × 3 64 [1, 1] SAME
Max
Pooling

2 × 2 [2, 2] VALID

Convolution 3 × 3 128 [1, 1] SAME
Convolution 3 × 3 128 [1, 1] SAME
Max
Pooling

2 × 2 [2, 2] VALID

Convolution 3 × 3 256 [1, 1] SAME
Convolution 3 × 3 256 [1, 1] SAME
Max
Pooling

2 × 2 [2, 2] VALID

Convolution 3 × 3 512 [1, 1] SAME
Convolution 3 × 3 512 [1, 1] SAME
Max
Pooling

2 × 2 [2, 2] VALID

output size 26 × 26 × 512

Convolution 3 × 3 1024 [1, 1] SAME
Convolution 3 × 3 1024 [1, 1] SAME
Convolution 3 × 3 1024 [1, 1] SAME
Convolution 3 × 3 1024 [1, 1] SAME

output size 26 × 26 × 1024

Expansive
block

Kernel
size

Depth Strides Padding

Transpose
convolution

2 × 2 512 [2, 2] VALID

Convolution 3 × 3 512 [1, 1] SAME
Convolution 3 × 3 512 [1, 1] SAME
Transpose
convolution

2 × 2 256 [2, 2] VALID

Convolution 3 × 3 256 [1, 1] SAME
Convolution 3 × 3 256 [1, 1] SAME
Transpose
convolution

2 × 2 128 [2, 2] VALID

Convolution 3 × 3 128 [1, 1] SAME
Convolution 3 × 3 128 [1, 1] SAME
Transpose
convolution

2 × 2 64 [2, 2] VALID

Convolution 3 × 3 64 [1, 1] SAME
Convolution 3 × 3 64 [1, 1] SAME
Convolution 3 × 3 1 [1, 1] SAME

Notice that two deep networks in our architecture are loosely coupled with
merely data delivery via the context transformation module. Such design has
two advantages. The first is that the two deep networks can be trained indi-
vidually with less training data, and spend less model creation time compared
to a single concated deep network. The second is that context extraction and
segmentation are both performed with satisfied high quality in the separated
deep networks. In case the single deep network solution is adopted, developers



684 L.-Y. Jiang et al.

do not know quality of context extraction and segmentation separately as they
are all mixtured encoded in the hyperparameters of the single deep network.

Operational Workflows of the Proposed Scheme:
Two operational workflows, model creation and medical image diagnosis, for the
proposed context segmentation scheme are presented below.

Model Creation Workflow
Assume a set of medical images X[i], i = 1, . . . , N are given and associated labels
of X[i] are collected from domain experts in the form: {Y[i], c[i]}, where Y[i] is
the associated segmented image, c[i] is the associated class label set.

Step 1. Create an optimal ODDN model (θ∗
OD).

Assume BBox(Y[i], c[i]) = {b[i](j) = (x[i](j)
b , y

[i](j)
b , w

[i](j)
b , h

[i](j)
b , c

[i](j)
b )|j =

1, . . . , k[i]} is an extraction function that returns a set of minimal bounding
boxes b[i](j) covering irregular labeled segmentation shapes in Y[i], including
the center point, width, and height, where k(i) is the number of collected
labels in X[i]. Let MOD(X[i]|θOD) = {b̂[i](j)|j = 1, . . . , k̂[i]} be the output
of the ODDN with hyperparameter θOD to the medical image X[i]. Given
labeled dataset DOD = {X[i], BBox(Y[i], c[i])|i = 1, . . .}, in this step, We
use the training/testing processes in deep learning to find out the optimal
hyperparameters for the ODDN network (i.e., θ∗

OD), so that the loss function
LOD is minimum. That is,

θ∗
OD = arg min

θ;DOD

LOD(MOD(X[i]|θ), BBox(Y[i], c[i]) = {b[i](j)}) (7)

Note that the definition of LOD can refer to Eq. (2).
Step 2. Create an optimal SE-U-Net model (θ∗

