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Abstract. Clustering count vectors is a challenging task given their
sparsity and high-dimensionality. An efficient generative model called
EMSD has been recently proposed, as an exponential-family approxima-
tion to the Multinomial Scaled Dirichlet distribution, and has shown to
offer excellent modeling capabilities in the case of sparse count data and
to overcome some limitations of the frameworks based on the Dirichlet
distribution. In this work, we develop an approximate Bayesian learn-
ing framework for the parameters of a finite mixture of EMSD using
the Stochastic Expectation Propagation approach. In this approach, we
maintain a global posterior approximation that is being updated in a
local way, which reduces the memory consumption, important when mak-
ing inference in large datasets. Experiments on both synthetic and real
count data have been conducted to validate the effectiveness of the pro-
posed algorithm in comparison to other traditional learning approaches.
Results show that SEP produces comparable estimates with traditional
approaches.

Keywords: Mixture model · Emsd distribution · Stochastic
expectation propagation

1 Introduction

Statistical methods are excellent at modeling semantic content of text docu-
ments [9]. More specifically, document clustering is widely used in a variety of
applications such as text retrieval or topic modeling, (see e.g. [3]). Words in
text documents usually exhibit appearance dependencies, i.e., if word w appears
once, it is more probable that the same word w will appear again. This phe-
nomenon is called burstiness, which has shown to be addressed by introducing
the prior information into the construction of the statistical model to obtain
several computational advantages [15]. Given that the Dirichlet distribution is
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generally taken as a conjugate prior to the multinomial, the most popular hierar-
chical approach is the Dirichlet Compound Multinomial (DCM) distribution [14].
While the Multinomial distribution fails to model the words burstiness given its
dependency assumption, the DCM distribution not only captures this behavior
but also models text data better [14]. However, The Dirichlet distribution has
its own limitations due to is negative covariance structure and equal confidence
[11,24]. Hence, a generalization of it called the Scaled Dirichlet (SD) distribution
has shown to be a good alternative as a prior to the multinomial resulting in
the Multinomial scaled Dirichlet (MSD) distribution recently proposed in [25].
Indeed, MSD has shown to have high flexibility in count data modeling with
superior performance in several real-life challenging application [25–28]. Despite
its flexibility, MSD distribution shares similar limitations to the one with DCM
since its parameter estimation is slow, especially in high-dimensional spaces.
Thus, [28] proposed a close exponential-family approximation called EMSD to
combine the flexibility and efficiency of MSD with the desirable statistical and
computational properties of the exponential family of distributions, including
sufficiency. EMSD has shown to reduce the complexity and computational efforts,
considering the sparsity and high-dimensionality nature of count data.

In this work, we study the application of the Bayesian framework for learn-
ing the exponential-family approximation to the Multinomial Scaled Dirichlet
(EMSD) mixture model which has been shown to be an appropriate distribu-
tion to model the burstiness in high-dimensional feature space. In particular,
we propose a learning approach for an EMSD mixture model using Stochas-
tic Expectation Propagation (SEP) [10] for parameter estimation. Indeed, SEP
combines both Assumed Density Filtering (ADF) and Expectation Propagation
(EP) in order to scale to large datasets while mantaining accurate estimations.
Only EP is usually more accurate than methods such as variational inference
and MCMC [1,18], and SEP solves some of the problems encountered when
using EP given that the number of parameters increase according to number
of datapoints. Thus, SEP is a deterministic approximate inference method that
prevents memory overheads when increasing the number of data points. EP has
shown to be an appropriate generalization in the case of Gaussian mixture model
[20], hierarchical models such as LDA [18] or even infinite mixture models [6].
Furthermore, SEP has been used with Deep Gaussian process [4], showing the
benefits of scalable Bayesian inference and outperforming traditional Gaussian
process. The contributions of this paper are summarized as follows: 1) we show
that SEP can provide effective parameter estimates when dealing with large
datasets; 2) we derive foundations to learn an EMSD mixture model using SEP;
3) we exhaustively evaluate the proposed approach on synthetic and real count
data and compare the performance with other models and learning approaches.

2 The Exponential-Family Approximation to MSD
Distribution

In the clustering setting, We are given a dataset X with D samples X = {xi}D
i=1,

each xi is a vector of count data (e.g. a text document or an image, represented
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as a frequencies vector of words or visual words, respectively). We assume that
each data set has a vocabulary of size V .

The the Multinomial Scaled Dirichlet (MSD) is the marginal distribution
defined by integrating out the probability parameter of scaled Dirichlet over all
possible multinomials, and it is given by [25]:

MSD(x | ρ,ν) =
n!

