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Abstract. Mixture models are considered as a powerful approach for
modeling complex data in an unsupervised manner. In this paper, we
introduce a finite generalized inverted Dirichlet mixture model for semi-
bounded data clustering, where we also developed a variational entropy-
based method in order to flexibly estimate the parameters and select the
number of components. Experiments on real-world applications includ-
ing breast cancer detection and image categorization demonstrate the
superior performance of our proposed model.

Keywords: Unsupervised learning · Clustering · Generalized inverted
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1 Introduction

Nowadays, large amounts of complex data in various formats (e.g., image, text,
speech) are generated increasingly at a bottleneck speed. This increase moti-
vated data scientists to develop tactical models in order to automatically ana-
lyze and infer useful knowledge from these data [1]. In this context, statisti-
cal modeling plays a significant role in helping machines interpret data with
statistics. An essential approach in statistical modeling is finite mixture models
that are effectively used for clustering purposes, separating heterogeneous data
into homogeneous groups [2]. The usefulness of mixture models has been widely
demonstrated in many application areas including pattern recognition, text and
image analysis [3]. However, there exist several challenges to address when work-
ing with mixture models: (1) Standard finite mixture models assume that the
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observed data are normally distributed [4]. This is not always the case, in sev-
eral applications. Lately, multiple studies have shown that other non-Gaussian
statistical models (e.g., Dirichlet, inverted Dirichlet and Gamma) are effective
in modeling data [5–15]. Thus, choosing a suitable probability distribution that
better describes the nature and the properties of the observed data is crucial to
the assessment of the validity of the model. For instance, the inverted Dirichlet
mixture, has good flexibility in accepting different symmetric and asymmetric
forms that results in better generalization capabilities. But, the model usually
supposes that the features of the vectors are positively correlated, and that is
not always applicable for real-life applications. (2) In most cases, the mixture
model fitting is not straightforward and analytically intractable. Methods like
Expectation-Maximization (EM) and Maximum likelihood [1] are widely used
in this context, but they remain impractical as they are sensitive to initializa-
tion and usually lead to over-fitting [16]. An alternative approach to solve these
problems is Bayesian learning, particularly, variational inference has made the
parameter estimation process more computationally efficient. (3) The selection
of the number of components is an important issue to consider in the design of
mixture models, because a high number of components may lead to learning the
data too much, whereas inference under a model with a small number of compo-
nents can be biased. To this end, multiple effective methods have been proposed,
like minimum message length criterion [17,18]. To overcome the aforementioned
challenges, we introduce a novel finite variational Generalized Inverted Dirichlet
Mixture Model for data clustering, which learns the latent parameters based
on the variational inference algorithm. Our work is motivated by the success of
the Generalized Inverted Dirichlet (GID) distribution [19]. The GID has great
efficiency in comparison to Gaussian distribution when dealing with positive vec-
tors and has been shown to be more practical due to its higher general covari-
ance structure. Also the GID samples can be represented in a transformed space
where features are independent and follow the inverted Beta distribution [20–22].
Moreover, the use of the variational inference algorithm allows us to minimize
the Kullback–Leibler divergence between the true posterior and the approxi-
mated variational distribution, leading to accurate and computationally efficient
parameter estimation of our proposed mixture model [22]. The main challenge
here, is to design a good mixture model that better fits the observed semi-
bounded data with the right number of components. We propose to apply an
entropy-based variational inference combined with our GID Mixture Model. We
started with one component and proceed incrementally to find the best num-
ber of components and we will explain the model complexity and approximate
the perfect number of components by a compression between the estimated and
theoretical entropy [23] similar to researches that have been successful on distri-
butions like the Dirichlet mixture model [24]. To demonstrate the effectiveness
of the proposed approach, we evaluate the Entropy-Based Variational Learning
of Finite Generalized Inverted Dirichlet Mixture Model (EV-GIDMM) on real-
world applications including breast cancer detection and image categorization.
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The remainder of this paper is organized as follows. We provide an overview
of the statistical background of our GID mixture model in Sect. 2. Section 3
is assigned to the variational inference process of our model. We explain the
entropy-based variational inference of EV-GIDMM in Sect. 4. The results of our
experiments on real data are provided in Sect. 5. Finally, we conclude the paper
in Sect. 6.

