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Abstract. In this study, we introduce an ensemble selection method
for deep ensemble systems called VEGAS. The deep ensemble models
include multiple layers of the ensemble of classifiers (EoC). At each
layer, we train the EoC and generates training data for the next layer
by concatenating the predictions for training observations and the orig-
inal training data. The predictions of the classifiers in the last layer are
combined by a combining method to obtain the final collaborated pre-
diction. We further improve the prediction accuracy of a deep ensemble
model by searching for its optimal configuration, i.e., the optimal set of
classifiers in each layer. The optimal configuration is obtained using the
Variable-Length Genetic Algorithm (VLGA) to maximize the prediction
accuracy of the deep ensemble model on the validation set. We devel-
oped three operators of VLGA: roulette wheel selection for breeding,
a chunk-based crossover based on the number of classifiers to gener-
ate new offsprings, and multiple random points-based mutation on each
offspring. The experiments on 20 datasets show that VEGAS outper-
forms selected benchmark algorithms, including two well-known ensem-
ble methods (Random Forest and XgBoost) and three deep learning
methods (Multiple Layer Perceptron, gcForest, and MULES).

Keywords: Deep learning · Ensemble learning · Ensemble selection ·
Classifier selection · Ensemble of classifiers · Genetic algorithm.

1 Introduction

In recent years, deep learning has emerged as a hot research topic because of its
breakthrough performance in diverse learning tasks. For instance, in computer
vision, Convolutional Neural Network (CNN), a deep neural network (DNN), sig-
nificantly outperforms traditional machine learning algorithms on the image clas-
sification task on some large scale datasets. Despite its many successes, there are
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some limitations of DNNs. Firstly, these deep models are usually very complex
with many parameters and can only be trained on specially-designed hardware.
Secondly, DNNs require a considerable amount of labeled data for the training
process. When the cost of labeled data is too prohibitive, deep models might
not bring about the expected gains in performance. It is well-recognized that
there are many learning tasks where DNNs are poorer than traditional machine
learning methods, especially state-of-the-art methods like Random Forest and
XgBoost [12].

Meanwhile, ensemble learning is developed to obtain a better result than
using single classifiers. By using an ensemble of classifiers (EoC), the poor pre-
dictions of several classifiers are likely to be compensated by those of others,
which boosts the performance of the whole ensemble. Ensemble systems have
been applied in many areas such as computer vision, software engineering, and
bioinformatics. Traditionally, ensemble systems have been constructed with one
layer of EoC. A combining algorithm combines the predictions of EoC for the
final collaborated prediction [10].

The term “deep learning” makes the crowd only think of DNNs, which include
multiple layers of parameterized differentiable nonlinear modules. In 2014, Zhou
and Feng introduced a deep ensemble system called gcForest, including sev-
eral layers of Random Forest-based classifiers [22]. The introduction of gcForest
has shown that DNN is only a subset of deep models or deep learning models
can be constructed with multiple layers of non-differentiable learning modules.
Experiments on some popular datasets have shown that deep ensemble models
outperform not only DNNs but also several state-of-the-art ensemble methods
[15,22].

The predictive performance and computational/storage efficiency of ensemble
systems can be further improved by obtaining a subset of classifiers that performs
competitively to the whole ensemble. This research topic is known as ensemble
selection (aka ensemble pruning or selective ensemble), an ensemble design stage
to enhance ensemble performance based on searching for an optimal EoC from
the whole ensemble. In this study, we introduce an ensemble selection method to
improve the performance and efficiency of deep ensemble models. A configuration
of the deep model is encoded in the form of binary encoding, showing which
classifiers are selected or not. It is noted that the length of the proposed encoding
depends on the number of layers and the number of classifiers in each layer
that we use to construct the deep model. The configuration of the deep model
thus is given in variable-length encoding. To find the optimal set of classifiers,
we consider an optimization problem by maximizing the classification accuracy
of the deep ensemble system on the validation data. In this work, we develop
VEGAS: a Variable-length Genetic Algorithm (VLGA) to solve this optimization
problem of the ensemble selection. The main contributions of our work are as
follows:

– We propose a classifier selection approach for deep ensemble system
– We propose to encode classifiers in all layers of the deep ensemble system in

a variable-length encoding
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– We develop a VLGA to search for the optimal number of layers and the
optimal classifiers.

– We experimentally show that VEGAS is better than some well-known bench-
mark algorithms on several datasets.

