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1 Introduction

Based on the results in [11], the authors of [13] have considered the ratio-dependent
predator–prey system with the Michaelis–Menten functional response

ẋ = rxg(x,K) −
n∑

i=1

yipi

(yi

x

)
,

ẏi = yipi

(yi

x

)
− diyi, (i ∈ {1, . . . , n})

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (1)

where the dot means differentiation with respect to time t ; x(t) ≥ 0 denotes the
quantity of the prey at time t and yi(t) ≥ 0 are the numbers or densities of the ith
predator (i ∈ {1, . . . , n}) at time t . It was assumed that the per capita growth rate
of prey in the absence of predators is rg(x,K) where r > 0 denotes the maximal
growth rate of prey and K > 0 is the carrying capacity of environment with respect
to the prey; furthermore, the death rate di > 0 of the ith predator is constant, and
the per capita birth rate of the same predator is pi

( yi

x

)
, where the functions g and

pi have the following forms:

g(x,K) :≡ 1 − x

K
and pi

(yi

x
, ai

)
:≡ mix

aiyi + x
,
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and ai is the ith half-saturation constant, namely, in the case where pi is a bounded
function for fixed

ai > 0, mi := sup
x,yi>0

pi(x, yiai)

is the maximal birth rate of the ith predator (i ∈ {1, . . . , n}). For the survival of the
predator, it is clearly necessary that the maximal birth rate be larger than the death
rate: mi > di (i ∈ {1, . . . , n}). This will be assumed in the sequel.

In order to have more realism, the authors of paper [13] took into account that
the predator’s growth rate at present depends on past quantities and, therefore, a
continuous density function ρ was introduced whose role is to weight moments of
the past (cf. [8]). Thus, they replaced the quantity x by

q(t) :=
∫ t

−∞
x(τ)ρ(t − τ) dτ (t ∈ [0,∞)), (2)

where the density function ρ satisfies the requirements

ρ(s) ≥ 0 (s ∈ [0,∞)),

∫ ∞

0
ρ(s) ds = 1.

Note that it is necessary to assume that the function ρ is smooth: ρ ∈ C1. Thus, the
system governing the dynamics of the predator–prey community is taken up in the
form

ẋ = rxg(x,K) −
n∑

i=1

yipi

(yi

x

)
,

ẏi = yipi

(
yi

q

)
− diyi (i ∈ {1, . . . , n}).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3)

In [13], the authors could give in the case of one prey and two predators, i.e., when
n = 2, parameter values for which the above system loses its stability, and they
conjectured that there may be periodic solution occurrence.

This chapter is organized as follows. In the next section, assuming that the density
function ρ is a solution of homogeneous linear differential equations with constant
coefficients, i.e., it has the form

ρm(s) := hm+1sme−hs

m! (s ∈ [0,+∞)) (4)

where m ∈ N0, we perform linear stability analysis of the interior equilibrium
in the case of m ∈ {0, 1}. In the section that follows, the conjecture in [13] is
proved. We show that if the parameter is varied and crosses a critical value, periodic
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solutions arise via Hopf bifurcation. Finally, a numerical simulation for supporting
the theoretical analysis is also given.

2 The System with Delay

In case of m = 0, the weight function is exponentially decaying (“exponential
fading memory”) and has the form

ρ0(s) = he−hs (s ∈ [0,+∞)), (5)

and in case of m = 1, it takes the form

ρ1(s) = h2se−hs (s ∈ [0,+∞)), (6)

where for both cases we have h > 0 (cf. Fig. 1). Fargue has shown in [3] that if the
density ρ has the form (4), then system (3) is equivalent to a system of ordinary
differential equations of higher dimension. The exponential fading memory was
used by several authors (cf. e.g., [1, 2, 4, 6, 15, 17, 18]). The authors of [5, 7, 9]
used the memory with hump in order to make their model more realistic.

2.1 Exponential Fading Memory

Assuming that the influence of the past is fading away exponentially, i.e., for
arbitrary h > 0 (5) and

h

∫ t

−∞
ρ0(−h(t − τ)) dτ =

∫ ∞

0
exp(−hs) ds = 1

holds, we have for the quantity q in (2)

Fig. 1 The density functions:
blue exponential fading
memory and red memory
with a hump

r(s)

s
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q̇(t) = h(x(t) − q(t)) (t ∈ [0,+∞)).

