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Abstract. Episode rule mining is a popular data mining task for ana-
lyzing a sequence of events or symbols. It consists of identifying subse-
quences of events that frequently appear in a sequence and then to com-
bine them to obtain episode rules that reveal strong relationships between
events. But a key problem is that each rule requires a strict ordering of
events. As a result, similar rules are treated differently, though they in
practice often describe a same situation. To find a smaller set of rules
that are more general and can replace numerous episode rules, this paper
introduces a novel type of rules called partially-ordered episode rules,
where events in a rule are partially ordered. To efficiently find all these
rules in a sequence, an efficient algorithm named POERM (Partially-
Ordered Episode Rule Miner) is presented. An experimental evaluation
on several benchmark dataset shows that POERM has excellent perfor-
mance.
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1 Introduction

Pattern mining is a sub-field of data mining, which aims at identifying interesting
patterns in data that can help to understand the data and/or support decision-
making. In recent years, numerous algorithms have been designed to find pat-
terns in discrete sequences (a sequence of events or symbols) as this data type
is found in many domains. For instance, text documents can be represented as
sequence of words, customers purchases as sequences of transactions, and drone
trajectories as sequence of locations. Whereas some pattern mining algorithms
find similarities between sequences [6,7,15] or across sequences [16], others iden-
tify patterns in a single very long sequence. One of the most popular task of this
type is Frequent Episode Mining (FEM) [9,11,12,14]. It consists of finding all
frequent episodes in a sequence of events, that is all subsequences that have a
support (occurrence frequency) that is no less than a user-defined minsup thresh-
old. Two types of sequences are considered in FEM: simple sequences where
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events have timestamps and are totally ordered, and complex sequences where
simultaneous events are allowed. Many algorithms were designed for discovering
frequent episodes such as MINEPI and WINEPI [12], EMMA and MINEPI+ [9],
and TKE [8]. While some algorithms find serial episodes (ordered lists of events),
others find parallel episodes (sets of simultaneous events) or composite episode
(a combination of serial/parallel episodes). Though finding frequent episodes is
useful, episodes are only discovered on the basis of their support (occurrence
frequencies) [1]. Thus, some events may only appear together in an episode by
chance. Moreover, frequent episodes do not provide information about how likely
it is that some events will occur following some other events. To address these
issues, a post-processing step can be applied after FEM, which is to combine
pairs of frequent episodes to create episode rules. An episode rule is a pattern
having the form E1 → E2, which indicates that if some episode E1 appears, it will
be followed by another episode E2 with a given confidence or probability [4,12].

Episode rule mining is useful as it can reveal strong temporal relation-
ships between events in data from many domains [2–4,12]. For example, a
rule R1 : 〈{a}, {b}, {c}〉 → 〈{d}〉 could be found in moviegoers data, indi-
cating that if a person watches some movies a, b and c in that order, s/he
will then watch movie d. Based on such rules, marketing decisions could be
taken or recommendation could be done. However, a major drawback of tra-
ditional episode rule mining algorithms is that events in each rule must be
strictly ordered. As a result, similar rules are treated differently. For example,
the rule R1 is considered as different from rules R2 : 〈{b}, {a}, {c}〉 → 〈{d}〉,
R3 : 〈{b}, {c}, {a}〉 → 〈{d}〉, R4 : 〈{c}, {a}, {b}〉 → 〈{d}〉, R5 : 〈{c}, {b}, {a}〉 →
〈{d}〉 and R6 : 〈{a}, {c}, {b}〉 → 〈{d}〉. But all these rules contain the same
events. This is a problem because all these rules are very similar and may in prac-
tice represents the same situation that someone who has watched three movies
(e.g. Frozen, Sleeping Beauty, Lion King) will then watch another (e.g. Harry
Potter). Because these rules are viewed as distinct, their support (occurrence
frequencies) and confidence are calculated separately and may be very differ-
ent from each other. Moreover, analyzing numerous rules representing the same
situation with slight ordering variations is not convenient for the user. Thus, it
is desirable to extract a more general and flexible type of rules where ordering
variations between events are tolerated.