2 Background and Related Work

2.1 Ensemble Learning and Ensemble Selection

Ensemble learning refers to a popular research topic in machine learning in which
multiple classifiers are combined to obtain a better result than using single clas-
sifiers. Two main stages in building an ensemble system are somehow to generate
diverse classifiers and then combine them to make a collaborated decision. For
the first stage, we train a learning algorithm on multiple training sets generated
from the original training data [11] or train different learning algorithms on the
original training data [10] to generate EoC. For the second stage, a combining
method works on the predictions of the generated classifiers for the final deci-
sion. Based on experiments on diverse datasets, Random Forest [1] and XgBoost
[3] were reported as the top-performance ensemble methods.

Inspired by the success of DNNs in many areas, several ensemble systems have
been constructed with a number of layers of EoCs. Each layer receives outputs of
the subsequent layer as its input training data and then outputs the training data
for the next layer. The first deep ensemble system called gcForest was proposed
in 2014, including many layers of two Random Forests and two Completely
Random Tree Forests working in each layer. After that, several deep ensemble
systems were introduced such as deep ensemble models of incremental classifiers
[7], an ensemble of SVM classifiers with AdaBoost in finding model parameters
[17], and deep ensemble models for multi-label learning [21]. Nguyen et al. [15]
proposed MULES, a deep ensemble system with classifier and feature selection
in each layer. The optimization problem was considered under bi-objectives:
maximizing classification accuracy and diversity of EoC in each layer.

Meanwhile, ensemble selection is an additional intermediate stage of the
ensemble design process that aims to select a subset of classifiers from the
ensemble to achieve higher predictive performance and computational/storage
efficiency than using the whole ensemble. Ensemble selection can be formulated
as an optimization problem that can be solved by either Evolutionary Compu-
tation methods or greedy search approach. Nguyen et al. [13] used Ant Colony
Optimisation (ACO) to search for the optimal combining algorithm and the
optimal set from the predictions for the selected classifier in the ensemble sys-
tem. Hill climbing search-based ensemble pruning, on the other hand, greedily
selects the next configuration of selected classifiers around the neighborhood of
the current configuration. Two crucial factors of the hill-climbing search-based
ensemble pruning strategy are the searching direction and the measure to eval-
uate the different branches of the search process [16]. For an EoC, the measures
determine the best single classifier to be added to or removed from the ensemble
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to optimize either performance or diversity of the ensemble. Examples of evalu-
ation measures are Accuracy, Mean Cross-Entropy, F-score, ROC area [16], and
Concurrency [2]. The direction of the search process can be conducted in the
forward selection which starts from the empty EoC and adds a base classifier in
sequence, or backward selection which prunes a base classifier from the whole
set of classifiers until reaching the optimal subset of classifiers. Dai et al. [4]
introduced the Modified Backtracking Ensemble Pruning algorithm to enhance
the search processing in the backtracking method. The redundant solutions in
the search space are reduced by using a binary encoding for the classifiers.

2.2 Variable Learning Encoding in Evolutionary Computation

There are some variable length encoding-based algorithms introduced recently. In
[19], a VLGA is proposed to search for the best CNN structure. Each chromosome
consists of three types of units corresponding to convolutional layers, pooling
layers, and full connection layers. Later in [20], a non-binary VLGA was also
proposed to search for the best CNN structure. This variable-length encoding
strategy used different representations for different layer types. A skipping layer
consists of two convolutional layers and one skipper connection; its encoding
is the number of feature maps of the two convolutional layers within this skip
layer. The encoding of the pooling layers is the pooling operation type, i.e. mean
pooling or maximum pooling.

For applications, in [18], the GA with a variable-length chromosome was
used to solve the path optimization problems. The path optimization problem
is modeled as an abstract graph. Each chromosome is a set of nodes consisting
of a feasible solution and therefore has a length equal to node amount. In [6],
a GA with variable length chromosomes was also used to solve path planning
problems for the autonomous mobile robot. Each chromosome is a position set
that represents a valid path solution. The length of the chromosome is the num-
ber of the intermediate nodes. In [9], the proposed VLGA was also implemented
to solve the multi-objective multi-robot path planning problems.

