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Abstract Compositional data represent a specific family of multivariate data, where
the information of interest is contained in the ratios between parts rather than in abso-
lute values of single parts. The analysis of such specific data is challenging as the
application of standard multivariate analysis tools on the raw observations can lead
to spurious results. Hence, it is appropriate to apply certain transformations prior to
further analysis. One popular multivariate data analysis tool is independent compo-
nent analysis. Independent component analysis aims to find statistically independent
components in the data and as such might be seen as an extension to principal com-
ponent analysis. In this paper, we examine an approach of how to apply independent
component analysis on compositional data by respecting the nature of the latter and
demonstrate the usefulness of this procedure on a metabolomics dataset.
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1 Introduction

Independent component analysis (ICA) is a well-established data analysis method in
signal processing with the goal of recovering hidden signals that are usually meant
to have a physical meaning. In recent years, ICA methods have attracted increasing
interest in the statistics community as an extension of normality-based multivari-
ate methods that only use second-order moments. In principle, ICA can be seen as
a refinement of principal component analysis where, after removing second-order
information, higher order moments are used to search for hidden structures which
are not visible in the principal components. Classical ICAmethods are mainly devel-
oped for independent and identically distributed observations in a Euclidean space.
Nevertheless, these methods are also applied, for example, on time series, spatial
data, etc. but to the best of our knowledge not on iid compositional data.

Compositional data is special in the way that the entries (parts) of a d-variate
vector are positive and carry relative rather than absolute information about the
respective observation of interest. Moreover, the parts of the compositional vector
are by nature not independent and in some specific situations, e.g. when all parts
are bounded by a constant sum constraint, a spurious correlation between them is
present. Therefore, compositional data lies on a simplex and does not follow the real
Euclidean geometry. Examples of compositional data are geochemical data where
the chemical composition of soil samples is of interest, the composition of nutrients
of food intake or the distribution of market shares. For further details and examples
of compositional data, see, for example, Aitchison (1986), Egozcue and Pawlowsky-
Glahn (2019), Fačevicová et al. (2016), Filzmoser et al. (2018), Morais et al. (2018),
Pawlowsky-Glahn and Buccianti (2011), Trinh et al. (2019).

It is well established that standard multivariate methods should not be applied
directly to compositional data. Either methods which take the geometry of composi-
tional data into account or methods that transform compositional data in such a way
that standard multivariate analysis tools can be applied are appropriate. In this paper,
we take the latter approach.

We review some basic ICA methods in Sect. 2. In Sect. 3, we describe compo-
sitional data and methods to transform such data into the real space. Based on the
former two sections, we present how ICA can be performed on compositional data
in Sect. 4 and conclude the paper with the analysis of a metabolomics dataset from
healthy newborns in Sect. 5 and a discussion in Sect. 6.

2 Independent Component Analysis

From a statistical perspective, independent component analysis is usually formulated
as a latent variable model as follows.

Definition 1 An observable p-vector x follows the independent component (IC)
model if
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x = Az + b,

whereA is a p × p non-singularmatrix,b a p-vector, and the latent p-variate random
vector z satisfies

(A1) E(z) = 0 and COV(z) = Ip,
(A2) the components of z are independent, and
(A3) at most one component of z is Gaussian.

ThusE(x) = b andCOV(x) = AA�. The goal of ICA is to find a p × pmatrixW
such that Wx has independent components. Note however that in general it will not
hold that W(x − b) = z as the IC model assumptions only fix the location and scale
of z but not the signs or the order of the components. Therefore, for every solution
W, also PJW is a solution, where P is a p × p permutation matrix (1 per row and
column, 0 elsewhere) and J is a p × p sign-change matrix (a diagonal matrix with
±1 on its diagonal).

There are many suggestions in the literature on how to estimate W based on a
sampleX = (x1, . . . , xn), and for recent reviews see, for example, Comon and Jutten
(2010), Nordhausen and Oja (2018). Almost all ICA methods make, however, use
of the following result:

Key result Let x follow the ICmodel and denote xst = COV(x)−1/2(x − E(x)), then
there exists an orthogonal p × p matrix U such that

U�xst = z.

This result implies that after estimatingCOV(x) andE(x), the problem is reduced
from finding a general p × p matrix to a p × p orthogonal matrix. Also note that
this means that the performance of ICA methods does not depend on the values of A
and b, as these are accounted for when standardizing the data. An unmixing matrix
estimate is therefore obtained asW = U�COV(x)−1/2 and different ICA approaches
differ in the way they estimate U. In the following, we will show how some popular
ICA methods estimate this rotation.

2.1 FOBI

Fourth-order blind identification (FOBI), presented in Cardoso (1989), was one of
the first ICA methods but is still popular as it has a closed-form solution. For FOBI,
we need to define the scatter matrix of fourth-order moments

COV4(x) = 1

p + 2
E

(
(x − E(x))�COV(x)−1(x − E(x))(x − E(x))(x − E(x))�

)
.

Then we can define the following:
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Definition 2 The FOBI unmixing matrix is WFOBI = U�
FOBICOV(x)−1/2 where the

columns of UFOBI are given by the eigenvectors of COV4(xst ).

