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Abstract Quantiles are recognized tools for risk management and can be seen as
minimizers of an L1-loss function, but donot define coherent riskmeasures in general.
Expectiles, meanwhile, are minimizers of an L2-loss function and define coherent
risk measures; they have started to be considered as good alternatives to quantiles
in insurance and finance. Quantiles and expectiles belong to the wider family of
L p-quantiles. We propose here to construct kernel estimators of extreme conditional
L p-quantiles. We study their asymptotic properties in the context of conditional
heavy-tailed distributions, and we show through a simulation study that taking p ∈
(1, 2) may allow to recover extreme conditional quantiles and expectiles accurately.
Our estimators are also showcased on a real insurance data set.

1 Introduction

Thequantile, also calledValue-at-Risk in actuarial andfinancial areas, is awidespread
tool for risk measurement, due to its simplicity and interpretability: if Y is a random
variable with a cumulative distribution function F , the quantile at level α ∈ (0, 1)
is defined as q(α) = inf {y ∈ R|F(y) ≥ α}. As pointed out in Koenker and Bas-
sett (1978), quantiles may also be seen as a solution of the following minimization
problem:

q(α) = argmin
t∈R

E
[
ρ(1)

α (Y − t) − ρ(1)
α (Y )

]
, (1)
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where ρ(1)
α (y) = |α − 1{y≤0}||y| is the quantile check function. However, the quan-

tile is not subadditive in general and so is not a coherent risk measure in the sense
of Artzner et al. (1999). An alternative risk measure gaining popularity is the expec-
tile, introduced in Newey and Powell (1987). This is the solution of (1), with the
new loss function ρ(2)

α (y) = |α − 1{y≤0}|y2 in place of ρ(1)
α . Expectiles larger than

the mean are coherent risk measures, and have started to be used in actuarial and
financial practice (see for instance Cai and Weng 2016). A pioneering paper for the
estimation of extreme expectiles in heavy-tailed settings is Daouia et al. (2018).

Quantiles and expectiles may be generalized by considering the family of
L p-quantiles. Introduced in Chen (1996), this class of risk measures is defined, for
all p ≥ 1, by

q(p)(α) = argmin
t∈R

E
[
ρ(p)

α (Y − t) − ρ(p)
α (Y )

]
, (2)

where ρ
(p)
α (y) = |α − 1{y≤0}||y|p is the L p-quantile loss function; the case p = 1

leads to the quantile and p = 2 gives the expectile. Note that, for p > 1, using the
formulation (2) and through the subtraction of the (at first sight unimportant) term
ρ

(p)
α (Y ), it is a straightforward consequence of the mean value theorem applied to the

function ρ
(p)
α that the L p-quantile q(p)(α) is well defined as soon asE(|Y |p−1) < ∞.

While the expectile is the only coherent L p-quantile (see Bellini et al. 2014), Daouia
et al. (2019) showed that for extreme levels of quantiles or expectiles (α → 1), it may
be better to estimate L p-quantiles first (where typically p is between 1 and 2) and
exploit an asymptotic proportionality relationship to estimate quantiles or expectiles.
An overview of the potential applications of this kind of statistical assessment of
extreme risk may for instance be found in Embrechts et al. (1997).

The contribution of this work is to propose a methodology to estimate extreme
L p-quantiles of Y |X = x, where the random covariate vector X ∈ R

d is recorded
alongside Y . In this context, the case p = 1 (quantile) has been considered in Daouia
et al. (2011) andDaouia et al. (2013), and the case p = 2 (expectile) has recently been
studied in Girard et al. (2021). For the general case p ≥ 1, only Usseglio-Carleve
(2018) proposes an estimation procedure under the strong assumption that the vector
(X,Y ) is elliptically distributed. The present paper avoids this modeling assumption
by constructing a kernel estimator.

The paper is organized as follows. Section 2 introduces an estimator of conditional
L p-quantiles. Section 3 gives the asymptotic properties of the estimator previously
introduced, at extreme levels. Finally, Sect. 4 proposes a simulation study in order
to assess the accuracy of our estimator which is then showcased on a real insurance
data set in Sect. 5. Proofs are postponed to the Appendix.
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2 L p-quantile Kernel Regression

Let (Xi ,Yi ), i = 1, . . . , n be independent realizations of a random vector (X,Y ) ∈
R

d × R. For the sake of simplicity we assume that Y ≥ 0 with probability 1. We
denote by g the density functionofX and let, in the sequel,x be afixedpoint inRd such
that g(x) > 0. We denote by F̄ (1)(y|x) = P (Y > y|X = x) the conditional survival
function of Y given X = x and assume that this survival function is continuous and
regularly varying with index −1/γ (x):

∀t > 0, lim
y→∞

F̄ (1)(t y|x)

F̄ (1)(y|x)
= t−1/γ (x). (3)

Such a distribution belongs to the Fréchet maximum domain of attraction (de Haan
and Ferreira 2006). Note that for any k < 1/γ (x),E

[
Y k |X = x

]
< ∞. Since the def-

inition of L p-quantiles in (2) requiresE
[|Y |p−1|X = x

]
< ∞, our minimal assump-

tion will be that p − 1 < 1/γ (x). From Eq. (2), L p-quantiles of level α ∈ (0, 1) of
Y given X = x may also be seen as the solution of the following equation:

E
[|Y − y|p−1 1{Y>y}|X = x

]

E
[|Y − y|p−1 |X = x

] = 1 − α.

In other terms, as noticed in Jones (1994), (conditional) L p-quantiles can be equiv-
alently defined as quantiles

q(p)(α|x) = inf
{
y ∈ R | F̄ (p)(y|x) ≤ 1 − α

}

of the distribution associated with the survival function

F̄ (p)(y|x) = ϕ(p−1)(y|x)

m(p−1)(y|x)
,

where, for all k ≥ 0,

m(k)(y|x) = E
[|Y − y|k |X = x

]
g(x)

and ϕ(k)(y|x) = E
[|Y − y|k 1{Y>y}|X = x

]
g(x).

Obviously, if p = 1, we get the survival function introduced above. The case p = 2
leads to the function introduced in Jones (1994) and used in Girard et al. (2021).
To estimate F̄ (p)(y|x), we let K be a probability density function on R

d and we
introduce the kernel estimators

m̂(k)
n (y|x) =

n∑

i=1
|Yi − y|k K

(
x−Xi
hn

)

nhdn
, ϕ̂(k)

n (y|x) =

n∑

i=1
|Yi − y|k K

(
x−Xi
hn

)
1{Yi>y}

nhdn
.
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Note that m̂(0)
n (0|x) is the kernel density estimator of g(x), and m̂(1)

n (0|x)/m̂(0)
n (0|x)

is the standard kernel regression estimator (since the Yi are nonnegative). The kernel
estimators of F̄ (p)(y|x) and q(p)(α|x) are then easily deduced:

ˆ̄F (p)
n (y|x) = ϕ̂

(p−1)
n (y|x)

m̂(p−1)
n (y|x)

, q̂(p)
n (α|x) = inf

{
y ∈ R | ˆ̄F (p)

n (y|x) ≤ 1 − α
}

. (4)

The case p = 1 gives the kernel quantile estimator introduced inDaouia et al. (2013),
while p = 2 leads to the conditional expectile estimator of Girard et al. (2021).
We study here the asymptotic properties of q̂(p)

n (α|x) for an arbitrary p ≥ 1, when
α = αn → 1.