3 Proposed Method

3.1 Ensemble Selection for Deep Ensemble Systems

Let D be the training data of N observations {(xn, ŷn}), where xn is the D-
feature vector of the training instance and yn be its corresponding label. True
label ŷn belongs to label set Y, |Y| = M . We aim to learn a hypothesis h (i.e.,
classifier) to approximate unknown relationship between the feature vector and
its corresponding label g : xn → ŷn and then use this hypothesis to assign a label
for each unlabeled instance. We also denote K = Kk as the set of K learning
algorithms. In deep ensemble learning consisting of s layers, we train an EoC
{h(i)

k } on ith layer (i = 1, . . . , s and k = 1, . . . ,K) and then use a combining
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algorithm C on the hypothesis of the sth layer h̃ = C
{
h(s)
k , k = 1, . . . ,K

}
for

final decision making.
A deep ensemble system has multiple layers where each of them consists

of EoCs. In the first layer, we obtain EoC
{
h(1)
k , k = 1, . . . ,K

}
by training K

learning algorithms on the original training data D. The first layer also generates
input data for the second layer by using the Stacking algorithm with the set of
learning algorithms K. Specifically, D is divided into T1 disjoint parts in which
the cardinality of each part is nearly similar. For each part, we train classifiers
on its complementary and use these classifiers to predict for observations of this
part. Thus, each observation in D will be tested one time. For observation xn,
we denote p

(1)
k,m(xn) is the prediction of the kth classifier in the first layer that

observation belongs to the class label ym. The predictions in terms of M class
labels are given in the form of probability:

∑
M
m=1p

(1)
k,m(xn = 1; k = 1, . . . ,K

and n = 1, . . . , N . We denote P (1)(xn) =
[
p
(1)
1,1(xn), p(1)

1,2(xn), . . . , p(1)
K,M (xn)

]
is

a (MK) prediction vector of the EoC in the first layer for xn. The prediction
vectors for all observations in D is given in the form of a N × (MK) matrix.

P1 =
[
P (1)(x1)P (1)(x2) . . . P (1)(xN )

]T
(1)

We denote L1 denotes the new data generated by the 1st layer as the input for
the 2nd layer. Normally, L1 is created by concatenating the original training data
and the predictions classifiers as below:

L1 = D
⊕

P1 (2)

in which
⊕

denotes the concatenation operator between two matrices D of size
N × D + 1 and P1 of size N × (MK). Thus L1 is obtained in the form of a
N × (D + MK + 1) matrix including D features of original data, MK features
of predictions, and ground truth of observations. A similar process conducts on
the next layers until reaching the last layer in which at the ith layer, we train
the EoC of K classifiers h(i)

k , k = 1, . . . ,K on the input data Li−1 generated by
(i − 1)th layer and generate input data Li for the (i + 1)th layer

Li = D
⊕

Pi (3)

The predictions of EoC of the last layer i.e. sth layer are combined for the
collaborated decision. In this study, we use the Sum rule for combining [14]. For
an instance x, the Sum rule summarizes the predictions of EoC of the last layer
concerning each class label. The label associated with the maximum value is
assigned to this instance as follows:

h̃ : x ∈ yt if t = argmaxm=1,...,M

{∑
K
k=1p

(s)
k,m(x)

}
(4)

In the classification process, each unseen instance is fed forward through the
layers until reaching the last layer. The predictions of K classifier at the last
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layer i.e. P (s)(.) =
[
p
(s)
1,1(.), p

(s)
1,2(.), . . . p

(s)
K,M (.)

]
are combined by Sum Rule in (4)

to obtain the predicted label.
It is recognized that there is existing a subset of EoC that performs bet-

ter than using the whole ensemble. Moreover, storing a subset of the ensemble
will save the computational cost and storage cost. In this study, we propose an
ensemble selection approach for deep ensemble systems. We propose to encode
classifiers in the deep ensemble system using binary encoding in (5), showing
which classifiers are presented or absent. For a deep ensemble system of s lay-
ers, since there are K classifiers in each layer, the encoding associated with the
model of s layers has s × K binary elements. It is noted that the length of the
proposed encoding is not fixed and depends on the number of layers that we use
to construct the deep model. If the number of layers is chosen by 1 ≤ s ≤ S, we
have S groups of encoding with the lengths of {K, 2 ×K, . . . , S ×K}. By using
these groups of encoding, we aim to search for the optimal number of layers and
the optimal set of classifiers in each layer for the deep ensemble system.

h(i)
k =

{
1, kth classifier at ith layer is selected
0, otherwise (5)