FromdenotingUFOBIDU�
FOBI to be the eigendecomposition ofCOV4(xst )which is

needed to computeWFOBI, it is obvious that FOBI is onlyuniquewhen the eigenvalues
contained in the diagonal matrix D are distinct. One can actually show that these
eigenvalues are linked to the kurtosis values of the independent components. For
FOBI to be well-defined, Assumption (A3) from the IC model needs to be replaced
by the stronger assumption:

(A4) The kurtosis values of the independent components must be distinct.

FOBI is often the first ICA method applied as it is quick to compute, gives a
fast first impression, and its statistical properties are well known; see, for example,
Miettinen et al. (2015), Nordhausen and Virta (2019) for more details. FOBI can
also be of interest outside the IC model and can be seen as an invariant coordinate
selection method (Tyler et al. 2009).

2.2 JADE

Assumption (A4) is considered highly restrictive. Joint approximate diagonalization
of eigenmatrices (JADE) can be seen as an extension of FOBI which relaxes this
strict assumption, Cardoso and Souloumiac (1993).

For JADE, we have to define the fourth-order cumulant matrices

Ci j (x) = E
(
(xst�Ei jxst )xstxst�

)
− Ei j − E�

i j − tr(Ei j )Ip,

where Ei j = eie�
j with ei being a vector of dimension p with the i th element equals

1 and 0 otherwise. As i and j range from 1 to p, there are in total p2 such cumulant
matrices. In the IC model, Ci j (z) = 0 if i �= j and for the case where i = j Ci i (z)
corresponds to the kurtosis of the i th component. The matrix of fourth moments can
actually be expressed as

COV4(x) = 1

p + 2

p∑
i=1

Ci i (x) + (p + 2)Ip,

meaning that it uses not all possible cumulant information. The idea of JADE is to
exploit the information contained in all cumulant matrices.

Definition 3 The JADE unmixing matrix is WJADE = U�
JADECOV(x)−1/2 where

UJADE is the maximizer of

p∑
i=1

p∑
j=1

||diag(U�Ci j (xst )U)||2F .
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Thus, JADE tries to maximize the diagonal elements of U�Ci j (xst )U which is equiv-
alent to minimize the off-diagonal elements by the orthogonal invariance of the
Frobenius norm || · ||F . As in the IC model, only Ci i (z) is non-zero and corresponds
to the kurtosis of zi . This means that JADE relaxes the FOBI assumption (A4) to the
following:

(A5) At most one independent component can have zero kurtosis.

For a finite sample, the joint diagonalization of more than two matrices needs to
be carried out approximately; many algorithms that jointly diagonalize two or more
matrices are available; see, for example, Illner et al. (2015). For the purpose of this
paper, we will use an algorithm based on Givens rotations, Clarkson (1988).

The statistical properties of JADE are, for example, given in Miettinen et al.
(2015); from an asymptotic point of view, FOBI is never superior compared to JADE.
JADE is however computationally more expensive, especially when the number of
independent components grows, as p2 matrices need to be computed and jointly
diagonalized.

As a compromise, k-JADE was suggested in Miettinen et al. (2013). The idea is
to use not all matrices Ci j , but only those whose indices are not too far apart, i.e.
|i − j | < k. This requires however that the first step, the whitening step, is not done
using just the covariance matrix but using WFOBI.

Definition 4 Denote xst ′ = WFOBI(x − E(x)) and choose an integer 1 ≤ k ≤ p,
then the k-JADE unmixing matrix is WkJADE = U�

kJADEWFOBI where UkJADE is the
maximizer of

p∑
|i− j |<k

||diag(U�Ci j (xst ′)U)||2F .

Thevalue k is basically a tuningparameter. The intuition is that themultiplicities of
the distinct non-zero kurtosis values of the independent components are atmost k, and
that there is at most one component having kurtosis zero. Usually, k is simply chosen
by the user based on expert knowledge. In Virta et al. (2020), some guidelines for the
selection are offered, which are however not very practical. The statistical properties
of k-JADE are given inMiettinen et al. (2013), Virta et al. (2020). It can be shown that
for a value of k which fulfills the multiplicity condition, k-JADE is asymptotically
as efficient as JADE but has, if k is small, a much smaller computational complexity.

2.3 FastICA

FOBI, JADE, and k-JADE are often called algebraic ICA methods. Another large
group of ICAmethods is based on projection pursuit ideas, where themost prominent
one is FastICA. It was originally suggested in Hyvärinen (1999a). Some of the many
FastICA variants are discussed below.
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The general idea of FastICA is to find the column vectors u1, . . . , up of U which
maximize the non-Gaussianity of the components of U�xst . Non-Gaussianity of a
univariate random variable x is measured by |E(G(x))| with some twice contin-
uously differentiable and non-quadratic function G that satisfies E(G(y)) = 0 for
y ∼ N (0, 1). The most popular choices for G are

pow3: G(x) = (x4 − 3)/4,
tanh: G(x) = log(cosh(x)) − ct , and
gauss: G(x) = − exp(−x2/2) − cg .

The constants ct = E(log(cosh(y))) ≈ 0.375 and cg = E(− exp(−y2/2)) ≈
−0.707 are normalizing constants. The derivatives of G, denoted as g, are called
non-linearities and are the name givers as pow3 : g(x) = x3, tanh : g(x) =
tanh(x) and gauss : g(x) = x exp(−x2/2).

2.3.1 Deflation-Based FastICA

FastICA was first suggested in Hyvärinen and Oja (1997) using the non-linearity
pow3 and finding the column vectors of UDF one after another which is now known
as deflation-based FastICA.