3 Main Results

We first make a standard assumption on the kernel. We fix a norm || · || on R
d .

(K) The density function K is bounded and its support S is contained in the unit
ball.

To be able to analyze extreme conditional L p-quantiles in a reasonably simple
way, we make a standard second-order regular variation assumption (for a survey of
those conditions, see Sect. 2 in de Haan and Ferreira (2006)).

C2 (γ (x), ρ(x), A(.|x)) There exist γ (x) > 0, ρ(x) ≤ 0 and a positive or negative
function A(·|x) converging to 0 such that

∀t > 0, lim
y→∞

1

A(y|x)

(
q(1)(1 − 1/(t y)|x)

q(1)(1 − 1/y|x)
− tγ (x)

)

=

⎧
⎪⎨

⎪⎩

tγ (x) t
ρ(x) − 1

ρ(x)
if ρ(x) < 0,

tγ (x) log(t) if ρ(x) = 0.

Our last assumption is a local Lipschitz condition which may be found for instance
in Daouia et al. (2013); El Methni et al. (2014). We denote by B(x, r) the ball with
center x and radius r .

(L) We have g(x) > 0 and there exist c, r > 0 such that

∀x′ ∈ B(x, r), |g(x) − g(x′)| ≤ c||x − x′||.

To be able to control the local oscillations of (x, y) 	→ F̄ (1)(y|x), we let, for any
nonnegative yn → ∞,

ω
(1)
hn

(yn|x) = sup
x′∈B(x,hn)

sup
z≥yn

1

log(z)

∣∣∣∣log
(
F̄ (1)(z|x′)
F̄ (1)(z|x)

)∣∣∣∣ ,

ω
(2)
hn

(yn|x) = sup
x′∈B(x,hn)

sup
0<y≤yn

|F̄ (1)(y|x′) − F̄ (1)(y|x)|,



Extreme L p-quantile Kernel Regression 201

and ω
(3)
hn

(yn|x) = sup
x′∈B(x,hn)

sup
λ≥1

sup
bn ,b′

n→0

∣∣∣∣
F̄ (1)(λyn(1 + bn)|x′)
F̄ (1)(λyn(1 + b′

n)|x′)
− 1

∣∣∣∣ .

The quantity ω
(1)
hn

(yn|x), discussed for instance in Girard et al. (2021), controls the
oscillation of the conditional survival function with respect to x in its right tail, while
ω

(2)
hn

(yn|x) and ω
(3)
hn

(yn|x) are introduced to be able to deal with the case p /∈ {1, 2}
specifically. Let us highlight that ω

(3)
hn

(yn|x) is again geared toward controlling an

oscillation of the right tail of the conditional distribution; however,ω(2)
hn

(yn|x) focuses
on the oscillation of the center of the conditional distribution with respect to x. For
p > 1, the introduction of a quantity such as ω

(2)
hn

(yn|x) is in some sense natural,
since we will have to deal with the local oscillation of the conditional moment
m(p−1)(y|x), appearing in the denominator of F̄ (p)(y|x), and this conditionalmoment
indeed depends on the whole of the conditional distribution rather than merely on its
right tail. Typically ω

(1)
hn

(yn|x) = O(hn), ω
(2)
hn

(yn|x) = O(hn) and ω
(3)
hn

(yn|x) = o(1)
under reasonable assumptions; we give examples below.

Remark 1 Assume that Y |X = x has a Pareto distribution with tail index γ (x) > 0:

∀y ≥ 1, F̄ (1)(y|x) = y−1/γ (x).

If γ is locally Lipschitz continuous, we clearly have ω
(1)
hn

(yn|x) = O(hn). Further-
more, for any y ≥ 1, the mean value theorem yields

|F̄ (1)(y|x′) − F̄ (1)(y|x)| ≤
∣∣∣∣

1

γ (x′)
− 1

γ (x)

∣∣∣∣× y−1/[γ (x)∨γ (x′)] log y.

(Here and below ∨ denotes the maximum operator.) Under this same local Lipschitz
assumption, one then finds ω

(2)
hn

(yn|x) = O(hn) as well. Finally, for any y, y′ > 1,

∣∣∣∣
F̄ (1)(y′|x′)
F̄ (1)(y|x′)

− 1

∣∣∣∣ =
∣∣∣∣∣

(
y

y′

)1/γ (x′)

− 1

∣∣∣∣∣
≤ |y − y′|

y′ × 1 + (y/y′)1/γ (x′)−1

γ (x′)

by the mean value theorem again. This inequality yields ω
(3)
hn

(yn|x) = o(1).

The same arguments, and asymptotic bounds on ω
(1)
hn

(yn|x), ω
(2)
hn

(yn|x) and

ω
(3)
hn

(yn|x), apply to the conditional Fréchet model

∀y > 0, F̄ (1)(y|x) = 1 − exp(−y−1/γ (x)).

Analogous results are easily obtained for the conditional Burr model

∀y > 0, F̄ (1)(y|x) = (1 + y−ρ(x)/γ (x))1/ρ(x)
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when ρ < 0 is assumed to be locally Lipschitz continuous, and the conditional mix-
ture Pareto model

∀y ≥ 1, F̄ (1)(y|x) = y−1/γ (x)
[
c(x) + (1 − c(x))yρ(x)/γ (x)

]

when ρ < 0 and c ∈ (0, 1) are assumed to be locally Lipschitz continuous. �

3.1 Intermediate L p-quantile Regression

In this paragraph, we assume that σ−2
n = nhdn(1 − αn) → ∞. Such an assumption

means that the L p-quantile level αn tends to 1 slowly (by extreme value standards),
hence the denominations intermediate sequence and intermediate L p−quantiles.
This assumption iswidespread in the literature of riskmeasure regression: see, among
others, Daouia et al. (2013, 2011); El Methni et al. (2014); Girard et al. (2021).
Throughout, we let ||K ||22 = ∫S K (u)2du be the squared L2−norm of K ,	(·) denote
the digamma function and I B(t, x, y) = ∫ t

0 u
x−1(1 − u)y−1du be the incomplete

Beta function. Note that I B(1, x, y) = B(x, y) is the standard Beta function.
We now give our first result on the joint asymptotic normality of a finite number J

of empirical conditional quantileswith an empirical conditional L p-quantile (p > 1).

Theorem 1 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold.
Let αn → 1, hn → 0 and an = 1 − τ(1 − αn)(1 + o(1)), where τ > 0. Assume fur-
ther that σ−2

n = nhdn(1 − αn) → ∞, nhd+2
n (1 − αn) → 0, σ−1

n A
(
(1 − αn)

−1|x) =
O(1),
ω

(3)
hn

(q(1)(αn|x)|x) → 0 and there exists δ ∈ (0, 1) such that

σ−1
n ω

(1)
hn

((1 − δ)(θ ∧ 1)q(1)(αn|x)|x) log(1 − αn) → 0, (5)

where θ = (τγ (x)/B
(
p, γ (x)−1 − p + 1

))−γ (x)
. Let furtherαn, j = 1 − τ j (1 − αn),

for 0 < τ1 < τ2 < . . . < τJ ≤ 1 such that

σ−1
n ω

(2)
hn

((1 + δ)(θ ∨ τ
−γ (x))

1 )q(1)(αn|x)|x) → 0. (6)

Then, for all p ∈ (1, γ (x)−1/2 + 1), one has

σ−1
n

⎧
⎨

⎩

(
q̂(1)
n (αn, j |x)

q(1)(αn, j |x)
− 1

)

1≤ j≤J

,

(
q̂(p)
n (an |x)

q(p)(an |x)
− 1

)⎫⎬

⎭
d−→ N

(

0J+1,
||K ||22
g(x)

γ (x)2�(x)

)

,

(7)
where �(x) is the symmetric matrix having entries
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

 j,�(x) = (
τ j ∨ τ�

)−1

 j,J+1(x) = τ−1
j

⎡

⎢⎢⎢
⎣

γ (x)

(p−1)I B

⎛

⎝
(

1∨ τ
−γ (x)
j

θ

)−1

,γ (x)−1−p+1,p−1

⎞

⎠

B(p,γ (x)−1−p+1)
+
((

1 ∨ τ
−γ (x)
j
θ

)
− 1

)p−1

⎤

⎥⎥⎥
⎦

J+1,J+1(x) = B
(
2p−1,γ (x)−1−2p+2

)

τ B(p,γ (x)−1−p+1)

.