SEU ).
Let MSEU (X[i], CM(Y[i])|θSEU ) = ŶSEU [i] be the output of the SE-U-Net
with hyperparameter θSEU to the medical image X[i], where CM(Y[i]) return
the context matrices of Y[i]. Given DSEU = {X[i], BBox(Y[i]),Y[i]|i =
1, . . .}, in this step, we use the training/testing processes to find out the opti-
mal hyperparameters for the SE-U-Net (i.e., θ∗

SEU ), so that the loss function
LSEU of the SE-U-Net, defined in Eq. (5) is minimum. That is,

θ∗
SEU = arg min

θ
LSEU (MSEU (X[i], BBox(Y[i])|θ),Y[i]) (8)

The pair (θ∗
OD, θ∗

SEU ) are the models used in our proposed scheme.

Medical Image Diagnosis Workflow
The dashed arrows in Fig. 1 indicate the medical image diagnosis workflow. Due
to length limit, we ignore the detailed steps here.

3.2 Context Matrix Transformation

In this subsection, we present a key mechanism, Context Matrix Transforma-
tion (CMT), used in the context transformation module for the scalable data
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exchange interface between ODDNs and SE-U-Net. The context matrix is scal-
able as it is adaptive to the medical image size and also accommodate multiple
labels in an image. Given a bounding box set {b̂[i]

j } obtained from an ODDN
for a medical image, the CMT generates a context matrix, denoted S[i], whose
dimension is the same to the original image X[i].

Figure 3 illustrates the context matrix transformation, which contains two
steps: the matrix-rendering step and the label filling step. The matrix-rendering
step is to map the bounding boxes to a matrix with size w×h. Each bounding box
b̂[i]

j of X[i] has attributes (x̂[i]
j , ŷ

[i]
j , ŵ

[i]
j , ĥ

[i]
j ), which indicates the corresponding

sub-matrix, as shadowed ones in the figure. Each sub-matrix can be indicated
by two coordinates: the top-left (tl) point and the bottom-right (br) point, and
is represented as

tl
[i]
j =(tl[i]j .x, tl

[i]
j .y) = ((x̂[i]

j − ŵ
[i]
j /2) × w, (ŷ[i]

j − ĥ
[i]
j /2) × h) (9)

br
[i]
j =(br[i]j .x, br

[i]
j .y) = ((x̂[i]

j + ŵ
[i]
j /2) × w, (ŷ[i]

j + ĥ
[i]
j /2)) × h) (10)

Note that for medical imaging applications, each element only belong to one
lable at most, that is, it is either marked or unmarked in the context matrix. The
tl-br representation is easy to ensure such property, compared to the bounding-
box representation. The label filling step is to filling elements in the sub-matrix
(x̂[i]

j , ŷ
[i]
j , ŵ

[i]
j , ĥ

[i]
j ) with the label value ĉ

[i]
j . Other matrix elements are filled with

zero, meaning they are unlabeled. After the two steps, all labels of a medical
image X[i] are encoded into a context matrix S[i] as follows

S[i]
r,t =

{
ĉ
[i]
j , if r ∈ [tl[i]j .x, br

[i]
j .x] and t ∈ [tl[i]j .y, br

[i]
j .y],

0, otherwise.
(11)

Fig. 3. Illustration of transforming a bounding-box set to a context matrix.
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3.3 Computing Expansive Features with Context Matrice

We present another key mechanism in SE-U-Net, Context Feature Mapping
(CFM), which is used to refine expansive features in this subsection. In other
words, the CFM mechanism is to fuse a context matrix into the core SE-U-Net
structure, The inputs of the CFM mechanism include the context matrix S[i]

and the generated features cF[i](k) of the construction block (referring to Fig. 2.)
Let G[i](k) be the augmented context matrix of the expensive block in the

k-th stage and gF[i](k) be the augmented context feature considering G[i](k). The
procedure include two steps. The first step is to produce the augmented context
matrices G[i](k) for X[i]. The purpose of producing G[i](k) is to scale the context
matrix S[i] to fit the different feature sizes in the k levels of the expensive block.
The matrix element G[i](k)

x,y can be computed as the following equation.