3.2 Optimization Problems and Algorithm

We consider optimization for the model selection problem. The objective is max-
imizing the accuracy of the classification task on a validation set V:

maxE

{
1

|V|
∑ |V|

n=1

∥∥∥h̃E(xn) = ŷn

∥∥∥
}

(6)

where h̃E is the combining model using the Sum Rule in (4) associated
with encoding E, |.| denotes the cardinality of a set, and‖.‖ is equal 1 if the
condition is true, otherwise equal 0. In this study, we develop a VLGA to solve
this optimization problem. Genetic Algorithm (GA) is a search heuristic inspired
by Charles Darwin’s theory of natural evolution. It is widely recognized that
GA commonly generates high-quality solutions for search problems [8]. Three
operators of GA are considered in this study:

Selection: We apply the roulette wheel selection approach to select a pair of
individuals for breeding. The probability of choosing an individual from a pop-
ulation is proportional to its fitness as an individual has a higher chance of
being chosen if its fitness is higher than those of others. Probability of choosing
individual ith is equal to:

pi =
fi∑popSize

j=1 fj
(7)

where fi is the accuracy of the deep ensemble model with the corresponding con-
figuration of the ith individual and popSize is the size of the current generation.

Crossover: We define the probability Pc for the crossover process in which
crossover occurs if the generated crossover probability is smaller than Pc. Here
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Fig. 1. The illustration of chunk-based crossover operator

we develop a chunk-based crossover operator to generate new offsprings. As
mentioned before, since there are at most K classifiers in each layer of a deep
ensemble system with s layers, each chromosome is given in the form of s-chunk
in which the chunk size is K. On two selected parents with s1 and s2 layers, we
generate two random numbers r1 and r2 which are the multiple of s1 and s2 i.e.
r1 ∈ {K, 2 × K, . . . , s1 × K} and r2 ∈ {K, 2 × K, . . . , s2 × K}. r1 and r2 will
divide each parent into two parts. Each parent exchanges its tail with the other
while retains its head. After crossover is performed, we have two new offspring
chromosomes. We illustrate in Fig 1 how chunk-based crossover works on a deep
ensemble model with 3 classifiers in each layer. Parent 1 encodes a 3-layer deep
ensemble model, while parent 2 encodes a 4-layer deep ensemble model. On
parent 1 and 2, two random numbers are generated as r1 = 3 and r1 = 9.
By retaining heads and exchanging tails on these parents, we obtain two new
offsprings, the first one encodes a 2-layer deep ensemble, and the second encodes
a 5-layer deep ensemble. By using this crossover operator, we can generate the
offsprings with different sizes compared to those of their parents, thus improving
exploration of the searching process.

Mutation: Mutation operators introduce genetic diversity from one generation
in a population to the next generation. It also prevents the algorithm from falling
into local minima or maxima by making the population of chromosomes different
from each other. We define the probability Pm for the mutation process in which
mutation occurs if the generated mutation probability is smaller than Pm. In
this study, we propose to apply a multiple point-based mutation operator on an
offspring. First, we generate several random numbers which show the position
of mutated genes in a chromosome. The values of these mutated genes will be
flipped, i.e., from 0 to 1 or 1 to 0. By doing this way, we obtain a new offspring,
which may change entirely from the previous one; consequently, GA can escape
from local minima or maxima and reach a better solution.

The pseudo-code of VLGA is present in Algorithm 1. The algorithm gets the
inputs including the training data D, the validation data V and some param-
eters for the evolutionary process (the population size popSize, the number of
generations nGen, crossover probability Pc and mutation probability Pm) We
first randomly generate a population with popSize individuals and then calcu-
late the fitness of each individual on V by using Algorithm 2 (Step 1 and 2).
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The probabilities for individual selection are computed by using (7) in Step 3.
Two selected parents will bread a pair of offsprings if they satisfy the crossover
check (Step 7–8). These offsprings will pass through mutation in which some
random positions of them are changed if mutation occurs (Step 15–21). We also
calculate the fitness of each offspring on V by using Algorithm 2 before adding
them to the population. The step 6–23 are repeated until we generate a new
popSize offsprings. From the population of 2 × popSize individuals, we keep
popSize best individuals for the next generation. The algorithm runs until it
reaches the number of generations. We select the candidate from the last pop-
ulation, which is associated with the best fitness value as the solution of the
problem.