∏V
w=1 xw!

Γ(s)

Γ(s + n)
∏V

w=1 νxw
w

V∏

w=1

Γ(xw + ρw)
Γ(ρw)

(1)

Note that the authors in [25] use the approximation
(∑V

w=1 νwpw

)∑V
w=1 xw ≈

∏V
w=1 νxw

w . It is worth mentioning that DCM is a special case of MSD, such
that when ν = 1 in Eq. (1), we obtain the Dirichlet Compound Multinomial
(DCM) distribution [14]. Similar to DCM, the considered model MSD, has an
intuitive interpretation representing the Scaled Dirichlet as a general topic and
the Multinomial as a document-specific subtopic, making some words more likely
in a document x based on word counts.

The representation of text documents is very sparse as many words in the
vocabulary do not appear in most of the documents. Thus, in [28], the authors
note that using only the non-zero values of x is computationally efficient since
xw! = 1, νxw

w = 1 and Γ(xw + ρw)/Γ(ρw) = 1 when xw = 0. Moreover, since in
high dimensional data the parameters are very small, [5], the following fact for
small values of ρ when x ≥ 1 was used in [28]:

lim
ρ→0

Γ(x + ρ)
Γ(ρ)

− Γ(x)ρ = 0 (2)

Thus, being able to approximate Γ(xw + ρw)/Γ(ρw) = Γ(xw)ρw and using
the fact that Γ(xw) = (xw − 1)! leads to an approximation of the MSD distribu-
tion known as the Exponential-family approximation to the MSD distribution
(EMSD), given by:

EMSD(x | α,β) =
n!

∏V
w:xw≥1 xw

Γ(s)
Γ(s + n)

V∏

w:xw≥1

αw

βxw
w

(3)

The parameters of the EMSD distribution are denoted by α and β to distinguish
them from the MSD parameters for clarity.

3 Stochastic Expectation Propagation

Efficient inference and learning for probabilistic models that scale to large
datasets are essential in the Bayesian setting. Thus, a variety of methods have
been proposed from sampling approximations [17] to distributional approxima-
tions such as stochastic variational inference [8].

Another deterministic approach is Expectation Propagation (EP) that com-
monly provides more accurate approximations compared to sampling methods [21]
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and variational inference [19,20]. Yet, the number of parameters grows with the
number of data points, causing memory overheads and making it difficult to scale
to large datasets. Besides, Assumed Density Filtering (ADF) [22], which has been
introduced before EP, maintains a global approximating posterior; however, it
results in poor estimates. Therefore, [10] proposed an alternative to push EP
to large datasets denominated Stochastic Expectation Propagation (SEP). SEP
takes the best of these two methods by maintaining a global approximation that is
updated locally. It does this by introducing a global site that captures the average
effect of the likelihood sites and, as a result avoiding memory overheads.

Given a probabilistic model p(X | θ) with parameters θ drawn from a prior
p0(θ), SEP approximates a target distribution p(θ | X ), which is commonly
the posterior, with a global approximation q(θ) that belongs to the exponential
family. The target distribution must be factorizable such that the posterior can
be split into D sites p(θ | X ) ∝ p0(θ)

∏D
i=1 pi(θ); the initial site p0 is commonly

interpreted as the prior distribution and the remaining pi sites represent the
contribution of each ith item to the likelihood. The approximating distribution
must admit a similar factorization, q(θ) ∝ p0(θ)p̃(θ)D.

Unlike EP, the SEP maintains a global approximating site, p̃(θ)D, to capture
the average effect of a likelihood on the posterior. Thus, we only have to maintain
the parameters of the approximate posterior and approximate global site that
commonly belongs to the exponential family. Consequently, each site is refined
to create a cavity distribution by dividing the global approximation over one of
the copies of the approximate site, q\1(θ) ∝ q(θ)/p̃(θ).

Additionally, in order to approximate each site, a new tilted distribution is
introduced using the cavity distribution and the current site p̂i(θ) ∝ pi(θ)q\1(θ).

Subsequently, a new posterior is found by minimizing the Kullback Leibler
divergence DKL(p̂i(θ) || qnew(θ)) such that p̃i(θ) ≈ pi(θ). This minimization
is equivalent to match the moments of those distributions [1,20]. Finally, the
revised approximate site is updated by removing the remaining terms from the
current approximation by employing damping [7,18] in order to make a partial
update since p̃i captures the effect of a single likelihood function:

p̃(θ) = p̃(θ)1−η

(
qnew(θ)
q\w(θ)

)η

= p̃(θ)1−η p̃i(θ)η (4)

Notice that η is the step size, and when η = 1, no damping is applied. A
natural choice is η = 1/D.