Definition 5 The deflation-based FastICA unmixing matrix is defined as WDF =
U�

DFCOV(x)−1/2, where the kth column of U, uk , maximizes

|E[G(u�
k xst )]|

under the constraints uT
k uk = 1 and uT

j uk = 0, j = 1, . . . , k − 1.

To obtain estimates, a modified Newton-Raphson algorithm is used which iterates
the following steps until convergence:

uk ← E[g(u�
k xst )xst ] − E[g′(u�

k xst )]uk

uk ←
(

Ip −
k−1∑
l=1

ulu�
l

)
uk

uk ← ||uk ||−1uk .

The last two steps perform the Gram-Schmidt orthonormalization.
The properties of deflation-based FastICA have been studied in detail in Ollila

(2010), Nordhausen et al. (2011). One issue with deflation-based FastICA is that
besides the global maximum it has many local maxima and the order in which the
vectors uk are found depends heavily on the initial value of the algorithm, where in
turn the estimation performance depends on the order in which the vectors uk are
found. Using asymptotic arguments, Nordhausen et al. (2011) suggested reloaded
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Table 1 Table of default candidate set of non-linearities of adaptive deflation-based FastICA,where
(x)+ = x if x > 0 and 0 otherwise, and (x)− = x if x < 0 and 0 otherwise

g1(x) = x3 g6(x) = (x)2+ + (x)2− g11(x) =
(x − 1.0)2+ + (x + 1.0)2−

g2(x) = tanh(x) g7(x) =
(x − 0.2)2+ + (x + 0.2)2−

g12(x) =
(x − 1.2)2+ + (x + 1.2)2−

g3(x) = x exp(−x2/2) g8(x) =
(x − 0.4)2+ + (x + 0.4)2−

g13(x) =
(x − 1.4)2+ + (x + 1.4)2−

g4(x) = (x + 0.6)2− g9(x) =
(x − 0.6)2+ + (x + 0.6)2−

g14(x) =
(x − 1.6)2+ + (x + 1.6)2−

g5(x) = (x − 0.6)2+ g10(x) =
(x − 0.8)2+ + (x + 0.8)2−

FastICA, which estimates first the independent components using FOBI or k-JADE
and then derives an optimal order based on the estimated independent components.

The idea of reloaded FastICA to fix the extraction order based on asymptotic argu-
ments was extended in Miettinen et al. (2014) to also select an optimal non-linearity
for each component out of a candidate set of possible non-linearities. This is known
as adaptive deflation-based FastICA. We will denote the adaptive deflation-based
FastICA unmixing matrix as WADF. The candidate set of non-linearities suggested
in Miettinen et al. (2014) contains, for example, the non-linearities presented in
Table 1.

2.3.2 Symmetric FastICA

A FastICA variant estimating all directions in parallel was suggested in Hyvärinen
(1999b).

Definition 6 The symmetric FastICA estimator WSF = U�
SFCOV(x)−1/2 uses as a

criterion for USF
p∑

j=1

|E[G(u�
j xst )]|

which should be maximized under the orthogonality constraint U�
SFUSF = Ip.

The steps of the iterative algorithm to compute USF are

uk ← E[g(uT
k xst )xst ] − E[g′(u�

k xst )]uk, k = 1, . . . , p

U�
SF ← (U�

SFUSF)
−1/2U�

SF.

The first update step of the algorithm is similar to that of the deflation-based
FastICA estimator. The orthogonalization step can be interpreted as taking an average



532 C. Muehlmann et al.

over the vectors of the first step. This differs from the deflation-based approach
where errors made in the kth direction carry on to the following directions and
therefore the errors accumulate. This is often the reason why symmetric FastICA is
usually considered superior to the deflation-based FastICA. However, there are also
cases where the accumulation is preferable to the averaging. This occurs when some
independent components are easier to find than the others. Statistical properties of
symmetric FastICA are given in Miettinen et al. (2015), Wei (2015), Miettinen et al.
(2017).

2.3.3 Squared Symmetric FastICA

One of the most recent variants of FastICA is the squared symmetric FastICA esti-
mator (Miettinen et al. 2017). The idea of this estimator is to replace the absolute
values in the objective function of the symmetric FastICA with squared values.

Definition 7 The squared symmetric FastICA estimator
WS2F = U�

S2FCOV(x)−1/2 obtains US2F as the maximizer of

p∑
j=1

(E[G(u�
j xst )])2

under the orthogonality constraint U�
S2FUS2F = Ip.

The steps of the resulting algorithm are

uk ← E[G(u�
k xst )](E[g(u�

k xst )xst ] − E[g′(u�
k xst )]uk), k = 1, . . . , p,

U�
S2F ← (U�

S2FUS2F)
−1/2U�

S2F.

Thus, the first step of the algorithm equals the first step in the symmetric algorithm
with an additional multiplication by E[G(u�

k xst )]. Hence, the squared symmetric
variant puts more weight on components that are “more” non-Gaussian, which most
often, but not always, is advantageous. The properties of the squared symmetric
FastICA estimator as well as comparisons to the deflation-based and symmetric
FastICA methods are given in Miettinen et al. (2017). In Miettinen et al. (2017), it
is also shown that if the non-linearity pow3 is used, symmetric squared FastICA is
asymptotically equivalent to JADE.