2 Model Specification

2.1 Finite Generalized Inverted Dirichlet Mixture

Lets us assume Y = (Y 1, . . . ,Y N ) is a set of N independent identically dis-
tributed vectors, where every single Y i is defined as Y i = (Yi1, . . . , YiD), where
D is the dimensionality of the vector. We are assuming that each Y i follows
a mixture of GIDs, where the probability density function of the GID is given
by [19]:

p(Yi | αj ,βj) =
D∏

d=1

Γ (αjd + βjd)
Γ (αjd)Γ (βjd)

Y
αjd−1
id

(1 +
∑d

l=1 Yil)γjd

(1)

where αj and βj are the parameters of the GID, and they are defined as αj =
(αj1, . . . , αjd) and βj = (βj1, . . . , βjd) with constraints αjd > 0 and βjd > 0. We
can find γid according to γid = βjd + αjd − βj(d+1). Supposing that the model
consists of M different components [1], we are able to define the GID mixture
model as follows:

p(Y i | π,α,β) =
M∑

j=1

πjp(Y i | αj ,βj) (2)

where π represents its mixing coefficients correlated with the components, where,
π = (π1, . . . , πM ) with constrains πj ≥ 0 and

∑M
j=1 πj = 1, and the shape param-

eters of the distribution are denoted as α = (α1, . . . ,αM ) , β = (β1, . . . ,βM )
and j = 1, . . . , M . According to [21], we can replace the GID distribution with
a product of D Inverted Beta distributions, considering that it does not change
the model, therefore, Eq. (2) can be rewritten as:

p(X | π, α, β) =
N∏

i=1

⎛

⎝
M∑

j=1

πj

D∏

l=1

PiBeta(Xil | αjl, βjl)

⎞

⎠ (3)

By considering that X = (X1, . . . ,XN ) where Xi = (Xi1, . . . , XiD), we have
Xil = Yil and Xil = Yil

1+
∑l−1

k=1 Yik
for l > 1. The inverted Beta distribution is

defined by PiBeta(Xil|αjl, βjl) with the parameters αjl and βjl and given by:

PiBeta(Xil | αjl, βjl) =
Γ (αjl + βjl)
Γ (αjl)Γ (βjl)

Xil
αjl−1

(1 + Xil)αjl+βjl
(4)



Entropy-Based Variational Learning of GID Mixture Model 133

In proportion to this design, we are able to estimate the parameters from Eq.
(3) instead of the Eq. (2). We define the latent variables as Z = (Z1, . . . ,ZN )
where Zi = (Zi1, . . . , ZiM ) with the conditions Zij ∈ {0, 1} that Zij is equal
to 1 if Xi is assigned to cluster j and zero otherwise, and

∑M
j=1 Zij = 1. The

conditional probability for the latent variables Z given π can be written as:

p(Z | π) =
N∏

i=1

M∏

j=1

πj
Zij (5)

We write the probability of the observed data vectors X given the latent variable
and component parameters as:

p(X | Z,α,β) =
N∏

i=1

M∏

j=1

( D∏

l=1

piBeta(Xil | αjl, βjl)
)Zij

(6)

By assuming that the parameters are independent and positive, we can suppose
that the priors of these parameters are Gamma distributions G(.). According
to [25], we can describe them as:

p(αjl) = G(αjl | ujl, νjl) =
ν

ujl

jl

Γ (ujl)
αjl

ujl−1e−νjlαjl (7)

p(βjl) = G(βjl | gjl, hjl) =
h

gjl

jl

Γ (gjl)
βjl

gjl−1e−hjlβjl (8)

We define the joint distribution including all random variables , as follows:

p(X ,Z,α,β | π) = p(X | Z,α,β)p(Z | π)p(α)p(β) (9)

p(X ,Z,α,β | π) =
N∏

i=1

M∏

j=1

(
D∏

l=1

Γ (αjl + βjl)
Γ (αjl)Γ (βjl)