Algorithm 2 aims to calculate the fitness and deep model generation associ-
ated with an encoding. The algorithm inputs training data D, validation data
V, an encoding E, and the number of T-folds. From the configuration of E, we
can obtain the number of layers and which classifiers are selected in each layer.
On the ith layer, we do two steps (i) train selected classifiers at the on whole
Li−1denoted by {h(i)

k } (Step 4) and (ii) generate training data for the (i + 1)th

layer by using T-fold Cross-Validation and concatenation operator between pre-
diction data and original training data (Step 7–14). The classifier {h(i)

k } predicts
on Vi−1 which is the prediction matrix for observations of V at the (i − 1)th

layer, to obtain the prediction Pi(V) (Step 6). Pi(V) is also concatenated with
V to obtain the validation data for the (i + 1)th layer. After running through
the last layer i.e. the sth layer, we apply the Sum Rule on the prediction Ps(V )
to obtain the fitness value of E. We also obtain the classifiers {h(i)

k } associated
with E.

In the classification process, we assign the class label to an unlabeled test
sample. In each layer, the input test data will be predicted by classifiers and
then be concatenated with the original test sample to generate new test data
for the next layer. The combining function in (4) is applied to the outputs of
classifiers of the last layer to give the final prediction.

4 Experimental Studies

4.1 Experimental Settings

We conducted the experiments on the 20 datasets collected from different sources
such as the UCI Machine Learning Repository and OpenML. We used 5 classi-
fiers in each layer of VEGAS in which these classifiers were generated by using
learning algorithms: Näıve Bayes classifiers with Gaussian distribution, XgBoost
with 200 estimators, Random Forest with 200 estimators, and Logistic Regres-
sion. We used the 5-fold Cross-Validation in each layer to generate the new
training data for the next layer. 20% of the training data is used for validation
purposes [22]. For VLGA, the maximum number of generations was set to 50,
the population size was set to 100, and the crossover and mutation probability
was set to 0.9 and 0.1, respectively.
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Algorithm 1. Variable length Genetic Algorithm
Require: Training data D, Validation data V population size: popSize, number of generations

nGen, crossover probability: Pc, mutation probability: Pm

Ensure: Optimal configuration
1: Randomly generate population
2: Calculate fitness on V of each individual using Algorithm 2
3: Calculate selection probabilities by (7)
4: for i ← 1, nGen do
5: while currentpopulationsize < 2 × popSize do
6: Select a pair of individuals based on selection probabilities
7: Generate a random number rc ∈ [0, 1]
8: if rc ≤ Pc then
9: Generate two random number r1, r2 which are multiple of K

10: Divide parents to head and tail based on r1 and r2
11: Swap tails of two parents to create two new offsprings
12: else
13: Continue
14: end if
15: Generate a random number rm ∈ [0, 1]
16: if rm ≤ Pm then
17: for each offspring do
18: Generate random number r of mutation points
19: Flip the binary value associated with mutation points
20: end for
21: end if
22: Calculate the fitnesses of two new offsprings using Algorithm 2
23: Add two new offsprings to the population
24: end while
25: Keep popSize best individuals for the next generation
26: Calculate selection probabilities by (7)
27: end for
28: Return individual (encoding and associated deep model) with the best fitness from the last

generation

VEGAS was compared to some algorithms, including the ensemble meth-
ods and deep learning models. Three well-known ensemble methods were used
as the benchmark algorithms: Random Forest, XgBoost, and Rotation Forest.
All these methods were constructed by using 200 learners. Three deep learning
models were compared with VEGAS: gcForest (4 forests with 200 trees in each
forest) [22], MULES [15], and Multiple Layer Perceptron (MLP). For MULES,
we used parameter settings like in the original paper [15]. It is noted that the
performance of MLP significantly depends on the network structure. To ensure
a fair comparison, we experimented with MLP on a number of different network
configurations: input-30-20-output, input-50-30-output, and input-70-50-output
by referencing the experiments [22]. We then reported the best performance of
MLP among all configurations and used this result to compare with VEGAS.

We used Friedman test to compare performance of experimental methods on
experimental datasets. If the P-Value of this test is smaller than a significant
threshold, e.g. 0.05, we reject the null hypothesis and conduct the Nemenyi
post-hoc test to compare each pair of methods [5].