Besides assumptions (A1)–(A3), deflation-based, symmetric, and squared sym-
metric FastICA need further assumptions based on G to ensure consistency. Assum-
ing the order of the components is fixed as |E[G(z1)]| ≥ · · · ≥ |E[G(z p)]|, then it is
required that for any z = (z1, . . . , z p)� with independent and standardized compo-
nents and for any orthogonal matrix U = (u1, . . . , up), the following holds.
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For deflation-based FastICA:

(A6) For all k = 1, . . . , p, |E[G(u�
k z)]| ≤ |E[G(zk)]|, when u�

k e j = 0 for all j =
1, . . . , k − 1, where ei is a p-vector with i th element one and others zero,

for symmetric FastICA

(A7) |E[G(uT
1 z)]| + · · · + |E[G(uT

p z)]| ≤ |E[G(z1)]| + · · · + |E[G(z p)]|,
and for squared symmetric FastICA

(A8) (E[G(uT
1 z)])2 + · · · + (E[G(uT

p z)])2 ≤ (E[G(z1)])2 + · · · + (E[G(z p)])2.
It was proven, for example, in Miettinen et al. (2015), that all three conditions are

fulfilled with pow3. On the other hand, in the case of non-linearities like tanh and
gauss some of these conditions might be violated for certain source distributions.

From a computational point of view, the advantage of both symmetric versions
is that the initial value of U is not important when the sample size is large, as the
algorithms converge usually to the global maxima.

To conclude this section we can point out that FOBI, JADE, k-JADE, symmetric
FastICA, and squared symmetric FastICA are affine equivariant ICAmethods which
means that their performance does not depend on the mixing matrix. So, from this
point of view, only deflation-based FastICA differs, which can be overcomewhen the
reloaded version or adaptive version is used. Affine equivariance will be of relevance
later when applying the ICA methods to compositional data.

3 Compositional Data and Its Real Space Representation

A specific family of d-dimensional vectors is present when each entry (part) of a
vector is positive and carries information about its contribution to the whole. In
the following, such multivariate observations are called (vector) compositional data,
whose specifics were already described, utilized, and analyzed in a wide range of
applications (Pawlowsky-Glahn and Buccianti 2011). The main property of com-
positional data is its relative nature, when the relevant information is contained in
the ratios between parts rather than in the absolute values of the parts. Consider,
e.g. a vector describing a geochemical structure of soil, where each part represents
the quantity of the given element in the sample. The quantity can be given either
in absolute scale, like in mg of the component contained in the sample, or some of
its relative alternatives, typically ppm. While the mg representation depends on the
overall size of the sample, the ppm one does not, despite the ratios between parts
remaining unchanged. Both representations are therefore from the compositional
point of view equivalent.

Due to the relative nature of compositional data, the sample space of representa-
tions of a d-part compositional vector x forms a d-part simplex
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Sd =
{

x = (x1, . . . , xd)
�,

d∑
i=1

xi = κ, κ > 0

}
,

where the Aitchison geometry holds. The whole sample space is formed by equiv-
alence classes of proportional vectors (Pawlowsky-Glahn et al. 2015, Chaps. 2, 3).
Since most of the standard statistical methods are designed for real-valued data
following the usual Euclidean geometrical structure, it is favorable to express com-
positional data in real coordinates prior to their analysis. One of the possible repre-
sentations is the centered log-ratio (clr) transformation from Sd to Rd given by

clr(x)i = ln
xi

gm(x)
= 1

d

d∑
j=1

ln
xi
x j

, for i = 1, . . . , d,

where gm(x) denotes the geometrical mean of all parts. The parts of the resulting
clr vector can be interpreted in terms of the dominance of the compositional part in
the numerator within the whole composition or equivalently as its mean dominance
over each part of the whole composition. The use of logarithm symmetrizes this
relationship. Let us stress here that the clr values depend on the set of compositional
parts used for its computation and therefore the above interpretation holds true only
when the whole composition is considered. Within the whole manuscript, the clr
transformation based on all compositional parts will be of interest. On the other hand,
from its construction, the clr coefficients/variables are not linearly independent, as
they sum up to zero and, therefore, the whole clr vector falls in a (d − 1)-dimensional
subspace of Rd . This feature prevents direct use of the clr representation within
methods that require full rank data, like robust PCA (Filzmoser et al. 2009) or the
above stated ICA methods.

One possible workaround is the isometric log-ratio (ilr) transformation, which
represents the compositional vector x in a system of d − 1 orthonormal real coordi-
nates. This system can be obtained directly from the clr vector as

ilr(x) = V�clr(x),

where the columns of the d × d − 1 log-contrast matrix V are given as vi = clr(ξi )
and the vectors ξi , i = 1, . . . , d − 1 constitute an orthonormal basis in Sd . See
Pawlowsky-Glahn and Buccianti (2011), Ch. 11 for details.