This paper addresses this issue by introducing a novel type of rules called
Partially-Ordered Episode Rules (POER), where events in a rule antecedent and
in a rule consequent are unordered. A POER has the form I1 → I2, where I1 and
I2 are sets of events. A rule is interpreted as if all event(s) in I1 appear in any
order, they will be followed by all event(s) from I2 in any order. For instance, a
POER R7 : {a, b, c} → {d} indicates that if someone watches movies a, b and c in
any order, s/he will watch d. The advantage of finding POERs is that a single rule
can replace multiple episode rules. For example R7 can replace R1, R2, . . . , R6.
However, discovering POER is challenging as they are not derived from episodes.
Thus, a novel algorithm must be designed to efficiently find POER in a sequence.
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The contributions of this paper are the following. The problem of discovering
POERs is defined and its properties are studied. Then, an efficient algorithm
named POERM (Partially-Ordered Episode Rule Miner) is presented. Lastly,
an experimental evaluation was performed on several benchmark datasets to
evaluate POERM. Results have shown that it has excellent performance.

The rest of this paper is organized as follows. Section 2 defines the proposed
problem of POER mining. Section 3 describes the POERM algorithm. Then,
Sect. 4 presents the experimental evaluation. Finally, Sect. 5 draws a conclusion
and discusses future work.

2 Problem Definition

The type of data considered in episode rule mining is a sequence of events with
timestamps [9,12]. Let there be a finite set of events E = {i1, i2, . . . , im}, also
called items or symbols. In addition, let there be a set of timestamps T =
{t1, t2, . . . tn} where for any integers 1 ≤ i < j ≤ n, the relationship ti < tj holds.
A time-interval [ti, tj ] is said to have a duration of tj−ti time. Moreover, two time
intervals [ti1, tj1] and [ti2, tj2] are said to be non-overlapping if either tj1 < ti2
or tj2 < ti1. A subset X ⊆ E is called an event set. Furthermore, X is said to be
a k-event set if it contains k events. A complex event sequence is an ordered
list of event sets with timestamps S = 〈(SEt1 , t1), (SEt2 , t2), . . . , (SEtn , tn)〉
where SEti ⊆ E for 1 ≤ i ≤ n. A simultaneous event set in a complex
event sequence is an event set where all events occurred at the same time. If a
complex event sequence contains no more than one event per timestamp, it is a
simple event sequence. Data of various types can be represented as an event
sequence such as cyber-attacks, trajectories, telecommunication data, and alarm
sequences [8].

For example, a complex event sequence is presented in Fig. 1. This sequence
contains eleven timestamps (T = {t1, t2, . . . , t11}) and events are represented by
letters (E = {a, b, c, d}). That sequence indicates that event c appeared at time
t1, followed by events {a, b} simultaneously at time t2, followed by event d at
time t3, followed by a at t5, followed by c at t6, and so on.

Fig. 1. An complex event sequence with 11 timestamps

This paper proposes a novel type of rules called partially-ordered episode
rule. A POER has the form X → Y where X ⊂ E and Y ⊂ E are non empty
event sets. The meaning of such rule is that if all events from X appear in
any order in the sequence, they will be followed by all events from Y . To avoid
finding rules containing events that are too far appart three constraints are
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specified: (1) events from X must appear within some maximum amount of time
XSpan ∈ Z

+, (2) events from Y must appear within some maximum amount
of time Y Span ∈ Z

+, and (3) the time between X and Y must be no less than
a constant XY Span ∈ Z

+. The three constraints XSpan, Y Span and XY Span
must be specified by the user, and are illustrated in Fig. 2 for a rule X → Y .

Fig. 2. The three time constraints on a POER

Furthermore, to select interesting rules, two measures are used called the
support and confidence, which are inspired by previous work on rule mining.
They are defined based on the concept of occurrence.