X
αjl−1
il

(1 + Xil)αjl+βjl

)Zij
⎛

⎝
N∏

i=1

M∏

j=1

π
Zij

j

⎞

⎠

M∏

j=1

D∏

l=1

( ν
ujl

jl

Γ (ujl)
αjl

ujl−1e−νjlαjl × h
gjl

jl

Γ (gjl)
βjl

gjl−1e−hjlβjl

)

(10)

3 Model Learning with Variational Inference

The GID mixture model contains hidden variables that can not be estimated
directly. In order to estimate them, we apply the variational inference method,
in which we aim to find an approximation of the posterior probability distribution
of p(Θ|X ,π) by having Θ = {Z,α,β}. Inspired by [24], we introduce Q(Θ) as an
approximation of the true posterior distribution p(Θ|X ,π). We make use of the
Kullback-Leibler (KL) divergence in order to minimize the difference between the
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true posterior distribution and the approximated one, which can be expressed
as follows:

KL
(
Q || P

)
= −

∫
Q

(
Θ

)
ln

(
p
(
Θ | X ,π

)

Q
(
Θ

)
)
dΘ = ln p

(X | π
) − L(

Q
)

(11)

where L(Q) is defined as:

L(
Q

)
=

∫
Q

(
Θ

)
ln

(
p
(X , Θ | π

)

Q
(
Θ

)
)
dΘ (12)

Starting from the fact that L(Q) ≤ ln p(X|π), we can see that L(Q) is the
lower bound of the log likelihood. Thus, we have to maximize L(Q) in order to
minimize the KL divergence. We assume a factorization assumption around Q(Θ)
to apply it in variational inference. This assumption is called the Mean Field
Approximation. We can factorize the posterior distribution Q(Θ) as Q(Θ) =
Q(Z)Q(α)Q(β)Q(π) [26,27]. In order to obtain a variational solution for the
lower bound with respect to all the model parameters, we consider an optimal
solution for a fix parameter s that is defined as lnQ∗

s

(
Θs

)
= 〈ln p(X , Θ)〉i�=s

where 〈·〉i�=s refers to the expectation with respect to all the parameters apart
from Θs, if an exponential is taken from both sides, the normalized equation is
as follows.

Qs

(
Θs

)
=

exp
〈
ln p

(X , Θ
)〉

i�=s∫
exp

〈
ln p

(X , Θ
)〉

i�=s
dΘ

(13)

We obtain the optimal variational posteriors solution that are formulated as:

Q
(Z)

=
N∏

i=1

M∏

j=1

r
Zij

ij (14)

Q
(
α

)
=

M∏

j=1

D∏

l=1

G(
αjl | u∗

jl, ν
∗
jl

)
, Q

(
β

)
=

M∏

j=1

D∏

l=1

G(
βjl | g∗

jl, h
∗
jl

)
(15)

rij =
r̃ij∑M

j=1 r̃ij

(16)

ln r̃ij = lnπj +
D∑

l=1

R̃jl + (ᾱjl − 1) lnXil − (ᾱjl + β̄jl) ln(1 + Xil) (17)

R̃ = ln
Γ (ᾱ + β̄)
Γ (ᾱ)Γ (β̄)

+ ᾱ[ψ(ᾱ + β̄) − ψ(ᾱ)](〈lnβ〉 − ln β̄) + 0.5α2[ψ′(ᾱ + β̄)

− ψ′(ᾱ))]〈(lnα − ln ᾱ)2〉 + 0.5β2[ψ′(ᾱ + β̄) − ψ′(β̄))]〈(lnβ − ln β̄)2〉
+ ᾱβ̄ψ′(ᾱ + β̄)(〈lnα〉 − ln ᾱ)(〈lnβ〉 − ln β̄) (18)
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u
∗
jl =ujl +

N∑

i=1

〈Zij〉ᾱjl

[

ψ(ᾱjl + β̄jl) − ψ(ᾱjl) + β̄jlψ
′
(ᾱjl + β̄jl)(〈ln βjl〉 − ln β̄jl)

]

(19)

ν∗
jl = νjl −

N∑

i=1

〈Zij〉 ln Xil

1 + Xil
(20)

g
∗
jl = gjl +

N∑

i=1

〈Zij〉β̄jl

[

ψ(ᾱjl + β̄jl) − ψ(β̄jl) + ᾱjlψ
′
(ᾱjl + β̄jl)(〈lnαjl〉 − ln ᾱjl)