The system of basis vectors {ξ1, . . . , ξd−1} is not uniquely given and can be chosen
according to the purpose of further analysis. Since each system of ilr coordinates can
be obtained as an orthogonal rotation of the others, its specific choice does not affect
the results of their analysis, like predictions of the regression model with a composi-
tional regressor or scores of the robust PCAmodel (Filzmoser et al. 2009; Hron et al.
2012). When it is required, a specific coordinate system can be selected by some
data-driven method, like hierarchical clustering of the compositional parts, or using
expert knowledge. In both cases, the main aim is to obtain such an interpretation of
the coordinates at hand, which is favorable according to the given problem (Egozcue
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and Pawlowsky-Glahn 2005). Since a specific interpretation of the ilr coordinates
is not the main purpose here, the same system as in Nordhausen et al. (2015) is
used. The basis vectors ξi have the value exp

(√
1/ i(i + 1)

)
at the first i positions,

exp
(−√

i/(i + 1)
)
at the position i + 1, and 1 at the remaining ones. Consequently,

the columns of the log-contrast matrix are

vi =
√

i

i + 1

(
1

i
, . . . ,

1

i
,−1, 0, . . . , 0

)�
, i = 1, . . . , d − 1 .

The ilr coordinates have the form of balances between the i th part of the composition
and all parts with lower indices

ilr(x)i =
√

i

i + 1
ln

(
(x1 · · · xi )1/ i

xi+1

)
, for i = 1, . . . , d − 1.

Finally, the clr and ilr representations are mutually transferable through the contrast
matrix V

clr(x) = Vilr(x)

and also the back-transformation to the simplex is possible by using

x = exp(clr(x)) = exp(Vilr(x)).

4 ICA for Compositional Data

As described above, ICA is not reasonable for data following the Aitchison geometry
in its raw form. Therefore, it is natural to transform the data first into the Euclidean
space. As ICA methods start with whitening and therefore require full rank data, the
ilr space is the most natural representation. Due to the affine equivariance property
of the discussed ICA methods, the particular used basis for the ilr transformation at
most affects the order and signs of the estimated independent components. Hence,
for compositional ICA we have the following model assumption:

ilr(x) = Ailrz + b,

where Ailr is a (d − 1) × (d − 1) full rank mixing matrix specific for a chosen ilr
basis, b a d − 1-dimensional location vector, and z = (z1, . . . , zd−1)

� a random
vector with independent components, which are standardized so that E(z) = 0 and
COV(z) = Id−1. When the unmixing matrix Wilr is estimated using one of the ICA
methods described in Sect. 2, the system of independent components is given by

z = Wilr(ilr(x) − b) = Wilr(V�clr(x) − b).
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As ilr coordinates are not directly related to the dominance of the original parts
within the considered composition, the relationship between ilr and clr spaces can
be exploited yielding a (d − 1) × d “clr” loading matrix Wclr = WilrV�, allowing
interpretation of the independent components in the clr space. In the context of
principal component analysis performed in the clr space, principal components lead
to a new system of ilr coordinates (Pawlowsky-Glahn et al. 2011). This is not the
case for ICA, as the unmixing matrix Wilr (and consequently also Wclr) is generally
not restricted to be orthogonal. Even if the independent component model does not
hold, ICA transformations remain affine equivariant which means that z can be seen
as an intrinsic data representation with a coordinate system, whose components are
as independent as possible.

After performing ICA, one is usually interested in either using z itself for further
analysis, such as classification and outlier identification, with possible interpretation
in ilr or clr space using the former defined loading matrices Wilr or Wclr, or, using
ICA for noise or artifact removal. For that purpose, the components of z are divided
into a signal part zs and a noise/artifact part zn . This defines also the partition of
the unmixing matrix Wilr into Ws

ilr and Wn
ilr and the mixing matrix Ailr = (Wilr)

−1

into As
ilr and An

ilr . As
ilr is formed only by those columns of Ailr that correspond to the

signal components zs . The pure signal can then be restored in the ilr, clr, and original
space by using

ilr(x)s = As
ilrzs + b, clr(x)s = V

(
As

ilrzs + b
)
, and xs = exp

[
V

(
As

ilrzs + b
)]

,

respectively.

5 A Case Study in Metabolomics

In order to demonstrate the above-describedmethods, the data fromaneonatal screen-
ing program in the Czech Republic was analyzed. Anonymous data were obtained
from a retrospective study approved by the Ethics Committee of the University Hos-
pital Olomouc which was part of a larger international study described in Fleischman
et al. (2013). Newborn screening is a preventive program that allows for early detec-
tion of a selected spectrum of inborn metabolic diseases. At an age of 48–72 hours
after birth, several drops of blood from the heel of the child were sampled on a special
paper and sent for analysis to the screening laboratory. The data at hand were consti-
tuted by the metabolite profile of over 10 000 healthy newborns. For each neonate,
the values of 48 metabolites were measured. Moreover, information about sex and
birth weight was available. More specifically, the birth weight ranged from 300 to
5 570 grams and for newborns with very low birth weight (less than 1500 grams) a
different metabolite structure can be expected, due to their prematurity and the arti-
ficial nutrition they receive. One of the main goals of metabolomics is to investigate
interactions between metabolites, their dynamic changes, and responses to stimuli.
Biofluids, e.g. blood or urine, and also tissues are used for the analysis. On the one
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Fig. 1 Scatterplots of the first three principal components resulting from the compositional PCA
(left) and scree plot of the respectively explained variability (right)

hand, the most frequently used approach for the data analysis is done through com-
parison of absolute values of biomarkers and reference ranges (data from the healthy
population). On the other hand, the new trend of data evaluation is based on the use of
ratios of metabolite data. Relative changes are more relevant/informative than abso-
lute values in diagnostics based on profiling. Therefore, metabolomic data can be
considered as observations carrying relative information, i.e. as compositional data
(Kalivodová et al. 2018), and as such the above-discussed methods can be applied.