The smaller the h the longer is the time interval in the past in which the values of x

are taken into account, i.e., 1/h is the “measure of the influence of the past.” Hence,
system (3) is equivalent in its qualitative dynamical behavior to the following system
of ordinary differential equations:

ẋ = rxg(q,K) −
n∑

i=1

yipi

(yi

x

)
,

ẏi = yipi

(
yi

q

)
− diyi (i ∈ {1, . . . , n}),

q̇ = h(x − q).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

We note that the equivalence above takes place over the time interval [0,∞); fur-
thermore, if (x, y1, . . . , yn) : [0,∞) → R

n+1 is the solution of (3) corresponding
to the continuous and bounded initial function x̃ : (−∞, 0] → R and the initial
values y0

i := yi(0) (i ∈ {1, . . . , n}) (i.e., x(t) := x̃(t) (t < 0)), then

(x, y1, . . . , yn, q) : [0,∞) → R
n+2

is the solution of (3) satisfying the initial values

x(0) = x̃(0), yi(0) = y0
i (i ∈ {1, . . . , n})

and

q(0) = q0 := h

∫ 0

−∞
x̃(τ ) exp(hτ) dτ

and vice versa. (Clearly, if the initial values x(0), y0
i , and q0 related to system (3)

are prescribed, then the function x̃ is not uniquely determined.)

2.2 Memory with a Hump

Assume now that the weight function is given by (6) and for t ∈ [0,+∞) introduces
notations
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q(t) := h2
∫ t

−∞
(t − τ)x(τ ) exp(−h(t − τ)) dτ,

r(t) := h

∫ t

−∞
x(τ) exp(−h(t − τ)) dτ.

(8)

Then, we have

q̇ = h(r − q), resp. ṙ = h(x − r),

and furthermore, it is easy to see that system (3) is equivalent on [0,+∞) in the
sense described following (7) to the system

ẋ = rxg(x,K) −
n∑

i=1

yipi

(yi

x

)
,

ẏi = yipi

(
yi

q

)
− diyi (i ∈ {1, . . . , n}),

q̇ = h(r − q),

ṙ = h(x − r).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

3 The Case of One Prey and Two Predators

As it was done in [13], we also assume that the community consists of one prey and
two predators, i.e., n = 2 holds. This means that that system (7) takes the form

ẋ = rx
(

1 − x

K

)
− m1

xy1

a1y1 + x
− m2

xy2

a2y2 + x
,

ẏ1 = m1
xy1

a1y1 + x
− d1y1,

ẏ2 = m2
xy2

a2y2 + x
− d2y2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

In [11], it was showed that system (10) is dissipative, i.e., all of its solutions are
bounded and the positive octant of the phase space R

3 is an invariant region;
furthermore, if we extend it for

R
3+ :=

{
(x, y1, y2) ∈ R

3 : x ≥ 0, y1 ≥ 0, y2 ≥ 0
}
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by ẋ = 0, ẏi = 0 if x2 + y2
i = 0 for any i (i ∈ {1; 2}), then the extended system has

four equilibria on the boundary of the positive octant of the phase space, namely

E0(0, 0, 0), E1(K, 0, 0), E2
i (̂xi , ŷ1, ŷ2) (i ∈ {1; 2}),

where for i, j ∈ {1; 2}: j �= i we have

x̂i := K

(
1 − 1

r

mi − di

ai

)
, ŷi := mi − di

diai

x̂, ŷj = 0,

and it has one interior equilibrium E∗(x∗, y∗
1 , y∗

2 ) where for i ∈ {1; 2} we have

x∗ := K

(
1 − 1

r

2∑

i=1

mi − di

ai

)
and y∗

i := mi − di

diai

x∗.

Note that equilibria E0 and E1 always exist. The equilibria E2
i (i ∈ {1; 2}) and E∗

may or may not exist. In particular, E2
i exists (i ∈ {1; 2}) if

mi − di

ai

< r and mi > di

hold. The interior equilibrium E∗ that represents the coexistence of all species exists
if maximal growth rates mi − di of the predators are positive and the sum of the
ratios of the growth rates and half-saturation constants of the predators is less than
the intrinsic growth rate of the prey, i.e.,

mi > di and
2∑

i=1

mi − di

ai

< r (11)

hold.
Introducing delays with density functions (5) and (6), system (10) goes into

ẋ = rx
(

1 − x

K

)
− m1

xy1

a1y1 + x
− m2

xy2

a2y2 + x
,

ẏ1 = m1
qy1

a1y1 + q
− d1y1,

ẏ2 = m2
qy2

a2y2 + q
− d2y2,

q̇ = h(x − q)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)
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and into