(8)

Theorem 1, which will be useful to introduce estimators of the tail index γ (x) as
part of our extrapolation methodology, generalizes and adapts to the conditional
setup several results already found in the literature: see Theorem 1 in Daouia et al.
(2013), Theorem 1 in Daouia et al. (2019) and Theorem 3 in Daouia et al. (2020b).
Note however that, although they are in some sense related, Theorem 1 does not
imply Theorem 1 of Girard et al. (2021), because the latter is stated under weaker
regularity conditions warranted by the specific context p = 2 of extreme conditional
expectile estimation. On the technical side, assumptions (5) and (6) ensure that the
bias introduced by smoothing in the x direction is negligible compared to the standard
deviation σn of the estimator. The aim of the next paragraph is now to extrapolate
our intermediate estimators to properly extreme levels.

3.2 Extreme L p-quantile Regression

We consider here a level βn → 1 such that nhdn(1 − βn) → c < ∞. The estimators
previously introduced no longer work at such an extreme level. In order to overcome
this problem, we first recall a result of Daouia et al. (2019) (see also Lemma 5 below)

∀p ≥ 1, lim
α→1

q(p)(α|x)

q(1)(α|x)
=
(

γ (x)

B
(
p, γ (x)−1 − p + 1

)

)−γ (x)

. (9)

In the sequel, we shall use the notation gp(γ ) = γ /B
(
p, γ −1 − p + 1

)
. A first

consequence of this result is that the L p-quantile function is regularly varying, i.e.,

∀t > 0, lim
y→∞

q(p)(1 − 1/(t y)|x)

q(p)(1 − 1/y|x)
= tγ (x). (10)

This suggests then that, by considering an intermediate sequence (αn), our conditional
extreme L p-quantile may be approximated (and estimated) as follows:
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q(p)(βn|x) ≈
(
1 − αn

1 − βn

)γ (x)

q(p)(αn|x),

estimated by q̃(p)
n,αn

(βn|x) =
(
1 − αn

1 − βn

)γ̂αn (x)

q̂(p)
n (αn|x).

Here, q̂(p)
n (αn|x) is the kernel estimator introduced in Eq. (4), and γ̂αn (x) is a con-

sistent estimator of the conditional tail index γ (x). This is a class of Weissman-type
estimators (see Weissman 1978) of which we give the asymptotic properties.

Theorem 2 Assume that (K), (L) and C2(γ (x), ρ(x), A(·|x)) hold with ρ(x) < 0.
Let αn, βn → 1, hn → 0 be such that σ−2

n = nhdn(1 − αn) → ∞ and nhdn(1 −
βn) → c < ∞. Assume further that nhd+2

n (1 − αn) → 0, ω
(3)
hn

(q(1)(αn|x)|x) → 0
and

(i) σ−1
n A

(
(1 − αn)

−1|x) = O(1), σ−1
n (1 − αn) = O(1) and

σ−1
n E

[
Y1{0<Y<q(1)(αn |x)}|x

]
q(1)(αn|x)−1 = O(1),

(ii) For some δ ∈ (0, 1),σ−1
n ω

(1)
hn

((1 − δ)[gp(γ (x))]−γ (x)q(1)(αn|x)|x) log(1 − αn)

→ 0 and σ−1
n ω

(2)
hn

((1 + δ)q(1)(αn|x)|x) → 0,
(iii) σ−1

n / log ((1 − αn)/(1 − βn)) → ∞.

Take p ∈ (1, γ (x)−1/2 + 1). If in addition σ−1
n (γ̂αn (x) − γ (x))

d−→ �, then

σ−1
n

log((1 − αn)/(1 − βn))

(
q̃(p)
n,αn (βn|x)

q(p)(βn|x)
− 1

)
d−→ �.

We notice, as is classical in the analysis of heavy tails, that the asymptotic distribu-
tion of the extrapolated estimator q̃(p)

n,αn (βn|x) is exactly that of the purely empirical
estimator γ̂αn (x) with a slightly slower rate of convergence. Technically speaking,
assumption (i) controls the bias due to the asymptotic approximation (9), while
assumption (ii) is used to deal with the bias due to smoothing.

Our aim is now to propose some estimators of γ (x) solely based on intermediate
L p-quantiles, in order to carry out the extrapolation step.

3.3 L p-quantile-Based Estimation of the Conditional Tail
Index

The aim of this paragraph is to discuss the estimation of the conditional tail index
γ (x). A local Pickands estimator is studied in Daouia et al. (2013, 2011). This
estimator however has a large variance, which is why Daouia et al. (2011) propose
a simplified, conditional, and local version of the Hill estimator:
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γ̂ (H)
αn

(x) = 1

log(J !)
J∑

j=1

log

(
q̂n

(
j − 1 + αn

j
|x
)

/q̂n (αn|x)

)
. (11)

They also mentioned that taking J = 9 is an optimal choice, and leads to an asymp-
totic variance close to 1.25||K ||22γ (x)2/g(x). Recently, Daouia et al. (2020a); Girard
et al. (2021) have shown that replacing the quantile by the expectile in tail index esti-
mators can lead to a significant variance reduction. Our idea here is to propose an
estimator based on L p-quantiles rather than quantiles. In this context, we propose to
follow the approach of Girard et al. (2019) and exploit the asymptotic relationship (9)
by introducing the following estimator, valid for all 1 < p < γ (x)−1 + 1:

γ̂ (p)
αn

(x) = inf

⎧
⎨

⎩
γ > 0 : gp(γ ) ≤

ˆ̄F (1)
n

(
q̂(p)
n (αn|x)|x

)

1 − αn

⎫
⎬

⎭
. (12)

This class of estimators is introduced in Girard et al. (2019) in an unconditional
setting, and the (explicit) estimator γ̂ (2)

αn
(x) is introduced in Girard et al. (2021).

Using the results previously obtained, we can give the asymptotic distribution of
γ̂

(p)
αn (x) for all 1 < p < γ (x)−1/2 + 1.