An occurrence of an event set F ⊂ E in a complex event sequence
S is a time interval [ti, tj ] where all events from F appear, that is F ⊆ SEi ∪
SEi+1 . . .∪SEj . An occurrence of a rule X → Y in a complex event sequence
S is a time interval [ti, tj ] such that there exist some timestamps tv, tw where
ti ≤ tv < tw ≤ tj , X has an occurrence in [ti, tv], Y has an occurrence in [tw, tj ],
tv − ti < XSpan, tw − tv < XY Span, and tj − tw < Y Span.

Analyzing occurrences of event sets or rules one can reveal interesting rela-
tionships between events. However, a problem is that some occurrences may
overlap, and thus an event may be counted as part of multiple occurrences.
To address this problem, this paper proposes to only consider a subset of all
occurrences defined as follows. An occurrence [ti1, tj1] is said to be redundant
in a set of occurrences if there does exist an overlapping occurrence [ti2, tj2]
such that ti1 ≤ ti2 ≤ tj1 or ti2 ≤ ti1 ≤ tl2. Let occ(F ) denotes the set of all
non redundant occurrences of an event set F in a sequence S. Moreover,
let occ(X → Y ) denotes the set of non redundant occurrences of a rule
X → Y in a sequence S.

The support of a rule X → Y is defined as sup(X → Y ) = |occ(X → Y )|.
The support of an event set F is defined as sup(F ) = |occ(F )|. The confidence
of a rule X → Y is defined as conf(X → Y ) = |occ(X → Y )|/|occ(X)|. It
represents the conditional probability that events from X are followed by those
of Y .

Definition 1 (Problem Definition). XY Let there be a complex event
sequence S and five user-defined parameters: XSpan, Y Span, XY Span, minsup
and minconf . The problem of mining POERs is to find all the valid POERs. A
POER r is said to be frequent if sup(r) ≥ minsup, and it is said to be valid if it
is frequent and conf(r) ≥ minconf .

For instance, consider the sequence of Fig. 1, minsup = 3, minconf = 0.6,
XSpan = 3, XY Span = 1 and Y Span = 1. The occurrences of {a, b, c}
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are occ({a, b, c}) = {[t1, t2], [t5, t7], [t10, t10]} The occurrences of the rule R :
{a, b, c} → {d} are occ(R) = {[t1, t3], [t5, t8]}. Hence, supp(R) = 3, conf(R) =
2/3, and R is a valid rule.

3 The POERM Algorithm

The problem of POER mining is difficult as if a database contains m distinct
events, up to (2m − 1) × (2m − 1) rules may be generated. Moreover, each rule
may have numerous occurrences in a sequence.

To efficiently find all valid POERs, this section describes the proposed
POERM algorithm. It first finds event sets that may be antecedents of valid
rules and their occurrences in the input sequence. Then, the algorithm searches
for consequents that could be combined with these antecedents to build POERs.
The valid POERs are kept and returned to the user. To avoid considering all
possible rules, the POERM algorithm utilizes the following search space pruning
property (proof is omitted due to space limitation).

Property 1 (Rule Event Set Pruning Property). An event set X cannot be the
antecedent of a valid rule if sup(X) < minsup. An event set Y cannot be the
consequent of a valid rule if sup(Y ) < minsup × minconf .

The POERM algorithm (Algorithm1) takes as input a complex event
sequence S, and the user-defined XSpan, Y Span, XY Span, minsup and
minconf parameters. The POERM algorithm first reads the input sequence
and creates a copy XFres of that sequence containing only events having a sup-
port no less than minsup. Other events are removed because they cannot appear
in a valid rule (based on Property 1). Then, POERM searches for antecedents
by calling the MiningXEventSet procedure with XFres, XSpan and minsup.
This procedure outputs a list xSet of event sets that may be antecedents of
valid POERs, that is each event set having at least minsup non overlapping
occurrences of a duration not greater than XSpan.