ẋ = rx
(

1 − x

K

)
− m1

xy1

a1y1 + x
− m2

xy2

a2y2 + x
,

ẏ1 = m1
qy1

a1y1 + q
− d1y1,

ẏ2 = m2
qy2

a2y2 + q
− d2y2,

q̇ = h(r − q),

ṙ = h(x − r).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

From the biological point of view, we are only interested in the case when the
interior equilibrium exists because the other equilibria are unstable when no delay
is concerned (cf. [11]). If condition (11) holds, then interior equilibria of (10),
resp. (12) and of (13) are

E∗ := (x∗, y∗
1 , y∗

2 ),

resp.

E∗
d0 := (x∗, y∗

1 , y∗
2 , x∗) and E∗

d1 := (x∗, y∗
1 , y∗

2 , x∗, x∗).

In order to determine the stability of equilibria E∗, resp. E∗
d0 and E∗

d1 of sys-
tems (10), resp. (12) and (13) one has to compute the Jacobians

J (x, y1, y2) :=

⎡

⎢⎢⎢⎢⎢⎢⎣

j11 − m1x
2

(a1y1 + x)2 − m2x
2

(a2y2 + x)2

a1m1y
2
1

(a1y1 + x)2

m1x
2

(a1y1 + x)2 − d1 0

a2m2y
2
2

(a2y2 + x)2
0

m2x
2

(a2y2 + x)2
− d2

⎤

⎥⎥⎥⎥⎥⎥⎦

resp.

J (x, y1, y2, q) :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

j11 − m1x
2

(a1y1 + x)2
− m2x

2

(a2y2 + x)2
0

0 m1q
2

(a1y1+q)2 − d1 0
a1m1y

2
1

(a1y1 + q)2

0 0
m2q

2

(a2y2 + q)2 − d2
a2m2y

2
2

(a2y2 + q)2

h 0 0 −h

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

J (x, y1, y2, q, p) :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j11 − m1x
2

(a1y1 + x)2 − m2x
2

(a2y2 + x)2 0 0

0
m1q

2

(a1y1 + q)2
− d1 0

a1m1y
2
1

(a1y1 + q)2
0

0 0
m2q

2

(a2y2 + q)2 − d2
a2m2y

2
2

(a2y2 + q)2 0

0 0 0 −h h

h 0 0 0 −h

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

at these equilibria, where

j11 := r − 2rx

K
− a1m1y

2
1

(a1y1 + x)2 − a2m2y
2
2

(a2y2 + x)2 .

If we take parameter values (cf. [13])

m1 := 16, m2 := 18, d1 := 8, d2 := 12, a1 := 4, a2 := 2, K := 0.1,

(14)
then the dependence of E∗, resp. E∗

d0 and E∗
d1, on the parameter r (in fact on the

maximal growth rates from the prey) is as follows:

E∗ :=
(

0.1

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
,

(
1 − 5

r

))
,

resp.

E∗
d0 :=

(
0.1

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
, 0.1

(
1 − 5

r

))

and

E∗
d1 :=

(
0.1

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
, 0.1

(
1 − 5

r

)
, 0.1

(
1 − 5

r

))
.

Under this restriction, we have

J := J (E∗) :=
⎡

⎣
8 − r −4 −8

1 −4 0
1 0 −4

⎤

⎦

resp.
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J0 := J (E∗
d0) :=

⎡

⎢⎢⎣

8 − r −4 −8 0
0 −4 0 1
0 0 −4 1
h 0 0 −h

⎤

⎥⎥⎦

and

J1 := J (E∗
d1) :=

⎡

⎢⎢⎢⎢⎢⎣

8 − r −4 −8 0 0
0 −4 0 1 0
0 0 −4 1 0
0 0 0 −h h

h 0 0 0 −h

⎤

⎥⎥⎥⎥⎥⎦
.

We calculate the characteristic polynomials of J , resp. J0 and J1, using Faddeev–
Leverrier method (cf. [10]) and with the help of block matrices. The characteristic
polynomial of the Jacobian J has the form

χJ (z) := z3 + a2z
2 + a1z + a0 (z ∈ K),

where

a2 = −Tr(J ) = r,

a1 = 1

2

{
(Tr(J ))2 − Tr(J 2)

}
= 8r − 36,

a0 = − det(J ) = 16r − 80.