Theorem 3 Assume that (K), (L) and C2(γ (x), ρ(x), A(·|x)) hold with γ (x) < 1.
Letαn → 1 and hn → 0. Assume further that σ−2

n = nhdn(1 − αn) → ∞, nhd+2
n (1 −

αn) → 0, ω(3)
hn

(q(1)(αn|x)|x) → 0 and

(i) σ−1
n A

(
(1 − αn)

−1|x)→ 0,
(ii) σ−1

n q(1)(αn|x)−1 → λ ∈ R,
(iii) For some δ ∈ (0, 1),σ−1

n ω
(1)
hn

((1 − δ)
(
gp(γ (x))−γ (x)q(1)(αn|x)

) |x) log(1 − αn)

→ 0 and σ−1
n ω

(2)
hn

((1 + δ)
(
q(1)(αn|x)

) |x) → 0.

Then, for all p ∈ (1, γ (x)−1/2 + 1), one has

σ−1
n

(

γ̂ (p)
αn

(x) − γ (x),
q̂(p)
n (αn|x)

q(p)(αn|x)
− 1

)
d−→ �, (13)

where� is a bivariateGaussian distributionwithmean vector
(
bp(x), 0

)
and covari-

ance matrix ||K ||22γ (x)2g(x)−1�(x) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

bp(x) = (1−p)γ (x)gp(γ (x))γ (x)
E[Y |X=x]

1− 1
γ (x) (	(γ (x)−1+1)−	(γ (x)−1−p+1))

λ

�11(x) = B(p,γ (x)−1−p+1)
(
1− 1

γ (x) (	(γ (x)−1+1)−	(γ (x)−1−p+1))
)2

(
B(2p−1,γ (x)−1−2p+2)
B(p,γ (x)−1−p+1)

2 − 1
γ (x)

)

�12(x) = B(p,γ (x)−1−p+1)
1− 1

γ (x) (	(γ (x)−1+1)−	(γ (x)−1−p+1))

(
1

γ (x)
− B(2p−1,γ (x)−1−2p+2)

B(p,γ (x)−1−p+1)
2

)

�22(x) = B(2p−1,γ (x)−1−2p+2)
B(p,γ (x)−1−p+1)

.

(14)
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Let us remark here that although Theorem 3 can be seen as a version of Theorem 4
of Girard et al. (2021), the latter is stated under weaker regularity assumptions and
applies to further examples of estimators developed specifically in the conditional
expectile setup.

Note that condition γ (x) < 1 entails E[Y |X = x] < ∞ and leads to a simple
expression of the bias term bp(x). A result dropping this assumption is available
in the unconditional setting in Girard et al. (2019); here, our motivation for this
condition is that we shall use extreme regression L p-quantiles as a way to estimate
extreme regression expectiles, for the existence of which a natural condition is that
E[|Y ||X = x] < ∞. The bias term bp(x) is related to γ (x), q(1)(αn|x) and E[Y |X =
x]. All these quantities may be easily estimated (the latter two by kernel regression
estimators) to construct a bias-reduced conditional tail index estimator as follows:

γ̃
(p)
αn (x) = γ̂

(p)
αn (x)

⎛

⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1 +

(p − 1)

⎛

⎜
⎝

n∑

i=1
Yi K

(
x−Xi
hn

)

n∑

i=1
K
(

x−Xi
hn

)

⎞

⎟
⎠ q̂(p)

n (αn |x)−1

1 + 1
γ̂

(p)
αn (x)

(
	
(
1/γ̂ (p)

αn (x) − p + 1
)

− 	
(
1/γ̂ (p)

αn (x) + 1
))

⎞

⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

Under the conditions of Theorem 3, it is clear that σ−1
n (γ̃

(p)
αn (x) − γ (x))

d−→
N (0,�11(x)) where �11(x) is given in Eq. (14). This bias reduction improves sig-
nificantly the numerical results, and is used in the finite-sample study below.

Even though L p-quantiles with 1 < p < 2 are more widely estimable than expec-
tiles and take into account thewhole tail information, they are neither easy to interpret
nor coherent as risk measures. Recent work in Daouia et al. (2019) has shown that
extreme L p-quantiles can be used as vehicles for extreme quantile and expectile esti-
mation; see also Gardes et al. (2020) for an analogous study of the estimation of (a
compromise between)Median Shortfall and Conditional Tail Expectation at extreme
levels, using tail L p−medians. Our focus in the following finite-sample study is to
analyze the potential of extreme regression L p-quantiles for the estimation of extreme
regression quantiles and expectiles.

4 Simulation Study

We consider here a one-dimensional covariate (d = 1), uniformly distributed on
[0, 1], and a Burr-type distribution for Y given X = x :

F̄ (1)(y|x) = (1 + y−ρ(x)/γ (x)
)1/ρ(x)

, γ (x) = 4 + sin(2πx)

10
and ρ(x) ≡ −1.
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Such a distribution fulfills Assumption C2(γ (x), ρ(x), A(·|x)) with auxiliary func-
tion A(y|x) = γ (x)yρ(x). We simulate N = 500 samples of size n = 1,000 inde-
pendent replications of (X,Y ), and propose to estimate the conditional quantiles and
expectiles of level βn = 1 − 1/n = 0.999 using our extreme regression L p-quantile
estimators. Note that the quantiles may be calculated explicitly:

q(α|x) = [(1 − α)ρ(x) − 1
]−γ (x)/ρ(x)

.

Expectiles have to be approximated numerically, since they do not have a simple
closed form. Inorder to estimate these twoquantities,wepropose to compare different
approaches (called either direct or indirect):

(i) Use the conditionalWeissman-type estimators, respectively, based on empirical
quantiles and the estimator γ̂ (H)

αn
(x) (direct quantile estimator) and on empirical

expectiles and γ̃ (2)
αn

(x) (direct expectile estimator), i.e.

(
1 − αn

1 − βn

)γ̂ (H)
αn (x)

q̂(1)
n (αn|x) ,

(
1 − αn

1 − βn

)γ̃ (2)
αn (x)

q̂(2)
n (αn|x).

(ii) Indirect quantile estimator: estimate first the conditional L p-quantile using
estimator (4), and exploit asymptotic relationship (9) to recover the extreme
conditional quantile,

(
1 − αn

1 − βn

)γ̃
(p)
αn (x)

q̂(p)
n (αn|x)

⎛

⎝ γ̃
(p)
αn (x)

B
(
p, γ̃ (p)

αn (x)−1 − p + 1
)

⎞

⎠

γ̃
(p)
αn (x)

.

(iii) Indirect expectile estimator: useEq. (9) to get a connection between L p-quantile
and quantile, and quantile and expectile, resulting in the extreme conditional
expectile estimator

(
1 − αn

1 − βn

)γ̃
(p)
αn (x)

q̂(p)
n (αn|x)

⎛

⎝
B
(
2, γ̃ (p)

αn (x)−1 − 1
)

B
(
p, γ̃ (p)

αn (x)−1 − p + 1
)

⎞

⎠

γ̃
(p)
αn (x)

.