]

(21)

h∗
jl = hjl −

N∑

i=1

〈Zij〉 ln 1
1 + Xil

(22)

Furthermore ψ(·) and ψ
′
(·) are representing the Digamma and Trigamma func-

tions, respectively. As R = 〈ln Γ (ᾱ+β̄)

Γ (ᾱ)Γ (β̄)
〉 is intractable, we have used the second

order Taylor expansion for its approximation. The expected values of the above
equations are as follows:

〈Zij〉 = rij (23)

ᾱjl = 〈αjl〉 =
u∗

jl

ν∗
jl

, 〈lnαjl〉 = ψ(u∗
jl) − ln ν∗

jl (24)

β̄jl = 〈βjl〉 =
g∗

jl

h∗
jl

, 〈lnβjl〉 = ψ(g∗
jl) − lnh∗

jl (25)

πj =
1
N

N∑

i=1

rij (26)

4 Entropy-Based Variational Model Learning

In this section, we develop an entropy-based variational inference to learn the
generalized inverted Dirichlet mixture model, that is mainly motivated by [23].
The core idea is to evaluate the quality of fitting of a component of our mixture
model. Hence, we do a comparison between the theoretical maximum entropy
and the MeanNN entropy [28]. In case of a significant difference, we proceed
with a splitting process to fit the component, which consists in splitting the
component into two new clusters.

4.1 Differential Entropy Estimation

The probability density function of an observation Xi = (X1, . . . ,XD) is
defined as p(Xi), with a set of N samples {Xi, . . . ,XN}, the differential entropy
can be defined as:

H(Xi) = −
∫

p(Xi)log2P (Xi)dXi (27)



136 M. S. Ahmadzadeh et al.

We introduce the maximum differential entropy of the GID as follows:

HGID(Xi | αj , βj) =
D∑

l=1

[
− lnΓ (αjl + βjl) + lnΓ (αjl) + lnΓ (βjl) (28)

− (αjl − 1)
[ − ψ(αjl + βjl) + ψ(αjl)

]
+ (αjl + βjl)[−ψ(αjl + βjl)]

]

4.2 MeanNN Entropy Estimator

In order to make sure that the specified component is indeed distributed accord-
ing to a generalized inverted Dirichlet distribution, we choose the MeanNN
entropy estimator [23], to estimate H(Xi) for random variable Xi with D
dimensions, that has an unknown density function P (Xi) [29]. By considering
the fact that the Shannon entropy estimator in (27) can be considered equal to
the average of − logP (Xi), we can exploit an unbiased estimator by estimating
logP (Xi) [28,29]. We assume that Xi is the center of a ball with diameter ε,
and that there is a point within the distance [ε, ε + dε] from Xi. We have k̂ − 1
points in a smaller distance, and the other N − k̂ − 1 points are within a large
distance from Xi. Consequently, we can define the probability of the distances
and the k-th nearest neighbor as follows:

pik̂ (ε) =
(N − 1)!(

k̂ − 1
)
!
(
N − k̂ − 1

)
!

dpi (ε)
dε

pk̂−1
i (1 − pi)

N−k̂−1 (29)

where pi(ε) denotes the mass of the ε-ball centered on Xi:

pi(ε) =
∫

||X −X i||<ε

p(Xi)dXi (30)

We can easily define the expectation of log pi(ε) with respect to pi(ε) as men-
tioned in Eq. (31):

E
(
log pi(ε)

)
=

∫ ∞

0

pik̂ log pi(ε)dε = ψ(k̂) − ψ(N) (31)

Imagine P (Xi) is unchanging in the center of the ε-ball, we have pi(ε) �
Vdε

dp(Xi), where d corresponds to the dimension of Xi, and Vd is the unit
ball volume calculated by Vd = π

d
2 Γ (1 + d/2). Now, we are able to approximate

− logP (Xi) by substituting (30) into (31) we can get the Eq. (32). Hence, we
get the unbiased K-NN estimator of the differential entropy, expressed in (33):

− log p(Xi) � ψ(N) − ψ(k̂) + dE(log ε) + log Vd (32)

Hk̂ (X) = ψ (N) − ψ
(
k̂
)
+

d

N

N∑

i=1

logεi + log Vd (33)
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To reduce the high computational expenses of the K-NN estimator, we use an
extension of the K-NN estimator called MeanNN, proposed in [30]. The main
idea behind the MeanNN entropy estimator is to average the k̂ nearest neighbor
statics for all feasible values of order k in the range of [1, N − 1]. The MeanNN
estimator for the differential entropy is calculated according to (34).