The equilibrium E∗ is feasible if and only if r > 5 holds. In this case, χJ is a stable
polynomial since it fulfills the Routh–Hurwitz condition (cf. [8]): its coefficients
have the same sign and

a1a2 − a0 = (8r − 36)r − 16r + 80 = 8r2 − 52r + 80 = 4(r − 4)(r − 5/2) > 0.

As a consequence, E∗ is asymptotically stable if it exists. The characteristic
polynomial χJ0 is calculated as follows. From the definition, we have
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χJ0(z) = det(zI4 − J ) = (−1)4 det(J − zI4)

= det

⎡

⎢⎢⎣

8 − r − z −4 −8 0
0 −4 − z 0 1
0 0 −4 − z 1
h 0 0 −h − z

⎤

⎥⎥⎦

= −1

8
det

⎡

⎢⎢⎣

r + z − 8 4 8 0
0 −32 − 8z 0 8
0 0 −4 − z 1
h 0 0 −h − z

⎤

⎥⎥⎦ = −1

8
det

[
A B

C D

]
.

Since A and B commute, we get (cf. [16])

det(zI4 − J0) = −1

8
det [DA − CB]

= −1

8
det

[[
−4 − z 1

0 −h − z

][
r + z − 8 4

0 −32 − 8z

]
− 8h

[
0 0
1 0

]]

= −1

8
det

[[
(4 + z)(r − 8 + z) 4(4 + z) − 4 − z

0 (h + z)(4 + z)

]
− 8h

[
0 0
1 0

]]

= −1

8
det

[
−(4 + z)(r − 8 + z) −4(4 + z) − 8(4 + z)

−8h 8(h + z)(4 + z)

]

= (4 + z)(r − 8 + z)(h + z)(4 + z) − 12h(4 + z)

= (4 + z)
{
z3 + (h + r − 4)z2 + ((h + 4)r − 4(h + 8))z + 4h(r − 5)

}
.

The characteristic polynomial χJ1 can be computed as follows.

χJ1(z) := det(zI5 − J1) = (−1)5 det(J1 − zI5)

= − det

⎡

⎢⎢⎢⎢⎢⎣

8 − r − z −4 −8 0 0
0 −4 − z 0 1 0
0 0 −4 − z 1 0
0 0 0 −h − z h

h 0 0 0 −h − z

⎤

⎥⎥⎥⎥⎥⎦

= −(h + z)2(4 + z)2(8 − r − z).



Oscillatory Behavior of a Delayed Ratio-Dependent Predator–Prey System with. . . 27

It is easy to see that J1 is stable only if r > 8, whereas the stability of J0 depends
on the third-order polynomial

z3 + α(h)z2 + β(h)z + γ (h) (z ∈ K), (15)

where

α(h) := h + r − 4, β(h) := (h + 4)r − 4(h + 8), γ (h) := 4h(r − 5).

In order to have Hopf bifurcation in case of J0, one has to show that a pair
of complex conjugate eigenvalues of J0 crosses the imaginary axis with non-zero
velocity, while the rest of the eigenvalues continue to have negative or positive real
parts. This is fulfilled if (cf. [8, 14])

• the so-called eigenvalue crossing condition holds, i.e., the characteristic polyno-
mial χJ0 has a pair of pure imaginary roots μ(h) ± ıν(h) and no other roots with
zero real parts, for which at a critical value h∗ of the bifurcation parameter h

μ(h∗) = 0, ν(h∗) �= 0; (σ (J0)\{±ıν(h∗)}) ∩ ıR = ∅,

hold;
• the transversality condition holds, i.e., μ′(h∗) �= 0 is fulfilled.

Clearly, for every h > 0, we have γ (h) > 0 because r > 5 holds.
Next, we use a lemma for which a proof is given in Appendix of [12].

Lemma 3.1 Let I ⊂ R an open interval α, β, γ : I → R smooth functions. Then,
the polynomial

P(z) := z3 + αz2 + βz + γ (z ∈ K)

fulfills at some h = h∗ ∈ I the eigenvalue crossing condition and the transversality
condition if

α(h∗) �= 0, β(h∗) > 0, γ (h∗) = α(h∗)β(h∗) (16)

and

d

dh
{α(h)β(h) − γ (h)}|h=h∗ �= 0 (17)

hold.