The MiningXEventSet procedure is presented in Algorithm2. It first scans
the sequence XFres to find the list of occurrences of each event. This infor-
mation is stored in a map fresMap where each pair indicates an event as key
and its occurrence list as value. Then, scan all the pairs of fresMap and put
the pairs that have at least minsup non-overlapping occurrences are added to
xSet. At this moment, xSet contains all 1-event sets that could be valid rule
antecedents based on Property 1. Then, the procedure scans the sequence again
to extend these 1-event sets into 2-event sets, and then extends 2-event sets
into 3-event sets and so on until no more event sets can be generated. Dur-
ing that iterative process, each generated event set having more than minsup
non-overlapping occurrences is added to xSet and considered for extensions to
generate larger event sets. The MiningXEventSet procedure returns xSet, which
contains all potential antecedents of valid POERs (those having at least minsup
non-overlapping occurrences).
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A challenge for implementing the MiningXEventSet procedure efficiently is
that event sets are by definition unordered. Hence, different ordering of a same
set represent the same event set (e.g. {a, b, c},{b, a, c} and {a, c, b} are the same
set). To avoid generating the same event set multiple times, event sets are in
practice sorted by the lexicographic order (e.g. as {a, b, c}), and the procedure
only extends an event set F with an event e if e is greater than the last event
of F .

A second key consideration for implementing MiningXEventSet is how to
extend an l-event set F into (l + 1)-event sets and calculate their occurrences
in the XFres sequence. To avoid scanning the whole sequence, this is done by
searching around each occurrence pos of F in its OccurrenceList. Let pos.start
and post.end respectively denote the start and end timestamps of pos. The algo-
rithm searches for events in the time intervals [pos.end− XSpan +1, pos.start),
[pos.end+1, pos.start+XSpan), and [pos.start, pos.end]. For each event e that is
greater than the last item of F , the occurrences of F∪{e} of the form [i, pos.end],
[pos.start, i] or [pos.start, pos.end] are added in fresMap. Then, fresMap is
scanned to count the non-overlaping occurrences of each (l + 1)-node event set,
and all sets having more than minsup non-overlapping occurrences are added
to xSet.

Counting the maximum non-overlapping occurrences of an l-event set F is
done using its occurrence list (not shown in the pseudocode). The procedure first
applies the quick sort algorithm to sort the OccurrenceList by ascending ending
timestamps (pos.end). Then, a set CoverSet is created to store the maximum
non-overlapping occurrences of F . The algorithm loops over the OccurrenceList
of F to check each occurrence from the first one to the last one. If the current
occurrence does not overlap with the last added occurrence in CoverSet, it is
added to CoverSet. Otherwise, it is ignored. When the loop finishes, CoverSet
contains the maximum non-overlapping occurrences of F .

After applying the MiningXEventSet procedure to find antecedents, the
POERM algorithm searches for event sets (consequents) that could be combined
with these antecedents to create valid POERs. The algorithm first eliminates
all events having less than minsup × minconf occurrences from the sequence
XFres to obtain a sequence Y Fres (based on pruning Property 1). Then, a
loop is done over each antecedent x in xSet to find its consequents. In that
loop, the time intervals where such consequents could appear are first identified
and stored in a variable xOccurrenceList. Then, a map conseMap is created to
store each event e and its occurrence lists for these time intervals in Y Fres. The
map is then scanned to create a queue candidateRuleQueue containing each
rule of the form x → e and its occurrence list. If a rule x → e is such that
|occ(x −→ e)| ≥ minconf× |occ(x)|, then it is added to the set POERs of valid
POERs. At this time, candidateRuleQueue contains all the candidate rule with
a 1-event consequent.

The algorithm then performs a loop that pops each rule X → Y from the
queue to try to extend it by adding an event to its consequent. This is done by
scanning conseMap. The obtained rule extensions of the form X → Y ∪{e} and
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Algorithm 1: POERM
Input: an event sequence S, the XSpan, Y Span, XY Span, minsup and

minconf parameters;
Output: the set POERs of valid partially-ordered episode rules