HM (X ) =
1

N − 1

N−1∑

k̂=1

Hk̂ (X ) = log Vd + ψ (N) +
1

N − 1

N−1∑

k̂=1

[
d

N

N∑

i=1

log εi,k̂ − ψ
(

k̂
)

]

(34)

where εi,k̂ determines the k̂-th nearest neighbor of Xi. To find the maximum
differential entropy of each individual cluster, we use:

HGID =
M∑

j=1

πjHGID(j) (35)

At this point, we are able to give an accurate evaluation of the model fitting, by
evaluating and comparing the MeanNN and the theoretical maximum differential
entropy [30]. Afterwards, we define ΩGID, which is the normalized weighted sum
of the difference between the theoretical and the estimated entropy of every
component correlated with the generalized inverted Dirichlet mixture model, as
expressed bellow:

ΩGID =
M∑

j=1

πj

[HGID(j) − HM (j)
HGID(j)

]
=

M∑

j=1

πj

[
1 − HM (j)

HGID(j)

]
(36)

The normalized weight ΩGID operates in the range of [0, 1] and it is equal to zero,
only if the data was genuinely distributed. The splitting process is performed by
choosing the cluster j∗ with the highest ΩGID according to Eq. (37), and split
the chosen component j∗ into two new components.

j∗ = arg max
j

[
ΩGID(j)

]
= argmax

j

[
πj

HGID(j) − HM (j)
HGID(j)

]
(37)

The overall entropy-based variational learning algorithm of the GID mixture
model is illustrated in Algorithm 1.
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Algorithm 1. Entropy-based variational learning of GID mixture models
1. Initialization: Set M = 1, j∗ = M , π1 = 1. and initialize hyperparameters

ujl,νjl,gjl,hjl.
2. The splitting process.

– Split j∗ into two new components j1 and j2 with equal proportion π∗/2.
– Set M = M + 1.
– Initialize the parameters of j1 and j2 using the same parameters of j∗.

3. Apply standard variational Bayes until convergence.
4. Determine the number of components through the evaluation of the mixing coef-

ficients πj according to 26.
5. If πj ≈ 0. where j ∈ 1, . . . , M then set M = M − 1 and terminate the program.
6. Else evaluate ΩMD, choose j∗ according to 37 and go back to the splitting process

in step 2.

5 Experimental Results

In order to demonstrate the effectiveness of the proposed model, Entropy-Based
Variational Learning of Finite Generalized Inverted Dirichlet Mixture Model
(EV-GIDMM), we conduct several experiments on two real-world challenging
applications, including breast cancer detection and image categorization. In the
first one, we used the standard breast cancer (Wisconsin Prognostic) dataset
with numerical features, whereas in the second one, we run our experiments
on two other popular datasets, namely, Caltech101 and Describable Texture
Dataset (DTD). To validate the performance of our model, we compared our pro-
posed EV-GIDMM against three unsupervised state-of-the-art mixture models,
including the Entropy-based variational inference on Multivariate Beta Mixture
Model (EV-MBMM) [23], variational Dirichlet Mixture Model (varDMM) [25]
and Entropy-based variational on Dirichlet Mixture Model (E-DMM) [24].