G[i](k)
x,y =

{
ĉ
[i]
j , if (x × w

w(k) ) ∈ [tl[i]j .x, br
[i]
j .x] and (y × h

h(k) ) ∈ [tl[i]j .y, br
[i]
j .y],

0, otherwise.
(12)

The second step is to fuse the augmented context matrix to the expansive block
of the core SE-U-Net structure. For level k, the feature eF[i](k+1) obtained in the
(k + 1)-th level is upsampling (via the transpose convolution operation), which
is next fused with and the augmented context matrix G[i](k). The fusion result
is then concatenated with the feature cF[i](k), previously defined in Eq. 3, which
are then performed convolutions for smoothing the extracted symptoms. The
technical details can be represented in the following two formulae.

gF[i](k) = TransConv(eF[i](k+1)) ⊗ G[i](k), k = v − 1, . . . , 0. (13)
eF[i](k) = Conv(Conv(Concat(gF[i](k), cF[i](k)))), k = v − 1, . . . , 0. (14)

where ⊗ is the element-wise production, eF[i](v) = bF
[i] for computing gF[i](k)

of level v − 1, and Concat(.) is to concatenate two features. Note that cF[i](k)

from the construction block is concatenated to the intermediate feature, which
implements the copy-and-move property inspired by the widely used U-Net.

3.4 Discussions: What Does SE-U-Net Do?

The proposed SE-U-Net not only embeds extracted contexts to the image, but
also refines the segmentation quality. Thus, the proposed method is worth pro-
motion, compared to existing ones. Figure 4 illustrates conceptual working effects
of the proposed SE-U-Net, and explains why SE-U-Net can refine the symptom
label with context information. Traditional segmentation methods (e.g., U-Net)
perform segment the possible symptom region with features extracted in con-
struction levels, and due to the privacy issue concerned in most hospitals, the
number of medical images used for creating models is limited. Thus, U-Net
obtains less accurate symptom region, as shown in the middle of the figure.
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Fig. 4. Illustration of working effects of the proposed SE-U-Net.

For tackling the less quality of a segmentation model, SE-U-Net uses context
obtained from another deep network (i.e., ODDN) to further refines the symptom
region in the expansive block by means of feature fusion operations (i.e., Eqs. (13)
and (14).) In this way, SE-U-Net improves quality of possible symptom regions,
as shown in the right of the figure. The conceptual illustration also sustains
design of the proposed loose-coupled architecture.

4 Case Study

4.1 System Deployment and Experimental Settings

We deploy the proposed SE-U-Net system on the personal computer with two
graphic processing cards of Nvidia GTX 1080 Ti. The personal computer is
with Intel i9-7920x processor and 128 GB memory. The system prototype is
developed with programming tools mostly used in the deep-learning research,
including Python 3.5, TensorFlow 1.6.0, CUDA v9.0.176, and cuDNN 70005. The
COVID-CT-Dataset obtained from https://github.com/UCSD-AI4H/COVID-
CT has 349 CT images of size 416 × 416 × 3 containing clinical findings of
coronavirus disease 2019 (COVID-19) from 216 patients.

4.2 Expr. 1: Visualization Effects of Context Segmentation

Figure 5 shows the visualization effects of the SE-U-Net, where the red is the
SE-U-Net, the blue is the human labels, and the pink is the intersection of both
the SE-U-Net and the human experts. Three processed CT images are selected
from both training and testing datasets for visual validation. We also show the
associated object detection results, i.e., contexts provided by the ODDN, for
understanding the where the SE-U-Net focuses and how it performs segmenta-
tion. From results of the training dataset, we can see most symptoms are marked
(i.e., pink color), which indicate the created SE-U-Net model is well trained and
performed sufficiently acceptable.