The following analysis was carried out in R 3.6.1 (R Core Team 2019) with the
help of the packages JADE (Miettinen et al. 2017), fICA (Miettinen et al. 2018), com-
positions (van den Boogaart et al. 2019), and robCompositions (Templ et al. 2011).
As the first step, standard principal component analysis (PCA) was performed on the
clr transformed data. There were no significant patterns visible within the first three
principal components; see Fig. 1, left. The whole dataset forms one quite compact
cluster with no outliers. Moreover, the variance explained by the first components
is low (around 20 % for the first PC) (Fig. 1, right), and therefore PCA does not
seem to deal well with the issue of outlier detection, grouping, as well as dimension
reduction in that case.

As PCA seems not to reveal any clear structure, we applied FOBI, k-JADE, with
k = 5, and adaptive deflation-based FastICA to the ilr representation of the data
(the dimension p = 47 was already too large for JADE). For easier comparison,
the components from all three ICAmethods were ordered according to their kurtosis
values. As all three ICAmethods showed similar results, we focus on our presentation
and discussion of the components on those from adaptive deflation-based FastICA.

Due to the kurtosis ordering, the first components show heavy-tailed distributions,
and they are expected to find outliers or small groupings, while the last components
show light-tailed distributions and hencemight findmore balanced groupings. Scores
of the first and last three independent components are plotted in Fig. 2, and the chosen
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Fig. 2 Scatterplots of the first (left) and last (right) three independent components resulting from
the compositional FastICA, using adaptive deflation-based FastICA

non-linearities are given in Table 2 for all independent components. According to the
left plot of Fig. 2, one outlier is clearly detected due to its high negative value in the
third component (IC.3). According to its loadings, which are collected in Table 3,
IC.3 mostly reflects the relative dominance (with respect to concentrations of all 48
measuredmetabolites) of phenylalanine (Phe), hexadecanoylcarnitine (C16), octade-
cenoylcarnitine (C18:1), valine (Val), and hexadecenoyl- and octadecanoylcarnitines
in the form of C16:1 and C18, respectively, when the higher dominance of the first
three metabolites results in a decrease of IC.3 and vice versa for the last three stated
metabolites. The high loadings of the clr coefficients of these six metabolites imply
that IC.3 reflectsmostly (but not solely) the balance between subcompositions formed
by Phe, C16, C18:1, andVal, C16:1, C18. The value of this balancewas for the outlier
significantly lower than that within the rest of the sample. After a deeper investiga-
tion of the outlying sample, it turned out that it belongs to a newborn suffering from
Phenylketonuria, a metabolic disease which is typically followed by distinctly high
absolute blood concentrations of phenylalanine. The measured value was 1 014.7
μmol/ l, which significantly exceeds the upper norm value set on 120 μmol/ l (van
Wegberg et al. 2017) and which is represented with the respective high clr value 6.76.
The levels of the remaining metabolites were comparable with the other samples,
but particularly the atypical high dominance of Phe over all measured metabolites,
which for the rest of samples ranged from 5.72 to 3.58 for their clr values, resulted
in the high negative value of the third component, and therefore clear identification
of this non-standard observation.

The next interesting feature is presented by IC.1. According to Fig. 2, the values
of this component are not very homogeneous across the whole dataset and therefore
some specific groups of neonates might be identified. A deeper graphical analysis
of the first component (presented in Fig. 3) shows that for newborns with a birth
weight smaller than 1500 grams, higher values of IC.1 are typical. The independent
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Table 2 Chosen non-linearities gi for each independent component computed with the adaptive
deflation-based FastICA algorithm. Non-linearities are ordered according to kurtosis values of the
corresponding ICs. In the original ordering, IC.44 was the last component, thus no non-linearity is
given. See Table 1 for the definitions of the functions gi
IC gi IC gi IC gi IC gi IC gi

IC.1 g2 IC.11 g2 IC.21 g5 IC.31 g1 IC.41 g5
IC.2 g2 IC.12 g9 IC.22 g6 IC.32 g5 IC.42 g4
IC.3 g6 IC.13 g9 IC.23 g9 IC.33 g14 IC.43 g4
IC.4 g2 IC.14 g8 IC.24 g1 IC.34 g5 IC.44 –

IC.5 g6 IC.15 g6 IC.25 g1 IC.35 g5 IC.45 g5
IC.6 g8 IC.16 g10 IC.26 g4 IC.36 g5 IC.46 g3
IC.7 g8 IC.17 g5 IC.27 g14 IC.37 g12 IC.47 g6
IC.8 g8 IC.18 g6 IC.28 g5 IC.38 g14
IC.9 g9 IC.19 g10 IC.29 g10 IC.39 g4
IC.10 g8 IC.20 g6 IC.30 g8 IC.40 g11