The choice of p is discussed in Girard et al. (2019) using the MSE of (the uncondi-
tional version of) γ̃

(p)
αn (x) as a criterion. Cross-validation choices of the bandwidth

hn and intermediate quantile level αn , meanwhile, are discussed in Daouia et al.
(2013); Girard et al. (2021). For the sake of simplicity, we choose here common
parameters p = 1.7 following the guidelines of Girard et al. (2019)), hn = 0.15 and
αn = 1 − 1/

√
n ≈ 0.968 across all replications and K is the Epanechnikov kernel

defined by K (t) = 0.75(1 − t2)1{|t |<1}. Results are shown in Fig. 1.
We can notice that an indirect estimation of extreme quantiles or expectiles with a

L p-quantile (with p between 1 and 2) leads to a trade-off between bias and variance:
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Fig. 1 Left: Boxplots of 500 estimates of q(1)(βn |x) with the direct (green) and indirect (blue)
quantile estimators. Right: Boxplots of 500 estimates of q(2)(βn |x) with the direct (green) and
indirect (blue) expectile estimators. True values are in red

the indirect L p−estimator of an extreme regression quantile is less variable than the
direct estimator but slightlymore biased, and the indirect L p−estimator of an extreme
regression expectile is more variable than the direct estimator but less biased. For
conditional quantiles, an explanation is that using the asymptotic approximation (9)
in the construction of the indirect estimator adds a source of bias, while the reduced
variance stems from the use of p = 1.7 in the estimator γ̃ (p)

αn (x), providing an estima-
tor with lower variance compared to the simple Hill estimator in our case (see Girard
et al. 2019). The case of conditional expectiles is less clear, although the increased
variability observed for x ∈ [0, 0.5] seems to originate in the use of the estimated
constant B(2, γ̃ (p)

αn (x)−1 − 1)/B(p, γ̃ (p)
αn (x)−1 − p + 1): when γ̃

(p)
αn (x) gets close to

1, which is sometimes the case in this zone where γ (x) ∈ [0.4, 0.5], this estimated
constant tends to explode, while the direct estimator is less affected. A similar obser-
vation, in the context of extreme Wang distortion risk measure estimation, is made
by El Methni and Stupfler (2017).

5 Real Data Example

We study here a data set on motorcycle insurance, collected from the former Swedish
insurance provider Wasa. Our data is on motorcycle insurance policies and claims
over the period 1994–1998 and is available from www.math.su.se/GLMbook or the
R packages insuranceData and CASdatasets, and analyzed in Ohlsson and
Johansson (2010).We concentrate here on the relationship between the claim severity
Y (defined as the ratio of claim cost by number of claims for each given policyholder)
in Swedish kroner (SEK), and the number of years X of exposure of a policyholder.
Data for X > 3 are very sparse, so we restrict our attention to the case Y > 0 and
X ∈ [0, 3], resulting in n = 593 pairs (Xi ,Yi ).

www.math.su.se/GLMbook
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Our goal in this section is to estimate extreme conditional quantiles and expectiles
of Y given X , at a level βn = 1 − 3/n ≈ 0.9949. This level is slightly less extreme
than themore standardβn = 1 − 1/n ≈ 0.9985, but is an appropriately extreme level
in this conditional context where less data are available locally for the estimation.
A preliminary diagnostic using a local version of the Hill estimator (which we do
not show here) suggests that the data is indeed heavy-tailed with γ (x) ∈ [0.25, 0.6].
Following again the guidelines inGirard et al. (2019),we choose p = 1.7 for our indi-
rect extreme conditional quantile and expectile estimators. These are, respectively,
compared to

• the estimator q̂W
n (βn|x) of Girard et al. (2021), calculated as in Sect. 5 therein, and

our direct quantile estimator presented in Sect. 4 (i),
• the estimator êW,BR

n (βn|x) of Girard et al. (2021), calculated as in Sect. 5 therein,
and our direct expectile estimator presented in Sect. 4 (i).

For the direct and indirect estimators presented in Sect. 4 (ii)–(iii), the parameters
αn and hn are chosen by a cross-validation procedure analogous to that of Girard
et al. (2021). The Epanechnikov kernel is adopted. Results are given in Fig. 2. In
each case, all three estimators reassuringly point to roughly the same results, with
slight differences; in particular, for quantile estimation and when data is scarce, the
direct estimator in Sect. 4 (i) appears to be more sensitive to the local shape of the tail
than the indirect, L p-quantile-based estimator in Sect. 4 (ii), resulting in less stable
estimates.

Fig. 2 Swedish motorcycle insurance data. Left panel: extreme conditional quantile estimation,
black curve: estimator q̂Wn (βn |x) of Girard et al. (2021), blue curve: direct quantile estimator (i)
of Sect. 4, red curve: indirect quantile estimator (ii) of Sect. 4. Right panel: extreme conditional
expectile estimation, black curve: estimator êW,BR

n (βn |x) of Girard et al. (2021), blue curve: direct
expectile estimator (i) of Sect. 4, red curve: indirect expectile estimator (iii) of Sect. 4. In each
panel, x-axis: number of years of exposure of policyholder, y-axis: claim severity
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6 Appendix

6.1 Preliminary Results

Lemma 1 Assume that (L) and C2 (γ (x), ρ(x), A(.|x)) hold, and let yn → ∞ and
hn → 0 be such that ω

(1)
hn

(yn|x) log(yn) → 0 and ω
(2)
hn

(yn|x) → 0. Then for all 0 ≤
k < γ (x)−1 we have, uniformly in x′ ∈ B(x, hn),

m(k)(yn|x′) = m(k)(yn|x)
(
1 + O (hn) + o

(
ω

(1)
hn

(yn|x)
)

+ O
(
ω

(2)
hn

(yn|x)
))

.

In particular m(k)(yn|x′) = ykn g(x) (1 + o(1)) uniformly in x′ ∈ B(x, hn).

Proof Let us first write

m(k)(yn |x) = E

[
(Y − yn)

k1{Y>yn}|X = x
]
g(x) + E

[
(yn − Y )k1{Y≤yn}|X = x

]
g(x).

By the arguments of the proof of Lemma 3 in Girard et al. (2021),

E
[
(Y − yn)k1{Y>yn}|X = x′] g(x′)

E
[
(Y − yn)k1{Y>yn}|X = x

]
g(x)

= 1 + O (hn) + O
(
ω

(1)
hn

(yn|x) log(yn)
)

.

Besides, an integration by parts yields

E
[
(yn − Y )k1{Y≤yn}|X = x

] =
∫ yn

0
ktk−1F (1)(yn − t |x) dt.

It clearly follows that

∣∣E
[
(yn − Y )k1{Y≤yn}|X = x′]− E

[
(yn − Y )k1{Y≤yn}|X = x

]∣∣ ≤ yknω
(2)
hn

(yn|x).

Now

E
[
(yn − Y )k1{Y≤yn}|X = x

] = ykn E

[(
1 − Y

yn

)k

1{Y≤yn}|X = x

]

= ykn (1 + o(1))

by the dominated convergence theorem, and

E

[
(Y − yn)

k1{Y>yn}|X = x
]

= g(x)B
(
k + 1, γ (x)−1 − k

)

γ (x)
ykn F̄

(1)(yn |x)(1 + o(1)),

(15)
see for instance Lemma 1(i) in Daouia et al. (2019). The result follows from direct
calculations.
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Lemma 2 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold, and let yn → ∞
and hn → 0 be such that nhdn → ∞, ω

(1)
hn

(yn|x) log(yn) → 0 and ω
(2)
hn

(yn|x) → 0.
Then for all 0 ≤ k < γ (x)−1/2,

E

[
m̂(k)
n (yn |x)

]
= m(k)(yn |x)

(
1 + O (hn) + o

(
ω

(1)
hn

(yn |x)
)

+ O
(
ω

(2)
hn

(yn |x)
))

and Var
[
m̂(k)
n (yn |x)

]
= ||K ||22

nhdn
g(x)y2kn (1 + o(1)).