In results of the testing dataset with the created model, the first two cases
are randomly selected and the last one is a relative worse instance. The first two

https://github.com/UCSD-AI4H/COVID-CT
https://github.com/UCSD-AI4H/COVID-CT


688 L.-Y. Jiang et al.

Fig. 5. Visualization effects of the SE-U-Net, where blue boxes are contexts, pink
regions are true positives, and blue regions are false negatives. (Color figure online)

shows most marked parts are also recognized by the human experts (i.e., the pink
shapes), indicating that our SE-U-Net quite successfully inspects the unseen CT
images. In the third one, symptoms in the right lung are missed so that the
inspection performance decreases. Note that the ODDN does not provide any
context to the SE-U-Net in this instance. In this situation, the segmentation job
is performed merely depending on the SE-U-Net model, and its performance in
the case is similar to that of the traditional U-Net.

4.3 Expr. 2: Comparisons of Segmentation Methods

This experiment studies the effects of our SE-U-Net and existing U-Net and
the results are shown in Fig. 6, where the same CT images adopted in the first
experiment are used for fair comparisons. The two models are well trained as
possible. From the results of the training dataset, we can see that the SE-U-
Net and the U-Net mark most human labeling regions (i.e., high recall value),
meaning that both models have sufficient capacity to inspect symptoms. By
further analysis based on the precision value, we can see that the SE-U-Net
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has lower false positives than the U-Net, indicating that the SE-U-Net provides
more accurate information to doctors. Results of the testing dataset have similar
phenomena, which supports the above segmentation effects of the two methods.

Fig. 6. Visualization comparisons of the SE-U-Net and the U-Net, where pink regions
are true positives, red regions are false positives, and blue regions are false negatives.
(Color figure online)

4.4 Expr. 3: Quantitative Comparisons

We present quality of the created model used in experiments and comparisons
of deep networks in this experiment. Figure 7 shows the loss-function value in
various epoches during creating the SE-U-Net model. We can see that the loss-
function values of the training dataset are close to zero after 2000 epoches,
meaning that the created model has capacity to identify symptoms. Values of
the validation dataset are also quite low, verifying that the model is qualified to
perform context segmentation tasks.

Figures 8 shows comparisons of our SE-U-Net and the existing U-Net via the
receiver operating characteristic (ROC) curve and the precision-recall distribu-
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Fig. 7. Loss values during creating the SE-U-Net model.

(a) ROC curves (b) Precision-Recall curves

Fig. 8. Performance comparisons of SE-U-Net and U-Net.

tion, which both are widely used to measure performance of deep learning mod-
els. From both plots, we clearly see that the SE-U-Net performs more superior
than the U-Net. The experimental results confirm that the fore ODDN indeed
assists the SE-U-Net to concentrate on the localized region, so that the SE-U-Net
focuses on generating exquisite contextual segmentation outcomes shown previ-
ously. The results also verify that our developed mechanisms highly effectively
accomplish the purpose of loosely coupling two deep networks.

5 Conclusions and Future Work

In this paper, we proposed SE-U-Net to provide contexts and high-quality seg-
mentation to CT images for assisting doctors to diagnose symptoms. Traditional
segmentation only consider symptom identification with a single deep networks,
which could be less accurate. Our proposed SE-U-Net can employ object detec-
tion deep networks for acquiring contexts with bounding boxes, and then loosely
combine those contexts to the attentioned U-Net for further refining the segmen-
tation quality. We also give analysis to explain reasons that the SE-U-Net can
refine the segmentation quality. We developed the SE-U-Net prototype and con-
ducted experiments to test its performance. The experimental results revealed
that the proposed SE-U-Net indeed performs superior than existing methods in
metrics concerned by hospital experts. Our future work will extend the SE-U-
Net to diagnose other organs, such as the pancreas, which may be less apparent
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in medical images. Certain mechanisms sensitive to such unapparent symptoms
need to be additionally invented for the SE-U-Net.
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