Thus, the eigenvalue crossing condition holds for the polynomial in (15) if and only
if

β(h) := (h + 4)r − 4(h + 8) > 0, α(h) := h + r − 4 �= 0
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and

α(h)β(h) − γ (h) := (h + r − 4) {(h + 4)r − 4(h + 8)} − 4h(r − 5) �= 0.

The authors in [13] have chosen for r := 7 the value h∗ := 1 that is seemingly
not critical. No wonder that they could not observe and prove periodic oscillation.
Solving equation α(h)β(h) = γ (h), we have

hH := h∗ = 1 + √
17

2
.

Because

α(h∗) =
√

17 + 7

2
�= 0 and β(h∗) = 3

√
17 − 5

2
> 0,

the eigenvalue crossing condition holds at this value of the parameter h. Thus, we
are able to prove the occurrence of limit cycles from the interior equilibrium E∗

d0 of
the system (12).

Theorem 3.1 Suppose that conditions in (14) hold and r = 7, then at the critical
value hH of the bifurcation parameter h the equilibrium E∗

d0 of the system (12)
undergoes a Hopf bifurcation: E∗

d0 loses its stability and a branch of periodic
solutions emerges from E∗

d0 near h = hH .

Proof We need to check whether the transversality condition (17) holds. Indeed, at
the critical value h = hH , we have

d

dh
(αβ − γ )(hH ) = −[8 − 3(3 + h) − 7(4 + h) + 4(8 + h)]h=hH

= 3
√

17 �= 0,

which proves our statement. ��
Figure 2 shows the time evolution of system (12) if Hopf bifurcation occurs.

4 Stability of the Bifurcating Periodic Solution

In this section, we shall present a very brief summary of the projection method
(cf. [14]) in order to decide whether the bifurcation is super- or subcritical. Under
supercritical bifurcation, we mean the case when the equilibrium E∗

d0 has lost its
stability with occurrence of periodic solutions that are orbitally asymptotically
stable (i.e., for values of the bifurcation parameter h less than hH ), while in the
subcritical case, the periodic solutions are unstable and exist for hs when the
equilibrium E∗

d0 is still asymptotically stable (i.e., for values of h greater than hH ).
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Fig. 2 The periodic solution of system (12) near h = hH

Clearly, system (12) has the form

(u̇, v̇, ẇ, ż) = F(u, v,w, z, h), (18)

where

F1(u, v,w, z, h) := ru
(

1 − u

K

)
− m1

uv

a1v + u
− m2

uw

a2w + u
,

F2(u, v,w, z, h) := m1
zv

a1v + z
− d1v,

F3(u, v,w, z, h) := m2
zw

a2w + z
− d2w,

F4(u, v,w, z, h) := h(u − z)

and h is the bifurcation parameter. Define the bilinear, resp. trilinear functions

B = (B1, B2, B3, B4) : K4 × K
4 → K

4,
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resp.

C = (C1, C2, C3, C4) : K4 × K
4 × K

4 → K
4

by

Bi(x, y) :=
4∑

j,k=1

∂2Fi(ξ , hH )

∂ξj ∂ξk

∣∣∣∣∣∣
ξ=E∗

d0

xjyk, (i ∈ {1, 2, 3, 4}),

resp. by

Ci(x, y, z) :=
4∑

j,k,l=1

∂3Fi(ξ , hH )

∂ξj ∂ξk∂ξl

∣∣∣∣∣∣
ξ=E∗

d0

xjykzl (i ∈ {1, 2, 3, 4}).

The Jacobian J0 at the critical parameter value h = hH will be denoted by A:

A := ∂F(ξ , hH )

∂(u, v,w, z)

∣∣∣∣
ξ=E∗

d0

.

Clearly, ıω and −ıω are eigenvalues of A with left and right eigenvectors p,q ∈ K
4,

i.e., satisfying

Aq = ıωq, AT p = −ıωp (19)

and normalized by setting

〈p,q〉 = 1 (20)

where 〈·, ·〉 is the standard scalar product in C
4, antilinear in the first argument.

To examine the supercriticality, resp. subcriticality, of the bifurcating solution,
one has to compute the sign of the first Poincaré–Lyapunov coefficient

l1 = 1

2ω
· � (〈p,H21〉) , (21)

where

H21 := C(q,q,q) + 2B (q,h11) + B(q,h20),
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resp.

h11 := A−1B(q,q) and h20 := (2ıωI3 − A)−1 B(q,q).

In case of l1 < 0 (resp. l1 > 0), we have supercritical (resp. subcritical) bifurcation.
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