0.0
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0.6

−5 0 5 10
IC.1
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Birth Weight
less than 1500 grams

between 1500 and 2500 grams

between 2500 and 4200 grams

more than 4200 grams

Fig. 3 Scatterplots of IC.1 and IC.3 (left) and the kernel density plot of IC.3 (right) with the groups
defined according to the birth weight

component IC.1 is mostly formed by clr values of acylcarnitines dodecanoylcar-
nitine (C12), C16, and C18:1, whose high relative dominance over all measured
metabolites results in low values of the component and, e.g. clr values of acylcar-
nitines isovalerylcarnitine/methylbutyrylcarnitineC5, and linoleoylcarnitine (C18:2)
increase the IC.1 values. Even though there are also other metabolites contributing
with a high weight to the values of IC.1 (all clr loadings are collected in Table 3), the
clr values of the selected ones systematically differ for the group of the newborns
with low birth weight, and therefore these acylcarnitines seem to be responsible for
their separation from the remaining neonates. The differences in the selectedmetabo-
lites are clearly visible in Fig. 4. Let us stress here that the immature neonates tend
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to have different diet supplementation, therefore the metabolic profile can substan-
tially differ within this group, but despite the proposed ICA method being able to
find some similar patterns, detect the important metabolites, and separate the low
birth weight newborns from the remaining ones. More specifically, artificial nutri-
tion consists of amino acids, lipids, sugars, vitamins, etc. Essential unsaturated fatty
acids including linoleic acid may be responsible for increased C18:2. The increased
blood concentration of the long-chain acylcarnitines (C12, 16, C18:1) as well as of
the short-chain C5 carnitine, which then results in high respective clr values, cor-
responds with previous studies. In Gucciardi et al. (2015), the significantly lower
amounts of acylcarnitines except the branched-chain acylcarnitines (e.g. C5), which
were significantly higher in preterm infants, were described. The latter mentioned
are direct products of branched-chain amino acid (BCAA) catabolism, therefore its
elevated levels may be related to BCAA overfeeding (Gucciardi et al. 2015; Wil-
son et al. 2014). The difference of several amino acids measured for the premature
newborns compared to the others agrees with findings in Wilson et al. (2014), where
increased levels of several amino acids (arginine, leucine, Orn, Phe, and Val) in the
blood spots of premature infants were described. This observation may be related to
the catabolic state of organisms in these children, amino acid supplementation, and
immaturity of preterm infants (hepatic maturation, renal insufficiency, etc.) (Wil-
son et al. 2014; te Braake et al. 2005). The raw concentrations of valine (Val) and
leucine/isoleucine (Xle) are known to be highly positively correlated, therefore the
opposite signs of the respective loadings of IC.1 seem to be counter-intuitive at the
first glance. However, the values of the loadings suggest that the resulting value of
IC.1 is affected by the difference of clr values of the respective metabolites, or equiv-
alently by the log-ratio of their measured concentrations, when the higher relative
dominance of Val over Xle results in a higher value of IC.1. These findings agree with
the data, since slightly higher values of the Val-Xle log-ratio are typical for newborns
with a low birth weight (see Fig. 4). Finally, an even more complex interpretation
can be based on the ilr loading matrix Wilr . According to the values of this matrix,
IC.1 is mainly influenced by the balance between C18 and subcompositions C18:1,
C18:OH, C18:2, and C18:2OH. This balance corresponds to the highest positive
loading, and its values are systematically higher for the group of newborns with low
birth weight than for the rest of the samples.

An even better visible pattern is formed by the last independent component IC.47,
which clearly divides thewhole dataset into two groups as seen in Fig. 5.According to
the loadings (collected in Table 3), the most contributing are clr values of metabolites
Xle, ornithine (Orn), and lysine (Lys) with a negative effect and methionine (Met),
proline (Pro), andvaline (Val)with a positive one.This suggests that the value of IC.47
is highly affected by the balance between subcompositions Met, Pro, Val and Xle,
Orn, Lys. The dataset is roughly separated into twogroups of observationswith values
of IC.47 higher and lower than −0.34; this value was chosen as the corresponding
value of IC.47 at the local minimum in the middle of the density presented in Fig. 5
(this density was computed with Gaussian kernels and a bandwidth selection with
Silverman’s rule of thumb). The relative dominance of the six above-mentioned
metabolites itself over all measured concentrations does not significantly differ in its
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Fig. 4 Boxplots of clr as well as log-ratio values of the selected metabolites, which significantly
differ for newborns with very low (< 1500g) and normal (>= 1500g) weight at birth

Fig. 5 Density plot of
IC.47, the bimodal shape
shows a clear grouping
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values between the two groups. Therefore, the grouping effect of IC.47 is hidden in
some of their more complex combinations, e.g. the suggested balance between Met,
Pro, Val and Xle, Orn, Lys, which is distinctly higher by cases with IC.47 higher
than −0.34.
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Table 3 The list of loadings for IC.1, IC.3, and IC.47 computed with the adaptive deflation-based
FastICA algorithm regarding clr transformed data