5.1 Breast Cancer

The first application that we considered to evaluate the performance of our pro-
posed model is breast cancer detection. According to the WHO (World Health
Organization), breast cancer has been declared as the most frequent cancer
among women that affects about 2.1 million women every year. Machine learning
techniques can be of great help in this context, in early detection of women breast
cancer, thus, they can have a great impact on the breast cancer treatment. To
this end, we applied our proposed model on the breast cancer Wisconsin dataset
that is publicly available1. This dataset includes 569 data samples of patients
seen by Dr. Wolberg, that have been diagnosed with either malignant or benign
cancer. The number of patients having a benign tumor is 357, whereas 212 cases
with malignant tumor cancer. This dataset was obtained by applying the Fine
Needle Aspiration (FNA) method [31,32], and it contains cases showing invasive
1 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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breast cancer and no sign of distant metastases. The first 30 features describe the
characteristics of each nuclei cell in the images of the tissue. Table 1 shows the
experimental results of our model as well as the baseline methods for the breast
cancer detection task. We can see that our proposed EV-GIDMM successfully
achieved the best accuracy on this task.

Table 1. Accuracy performance of our model and the baselines on the breast cancer
dataset

Method Accuracy(%)

EV-GIDMM 92.6
EV-MBMM 90.8
E-DMM 89.7
varDMM 63.5

5.2 Image Analysis

We are now ready to evaluate the performance of the proposed approach on the
image categorization task, which is a significant research topic and aims at clas-
sifying images into their corresponding category. To do so, we used two popular
image datasets, namely, Caltech101 and Describable Texture Dataset (DTD). In
this experiment, we first considered the Caltech101 image dataset2 [33], which
originally contains a set of images depicting objects belonging to 101 classes,
from which we selected three main object categories: Airplane, Sea Horse and
Brain. Some sample images from this dataset are illustrated in Fig. 1.

Fig. 1. Sample images of each cluster from the Caltech101 dataset.

In order to use our model for the selected dataset, we need to form a bag of
visual words model (BoVW) [34]. Before applying the BoVW, we first need to
apply some descriptor extraction method, that, we choose SIFT [35]. Therefore
we extract the features with the help of SIFT and then apply K-means clustering
on the descriptors extracted with SIFT from the image. As a result a BOVW
feature vector is formed for each image. Our experiments revealed that the SIFT

2 http://www.vision.caltech.edu/Image_Datasets/Caltech101.html.

http://www.vision.caltech.edu/Image_Datasets/Caltech101.html
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method is more suitable for our selected dataset, resulting in more discriminative
descriptors. After applying SIFT to all images, we obtain a matrix that serves
as an input for our model. We report the results of this experiment in Table 2,
which shows that our proposed model outperformed all the baseline methods in
image clustering, with a considerable accuracy margin of almost 6.6%.

Table 2. Accuracy comparison of our proposed model and the baseline methods on
the Caltech101 dataset.

Method Accuracy(%)

EV-GIDMM 90.9
EV-MBMM 84.3
E-DMM 74.9
varDMM 40.3

In the second part of our experiments, we focus on texture differentiation.
This dataset will be a good challenge for our model as images are very similar.
In order to show how machines are becoming more capable of detecting and rec-
ognizing fine-grained images, in this experiment, we chose to use the Describable
Texture Dataset3 that includes 120 images per class where each class consists
of different types of textures. We have chosen Dotted, Frilly and Meshed image
categories to evaluate our model as illustrated in Fig. 2.

Fig. 2. Sample images of each cluster from the DTD dataset.

Similarly, we performed the BoVW and used SIFT, to generate a discrimi-
native input for our EV-GIDMM. The results of clustering evaluation on DTD
are listed in Table 3. From this table it can be confirmed that our proposed mix-
ture model achieves the best accuracy performance among all the other mixture
models.

3 https://www.robots.ox.ac.uk/~vgg/data/dtd/.

https://www.robots.ox.ac.uk/~vgg/data/dtd/
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Table 3. Accuracy comparison of our EV-GIDMM approach and the baseline methods
on the DTD dataset.

Method Accuracy(%)

EV-GIDMM 85.5
EV-MBMM 65.3
E-DMM 65.8
varDMM 71.9

6 Conclusion

In this paper, we introduced an unsupervised entropy-based variational frame-
work that effectively learns the finite generalized inverted Dirichlet mixture
model. In our method, we used a splitting technique called Entropy, where
we started by comparing the theoretical maximum entropy and the resulting
entropy from MeanNN. Thereafter, we proceeded to split the component that
has the highest difference into two smaller components, since it was concluded
that the mixture model is not describing the component properly. Our exper-
imental results have demonstrated that EV-GIDMM works very well and has
outperformed other models on two real-world applications, namely, breast can-
cer detection and image categorization, across three different benchmark data
sets. The results indicate that our proposed mixture model is able to produce
high quality data clusters.