4.2 Comparison to the Benchmark Algorithms

Table 1 shows the prediction accuracy of VEGAS and the benchmark algorithms.
Based on the Friedman test, we reject the null hypothesis that all methods per-
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Algorithm 2. Fitness calculation and deep model generation on an encoding
Require: Training Data D, validation data V, and encoding E, number of T-fold
Ensure: the fitness value of E
1: Get number of layer s and selected classifiers in each layer from E
2: L0 = D,V0 = V
3: for i ← 1, s do

4: Train selected classifiers at the ith layer on whole Li−1 : {h(i)
k }

5: Pi = ∅
6: Use {h(i)

k } to predict for Vi−1 to obtain Pi(V)
7: for t ← 1, T %generate the running data for the next layer do

8: Li−1 =
⋃ T

j=1L(j)
i−1,L

(j1)
i−1

⋂ L(j2)
i−1 = ∅,

∣
∣
∣L(j1)

i−1

∣
∣
∣ ≈

∣
∣
∣L(j2)

i−1

∣
∣
∣ ,

9: 1 ≤ j1, j2 ≤ T, j1 �= j2

10: for all L(j)
i−1 do

11: Train Selected Classifiers on Li−1 − L(j)
i−1

12: Use these classifiers to predict on L(j)
i−1 to obtain P(j)

i

13: Pi = Pi

⋃ P(j)
i

14: end for
15: Li = L0

⊕ Pi

16: end for
17: Vi = V0

⊕ Pi(V)
18: end for
19: Using combing method (4) on Pi(V)
20: Calculate fitness f of E by using (6)

21: Return f and {h(i)
k }i = 1, . . . , s

form equally. The Nemenyi test in Fig 2 shows that VEGAS is better than all
benchmark algorithms. In detail, VEGAS performs the best among all methods
on 15 datasets. VEGAS ranks second on 5 datasets, and the prediction accuracy
of VEGAS and the first rank method are not significant differences (0.9610 vs
0.9756 of gcForest on the Breast-cancer dataset, for example). The outstand-
ing performance of VEGAS over the benchmark algorithms comes from (i) the
use of multi-layer architecture over one-layer ensembles (ii) the use of ensemble
selection to search for optimal configuration for VEGAS on each dataset.

Surprisingly, Random Forest ranks higher than the other benchmark algo-
rithms in our experiment. Random Forest ranks the first on two datasets Hayes-
Roth and Wine white (about 2% better than VEGAS for prediction accuracy).
In contrast, VEGAS is significantly better than Random Forest on some datasets
such as Hill-valley (about 30% better), Sonar (about 6% better), Vehicle (about
6% better), Tic-Tac-Toe (about 8% better).

MULES and XgBoost rank the middle in our experiment. VEGAS outper-
forms MULES on all datasets. MULES looks for optimal EoC of each layer
by considering two objectives: maximising accuracy and diversity. Meanwhile,
VEGAS learns the optimal configuration for all layers of the deep ensemble. It
demonstrates the efficiency of the optimisation method, i.e. VLGA of VEGAS.
For MLP, although we ran the experiments on its 3 different configurations and
reported its best result for the comparison, this method is worse than VEGAS
on up to 18 datasets. gcForest is worst among all methods on the experimental
datasets. On some datasets such as Conn-bench-vowel, Hill-valley, Sonar, Tex-
ture, Tic-Tac-Toe, Vehicle, and Wine-white, gcForest performs poorly and by
far worse than VEGAS.
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Table 1. The classification accuracy and ranking of all methods

gcForest MLP Random forest XgBoost MULES VEGAS

Artificial 0.7905 (2) 0.6476 (6) 0.7619 (3) 0.7571 (4) 0.7238 (5) 0.8000 (1)

Breast-cancer 0.9756 (1) 0.9512 (5.5) 0.9561 (3) 0.9512 (5.5) 0.9512 (4) 0.9610 (2)

Cleveland 0.6000 (2.5) 0.5000 (6) 0.6000 (2.5) 0.5556 (5) 0.5889 (4) 0.6111 (1)

Conn-bench-vowel 0.6289 (6) 0.8365 (4) 0.9119 (2) 0.8428 (3) 0.8050 (5) 0.9245 (1)

Hayes-roth 0.8333 (3) 0.7708 (6) 0.8750 (1) 0.8125 (5) 0.8333 (4) 0.8542 (2)