IC.1 IC.3 IC.47 IC.1 IC.3 IC.47

Ala 0.02 0.24 0.41 C5DC/C6OH –0.08 0.14 0.04

Arg 0.13 –0.33 0.04 C5:1 –0.05 0.11 0.13

ArgSucc 0.00 –0.09 –0.01 C6 –0.22 0.22 0.07

Cit –0.05 0.38 0.01 C8 0.84 –0.05 0.21

Glu –0.16 0.70 0.20 C8:1 –0.05 –0.16 0.09

Gly 0.08 1.33 –0.16 C10 0.25 –0.21 –0.09

His –0.56 0.44 0.55 C10:1 –1.05 –0.01 –0.21

Lys 0.20 0.38 –0.46 C10:2 0.28 0.20 0.06

Met 0.53 1.03 1.01 C12 –1.27 –0.01 –0.13

Orn 0.48 0.40 –0.78 C12:1 –0.09 0.10 –0.09

Phe 1.02 –7.30 –0.40 C14 –0.39 0.45 –0.38

Pro –1.15 –0.66 0.65 C14:1 0.88 –0.46 0.04

Thr –0.17 –1.71 –0.01 C14:2 0.15 –0.01 0.17

Trp –1.33 –0.77 0.14 C14OH 0.03 0.27 0.08

Tyr –0.28 1.25 –0.02 C16 –2.00 –1.49 –0.02

Val 3.09 3.86 0.59 C16:1 0.97 1.60 0.09

Xle –1.73 –0.15 –1.03 C16OH 0.24 0.09 0.01

C0 0.51 0.60 0.17 C16:1OH 0.05 0.01 0.24

C2 0.08 –0.30 –0.25 C18 2.38 1.72 0.12

C3 –0.57 –0.34 –0.01 C18:1 –3.46 –2.64 0.00

C3DC/C4OH 0.29 –0.23 0.34 C18:2 1.80 0.41 0.16

C4 0.05 0.14 0.01 C18:1OH –0.00 0.27 –0.15

C4DC/C5OH 0.07 0.49 –1.42 C18:2OH 0.19 0.23 –0.05

C5 0.35 –0.32 –0.08 C18OH –0.33 0.20 0.09

6 Discussion

In this paper, we reviewed some classical independent component analysis meth-
ods and showed how these can be applied to compositional data. The key finding
here is that when the ICA methods are affine equivariant it is most natural to use an
ilr transformation, as the choice of the basis constituting the ilr coordinate system
does not matter. For interpretability, the link between ilr coordinates and clr coeffi-
cients/variables can be easily exploited, which allows interpreting the results either
in terms of the dominance of single compositional parts with respect to the whole
composition, or, e.g. based on values of balances between subcompositions formed
according to values of clr loadings. Finally, since the clr loadings are derived from
the ilr ones, it is also possible to provide the interpretation directly in terms of the
ilr coordinates. The proposed technique is demonstrated on a metabolomics dataset
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where PCA, which is probably the most used multivariate transformation, reveals
no specific feature on the first few components while ICA reveals several interesting
features visible when exploiting the higher order moments information. Independent
component analysis belongs to the larger class of blind source separation methods
where for the separation of the latent components often also temporal or spatial
information is used. In the context of compositional data such blind source separa-
tion methods are, for example, discussed in Nordhausen et al. (2015), Nordhausen
et al. (2020). But these methods would not be applicable to the metabolomics dataset
fromSect. 5 as there is no temporal or spatial information present. The current results,
which were discussed mostly in terms of the relative dominance of a single com-
positional part respective to the highest loading of an IC, open new challenges for
further research. An alternative interpretation can be reached, e.g. by adaptation the
approach based on principal balances (Pawlowsky-Glahn et al. 2011). However, the
loadings of ICs are in general not orthonormal and therefore the principal balances
approach is not as straightforward as in the case of PCA. Finally, an extension of
the dataset with a group of blood samples collected from neonates with a diagnosed
disease can further prove the usefulness of the method.
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Fačevicová, K., Bábek, O., Hron, K., & Kumpan, T. (2016). Element chemostratigraphy of the
devonian/carboniferous boundary - a compositional approach. Applied Geochemistry, 75, 211–
221.

Filzmoser, P., Hron, K., & Reimann, C. (2009). Principal component analysis for compositional
data with outliers. Environmetrics, 20, 621–632.

Filzmoser, P., Hron, K., & Templ, M. (2018). Applied compositional data analysis. Cham: Springer.



544 C. Muehlmann et al.

Fleischman, A., Thompson, J. D., & Glass, M. (2013). Systematic data collection to inform policy
decisions: Integration of the region 4 stork (r4s) collaborative newborn screening database to
improvems/ms newborn screening inWashington State. In J. Zschocke, K.M. Gibson, G. Brown,
E. Morava, & V. Peters (Eds.), JIMD reports - case and research reports (Vol. 13, pp. 15–21).
Berlin: Springer.

Gucciardi, A., Zaramella, P., Costa, I., Pirillo, P., Nardo, D., Naturale,M., et al. (2015). Analysis and
interpretation of acylcarnitine profiles in dried blood spot and plasma of preterm and full-term
newborns. Pediatric Research, 77(1–1), 36–47.

Hron, K., Filzmoser, P., & Thompson, K. (2012). Linear regression with compositional explanatory
variables. Journal of Applied Statistics, 39(5), 1115–1128.

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis.
IEEE Transactions on Neural Networks, 10, 626–634.

Hyvärinen, A. (1999). Gaussian moments for noisy independent component analysis. IEEE Signal
Processing Letters, 6, 145–147.

Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis.
Neural Computation, 9, 1483–1492.

Illner, K., Miettinen, J., Fuchs, C., Taskinen, S., Nordhausen, K., Oja, H., et al. (2015). Model
selection using limiting distributions of second-order blind source separation algorithms. Signal
Processing, 113, 95–103.

Kalivodová, A., Hron, K., Filzmoser, P., Najdekr, L., Janečková, H., & Adam, T. (2018). PLS-DA
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