Acknowledgment. The completion of this research was made possible thanks to
the Natural Sciences and Engineering Research Council of Canada (NSERC) and the
National Natural Science Foundation of China (61876068).

References

1. Bishop., C.M : Pattern recognition and machine learning. Information science and
statistics. Springer, New York, NY, (2006). Softcover published in 2016

2. McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley & Sons, Hoboken
(2004)

3. Ho, T.K., Baird, H.S.: Large-scale simulation studies in image pattern recognition.
IEEE Trans. Pattern Analy. Mach. Intell. 19(10), 1067–1079 (1997)

4. Fan, W., Bouguila, N.: Non-Gaussian data clustering via expectation propagation
learning of finite Dirichlet mixture models and applications. Neural Process. Lett.
39(2), 115–135 (2014)

5. Bdiri, T., Bouguila, N.: Positive vectors clustering using inverted Dirichlet finite
mixture models. Expert Syst. Appl. 39(2), 1869–1882 (2012)

6. Bouguila, N., Ziou, D.: A countably infinite mixture model for clustering and fea-
ture selection. Knowl. Inf. Syst. 33(2), 351–370 (2012)

7. Bouguila, N., Amayri, O.: A discrete mixture-based kernel for SVMs: application
to spam and image categorization. Inf. Process. Manag. 45(6), 631–642 (2009)



142 M. S. Ahmadzadeh et al.

8. Sefidpour, A., Bouguila, N.: Spatial color image segmentation based on finite non-
Gaussian mixture models. Expert Syst. Appl. 39(10), 8993–9001 (2012)

9. Bouguila, N.: A model-based approach for discrete data clustering and feature
weighting using MAP and stochastic complexity. IEEE Trans. Knowl. Data Eng.
21(12), 1649–1664 (2009)

10. Bdiri, T., Bouguila, N.: Bayesian learning of inverted Dirichlet mixtures for SVM
kernels generation. Neural Comput. Appl. 23(5), 1443–1458 (2013)

11. Fan, W., Bouguila, N.: Online learning of a Dirichlet process mixture of beta-
liouville distributions via variational inference. IEEE Trans. Neural Netw. Learn.
Syst. 24(11), 1850–1862 (2013)

12. Mashrgy, M.A.I., Bdiri, T., Bouguila, N.: Robust simultaneous positive data clus-
tering and unsupervised feature selection using generalized inverted Dirichlet mix-
ture models. Knowl. Based Syst. 59, 182–195 (2014)

13. Bdiri, T., Bouguila, N.: Learning inverted Dirichlet mixtures for positive data clus-
tering. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFD-
GrC 2011. LNCS (LNAI), vol. 6743, pp. 265–272. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21881-1_42

14. Bdiri, T., Bouguila, N.: An infinite mixture of inverted Dirichlet distributions. In:
Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7063, pp. 71–78.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24958-7_9

15. Tirdad, P., Bouguila, N., Ziou, D.: Variational learning of finite inverted Dirichlet
mixture models and applications. In: Laalaoui, Y., Bouguila, N. (eds.) Artificial
Intelligence Applications in Information and Communication Technologies. SCI,
vol. 607, pp. 119–145. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19833-0_6

16. Fukumizu, K., Amari, S.: Local minima and plateaus in hierarchical structures of
multilayer perceptrons. Neural Netw. 13(3), 317–327 (2000)

17. Bouguila, N., Ziou, D.: High-dimensional unsupervised selection and estimation of
a finite generalized Drichlet mixture model based on minimum message length.
IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1716–1731 (2007)

18. Bouguila, N., Ziou, D.: MML-based approach for finite Dirichlet mixture estimation
and selection. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol.
3587, pp. 42–51. Springer, Heidelberg (2005). https://doi.org/10.1007/11510888_5