Proof Note that E
[
m̂(k)

n (yn|x)
] = ∫S m(k)(yn|x − uhn)K (u)du by Assumption (K)

and a change of variables, and use Lemma 1 to get the first result. The second result
is obtained through similar calculations. �

Lemma 3 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold. Let yn → ∞,
hn → 0 be such that nhdn → ∞ and ω

(1)
hn

(yn|x) log(yn) → 0. Then for all 0 ≤ k <

γ (x)−1/2,

⎧
⎨

⎩

E
[
ϕ̂(k)
n (yn|x)

] = ϕ(k)(yn|x)
(
1 + O(hn) + O

(
ω

(1)
hn

(yn|x) log(yn)
))

,

Var
[
ϕ̂(k)
n (yn|x)

] = ||K ||22g(x)
B(2k+1,γ (x)−1−2k)

γ (x)

y2kn F̄ (1)(yn |x)

nhdn
(1 + o(1)).

Proof See Lemma 5 of Girard et al. (2021).

Lemma 4 Assume that C2 (γ (x), ρ(x), A(.|x)) holds. Let λ ≥ 1, yn → ∞, y′
n =

λyn(1 + o(1)) and 0 < k < γ (x)−1.

(i) Then the following asymptotic relationship holds:

E
[|Y − yn|k1{Y>y′

n}|X = x
]

= ykn F̄
(1)(yn|x)

[
k I B

(
λ−1, γ (x)−1 − k, k

)+ (λ − 1)kλ−1/γ (x)
]
(1 + o(1)).

�
(ii) Assume further thatω(1)

hn
(yn ∧ y′

n|x) log(yn) → 0 andω
(3)
hn

(yn|x) → 0. Then, uni-
formly in x′ ∈ B(x, hn),

E
[|Y − yn|k1{Y>y′

n}|X = x′] = E
[|Y − yn|k1{Y>y′

n}|X = x
]
(1 + o(1)).

Proof (i) Straightforward calculations entail
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E
[|Y − yn|k1{Y>y′

n}|X = x
]

= yknE

[{(
Y

yn
− 1

)k

− (λ − 1)k
}

1{Y>λyn}|X = x

]

(1 + o(1))

+ ykn (λ − 1)k F̄ (1)(λyn|x)(1 + o(1)),

with y′
n = λyn(1 + o(1)). The result then comes directly from the regular variation

property of F̄ (1)(·|x) and Lemma 1 in Daouia et al. (2019) with H(t) = (t − 1)k and
b = λ.

(ii) Note first that for n large enough

∣∣E
[|Y − yn|k1{Y>y′

n}|X = x′]− E
[|Y − yn|k1{Y>λyn}|X = x′]∣∣

≤ [|y′
n − yn|k + (λ − 1)k ykn

] [
F̄ (1)(y′

n ∧ λyn|x′) − F̄ (1)(y′
n ∨ λyn|x′)

]

≤ 3(λ − 1)k ykn × F̄ (1)(y′
n|x′) × ω

(3)
hn

(yn|x).

Write (Y − yn)k = ((Y − yn)k − (λ − 1)k ykn ) + (λ − 1)k ykn . It then follows from the
assumption ω

(3)
hn

(yn|x) → 0 that, uniformly in x′ ∈ B(x, hn),

E
[|Y − yn|k1{Y>y′

n}|X = x′] = (λ − 1)k ykn F̄
(1)(y′

n|x′)(1 + o(1))

+ k
∫ ∞

λyn

(z − yn)
k−1 F̄ (1)(z|x′)dz(1 + o(1)).

Remark now F̄ (1)
(
y′
n|x
)
(y′

n)
−ω

(1)
hn

(y′
n |x) ≤ F̄ (1)

(
y′
n|x′) ≤ F̄ (1)

(
y′
n|x
)
(y′

n)
ω

(1)
hn

(y′
n |x).

Then condition ω
(1)
hn

(y′
n|x) log(yn) → 0 entails, uniformly in x′ ∈ B(x, hn),

F̄ (1)
(
y′
n|x′) = F̄ (1)

(
y′
n|x
)
(1 + o(1)) = F̄ (1) (λyn|x) (1 + o(1)). Besides, for any

z ≥ λyn ≥ yn , F̄ (1) (z|x) z−ω
(1)
hn

(yn |x) ≤ F̄ (1)
(
z|x′) ≤ F̄ (1) (z|x) zω

(1)
hn

(yn |x). Following
the proof of Lemma 3 in Girard et al. (2021), we get, uniformly in x′ ∈ B(x, hn),

∣∣∣∣
∣

∫∞
λyn

(z − yn)k−1 F̄ (1)(z|x′)dz
∫∞
λyn

(z − yn)k−1 F̄ (1)(z|x)dz
− 1

∣∣∣∣
∣
= O(ω

(1)
hn

(yn|x) log(yn)) → 0.

Since
∫∞
λyn

(z − yn)k−1 F̄ (1)(z|x)dz is of order ykn F̄
(1)(yn|x) (by regular variation of

F̄ (1)(·|x)), the conclusion follows.

Lemma 5 Assume that C2 (γ (x), ρ(x), A(.|x)) holds. For all 1 ≤ p < γ (x)−1 + 1,

F̄ (p)(y|x)

F̄ (1)(y|x)
= B

(
p, γ (x)−1 − p + 1

)

γ (x)
[1 + r(y|x)]

where there are constants C1(x), C2(x), C3(x) such that
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r(y|x) = C1(x)
E(Y1{0<Y<y}|X = x)

y
(1 + o(1)) + C2(x)F̄ (1)(y|x)(1 + o(1))

+ C3(x)A(1/F̄ (1)(y|x)|x)(1 + o(1)) as y → ∞.

Similarly

q(p)(α|x)

q(1)(α|x)
=
(

γ (x)

B
(
p, γ (x)−1 − p + 1

)

)−γ (x)

[1 + R(α|x)]

where there are constants D1(x), D2(x), D3(x) such that

R(α|x) = D1(x)
E(Y1{0<Y<q(1)(α|x)}|X = x)

q(1)(α|x)
(1 + o(1)) + D2(x)(1 − α)(1 + o(1))

+ D3(x)A((1 − α)−1|x)(1 + o(1)) as α → 1.

�
Proof We start by focusing on the ratio F̄ (p)(y|x)/F̄ (1)(y|x). By Lemma 1 in Girard
et al. (2019), the function F̄ (p)(·|x) is continuous and strictly decreasing on the
support of Y given X = x. It is therefore enough to show the announced formula
for y = q(p)(α|x) with α → 1; this, in turn, is a simple corollary of Proposition 2
in Daouia et al. (2019). To show the analogous formula on q(p)(α|x)/q(1)(α|x), we
defineU (1)(t |x) = q(1)(1 − t−1|x);U (1)(·|x) also satisfies a (local uniform) second-
order regular variation condition, see Theorem 2.3.9 p.48 in de Haan and Ferreira
(2006). Consequently, we note that the asymptotic expansion on F̄ (p)(y|x)/F̄ (1)(y|x)

entails a similar expansion on

U (1)(1/F̄ (1)(y|x)|x)

U (1)(1/F̄ (p)(y|x)|x)
= y

q(1)(F (p)(y|x))
(1 + o(A(1/F̄ (1)(y|x)|x)))

as y → ∞, with different constants (here Lemma 1 in Daouia et al. (2020b) was
used). Setting y = q(p)(α|x), with α → 1, gives the announced result.