Hill-valley 0.5852 (6) 0.8942 (3) 0.6593 (5) 0.6786 (4) 0.9766 (2) 0.9849 (1)

Iris 0.9556 (4) 1.0000 (1) 0.9333 (5.5) 0.9333 (5.5) 0.9556 (3) 0.9778 (2)

Led7digit 0.7067 (3) 0.7200 (2) 0.6933 (4) 0.6600 (5) 0.4400 (6) 0.7333 (1)

Musk1 0.8462 (3) 0.8252 (6) 0.8462 (4) 0.8322 (5) 0.8671 (2) 0.8951 (1)

Musk2 0.9515 (6) 0.9798 (3) 0.9773 (4) 0.9929 (2) 0.9727 (5) 0.9939 (1)

Newthyroid 0.9692 (4) 0.9846 (2.5) 0.9846 (2.5) 0.9538 (5) 0.9385 (6) 1.0000 (1)

Page-blocks 0.9464 (6) 0.9629 (4) 0.9695 (2) 0.9683 (3) 0.9568 (5) 0.9720 (1)

Pima 0.7229 (5) 0.7316 (4) 0.7403 (2) 0.7359 (3) 0.6840 (6) 0.7576 (1)

Sonar 0.8095 (6) 0.8889 (2) 0.8413 (3.5) 0.8413 (3.5) 0.8254 (5) 0.9048 (1)

Spambase 0.9392 (5) 0.9356 (6) 0.9551 (2) 0.9522 (3) 0.9508 (4) 0.9594 (1)

Texture 0.8436 (6) 0.9933 (1) 0.9752 (5) 0.9848 (4) 0.9855 (3) 0.9915 (2)

Tic-Tac-Toe 0.8368 (6) 0.9271 (4) 0.9236 (5) 1.0000 (1.5) 0.9792 (3) 1.0000 (1.5)

Vehicle 0.7283 (5) 0.6890 (6) 0.7638 (4) 0.7717 (3) 0.8189 (2) 0.8307 (1)

Fig. 2. The Nemenyi test result

4.3 Discussions

VEGAS takes higher training time compared to two deep ensemble models i.e.
gcForest and MULES. On the Tic-Tac-Toe dataset, for example, gcForest used
only 311.78 s for the training process compared to 15192.08 of VEGAS (100
individuals in each generation). Meanwhile, MULES (50 individuals in each gen-
eration) used 3154.86 s for its training process. It is noted that the training time
of VEGAS can reduce based on either parallel implementation or early stopping
of VLGA. Figure 3 shows the average and global best of the fitness function in the
generations of VEGAS on 4 selected datasets. It is observed that the global bests
converge quickly after several generations. On Balance and Artificial dataset, for
example, their global bests converge after 8 iterations. Thus, the training time
on some datasets can reduce by an early stopping based on the convergence of
the global best.

On the other hand, although VEGAS creates more layers than gcForest and
MULES (6.4 vs 3.8 and 2.75 on average), the classification time of VEGAS is
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Fig. 3. The average and global best of the fitness function in the generations of VLGA
on 4 datasets

competitive to those of gcForest and MULES. That is because on some datasets,
VEGAS selects a small number of classifiers in each layer. On the Tic-Tac-Toe
dataset, VEGAS takes only 0.016 s for classification with 4 layers and 6 classifiers
in total. Meanwhile, gcForest (6 layers and 4800 classifiers in total) used 0.62 s
to classify all test instances, and MULES (4 layers with 11 classifiers in total)
used 0.26 s with its selected configuration [15].

5 Conclusions

The deep ensemble models have further improved the predictive accuracy of one-
layer ensemble models. However, the appearance of unsuitable classifiers in each
layer reduces predictive performance and the computational/storage efficiency of
the deep models. In this study, we have introduced an ensemble selection method
for the deep ensemble systems called VEGAS. We design the deep ensemble sys-
tem involving multiple layers of the EoC. The training data is populated through
layers by concatenating the predictions of classifiers in the subsequent layer and
the original training data. The predictions of the classifiers in the last layer are
combined by a combining method to obtain the final collaborated prediction.
We proposed the VLGA to search for the optimal configuration, which maxi-
mizes the prediction accuracy of the deep ensemble model on each dataset. Three
operators of VLGA were considered in this study, namely selection, crossover,
and mutation. The experiments on 20 datasets show that VEGAS is better than
both well-known ensemble methods and other deep ensemble methods.
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