19. Maanicshah, K., Bouguila, N., Fan, W.: Variational learning for finite generalized
inverted Dirichlet mixture models with a component splitting approach. In: 2019
IEEE 28th International Symposium on Industrial Electronics (ISIE), pp. 1453–
1458. IEEE (2019)

20. Bourouis, S., Mashrgy, M.A.L., Bouguila, N.: Bayesian learning of finite general-
ized inverted Dirichlet mixtures: application to object classification and forgery
detection. Expert Syst. Appl. 41(5), 2329–2336 (2014)

21. Bdiri, T., Bouguila, N., Ziou, D.: Variational Bayesian inference for infinite gen-
eralized inverted Dirichlet mixtures with feature selection and its application to
clustering. Appl. Intell. 44(3), 507–525 (2016)

22. Mashrgy, M.A.L., Bdiri, T., Bouguila, N.: Robust simultaneous positive data clus-
tering and unsupervised feature selection using generalized inverted Dirichlet mix-
ture models. Knowl.-Based Syst. 59, 182–195 (2014)

23. Manouchehri, N., Rahmanpour, M., Bouguila, N., Fan, W.: Learning of multivari-
ate beta mixture models via entropy-based component splitting. In: 2019 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 2825–2832. IEEE
(2019)

https://doi.org/10.1007/978-3-642-21881-1_42
https://doi.org/10.1007/978-3-642-24958-7_9
https://doi.org/10.1007/978-3-319-19833-0_6
https://doi.org/10.1007/978-3-319-19833-0_6
https://doi.org/10.1007/11510888_5


Entropy-Based Variational Learning of GID Mixture Model 143

24. Fan, W., Al-Osaimi, F.R., Bouguila, N., Du, J.: Proportional data modeling via
entropy-based variational Bayes learning of mixture models. Appl. Intell. 47(2),
473–487 (2017). https://doi.org/10.1007/s10489-017-0909-0

25. Fan, W., Bouguila, N., Ziou, D.: Variational learning for finite Dirichlet mixture
models and applications. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 762–774
(2012)

26. Chandler, D.: Introduction to Modern Statistical. Mechanics. Oxford University
Press, Oxford, UK (1987)

27. Celeux, G., Forbes, F., Peyrard, N.: Em procedures using mean field-like approx-
imations for Markov model-based image segmentation. Pattern Recogn. 36(1),
131–144 (2003)

28. Faivishevsky, L., Goldberger, J.: ICA based on a smooth estimation of the differen-
tial entropy. In: Advances in Neural Information Processing Systems, pp. 433–440
(2009)

29. Leonenko, N., Pronzato, L., Savani, V., et al.: A class of rényi information estima-
tors for multidimensional densities. Ann. Stat. 36(5), 2153–2182 (2008)

30. Penalver, A., Escolano, F.: Entropy-based incremental variational Bayes learning of
Gaussian mixtures. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 534–540 (2012)

31. Dua, D., Graff, C.: UCI machine learning repository (2017)
32. Wolberg, W.H., Street, W.N., Mangasarian, O.L.: Machine learning techniques

to diagnose breast cancer from image-processed nuclear features of fine needle
aspirates. Cancer Lett. 77(2–3), 163–171 (1994)

33. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: an incremental Bayesian approach tested on 101 object cate-
gories. In: 2004 Conference on Computer Vision and Pattern Recognition Work-
shop, pp. 178–178. IEEE (2004)

34. Li, T., Mei, T., Kweon, I.-S., Hua, X.-S.: Contextual bag-of-words for visual cate-
gorization. IEEE Trans. Circ. Syst. Video Technol. 21(4), 381–392 (2010)

35. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

https://doi.org/10.1007/s10489-017-0909-0

	Entropy-Based Variational Learning of Finite Generalized Inverted Dirichlet Mixture Model
	1 Introduction
	2 Model Specification
	2.1 Finite Generalized Inverted Dirichlet Mixture

	3 Model Learning with Variational Inference
	4 Entropy-Based Variational Model Learning
	4.1 Differential Entropy Estimation
	4.2 MeanNN Entropy Estimator

	5 Experimental Results
	5.1 Breast Cancer
	5.2 Image Analysis

	6 Conclusion
	References