Lemma 6 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold. Let yn → ∞,
hn → 0 and zn = θyn(1 + o(1)), where θ > 0. Assume further that ε−2

n =
nhdn F̄

(1)(yn|x) → ∞, nhd+2
n F̄ (1)(yn|x) → 0, there exists δ ∈ (0, 1) such that

ε−1
n ω

(1)
hn

((1 − δ)(θ ∧ 1)yn|x) log(yn) → 0, and ω
(3)
hn

(zn|x) → 0. Letting, for all j ∈
{1, . . . , J }, yn, j = τ

−γ (x)

j yn(1 + o(1)) with 0 < τ1 < τ2 < . . . < τJ ≤ 1, and p ∈
(1, γ (x)−1/2 + 1), one has

ε−1
n

⎧
⎨

⎩

(
ϕ̂

(0)
n (yn, j |x)

ϕ(0)(yn, j |x)
− 1

)

1≤ j≤J

,

(
ϕ̂

(p−1)
n (zn |x)

ϕ(p−1)(zn |x)
− 1

)⎫⎬

⎭
d→ N

(

0J+1,
||K ||22
g(x)

�(x)

)

,

where �(x) is a symmetric matrix having entries:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

� j,�(x) = (
τ j ∨ τ�

)−1

� j,J+1(x) = γ (x)

(p−1)I B

⎛

⎝

(

1∨ τ
−γ (x)
j

θ

)−1

,γ (x)−1−p+1,p−1

⎞

⎠+
(

1∨ τ
−γ (x)
j

θ
−1

)p−1(

1∨ τ
−γ (x)
j

θ

)−1/γ (x)

τ j B(p,γ (x)−1−p+1)

�J+1,J+1(x) = γ (x)
B
(
2p−1,γ (x)−1−2p+2

)

B(p,γ (x)−1−p+1)
2 θ1/γ (x)

. (16)

Proof Let β = (β1, . . . , βJ , βJ+1) ∈ R
J+1. Set

Zn = ε−1
n

J∑

j=1

β j

(
ϕ̂(0)
n (yn, j |x)

ϕ(0)(yn, j |x)
− 1

)
+ ε−1

n βJ+1

(
ϕ̂

(p−1)
n (zn|x)

ϕ(p−1)(zn|x)
− 1

)

.

Clearly ω
(1)
hn

(yn, j |x) ≤ ω
(1)
hn

((1 − δ)yn|x) and ω
(1)
hn

(zn|x) ≤ ω
(1)
hn

((1 − δ)θyn|x) for n
large enough. Lemma 3 then provides E(Zn) = o(1). It thus remains to focus on
the asymptotic distribution of the centered variable Zn = Zn − E(Zn). Note that
Var[Zn] = ε−2

n β�B(n)β, where B(n) is the symmetric matrix having entries:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B(n)
j,� (x) = cov

(
ϕ̂

(0)
n (yn, j |x),ϕ̂

(0)
n (yn,�|x)

)

ϕ(0)(yn, j |x)ϕ(0)(yn,�|x)
, j, � ∈ {1, . . . , J }, j ≤ �,

B(n)
j,J+1(x) = cov

(
ϕ̂

(0)
n (yn, j |x),ϕ̂

(p−1)
n (zn |x)

)

ϕ(0)(yn, j |x)ϕ(p−1)(zn |x)
, j ∈ {1, . . . , J },

B(n)
J+1,J+1(x) = Var

[
ϕ̂

(p−1)
n (zn |x)

]

ϕ(p−1)(zn |x)2
.

We recall zn = θyn(1 + o(1)), hence F̄ (1)(zn|x) = θ−1/γ (x) F̄ (1)(yn|x)(1 + o(1)) and
Lemma 3 combined with Eq. (15) immediately gives

B(n)
J+1,J+1(x) = ||K ||22

g(x)
γ (x)

B
(
2p − 1, γ (x)−1 − 2p + 2

)

B
(
p, γ (x)−1 − p + 1

)2 θ1/γ (x)ε2n(1 + o(1)).

The calculation of B(n)
j,� (x) gives, through straightforward calculations and the use of

Lemma 3 and Eq. (15),

B(n)
j,� (x) = ||K ||22

nhdn

F̄ (1)
(
yn, j ∨ yn,�|x

)

g(x)F̄ (1)
(
yn, j |x

)
F̄ (1)

(
yn,�|x

) (1 + o(1)).

The regular variation property of F̄ (1) gives B(n)
j,� (x) = ||K ||22

g(x)
(τ j ∨ τ�)

−1ε2n(1 + o(1)).

It remains to calculate B(n)
j,J+1(x). Using Eq. (15), with Q(·) = K (·)2/||K ||22 a kernel

satisfying (K), this term equals
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1
nh2dn

||K ||22E
[
|Y − zn|p−1 Q

(
x−X
hn

)
1{Y>zn∨yn, j }

]

g(x)2B
(
p, γ (x)−1 − p + 1

)
z p−1
n F̄ (1)(yn, j |x)F̄ (1)(zn|x)/γ (x)(1 + o(1))

−
1
nE

[
1
hdn
K
(

x−X
hn

)
1{Y>yn, j }

]
E

[
|Y − zn|p−1 1

hdn
K
(

x−X
hn

)
1{Y>zn}

]

g(x)2B
(
p, γ (x)−1 − p + 1

)
z p−1
n F̄ (1)(yn, j |x)F̄ (1)(zn|x)/γ (x)(1 + o(1))

.

Clearly, as a direct consequence of Lemma 3, the first term dominates. Remark that
zn ∨ yn, j = (1 ∨ τ

−γ (x)

j /θ)zn(1 + o(1)) and combine Assumption (K), the results

of Lemma 4 (with λ = (1 ∨ τ
−γ (x)

j /θ)), and the regular variation property of ϕ(k)(·)
(see Eq. (15)) to find that the numerator of this first term is asymptotically equivalent
to

||K ||22
nhdn

g(x)z p−1
n F̄ (1)(zn|x)

[
(p − 1)I B

(
(1 ∨ τ

−γ (x)

j /θ)−1, γ (x)−1 − p + 1, p − 1
)

+((1 ∨ τ
−γ (x)

j /θ) − 1)p−1
(
1 ∨ τ

−γ (x)

j /θ
)−1/γ (x)

]
.

And finally B(n)
j,J+1(x) is asymptotically equivalent to

τ−1
j γ (x)

||K ||22
g(x)

ε2n

B
(
p, γ (x)−1 − p + 1

)
[
(p − 1)I B

(
(1 ∨ τ

−γ (x)

j /θ)−1, γ (x)−1 − p + 1, p − 1
)

+((1 ∨ τ
−γ (x)

j /θ) − 1)p−1
(
1 ∨ τ

−γ (x)

j /θ
)−1/γ (x)

]
.

Therefore, Var[Zn] = ||K ||22β��(x)β/g(x)(1 + o(1)), where �(x) is given in
Eq. (16). It remains to prove the asymptotic normality of Zn . For that purpose,
we denote Zn =∑n

i=1 Zi,n , where

Zi,n = ε−1
n

nhdn

J∑

j=1

β j

K
(

x−Xi
hn

)
1{Yi>yn, j } − E

[
K
(

x−Xi
hn

)
1{Yi>yn, j }

]

ϕ(0)(yn, j |x)

+ ε−1
n

nhdn
βJ+1

|Yi − zn|p−1 K
(

x−Xi
hn

)
1{Yi>zn} − E

[
|Yi − zn|p−1 K

(
x−Xi
hn

)
1{Yi>zn}

]

ϕ(p−1)(zn|x)
.