4 EMSD Mixture Model

4.1 Clustering Model

We assume that we are given D documents drawn from a finite number of EMSD
distributions, and each xi document is composed of V words. K ≥ 1 represents
the number of mixture components. Thus, a document is drawn from its respec-
tive component j as follows: xi ∼ EMSD(αj ,βj).
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In a mixture model, a latent variable Z = {zi}D
i=1 is introduced for each xi

document in order to represent the component assignment. We posit a Multi-
nomial distribution for the component assignment such that zi ∼ Mult(1,π)
where π = {πj}K

j=1 represents the mixing weights, and they are subject to the
constraints 0 < πj < 1 and

∑
j πj = 1. In other words, zi is a K-dimensional

indicator vector containing a value of one when document xi belongs to the com-
ponent j, and zero otherwise. Note that in this setting the value of zij = 1 acts
as the selector of the component that generates xi document with parameters
αj and βj ; hence, p(zi | π) = πj . Thus, the full posterior is in Eq. 5.

p(π,α,β | X ) ∝ p(π)p(α)p(β)
D∏

i

K∑

j

πjp(xi | αj ,βj) (5)

4.2 Parameter Learning

We use SEP in order to learn the parameters of the mixture model. We start
by partitioning the likelihood in D sites and define a global approximating site
for each of the latent variables (π, α, and β). Theoretically, any distribution
belonging to the exponential family can be used for the sites. We use a Gaussian
distribution for the parameters of the EMSD distribution in order to facilitate
calculations [12]. For the mixture weights, we use a Dirichlet distribution since
it belongs to the K − 1 simplex and fits the constraints imposed by the mixing
weights. Equations 6 illustrate the choices for the approximate sites.

p̃(π) ∝
∏

j

π
aj

j p̃(α) =
K∏

j

N (αj | mj , p
−1
j ) p̃(β) =

K∏

j

N (βj | nj , q
−1
j ) (6)

Once the global approximate site has been defined, we compute the approximate
posterior q(π,α,β) by introducing the priors and the average effect of the global
site:

q(π,α,β) ∝p(π,a0)p̃(π | a)D
K∏

j

p
(
αj | m0

j , (p
0
j )

−1
)
p̃

(
αj | mj , (pj)−1

)D

p
(
βj | n0

j , (q
0
j )−1

)
p̃

(
βj | nj , q

−1
j

)D

The approximate posterior distribution has the following parameters:

a′ = 1 + a0 + Da (p
′
j)

−1 = (p0j + Dpj)−1 (q
′
j)

−1 = (q0j + Dqj)−1

m
′
j = (p

′
j)

−1(p0jm
0
j + Dpjmj) n

′
j = (q

′
j)

−1(q0j n0
j + Dqjnj) (7)

Consequently, we introduce a cavity distribution by removing the contribu-
tion of one of the copies of the global site. The cavity distribution has parameters
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a\1,
(
p

\1
j

)−1

, m
\1
j ,

(
q

\1
j

)−1

, and n
\1
j illustrated in Eq. 8 that are calculated as

follows: q(π,α,β)/p̃i(π,α,β)

a\1 = a
′ − a

(
p

\1
j

)−1

=
(
p

′
j − pj

)−1 (
q

\1
j

)−1

=
(
q

′
j − qj

)−1

m
\1
j =

(
p

\1
j

)−1 (
p

′
jm

′
j − pjmj

)
n

\1
j =

(
q

\1
j

)−1 (
q

′
jn

′
j − qjnj

)
(8)

We use the cavity distribution and incorporate the ith site, resulting in the
tilted distribution p̂ = 1

Zi
piq

\1. We use this distribution to compute the KL
divergence with the approximate distribution, which is equivalent to matching
the moments. However, in this case, matching the moments leads to another

analytically intractable integral (i.e. Zi =
∑K

j

a
\1
j

∑K
k a

\1
k

Ep(αj ,βj) [p(xi | αj , βj)]).

Thus, we compute this integral via Monte Carlo sampling. After matching the
moments, we obtain the parameters for an updated approximate posterior.