1 XFres = loadFrequentSequence(S, minsup);
2 xSet = MiningXEventSet(XFres, XSpan, minsup);
3 Y Fres = loadFrequentSequence(XFres, minsup × minconf);
4 POERs ← ∅;
5 foreach event set x in xSet do
6 for i = 1 to (XY Span +Y Span) do
7 xOccurrenceList ←− {t|t = occur.end + i, occur ∈ x.OccurrenceList};
8 end
9 Scan each timestamp of Y Fres in xOccurrenceList to obtain a map

conseMap that records each event e and its occurrence list;
10 Scan conseMap and put the pair (x −→ e,OccurrenceList) in a queue

candidateRuleQueue (note: infrequent rules are kept because event e may
be extended to obtain some frequent rules);

11 Add each rule x −→ e such that |occ(x −→ e)| ≥ minconf × |occur(x)| into the
set POERs;

12 while candidateRuleQueue �= ∅ do
13 Pop a rule X → Y from candidateRuleQueue;
14 For each occurrence occur of X → Y , let;
15 start ←− max(occur.X.end + 1, occur.Y.end − Y Span + 1);
16 end ←− min(occur.X.end+XY Span+ Y Span, occur.X.start + Y Span);
17 Scan each timestamp in [start,end), add each candidate rule in

candidateRuleQueue, and add each valid POER in POERs;

18 end

19 end
20 return POERs;

their occurrence lists are added to candidateRuleQueue to be further extended.
Moreover, each rule such that |occ(x → e)| ≥ minconf× |occ(x)| is added to
the set POERs of valid POERs. This loop continues until the queue is empty.
Then, the algorithm returns all valid POERs.

It is worth noting that an occurrence of a rule X → Y having an l-event
set consequent may not be counted for its support while it may be counted in
the support of a (l + 1)-event consequent rule that extends the former rule.
For instance, consider the sequence of Fig. 1, that XSpan = Y Span = 2,
and XY Span = 1. The occurrence of {a} → {b} in [t5, t7] is not counted
in the support of {a} → {b} because the time between a and b is greater
than XY Span. But {a} → {b} can be extended to {a} → {b, c} and the
occurrence [t5, t7] is counted in its support. To find the correct occurrences
of rules of the form X → Y ∪ {e} extending a rule X → Y , the follow-
ing approach is used. For each occurrence occur of X → Y , a variable start
is set to max(occur.X.end+1,occur.Y.end-Y Span+1), a variable end is set to
min(occur.X.end+XY Span+Y Span, occur.Y.start+Y Span). Thereafter, three



10 P. Fournier-Viger et al.

Algorithm 2: MiningXEventSet
Input: XFres: the sequence with only events having support ≥ minsup;
XSpan: maximum window size; minsup threshold;
Output: a list of event sets that may be antecedents of valid POERs

1 Scan the sequence XFres to record the occurrence list of each event in a map
fresMap (key = event set, value = occurrence list);

2 xSet ← all the pairs of fresMap such that |value| ≥ minsup;
3 start ←− 0;
4 while start < |xSet| do
5 F ←− xSet[start].getKey;
6 OccurrenceList ←− xSet[start].getV alue;
7 Clear fresMap;
8 start = start +1;
9 foreach occurrence pos in OccurrenceList do

10 pStart ←− pos.end− XSpan +1; pEnd ←− pos.start+ XSpan;
11 Search the time intervals [pStart, pos.start), [pos.end + 1, pEnd),

[pos.start, pos.end] to add each event set F ∪ {e} such that
e > F.lastItem and its occurrences of the forms [i, pos.end],
[pos.start, i] or [pos.start, pos.end], in the map fresMap;

12 end
13 Add each pair of fresMap such that |value| ≥ minsup into xSet;

14 end
15 return xSet;

intervals are scanned, which are [start, occur.Y.end), (occur.Y.end, end) and also
[occur.Y.start, occur.Y.end] to add each rule X → Y ∪ {e} such that e >
Y.lastItem and its occurrences of the forms [i, occur.Y.end], [occur.Y.start, i]
or [occur.Y.start, occur.Y.end] in the conseMap. These three intervals are illus-
trated in Fig. 3 and allows to find the correct occurrences of (l+ 1)-node conse-
quent rules. In that figure, tY denotes occur.Y and tX denotes occur.X.