Taking δ > 0 sufficiently small and arguing as in the closing stages of the proof
of Lemma 6 in Girard et al. (2021), we find that nE

[|Z1,n|2+δ
] = O

(
εδ
n

) = o(1).
Applying the classical Lyapunov central limit theorem concludes the proof. �

Proposition 1 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold. Let yn →
∞, hn → 0 and zn = θyn(1 + o(1)), where θ > 0. Assume further that ε−2

n =
nhdn F̄

(1)(yn|x) → ∞, nhd+2
n F̄ (1)(yn|x) → 0, ω

(3)
hn

(yn|x) → 0 and there exists δ ∈
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(0, 1) such that ε−1
n ω

(1)
hn

((1 − δ)(θ ∧ 1)yn|x) log(yn) → 0. If, for all j ∈ {1, . . . , J },
the yn, j = τ

−γ (x)

j yn(1 + o(1)) with 0 < τ1 < τ2 < . . . < τJ ≤ 1 are such that

ε−1
n ω

(2)
hn

((1 + δ)(θ ∨ τ
−γ (x)

1 )yn|x) → 0, then, for all p ∈ (1, γ (x)−1/2 + 1), one has

ε−1
n

⎧
⎪⎨

⎪⎩

⎛

⎝
ˆ̄F(1)
n (yn, j |x)

F̄(1)(yn, j |x)
− 1

⎞

⎠

1≤ j≤J

,

( ˆ̄F(p)
n (zn |x)

F̄(p)(zn |x)
− 1

)
⎫
⎪⎬

⎪⎭

d→ N
(

0J+1,
||K ||22
g(x)

�(x)

)

,

where �(x) is given in Eq. (16).

Proof Notice that

ˆ̄F (p)
n (un|x)

F̄ (p)(un|x)
− 1 =

(
ϕ̂

(p−1)
n (un|x)

ϕ(p−1)(un|x)
− 1

)
m(p−1)(un|x)

m̂(p−1)
n (un|x)

+
(
m(p−1)(un|x)

m̂(p−1)
n (un|x)

− 1

)

.

Lemma 2 and theChebyshev inequality ensure that for all p ∈ (1, γ (x)−1/2 + 1) and
un ∈ {yn,1, . . . , yn,J , zn}, m̂(p−1)

n (un|x)/m(p−1)(un|x) − 1 = OP(1/
√
nhdn), so that

ε−1
n

( ˆ̄F (p)
n (un|x)

F̄ (p)(un|x)
− 1

)

= ε−1
n

(
ϕ̂

(p−1)
n (un|x)

ϕ(p−1)(un|x)
− 1

)

+ oP(1).

Applying Lemma 6 concludes the proof. �

6.2 Proofs of Main Results

Proof of Theorem 1 Let us denote t = (t1, . . . , tJ , tJ+1) and focus on the probability

�n(t) = P

⎛

⎝
J⋂

j=1

{

σ−1
n

(
q̂(1)
n (αn, j |x)

q(1)(αn, j |x)
− 1

)

≤ t j

}
⋂
{

σ−1
n

(
q̂(p)
n (an |x)

q(p)(an |x)
− 1

)

≤ tJ+1

}⎞

⎠ .

Set yn = q(1)(αn|x), yn, j = q(1)(αn, j |x)
(
1 + σnt j

)
and zn = q(p)(an|x) (1+

σntJ+1). The technique of proof of Proposition 1 in Girard et al. (2019) yields

�n(t) = P

⎛

⎝
J⋂

j=1

⎧
⎨

⎩
σ−1
n

⎛

⎝
ˆ̄F (1)
n

(
yn, j |x

)

F̄ (1)
(
yn, j |x

) − 1

⎞

⎠ ≤ σ−1
n

(
F̄ (1)

(
q(1)(αn, j |x)|x)

F̄ (1)
(
yn, j |x

) − 1

)⎫⎬

⎭

⋂
{

σ−1
n

( ˆ̄F (p)
n (zn|x)

F̄ (p) (zn|x)
− 1

)

≤ σ−1
n

(
F̄ (p)

(
q(p)(an|x)|x)

F̄ (p) (zn|x)
− 1

)})

.
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Second-order regular variation arguments similar to those of the proof of Proposi-
tion 1 in Girard et al. (2019) give, for all j ∈ {1, . . . , J },

σ−1
n

(
F̄ (1)

(
q(1)(αn, j |x)|x)

F̄ (1)
(
yn, j |x

) − 1

)

= t j
γ (x)

(1 + o(1))

and similarly

σ−1
n

(
F̄ (p)

(
q(p)(an|x)|x)

F̄ (p) (zn|x)
− 1

)

= tJ+1

γ (x)
(1 + o(1)).

Finally, notice that yn, j = τ
−γ (x)

j yn(1 + o(1)) and zn = θyn(1 + o(1)) (see (9)).

Moreover, for n large enough, ω
(1)
hn

(yn, j |x) ≤ ω
(1)
hn

(
(1 − δ)q(1)(αn|x)|x) and

ω
(1)
hn

(zn|x) ≤ ω
(1)
hn

(
(1 − δ)θq(1)(αn|x)|x). Similarly, ω

(2)
hn

(yn, j |x) ≤ ω
(2)
hn ((1 + δ)

τ
−γ (x)

1 q(1)(αn|x)|x
)
and ω

(2)
hn

(zn|x) ≤ ω
(2)
hn

(
(1 + δ)θq(1)(αn|x)|x). Conclude using

Proposition 1. �
Proof of Theorem 2 We recall σ−2

n = nhdn(1 − αn). Write

σ−1
n

log
(
1−αn
1−βn

) log

(
q̃(p)
n,αn (βn |x)

q(p)(βn |x)

)

= σ−1
n (γ̂αn (x) − γ (x)) + σ−1

n

log
(
1−αn
1−βn

) log

(
q̂(p)
n (αn |x)

q(p)(αn |x)

)

+ σ−1
n

log
(
1−αn
1−βn

) log

((
1 − αn

1 − βn

)γ (x) q(p)(αn |x)

q(p)(βn |x)

)

.

The first term converges in distribution to �. The second one converges to 0 in
probability, by Theorem 1. To control the third one, write

(
1 − αn

1 − βn

)γ (x) q(p)(αn|x)

q(p)(βn|x)
=
(
1 − αn

1 − βn

)γ (x) q(1)(αn|x)

q(1)(βn|x)

q(p)(αn|x)

q(1)(αn|x)

q(1)(βn|x)

q(p)(βn|x)
.

In view of Theorem 4.3.8 in de Haan and Ferreira (2006) and its proof, ((1 − αn)/

(1 − βn))
γ (x) q(1)(αn|x) = q(1)(βn|x)

(
1 + O

(
A
(
(1 − αn)

−1|x))) = q(1)(βn|x)

(1 + O(σn)) . By Lemma 5 then,

(
1 − αn

1 − βn

)γ (x) q(p)(αn|x)

q(p)(βn|x)
= 1 + O(σn).

The third term therefore converges to 0. Conclude using Slutsky’s lemma and the
delta-method. �
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Proof of Theorem 3 This proof is similar to those of Theorem 4 inGirard et al. (2021)
(where p = 2) and Theorem 1 in Girard et al. (2019) (an unconditional version) and
is thus left to the reader.
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