Ψ(a
′
j) − Ψ(

K∑

j

a
′
j) = Ψ(a

\1
j ) − Ψ(

K∑

j

a
\1
j ) + ∇

a
\1
j

logZi

p
′
j =

(
p
\1
j

)−1
(
2∇(

p
\1
j

)−1 logZi + p
\1
j

) (
p
\1
j

)−1 −
(
m

′
j − m

\1
j

) (
m

′
j − m

\1
j

)ᵀ

q
′
j =

(
q
\1
j

)−1
(
2∇(

q
\1
j

)−1 logZi + q
\1
j

) (
q
\1
j

)−1 −
(
n

′
j − n

\1
j

) (
n

′
j − n

\1
j

)ᵀ

m
′
j = m

\1
j +

(
p
\1
j

)−1 ∇
m

\1
j

logZi n
′
j = n

\1
j +

(
q
\1
j

)−1 ∇
n

\1
j

logZi (9)

The values of a
′
are calculated using fixed point iteration as described in [16].

Using this updated approximate posterior, we remove the cavity distribution in
order to obtain an approximation to the ith site.

a = a′ − a\1 (pj)−1 = (p
′
j − p

\1
j )−1 mj = (pj)−1

(
p

′
jm

′
j − p

\1
j m

\1
j

)

(qj)−1 = (q
′
j − q

\1
j )−1 nj = (qj)−1

(
q

′
jn

′
j − q

\1
j n

\1
j

)
(10)

Finally, we use damping to partially update the global approximate site.
First, we update the parameters of the global site as follows Θnew = (1−η)Θold+
ηΘi where Θold are the current parameters of the global site, and Θi are the
parameters for the approximation of a single likelihood. Then, we introduce the
global approximate site in the approximate distribution. The learning approach
is described in the Algorithm 1.

5 Experimental Results

In this section, we describe the experiments carried out to test the validity of
the proposed method on both synthetic and real count data.
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Algorithm 1: Stochastic Expectation Propagation (SEP) algorithm for
learning a EMSD Mixture model
Input : K: number of clusters; X = {x1, . . . ,xD}: corpus; p0(π, α, β): prior

knowledge

1 Initialize the approximate site p̃(π, α, β).
2 If priors are not provided, initialize them to 1 (i.e. p0(π, α, β)=1)
3 Compute the approximate distribution q(π, α, β) by calculating the average

effect p̃(π, α, β)D of the likelihood and introducing the priors p0

4 while not convergence do
5 for xi in X do

6 Compute the cavity distribution q\1(π, α, β) by removing the
contribution of one of the copies of the approximate site.

7 Match moments of the tilted distribution p̂(π, α, β) and approximate
posterior qnew(π, α, β) by minimizing DKL(p̂ ‖ qnew).

8 Compute the parameters of a revised approximate site after matching
the moments.

9 Make a partial update to the approximate site and include the
approximate site in the approximate distribution.

10 end

11 end
12 Estimate mixing weights πj

5.1 Synthetic Dataset

We create a synthetic dataset X = {xi}D
i=1 by using the probabilistic mixture

model with D = 210 data points. We use K = 3 components, each of which
is an EMSD distribution where the mixing weights are uniformly sampled. For
simplicity, we set a fixed value of 1 for the scale parameter of the Scaled Dirichlet.
Since the shape parameter is commonly αw � 1 [5], we sample from a Beta
distribution.

We initialize the priors of the model with covariance matrix 5I and 3I for
the scale and shape parameter. Random values are used for the prior means and
mixing weights parameter. We set a step size of η = 0.1 and approximate the pos-
terior using SEP. Table 1 show the obtained estimates. The mixing weights can
be estimated using the expected value of πj ; for instance, E [πj ] = a

′
j/

∑K
j=1 a

′
j .

The used parameters as well as the estimated values are shown in Table 1. We
notice that estimates are very close to the target values. Since we need to store
only the local and global parameters, we emphasize the fact that SEP reduces
memory consumption allowing us to scale EP.

5.2 Sentiment Analysis

We analyze the problem of sentiment analysis in the setting when online users
employ online platforms to express opinions or experiences regarding a prod-
uct or service through reviews. We exploit these data to investigate the validity
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Table 1. Original parameters and estimated parameters for the mixture of EMSD
using the proposed approach.

j π α β

Real

1 0.333 [0.610, 0.318, 0.646] 1

2 0.333 [0.556, 0.188, 0.848] 1

3 0.334 [0.129, 0.891, 0.507] 1

Estimation

1 0.335 [0.663, 0.305, 0.676] [1.082, 1.055, 1.062]

2 0.332 [0.573, 0.098, 0.720] [0.963, 1.027, 0.996]

3 0.333 [0.193, 0.858, 0.527] [1.087, 0.976, 1.002]

of our framework where we know the right number of components (i.e. posi-
tive/negative, K = 2). We use three benchmark datasets [13,29]: 1) Amazon
Review Polarity; 2) Yelp review Polarity; 3) IMDB Movie Reviews. This section
presents the details of our experimentation and its results.