Fig. 3. The timestamps that are searched for a candidate rule X → Y

The proposed POERM algorithm can find all valid POERs since it only
prunes events that cannot be part of valid rules by Property 1. The following
section presents an experimental evaluation of POERM, where its performance
is compared with that of a baseline version of POERM, called POERM-ALL. The
difference between POERM and POERM-ALL is that the latter finds all possible
antecedents and consequents separately before combining them to generate rules,
rather than using antecedents to search for consequents.
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4 Experimental Evaluation

The proposed POERM algorithm’s efficiency was evaluated on three benchmark
sequence datasets obtained from the SPMF library [5], named OnlineRetail,
Fruithut and Retail. OnlineRetail is a sequence of 541,909 transactions from a
UK-based online retail store with 2,603 distinct event types indicating the pur-
chase of items. Fruithut is a sequence of 181,970 transactions with 1,265 distinct
event types, while Retail is a sequence of 88,162 customer transactions from
an anonymous Belgian retail store having 16,470 distinct event types. Because
there is no prior work on POER mining, the performance of POERM was com-
pared with the POERM-ALL baseline, described in the previous section. Both
algorithms were implemented in Java and source code and datasets are made
available at http://philippe-fournier-viger.com/spmf/.

In each experiment, a parameter is varied while the other parameters are
fixed. Because algorithms have five parameters and the space does not allow eval-
uating each parameter separately, the three time constraint parameters XSpan,
Y Span and XY Span were set to a same value called Span. The default values
for (minsup, minconf , Span) on the OnlineRetail, Fruithut and Retail datasets
are (5000, 0.5, 5), (5000, 0.5, 5) and (4000, 0.5, 5), respectively. These values
were found empirically to be values were algorithms have long enough runtimes
to highlight their differences.

Influence of minsup. Figure 4(a) shows the runtimes of the two algorithms
when minsup is varied. As minsup is decreased, runtimes of both algorithms
increase. However, that of POERM-ALL increases much more quickly on the
OnlineRetail and FruitHut datasets, while minsup has a smaller impact on
POERM-ALL for Retail. The reason for the poor performance of POERM-
ALL is that as minsup decreases, POERM-ALL considers more antecedent
event sets (sup(X) ≥ minsup) and more consequent event sets (sup(Y ) ≥
minsup ∗minconf). Moreover, POERM-ALL combines all antecedents with all
consequents to then filter out non valid POERs based on the confidence. For
instance, on OnlineRetail and minsup = 6000, there are 1,173 antecedents and
5,513 consequents, and hence 6,466,749 candidate rules. But for minsup = 4000,
there are 2,813 antecedents, 11,880 consequents and 33,193,400 candidate rules,
that is a five time increase. The POERM algorithm is generally more efficient as
it does not combine all consequents will all antecedents. Hence, its performance
is not directly influenced by the number of consequent event sets. This is why
minsup has a relatively small impact on POERM’s runtimes on the OnlineRe-
tail and FruitHut dataset. However, Retail is a very sparse dataset. As a result
for minsup = 3000, POERM-ALL just needs to combine 190 antecedents with
747 consequents, and thus spend little time in that combination stage. Because
there are many consequents for Retail, POERM scans the input sequence mul-
tiple times for each antecedent to find all possible consequents. This is why
POERM performs less well than POERM-ALL on Retail.

Influence of minconf . Figure 4(b) shows the runtimes of the two algorithms for
different minconf values. It is observed that as minconf is decreased, runtimes

http://philippe-fournier-viger.com/spmf/


12 P. Fournier-Viger et al.

increase. POERM-ALL is more affected by variations of minconf than POERM
on OnlineRetail and FruitHut but the impact is smaller on Retail. The reason
is that as minconf decreases, POERM-ALL needs to consider more consequent
event sets meeting the condition sup(Y ) ≥ minsup · minconf , and thus the
number of candidates rules obtained by combining antecedents and consequents
increases. For instance, on OnlineRetail and minconf = 0.6, POERM-ALL finds
1,724 antecedents and 5,315 consequents. But for minconf = 0.2, the number of
antecedents is the same, while POERM-ALL finds 46,236 consequents, increasing
the number of candidate rules by nine times. On the other hand, minconf does
not have a big influence on POERM as it does not use a combination approach
and hence is not directly influenced by the consequent count. On Retail the
situation is different as it is a very sparse dataset. For each antecedent, POERM
needs to scan the input sequence multiple time to find all the corresponding
consequents. Thus, POERM performs less well on Retail.