Before describing the experimental results, we first outline the key properties
of the datasets and the performed setup. We pre-process the dataset as follows:
1) lowercase all text; 2) remove non-alphabetical characters; 3) lemmatize text.
All datasets are reviews and contain two labels indicating whether the post has
a positive or negative sentiment.

Amazon Review Polarity contains 180k customer reviews that span a period of
18 years, for products on the Amazon.com website. The dataset has an average
of 75 words per review with a vocabulary size of over 55k unique words.

Yelp Review Polarity contains 560k user reviews from Yelp with an average of
133 words with > 85k unique words. The Yelp dataset contains a polarity label
by considering stars 1 and 2 negative, and 3 and 4 positive reviews about local
businesses.

IMDB movie reviews this dataset consists of 50K movie reviews with an average
231 words per review and a vocabulary size of over 76k unique words. Ratings
on IMDB are given as star values ∈ [1, 10] which were linearly mapped to [0, 1]
to use as document labels; negative and positive, respectively.

We compare the clustering performance of EMSD mixture model using the
proposed SEP to different models with the same approach and different learn-
ing techniques such as Expectation Propagation (EP), and maximum-likelihood
(ML) for parameter estimation. More precisely, we compared the performance of
EMSD models to the following models that use maximum-likelihood for estimat-
ing its parameters. Firstly, we have a mixture of Multinomials (MM) [2]. Even
though the MM is appropriate for modeling common words, not words bursti-
ness problem, we add it to the comparison to evaluate its predictive power. Next,
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we make a comparison with different models that capture the words bustiness
problem such as Dirichlet Compound Multinomial (DCM) [14], the Exponential
approximation to the Dirichlet Compound Multinomial (EDCM) [5], the Multi-
nomial Scaled Dirichlet (MSD) [25], and the Exponential approximation to the
Multinomial Scaled Dirichlet (EMSD) [28]. Furthermore, we compare to the
performance of EDCM mixture model in case of considering EP for parameter
estimation as we have recently proposed in [23]. We evaluate the performance of
the considered models according to precision and recall as illustrated in Table 2.

Table 2. Results on the three text datasets. Comparison using precision and recall.
ML: maximum-likelihood; EP: expectation propagation; SEP: sthocastic expectation
propagation.

Dataset

Metrics Amazon Yelp IMDB

Precision ML-MM 50.83 89.12 64.18

ML-DCM 55.65 91.01 71.14

ML-EDCM 80.65 89.25 78.54

EP-EDCM 86.91 80.50 86.36

ML-MSD 82.21 86.96 84.00

ML-EMSD 83.31 87.23 85.00

SEP-EMSD (ours) 86.35 82.83 86.83

Recall ML-MM 51.99 89.20 64.40

ML-DCM 63.94 91.01 89.45

ML-EDCM 80.88 89.28 89.33

EP-EDCM 84.82 93.83 85.94

ML-MSD 82.21 87.09 84.00

ML-EMSD 83.57 87.28 86.00

SEP-EMSD (ours) 83.91 90.02 87.64

In general, most models are superior to the Multinomial mixture model
(except for Yelp dataset). We notice that SEP gives comparable results to the
EDCM model in terms of precision and recall. Additionally, we evaluate an
EDCM mixture that uses EP for parameter learning where we can assume that
SEP is computing similar approximations to EP with the advantage that there
is no need to store the parameters for each of the approximate sites. One of the
main advantages is that we only store the local and global parameters, reduc-
ing memory usage. More specifically, for the Amazon dataset, EP and SEP are
superior in terms of precision and recall compared with most models that use
maximum-likelihood estimation. Our intuition is that the length of documents
plays a critical role in parameter estimation. That is, in the Amazon dataset, for
example, we obtain better precision and recall using a Bayesian approach given
that the document length is relatively shorter than in the other two datasets.
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6 Conclusions

In this paper, we propose a Stochastic Expectation Propagation (SEP) algorithm
to learn a finite EMSD mixture model. We derive the mathematical framework
using SEP, and since performing moment matching leads to an intractable inte-
gral, we use sampling in order to compute its moments. Then, we evaluate the
proposed approach on both synthetic and real data and notice that SEP-EMSD
provides comparable results to traditional approaches and in some cases is supe-
rior. Although we evaluated the proposed learning method with text data, we
can use any type of count data such as a clustering of visual words for images
or videos. It is noticeable that SEP does not need a site per data point and
similar to variational inference maintains a global posterior approximation that
is updated locally and reduces memory consumption.
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