Influence of Span. Figure 4(c) compares the runtimes of both algorithms when
Span is varied. As Span is increased, runtimes increase, and POERM-ALL
is more affected by an increase of Span than POERM for OnlineRetail and
FruitHut. But the impact on Retail is very small. This is because, as Span is
increased, the time constraints are more loose and POERM-ALL needs to find
more antecedents and consequent event sets, which results in generating more
candidate rules by the combination process. For instance, on OnlineRetail and
Span = 3, POERM-ALL finds 44 antecedents and 2,278 consequents to gen-
erate 1,239,232 candidate rules. But for Span = 7, it finds 5,108 antecedents,
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Fig. 4. Influence of (a) minsup, (b) minconf and (c) span on runtime
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26,009 consequents and 132,853,972 rules (100 times increase). As POERM does
not use this combination approach, its runtime is not directly influenced by the
consequent count, and its runtime mostly increases with the antecedent count.
Thus, changes in Span have a relatively small impact on POERM for OnlineRe-
tail and FruitHut. But Retail is a sparse dataset. For each antecedent episode,
POERM needs to scan the input sequence multiple times to make sure it finds
all the corresponding consequents. Thus, POERM performs less well.

Memory Consumption. Figure 5 shows the memory usage of both algo-
rithms when Span is varied. Similarly to runtime, as Span is increased, memory
usage increases because the search space grows. On OnlineRetail and FruitHut,
POERM consumes from 25% to 200% less memory then POERM-ALL. But
on sparse datasets like Retail, POERM needs to scan the input sequence mul-
tiple times and store antecedent episodes in memory to make sure it finds all
the corresponding consequents. Thus, POERM consumes more memory then
POERM-ALL on Retail.

Discovered Patterns. Using the POERM algorithm, several rules were discov-
ered in the data. For instance, some example rules found in the FruitHut dataset
are shown in Table 1. Some of these rules have a high confidence. For example,
the rule CucumberLebanese, F ieldTomatoes → BananaCavendish has a con-
fidence of 4910/6152 = 79.8%. Note that only a subset of rules in the table due

Fig. 5. Influence of span on Memory usage

Table 1. Example rules from FruitHut

Rule occ(X → Y) occ(X)

Cucumber Lebanese, Field Tomatoes→Banana Cavendish 4910 6152

Capsicum red, Field Tomatoes→Banana Cavendish 5033 6352

Broccoli, Capsicum red→Field Tomatoes 2343 4043

Nectarine White→Watermelon seedless 2498 5687

Garlic loose, Field Tomatoes→Capsicum red 1752 4409

Cucumber Lebanese, Capsicum red →Eggplant 1236 4098
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to space limitation. The presented subset of rules is selected to give an overview
of rules containing various items.

5 Conclusion

To find more general episode rules, this paper has proposed a novel type of rules
called partially-ordered episode rules, where events in a rule are partially ordered.
To efficiently find all these rules in a sequence, an efficient algorithm named
POERM (Partially-Ordered Episode Rule Miner) was presented. An experimen-
tal evaluation on several benchmark dataset shows that POERM has excellent
performance.

There are several possibilities for future work such as (1) extending POERM
to process streaming data or run on a big data or multi-thread environment to
benefit from parallelism, (2) considering more complex data such as events that
are organized according to a taxonomy [3] or a stream [17], and (3) developing a
sequence prediction model based on POERs. Other pattern selection functions
will also be considered such as the utility [13,18] and rarity [10].
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